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Understanding the elongational rheology of dilute polymer solutions plays an

important role in many biological and industrial applications ranging from

microfluidic lab-on-a-chip diagnostics to phenomena such as fuel atomization and

combustion. Making quantitative measurements of the extensional viscosity for

dilute viscoelastic fluids is a long-standing challenge and it motivates developments

in microfluidic fabrication techniques and high speed/strobe imaging of millifluidic

capillary phenomena in order to develop new classes of instruments. In this paper,

we study the elongational rheology of a family of dilute polymeric solutions in two

devices: first, steady pressure-driven flow through a hyperbolic microfluidic

contraction/expansion and, second, the capillary driven breakup of a thin filament

formed from a small diameter jet (Dj � Oð100 lmÞ). The small length scale of the

device allows very large deformation rates to be achieved. Our results show that in

certain limits of low viscosity and elasticity, jet breakup studies offer significant

advantages over the hyperbolic channel measurements despite the more complex

implementation. Using our results, together with scaling estimates of the competing

viscous, elastic, inertial and capillary timescales that control the dynamics, we

construct a dimensionless map or nomogram summarizing the operating space for each

instrument. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948235]

I. INTRODUCTION

Quantifying the elongational rheology of weakly viscoelastic fluids can help us understand

the complex fluid dynamical behavior of such materials, which arises due to the coupling

between microstructure and flow.1,2 Mucus, saliva, synovial fluids, and blood are just a few

representative examples of such fluids, and many of our vital physiological functions depend on

the flow behavior or, in other words, the rheology of these microstructured biomaterials.3–5

Similarly, in many important industrial applications such as paint coating, inkjet printing, emul-

sification, and anti-mist fuel combustion, the rheological properties of weakly viscoelastic

liquids play a significant role.6–9

One important characteristic behavior of viscoelastic liquids is the resistance that the under-

lying microstructure exhibits to deformation in elongational flows. This resistance is character-

ized by the extensional viscosity, and the value of gE for viscoelastic solutions can be several

orders of magnitude higher than the corresponding shear viscosities.10–13 In many biological

and industrial applications such as flow of biological fluids through contractions and valves, the

flow of liquid foodstuffs through orifices,14 or atomization of paints in an air-spray nozzle, the

kinematics of the flow is dominated by elongational deformation, leading to dramatic effects of

the extensional rheological properties on the flow.

Extensional rheometry is an ongoing challenge for dilute viscoelastic liquids due to the

difficulties in generating purely elongational flow fields.11,13,15,16 In the last 20 years, special-

ized devices such as filament stretching instruments have been developed that can induce a
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local flow field in the fluid sample that is purely elongational; however, these instruments often

fail to operate successfully for even moderately viscous liquids (g � 0:1 Pa s).17,18 For lower

viscosity systems, an instrument based on the analysis of capillary thinning and breakup of

liquid filaments was first introduced by Entov and coworkers19 and later developed extensively

by McKinley and coworkers and others.20–24 Capillary Breakup Extensional Rheometry

(CaBER) has become a common method to study the elongational rheology of a wide range of

dilute complex fluids.25–28 However, conventional measurements from CaBER can be affected

by fluid inertia and the dynamics of the end-plates. Limits on the separation speed of the end-

plates and other inertia-related issues have dramatic adverse effects on conventional CaBER

measurements for liquids with low viscosity and low elasticity. Rodd et al.21 and more recently

Keshavarz et al.7 have shown that two dimensionless numbers capture the importance of

viscous and elastic forces compared to capillary forces, and the relative magnitude of these

groups determine the efficacy of CaBER measurements. These two numbers are known as the

Ohnesorge number Oh � g0=
ffiffiffiffiffiffiffiffiffiffiffi
qR0r
p

and Deborah number De � sE=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR3

0=r
q

, respectively.29

Here, g0 is the zero shear viscosity, q is the density, r is the surface tension, and sE is the elon-

gational relaxation time. In addition to material properties, it is clear that the geometry (R0) of

the rheometric device also plays a role in the relative importance of each effect. For liquids

with Deborah and Ohnesorge numbers smaller than unity (De�1 and Oh�1), CaBER measure-

ments are typically not possible due to the dominance of inertia effects. From a practical stand-

point, this limits the ability of the instrument to measure the viscoelastic properties of liquids

with sE�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR3

0=r
q

. For q � 103 kg=m3; R0 � 3 mm; r � 60� 10�3 N=m, this gives a constraint

of sE�21 ms. It is clear from these scalings that reducing the characteristic length scale of the

test geometry (e.g., the initial radius of the liquid bridge in the CaBER instrument) into the

microfluidic domain can help in minimizing the importance of inertial effects. These ideas have

been introduced in a recent review30 and are considered in more detail elsewhere in this special

issue.18 It is noteworthy that many other microfluidic techniques are available for extensional

rheology with different mechanisms that benefit from either pressure drop measurements, flow-

induced birefringence, or capillary pinch off in microfabricated channels with a range of differ-

ent geometries.31–37 Studying the details of all these devices is beyond the scope of our current

study; however, a review by Haward18 provides an overview of each of these methods.

Knowing the limits of the commercial CaBER instrument when measuring the extensional

rheology of dilute solutions, several extensions and alternate protocols have been introduced in

the literature. The Slow Retraction Method (SRM)38 and Cambridge Trimaster39,40 are devices

similar to CaBER that also utilize capillary thinning but show a substantial improvement in the

range of measured elongational relaxation times (down to sE ’ 80 ls). A more recent approach7

has reintroduced an old concept based on studying the capillary breakup of a thin viscoelastic

liquid jet. The technique, christened by the authors as Rayleigh Ohnesorge Jetting Extensional

Rheometry (ROJER), is a contemporary adaptation of an idea originally introduced by

Sch€ummer and Tebel.41–43 Using ROJER, Keshavarz et al.7 studied a family of dilute polymer

solutions in both the linear and nonlinear regimes of jet deformations. The reported values of

relaxation time extracted from jet rheometry tests for dilute polymer solutions were as low as

sE ’ 60 ls.7

A different class of instruments for probing elongational properties of dilute solutions is

based on steady flow of viscoelastic fluids through a contraction or a contraction/expan-

sion.18,30,44 Imposing a sudden contraction on a fully developed channel flow induces stream-

wise extensional kinematics that can cause significant stretching in the microstructure of the

fluid, which then results in an extra pressure drop across the contraction/expansion. Essentially,

this is the microfluidic analog of the “orifice plate” widely used for inline measurement of the

flow rate of the Newtonian fluids (with constant rheology). Early studies of polymeric flows in

contractions45–51 showed many promising aspects and its relevance to commercial polymer

processing operations such as injection molding established the contraction flow as a ubiquitous

“rheological indexer” for elongational properties. Several recent studies,52–56 benefiting from
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advances in fabrication techniques for microfluidic channels, have focused on the flow of com-

plex liquids in hyperbolic contraction geometries asserting that the hyperbolic profile will aid in

maintaining the apparent stretch rate _�a constant throughout the contraction.52,57 The recent

study by Ober et al.56 investigated a microfluidic hyperbolic expansion/contraction flow for a

variety of different low viscosity test fluids and outlined methods based on two-dimensional

lubrication theory to measure elongational properties based on pressure drop measurements

across the contraction.

Considering the recent developments in microfluidic devices/flows for biological applica-

tions and the fact that many of the relevant liquids are of a weakly viscoelastic nature30,44,58–62

it is important for the rheologist to develop a comprehensive understanding of the relative mer-

its of different devices available for measuring the elongational rheology of dilute solutions.

