%%'\NST' OF TECHNOZO

\> 5
S AuG 23 1961 7

LI!_BRAR‘( -

A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC
INTEGRATION PROBLEMS IN FRESHMAN CALCULUS,
SYMBOLIC AUTOMATIC INTEGRATOR (SAINT)
Ly

'
JAMES ROBERT SLAGLE
S.B., Saint John's University
(1955)
S.M., Massachusetts Institute of Technology
(2957)
SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF
PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE, 1961

Signature of Authoré ,
Department of Mathematics, May 13, 1961

Certified byobhouo'aJQVJOQ:U—QAAJ--A'---'-A - TN g
Thegig Supervisor

Acceptedby..o..t...........}(-’.‘(.... ..
Chairman, Departmental Cgmmittee
on Graduate Students



A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC
INTEGRATION PROBLEMS IN FRESHMAN CALCULUS,
SYMBOLIC AUTOMATIC INTEGRATOR (SAINT)
by
James Robert Slagle
Submitted to the Departme;t of Mathematics on 13 May 1961
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.
ABSTRACT

Some ideas about problem solving by a machine were tried
out on the nontrivial problem domain of elementary symbolic
integration. To this end, the author programmed a large,
high speed, general-purpose digital computer (I.B.M. 7090) to
use these ideas to solve some symbolic integration problems.
The computer so programmed is called "SAINT", an acronym for
"symbolic automatic integrator". SAINT performs symbolic
integration which includes indefinite integration. It also
performs definite and multiple integration when these are
trivial extensions of indefinite integration. SAINT solves
symbolic integration problems approximately at the level of
a good college freshmen and, in fact, uses many of the same
methods (including heuristics) used by a freshman. Taking
an average of two minutes per problem, SAINT solved fifty-
two (ninety-six per cent) of the attempted fifty-four M.I.T.
freshman calculus final examination problems. The author
draws many conclusions from this and other experiments
with SAINT and makes suggestions for future work in the
field of Artificial Intelligence.
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Chapter I

The SAINT Project, Its Purpose and Historical Background

A. Nature of the SAINT Project

Some ideas about problem solving by a machine were tried
out on the nontrivial proélem domain of symbolic integration.
To this end, the author progremmed a large, high speed, general
purpose digital computer (I.B.M. 7090) to use these ideas to
solve some symbolic integration problems. The computer so
programmed is called "SAINT", an acronym for "symbolic automatic
integrator". This paper discusses the construction of the
SAINT program and some experiments with it.

To anticipate the later development, some typical samples
of SAINT's external behavior are given so that the reader may
think in concrete terms. First suppose an ordinary I.B.M. card
contained punches representing (in a suitable notation) the
symbolic integration problem, ~/;ex2dx. Now let SAINT read
this card in its card reader. In less than a minute and a half,
SAINT prints out the answer, %exa. Except where otherwise
noted, every problem mentioned in this paper has actually been
solved by SAINT. Note that SAINT neglects the constant of
integration, and we, too, shall ignore it throughout our
discussion. Secondly, after working for less than a minute on

2
the problem,j;x dx (which cannot be integrated in elementary

form) SAINT prints out that it cannot solve this problem. The



problem‘/t——iﬁ——-—— dx, is problem 3c on the May 1957 M.I.T.
5 5/2

(1-x7)
final examination for the second half of the first year calculus
course and hence is accompunied by the notation, (2 May 'S7, 3c).
After working for about elevkn minutes on this problem, SAINT
prints out the answer, arcsin x + 1/3 tan3 arcsin x - tan arcsin x.
Below may be answered some of the questions which might occur
to the reader if he had witnessed such a demonstration.

1. Exactly what can SAINT do? What kinds of integrands can

it handle?

SAINT can perform symbolic integration which includes indefinite
integration, also called antidifferentiation. It can also perform
definite and rultiple integration when these are trivial extensions
of indefinite integration. SAINT handles integrands that
represent explicit elementary functions of a real variable
which, for the sake of brevity, will be called elementary
functions. The elerentary functions are the functions normally
encountered in freshman integral calculus. SAINT does not
handle hyperbolic or inverse hyperbolic notation. The elementary
functions are defined recursively as follows:

a. Any constant is an elementary functicn.
b. The variable is an elementary function.
c. The sum or product of elementary functions is an

elementary -function.



d. An elementary function raised to an elementary
function power is an elementary function.

e. A trigonometric function of an elementary function is
an elementary function.

f. A logarithmic or' inverse trigonometric function of an
elementary function (restricted in range if necessary) is an
elementary function.

2. What problems can SAINT solve? How does it solve them?
SAINT solves symbolic integration problems at approximately
the level of a good college freshman. A full description of how

SAINT solves symbolic integration problems will be found in chapter
IV. For now, suffice it to say that SAINT employs many of

the same methods used by a college freshman, including heuristic
methods defined below. Since the SAINT program uses heuristic
methods, it is by definition a heuristic program. Although many
authors have given many definitions, in this paper a heuristic
method (or more simply a heuristic) is a method which helps in
discovering a problem's solution by making plausible but
fallible guesses as to what is the best thing to.ﬁo next, An
algorithm is defined as a method that can decide infallibly

a suitable thing to do next for a known class of problems.

The SAINT program was written by the author, bearing in mind

the memory limitations of the I.B.M. 7090 digital computer

and the following purposes.



B. Purposes of the SAINT Project

Through the centuries, natural (human) intelligence hus
been directed towards achieving two general goals, the
acquisition of knowledge and the solution of problems. Only
in recent years has appeared the large high speed general
purpose digital computer which furnishes us with a new and
powerful tool for understanding, using and enhancing
intelligence to help achieve these general goals. Furthermore,
we stand on the threshold of artificial intelligence, i.e.,
intelligent behavior by machines. Thus, the purposes of the
SAINT project are classified according to the kind of intelligence
involved. That the SAINT project has met these purposes at least
in part will be seen in chapter VI. Section C of the present
chapte? gives the more specific reasons for choosing symbolic
integration as the problem domain. The purposes concern
subjects which fall into three categories, namely, intelligence
whether natural or artificial, natural intelligence and
artificial intelligence.

1. Intelligence whether natural or artificial

Under this category, are listed four subjects (pattern
recognition, algorithms and heuristics, pi.ilem solving and

learning) for which we have certain purposes.



a. Pattern recognition
Can a computer recognize the needed kinds of patterns that
occur in symbolic expressions? Just how important is pattern
recognition? Can a machine learn to recognize new patterns?
b. What is the reiative role of heuristics and
algorithms?
c. Can intelligent problem solving behavior really be
manifested by a machine?
d. Can a machine learn?
2. Natural intelligence
Can there be constructed an easily modifiable partial model
of intelligent human problem sclving in the domain of symbolic
integration? How will advances in computers and computer
prograﬁming affect teaching?
3. Artificial intelligence
What kinds of computers, symbol manipulating languages and
compilers are needed for complex symbol manipulating tasks in-
cluding artificial intelligence applications? How can heuristic

programs be improved?

Choice of Symbolic Integration as the Problem Domain
To meet, at least in part, some of the above purposes,
symbolic integration was chosen rather than many other possible

projects (such as those discussed in section VII C) because
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this problem domain has certain specific advantages. Symbolic
integration is a well defined problem domain, i.e., a proposed
solution can be tested for correctness. t seemed wise to try
a well formulated problem domain before trying a domain in
which the problems must bé formulated abstractly before
solutions can be attempted. Of course, this latter type of
problem which includes most problems from every day life is also
very important and alsc deserves careful consideration. In
addition, symbolic integration is familiar but causes some
difficulty to many people. A symbolic integration program is
potentially useful in itself and has important extensions.

Last but not least, symbolic integration invalves the
manipulation of symbolic expressions. Such symbol manipulating
will pfobably be fundamental in future problem solving by
machines. We have reason to believe that a computer can
manipulate symbolic expressions only slightly more slowly

than it can handle numericel ones. Symbol manipulation has
much the same advantage over numerical manipulation that
algebra has over arithmetic. Hence a symbol manipulating machine
can do vastly more work per calculatior. Some historical
background to symbol manipulating languages will be found in
section D, and a simplified version of one such language

will be found in chapter II.
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D. Historical Background of the SAINT Project

This section sketches the history of symbolic integration,
mathematics machines, artificial intelligence and symbol
manipulating languages. Since a history of symbolic integration
can easily be found and s;nce Minsky's recent and excellent
bibliography [8] covers the other three topics, very few
references are included. Here as elsewhere the number enclosed
within brackets refers to an entry in the author's bibliography.

We pick up the first two of the four threads in our story with
one and the same man, Leibniz (1646 - 1716). He was the first
to make the conjecture that, if mathematics were properly
formulated, a machine could prove all the theorems. However,
for the discovery of symbolic integration as a general method,
Leibniz mist share the limelight with Newton (1642 - 1727).
Although Newton's notation is good, Leibniz introduced a still
better notation including the use of the symbol :/1 for the
operation of integration and the symbol, "d", for the inverse
operation. The work of Liouville (1809 - 1882), as developed
by Bardy [4] in 1905 and Ritt [10] in 1948, determined the
general form of the integral of an elementary function when the
integral is elementary and gave some elementary procedures for
finding the integral of some special classes of elementary

functions. No general method exists for determining whether



zn zlgebraic function can be integrated in elementary form.#*

In the 1920's, Hilbert revised Leibniz's dream by trying
to formulate mathemstics in such a way thaut computational
methods would suffice to find the theorems of mathematics. The
dream that had lasted for two and a half centuries was seemingly
shattere& in 1931 by Goedel's incompleteness theorem to the
effect that for any mauchine that proves only true statements
in arithmetic, there exists a true srithmetic statement which
that machine can not prcve. The machine of this and the following
theorem is a Turinglmachine, roughly a digital computer supplied
with an indefinitely long memory tape. A further blow came in
1936 when Church showed that for any muachine, there exists a
statement in the first order predicate calculus (an elementary
form of logic) for which the machine cannot decide whether or
not the statement is true. There is no evidence to suggest
that mathematicians are free from the limitations mentioned in
these two theorems. The theorems show that the machine cannot
do everything in mathemetics. However, they can do a great

deal. Artificiel intelligence is a new field which shows great

# Joseph Ritt, Integration in Finite Terms, Liouville's Theory

Methods (New York, 1948) pp. 20, 33.



promise of programming machines to do highly significanl
mathematics.

Artificial intelligence concerns itself with other things
besides mathematics. In fact, artificial intelligence refers
to any attempt'to cause a machine to manifest behavior which,
if exhibited by a human, would be called intelligent. In 1950,
Shannon [13] discussed how a computer might be programmed to
play chess. In 1955, Selfridge [12] and Dinneen [2] reported
some experiments with a computer programmed to recognize visual
patterns. Minsky [7,8] has done much invaluable theoretical
work and has unified the field of artificial intelligence to
a large extent. In 1959 appeared Samuel's excellent paper [11]
which describes some machine-learning experiments with a
computer programmed to play checkers.

