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Abstract

This thesis summarizes the design, implementation, and evaluation of two end-user
web tools for automated content analysis of online news data. The first tool is a
visualization that displays neural word embeddings data, allowing a user to explore
words used in similar contexts within a text corpus. The second tool is an interface
that guides users through a supervised machine learning pipeline, enabling novices
to train their own binary classification models to detect the presence of a specific
frame within the text of a news story. The visualization and interface were evaluated
in a user study and think-aloud test respectively. These tools were developed for
integration into Media Cloud, an open-source platform for media analysis, which is
part of a larger effort to facilitate and advance media ecosystems research.
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Chapter 1

Introduction

For decades, researchers have been working to understand how media shape the pub-

lic agenda and influence civic engagement. The media effects theory of agenda setting

suggests that the salience of topics in the media significantly contributes to the pub-

lic’s perception of their importance [1]. This phenomenon has been studied in many

different contexts, from presidential elections to coverage of the women’s movement

[2]. As Cohen so succinctly put it, “The press might not be successful much of the

time in telling people what to think, but stunningly successful in telling its readers

what to think about” [3].

Although the underlying theories and motivations are still relevant, today’s media

landscape is rapidly changing. As the volume of content grows through digital plat-

forms of dissemination and as interactions between content generators become more

complex, traditional communications research methods alone are no longer adequate

to fully understand contemporary media ecosystems.

In the age of big data, media researchers need access to computational methods

of analysis in order to understand the large-scale patterns of these networks. Media

Cloud, an open-source platform for media analysis, provides such tools in an online

setting [4]. This thesis summarizes the development and evaluation of research tools

for further expansion of the Media Cloud platform. In addition to providing robust

insights into news data, these tools must also cater to researchers with potentially

little-to-no background in computer science or machine learning. We begin by re-
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viewing some of the literature that has already been produced using Media Cloud as

well as the existing challenges faced by researchers. We then go into deeper detail

surrounding the current features of Media Cloud and other similar services. Finally,

we present two case studies that outline the development, evaluation, and integration

of a new feature that helps novices take advantage of machine learning for large scale

content analysis.

1.1 Digital Media Ecosystems

When studying media ecosystems, researchers are interested in identifying narratives

that develop within a controversy as well as measuring and comparing the overall

attention given to these narratives. Researchers are also interested in identifying

the sources that advance particular narratives and measuring their relative influence

within the ecosystem. Developing quantitative and computational methodologies to

help answer these questions is key to the growth of this emerging research field.

Researchers have already begun to explore and evaluate quantitative metrics of

influence and attention. For example, attention can be measured by the number of

articles that discuss a specific topic. Social media metrics, such as the number of

Tweets with a specific hashtag or the number of Facebook shares of an article, are

another way to measure attention. When viewing this data in a time series visual-

ization, local maxima typically correspond to significant events in the development

of a media controversy. Figure 1-1 shows an example of such a visualization from an

analysis of media coverage on the Dakota Access Pipeline (DAPL) [5].

There are several ways to measure influence. Benkler, et al. used link analysis

in their case study of the SOPA-PIPA debate between 2010 and 2012 [6]. In a link

economy, a news story that links to another source is assumed to attribute some

measure of importance to that source. The number of references, or ‘in-links’, provides

a way to rank articles by influence within the greater conversation. The number of

likes, clicks, and shares on social media platforms can provide another metric of

influence. By using a social media metric, Graeff, et al. identified influential sources

14



Figure 1-1: The number of sentences containing the phrase “standing rock” within a
collection of news sources from the Media Cloud database

in an analysis of the Trayvon Martin media controversy that link analysis methods

did not [7].

Links between articles and sources naturally lend themselves to the use of network

models. One such model, used in several studies produced by the Media Cloud

research team, is called a link network. In a link network, nodes represent sources

within a topic. An undirected edge with a weight of 1 exists between source A and

source B if a story from source A links to a story from source B or vice versa. The

weight of the edge is doubled if both sources link to each other. The value of a node

is determined by the number of incoming edges and is used to convey its importance

within the network.

This representation easily allows the application of existing network analysis algo-

rithms. For example, using Louvain community detection [8], researchers can pinpoint

different framings of a topic based on these linking relationships. Figure 1-2 shows

the results of community detection in a link network generated from a collection of

news stories about teen pregnancy [9].

More advanced computational techniques can be applied to the text of an article

itself. Methods such as topic modeling, sentiment analysis, and entity detection can

provide useful insights into a large corpus of online news content.

It is worth noting that these computational analysis methods are not meant to

replace human content analysis, but to supplement it. In fact, more established qual-

itative analysis methods are useful in testing the validity of these newer quantitative

measures [6]. The mixed methodology used in this kind of research takes advantage

15



Figure 1-2: An example of a link network constructed from news stories mentioning
at least one term from a set of words related to teen pregnancy. The colors correspond
to communities determined by the Louvain algorithm.
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of large scale automated data analysis while still leaving room for the human insight

and interpretation that algorithms have yet to be able to mimic.

1.2 Challenges of Computational Analysis

There are several challenges that prevent the proliferation of research in the field of

computational social science and contribute to what Manovich calls the “data analysis

divide” [10]. Here we discuss a few of these challenges and how Media Cloud helps

alleviate the computational burden for media researchers.

The first of these challenges pertains to data access. Fortunately, there is a growing

number of freely available data repositories, such as data.gov [11], that allow CSV

downloads, although the quality of this data can vary. Social network and news sites

also provide APIs to access a subset of their data [12, 13, 14]. These APIs are targeted

towards developers and their use requires at least some background in programming.

Media Cloud provides access to content data from more than 60,000 actively crawled

sources including mainstream news sites as well as independent news platforms and

blogs [15]. Data collection is handled on the backend of the platform by scraping the

RSS feeds of these sources. Media Cloud data can be accessed through an API [16]

as well as through a friendly user interface.

Even if researchers are able to access data, they might not necessarily have the

technical or human resources for storage and processing. Advances in cloud computing

have made this less of a problem, but using such services usually requires collaboration

with computer or data scientists, which is not always possible. Media Cloud not only

provides its own database of articles from thousands of monitored sources, but also

expands its collection using links found in Media Cloud stories that reference other

online articles (Section 2.1.3). Media Cloud also handles the processing and cleaning

of data. Important metadata such as dates, headlines, and links are extracted and

NLP metrics such as word counts and word stems are calculated. The storage and

processing capacity of the Media Cloud platform provides a ready-to-use dataset that

can be further refined with query and filter tools.

17



The ability to model and analyze data is the final challenge and one of the more

difficult problems to address. Media researchers need training in machine learning

and data science, or need to collaborate with those who have had such training, in

order to gain useful insights from big social data. Section 2.1.3 provides a summary

of the data visualization and analysis tools available in Media Cloud. We address in

the next section how this thesis aims to enhance Media Cloud’s existing data analysis

toolkit.