This situation is complicated by the knowledge that the extensional viscosity of a microstruc-

tured material is typically a time-varying function of both the strain rate _�ðtÞ and the total strain

� ¼
Ð t

0
_�ðt0Þdt0 imposed on a material element.11,17 This can lead to difficulties in unambiguously

determining the true extensional viscosity and in comparing results obtained with different

instruments. Thus, in this study, we attempt to measure the elongational properties of a family

of dilute polymer solutions by using two separate devices representing the different classes

described above. Results from a microfluidic hyperbolic contraction device or “extensional vis-

cometer-rheometer-on-a-chip” (EVROC), similar to the device used by Ober et al.,56 are com-

pared with jet breakup studies performed with the ROJER setup. This latter configuration

focuses on the transient growth in the extensional viscosity for an unknown viscoelastic test

sample at a single (nominally) constant strain rate that is set by the viscoelastic and interfacial

properties of the fluid. In contrast, the former (EVROC) configuration considers a steady

Eulerian flowfield with the total strain on a material element defined by the precise converging

shape of the hyperbolic die and the 2D or 3D nature of the flowfield. In such an instrument, the

strain rate can be systematically controlled by varying the flow rate through the device.

In this study, we highlight the limits of each device for quantitative measurements of the

elongational properties of the fluid and develop simple physical scalings that can help elucidate

the operational parameter space of each device. We represent our results in terms of an operat-

ing diagram or nomogram that delineates the regions of parameters where viscoelastic fluid

properties can be successfully measured. The findings from this study provide practical guid-

ance to microfluidic researchers who are interested in quantifying the elongational rheology of

a wide range of industrial and biological liquids that exhibit weak viscoelastic behavior.

II. TEST FLUIDS AND EXPERIMENTAL SETUP

A. PEO solutions

In order to quantify the performance of the EVROC and ROJER configuration for exten-

sional rheometry of weakly viscoelastic fluids, we prepared four different dilute polymeric solu-

tions and monitored their flow behavior in hyperbolic channels (EVROC) and in the jet breakup

process (ROJER). In addition to these four test fluids, we also tested a concentrated high molec-

ular weight fluid in both the EVROC and CaBER devices to illustrate the similarities and

differences when a markedly different viscosity range is probed. Table I summarizes the proper-

ties of all the test fluids. The viscoelastic fluids are prepared by dissolving small amounts of

poly(ethylene oxide) (PEO) of three different average molecular weights (300 kg/mol, 1000 kg/mol,

and 4000 kg/mol, respectively) in a 60–40 wt. % water-glycerol solvent (gs ¼ 3:0 m Pa s). The

polymer overlap concentrations are, respectively, c� ¼ 0:28%, 0.14%, and 0.08% for the 300 K,

1000 K, and 4000 K solutions. The values of c and L (the finite extensibility parameter) are esti-

mated based on the scalings with average molecular weight that are evaluated by Haward et al.32

for PEO solutions (L � M1��
w in which � ¼ 0:56 for a reasonably good solvent such as PEO in

water-glycerol mixture).

It is known that at really high deformation rates, flexible polymer chains can be physically

degraded due to their finite extensibility63 and the viscoelastic behavior of many complex fluids

decreases with time. Thus, for each ROJER or EVROC experiment, a fresh sample was used,
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and the elapsed time gap between the EVROC and ROJER tests was kept to less than 30 min,

in order to minimize the possibility of degradation between tests performed with different

devices.

B. EVROC setup

The microfluidic planar hyperbolic contraction used in this study was fabricated by

RheoSense (San Ramon, CA, USA).64 The channel geometry and dimensions are shown in

Figure 1(a). The channel height (h) is constant throughout the geometry. The flow upstream is

pushed by a syringe pump through a straight channel region with constant width wu to establish

a fully developed shearing flow before reaching a symmetric contraction/expansion 0 � x � 2lc

in which the width varies as wðxÞ ¼ K=ðx0 � jx� lcjÞ, where x0 ¼ lcwu=ðwu � wcÞ and K
¼ lcwcwu=ðwu � wcÞ. At an imposed flow rate Q, the average streamwise velocity at any plane

x will vary as huðxÞi ¼ Q=hwðxÞ, so if we focus on the flow along the midplane of the device,

the apparent extension rate _�a is

_�a ¼
Q

lch

1

wc
� 1

wu

� �
; (1)

leading to a value of the average Hencky strain �H that is experienced by a fluid element fol-

lowing through the contraction given by

�HðxÞ �
ðtðxÞ

0

_�adt0; (2)

where the limit of integration corresponds to the time at which the material element is at a

location x along the constriction. This function reaches a maximum value of �H ¼ lnðwu=wcÞ
when the material element reaches the throat of the contraction, x¼ lc.

Before and after every test, the channels are flushed with water/ethanol to make sure that

there is no residue from previous tests. For every measurement, the channel was filled with the

test fluid for 10–15 min, and measurements are then started after pumping 3–5 ml of the sample

through the EVROC fixture and monitoring the approach to steady state values for the pressure

signal recorded by each transducer. Figure 1(b) shows the raw pressure measurements for one

of the viscoelastic test solutions (PEO-4000 K-0.05 wt. %). The pressure drop across the hyper-

bolic contraction DPc is evaluated from the pressure difference measured between the 2nd and 3rd

sensors DP23 with a minor extrapolation upstream and downstream of the pressure transducers to

correct for the fact that they are not located exactly at the throat entrance/exit of the converging/

diverging region.56 From Equations (1) and (2), it is clear that by varying the flow rate in the

channel the apparent extension rate in the constriction is controlled, and measuring the pressure

drop across the contraction then gives a direct measure of the viscoelastic effects involved in the

deformation of material elements as they flow through the contraction/expansion.

TABLE I. Properties of the viscoelastic test fluids. Different concentrations of poly (ethylene oxide) (PEO) at three differ-

ent molecular weights were dissolved in the Newtonian solvent (60–40 wt. % WaterþGlycerol gs ¼ 3:0 m Pa s).

Definitions of the Deborah number (De), Ohnesorge number (Oh), Elasticity number (El), and Elasto-capillary number

(Ec) that can be spanned by the fluids are described in the text.

Mw (K) c (%) c=c� g0 ðm Pa sÞ sE ðlsÞ L De Oh El Ec

300 0.01 0.036 3.30 72 27 0.72 0.075 0.05 10

1000 0.01 0.07 3.40 425 50 4.5 0.075 0.34 60

4000 0.0025 0.03 3.10 957 100 10.5 0.075 0.79 140

4000 0.05 0.66 3.37 2045 100 21.9 0.095 2.07 232

4000 1 13.22 700 5.5� 104 100 595 17 10.4� 103 34
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C. ROJER setup

The ROJER instrument used in this study is a bespoke apparatus that has been developed

for elongational rheometry of very dilute polymeric liquids. The idea originates with Sch€ummer

and Tebel,41 and the details of the current ROJER instrument are extensively discussed by

Keshavarz et al.7 in their study of elongational effects on atomization of polymer solutions. A

liquid jet is pushed at volumetric flow rate Q through a cylindrical tube that is periodically per-

turbed by radial squeezing induced by a piezoelectric actuator. The jet is then discharged into

air through a small diameter (2R0 ¼ 175lm) ceramic precision nozzle. The jet is simultaneously

illuminated by a strobe LED at a frequency f � Df that is slightly less than the frequency f of

the piezoelectric actuator. This leads to the well-known stroboscope effect that allows us to

capture movies with both high spatial and temporal resolutions (for more details on the relation-

ship between f ;Df ;Q, and R0, see the detailed Appendix in Keshavarz et al.7). The resulting

disturbances led to a small perturbation in the jet profile, R(z, t), which grow with time as the

jet travels downstream. This convective instability for Newtonian liquid jets has been known

for many years and is typically referred to as Rayleigh-Plateau instability.65,66 A linear stability

analysis shows that for a given radius R0, jet velocity Vj ¼ Q=pR2
0 and frequency of

FIG. 1. (a) SEM image of the hyperbolic contraction and the dimensions of the entire geometry. Reproduced with permis-

sion from Ober et al., Rheol. Acta 52, 6 (2013). Copyright 2013 Springer. (b) Pressure measurements, for the PEO-

4000 K–0.05wt. % solution. Four flush-mounted pressure transducers are located along the channel axis. The magnitude of

the pressure drop across the contraction/expansion between sensors 2 and 3 (DPc) is an indication of elongational effects.