We conclude our history by mentioning some mathematics
machines and artificial languages for symbol manipulation.

In 1956, Newell, Shaw and Simon ran experiments with their
iOGIC THEORIST (9] the program for which was written in

their information processing language (IPL) which could
conveniently handle list structures. The LOGIC THEORIST proved
seventy per cent of the (propositional calculus) theorems in

chapter II in Whitehead and Russel's Principia Mathematica in

the axiom system of that book. In 1959, Gelernter [3], using

-13-
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his FORTRAN list processing language (FLPL) succeeded in
causing his GEOMETRY THEOREM PROVING MACHINE to prove
theorems approximately at the level of a high school sfudent.
Vhen trying to' prove a theorem in geometry, this machine
constructs a diagram "in general position" and rejects
immediately any subgoal which is false in the diagram. In
1960, McCarthy's list processing (LISP) language [6] was
made available on the I.B.M. 709 and 7090 digital computers.
The SAINT program is written in LISP, a simplified version

of which appears in the next chapter.
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Chapter II

Symbol Manipulation by a Machine

The menipulation of symbolic expressions occurs throﬁghout
mathematics, 1ogic and, in fact, all of verbal reasoning, e.g.,
proving theorems in formel systems and simplifying mathematical
expressions. Hence, if a machine is to sclve really difficult
problems, we must have good symbol manipulating languages
and machines. This chapter contains a simplified version of
McCarthy's LISP (list processing) language and its realization
on a computer [6]. The reader who is already familiar with
LISP should skip this chapter after he has noted that we use f
and r for car and cdr, respectively. The real LISP language,
especially in its newer versions, is better than the simplified
version presented here. The purpose of the simplified language
is twofold, to acquaint the reader with some of the basic
concepts of symbol manipulation for its own sake and then to supply
him with some background for greater appreciation of the SAINT
project. The presentation of the language is accompanied by
examples, culminating with a procedure for performing
differentiation of mathematical expressions. Then is given a
survey of the procedures already available in LISP. This
chapter concludes with some remarks on the realization of such

& language on a computer.




-16-

A. A Symbol Manipulating Language
This section describes a language similar to McCarthy's
LISP. The language presented here is used later to describe
some symbol manipulating procedures in SAINT,
1. The set of symbolic expressions
By definition, an atom is any sequence of Arabic numerals
and upper case Roman letters. The set of symbolic expressions
(or more briefly, s-expressions) is defined recursively as
follows:
a. Any atom is an s-expression.
b. Any list of s-expressions is an s-expression, i.e.,
if s,, 85, ---, 8 are s-expressions, then so is (sl, Bys v
sn) forn=1,2, ...
2. Elementary (symbol manipulating) predicates and functions
Function and procedure are treated as synonyms. Some functions
are partial functions, i.e., they may not be defined for some
arguments. A predicate is a function which, when defined for
and applied to its arguments, has for its value one of the two
atoms, TRUE or FALSE. After this introduction, we give the
fire elementary predicates and functions used in LISP.
a. "atom" is a predicate defined on the set of
s-expressions. The value of atom [s] is TRUE if and only if s
is an atom. Thus, the value of atom [NIL] is TRUE whereas the

value of atom [(PLUS, X, Y)] is FALSE.
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b. "eq" (abbreviation for equal) is a predicate defined
only when both of its arguments are atoms. The value of

eq [sl, 82] is TRUE if and only if s,, and s, are the same atom.

2

c. "f" (abbreviation for first) is a function defined
when its argum;nt is a 1ist, i.e., not an atom. The value of
fls] is the first member of the list s, e.g., the value of
£ [(PLUS, X, Y)] is PLUS.

d. "r" (abbreviation for rest) is a function defined
when its argument is a 1list. The value of this function when
applied to a 1list with one member is NIL, e.g., the value of r
[(Gooo2)] is NIL. The value of this function when applied to
a list with more than one member is the rest of the 1list, i.e.,
the 1list of all of its members except for the first, e.g., the
value of r [(PLUS, X, Y)] is (X,Y).

e. "cons" (abbreviation for construct) is a function
defined when the second of its two arguments is either NIL or
a 1ist. The value of cons [s; NIL] is (s). The value of cons

[sl, 82] vhere s, is a list is the list whose first element

2
is s, and the rest of whose elements are the elements of s

1 2’
e.g., the value of cons [PLUS; (X, Y)] is (PLUS, X, Y).
3. Forms and functions formed from elementary functions
by composition.
We distinguish between a form and a function. A form is an

- expression such as cons [x; cons [y; NIL]], composed of function

names, variables and constants. A function may be represented



by a form prefixed by the Church lambda notation [1] from which
we deviate trivially. If X1 X, 5 cony x are variables that
may occur in the form, then A [[xl; X535 50 xn]3 form] denotes
a function, namely the function of n variables which maps xl,
X5+ -X into the form, e.g., the value of MIx; yl; cons(x;
cons [y; NIL]]] [MINUS; G] is (MINUS, G). In fact the

value of this function when applied to its arguments is simply

a list of those two arguments. We may name a function as

follows:
function = h[[xl; X5 eee; xn]; form)

2
or equivalently
function [xl; X5 ees xn] = form.
Our presentation generally prefers the latter notation. The
symbol, "=" should be read "equals by definition". To
illustrate, we give the name '"list2" to the function of the
preceding example as follows:
1list2 [x; y)] = cons [x; cons [y; NIL]].

For later purposes, the generalization of this functiou %o
an indefinite number of arguments is given the name "list."

The composition of functions forms more functions, e.g.,
atom © f represents the same function as A[[x]; atom [£[x]]].

Sequential compositions of f and r functions are abbreviated

as follows. For fo ro r, we wxrite simply frr; etc., etc.

~-18-



4. Conditional expressions

A conditional expression is of the form [pi+ €5 e
) Mg ek] where the p, are propositions (predicates applied to
arguments) and the ei are expressions. Such a conditional
expression is evaluated as follows: starting with Py
evaluate the propositions pi until one is found whose value

is TRUE. The value of the conditional expression is the value

-19-

of the expression corresponding to pi. If none of the propositions

has the value TRUE, the value of the conditionzl expression is
undefined. To help the i1eader, we begin in this section &«
sequence of graded examples which culminates with a
differentiation procedure in section 7.

a. ~ p (We use this notation as an abbreviation for not
{p].) 'here p is a proposition
~p [p= FALZ., TRUE - TRUE].

In words, if the value of p is TRUE, then the value of ~ p
is FALSE; otherwise (if the value of p is FALSE), the value of
~ p is TRUE.

b. p & q = [p = q; TRUE - FALSE].

The function, "and" can be defined with an indefinite number

of arguments. Similarly, we can define the function, "or",

vwhich we denote by the symbol "V".
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c. null {s] = atom [s] & eq [s; NIL].
5. Recursive function definition
A recufsive function may be defined as follows:
recuf [x ; x5 -..; x ] = form
where the form ma; contain recuf e.g.,
a. equal [x; y] = [atom(x) & atom [y] & eq [x; y]]
v~ atom [x] & ~ atom [y] & equal [£fx] fly]] & equel [r[x];
rlyll].
This predicate is TRUE if and only if botn of its arguments
are the same s-expression.
b. pair [x; y] = [oull [x] & null [y] - NIL;
~ atom [x] & ~ atom [y] - cons [1ist [flx]; £lyl]; pair [rlx]; rly]]1]
6. Functions with functions as arguments -
Functions may have functions as arguments, e.g., the first
three functions below, maplist, map2, and search. In preparation
for the differentiation procedure of the next section, we conclude
this section with the definition of the function, "sublis" which
uses search. In what follows the value of the argument fn
is a function.
a. maplist [s; fn] = [null [s] = NIL; TRUE - cons
(tnls]); maplist [r(s}; fnll)
b. map2 ([sl; 82; fn] = [null [s1] = NIL; TRUE = cons

(fnlsl; s2); mape [rls1]; r(s2]); £nl]]



-21-

c. search [s; p; fn; u] = [on1l [s] =u [ ];
pls] = fn[s];
TRIE -~ search [r(s]; p; fn; ull
Note that u is a'function with no arguments.
d. Sublis [pairs; s] = [null [pairs] = s; null [s] = NIL;
TRUE - search [pairs; A [[Jj); equal [s; £f [31]1; fre; A [ 1;
[atom {s] =~ s;
TRUE -+ cons [sublis {pairs; f[s]]; sublis [pairs; r (s]11]]1]1]
This function makes a 1list of substitutions designated by
"pairs” in the expression "s".
T. Procedure for differentiating mathematical expressions
This section gives a procedure for differentiating expressions
formed by the operations of PLUS and TIMES and concludes by
extending this procedure to other operations so long as their
gradients are supplied. The b-expressions (basic expressions)
are defined recursively as follows:
a. Any atom is a b-expression.
b. If bl s
(PLUS, by, by, eee, bn) and (TIMES, b, by, e, bn).

b2’ ey bn are b-expressions, then so are

Below is a procedure for differentiating such a b-expression s
with respect to the variable v.
Dife [s; v] =

(atom [s) = [eqls; v] - 1.0; TRUE -~ 0.0];
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eq [fls]; PLUS] = cons [PLUS; maplist [r(s]; N [[si]; diff
(elsi); v111);

eq [fls); TIMES ] = cons [PLUS; maplist [r[s]; A [[si]; cons
(rMeS; maplist [rls); N [[sj);

[equal [si; sj] = dirr (£lsj]; v);

TRUE - £(s3]111111]]

In addition to PLUS and TIMES, new operations (as the first
member of a list) may be introduced provided only that the
gradient of each such operation is made available to the function
"gradient" whose argument is the name of an operation and
whose value is the gradient of that operation. The form of such
gradients is a pair of lists of equal length. The first list is
a list of variables, the second list is a list of partial
derivatives with respect to those variables. Suppose for
example we represent u by (POWER, U, V) and 10G, U by
(1L0G, b, U). The gradient of POWER is represented as follows,
((u, v), ((rMes, v, (POWER, U, (PLUS, V,—1.0))), (TIMES,

(oG, E, U), (POWER, U, V)))). Our differentiation procedure can
be extended to the operations whose gradients have been made
available to "gradient" if we add to the definition given
previously a fourth (and final) case as follows:

TRUE -» cons [PIUS; map2 [gublié (pair [f o gradient o f[s];
r(s]]; £r o gradient o flsl); rlsl; A [[J; k]; list [TIMES;

£(4); aiee (£lx); v111]]
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8. Some other symbol manipulating functions
Besides the procedures already mentioned, many other
functions are available in the LISP system. Some of the
functions defined by the author and used by SAINT will be found
in chapter III. A few of the more important functions defined
by others and used by SAINT are discussed below.
a. apply
This function is the interpreter whose inputs include an s-
expression representing a function and a list of arguments for
that function and whose output is the same as the value of that
function when applied to those arguments.
b. distrb (abbreviation for distribute)
The value of distrb [s; p) where s is a mathematical
' expression and p is a predicate is an expression mathematically
equivalent to s determined as follows. For each product in s,
multiply out all factors which are sums and the list of whose
summands satisfies p.
c. smplfy (abbreviation for simplify)
The value of smplfy [s] is 2 simplified expression mathematically
equivalent to s. This procedure tries most of the standard
algebraic simplifications, e.g., evaluation of all numerical

subexpressions, collecting like terms in sums and products, etc.
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B. A Symbol Menipulating Langusge on « Compucer

This chapter concludes with a brief description of how the
LISP language is implemented on a computer.