1.3 Thesis Goals and Research Questions

While the current Media Cloud platform has valuable features that have helped pro-

duce insightful research, there are currently few tools that help researchers make use

of powerful machine learning methods without downloading the data and performing

those methods offline. In order to better equip media researchers who are not as

well-versed in computational methodology, Media Cloud needs end-user tools that

enable the sophisticated content analysis these machine learning techniques can pro-

vide. The goal of this thesis is to begin efforts to address that need. The result is

the design, development, and evaluation of two new end-user tools for content analy-

sis. We present two case studies as justification of the utility of these tools in media

ecology research and of their consequent adoption into the existing platform.

The development of these tools brings up additional questions and challenges or-

thogonal to UI/UX design, data visualization, and machine learning. Which machine

learning and visualization techniques will provide insight into online news data? How

can UI/UX and co-design methods help these advanced tools remain powerful yet

accessible? How do we adapt these analysis methods to a real-time, web-based user

experience? The case studies presented in this thesis provide further insight into these

questions and serve as practical examples of the importance of user-centered design.

Our main measure of success, however, is that these tools help media researchers

produce cutting-edge research from the mountains of data available on the web that

would otherwise not be possible due to a lack of technical training or resources.
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Chapter 2

Existing Tools for Media Ecosystems

Research

This chapter provides an in-depth summary of the Media Cloud platform as well as

overviews of other tools used in media ecosystems research. Table A.3 in the appendix

provides a high-level comparison of the different platforms.

2.1 The Media Cloud Platform

The Media Cloud platform collects news stories from sources all over the web through

RSS feeds. In addition to news stories, Media Cloud also collects data such as hyper-

links, Facebook shares, and Twitter shares. The interfaces that allow users to explore

this data are the Explorer, the Source Manager, and the Topic Mapper.

2.1.1 Explorer

The Explorer interface provides users with a high-level analysis of stories in the Media

Cloud database that match a simple boolean query [17]. When creating a query, the

user specifies the collection of sources to search within as well as a date range. If

a user specifies more than one query, the interface will display a comparison of the

results or a tab for each query where appropriate. The analysis tools in this interface
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Figure 2-1: The Explorer interface

focus on attention, language, and representation.

The main purpose of the Explorer interface is for preliminary investigation. Un-

like Explorer, Topic Mapper expands its search to stories outside the Media Cloud

database through a time-intensive web ‘spidering’ process. Explorer provides a more

efficient search tool, sacrificing corpus size for time. Because the analysis and visu-

alization tools available in Explorer are a subset of those available in Topic Mapper,

we postpone the discussion of those tools to Section 2.1.3.

2.1.2 Source Manager

The Source Manager interface allows users to explore an individual source or collection

of sources within the Media Cloud database [15]. Users can view summary data such

as which sources, languages, and countries make up a collection. For a given source

or collection, they can also see how many sentences per day have been collected over

time, the top words used in stories, and a map of geographic coverage.
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Figure 2-2: The Source Manager interface

2.1.3 Topic Mapper

The Topic Mapper interface allows users to dig even deeper into a collection of news

stories about a specific topic by providing more content and influence metrics as well

as subtopic analysis tools [18].

Users create topics starting with a boolean query and a date range. The stories

in the Media Cloud database that match this query are used as seeds in a subsequent

‘spidering’ process. The spidering process follows links found in the seed stories that

point to other news stories. If those linked stories match the user’s boolean query,

they will be included in the topic collection. This process iterates 15 times by default.

This allows the inclusion of relevant news stories that are not already in the Media

Cloud database.

Once a topic has been created, the user can begin exploring the data with a variety

of analysis and visualization tools. Tables A.1 and A.2 in the appendix provide a

high-level summary of the current tools available in Topic Mapper.
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Figure 2-3: The Topic Mapper interface

Topic Mapper allows additional dimensions of analysis by enabling the user to

filter topic stories using the following methods:

• Subtopic. There are currently six different ways for users to create subtopics

in the platform. The first method uses a user-specific boolean query and will

generate a sub-corpus of news stories within the topic that match the query.

Users can also create sub-corpora based on the top countries mentioned in news

stories, the media type of the stories (online, radio, etc.), as well as the top

themes as determined by a theme classifier from the New York Times [19].

Users can also split their topic into political left and right groups.1

• Sentence Search. Users can enter a simple query to only look at stories within

the topic that contain sentences which match the query.

• Snapshot. When users creates or edits a topic query, they generate and save
1This analysis is based on the ratio of Trump and Clinton Twitter followers who retweeted a

story and is only applicable to the top 1000 sources within the 2016 U.S. Election topic [20].
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a ‘snapshot’ or version of the topic associated with the query. Media Cloud

allows users to view the data for different topic snapshots.

• Timespan. Each topic has a start and end date associated with it. Users

can adjust the start and end date within the overall timespan of the topic and

explore the data for a specific month, week, or day. There are also several

visualizations that allow you to compare data from two timespans side-by-side.

2.2 Other Platforms and Services

In this section we provide brief summaries of other platforms and services similar to

Media Cloud. These platforms span both the private and public sector and provide

data aggregation and analysis tools for studying online news content as well as other

text data from the web.

2.2.1 Europe Media Monitor: NewsBrief

The Europe Media Monitor (EMM) tracks thousands of news sources and uses NLP

and information extraction methods to produce a summary including the contents

of new reports, the location of events, and the entities involved [21]. Unlike Media

Cloud, the information displayed in NewsBrief is determined by a purely automatic

process without human interaction. Instead of users creating topics, the topics are

determined by an algorithm and displayed to the user.

The website has five main features. The first is the ‘Top Stories Overview’, where

users can examine which news stories have gained significant attention at the imme-

diate moment or within the past 24 hours. Attention is measured by the number of

news articles about the event or story. This underlying grouping of news articles by

event can be further examined with the ‘Events Detection’ feature. Users can scroll

through lists of events and see the lists of individual articles associated with each

event. The NewsBrief can also classify articles based on higher-level themes, such

as ‘Security’ or ‘Natural Disasters’. Users can scroll through these themes and see
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the lists of articles associated with each theme. The NewsBrief provides even more

specific classification categories, such as EU-specific themes, people, policy, world

regions, and offices and agencies such as the United Nations.

In addition to providing automatic classification of news articles from around the

world, the EMM also has an advanced search feature that allows users to explore the

EMM database based on keywords, source, category, language, and timespan. Users

can also search through the list of sources monitored by the EMM with the ‘Source

List’ feature on the website.

2.2.2 GDELT

The Global Data on Events, Location, and Tone (GDELT) Project is a multi-lingual,

codified dataset of broadcast, print, and web news from all over the world [22]. The

project employs NLP and deep learning methods in order to create datasets coded

by events, people, places, themes, and sentiment. The project’s archives date from

1979 through the present day and are updated every fifteen minutes.

The GDELT project includes an analysis service [23] that provides online tools for

users to explore a subset of their datasets, specifically the GDELT Event Database

and the GDELT Global Knowledge Graph [24]. The purpose of the analysis service

is to provide a lower technical entry barrier to begin exploring the GDELT datasets.

GDELT provides fourteen different visualization tools, including maps of events, net-

works, intensity timelines, and word clouds. The user selects the visualization and

enters a query. Once the query has been processed, the results are sent to the user’s

email.