(c) Snapshots of a dilute PEO solution (PEO-300 K–0.05 wt. %) breaking up from a cylindrical liquid jet into spherical

droplets as a consequence of Rayleigh-Plateau instability. A red box translating with a Lagrangian element P is plotted fol-

lowing a filament connected between two neighboring beads. The time evolution of the filament is recorded at 2:1 lm=pix

and 104 frames/s. Reproduced with permission from Keshavarz et al., JNNFM 222, 171 (2015). Copyright 2015 Elsevier.

(d) Diameter of a fixed Lagrangian point (e.g., the point P located at the bottom of the trough shown in (c)) is recorded and

shown in a dimensionless form DpðtÞ=D0 where D0 is the diameter of the jet right after exiting the nozzle (red data points).

The dashed red line shows the evolution of the filament diameter predicted by linear stability analysis and the solid red line

shows the theoretical prediction for the filament diameter in the elasto-capillary regime (corresponding to an exponential

decay in diameter with time (Equation (3)). Using Equation (10) the local strain rate _ep for a Lagrangian point P is also cal-

culated and plotted versus time (black data points).
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perturbation f, a specific range of dimensionless wave-numbers 0 � kR0 ¼ 2pfR0=Vj � 1 have

positive growth rates, and thus, the jet is unstable to linear perturbation with wave-numbers in

this range.

Figure 1(c) shows how the imposed perturbation at the nozzle leads to a wave-like profile

in the jet radius that grows in amplitude downstream. The early stages of the disturbance

growth can be compared with the predictions from linear instability for the viscoelastic jet

(De ¼ 0:72;Oh ¼ 0:075; kR0 ¼ 0:8), and the red dashed line in Figure 1(d) shows the prediction

of linear instability theory7,67 compared with the measured filament diameter at early times. As

the Rayleigh-Plateau instability grows with time, the filament radius in a neck locally decreases,

and the capillary pressure correspondingly increases. Concomitantly, the stretch rate _�p in the

filament neck dramatically increases and the corresponding elongational stresses become

increasingly dominant over inertia and viscous stresses in the thinning thread. In this regime, a

balance emerges between the capillary pressure (which is the driving mechanism for the insta-

bility) and the elastic stresses (excited from the high deformation rate stretching flow imposed

on the microstructure within the fluid). This regime is known as the elasto-capillary regime.22

Using a canonical frame-invariant constitutive equation such as the Oldroyd-B model, it can be

shown that the filament diameter in the elasto-capillary regime thins down with time in an

exponential manner22,68

DpðtÞ=D0 ¼ ðGD0=2rÞ1=3
expð�t=3sEÞ; (3)

where D0 ffi 2R0 is the initial diameter of the filament, r is the surface tension of the liquid-air

interface, G is the elastic modulus of the polymer in solution (G¼ nkT for dilute solutions), and

sE is the viscoelastic relaxation time for the fluid that appears in the Oldroyd-B model.

In the elasto-capillary regime, it is clear from Equation (3) that the filament diameter

decays exponentially in time and the local stretch rate in a material element _�p ¼ �2 _Dp=Dp

becomes constant at a value of _�p ¼ 2=3sE. Figure 1(d) shows that in the ROJER experiment,

the filament indeed locally forms a uniform cylindrical column that decreases in diameter with

time exponentially and has a constant stretch rate, until the very final stages of the breakup pro-

cess when the polymer chains reach their finite extensibility. Using this observation, one can

easily measure the viscoelastic relaxation time of a low viscosity complex fluid by recording

the thinning dynamics extracting the filament diameter DpðtÞ associated with a Lagrangian point

of fixed identity P, and fitting the process to Equation (3). Thus, the ROJER device is in many

ways similar to other conventional capillary-based extensional rheometers (such as the CaBER),

and one can think of it as a “flying CaBER” with a sample that is convected downstream with

the jet velocity Vj. However, the smaller initial sample dimensions in ROJER (D0 ¼ 175 lm in

ROJER as compared to D0 ¼ 6 mm typically in CaBER) coupled with the absence of issues

associated with the initial acceleration of the plates in the CaBER device allows us to measure

relaxation times in the ROJER device that are much smaller than the known limits of conven-

tional CaBER measurements.7,21

III. MEASUREMENTS AND RESULTS

A. Shear viscosity

Before characterizing the elongational properties of the test fluids (with composition shown

in Table I) by both EVROC and ROJER instruments, we performed a series of tests with a

commercial stress-controlled rheometer (DHR-3 from TA Instruments New Castle DE) in a

double-wall Couette geometry (inset image in Figure 2(a)) to characterize the shear rheology of

each fluid. Measurements were performed over a wide range of shear rates. The limits of the

shear viscosity measurements are set by the minimum torque (T min ¼ 0:05 lN m) that the

instrument can control/measure at lower rates and the maximum strain-rate is set by the onset

of inertially induced secondary flows in the Couette cell. The inner cup has a 28.0 mm diame-

ter, the rotor has an inner diameter of 29.5 mm and an outer diameter of 32 mm, and the outer

cup is 34 mm in diameter.
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Figure 2(a) shows the results for the shear viscosity measured for the Newtonian solvent

(black symbols) and two of the viscoelastic solutions formulated from 4000 K PEO at both a

very low concentration c=c� ¼ 0:03 (magenta symbols) and also at a much higher concentration

c=c� ¼ 13:22 (orange symbols). Open circles show results from the double-wall Couette geome-

try and the filled triangles show results from EVROC measurements. The microfluidic chip can

be used to determine the shear viscosity of the fluid by focusing only on the pressure difference

measured between sensors 1 and 2 which are located in the region of steady fully developed

channel flow before the hyperbolic contraction. Assuming a fully developed 2D flow, it is

known that the wall shear stress Rw is related to the pressure drop DP12 between the two

upstream flush-mounted sensors by the expression:64

FIG. 2. (a) Shear viscosity measurements plotted for three different test fluids: the Newtonian solvent (� and �), 4 M-

PEO-0.0025 wt. % (magenta open circles and magenta filled triangles) and 4 M-PEO-1 wt. % (orange open circle and or-

ange filled triangle). Open circles are data measured in a double-wall Couette geometry and the filled triangles are shear

viscosity measurements from the EVROC device calculated from the measured pressure difference upstream between sen-

sors 1 and 2. (b) Pressure difference across the hyperbolic contraction DPc measured at different flow rates and plotted in a

dimensionless form (DPc=l _�a ) vs. Reynolds number Re for different Newtonian liquids: S60 calibration oil (�) and water-

glycerol solvent (60–40 wt. %) (�).
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wuhDP12 ¼ 2L12ðwu þ hÞRw: (4)

At the same time, for a given flow rate Q imposed by the syringe pump, the apparent shear rate

can be calculated as _ca ¼ 6Q=wuh2. However, to determine the true wall shear rate which cap-

tures the effects of shear-thinning fluid rheology on the velocity profile, we use the

Weissenberg-Rabinowitsch-Mooney (WRM) equation10,64,69

_ctrue ¼
_ca

3
2þ d ln_cað Þ

dln Rwð Þ

� �
: (5)

Using Equations (4) and (5) for a given flow rate, knowing the channel geometry and the pres-

sure drop between the first two sensors DP12, one can calculate the true shear viscosity

gð _ctrueÞ � Rw= _ctrue at each imposed shear rate.