1. Representation of an s-expression in a computer

Th~ mathematicai expression xex2 is represented by the
s-expression, (TIMES, X, (POWER, E, (POWER, X,2))). How a
computer represents this expression is pictured in figure 2.1.
Each rectangle represents a computer memory register and each
of its two component squares represents half of a register.
In particular, on either the I.B.M. 709 or 7090 computer, the
left and right squares represent the address and decrement
of a register. The half register represented by a square
occupied by an atom points to (contains the location of) the
computer representation of that atom. How an atom is represented
is discussed in the next section. The half registers represented
by squares that are hlgnk point to other registers, as indicated
by the lines (between rectangles) which should be thought of as
running to the right or down.

2. Representation of atoms, association lists and objects

In a computer, an atom (or object) is represented by an
association 1ist, i.e., a list with a special indication in the
left half of the register representing its first element.
The association list contains information associated with that

atom, such as, its print name, its gradient if any, its function
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definition if any, etc. SAINT's goals and subgoals discussed
in chapter IV are oﬁjects.

3.” The push-down 1list

The push-down list is contained in a certain sequence of
computer registers which hold the information needed for the
execution of the recursive funétions. During computer operation,
the amount of push-down list acutally being used is a rough
measure of the depth or complexity of the present computation.
If the maximum allowable length (typically a thousand) of the
push-down list is exceeded, the computer reports this-}act
and stops.

k. The free-storage list, the cons counter and the reclaimer

The execution of a cons function consumes a computer memory
register, which is taken from the free-storage list, a list of
available registers. A count is made of how many cons functions
have been executed, and the contents of this "cons counter"
may be printed out at any time during the computation. When the
free-storage 1ist is about to be exhausted, a program called the

reclaimer returns all abandoned registers to the free-storage list.



Chapter III
Some Prerequisite Procedures for SAINT

The author had to construct many procedures to enable the
computer to perform various skills which are prerequisite for
the performance of symbolic integration. A few of these
functions are described in this chapter in order that the reader
might become more familiar with the problems of programming
symbol manipulation. From this chapter, the reader must know
only the notation of Section E in order to follow the development

in later chapters.

. Procedures for Inserting Elements in Ordered Lists and for

Sorting Lists

Set Theoretic Functions
A set is represented by a list of its members, e.g., the list
(B,(C,D)) represents the set which consists of two members, namel
B and (C, D). In addition to functions for taking unions,
intersections and power sets, the author defined predicates for
telling when an s-expression is a member of a set and when a set
is a subset of another set.
The Universal and Existential Quantifiers for Finite Sets
Duality is used to define the existential quantifier in terms

of the universal quantifier below. -
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1. "forall" is a predicate. The value of forall [s; p] where
8 represents a set and p 1s a predicate, is TRUE if and only if
every mempber of s satisfies p.
forall (s; p] = mull [s1V [p o £ [s] & forall [rlsl; pl]

2. therex [s; p] = ~ forall [s; A [[si]; ~p [si]])
. Procedures for Manipulating Polynomials

The author constructed a predicate which tests an expression
for being a polynomial and some functions for finding the degree
of a polynomial and for adding, subtracting, multiplying, dividing
ard expanding polynomials.
. Recursive Matching Procedure

For many types of symbol manipulating tasks including symbolic
'integration, recursive matching, i.e., the ability to recognize
when a given expression is an instance of a specified pattern or
form is important, e.g., the ability to recognize when an integrand
is of standard form or an instance of a pattern which suggests
certain methods. This pattern recognition function in SAINT
correspcads to "matching" in the LOGIC THEORIST of Newell, Shaw,
and Simon [9]. To illustrate, SAINT requires a function to answer
questions such as the following: "For what values of the constants
m and n {wvhere m # + n), is sin x cos 2x an instance of the pattern

sin mx cos nx?" The value of the function should be "when m = 1




and n = 2". The reader should note several things about this
example. First note that the value assigned to each of the form
variables (m and n) must satisfy a predicate, namely, "is
constant". Also notice that the values paired with the form
variables must satisfy a relation, ramely, m £ + n. This
pattern recognition procedure of SAINT can handle such predicates
and relations. SAINT can also handle some important recursive
patterns, such as, rational functions and elementary functions,
e.g., "rational function of sines and cosines', denoted by
raf {sin v, cos v} and "elementary function of secants and
squares of tangents", denoted by elf {sec v, tan?v]. Other forms
which this powerful procedure can recognize will be found later,
especially in Chapter IV. The precise definition of this function
is very lengthy and is omitted. However, the above examples
suffice to give the reader a fairly good idea of the power of
this function. The value of the function when applied to its
arguments is NIL if and only if there is no pairing of form
variables and expressions which makes the given elementary
expression an instance of the specified elementary pattern or
form; otherwise, its value is a 1list of all such enabling pairings.
Equation Solving Procedure

The author designed a function which will solve for any
variable v an equation of the form g(v) = ¢ where c is a

constant expression and g(v) is an elementary expression in




which v occurs once. To illustrate, if this function were given
the problem to solve for x the following equation arccsc logé

(c +5 + tan x) = arccsc 3, its value would be arctan (4 - c).
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Chapter IV

The Symbolic Integration Procedure of SAINT

This chapter describes a procedure and its computer program
realization for performing formal integration of explicit
elementary functions of a real variable. We believe that this
process is similar to that used by college freshmen. The
procedure employs heuristic methods and succeeds in a reasonahbly
large class of problems. For complete understanding of this
chapter, the reader should be familiar with elementary methods
of formasl integration as found in any standard first year
calculus text. Other readers may get the general idea by
thinking in terms of some other more familiar problem domain,
e.g., some solitaire card game.

. Indefinite Integration Procedure

This section describes how SAINT performs indefinite integration
and concludes with an example. An attempt is made to orient
the reader before a detailed description of the procedure is
given. The executive orgenization of SAINT is similar to that
of the IOGIC THEORIST of Newell, Shaw and Simon. The "try for an
immediate solution" mentioned twice in Figure 4.4 may be
descrived roughly as follows: As soon as a new goal g is
generated, SAINT uses its straightforward methods in an attempt

to achieve it. While doing this, SAINT may add g or certain of



g's subgoals to the "temporary goal list". If g is achieved,
an attempt is made to achieve the original goal. It will help
to take a preview of section 14 (especially figure 4.4) before
beginning the more'detailed description below.

1. Gosls

Throughout the expcsition of this procedure, "goal" is used
interchangeably with "problem", with "goal" generally preferred.
In each application of the present procedure, the solutiors of
certain problems, namely, performing integrations with side
conditions, are goals. How goals are generated, manipulated,
and achieved is described later. For now, let us limit ourselves

to describing what we shall call the "original goal" which

consists of the originally given integration request (integrand

and varieble of integration) and a side condition which we shall
call the "resource allotment". The role of the resource allotment
is described in Section 7, and the resource qllotment for an
integration will be mentioned only when it is relevant.

2. The goal list

The originel goal is made the first member of a list called
the goal 1list. From time to time new gosls may be generated.
Each newly generated goal is added to the end of the goal list.

3. ©Standard forms

Whenever an integrand of a newly generated goal is of "standard

form", that goal is immediately achieved by substitution. An



integrand is said to be of standard form when it is a
substitution instance of one of a certain set of forms. The
use of standard forms in SAINT is analogous to applying the
method of substitution in the LOGIC THEORIST of Newell, Shaw,
and Simon. Below are listed the 26 standard forms currently
used in this procedure, together with the corresponding form
of the solution.

The standard forms (and the algorithm-like and heuristic
transformations to be described later) are ordered with some
care. Thus, for example, in standard form "u" there is no
need to specify that c # -1 since "t" (which precedes "u")

would already have caught this case.

a. ~/; dv = cv.

b. j;v dv = ev.
v cv
c. \/; dv = Tne

sin v.

& ®
— c??’
£° ¢
< <
2 g
0 0

1ln sec v.
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i. ‘/::ot v dv

J. [sec v dv

k. j::sc v dv

1. j;rcsm v dv

m. j;rccos v dv

n. j;rctan v dv
o. ﬁrccot v dv

P- arcsec v dv

—_

q. j;rccsc v dv

1ln sin v.

In(sec v + tan v).

1n(csc v - cot v).

= v(arcsin v) +, ’J,- V.

= v(arccos v) -, |1 - v,

= v(arc tan v) - 3 1n (1 + va).

= v(arc .cot v) + ¥ 1n (1 + ve).

= v(arcsec v) - in (v +J’v2 -1).

= v(arcesc v) + 1n (v +, ’va -1).

tan v.

- cot Ve

=34~



fc vc«l»l
u. v dv = .
c +1

sec V.

v. j;ec v tan v dv

-~ C8C V.

v. j::sc v cot v dv
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m £ i 111 llxll’ lly" and llzll.

cos\m

- n)v cos(m + n)v

X. fsinmv cos nv dv = -

2m-n) = 2 (m+n)

n)v sin(m + n)v

‘n) - 2(m + n)

n)v sin(m + n)v

sin(m -
y. fs:lnmv sin nv dv = 2(m -
Z. fcos mv 208 nv dv = sin(m -

2(m -

If the original integrand, i.e., the

goal, is of standard form, it is easily

n) t T 2(m+n)

integrand of the original

integrated. As an

i1lustration, to perform /;-: , this original goal is made the

first member of the goal list; it is seen to be of standard

form, namely, standard form "t"; hence the solution is la x.