2.2.3 Crimson Hexagon

Crimson Hexagon is a private company that helps its customers analyze and under-

stand online consumer conversations [25]. It draws from online data sources including

social media, customer reviews, online news, and blogs. In addition to its data library,

to which customers have full access, it also provides an online platform for data anal-
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ysis. This platform includes visualizations and machine learning tools to help users

classify data as well as image analysis tools to identify logos, scenes, actions, and

objects.

2.2.4 Alto Analytics

Alto Analytics is another private company that also helps its clients analyze large

datasets [26]. They provide access to proprietary software for data analysis as well as

the ability to collaborate with an in-house team of data scientists for more advanced

analysis needs. They provide access to a wide variety of data, including emails, social

media, news articles, and web forms and have produced reports in a variety of domains

such as consumer insights, crisis response, and public opinion mapping.
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Chapter 3

Visualizing Word Embeddings

In this case study we investigate the use of neural word embeddings to help media

researchers identify themes within a topic corpus. We first provide a brief overview

of existing language visualizations in the Media Cloud platform. We then discuss

how neural word embeddings can be used to create semantic word clouds as well as

review previous work on the generation of semantic word clouds. Finally, we present

the implementation and evaluation of a new language visualization called the word

space.

3.1 Background

3.1.1 Language Visualizations for Content Analysis

A key motivation for the content analysis of news articles is the need to identify the

dominant themes within a specific topic corpus. Understanding the makeup of the

greater conversation surrounding a topic in the media allows researchers to investigate

which aspects of a story, debate, or controversy are receiving attention and which are

not.

The ability to effectively visualize the language used in a topic corpus can prove

to be a powerful tool to help researchers discover and understand these themes. Vi-

sualizations allow a user to develop a broad understanding of the data that pure
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Figure 3-1: Ordered Word Cloud for the Climate Change 2016 topic

quantitative metrics would otherwise not reveal [27]. To effectively visualize the lan-

guage used in a corpus however, we need a robust language data model.

Computational methods of language modeling are abundant. One of the more

simplistic approaches is to represent the entire text corpus as a bag of words and

examine individual word frequencies. Traditional word clouds can be used to display

this kind of model and researchers have access to this visualization in the current

platform (Figure 3-1). A user can quickly identify the most frequently used words

within a text corpus and perhaps gain a general understanding of the contents of a

topic, a task that is sometimes called impression formation or gisting.

Some have pointed out the limitations of word clouds and are skeptical of its

uses in data analysis [28]. One of the main shortcomings is that word frequency data

alone produces a limited picture of a text corpus. Although word frequencies can help

identify more relevant words, any information about the intended purpose behind the

specific occurrence of a word is lost without understanding the context in which it

was used.

An example of a visualization in the current platform that incorporates contextual

information is the Word-In-Context tool (Figure 3-2) which generates the word tree

visualization described in [29]. The visualization shows the words most often used

before and after a given word in a topic. Although this helps the researcher under-
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Figure 3-2: Word-In-Context for the Climate Change 2016 topic

stand the different contexts in which a word appears, it is more suitable for detailed

investigation of individual words rather than impression formation.

In order to better support the identification of subtopics, there is a need for a

tool that combines the bird’s-eye view of word clouds with the contextual detail of

the Word-In-Context tool. With the hope of achieving this balance, we explored and

evaluated the use of neural word embeddings to create a useful, glanceable visualiza-

tion for the purpose of theme discovery in online news topics on the Media Cloud

platform.

3.1.2 Word Embeddings

Word embeddings refer to condensed vector representations of words in a vocabu-

lary for a given text corpus. Although there are several different ways of creating

word embeddings, the visualization presented in this case study uses word2vec [30].

The theoretical basis for word2vec is the distributional hypothesis which states that

words that occur in similar contexts tend to have similar meanings [31]. Word2vec

embeddings are generated by training a single-layer neural network to predict a word

given its surrounding context. The embedding vector for a word is the corresponding

weight vector in the hidden layer of the trained network.

Previous work has shown that certain mathematical relationships between word2vec
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embeddings reflect the semantic relationships between the words they represent. For

example, given vectors for the words king, man, woman, and queen, a trained model

can learn embeddings such that < 𝑘𝑖𝑛𝑔 > − < 𝑚𝑎𝑛 > + < 𝑤𝑜𝑚𝑎𝑛 > is very close

to the vector for the word queen [32]. As is common for most word vector repre-

sentations, cosine distance proves to be a useful similarity metric. In the case of

word2vec, the cosine similarity between vectors reflects the semantic similarity be-

tween the words they represent. The length of a word vector is also considered to

encode useful information. Schakel et al. provide evidence that words with larger

vector lengths tend to appear not only more frequently, but also more consistently

within the same context in a corpus [33].

Because of these meaningful mathematical relationships between vectors, word

embeddings can provide useful quantitative metrics for understanding the contextual

relationships between words in a text corpus. These metrics can be used to produce

a semantic word cloud, that is, a visualization where the spatial distance between

words indicates the semantic relationship between words. In order to create this

kind of visualization with word embeddings, one can use dimensionality reduction

techniques such as PCA so that high-dimensional word embeddings can be mapped

to a two-dimensional space. Using a scatterplot of the two-dimensional embeddings,

a user can explore the vector space of the corpus where the semantic relationship

between words is reflected by their positions in the plot. This method, also outlined

in [34], is a common technique for visualizing word embeddings and is the basis for

the visualization presented in this chapter.

3.2 Related Work

The problem of generating semantic word clouds is not new. Most methods use some

measurement of similarity between words and create an initial layout based on those

metrics. These preliminary layouts tend to be sparse or have overlap between words.

To account for this, an algorithm such as Force-Directed is usually applied to create

a more readable visualization.
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A common measurement for similarity is the cosine distance between vectors in

a co-occurrence matrix. Examples of visualization techniques that use this method

can be found in [35] and [36]. In both examples, an additional algorithm is applied

to adjust the layout of the cloud while preserving the semantic information encoded

in the spatial distance between words. Xu et al. used a similar approach of layout

adjustment, but with neural word embeddings instead of a co-occurrence matrix as

the underlying data model [37]. As noted by [37], vectors in a co-occurrence matrix

do not encode semantic information as effectively as word embeddings produced by

deep learning methods. Furthermore, the size of these vectors is directly dependent

on the size of the corpus vocabulary, which can result in rather large and sparse vector

representations.

A more unique approach to semantic cloud generation can be found in the work

done by Gambette, who used the structure of trees rather than spatial distance to

encode the semantic relationship between words [38]. In this ‘tree cloud’ visualization,

a word’s placement in the tree is based on its co-occurrence with other words in the

text.

In the realm of topic modeling, previous work has been done within the Media

Cloud research team in investigating the use of Latent Dirichlet Allocation (LDA) on

a Media Cloud topic corpus [39]. Although LDA can be a useful tool, the number of

topics must be specified for the training process, putting the burden on the end-user

to guess how many topics might be in a corpus.

3.3 Implementation

3.3.1 Model Training

To generate word embeddings for Media Cloud topic corpora, we used the Gensim

Python library’s word2vec implementation [40] to train a continuous-bag-of-words

(CBOW) model with negative sampling as described in [41] and [42].