As shown in Figure 2(a), the values of the shear viscosity obtained from the EVROC

microfluidic device are in good agreement with the measured values from the double-wall ge-

ometry in the conventional stress-controlled rheometer. The results for the very dilute solutions

(c=c� 	 1) show very little difference from the solvent viscosity, but for the higher concentra-

tion, a pronounced shear thinning behavior can be observed (brown data). The data for the high

concentration PEO solution are fitted by a Carreau-Yasuda model69

g� gs

g0 � gs

¼ 1þ ss _cð Þa
� � n�1ð Þ=a

; (6)

where g0 and gs are, respectively, the zero shear-rate and solvent viscosity, ss is a timescale

that sets the onset of shear thinning at _c� ’ 1=ss, n � 1 sets the power law slope and a sets the

breadth of the transition region. Fixing g0 ¼ 0:8 Pa s; gs ¼ 0:003 Pa s and also setting the value

of ss to be equal to the relaxation time measured in the capillary breakup experiment (described

below) ss ¼ sE ¼ 55 ms, one can see that a good fit of the model (solid line in Figure 2(a)) can

be obtained with n¼ 0.3 and a¼ 0.4.

B. Elongational viscosity

1. EVROC measurements

As mentioned before, one signature of elastic effects in converging flows of a complex

fluid is the enhanced pressure drop across the contraction.45,48,56 However, extra care must be

taken in interpreting the extra pressure drop because of additional effects arising from viscous

stresses, inertia and the unsteady nature (in a Lagrangian sense) of the flow experienced by a

material element flowing through the hyperbolic contraction. Connecting the measured pressure

drop to the true extensional viscosity is a known challenge in microfluidic extensional

rheometry.30,70,71

One of the major complications is related to the nonlinear effects of fluid inertia. Figure

2(b) shows the pressure drop DPc across the hyperbolic contraction measured for different

Newtonian fluids over a wide range of Reynolds numbers. The Reynolds number on the ab-

scissa is defined as Re � qdhlc _�a=g0, where q is the fluid density, g0 is the zero shear viscosity

(in case of Newtonian liquids g0 ¼ l), lc _� is the local increment in velocity at the throat arising

from the constriction, and dh ¼ 2hwc=ðhþ wcÞ ¼ 267 lm is the hydraulic diameter defined at

the throat of the contraction. The true pressure drop across the contraction DPc is related to the

measured pressure difference between sensors 2 and 3 by the expression56

DPc ¼ DP23 1� 1

2

1

P � 1

� �
L23 � 2lc

L

	 

; (7)

where L23¼ 3.8 mm, L¼L12¼L23¼ 2.5 mm, lc¼ 400 lm are properties of the specific geometry

and the fraction of the total pressure drop across the device that arises from the converging/
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diverging flow is denoted P ¼ DP23=DP14. Simple scaling arguments show that, for Newtonian

liquids, in the limit of very low Re, the pressure drop will scale with the viscous stress

DPc � l_�a, and at high Re, inertial effects will dominate so that the pressure drop should scale

with the inertially induced stresses in the liquid DPc � qV2 � qðQ=whÞ2. The Newtonian data

in Figure 2(b) show a similar trend; at low Re, the dimensionless pressure drop in the device

normalized by a characteristic viscous stress is constant at a value set by the geometric dimen-

sions of the channel56 DPc=l_�a � 200, and at high Re numbers, the normalized pressure drop

scales linearly with Reynolds number DPc=l_�a � Re, suggesting that for high Reynolds number

flows, enhancements in the pressure drop measured across the contraction do not arise from the

extensional viscosity but rather from fluid inertia. For the specific geometry used in this study,

transition between the viscous- and inertia-dominated regions occurs at Rec � Oð10Þ, consistent

with the separate study by Ober et al.56

Because of the nonlinear inertial effects at high Reynolds numbers (Re 
 Oð10Þ), it is clear

that proper extensional rheometry measurements are not possible in this limit (yellow shaded

area in Figure 2(b)). Analyzing the pressure drop data above this limit and connecting that to

the elongational properties of a liquid can be very misleading.71 In the same way, increases in

the torque measured in a Taylor-Couette device at high shear rates may be erroneously inter-

preted as shear thickening in the fluid rheology when it in fact arises from secondary flows. If a

strongly extensionally thickening fluid is analyzed, it may result in true elastically dominated

increases in the pressure drop before these inertial effects set in at Re � Oð10Þ. However, one

can imagine that for many weakly elastic fluids, the critical strain rate at which elongational

rheological properties start to dominate over inertial effects may be high enough that, in a

device such as EVROC, the corresponding values of Re would approach the limit of inertially

dominated flows. Thus, the response of the unknown material in this range of strain rates would

be a mixture of inertial and elastic effects. Decoupling these effects from one another is hard,

if not impossible.

In order to probe the sensitivity limit of EVROC, we tested the 60–40 wt. % water-glycerol

solvent (Table I) along with one concentrated and four dilute PEO solutions. Figure 3(a) shows

a summary of these data. Preliminary results for all of the fluids are plotted in terms of normal-

ized pressure drop measured at different values of Re. It is clear that, within the operational

limits of EVROC (Re � Rec), for the three most dilute solutions (green, blue, and magenta data

points), the normalized pressure drop is indistinguishable (within the experimental limits) from

the corresponding values for the Newtonian solvent. Subtle differences emerge for some of

these solutions at higher strain rates but the onset of these distinctions lie in the region where

the pressure drop data are already polluted by inertial effects (yellow-shaded area). For the

most dilute and lowest molecular weight PEO solution (300 K–0.01 wt. %), the measured pres-

sure drop values remain indistinguishable from the Newtonian solvent even up to the upper

limit of flow rates (Qmax ¼ 15:2 ml=min; _ca ¼ 1:2� 104 s�1) achievable by the syringe pump

(compare the black and green symbols in Figure 3(a)).

It is only for the two solutions with higher concentrations of 4000 K PEO (red and orange

data points) that measurable differences from the Newtonian solvent emerge before inertia

effects start to dominate. The data for the 4000 K–0.05% solution (red symbols) show the onset

of extensional thickening at a critical extension rate, as expected for dilute polymer solutions.

Interestingly, the data for the 4000 K–1 wt. %. solution (orange symbols) show a relatively con-

stant value for the pressure drop across the contraction/expansion, which is an order of magni-

tude higher than the corresponding asymptotic value for the inertia-less Newtonian limit

(dashed black line). The relaxation time for this fluid sE � 55 ms is high enough that even at

the very lowest flow rates tested in the EVROC device Q’ 0.05 ml/min corresponding to _� ’
20 s�1 the induced stretch rate is higher than the relaxation rate of the microstructure

_� 
 1=2sE. Thus, the viscoelastic contribution to the pressure drop dominates over viscous

effects and leads to the enhanced pressure drop across the contraction for all test conditions.

This dataset shows that although the EVROC has clear potential for measuring the exten-

sional properties of sufficiently viscoelastic solutions, there also exists a certain group of

weakly viscoelastic liquids for which EVROC measurements, if not completely impossible, are
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at least heavily polluted by inertia effects. In Section III, we quantify the dimensionless criteria

that delineate these different regions.

2. ROJER measurements

In order to seek an alternative method for probing the extensional rheology of dilute solu-

tions, we studied the behavior of all of the test fluids using capillary thinning and jet breakup.

For the very concentrated PEO solution (4000 K–1 wt. %), the test liquid was sufficiently elas-

tic that measurements could be performed with a conventional CaBER device. As a result of

FIG. 3. (a) Pressure drop across the hyperbolic contraction in EVROC tests measured at different flow rates and plotted in a

dimensionless form, DPc=l _�a versus Re, for different fluids: the Newtonian solvent (�), 300 K-PEO-0.01 wt. % (green squares),

1000 K-PEO-0.01 wt. % (blue triangles), 4000 K-PEO-0.0025 wt. % (magenta inverted triangles), 4000 K-PEO-0.05 wt. % (red

diamonds), 4000 K-PEO-1 wt. % (orange stars). (b) Snapshots of the jet breakup process for the 300 K-PEO-0.01 wt. % solution

in the ROJER setup: (i) An image of the entire process showing the jet exiting the nozzle and breaking up into individual drop-

lets. (ii) A time sequence of enlarged snapshots showing the emergence of a cylindrical filament that can be followed by the

Lagrangian box (in green) that is moving downstream with the jet velocity. (iii) Time evolution of the filament in the

Lagrangian box shows elasto-capillary thinning. (c) Snapshots demonstrating the elasto-capillary thinning regime in the

CaBER device for the 4000 K-PEO-1 wt. % solution. (d) Time evolution of the filament neck diameter DpðtÞ is plotted for dif-

ferent fluids tested in the ROJER setup: the Newtonian solvent (�), 300 K-PEO-0.01 wt. % (green squares), 1000 K-PEO-

0.01 wt. % (blue triangles), 4000 K-PEO-0.0025 wt. % (magenta inverted triangles), 4000 K-PEO-0.05 wt. % (red diamonds).