4. Algorithm-like transformations

Whenever an integrand is found to be not of standard form,



it is tested to see if it is amenable to an algorithm-like
transformation. By an algorithm-like transformation is
meant a transformation which, when spplicable, is always or
almost always appro?riate. For a goal, a transformation is
called appropriate if it is the correct next step to bring
that goal nearer to achievement. Below are listed the eight
algorithm-like transformations used in SAINT.

a. Factor constant, i.e.,‘/; g(v) av = c\/;(v) dv.
b. Negate, 1.e.,~/: g(v) dv = :/;(v) dv.
c¢. Decompose, i.e.,~/£gi(v) dv = %/;i(v) dv.

d. Linear substitution, i.e., if the integral is of the

form\/‘elf [cl + c2v] dv, substitute u = ) +c,V, and obtain

an integral of the form~/%— elf (u} du, e.g., in~/E°8 3x
2

(1 - sin 3x)°

(1 Jan. '53, 1b 2) substitute y = 3x.

e. Expand, 1.e.,~/izgi(v)]n dv (where n is a positive
integer) = integral of the expansion.

f. Combine factors, i.e., if possible, combine factors
of the numerator and denominator of the integrand. So far,
SAINT can factor only by finding common factors in sums. This

transformation will cancel common factors from the numerator
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and denominator. As an illustration, for the integrand 5 X ,
factor the denom;nator and combine the x terms which wil?f r;sﬁlt
in cancelling an x from the numerator and denominator.

g. Divide polynomials, i.e., if Pl(v) and P2(v) are
polynomials such that the degree of Pe(v) does not exceed the

degree of Pl(v) , then
(v) R(v
ey av 130+ gy 1 v

where Q(v) and R(v) are the polynomial quotient and remainder
respectively obtained by fully dividing out the fraction
P (v)
AQ)

h. Half angle identities, i.e., an integrand of the form~
sinmv cosnv where m and n are ewven nonnegative integers should
be transformed to one of the following forms:

n-m
(1) (3 sin 2v)® (3 + % cos 2v) 2 jfm<n.

m-n

(2) (% sin 2v)® (3 - % cos 2v) 2 ifm > n.
These two trigonometric identities are easily obtained by

combining the trdgonometric identity
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sin v cos Vv = 3 sin 2v
with each of the two identities

2
cos” V=% + 3 cos 2v

LV o

sin® v = % - % cos 2¥

5. The goal tree

When a heuristic transformation (to be described in Section
ll) or an algorithm-like transformation is applied to a goal,
new goals are generated. These goals, in turn, may generate
more goals, and a certain hierarchy is created. Such a
hierarchy is conveniently represented by & graph or tree
growing downwards. To facilitate understanding, the terminology
of ordinary and family trees is adopted by analogy, e.g.,
pruning, alive, dead, child, parent, descendant, ancestor, etc.

Suppose we have an integration to perform, or more genereally,
any goal g which we shall represent graphically by a point. A
goal may be transformed into one or more subgoals which may be
related to the goal in meny ways. This integration procedure
incorporates two common relations, namely, AND and OR.

a. AND relationship

An AND relationship is created when two or more subgoals
are generated and the achieving of all of them is required
to achieve the goal. Fig. 4.1 depicts a relationship with three
subgoals. The arc joining the three'branches denotes the AND

relationship.



9. 92 93

Figure 4.1 An AND relationship

To illustrate this, suppose the original goal is
‘/22 + cos x) dx. As always, this original goal is made the
first gcal on the goal list. Next it is determined to be
‘not of standard form. The first two algorithm-like {ransformations
don't apply, but aigorithm-like transformation "c" succeeds, and
adds to the goal 1list two new goals, namely,\/;dx andh/;os x dx.
See Fig. 4.2a. Next the second goal on the goal list is seen
to be of standard form, namely, standard form "a'. The black
dot in Figure 4.2b denotes that this subgoal is achieved. Then
it is determined that the achieving of this subgoal does not
suffice to achieve the goal. Finally the third goal on the
goal list is seen to be of standard form, (namely, standard

form "g") and hence to have the integral, sin x. With the
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achieving of this subgoal, we can and do achieve the original

goa.lﬁ2 + cos x)dx = 2x + sin x.

f(2+cos x)dx f(2.+c05x)dx

dex fcosxdx ® /cos x dx
/de

Figure 4.2a Figure 4.2b

i
)
>

b. OR relationship

An OR relationship between a goal and its subgoals exists
when the achieving of any subgoal will allow the achieving of
the goal. Examples of this will appear later. From these two
basic relatidﬁships, more complicated relationships among
goals may be built up, e.g., see Figs. 4.3a and b in section 12.

6. The temporary goal list

The first attempt on new goals is performed by the procedure
“imsln" described in Section 13 below. Any gosl encountered by
imsln which is neither of standard form nor amenable to an

algorithm-like transformation is addéd to the end of the



43~

"temporary goal 1ist" (not to be confused with the "goal 1list")
and later transferred to the "héuristic goal list" described in
Section 10 below. If the goal were added directly to the
heuristic goal 1ist rather than to the temporary goal list, time
might be wasted by finding the goal's character (cf. Section 8)
as described in Section V C.

T.- The role of the resource allotment

The resource allotment is a side condition of the original
goal. Before proceeding to apply heuristic transformations, it
must be verified that the resource allotment has not been
exceeded. If the resource allotment has been exceeded, SAINT
reports this fact as its final answer. Although other kinds of
~ resources, e.g., time, should also be considered, the only kind
of resource that is handled by SAINT is the total amount of
work space. For hand simulation, the work space can be measured
by the number of pages or by the number of lines used for the
final and all intermediate results. For implementation in the
LISP language on a machine, the work space is measured by the
number of "construct" functions which have been executed.

8. Character of a goal

When a goal is taken off the temporary goal list its

"character" is obtained, i.e., an ordered 1list of



“"characteristics." A characteristic of a goal is a feature
which might be useful either in estimating the cost of
attempting its attainment or in selecting appropriate heuristic
transformations (see Section 11). In SAINT, the character
is composed of the following eleven characteristics of the
integrand:
a. Depth
The depth of a symbolic expression s is the maximum level of
parentheses which occurs in that expression. As one might guess,
this helps us get a crude estimate of the problem's difficulty.
The following computational procedure is its formal definition.
depth [s] =
[atom [s] - 0.0;
TRUE -» max [[1.0 + depth o f(s]]; depth o r(s]]].
b. Length
The length of a symbolic expression is the number of elements
in the list that represents it. This was supposed to serve the
same kind of purpose as depth in Section "a", but we never got
around to using it.
c¢. Rational function?
The value of this predicate- is TRUE if and only if the
integrund represents a rational function.
d. Algebraic function?

Similar to c.
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e. Exponent base
Let v be the variable of integration. The exponent base of
an integrand is b or NIL according to whether or not there is
some constant b and some integers Dy, Oy, «cey Ny, such that

the integrand is of the form

n v n,v v
el {b~ , b, ..., b~ }, i.e., formed by elementary

operations from expressions of the form bnv where n 1s any

3x
integer. For example, the exponent base of ——9——§§-is e,
l-e
3x
whereas, the exponent base of 5% is NIL as is the
l1-2
o3
exponent base of I
X~ e

f, Rational function of sines and cosines?

The value of this predicate is TRUE if and only if the
integrand is of the form raf {sin v, cos v}, i.e., formed by
rational operations on sines and cosines.

8. Elementary function of sines and cosines?

h. Elementary function of secants and tangents?

i. Elementary function of cosecants and cotangents?
J. Elementary function of trigonometric functions?

The value of this predicate is TRUE if and only if the



integrard is of the form elf {sin v, cos v, tan v, cot v, sec v,
csc v},
k. Partial?
The value of.this predicate is TRUE if and only if either

the main connective of the integrand is logarithmic or inverse
trigonometric, or the integrand is not an algebraic function
end is the product of factors, not all of the same type. This
predicate is useful in deciding when to use the method§of
integration by parts.
The types of factors are:

(1) Inverse trigonometric, when the factor is either
an even quadratic raised to some power, e.g., 1li- 2x2 or
(3 + cxe)s, or an expression which contzins an inverse
trigonometric function of the variable of integration, e.g.,
(2 + arctan x)3.

(2) Logarithmic, when the factor is either % or an
expression which contains log v.

(3) Exponential, when the factor contains an expression
of the form c'.

(4) Trigonometric, when the factor contains a trigono-

metric function of the variable of integration.



(5) NIL, when the factor is not of any of the
preceding four types.

Thus, xex is partial since it is the product of a factor
of type NIL agg one of exponential type. However, ;95—5 is
not partial since, although it is a product, both of its factors
are of the same type, logarithmic.

As an illustration of all eleven characteristics, the character
of (sec x)™ is (2, 3, FALSE, FALSE, NIL, FALSE, FALSE, TRUE,
FALSE, TRUE, FALSE), i.e., its depth is 2; its length is 3; it
is8 not a rational function; etc.

9. Relative cost estimate

Although other estimates could and should be tried, we take
for the relative cost estimate of a goal, simply the depth
of its integrand (first characteristic). This makes use of the
fact that, ordinarily, the deeper the integrand the more will
be the resources needed to investigate that goal.

10. The heuristic goal list

A 1list of goals requiring heuristic transformations, or,
more briefly, a heuristic goal 1list, is an ordered list of
those goals which are neither of standard form nor amenable to
an algorithm-like transformation. A member of the heuristical
list is called a heuristic goal. New such goals are inserted in

order of increasing relative cost estimate.
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11. The hearistic transformutions

A transformation of a goal is culled heuristic when, even
though it is applicable and plausible, there is a signifiéant
risk that it is not the appropriate next step. A transformation
may be inappropriate either because it leads no closer to the
solution or because some other transformation would be better.
The heuristic transformations are analogous to the methods of
detachment, forward chaining and backward chaining in the
LOGIC THEORIST of Newell, Shaw and Simon. Below are listed the
ten heuristic transformations used in SAINT. With each such
transformation is given an example of a case in which the
transformation is inappropriate.

a. Transformation of an elementary function of trigonometric
functions

An integrand (which was not itself generated by a transformation
of this type) and which is an elementary function of trigonometric
functions, i.e., is of the form elf {sin v, cos v, tan v, cot v,
sec v, csc v} is transformed into two or three of the following

forms:

sin v cos v 1 1 )

1 el sin v, cos 4
(1) £ ’ V> Cos v’ sin v’ cos v’ sin v

when the integrand is not already an elementary function of

sines and cosines (seventh characteristic);
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tan v 1 l sec v]
sec v’

(2) err {
vhen the integrand is not already an elementary function of

secants and tangents (eigth characteristic);

. cot v 1 csc v
(3) re1r ( csc v ' csc v’ cot v’ cot v, cot v

vhen the integrand is not already an elementary function of

, ¢sc V)

R )

cosecants and cotangents (ninth characteristic).