Table 3.1 shows some of the hyperparameters set for training the models. Most of
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Parameter Description value

size Number of nodes in the hidden layer (100)

window Max distance between current and predicted word (5)

iter Number of epochs over corpus (5)

min_count Minimum word frequency count allowed 1

max_vocab Maximum number of words allowed in vocabulary 5000

Table 3.1: Settings for some of the key hyperparameters used in the word2vec model
training. Values denoted in parentheses are the default set by the Gensim library.

the hyperparameters were set to the library defaults, except for the minimum word

frequency count and the maximum vocabulary size, whose settings we discuss below.

In general, a hidden layer size of tens to hundreds is suggested by the author of Gen-

sim [43]. Given the smaller size of Media Cloud topic corpora (a typical topic corpus

in Media Cloud can range from about 100,000 to 600,000 sentences for smaller topics

and from 2 to 3 million sentences for larger ones), we chose the library default setting

of 100. In order to keep the size of the models manageable and to reduce noise found

in corpora such as web links and metadata, we set the maximum vocabulary size to

5000. We found this to be a reasonable number by examining the distribution of

word frequencies over several different topics and noting that the majority of the text

corpus is accounted for when only considering the top 5000 most frequent words for

both smaller and larger topics.

Once the model was trained, the implementation of PCA provided by the Scikit-

learn library [44] was used for dimensionality reduction, resulting in the final data

point used in the visualization. Figure 3-3 provides a summary of the entire embed-

dings generation process.

3.3.2 Model Validation

In general, unsupervised machine learning models cannot be validated with traditional

metrics such as precision and recall. Word2vec models are typically evaluated by
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Figure 3-3: The process of generating word2vec embeddings for a Media Cloud topic
corpus

their performance on word similarity or analogy tasks for standardized datasets [45].

Faruqui, et. al. discuss the limitations to this approach, emphasizing that until more

robust validation methods can be developed, “models should be compared on how

well they can perform on a downstream NLP task” [46].

It is important to note that the purpose of our word2vec models is to generate

embeddings that capture the relatedness of words within the context of a Media Cloud

topic, not within the context of the English language. This goal changes what we

consider ‘relatedness’ to mean. For example, in English we would not consider the

words Paris and agreement to be related to each other semantically. Instead, we

would group words like London or Tokyo with Paris and words like consensus or

accord with agreement. Indeed, these are the results you would see in large word2vec

models such as the GoogleNews model, which has been trained on approximately 100

billion words [30]. Within a corpus focused on climate change however, the words

Paris and agreement would often appear in similar contexts, and we would expect

their vector representations to indicate a close relationship.

Because of this difference in how we define relatedness, the standard datasets

available for evaluating a model’s opinion of word similarity cannot be used. We

therefore measured model performance based on the downstream NLP task of finding

themes within a topic. In the initial validation of our models, we had domain experts

from the Media Cloud team examine the scatter plot of word embeddings for several

different topic models. Figure 3-4 shows an example of the scatter plot visualization
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Figure 3-4: An early iteration of the word space visualization for the Climate Change
2016 topic

for the Climate Change 2016 topic.

The feedback we received from our researchers suggested potential promise in

using word2vec embeddings for a subtopic identification task; however, we also found

that it was difficult for researchers to make sense of the scatter plot visualization. For

our second iteration, we added additional features to more effectively visualize word

relatedness which we discuss in the next section.

3.3.3 Model Visualization

Based on the initial feedback from our researchers, we developed an extended version

of the scatterplot visualization that we call the word space as shown in Figure 3-

5. The left image in the figure shows the initial view when the user first loads the

visualization. The right image shows the view when a user hovers over a word.

As shown in Figure 3-5, when a user hovers over a word, related words are also

highlighted. The metric for relatedness is the cosine distance between the two-

dimensional word embeddings. A threshold of 0.95, which roughly corresponds to

𝑐𝑜𝑠(18°), was used keep the user’s focus on only the most relevant words. Because

cosine distance is used as the similarity metric, the visualization makes use of polar
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Figure 3-5: The word space for the Climate Change 2016 topic

coordinate axes to help users group words based on angle differences rather than Eu-

clidean distance. A light gray background also appears to mark the boundary where

the cosine distance from the selected word is below the threshold.

One limitation of this visualization is that word overlap cannot be controlled since

the position is based on the two-dimensional word embedding; however, because the

visualization is intended to be dynamic and interactive, using libraries like d3.js [47]

allows us to take advantage of features such as zooming and panning.

3.4 Evaluation

To evaluate the effectiveness of the visualization, we conducted a small user study

comparing the utility of a standard word cloud, an augmented word cloud, and the

word space in helping users complete a short theme-detection task.

3.4.1 User Study Design

We evaluated three different types of visualizations using the Ebola 2016 topic from

the Media Cloud database. The first was a standard word cloud with a randomized

layout and limited user interaction. When a user hovers over a word with their mouse,
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Figure 3-6: A standard word cloud (left) and an augmented word cloud (right)

the word turns blue to improve readability. The augmented word cloud had the same

exact layout as the first, but incorporated information from our trained word2vec

model. In this visualization, when a user hovers over a word, related words (with

respect to the cosine distance threshold) are also highlighted. The word cloud layouts

for these two visualizations were both generated using Jason Davies d3 word cloud

library [48] and are shown in Figure 3-6. The third visualization was the word space

as described in Section 3.3.3.

Participants were randomly assigned a word cloud type and asked to read through

a short tutorial on how they could use the visualization to detect a potential conver-

sation within a news topic. Each participant had the opportunity to directly interact

with the visualization for a sample topic before beginning the actual task. Once a

participant was familiar with the visualization and the task, they were shown the

visualization for the Ebola topic and asked to find and label two conversations. They

were also asked to list three keywords within the visualization that they thought

best represented each conversation they identified. Once this task was completed,

users had the opportunity to provide feedback in a free-response form. Participants

were taken from a convenience sample of students, journalists, researchers, and Media

Cloud affiliates. Their answers were compared against an expert analysis of the topic

by a researcher on the Media Cloud team, the results of which can be found in Table

A.4. We note that the researcher was only given the list of words in the visualization

ordered by frequency and that no visual aid was used in the analysis.
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Visualization Group Score Std. Dev.

Standard Word Cloud 1.6471 0.4779

Augmented Word Cloud 1.1875 0.5266

Word Space 1.5882 0.5999

Table 3.2: Mean match scores

3.4.2 Results

Conversation Matches

We evaluated user responses based on the number of distinct conversations listed by

the user that were also listed in the expert analysis. A user conversation was deemed

to match an expert conversation if at least two of the three words listed in a user

conversation were found within one of the expert conversation lists. Based on this

metric, each participant was assigned a score of either 0, 1, or 2. We note that a

participant only received a score of 2 if they identified two separate conversations.

For example, if both of the conversations identified by the participant matched a

single expert conversation, the participant would still receive a score of 1. The results

of this analysis are shown in Table 3.2.

An ANOVA test shows no significant difference between the means for the stan-

dard word cloud group and the word space group. It did show that there is a significant

difference between the average score for the augmented word cloud group and both

the standard word cloud and word space groups at a significance level of 0.05 and 0.1

respectively.