(e) Results from CaBER test for the 4000 K-PEO-1 wt. % solution (orange circles). Solid lines in both (d) and (e) show fits of

the exponential decay expected from theory (Equation (3)). Raw measurements of DpðtÞ for the 300 K-PEO-0.01 wt. % solu-

tion (green filled squares) are also plotted, to provide an indication of typical fluctuations in the diameter measurments.
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their very low shear viscosities, measurements for the Newtonian solvent and the other four

dilute polymer solutions were carried out using our ROJER setup described in Section II C.

In Figure 3(b-i), we show a snapshot of the viscoelastic jet for the 300 K–0.01 wt. % solu-

tion at Q¼ 4 ml/min corresponding to Vj ¼ 1:4 m=s. Due to the small dimension of the jet

(D0 ’ 175 lm), the entire jet breakup process happens in a remarkably small length (lbreak�up

� Oð1 mmÞ) and time scales (tbreak�up � lbreak�up=Vj � ðOð1 msÞ). Using a macro imaging lens,

one can optically zoom and magnify the image (up to a certain optical limit that depends on

the magnification and numerical aperture of the lens) to gain a better view of the region of in-

terest, which corresponds to the region from the onset of filament formation till the jet breaks

up into discrete droplets. The black rectangle in Figure 3(b-i) indicates this region and a time

series of the optically zoomed view of this region (with a resolution of approximately

2 lm=pixel) are shown in Figure 3(b-ii). As is clear from Figure 3(b-ii), the thinning dynamics

of a Lagrangian element which is moving downstream with jet velocity Vj (e.g., elements inside

the green box) can be tracked accurately and the evolution in filament diameter for a fixed

Lagrangian point P are recorded with time in the same way as for the CaBER instrument

(Figure 3(b-iii)).

The results are plotted in terms of the filament diameter DpðtÞ for the neck region in

Figure 3(d) (raw measurements of the filament diameter are first smoothened by a moving aver-

age scheme from Matlab and then plotted). It is clear that for all dilute solutions tested with

ROJER the thinning filaments exhibit an elasto-capillary regime at intermediate times in which

the diameter decays with time exponentially (Equation (3)). This is significantly different from

the trend that is observed for the Newtonian solvent (black circles). The data for the Newtonian

solvent follow the predictions of the initial linear instability analysis (solid black line, see

Keshavarz et al.7 for details) for almost the entire observable window and only show a narrow

visco-capillary balance in the final stages of breakup. When compared to the Newtonian data,

even the very dilute 300 K–0.01 wt. % solution (green symbols) shows a clear deviation in the

diameter evolution with time and the final stages of breakup show an exponential decay in di-

ameter consistent with the elasto-capillary balance (see the supplementary material for more

details).72 For the concentrated solution (4000 K–1 wt. %), the pressure drop required to force

the fluid through the jet nozzle and piezo-tube is too large for the syringe pump. However, the

fluid is sufficiently viscous that CaBER measurements could be performed and the results are

shown in Figures 3(c) and 3(e). Due to the much higher relaxation time for this concentrated

solution, the duration of the capillary breakup event is resolvable using CaBER measurements

(tbreak�up 
 Oð0:1 sÞ).

C. Analysis

1. EVROC data

To convert the pressure drop DPc measured in the EVROC tests into a rheologically mean-

ingful quantity such as the extensional viscosity, one has to isolate the viscoelastic contribution

of the pressure drop. As discussed, the nonlinear effects of inertia for Re 
 Rec make this com-

plicated, and it is recommended to measure the pressure drops in the limit of negligible inertia

(Re � Rec). However, even for measurements performed in the viscous-dominated regime one

must be cautious in analyzing experimental pressure drop data. For inertialess flows of visco-

elastic liquids, the calculated pressure drop across the contraction has two main components that

we decompose additively so that DPc ¼ DPe þ DPv, where DPe is the viscoelastic component of

interest for computing the elongational viscosity and DPv is a viscous component due to shearing

at the walls.46,47,56 In order to measure/calculate elastic component DPe one needs to have an

accurate expression for the viscous component DPv. For a non-Newtonian fluid sample, this can

be done by considering the flow of an inelastic fluid such as a phenomenological power law

model (for which g ¼ m _cn�1).10 An analytical expression for the viscous pressure drop across

the hyperbolic contraction using a power-law model (DPPL
c;v) is given by Ober et al.56
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� �nþ1
( )

m_�n
a: (8)

From the measured shear rheology shown in Figure 1, we can thus calculate DPe ¼ DPc

�DPPL
c;v. To connect the remaining pressure drop DPeðQÞ to the extensional viscosity, first

Collier et al.73 (for a semi-hyperbolic converging die) and later Ober et al.56 (for the EVROC

device used in this study) show that by assuming an incompressible flow and using a simple

energy dissipation argument one can connect the rate of work done by the pressure drop occur-

ring across the contraction to the viscous losses induced by extensional stress differences in the

fluid. After some simplifications, the following expression for an ideal planar elongational flow

is suggested by Ober et al.56 for measuring the apparent extensional viscosity in a microfluidic

contraction device at each imposed strain rate

gþE;app: _�a; �Hð Þ ¼ 1

�H

DPe

_�a
¼ 1

�H

DPc � DPPL
c;v

� �
_�a

: (9)

2. ROJER data

In EVROC measurements, one adjusts the imposed extensional deformation rate by control-

ling the flow rate through the device and then monitors the extensional stress difference that

develops in the fluid by recording the pressure drop across the contraction. This is different

from the corresponding measurement procedure and analysis appropriate for devices based on

capillary thinning such as ROJER or CaBER. As the filament thins under the action of capillar-

ity, the normal stress difference in the thinning thread balances with the capillary pressure

which is naturally set by the surface tension so that ðRzz � RrrÞ ¼ 2r=DðtÞ. The thinning fila-

ment is being elongated with a local stretch rate that can be measured by analyzing the time

evolution of the filament diameter

_�p ¼
�2

Dp tð Þ
dDp

dt
: (10)

This allows us to calculate the local transient extensional viscosity of the fluid at each instant

gþE;app ¼
�r

dDp=dt
: (11)

This material function thus varies with both imposed strain � ¼
Ð t

0
_�dt0 as well as the strain rate

in the filament at that instant in time. In the elastocapillary thinning regime (given by Equation

(3)), the strain rate is in fact constant. This can be directly verified by substituting Equation (3)

in Equation (10) to give _�p ¼ 2=3sE. In this region we thus expect the apparent extensional

viscosity approaches the true material function expected in a homogeneous extensional flow.