For example, heuristic a(l) is appropriate when it transforms

dx
sec X

it i8 a standard form). The heuristic is inappropriate for

into [cos x dx (which is then easily integrated since

the‘/\ 8e° t dt (2 June '59, 1b) for which heuristic
1l + sec t -3 tant
transformation b (3) leads directly to a solution.
b. Substitution for a trigonometric function
The form of the integrand often suggests a substitution for
a particular trigonometric function.
(1) Wnen the integrand is an elementary function of
sines and cosines (seventh characteristic) and, in fact, is of

en + 1y vhere elf(sin v, cosav] is

the form elf{sin v, cosav) cos
an elementary function of sines and even powers of cosines and
where n is an integer. Try substituting u = sin v which transforms

the goal into the often simpler subgoal,



f:elf (u, 1 - v} @ - u2)" au.
(2) Similarly, when the integrand is of the form

in?n + 1v, try u = cos V.

elf {cos v, sin?v] 8
(3) Similarly, when the integrand is of the form
elf (tan v, sccav} try u = tan v.
(k) when the integrand is of the form elf {cot v, cscov)
try u = cot v.
(5) when the integrand is of the form elf {sec v, tan-v)
tan?n +1

v, try u = gec V.

(6) wnen the integrand is of the form elf {csc v, cotav]

cot?n + 1v, try u = csc v.
2
sec t ;
For example, in f > dt, (2 Juné '59, 1b)
l +s8ec t -3 tant

heuristic transformation b(3) is appropriate when it suggests

x = tan t.

5 which
sec X

However, heuristic b(3) is inappropriate for‘/q dx
is best handled by heuristic transformation a(l).
¢. Bubstitution for a subexpression whose derivative
divides the integrand
Let g(v) be the integrand. For each nonconstant nonlinear

subexpression s(v) such that neither its main connective is

MINUS nor is it a product with a constant factor and such that



the number of nonconstant factors of the fraction %—‘8-)

(after cancellation) is less than the number of factors of g(v),
o 4

try substituting u = s(v). Thus, in [xe® dx, substitute u = £ ,

(When SAINT actually tried this problem it used this heuristic
2

but surprised me by substituting u = ex , Which is somewhst

better.) In f X dx the substitution u = x° , suggested

by this heuristic, is inappropriate; heuristi¢ transformdtion -
"e" is appropriate.
d. Integration by parts
For each partition into a product of two factors G-h of an
integrand which is partial (eleventh characteristic) such that
G ;4 1 and such that this procedure, with the allotment of no

resources, finds ﬁ dv = H, try integration by parts, i.e.,

dG X
‘/‘Ghdv=GH-fa-;Hdv, e.g.,f xe dx =

(1 +x)°
xe™ X 2 21 -2
- T -/:edx. mﬁarcsinx+sinx) (1 - x°] 2

+ 1208 x) dx, integration by parts is inappropriate; heuristic
transformation "c¢" is appropriate.

e. Elimination of the middle term of a quadratic
subexpression

For each quadratic subexpression, q(v) = c3 + oV + ¢V




vhere c, and c, are nonzero consteants, eliminate the middle term by the

1 2
c
substitution u = v + 5%- which transforms q(v) into
1 _
o 2 . .
c3-r%+clu2, e.g.,f X d.x=fu-"' du,
1 ' \[;2 +2X + 5 \[;2 + U4

which should be next transformed by heuristic "f". In

‘/‘53—3—5— dx, this transformation is inappropriate; heuristic
I
transformation "f" is appropriate.
f. Distribution of nonconstant sums
If at least one nonconstant sum occurs as a factor of a
product in the integrand, try transforming the integrand by

distributing the products with respect to all such sums, e.g.,

x2 + X 3 4 X + 1
== dx = [(x® + x®) d&x. In | =———— dx, this heuristic
Ix ,’2x - x2

is inappropriate; heuristic transformation "e" is appropriate.
g. Trigonometric substitution
For each quadratic subexpression of the form c, + clvg,

where cl and c2 are nonzero constants:

(1) If both c, and c, are positive, then try the

1
substitution v = |2 tan u, which replaces the quadratic
NJc
1

by S5 seczu.




-51-

is positive, then try

(2) 1If c, is negative and c

1 2

the substitution v = ’:%, sin u which replaces the quadratic
1

by c2c082u. '

(3) 1 ¢y is positive and c, is negative, try the

2

substitution v =,’°°2 sec u which replaces the quadratic
c
1

2
by —catan U

For example, heuristic transformation g(2) is appropriate

N
when it transforms‘/121-%-;53375-dx (2 May 'ST, 3c)

\/‘EEBEE du by substituting x = sin u. However it is inappropriate
cos u

2
in /‘x +1 dx; heuristic transformation "f" is appropriate.
L%
I
h. Expansion of positive integer powers of nonconstant
sums
If the integrand contains at least one nonconstant sum raised
to an integer power n > 1, try expanding all such sums, e.g.,
3, 32 -1
x(x2 + x°2)° ax = [x(x +2 + x ")dx. This heuristic

transformation is inappropriate for\/}sinex + 152 cos x dx;

heuristic transformation b(1) 1s appropriate.
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i. Exponent base
Suppose that the integrand has an exponent base b which is
not NIL, i.e., has the form elf [bnlv, bnav, ceey bnkv} where
Ny, Dy, «.., By are integers. Iet g be the greatest common

divisor of these integers. Try the substitution u = bgv,

6x 2
e u
e.g«, f—]r— dx =f — du. This heuristic
e +1 2(u” +1)

transformation is inappropriate fory/;len (1 + e2x) dx;

heuristic transformation "c¢" is appropriate with the
substitution u = 1 + e2x.

Jj. Rational function of sines and cosines
When the integrand is a rational function of sines and cosines

(sixth characteristic), try substituting u = tan = which

2u 12- u2
replaces sin v by 5 and replaces cos Vv by 5 and
l+u 1 +u
replaces dv by 2 5 du. This substitution transforms the
1 +u
integrand into a rational function, e.g. —x____ = [du
? ’J 1 + cos x *

This heuristic is inappropriate for\/\—g§§—~; heuristic
cos X

transformation a(2) is appropriate.
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12. Pruning the goal tree

Whenever some goal g has been achieved, the goal tree is
pruned, i.e., certain closely related goals are automatically
achieved an& certain other goals newly rendered superfluous,
are killed. The process of pruning with respect to a newly
achieved goal g, represented by a predicate, prune [g], is
recursive and is described as follows.

a. If g is the original goal, the original problem is
solved and the value of prune [g] is TRUE.

bl. Otherwise, kill g and kill every descendant of g
which is thus rendered superfluous, i.e., which then no
longer has a direct line of living ancestors generated from the
original goal.

bé' Achieve and prune any of g's parents which have
become achievable from the achieving of g.

The pruning procedure will be clarified by an example. In
Fig. 4.3a the achieving of €01 allows -39 to be achieved,
(since, as indicated by the black dot, &o0 has already been
achieved). In turn, the achieving of & 8llows g, to be
achieved (since there is an OR relationship). Since the achieving
of &, now has rendered G§3 superfluous, it is killed. However,

another of gé's children 312 i8 not killed since, through its

other parent 8, it has direct 1living ancestry to the original
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goal g. The original goal g cannot pe achieved from the
achieving of 52 since there is an AND relationship and gl has
not yet been achieved. Therefore, the result of the pruning
process is as shown in Fig. 4.3b. If either &1 °F &, is
later achieved, the original goal could and would be achieved.

13. Trying for an immediate solution

As soon as a new goal g is generated, SAINT uses its straight-
forward methods in an attempt to achieve it. While doing this,
SAINT may add g or certain of g's subgoals to the temporary goal
1list. If g is achieved, an attempt is made to achieve the
original goal. This is embodied in the following iterative
procedure, imsln [s] "immediate solution" where : is some final
segment of the goal 1ist. In general, the final segment of
a list (gl, s +ees gn) is either the empty list or one of the
n lists (gi, By g2 "o gn) for each i1 =1, 2, ..., n. During
the execution of this "imsln" procedure, any goals appended to
the goal 1list will also be appended to the final segment. The
initial value of s is (g) where g is either the original gosl or
a goal generated by & heuristic trangformation. Belowiis given . the
iterative procedure imsln {s]).

a. If s is empty, return with FALSE.




b. Let us consider the goal 8 the first member of s.

If g, is dead, take imslno ris] , i.e., delete g, the first
member of 8 and go to step "a".

c. If 8; is the same as some other unachieved goal, h,
which precedes éi on the goal 1ist, then make the parent of 8;
another parent of h and calculate imslno rls].

d. If 8; is directly achievable either because it is the
same ag some previously achieved goal or because it is of
standard form, achieve it. Then, if pruning with respect to
g, is TRUE, terminate with TRUE; otherwise calculate imslno r[s].

e. If some algorithm-like transformation is appropfiate for
g4 apply it, kill g, and calculate imsln or[s].

f. Otherwise, append 84 to the end of the temporary goal
1list and calculate imsln or{s].

The procedure is well illustrated in finding [x(x + 1) dx.
This problem is made the first goal on the goal list. Next, we
try for an immediate solution with the entire goal list, i.e.,
imsln [([/x(x + 1)dx)]. Steps "a" through "d" are uneventful.
However, in step "e" algorithm-like transformation "g"
generates a new problem‘/\(x2 + x) dx which is appended to the
goal 1ist. The original problem is killed. Next we try to
obtain imsln [S/}xa + x)ix)]. Again steps "a" through "d" are

uneventful, but, in step "e", algorithm-like transformation



"c” generates two neV'problema,~/;2dx and~/;dx which are
added to the goal 1ist. The goal, f(xa + x)dx, is killed.
Next we consider imsln [S/;adx,~!;dx)]. This time, steps
"a" through "c" are uninteresting. In step "d", we find
that‘/;adx is directly achievable since it is of standard
form. We achieve it, i.e.,~/;2dx =1/3 x3. Since prune
E/;de] is FALSE (because the other half of the AND has not
yet been achieved), we next compute imsln [(/xdx)]. Again
steps "a" through "c" are uninteresting but, again according
to step "d", we achieve the goal [xdx = é-xa. Since prune
[[xdx] is TRUE the value of the entire imsln procedure is THUE.
The original goal is then easily achieved,‘/;(x + 1)ix =
1.3 2

=5 X + X .

3
14. Executive organization

Precisely how all the various elements 1 through 13 are
pleced together to form an integration procedure is described

below. The original goal is given as a triplet, namely, the

=21

integrand, the variable of integration and the resource allotment.