Conversation Difficulty

The second metric we used for response evaluation was based on the difficulty of

identifying an expert conversation. Here we made the assumption that the more

prevalent a theme is within a topic, the easier it is to detect in the visualizations.

This prevalence is based on the number of words in each conversation list provided

by our domain expert. We assigned a difficulty rating to each expert conversation
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Visualization Group Score Std. Dev.

Standard Word Cloud 0.971 0.0155

Augmented Word Cloud 0.966 0.042

Word Space 0.989 0.0291

Table 3.3: Mean difficulty scores

and calculated the mean difficulty score for each visualization group. The difficulty

rating for each expert conversation was calculated as follows: Let 𝛼 be the likelihood

that two words randomly chosen from the topic word list (without replacement) are a

member of the expert conversation list. The difficulty rating for that conversation is

then (1− 𝛼). Because participants were asked to identify two conversations, ratings

were also assigned to conversation pairs if two conversations were correctly identified

by a participant. The difficulty rating for a conversation pair was calculated as 𝛼𝛽

where 𝛼 and 𝛽 are the difficulty ratings for the two expert conversations in the pair.

A difficulty rating was assigned to each participant that correctly identified at least

one expert conversation. The results of this analysis are shown in Table 3.3.

An ANOVA test shows a significant difference between the means for the standard

word cloud group and the word space group at a significance level of 0.1 (𝑝 = 0.051).

It also shows a significant difference between the average score for the augmented

word cloud and the word space groups at a significance level of 0.05 (𝑝 = 0.046).

3.4.3 Discussion

In our evaluation of the match scores, we were surprised to see the performance of the

standard word cloud group as comparable to, if not better than, the augmented word

cloud and word space groups. Our original hypothesis was that participants would be

able to detect more conversations with the word space visualization followed by the

augmented word cloud. However, considering the small set of words to choose from

as well as a participant’s potential familiarity with the topic, it is understandable

that many would most likely identify at least one expert conversation no matter the
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visualization type. Interestingly, most of the negative free-response feedback we re-

ceived from participants was directed towards the standard word cloud visualization,

with one user stating that relative term frequency data did not seem “relevant to the

task” and another user expressing that they felt as if they were “just guessing” (in

fact, the same user suggested that a co-occurrence network of the words would have

been helpful). Although the standard word cloud group found about as many expert

conversations as the other two groups, we suspect that this feedback is consistent with

what we see in the difference in difficulty scores between the groups, that is, the stan-

dard word cloud conversation matches were skewed towards the expert conversations

that were more likely to be chosen at random.

Looking at participant answers and free-response feedback for the word space

group, we saw confusion among some of the participants regarding the meaning of

the underlying data and how to use the visualization for the specified task. This

confusion was either expressed directly in the free-response feedback or indirectly

in the word lists. When looking at the word lists that did not match any expert

conversation, several responses included words that were not near each other in the

visualization at all. We suspect that the higher cognitive load on the user may have

contributed to a lower match score for the word space group. These results also

suggest a need to revisit the language and examples in our tutorial.

Although there was little difference in the number of expert conversations found,

our analysis of the variation in prominence for the correctly identified conversations

favored the word space visualization. This suggests that the word space visualiza-

tion can help users with limited knowledge of a topic find conversations that would

otherwise be difficult to identify without deeper study of the text corpus.

As a final exercise, we came up with a proposed mapping of our domain expert’s

conversations onto the word space visualization for the Ebola 2016 topic (Figure 3-7).

Although not all the words in the conversation lists are contained within each labeled

sector (for example, ‘obama’ is in the ‘Epidemic in Africa’ theme when according to

our domain expert it should be in the ‘Infections in the U.S.’ theme), a large portion

of the word lists are clustered together in the visualization. The overlap between the
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Figure 3-7: Proposed mapping of the conversations identified by our domain expert
onto the word space visualization for the Ebola 2016 Media Cloud topic corpus.

‘Quarantines’ theme and the ‘Infections in the U.S.’ theme suggests that subtopics

are not necessarily independent of each other, and the visualization is able to show

this relationship. We believe this mapping to be a promising proof-of-concept for the

use of word2vec embeddings in finding meaningful subtopics within a focused text

corpus.

3.5 Limitations

Here we discuss a few of the limitations to our approach. The first is the lack of

a generalized, automated validation method for our trained word2vec topic models

due to the difference in each model’s definition of ‘relatedness’ (Section 3.3.2). As of
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now, we assume that the same hyperparameters for model training will be sufficient

across all Media Cloud topics, which may not be completely accurate. For example,

depending on the size of the topic corpus, a larger or smaller hidden layer size might

improve the quality of a model. A lack of a generalized, automated validation method

means that the quality of the resulting models must be assessed by the end-user.

Secondly, the word space visualization as described here does not provide a full

picture of language use within a corpus given that we only display the fifty most

frequently used words. Although it provides a possible partition of these words, less

prevalent conversations may not be visible. Additionally, our current word2vec models

do not support bigrams or phrases.

Due to the limitations listed here, we see the word space visualization as a high-

level, exploratory tool for initial analysis that can serve as a springboard into a

deeper, more detailed investigation of the patterns seen in the visualization. The

confirmation of these patterns with more established qualitative analysis methods

can provide validation for the results of these models.

3.6 Extensions and Future Work

We have already begun implementing an extension to this visualization by adding an

additional dimension of time. By generating a word space visualization for different

timespans, users can explore how word use changes over time within a topic corpus.

Word embeddings themselves have other applications worth exploring. In other

work, word embeddings have been adapted for use with LDA as well as sentiment

analysis techniques [49, 50]. They can also be used as feature vectors in supervised

learning. Integrating word2vec models into the current platform architecture facili-

tates the future development of additional automated content analysis methods such

as these.
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3.7 Summary

In this case study, we presented a new visualization to help Media Cloud end-users

explore groups of related words in order to identify themes within different topic

corpora. This relatedness is based on word2vec embeddings generated by a single-

layer neural network trained to predict a word given its context. In the evaluation

of this visualization, there was little difference in the effectiveness of standard and

augmented word clouds and the word space in helping users detect subtopics; however,

we did find that the word space helped users identify less prominent themes within a

topic. Based on these initial findings, we believe that although standard word clouds

can provide a very general understanding of the contents of a topic, the word space

visualization can provide users with subtle insights into the text corpus that cannot

be revealed by word frequency data alone.
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Chapter 4

Helping Users Build Subtopic

Classifiers

In this case study we summarize the development of an interface to guide end-users

through the process of training and validating their own classifiers to automatically

detect different subtopics within a Media Cloud topic corpus. We first discuss tra-

ditional content analysis methods as well as current subtopic generation tools in the

Media Cloud platform. We then review existing machine learning tools available out-

side the platform. Finally, we describe the design and implementation of the interface,

initial end-user feedback, and planned improvements.