Figure 4(a) shows a plot of the apparent extensional viscosity for all of the dilute polymer

solutions studied (the 4000 K–1 wt. % solution with c=c� ¼ 13:2 is clearly not in the dilute

regime, and since the primary focus of our study is on weakly viscoelastic fluids we postpone a

discussion on the extensional rheology of this entangled semi-dilute solution to the supplemen-

tary material72). The circles show data analyzed from ROJER tests, and the red triangles are

the EVROC results for the 4000 K–0.05 wt. % solution. Equations (10) and (11) are used to

calculate the stretch rate and apparent elongational viscosity for ROJER tests,74 and Equations

(1) and (9) are used to calculate the values of average stretch rate and apparent extensional vis-

cosity from the corresponding values of flow rate and pressure drop across the contraction in

the EVROC test. Our results are also compared with the predictions of the FENE-P (finitely

extensible nonlinear elastic) model, assuming the Peterlin statistical closure for the restoring

force10,75 (solid lines in both Figures 4(a) and 4(b)). Unlike simpler constitutive equations such
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as the Oldroyd-B model, which treats the polymer chains as ideal Hookean springs that are

infinitely extensible, the FENE-P model assumes that the macromolecules have a finite extensi-

bility and, once they are stretched to this fully unraveled limit, they will add no extra contribu-

tion to the extensional viscosity.10 It is easy to show that the Oldroyd-B and FENE-P models

differ primarily in their predictions of the steady extensional viscosities at stretch rates just

above the critical coil-stretch transition rate. At steady state, the quasilinear Oldroyd-B model

predicts the unphysical result that the extensional viscosity diverges at _�c ¼ ð1=2sEÞ. The

FENE-P model corrects this shortcoming by incorporating the finite extensibility of the mole-

cule (captured by a finite extensibility parameter L) into a nonlinear evolution equation for the

viscoelastic stresses.10,76 The FENE-P model predicts that the steady elongational viscosity

gEð_�Þ remains bounded once the chains are fully extended. The stretched chains act like an

anisotropic suspension of rods with the extensional viscosity in the bulk reaching a plateau

value at a high stretch rate (limsE _�!1 gþE ¼ 3gs þ 2ðg0 � gsÞL2).

The solid lines in Figure 4(a) show predictions from the FENE-P model for each liquid

using the corresponding parameters (sE; gs; g0; L) from Table I. All of the ROJER data show

good agreement with the predictions from the FENE-P model. The apparent viscosity extracted

from the EVROC test also shows a trend that agrees qualitatively with the predictions of the

FIG. 4. (a) Circles show the apparent extensional viscosities measured from ROJER experiments for the Newtonian solvent

(�), 300 K-PEO-0.01 wt. % (green circles), 1000 K-PEO-0.01 wt. % (blue circles), 4000 K-PEO-0.0025 wt. % (magenta

circles), and the 4000 K-PEO-0.05 wt. % (red circles) solutions. Open triangles show the EVROC measurements for the

4000 K-PEO-0.05 wt. % solution (red triangles). The solid lines are predictions of FENE-P theory plotted for each liquid

with the corresponding parameters from Table I. (b) Same data shown in (a) but plotted in dimensionless form: Trouton ra-

tio Tr � gþE ð _�; tÞ=g0 versus the Weissenberg number Wi � sE _�.

043502-13 B. Keshavarz and G. H. McKinley Biomicrofluidics 10, 043502 (2016)



FENE-P model, but the agreement is not quantitative. The observed difference arises due to the

fact that in the EVROC device material elements in different planes experience different defor-

mation histories as they flow through the contraction/expansion. These local variations in the

stretch rate of different material elements smear out the critical extension rate. By using compu-

tational shape optimization for the design and fabrication of cross-slot microfluidic devices,

Haward et al.32 showed that a homogeneous elongational flowfield can be achieved, by mini-

mizing this inhomogeneity in the flow history of different material elements. Experimental

results from such optimized microfluidic devices show a much better agreement with the

FENE-P model.18,32

Figure 4(b) shows the extensional viscosities represented in dimensionless form with a

Trouton ratio gþE =g0 plotted as a function of the Weissenberg number Wi ¼ sE _�. Due to the

high extensibility of the molecules (L � M1��
w where � is the solvent quality exponent32,77)

Trouton ratios as high as Tr� 1000 can be achieved by these dilute polymer solutions at high

molecular weights. These high values of the extensional viscosity can dramatically change the

filament thinning dynamics at high strain rates and small length scales in a number of important

application such as inkjetting, atomization, microfluidic cell sorting, etc.6,8,58 Measurements

with the EVROC device for the low viscosity solutions (green, blue, and magenta colors in

Figure 3(a)) are largely polluted by nonlinear inertia effects, but Figures 4(a) and 4(b) clearly

show that jetting rheometry is a reliable alternative for determining the extensional rheology of

very dilute polymer solutions. The ROJER instrument not only differentiates between the exten-

sional rheology of the different solutions in a qualitative manner (Figure 3(d)) but also quantita-

tively measures elongational properties in the elasto-capillary regime at constant strain rate that

agree well with predictions of microstructural constitutive equations such as the FENE-P.

IV. DISCUSSION AND CONCLUSIONS

Measurements of the extensional viscosity were performed for a number of viscoelastic

polymer solutions using two microfluidic test configurations; a microfabricated hyperbolic

converging/diverging flow and a micromachined piezoelectric nozzle. Our results show that for

dilute solutions that have both low shear viscosities and low relaxation times, the flow in the

hyperbolic contraction is affected by nonlinear inertial effects before any signature of elasticity

emerges. However, the EVROC is still a functional method for characterizing more viscous and

more elastic solutions. The fact that many industrial and biological samples are indeed dilute

solutions of large macromolecules in a low viscosity solvent encouraged us to find an alterna-

tive method for performing extensional rheometry of dilute solutions. The ROJER instrument,

which is based on understanding the capillary thinning and breakup in a sub-millimeter scale

physically-forced jet proves to be a valuable additional method that can discriminate between

the relaxation times of the different viscoelastic solutions used in the present study. The results

obtained from the ROJER and EVROC techniques also compare well with the predictions of a

canonical model such as the FENE-P constitutive equation. Depending on the intrinsic proper-

ties of the specific fluid being tested, one or other of these two microfluidic rheometry methods

can thus help us to determine the elongational properties of an unknown complex fluid. The

question for practicing rheologists is to know where exactly are the limits and boundaries of

operation for each of these two distinctly different instruments. As we show below, by knowing

the intrinsic properties of a liquid we can provide guidance on deciding a priori which instru-

ment to use.

A. Operating limits of the EVROC device

As we have shown in this study, the flow of a viscoelastic liquid in a microfluidic channel

can be affected by three different mechanisms: elastic effects due to elongation of macromole-

cules passing through the contraction, viscous effects due to viscous shear stresses at the walls,

and finally, adverse inertial effects due to acceleration of the material elements passing through

the contraction/expansion. If we pick a characteristic length scale such as the hydraulic
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diameter (denoted generically by R) for this device, we can identify three important timescales,

each characterizing one of the three different aforementioned mechanisms:

selas: ¼ sE : Elongational relaxation time; (12a)

svisc: ¼ R2q=g0 : Viscous diffusion time scale; (12b)

sconv: ¼ R=V : Convective time scale; (12c)

where V ¼ Q=wh is the characteristic scale for the velocity in the channel. Having identified

three important timescales, it is apparent that the flow of any liquid in the device can be

described by two dimensionless numbers

Reynolds Number Re ¼ svisc:=sconv: ¼ qVR=g0; (13a)

Weissenberg Number Wi ¼ selas:=sconv: ¼ sEV=R: (13b)

Equations (13a) and (13b) clearly show that for a given liquid and hyperbolic channel geometry

(fixed values of sE, q, g0, and R), changes in the flow rate lead to both Re and Wi increasing

proportionally such that their ratio (given by the elasticity number22 El � Wi=Re ¼ sEgo=qR2)

remains constant. In other words in the two-dimensional space spanned by Re–Wi (the operating

plane for EVROC) changing the velocity corresponds physically to moving away from the ori-

gin on a line with fixed slope (or a fixed angle h in polar coordinates) and the velocity provides

a measure for the radial distance from origin (similar to r in polar coordinates). In order to

observe elastic effects, and to be able to characterize them, one has to stretch the dissolved

polymers sufficiently fast, compared to their relaxation rate (V=R 
 1=sE), or in other words,

the viscoelastic timescale should dominate over the convection time scale so that the

Weissenberg number of the flow is Wi ¼ sEV=R 
 Oð1Þ. Thus, for any fluid with relaxation

time sE and test geometry R, there exists a certain velocity Vc � R=sE above which the elastic

effects we seek to measure begin to emerge. However, the challenge is to ensure that this

(large) velocity is still small enough that the Reynolds number characterizing the flow stays

lower than the critical value for onset of inertia effects (i.e., Re ¼ qVR=g0 � Oð1Þ). One can

easily see that by combining these two criteria then the ratio of the Weissenberg number over

Reynolds number should be larger than unity; i.e., Wi=Re 
 Oð1Þ. In Figure 5(a), a line of con-

stant elasticity is shown as a dashed blue arrow in the Wi–Re plane.