The procedure is as follows:
a. If a try for an immediate solution with the original
goal is successful, return with the answer, the actual

indefinite integral.
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b. If the resource allotment has been exceeded, report
failure. |

c. Obtain and associate with eacﬁ gogl on the temporary
goal 1ist, its character and relative cost estimaf.e° Take the
goals off the temporary goal 1list, and insert each one in the
heuristic goal list according to its relative cost estimate.
If no goals remain on the beuristic goal list, report failure.

d. Take the next goal 84 off the heuristic goal list,
and let it be the goal under consideration in the following
inner loop.

e. If no heuristic transformations applicable to 8y
remain, go to step "b".

f. Apply the next heuristic transformation applicable
to 8- As soon as a new goal g is 80 generated, add it to
the goal 1ist, and try for an immediate solution with g. Then
there are three cases. If this try achieves the original goal,
return with the answer. Failing this, if 8; is achieved, go
to step "b". Otherwise go to step 'e".

15. An example
In this section the integration procedure is illustrated by

working an example in detail; the reader is urged to apply the

procedure to solve some other problems, e.g.,
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P 2
Jsinax cos x dx ta.nd‘/"l‘—-—-’!'__—x dx. Suppose we wish to find

X

L
f(__x_2)57_2 dx (2 May '57, 3c). As in step llba, after the
l -x " .
goal 1list becomes S/‘( X 2)5/2 dx) a try is made for an
l-~-x

immediate solution with respect to the goal 1list.

N
X
In finding imsln [Sf . x2)5/2 dx)], steps 13a to 13e

are uneventful. As directed in step 13f, this original goal
iz wade the first (and only) member of the temporary goal list.

Since the rest of the goal list is empty, the value of

imsln {{/‘ X L 2x)), 17 the smae we che vilue of dmsln {( )]
(1 -x%)”

vihich, by step 13a, is FAILSE.
Hence we enter the loop starting with step 1kb » which step is
uneventful. As directed in step lic, we obtain and associate

x
with the goal o 2 )5 o dx, its character‘,m‘??mely (5, 3,

FALSE, TRUE, NIL, FALSE, FALSE, FALSE, FALSE, FALéﬁ,«FALSE'nhd
its relative cost estimate, namely, 5. This goal is then taken
off the temporary goal 1ist und made the first (and 6nly)
member of the heuristic goal list. As directed in step 144,
this goal is now taken off the heuristic goal 1list for consider-
ation in the following inner loop. Step lke is uneventful.

As directed in step 1hf, heuristic transformation g(2),
"trigonometric substitution", suggests the substitution

Y = arcsin x which transforms the original goal into
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4
‘/\EEEEX dy which is appended to the goal list and with respect
cos y

to which an immediate solutionuis attempted.

In attempting imsln [S/ﬁgigﬁx dy)] steps 13a to 13e are
uneventful. .As directed inc::eg 13f, this goal is made the
first (and now the only) member of the temporary goal list.
Since the rest of the goal list is empty, the value of imsln
[g/‘gigzx—dy)] is the same as the value of imsln [( )] which

cos y
is FALSE.

Accordingly, as further directed in step 14f, since we are
in the third case, we go to step l4e. Since no heuristic
transformations applicable to the original goal remain, we go
to step 14b, which 1s uneventful. As directed in step lhc, we
obtain and associate with the new goal, its character and
relative cost estimate. This new goal is then taken off the
temporary goal 1ist and made the first (and now the only) member
of the heuristic goal 1ist. This goal is then taken off the
heuristic goal list and is the goal under consideration in the
following inner loop. Step lhe is uneventful. As directed in

step 14f, heuristic transformation a(2), "transformation of an

elementary function of trigonometric functions", transforms

4
f &ul'dy into ﬁhnhy dy with respect to which an immediate
cos y

solution is tried. This attempt fails, and this goal is made



the first (and now the only) member of the temporary goal list.
Hence, as further directed in step 1if, we go to step lhe, which
is uneventful; hence we return to step 14f. This time heuristic

transformation a(3) "transformation of an elementary function

of trigonometric functions" ‘l;ransi’orm13~l/‘Sin dy into

cos y
d/;ot hy dy which is made the second member of the temporary
goal 1list. We come a third (and final) time through the inner
loop back to step 14f. This time, heuristic transformation

"3", "rational function of sines and cosines", suggests the

8in

substitution, z = tan L which transforms dy into

2
h cos y

k/;é z I dz with respect to which an immediate
(1+¢2 )(1 -z )

solution is attempted.

L
In imsln [g/;a ; 5T dz)], steps 13a to 13d are
(1 +2z5)1 - 2%)

uneventful. However, in step 13e, algorithm-like transformation "a

"factor constant", factors out the constent, 32, and generates

N

a new goalg/‘ z 5, dz which is added to the goal
(1 +27)(1 - 2°)

list and with respect to which an immediate solution is attempted.
Steps 13a to 13e are uneventful. As directed in step 13f, this
newest goal is added to the temporary goal list. Since the

rest of the goal list is empty, the value of imsln

i
2
[(f32 A 2)h dz)] is FALSE.



-63-

As further directed in step 14f, we go to step 1lbe. Since

no heuristic transformations applicable to the goal, \/‘sin dy

cos y

remain, we go to step 1hb,.which is uneventful. As directed

in step llc, 'we obtain and associate with each of the three goals
on the temporary goal 1ist, its character and relative cost
estimate. The three goals are taken off the temporary goal list,
and each is inserted in the heuristic goal 1list according to

its relative cost estimaf.e. Since the relative cost estimates
are 2, 2 and 5 respectively, it turns out that the heuristic
goal list is the same as the temporary goal 1list had been. As
directed in step 14d, we take the goal, tanhy dy off the
heuristic goal 1ist and consider it in the following inner loop.
As directed in step 14f, heuristic transformation b(3)
"substitution for a trigonometric function", suggests the

substitution z = tan y which transforms tanhy @y into

L .
JF z dz for which an immediate solution is attempted.

1+ z2
In imsln [g/‘ dz)], algorithm-like transformation "g",
1+ z
"divide polynomials", generates the new goa1,~/}-l + z2 + 1 2) dz
l+2

which, in turn, is transformed by algorithm-like transformation
"c¢", "decompose", into three goals, namely,~/:dz,~/;2dz,

~/" dz
2 L]

1l +z




The first two of these are of standard form and are
integrated. Pruning is unsuccessful. The third is made the
first (and now the only) member of the temporary goal list.
The attempt foy an dmmediate solution has failed.

Hence, as further directed in step 14f, we go to step lhe,
and since no more heuristic transformations applicable to

J/;anhy dy remain, we go to step 1l4b, which is uneventful. As

dz

2

directed in step llhc, we obtain and associate withy/\
1 +2

its character and relative cost estimate, namely, 3. This

goal is taken off the temporary goal list and inserted between
the two members of the heuristic goal list, since their relative
c;st estimates are 2 and 5 respectively. As directed in step
144, we take the goal, cot-uy dy off the heuristic goal list
for consideration in the following inner loop. In step 1hkf,
heuristic transformation b(l4), "substitution for a trigonometric

function" suggests the substitution z = cot y which yields

JF- de 5 for which an immediate solution is attempted. In

z (1L +2°)
this unsuccessful attempt is generated a new goal,g/‘—uzgﬁ——7§
z (1 +2%)

which is made the first member of the temporary goal 1ist. Now
as directed in step lle, since no heuristic transformations

applicable to\/;ot-hy dy remain, we go to step 1l4b, which is

uneventful. As directed in step llic, we obtain and associate



with~/\—n7£=-—-??— dz its character and relative cost estimate,
z (1L +2)

namely, 4. We take this goal off the temporary goal list and

insert it between the two members of the heuristic goal list

since their 'relative cost estimates are 3 and 5 respectively.

As directed in step 14d, we take f _iZ_a. off the heuristic

1+2

goal 1list for consideration in the following inner loop. Step

lhke is uneventful. As directed in step 1Uf, heuristic trans-

formation g(1), "trigonometric substitution” suggests the

substitution w = arctan z which transforms the goal 1nto~/;w

for which an immediate solution is attempted. In imsln

[(/dw)], since the goal is of standard form, it is achieved,

i.e.,g/;w = W. Pruning with respect to this newly achieved goal

successively achieves goals until the original goal is achieved,

namely,Jr X 3 5/2 dx = arcsin x + % tan3 arcsin x - tan arcsin x.
1-x")

. Procedure for ILearning a Standard Form

There is a procedure for adding, to the standard forms list,
a standard form, i.e., the form of an integral and the form of
its corresponding solution. This procedure can be used directly,
but it is more important when it is used in a procedure for
learning a standard form. This letter procedure integrates an
expression (which may be a form) as in Section A and, if the

integral is found, the former.procedure i1s used to add the result



to the standard forms 1ist. 1In particular, the form may be an
ordinary elementary expression, in which case the procedure
has merely "memorized" the answer to a particular problem.
Section V F has an example of a learned standard form.
C. Definite Integration Procedure
SAIRT can perform some definite integrations by first finding

the corresponding indefinite integrals. Thus, for example, for

3
the problem,f x ,’xa +16 dx (1 Jan. '60, 13) SAINT first
0

finds the indefinite integral,

j;,’xa +16 dx =—‘;=-(x2 + J.,6)3/2

SAINT substitutes the limits and obtains the answer -63i
' D. Multiple Integration Procedure

SAINT can perform multiple integration when it can perform

1l p2-

the required definite integrations, e.g., f o
- y

dx dy

(1 Jan. 's5, 6).

E. Realization of SAINT on a Computer
For the most part, the implementation of the integration
procedure described above is straightforward though very lengthy.
The programming language used is LISP, as implemented on the
I.B.M. 709 and 7090 digital computers. About a third of the

32,768 register memory of the computer is occupied by the LISP



system, which includes many general purpose programs written by
others (Chapter II). -Another third is occupied by prerequisite
programs, such as, those discussed in Chapter III. The
remaining third is occupied by the SAINT program. Since the
program is so large, only about three thousand registers dre
available for working space in the free storage list, despite
great effort to make this list as large as possible. The over-
all procedure is embodied in a LISP function with three
arguments, integral [1ntegrand; variable; resource allotment)
where the second argument denotes the variable with respect to
which the integration is to be performed. The value of the function
is either the solution to the integral or NIL, which denotes
failure. Each goal is represented by an object in the sense of
LISP. When a new goal is created, a unique print neme such as,
GO002, is assigned. In addition to its print name, the
association 1ist of a goal contains or may contain:

1. ALIVE

If ALIVE occurs on the association list of a goal, that goal
is alive; otherwise it is dead.

2. Two consecutive elements, INTEGRAND and the integrand.

3. Two consecutive elements, CHILDREN and the list of
children. Some goals are childless, in which case these two
elements do not appear.

4. Two consecutive elements, PARENTS and a list of pairs;



the first member of each pair is the name of a parent. The
second member of the pair describes how the sclution to the
parent problem is related to the solution of the problem, and is
either: .

a. COMPONENT, which denotes that the parent integrand is
a sum which was decomposed.

b. An expression which represents a function which, when
applied to the solution of this goal,will have for its value the
solution of the parent goal.