4.1 Background

4.1.1 Manual and Automated Framing Analysis

In manual content analysis, media researchers will typically read through hundreds

of articles, coding for a specific frame or focus [51, 52]. This assignment is usually

based on the presence and context of certain keywords in a news article, although

specific coding guidelines depend on the purposes of the research. The resulting set

of coded articles can then be used for further analysis such as the comparison of

attention across different frames. Although manual content analysis is vulnerable
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to the potential bias of the human coder, intercoder reliability techniques can be

used to mitigate such effects. Overall, the process can be extremely time-consuming,

requiring hours of labor and involving multiple researchers.

Automated content analysis techniques can supplement, although not fully re-

place, such methodology. The Media Cloud platform includes a “Subtopic Builder”,

which allows users to automatically tag and filter stories within a topic using a variety

of methods. Currently, in order to filter stories based on article content, a user can

use either keyword search or a pre-trained theme detector.

The first method allows users to tag content for inclusion in a subtopic using

keyword boolean queries. Any news stories included in a generated subtopic collection

must strictly match the query. With this model, the burden is on the user to determine

which word or set of words will define the frame. This can result in many false

negatives if a crucial keyword is left out of the query. Boolean queries are also very

rigid in that they do not take into account the rest of the words used in the article.

This can result in a number of false positives if the context of the keyword is not

applicable to a theme in a given story. The Media Cloud research team will regularly

write long and complex queries in an attempt to avoid these issues.

The second method uses the New York Times theme analyzer. This is a model

trained on the New York Times annotated corpus that will output various themes

given the text of a news story [19]. This model can help users understand general

themes within a topic, but does not allow a user to tag articles for a custom frame.

Its vocabulary is also limited to what only appears in the New York Times corpus

and cannot scale to new topics that might emerge in the future.

The limitations of both the manual and automated content analysis methods men-

tioned above suggest a need for a more sophisticated approach to framing analysis,

for which we turn to supervised machine learning. Although there exist many use-

ful libraries that provide implementations for supervised learning algorithms, Media

Cloud end-users do not necessarily know enough programming to make use of them.

In order to still make such methods available to our user base, this case study explores

the creation of an interface designed to help end-users train and validate their own
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machine learning models to detect custom frames within a topic corpus.

4.1.2 Supervised Text Classification

Supervised machine learning for text classification is a thoroughly studied method for

which there exist many tools and resources. Well-known algorithms such as Support

Vector Machines and Naive Bayes have been used for this task in many different

contexts, the classic example being spam filtering [53].

In this case study, we focus on binary classification models where a document is

given only one of two possible labels. Each document is transformed into a tf-idf

vector as input into the training algorithm and model. The algorithm takes in a

subset of the documents called the training set and performs parameter updates in

order to maximize its accuracy in guessing the pre-defined label of each document.

These trained parameters make up the resulting model. Additional validation and

test sets are used to detect overfitting during the training procedure. High training,

validation, and test precision and recall scores suggest the model has successfully

learned the distinctions between the two classes and can therefore be used on unseen

documents. Figure 4-1 provides a summary of a typical supervised learning pipeline.

Our goal in this case study is to develop and evaluate an interface to help an

end-user with little machine learning experience follow this pipeline and create their

own high-quality classification models. While many of these steps can be automated

for the user, algorithm and hyperparameter selection as well as model evaluation are

higher level steps in the process that cannot be automated. This case study will

outline how we assist end-users in completing these tasks.

4.2 Related Work

A growing area of research in the field of human computer interaction is the de-

velopment of interactive machine learning interfaces. These interfaces remove the

machine learning expert as the middleman in the training process and allow the end-

user (typically a domain expert) to update the model in an iterative fashion within
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Figure 4-1: Supervised learning pipeline for text classification

more frequent “train-feedback-correct” cycles [54]. According to [55], an important

component of human interaction with supervised learning systems is the user’s do-

main expertise. For example, given feedback specifying the areas of a model’s poor

performance, a user with domain expertise will know the appropriate examples to

add to a training set to address those issues whether or not they fully understand the

underlying algorithm. The ability to incrementally modify training data and hyperpa-

rameters based on intuitive model feedback can help end-users with little background

in machine learning create higher quality models.

There are several existing platforms that allow end-users to train their own ma-

chine learning models. Cloud platforms like Amazon Web Services and Microsoft

Azure are two such examples [56, 57]. In both of these services, users can select from

a wide variety of training algorithms and compare the performance of different mod-

els. Pienso and DataRobot are companies that provide machine learning tools on a

platform with a lower technical barrier with Pienso’s platform specifically targeting

non-programmers [58, 59].

Although these kinds of services provide access to many powerful machine learning
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algorithms, the learning curve can still be high for non-technical users and the services

are not freely available. Furthermore, we want to allow users to easily integrate their

model results into Media Cloud. Consequently, the interface and underlying learn-

ing system presented in this case study provide a gentler introduction to supervised

machine learning for end-users than those listed above, is specifically focused on text

classification, and is tailored to the Media Cloud platform.

4.3 Implementation

4.3.1 Model Selection

The three main goals that drove our design decisions throughout the implementation

process were simplicity, efficiency, and accuracy. Working with the assumption that

most of our users are machine learning novices, we recognized the need to keep the

interface and model creation process as simple and as clear as possible in order to

reduce cognitive load. This led us to remove algorithm selection from the learning

pipeline and instead use a single training algorithm on the backend of the interface.

Because the same algorithm was to be used across users, we needed an algorithm

whose accuracy would not be too dependent on small changes in its hyperparameters.

Additionally, for the sake of user experience, we needed a reasonably efficient training

algorithm so that the pipeline would not be bottlenecked, allowing the user to receive

real-time feedback on the model’s results.

We ran initial model validation experiments on several different common classi-

fication algorithms using implementations provided by the SciKit-Learn library [44].

We had a domain expert develop a training set consisting of stories from the Media

Cloud Right to be Forgotten topic. This topic consists of news stories surrounding

the ‘Right to Be Forgotten’ (RTBF), a concept whose practice would allow a citizen

to petition for a technology company to remove links to damaging stories about them

online [60]. One hundred stories were manually coded by the expert as either con-

taining a press impact frame or not. We used this training set to perform three-fold
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Classifier Mean
Recall

Std.
Dev.

Mean
Precision

Std.
Dev.

Top
Features

Linear SVM
(𝐶 = 1)

90.000% 2.154% 94.773% 1.332% 3550 (𝜒2)

Multinomial
Naive Bayes 90.480% 1.942% 83.266% 2.454% 450 (ANOVA)

K-Nearest
Neighbors
(𝑘 = 3)

92.280% 2.498% 96.112% 1.999% 9 (ANOVA)

Table 4.1: Mean precision and recall scores for 3-fold cross-validation on a set of 100
news stories

stratified cross-validation for each model with the results shown in Table 4.1.

The preliminary results in Table 4.1 show that all the models performed reasonably

well. We discuss each algorithm in detail below:

The linear SVM model performed well but has an additional parameter that would

either have been 1) selected through a cross-validation analysis over a set of possible

parameters, or 2) included in the interface as a dial for the user to tweak. Our

concern with the first option was that an expensive grid search to select the optimal

parameter would have violated our design goal of efficiency. The second option would

have added additional complexity to the interface which we decided to forgo, at least

for the first version of this feature.