The magnitude of the elasticity number thus provides a criterion for EVROC measurements.

Given a specific hyperbolic channel design (i.e., a given microfluidic length scale R) and fixed liq-

uid properties (g0, sE, and q) one can calculate a priori whether the criterion for EVROC measure-

ments (i.e., El ¼ sEg0=qR2 
 Oð1Þ) is satisfied or not. From this expression, it becomes apparent

that in dilute polymeric liquids, such as the ones tested in this study, in which both the relaxation

time and the shear viscosity are small, EVROC measurements are often impossible or contami-

nated by inertial effects. One possible pathway for circumventing this constraint is to fabricate

even smaller microfluidic geometries (because decreasing the corresponding length scale increases

the elasticity number). For the present design, the length scale is R � dH ’ 267 lm. However, the

large pressure drop that results from very small length scales (cf. Equation (8)) can lead to fabrica-

tion failure and pumping issues. Additionally, the characteristic device length scale R cannot

approach the length scale of the microstructure in the liquid, otherwise wall effects lead to hin-

dered chain deformation and hydrodynamic screening complications.78

Having determined the appropriate limits of EVROC, we now consider our alternative jet-

based extensional rheometer and probe the operational boundaries for the ROJER device.

B. Limits of ROJER

ROJER or other related capillary-thinning methods for extensional rheometry (such as

CaBER or modified versions of CaBER38–40), exploit the dynamics of the Rayleigh-Plateau
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instability and often rely on optical devices such as high-speed/strobe cameras, lenses and

bright field illumination strategies to record the evolution in the filament diameter with time. A

liquid thread with a known initial radius R that is connected at both ends to hemispherical liq-

uid reservoirs (as in either of the ROJER/CaBER configurations) experiences higher capillary

pressures inside the filament neck compared to the pressure in the hemispherical reservoirs.

This pressure imbalance leads to the drainage of liquid from the filament into the reservoirs and

induces an elongational flow within the filament. For a viscoelastic liquid four different physi-

cal mechanisms can be important: Elastic, viscous, and inertial effects can all play a significant

role, similar to the discussion above for flow in the hyperbolic contraction. In addition to these

three effects, the capillary effects play an essential role in extensional flows with free surfaces.

Thus, one must consider an additional timescale that captures the effect of surface tension or

capillarity in this problem,

scap: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR3=r

p
: Capillary time scale: (14)

This capillary time scale was first introduced by Rayleigh66,79 in his studies of liquid jets and is

therefore also known as the Rayleigh time scale sR. It is also the timescale observed in the

vibration of a liquid droplet/jet due to capillary effects.80

It is easy to construct an appropriate dimensionless number comparing the magnitudes of

the capillary and convective timescales,

ffiffiffiffiffiffiffi
We
p

¼ scap:=sconv: ¼ V
ffiffiffiffiffiffiffiffiffiffiffi
qR=r

p
: (15)

This ratio is the square root of the Weber number which is widely used in studies of drop/jet

breakup in inkjetting and atomization operations.81

Thus, in ROJER, four competing timescales are involved (Equations (12) and (14)) which

leads to a set of three important dimensionless numbers (
ffiffiffiffiffiffiffi
We
p

;Re;Wi). A new coordinate
ffiffiffiffiffiffiffi
We
p

is therefore also required to determine the locus of each fluid being tested in the ROJER

FIG. 5. (a) Measurement nomogram in 3-dimensional space for different liquids with coordinate axis x, y, z constructed

from f
ffiffiffiffiffiffiffi
We
p

;Re;Wig combination. Lines of constant elasticity El, Ohnesorge Oh and Deborah De numbers are shown by

blue dashed arrows. The black arc arrows show the direction at which El, Oh and De increase in their corresponding

Re–Wi, Re�
ffiffiffiffiffiffiffi
We
p

, and
ffiffiffiffiffiffiffi
We
p

�Wi planes. One eighth of a unit sphere is plotted in the corner of the coordinates. Every

material location in the x, y, z parameter space can be radially projected onto the surface of this sphere. Shaded colors show

regions in which EVROC and the ROJER instrument can/cannot perform. (b) Measurement nomogram based on the key

intrinsic properties of the fluid plotted in a 2D representation. The angular orientation of every point in the 3D parameter

space sketched in (a) can be uniquely mapped onto this 2D representation (De–Oh). The solid and dashed lines are lines of

constant elasticity number El and elasto-capillary number Ec, respectively. The green area indicates where both ROJER

and EVROC are possible (Ec 
 Oðlresolution=RÞ and El 
 Oð1Þ). The magenta area is where ROJER is possible and

EVROC is impossible (Ec 
 Oðlresolution=RÞ and El < Oð1Þ). The blue area is where ROJER is impossible and EVROC is

possible (Ec < Oðlresolution=RÞ and El 
 Oð1Þ). The red area is where both ROJER and EVROC are not possible

(Ec < Oðlresolution=RÞ and El< 1).
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instrument. In Figure 5(a), we represent this concept by plotting an {x, y, z} three dimensional

space with f
ffiffiffiffiffiffiffi
We
p

;Re;Wig coordinates, respectively.

To characterize the performance of ROJER, we need to understand how the dynamics of a

thinning filament are governed by the different physical mechanisms involved. Inertial effects

are damped out by viscous effects if the capillary timescale is larger than the viscous diffusion

time scale (scap: 
 svisc:). The ratio of these two timescales is known as the Ohnesorge number

Oh � scap:=svisc: ¼ g0=
ffiffiffiffiffiffiffiffiffi
qrR
p

(Ref. 82) and for viscous effects to dominate over fluid inertia we

require Oh 
 Oð1Þ. Similarly, in order to probe viscoelastic effects in the thinning thread, the

elongation rate of the filament resulting from capillary action should exceed the relaxation rate

of the polymer (i.e., 1=scap: 
 1=selas:). The ratio of the elastic timescale to the capillary time is

an intrinsic Deborah number and we thus require De � selas:=scap: ¼ sE=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR3=r

p

 Oð1Þ.

One additional benefit of ROJER as compared to EVROC is the fact that unlike the hyper-

bolic channel flow in which the characteristic length scale R is fixed and not changing with

time, in ROJER the appropriate length scale R(t) is evolving with time and decreases steadily

from the initial value toward the final instant of breakup. By studying the functional form of

the relevant dimensionless numbers such as the Deborah and Ohnesorge numbers, one can see

that as R(t) decreases, local estimates of the relevant force balances increase as we approach

the breakup point. This means that as we follow the evolution of the thinning filament with

time there exists a certain point at which elastic effects start to dominate the flow. Provided the

local diameter at this crossover point is larger than the optical resolution of the setup (which

we denote lresolution), then ROJER measurements are feasible. However if this crossover point

lies below our resolution limit then ROJER will not be able to resolve the elasto-capillary

balance that is established close to breakup.