The original problem has no parents. The parent and children
lists fully specify the goal tree, (and are the latter's only
representation); operations such as pruning on the goal tree are
performed by operating on these lists.

5. An element may be present to indicate that this goal was
generated by heuristic transformation lla, "elementary function
of trigonometric functions".

6. Four elements, CHARACTER, the character, RELATIVECOSTESTIMATE
anid the relative cost estimate. These four elements are associated
with the goal only if it is put on the heuristic goal 1list.

T.- Two elements INTEGRAL and the solution to ‘the problem.
These elements are associated with the goal only if it has been

achieved.
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As an illustration, here is the final segment of an
association 1ist of a typical goal: |
(ALIVE, INTEGRAND, (POWER, (PLUS, 1.0, (POWER, X, 2.0)), -1.0),
CHILDREN, (GO0O8), PARENTS, ((GOOO4, COMPONENT)), CHARACTER,
(3, 3, TRUE, TRUE, NIL, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), RELATIVECOSTESTIMATE, 3).
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Chapter V
Experiments and Findings with SAINT

This chapte{ describes some of SAINT's typical observed
behavior and how some modifications change its behavior. The
experiments to measure SAINT's behavior involve 86 problems.
Largely for the purposes of debugging, 32 of the problems were
selected or constructed by the author, who fully expected
SAINT to solve them all. More objectively, the remaining 54
problems were selected from M.I.T. freshman calculus final
examinations by my assistant with instructions to gelect the
more diverse and difficult problems provided only that the
method of partial fractions was not needed for the solution.

More specific information about how the problems were selected

for each experiment is discussed with that experiment. The
description of each of the six experiments is immediately followed
by some observations concerning behavior. The various versions

of SAINT discussed in Sections A, B, ..., F in this chapter are
designated SAINT, BSAINT, ..., FSAINT respectively. The measures
of behevior that we use are:

1. Power

The power of a version of SAINT refers to the size of the

class of problems that it can solve.



2. Time and the number of comstructs

All the times mentioned in this chapter refer to the I.B.M.
T090 computer at M.I.T.'s Lincoln Laboratory. However, some of
the experimemrts were performed on the I.B.M. 709 at the M,I.T.
Computation Center. To obtain the approximately equivalent
709 time, multiply the 7090 time by 5.15, which was determined by
running the same problem on both machines. We denote 22,300
constructs by 22.3 kcons. For a few problems, their unrecorded
time or number of constructs was estimated Ifrom the observed fact
that one minute of computation represented approximately 22.3 kcons.

3. Rumber of subgoals and unused subgoals

The original goal is not included in the number of subgoals.
An unused subgoal is a subgoal which is not needed in the solution
chain.

4. Level and superfluous level of a solution

The level of a solution is the maximum level at which a used
subgoal occurs in the goal tree during that solution. A solution
has a superfluous level of s if and only if the maximum unused
subgoal level s exceeds the level of the solution. Thus, all other
things being equal, a version of SAINT is best if it generates the
feiveSt solutions with a superfluous level.

5. Beuristic level and superfluous heuristic level of a solution

These two measures are similar to those in the preceding

paragraph except that only the goal tree branches representing



heuristic transformations are considered rather than all the
brenches representing algorithm-like or heuristic transformations.
Chapter Vi contains some conclusions based on these é:Lx
experiments. '
Unmodified SAINT
The SAINT program described in the preceding chapter tried
to solve all 86 problems selected by the author and his assistant.
In this attempt, the computer spent about half of its time in
reclaiming abandoned memory registers for reuse. Approximately |
half of the remaining time was spent in pattern recognitiocn,
namely, in finding characters and in recognizing when an integrand
is of standard form or amenable to an algorithm-like or heuristic
transformation. As the author expected, SAINT solved all 32 of
his problems. Of the 54 M.I.T. problems, SAINT solved 52 (96%)
and quickly (in less than & minute) reported failure for the other
two problems, namely,ﬁ.’l +x dx (2 Aug. '56, 2) and
~/~cos\l;_ dx (2 June '59, 2b). If SAINT were extended as suggested
in Chapter VII, it could solve both of these problems. Both of

the failures are excluded from the averages in table 5.1, which

sumarizes SAINT's average performance.
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TABIE 5.1

SAINT's Average Performance

super-
unused super-  heu- fluous
sub- sub- fluous 1ristic heuristic
minutes kcons goals goals level level level level
32 Author 3.3 7 6.4 2.0 3.5 0.3 1.0 0.01
Problems
52 M.I.T.
Problems 2.0 L h.7 0.8 2.9 0.8
All 8%
Problems 2.4 56 5.3 1.25 3.0 0.01 0.9 0.004

In this paragraph we complement the tabulation of SAINT's average
performance on M.I.T. problems with some examples of SAINT's extreme
behavior.

2 ax
they were selected more objectively. SAINT seemed to find f x
1
(1 Jan. '61, 22) the easiest problem since it generated no
subgoals at all and took the least time and fewest constructs,

namely, 0.03 minutes and 0.6 kcons. SAINT took the most time and

sec2t

1+sec2t-3tant

constructs (18 minutes and 370 kcons) for f dt

(2 June '59 , 1b), whose solution ties for the maximum heuristic level

For this purpose, only M.I.T. problems are considered since



of four. The other problem whose SAINT solution has a heuristic
L
level of four isf X dx (2 May 'ST, 3c). The maximum
' Q- L) |

heuristic level obtained by the unmodified LOGIC THEORIST is two,

which occurred’ for two of the 38 solutions. SAINT generated the

most subgoals (18) and had the maximum level (8) for ﬁsin X + coé x)ad.x
(1 June '60, 6b). The maximum ratio of the number of unused

subgoals to the number of subgoals occurs in two problems in

which two of the three subgoals are unused; the two problems are

T +
thmxsecaxdx(aJune '60, 3)andf' sin x cos x dx
17} [+}

(1 Jan. '60, 14). In 37 of the 52 problems, SAINT generated
only subgoals that were needed in the solution chain. In this

regard, SAINT registered its best performance on one of these

' 4 b(x - 1)(5 - x)
37 problems,f f dy d&x (1 June '60, 7), for
5/2 Y x(11 - 2x)

which SAINT generated 16 subgoals, all of which were needed in

the solution chain.

BSAINT, i.e., SAINT When It Had a Faulty Beuristic Transformation
Instead of algorithm-like trensformation IV A 44, "linear

substitution”, and heuristic transformation IV A 1llc, "substitution

for a subexpression whose derivative divides the integrand",

BSAINT had heuristic transformation c' which is the same as
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heuristic transformation "c" except that the substitution for

8 (v) was made so long as the number of factors in S,VV) did

not exceed the number of factors of g(v). The problems in

table 5.2 wezze selected because they were the only problems

that showed promise of causing a significant quantitative
difference in behavior between SAINT and BSAINT. For the second
and third problems in the table, heuristic transformation c'
suggested fruitless substitutions which seriously damaged BSAINT's
performance. Hence it was replaced by heuristic transformation
"c", which among other things excludes linear substitutions.
Algorithm-like transformation "d" was added in order to catch
appropriate linear substitutions. The difference in behavior
for the first and fourth problems in the table arises from the
fact that an appropriate linear substitution is made by a
transformation which is algorithm-like rather than heuristic.
BSAINT is slightly more powerful than SAINT, e.g., it can solve
j;: 1 +x dax (2 Aug. '56, 2) for which heuristic transformation
¢' will appropriately suggest the substitution. Y =, ,1 + X.
However, chapter VII shows how SAINT can be extended to solve
this problem and hence there is no need to accept the
disadvantages of BSAINT. Table 5.2 shows how SAINT dominates

BSAINT in all other measures of performance.
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TABLE 5.2

Performance of BSAINT, i.e., SAINT When It Had a Faulty Heuristic

Transformation
Unused Super-  Heu-
Sub- Sub- fluous ristic
Minutes Kcons goals goals Level Level Level
Problem BS S BS5 S B8 S BS S B S BS S BS S
dx
f > 7.4 2.1 165 45 12 7 5 0 6 6 2 1
sec X
x2 1
f*axh.51.7 953 10 3 7 0O 2 2 3 11
s
f xdx 19.4 16 430 314 1814 10 6 5 5 3 3
X2 42x45
exdx
f % 2.9 1.7 66 36 8 2 1 0 5 2 1 1
1 +e

C. CSAINT, i.e., SAINT When It Computed Unnecessary Characters
Instead of adding a new goal to the temporary goal list, CSAINT
immediately computed the goal's character and inserted the goal in
its place on the heuristic goal l1list. For a few problems such as
those selected for table 5.3, some subgoal characters were never
needed so that the time and space used in computing these characters

was wasted. SAINT avoids thifa ‘waste.
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The qualitative differences in behavior are easily anticipated.
For the two versions, the time and number of constructs are not
significantly changed except in some problems such asv those in
table 5.3 in' which CSAINT uses significantly more time and
constructs than SAINT does. No differences can occur for the
other measures of behavior.

TABLE 5.3

Performsnce of CSAINT, i.e., SAINT When It Computed Unnecessary

Characters
Minutes Kcons
Problem CS S CS S
ﬁinax cos x dx bk 2.0 90 58
f(sinex + 1)2 cos x dx 6.5 3.8 152 88
2x
JP e dxx 5.6 3.7 129 84
l+e
ax
1= cos x 5.5 2.0 127 T3
-
[ tan x seccx dx 4,3 2.6 97 @
(2) June '60) 3)
1
lf x(1n x) dx 2.7 2.2 (] 46
(2, June '60, 11)
T
XS ,
~[ sin x cos x dx 3.3 2.6 89 58

(1, Jan. '60, 14)



D. DSAINT, i.e., SAINT Wasn It Had a Faulty Heuristic Transformation
and Computed Unnecessary Characters
DSAIRT combined the defects of BSAINT and CSAINT, i.e.,
contained the .faulty heuristic mentioned in section B and
computed unnecessary characters as the version in Section C.
The problem in table 5.4 was selected so that both defects would

damage DSAINT's performance.
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E. ESAINT, i.e., SAINT Trying Heuristic Goale in Order of Generation

Instead of trying heuristic goals in order of incregsing depth,
ESAINT tries heuristic goals merely in the order in which they
were generated. A few problems such as those selected for table
5.5 caused a difference in behavior between SAINT and ESAINT.
Table 5.5 shows how SAINT was superior in the last three
problems, but, curiously, inferior in the first problem. The
measures of behavior critical in this experiment are discussed
below.