Although the K-Nearest Neighbors algorithm had the highest mean precision and

recall, in general it is known to not perform well with large feature vectors given

that the Euclidean distance metric becomes meaningless in higher dimensions. Fur-

thermore, it must scan through all the training data in order to make a prediction,

negatively impacting efficiency for large training sets. These shortcomings, as well as

its additional hyperparameter, did not coincide with our design goals.

Consequently, we chose Naive Bayes due to its reasonable performance and lack of

additional hyperparameters, although we do note the tradeoff of simplicity for some

loss of model performance. The Naive Bayes algorithm also outputs a probability

distribution of the vocabulary for each label which we hypothesized would be useful
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Frame n Mean
Recall

Std.
Dev.

Mean
Precision

Std.
Dev.

Economic Impact 100 89.394% 14.999% 82.108% 8.151%

Abuse 40 61.111% 10.393% 73.016% 28.660%

Table 4.2: Mean test precision and recall scores with 3-fold stratified cross-validation

information to share with users in the training step of the interface (Section 4.3.3).

4.3.2 Additional Validation Tests

We performed additional validation experiments for Naive Bayes on two more training

sets curated by our domain expert. The first set contained 50 labeled stories consid-

ered to contain an Economic Impact frame within the RTBF topic and 50 labeled

counterexamples. The second set contained 20 labeled examples of an Abuse frame

within the RTBF topic and 20 labeled counterexamples. The results are shown in

Table 4.2.

The model performed roughly the same for the Economic Impact frame as it did

for the Press Impact frame. We asked our domain expert to only include 40 stories

in the Abuse frame dataset in order to test the model’s resiliency against a smaller

dataset size. Unfortunately, there was a significant drop in both the precision and

recall scores for this frame suggesting that 40 stories may be insufficient to train a

useful model.

We ran the models on the rest of the stories in the Media Cloud RTBF topic

and had our domain expert verify a randomly chosen sample of stories from the set.

According to the domain expert, 25 of the 30 stories (83%) were correctly classified

for the Impact on the Press dataset. For the Abuse dataset, 15 out of 20 randomly

selected stories (75%) matched the domain expert’s qualitative review (although two

of the five stories could not be reviewed due to a paywall).

Based on the above results, we found a simple Naive Bayes model to perform rea-

sonably well for several different frames within the RTBF topic. Given its simplicity
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Figure 4-2: Interface workflow

and efficiency, we considered it suitable as a generalizable model for the backend of

the interface.

4.3.3 Interface Design

Figure 4-2 shows the breakdown of the individual steps of the interface.

As part of the training step in the interface workflow, we included additional

information to help the user evaluate the results of the model. The first was the

inclusion of a probable words list as shown in Figure 4-3. Under the assumption that

the end-user is also the domain expert, we expected language to be an intuitive source

of feedback for users. This led us to include lists of the model’s opinion of the most

probable words for each classification.

As is typical in recommender systems, we show a random sample of articles within

the topic corpus that the model tagged as part of the subtopic (Figures 4-4 and 4-5).

In the third step of the interface, the user can browse through this set of sample

articles and indicate whether or not the model’s opinion was correct. We also display

common performance metrics such as precision and recall. All of this information is

provided to help the user judge the quality of the model and make updates to the

training set as necessary.

In order to integrate the interface into the existing platform, all the stories in the

topic corpus are tagged with a label based on the model’s opinion. Users can then

filter a topic based on these tags and use existing analysis tools to dive deeper into the

subset of stories. By integrating these tagged stories as different subtopics, existing
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Figure 4-3: Probable words lists for each classification type shown in Step 2

Figure 4-4: Example of a randomly selected story from Step 3
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true positive

true negative

false positive

false negative

Figure 4-5: Examples of correct and incorrect model guesses based on user feedback
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Figure 4-6: Comparison of attention between the entire RTBF corpus and the auto-
matically generated Press Impact and Economic Impact sub-topic corpora

comparison tools can be employed to explore and compare different metrics across

the subtopics, such as attention. Figure 4-6 shows an example of the different levels

of attention for the Press Impact and Economic Impact subtopics compared to the

overall RTBF topic.

4.4 Evaluation

To evaluate the interface design and workflow, we held a think-aloud session with

the RTBF domain expert who developed the training sets for our initial algorithm

selection and validation. The user developed a new set of stories to train a model to

detect a gender frame within the RTBF topic corpus. The user was asked to step

through the interface while verbalizing any thoughts, confusion, or questions during

the process. At the end, the user was asked additional questions about her experience.

4.4.1 Results and Discussion

Probable Words List

The user expressed some confusion regarding the list of probable words displayed for

each label in the second step of the interface. This confusion was rooted in the fact

that the same word can appear in both lists. Figure 4-7 shows the two lists displayed

to the user during the think-aloud session.
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Figure 4-7: Most probable words for each classification for a model trained on the
gender frame dataset

The user noted that the word ‘search’ appeared in both lists and asked whether

or not the lists should be exclusionary. She suggested that including a more detailed

explanation of what the word lists meant would help demystify the overlap between

lists for researchers who “want to know more of how the process works”. Despite this

confusion, the user found some of the words in the first list to be indicative of a gender

frame (e.g. ‘porn’, ‘women’, ‘revenge’). The user also noted it was strange that the

word ‘woman’ would appear in the list of words not likely to contain the frame, but

followed up with the suggestion that the results “could be an issue of [her] sample.”

Story Samples

The user found the third step of the interface to be both useful and intuitive to

understand. She expressed excitement in being able to click on links to each story

and verify for herself whether or not it contained the frame. She also found the model

confidence percentages to be useful indicators of whether or not a story was likely to

be a match (“It guessed it was at 64% and it was correct!”, “Let’s try 50%....yep, not

a match”).

When discussing which elements of the interface helped the user form an opinion
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about the quality of the model, she stated that the story sample list seemed to be a

good method to decide how trustworthy the model was, adding that she would have

to review the entire sample of stories to have a fully-formed opinion of the model’s

accuracy. We only showed a random sample of 30 stories, but the user stated a

preference for an even larger sample.

When the user clicked the ‘Next’ button at the end of the third step, she expected

her input to be used in someway to update the model. The interface is currently

designed to simply display the information for the user to roughly gauge the model’s

performance against her opinion, with the model remaining unchanged. We discuss

a potential modification to this design in the Section 4.4.2.

Modifying the Training Set

The user had originally developed a training set containing 33 positive and 40 negative

examples of stories containing a gender frame within the RTBF Media Cloud topic.

The user was asked to go through the interface one more time after updating the

training set so there were an even number of positive and negative examples. Due

to the bias that can result from Naive Bayes given an unbalanced training set, we

expected to see more accurate results [61].

The user noticed that the probable words lists changed with the new training set,

explaining that the word ‘woman’ no longer appeared in the negative classification

list, but that ‘women’ was still in the positive classification list. This difference made

her more confident in the word list results than in the previous walkthrough.