The practical constraints of physical optics mean that most imaging systems have a lower

resolution of a few microns, lresolution � Oð1 lmÞ. We also know that for most complex fluids,

the zero shear viscosity will not be much smaller than the viscosity of water (unless we con-

sider supercritical solvents such as liquid CO2). Thus, for most low viscosity liquids (with

g0 
 10 m Pa s) the visco-capillary regime is accessible within the optical resolution that is

achievable (lresolution � Oð1 lmÞ). To determine the operating boundaries of ROJER in elonga-

tional rheometry we can assume that a failed test means that elastic effects do not emerge in

the thinning filament even on the finest length scale that is resolvable RðtÞ � lresolution. In other

words, even in the final moments of filament thinning the rate of stretching is not as high as

the relaxation rate of the microstructure, so that _� ¼ ð�2=RÞ:ðdR=dtÞ < 1=sE. If an elasto-

capillary balance has not emerged yet then for most practical liquids in the final moments of

thinning a visco-capillary balance starts to emerge and, consequently, the maximum rate of

thinning that is optically accessible scales as _�max � Vcap:=R � r=g0ð1=lresolutionÞ. Therefore, for

a viscoelastic liquid, in a device such as ROJER, to reach a critical stretch rate which is faster

than the relaxation rate of the microstructure the following criteria should be met:

1=sE � _�max ’
1

lresolution

r
g0

or
lresolution

R0

�
sEr
g0R0

: (16)

This dimensionless grouping that controls ROJER performance may be referred to as an elasto-

capillary number, which can also be written in terms of De and Oh as

sEr=ðg0R0Þ ¼ De=Oh¼Ec.29 An alternate, easier, justification for this criterion for successful

ROJER testing is to consider the stresses involved in the thinning filament. The elasto-capillary

balance starts on a length scale REC, when the capillary stresses become as large as polymer

elastic stresses: r=REC � g0=sE. This simply tells us the condition for ROJER performance is

lresolution � REC ’ rsE=g0, which is equivalent to lresolution=R0�Ec.

Equation (16) shows that in ROJER, just as in EVROC, the criterion for successful elonga-

tional rheometry can be expressed by a single dimensionless number based on the geometry,

optical resolution and intrinsic properties of the liquid (which here includes the relaxation time,

surface tension and zero shear viscosity). Combining these two separate criteria for successful
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operation of the microfluidic hyperbolic channel and jet breakup measurements (EVROC and

ROJER, respectively), the entire dimensionless space in Figure 5(a) can be navigated for differ-

ent liquids through a two dimensional state diagram or nomogram which tells us what instru-

ment is suitable in each region.

C. Operating nomogram for microfluidic extensional rheometry

Looking at Figure 5(a), one can see that (as we first noted for the elasticity number) both the

Deborah and Ohnesorge numbers characterizing the fluid are also independent of the velocity and

thus represent the slopes of rays passing through the origin and projected onto their respective

Wi�
ffiffiffiffiffiffiffi
We
p

and
ffiffiffiffiffiffiffi
We
p

� Re planes. The black arcs in Figure 5(a) show the direction in which

each of these dimensionless groups increase. It is also noteworthy that although the parameters

f
ffiffiffiffiffiffiffi
We
p

;Re;Wig form an independent set of coordinates, the {El, Oh, De} set are not independent

and indeed any one of the three can be expressed in terms of the other two through the relation-

ship El ¼ Oh:De. A good way to understand the difference between these two different sets of

dimensionless numbers is to think of Cartesian and spherical coordinates. The dimensionless

groups
ffiffiffiffiffiffiffi
We
p

;Re;Wi all grow linearly with velocity and thus correspond to orthogonal coordinates

in Figure 5(a). In contrast El, Oh, De are all independent of velocity and represent the slopes of

the position vector projected onto the three base orthogonal coordinate planes. Thus, as we

increase the velocity and keep other parameters constant, we move radially away from origin on

a fixed line and orientation in space. To uniquely specify a point in space using spherical coordi-

nates, we only need two angles (h and /) and a radial distance (r) from origin. This tells us that

only two dimensionless numbers from the set of El, Oh, De are needed to uniquely describe the

orientation of any material line/vector in space. Increasing the characteristic velocity of the fluid

in the device, and keeping these two angles constant, we travel on a fixed ray away from the ori-

gin. If we pick the Deborah and Ohnesorge numbers to describe the orientation of material lines

then we can project our results onto the two dimensional map plotted in Figure 5(b), which is a

one-to-one transform of the outer surface of the spherical segment shown in Figure 5(a).

This two-dimensional nomogram representing intrinsic viscoelastic fluid properties can help

us understand where different materials are located at different length scales. For example, the

abscissa (De¼ 0) corresponds to all Newtonian phenomena starting from the inviscid limit close

to the origin and moving towards very viscous fluids on the far right. The region close to,

but not on, the ordinate axis represents low viscosity but elastic liquids, such as the very dilute

solutions of high molecular weight polymers considered in the present work. Other examples

include “stringy materials” such as saliva, printing inks and paints that are often highly prob-

lematic in atomization and breakup phenomena.

The two criteria derived above for EVROC and ROJER operation can be drawn as two sepa-

rate lines in this space given by the expressions El ¼ De:Oh ¼ Oð1Þ and Ec ¼ De=Oh ’
lresolution=R on this two dimensional plane (as shown by the solid and dashed lines in Figure 5(b)).

These two lines divide the entire region into four subregions. In each of these subregions exten-

sional rheometry with either EVROC and or ROJER may be possible depending on the values of

these two groups. Different areas are shaded by different colors as follows:

(1) Green: regions in which both criteria are met (El 
 Oð1Þ and Ec � lresolution=R). In simple

words, these fluids are both elastic and viscous enough that both ROJER and EVROC can be

used for extensional rheometry.

(2) Magenta: regions in which jetting rheometry is possible but EVROC is not successful

(Ec � lresolution=R and El < Oð1Þ). In simple words, these fluids are of such low viscosity that

inertial effects dominate in the microfluidic contraction, but they are sufficiently elastic that

they will form a thread during jet breakup.

(3) Blue: regions in which the criterion for EVROC is met but jetting is not possible (El 
 Oð1Þ
and Ec � lresolution=R). In simple words, these liquids are sufficiently viscous that they generate

a viscoelastic contribution to the pressure drop DPc across the contraction, but insufficiently

elastic for the elastic stresses to balance capillary pressure in the jet until the length scale falls

below the optical resolution limit.
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(4) Orange: regions in which neither criterion for either EVROC or ROJER are met (El < Oð1Þ
and Ec � lresolution=R). In this region, the fluid is insufficiently viscoelastic for either class of

device to operate successfully.

In studying the limits of performance for jetting rheometry, a quantitative estimate of the limit-

ing conditions can be made by estimating the slope of the dashed line in Figure 5(b). For our

ROJER system, lresolution � 1:5 lm and R0 � 90 lm, which shows that the actual slope of the

dashed line is very small. The orange region indicated in Figure 5(b) is thus also very small and

this is a very promising reason to believe that microfluidic jet breakup studies are a viable option

for many dilute viscoelastic liquids. Finally, it is also necessary to point out that ROJER fails for

certain liquids that are very viscous but have an extremely small relaxation time (blue region in

Figure 5(b)). Examples of these liquids can be found in concentrated solutions of low molecular

weight polymers which are sometimes used in food thickeners. For these liquids, the EVROC de-

vice benefits from the dominant viscous characteristics and can probe both the viscous response as

well as any additional elastic contributions to the pressure drop without dealing with inertia-related

issues.56

Our current study has examined the performance of two different microscale extensional

rheometers for a set of benchmark dilute polymeric solutions. We have shown that measure-

ments in a microfluidic hyperbolic channel can be swamped by inertial effects for sufficiently

low viscosity fluids. In contrast, jet breakup studies performed with ROJER provide a promising

alternate approach for elongational rheometry of these liquids. Similar efforts to explore the

thinning dynamics and recoil in inkjet droplets are also being explored.83 Using simple physical

arguments, we have probed the limits of both instruments in an appropriate dimensionless oper-

ating space to construct an operational nomogram for microscale extensional rheometry. The

two techniques described in the present work, used in conjunction with optimized cross-slot

designs (discussed elsewhere in this special issue18), which enable simultaneous rheo-optical

access for optically transparent materials, provide a diverse and flexible set of testing platforms

for quantitative microscale extensional rheometry measurements of a wide variety of weakly

viscoelastic fluids that are important in biological and industrial fields.
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