4.4.2 Planned Improvements

Based on the think-aloud session, there is a clear need for more detailed explanations

and hints throughout the interface, especially for the probable words lists. In general,

the user in the think-aloud session noted a need for more explanation of how the

model works overall. We also note the need to provide tips to users when editing

their training data (e.g. add more examples, keep the number of each label balanced,
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add stories that the model got wrong in the validation step, etc.)

During the first walkthrough, the user did not notice the precision and recall

metrics that were displayed in the third step of the interface. In the discussion

following the first walkthrough, these metrics were brought to her attention and were

explained in deeper detail. During the second walkthrough, the user thought that the

precision and recall metrics were related to the random story sample (as opposed to

the training set) and would change as she indicated whether each story was a match

or not. Given the user’s confusion about which set of data the precision and recall

metrics referred to, it would make more sense to display those metrics in the second

step of the interface. To prevent the creation of low-quality models, we also plan to

incorporate a safeguard that will prevent users from generating subtopics with models

whose precision and recall percentages are below a certain threshold.

Finally, it would be useful to incorporate the feedback the user gives in the third

step of the interface when indicating whether or not each story is a match. In the

case of the Naive Bayes algorithm, we could adjust the confidence threshold of the

model based on the confidence levels of the false positives and false negatives the user

finds within the random story sample.

4.5 Limitations

We discuss two limitations to the interface and underlying learning model presented

in this case study. First of all, despite having run validation experiments for several

frames within the larger RTBF topic, we have yet to validate this approach on other

topics in the Media Cloud database. We believe the results presented in this paper

justify integrating this feature into the existing platform; however we plan to continue

to evaluate its performance on a wider variety of topics once more training sets are

developed by our in-house researchers.

Secondly, classification models like this one may not be robust enough for certain

coding needs where high accuracy is paramount. Based on the results of this case

study, our simplified Naive Bayes model would not be adequate. In such cases, this
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tool could still help expedite the coding process by tagging and collecting stories that

are more likely to contain a frame than not. By reviewing this subset as opposed to

the entire set of stories within a Media Cloud topic, a researcher could narrow their

search much more easily while still adhering to strict manual coding guidelines.

4.6 Extensions and Future Work

Although for this particular case study we focused on creating a very simplified user

experience, the logical extension to such a tool (and what is seen in other learning

platforms) would be to enable users to validate and choose from a selection of different

classification algorithms as well as adjust the hyperparameters. This functionality

could be accessed in an ‘advanced’ mode of the interface. There is also the potential

to generalize the tool even further by allowing the user to choose or design their own

feature vectors. This would allow a user to train a model not only on text but on other

data available on the Media Cloud platform such as in-link counts, Facebook shares,

or word2vec embeddings. Online learning algorithms could also be integrated into

the interface. This would allow the machine learning model to update its parameters

based on end-user feedback without re-training on the entire dataset.

4.7 Summary

In this case study we discussed the design and evaluation of an interface to help

Media Cloud users train their own supervised text classification models. By using

Naive Bayes as the underlying algorithm for the interface, we simplified the supervised

learning pipeline for the end-user. Given Naive Bayes’ probabilistic model, we were

able to include an additional qualitative method of model validation that makes use

of the end-user’s domain knowledge. We plan to improve the existing interface by

providing more information about the underlying process to users and by integrating

user feedback into the trained model.
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Chapter 5

Conclusion

In this thesis we introduced two new content analysis tools created for the Media

Cloud platform. The design, development, and evaluation of these additional fea-

tures serve as case studies in lowering the technical barrier to advanced data analysis

methods through visualization and automation as well as UI/UX and co-design prin-

ciples.

An overarching principle for designing these types of tools is the balance between

utility and simplicity. The more a process or interface is simplified, the less control the

user has, diminishing the range of utility for a given tool and potentially the quality

of the results. Not enough abstraction can result in an overwhelming interface that

is difficult to use effectively. The needs, goals, and technical background of the user

should be taken into account in order to find a suitable tradeoff.

Users must be equipped to understand and validate the results of machine learning

algorithms for themselves. Framing functionality within the context of the research

domain through the use of analogy and domain-specific language can help users better

understand what these algorithms do. A user’s existing domain knowledge can be

leveraged for model validation. In the context of media research this usually requires

combining these algorithmic approaches with qualitative methodology.

The development and growth of tools like Media Cloud are paramount to the

growing field of research in media ecosystems and computational social science overall.

As Lazer et. al. asserts:
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Just as mass-market CAD software revolutionized the engineering world

decades ago, common computational social science analysis tools and the

sharing of data will lead to significant advances. The development of these

tools can, in part, piggyback on those developed in biology, physics and

other fields, but also requires substantial investments in applications cus-

tomized to social science needs [62].

By working closely with researchers to understand the needs and challenges of

their field and methodology, we plan to continue the development of tools similar

to the ones presented in this thesis to both facilitate and advance media ecosystems

research.

60



Appendix A

Tables
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Attention Language

Attention
Over
Time*

Time-series chart that
shows the total number of
sentences in stories that
matched the topic query

Ordered
Word
Cloud*

Shows the 100 most fre-
quent words in the topic
corpus, sized and ordered
by frequency

Total
Attention*

The total number of sto-
ries where at least one
sentence matched a query

Comparison
Cloud*

Shows a side-by-side
comparison of two word
clouds generated with
different queries or
filters

Top
Themes*

The list of top themes
within the topic corpus
based on pre-trained NYT
theme classification mod-
els

Top Stories
List of the most influen-
tial stories, sorted by the
number of in-links

Top Media
List of the most influen-
tial sources, sorted by the
number of in-links

Table A.1: Visualization and analysis methods available in Topic Mapper. Tools that
are also available in Explorer are followed by an asterisk.
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Networks Representation

Link Maps

Network of sources where
an edge exists between
source A and source B
if a story from source
A links to a story from
source B or vice versa

Geographic
Coverage*

Map of countries men-
tioned in the topic corpus
where countries are col-
ored by the number of ap-
pearances

Word Maps

Bipartite network of the
top 50 sources and their
top 100 words. Source
nodes on the left side of
the network link to word
nodes on the right side
if the word is included in
the source’s top words

Top
People*

List of people frequently
mentioned in the topic
corpus

Top
Places*

List of places frequently
mentioned in the topic
corpus

Table A.2: Visualization and analysis methods available in Topic Mapper (continued)
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Data
Aggre-
gation

Data
Ana-
lysis

End
-User
Tools

Data
Export

Social
Media

Open
Source Free

Multi-
Language
Support

API

Media Cloud X X X X (limited) X X X X

EMM
NewsBrief X X X X

GDELT X X X X X X X

Crimson
Hexagon X X X X X X X

Alto
Analytics X X X X X X X

Table A.3: Comparison of common platforms used in media ecosystems research
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Epidemic
in Africa

Infections
in the US Quarantines Health

Status

Ebola
Vaccination
Effectiveness

virus american quarantine symptoms vaccine

africa texas screening fever guinea

outbreak dallas airport deadly virus

deaths atlanta isolation contracted

leone obama nurses deaths

sierra cdc cdc infected

guinea thomas protective virus

liberian duncan

nigeria children

african airport

crisis screening

ministry

nurses

Table A.4: Conversations for the Ebola 2016 Media Cloud topic corpus
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