1. Power

Given sufficient time and spece, ESAIRT is at least as powerful
as SAINT since ESAINT will eventually try every transformation that
SAINT does. 1In fact, I think that, given sufficient time and space,
ESAINT is more powerful then SAINT. However, as will appear below,
this added power, if any, would be purchased at a high price.
Within more practical 1imits of time and space, SAINT appears
to be more powerful than ESAIRT, e.g., SAINT succeeded with the
fourth problem in table 5.5 whereas ESAINT failed for lack of
space (out of push-down 1list).

2. Time and number of constructs

Given enough time and space, ESAINT would have solved the

fourth problem in table 5.5 but it would have used considerably



more time and constructs than SAINT did for the same problem.
Thus it is fair to say that SAINT outperforms ESAINT in three
of the four problems as measured by time and number of
constructs.‘

3. Unused subgoals

In the second problem, ESAINT generated exactly the same sub-
goals as SAINT but seriously degraded its performance by an
unproductive attempt to apply its heuristic transformations
to the unused subgoal. In the other three problems, the
difference in performance between SAINT and ESAINT can be
traced directly to the difference in the number of unused
subgoals.

4. Superfluous heuristic level

Of the author's 32 problems, the first problem in table 5.5
is the only one to have a superfluous heuristic level; none
of the 54 M.I.T. problems had a superfluous heuristic level.
An ESAINT solution cannot have a superfluous heuristic level.
SAINT was inferior to ESAINT for this protlem due to the fact

that SAINT's solution was exceptional in that it had a

superfluous heuristic level.
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F. FSAIRT, i.e., SAINT With a Learned Standard Form

Using the procedure described in Section IV B, SAINT solved

dv.
\/q————l———§-and added to the standard forms list the answer

Pyt PyVq
, 1
\/ PP

with this learned standard form. The presence of the standard

it found, namely, arctan (\} Eg vl) FSAINT is SAINT
1

form did not significantly affect performance except when a

subgoal is an instance of the learned form as in the problems

in teble 5.6, in which case performance is significantly improved.
TABLE 5.6

Performance of FSAINT, i.e., SAINT With a ILearned Standard Form

Unused Heu-
Sub-~ Sub- ristic
Minutes Kcons goals goals Level Level
Problem FS S FS S FS S FS S FS S FS S
e6x
B e dx 5.3 8.5 142 192 9 10 3 3 5 6 1 2
e +1
f"hd" 9.0 11 218 307 1013 35 5 6 3 k4
(1-x2)5;2

(2 My '57, 3c)

fln(2+3x2)dx 3.5 6.5 99 141 810 0 2 6 7 1 2
(2 June '59, 2a)




Chapter VI

Conclueions

Corresponding to the purposes avowed in chapter I, this

chapter presents certain conclusions drawn from the SAINT proJject

and, to an extent, from the findings of other workers in the
field. Although many of the conclusions are stated flatly and

in general terms, no claim is made that the last word has been

said ccncerning intelligent problem solving or, even concerning

symbolic integration by machines. However the conclusions are
based on experience, namely, the experiments described in the
preceding chapter and the author's experience concerning the
creation, structure and performance of SAINT. Throughout this
chepter, a parenthesized mention of an experiment is an appeal
for support of & conclusion to an experiment described in
chapter V. The subjects of the conclusions conveniently
fall into three categories, namely, intelligence (both
natural and artificial), natural intelligence and artificial
intelligence.
. Intelligence (Both Natural and Artificial)

Under intelligence, are listed four subjects (pattern
recognition, algorithms and heuristics, problem solviﬁg and

learning) for which certain conclusions can be made.



_85_

1. Pattern recognition
Certain conclusions about pattern recognition can be drawn
from SAINT's beﬁaviéé 1n‘recursive matching and character finding.
a. A suitably programmed computer can recogﬁize when a
symbolic expression is an instance of a useful pattern, including
recursively generated patterns, such as, "rational function of
sines and cosines". The idea of character and characteristics,
due to Minsk&, provides a convenient framework for some successful
pattern recognition.
b. In symbolic integration, pattern recognition plays a
very important part in three senses.

(1) Pattern recognition consumes much of the program
and programming effort.

(2) In SAINT, recursive matching is used frequently
and with great variety, e.g., in determinaticns involving
standard forms, algorithm-like and heuristic transformations and
relative cost estimates.

(3) Pattern recognition consumes much of the time in
problem solving (experiment A). The recursive matching in
SAINT is serial, i.e., the recursion is performed sequentially.

c. The time consuming nature of serial pattern recognition

points to a parallel (simmltaneous) process in three senses.



(1) The fact that humens are so quick to recognize
some patterns indicates parallel pattern recognition is present
as an important mechanism and skill.

(2) ‘ The acquisition of skill in recognizing patterns
in a parallel (rather than in a serial) menner is desirable for
both men and machines.

(3) Mechanisms for parallel pattern recognition by
machines are desirable.

d. Especially until machines can perform effective
parallel pattern recognition, great care should be taken not
to recognize superfluous patterns (experiment c).

e. A machine can learn to reeognize a new pattern for
recursive matching which is very useful for suitable problems
(experiment F).

2. Algorithms and heuristics

a. A heuristic program can perform well (experiment A)
in a domain where there is no totally effective procedure [10].

b. The practical consideration of limited time and space
may sometimes Jjustify using a heuristic program rather than
another program which may be more powerful if given sufficient
time and space (experiment E).

¢. While trying to achieve & goal, a heuristic program

should use its algorithm-like transformations before it resorts to

its heuristic transformations.
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d. To avoid many blind alleys, heuristics that suggest
transformations should be made as sharp as possible, i.e., a
large portion of the suggestions should be good (experiment B).

3. Problem solving

a. .Some heuristics are valuable in problem solving
(experiment E).

b. The tripartite division of methods into standard
forms, algorithm-like transformations and heuristic transformations
is very useful in problem solving. Standard forms in SAINT
and "substitution" in the LOGIC THEORIST may be instances of
an "immediately achieve" procedure which seems to be a basic
component of a goal achieving scheme. The input to the procedure
is a goal. The output is NIL or one or more of the following
three items, namely, TRUE (the goal is achieved), how to
achieve the goal or the achievement of the goal. In each
domain, the procedure for immedietely achieving a goal must be
supplied anew and, since it is a very frequently used procedure,
should operate very rapidly. The algorithm-like transformations
also seem to be a basic component of a goal aschieving scheme,
but this remains to be seen since they are not present in all
schemes, e.g., the LOGIC THEORIST. The organization of SAINT's
heuristic transformations (corresponding to that of the LOGIC

THEORIST's methods of detachment, forward chaining and backward
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chaining) seems to be an often convenient but not a basic
component of a goal sachieving scheme.

c. A machine can manifest intelligent problem solving
behavior, i.e., behavior which, if performed by
people, woul& be called intelligent (experiment A).

d. General problem solving systems and systems that
learn effectively from their experience should be developed.
Since much of SAINT's goal achieving structure is general or
could be learned, these facilities alone would enable a project
such as SAINT to be carried out with a small fraction of the
effort, and other much more powerful heuristic programs would
become easily feasible.

e, Soon, a man machine combination will be solving
problems .

£. Soon, intelligent problem solving machines will far
surpass man, at first, in real time applications, then as a
matter of economiés and finally, I think, as a matter of power.
The present speed of SAINT compares very favorably with the
speed of the average college freshman (experiment A). With a
now commercially available large high speed digital computer,
such as the I.B.M. 7030 (STRETCH), a compiled but otherwise
unimproved SAINT program would run eight hundred times faster,

which would far surpass in speed even the most gifted of




mathematicians at this task. At present commercial rates,
an I.B.M. 7090 SAINT solution of an average M.I.T. final exam
problem costs about fifteen dollars, far more expensive than a
human solution. However, a STRETCH SAINT solution would cost
only about four dollars or if compiled, only about four cents.
This rapidly decreasing cost trend in computers, not to mention
possible improvements in the SAINT program will result in
solutions which are far cheaper by machine than by man. My
conjecture is that, with . greatly increased memory and by
sheer speed of calculation and accumulated cleverness, a machine
will solve symbolic 1ntegration'problems beyond the scope of any
mathematician. The gist of these remarks applies equally to
many domains of intelligent problem solving besides symbolic
integration.

4. Learning

A suitably programmed computer can learn by rote or, in fact,
can learn & new standard form which dramatically improves its
performance for suitable problems (experiment F). SAINT also
learns what to do with a goal and uses this learning when it
generates a new subgoal which is the same as some previous

goal.




B. Natural Intelligence

1. Models

A partial model of intelligent human problem solving in the
domain of sy?bolic integration has been constructed. Symbolic
integration problems can be solved by this model, which consists
of a computer with the SAINT program which is a hierarchical
organization of elementary procedures. The model can be
readily modified (experiments B, C, D, E and F).

2. Pedagogy

In addition to the many conclusions from section A relevant
to teaching we have the following:

a. The Integral Calculus teacher should teach in detail
each of the algorithm-like and heuristic transformations which
prove so useful in SAINT (experiment A). First the student
should learn the algorithm-like transformations which he then
could apply to solve suitable problems. Then the student should
learn and use the heuristic transformations. In fact, I think
that the SAINT procedure is better than the usual general
approaches taught to students for doing symbolic¢ integration.
Further research on symbolic integration programs would doubtless
reveal still better procedures, e.g., better relative cost
estimates and heuristic transformations. Any proposed procedure

can be evaluated by experimenting with it.




c.

b. As much as possible, the teacher should teach
creativity, i.e., the ability to perform tasks most difficult
for a machine to perform, since soon machines will perform
the more’routine tasks.

c. The teacher should prepare the student to join in
a man machine combination for solving problems.

d. Soon, a computer with a program embodying an Integral
Celculus procedure will teach this procedure and more.
Artificial Intelligence

In addition to many of the conclusions in section A
relevant to artificial intelligence, we have conclusions
concerning the following:

1. Computer design

a. Computers should be still faster and less expensive.

b. For artificial intelligence applications, computers
should have much larger memories. A fourfold increase in
SAINT's memory size (now 32,768 registers) could have been
readily converted into a hundredfold increase in speed since
reclamation time which now accounts for about half of the
running time would become insignificant and since a compiled
program would run about fifty times faster.

¢. Some computers should be designed with symbol
manipulating applications in nind, e.g., much computer time

and space could be saved if one computer instruction represented



the very frequently used symbol manipulating functions, such as,
an f-r chain in LISP.

d. Some computers should be designed with time sharing
and man machine combinations in mind.

2. Symbgl manipulating language and compiler
Many of the features discussed below either have just been
or will be included in LISP.

a. An experimental symbol manipulating program can often
suggest improvements in the symbol manipulating language used.

b. A symbol manipulating language, such as, LISP, is a
very good start towards e language for representing complex
symbol maripulating problems to a computer.

c. A symbol manipulating language should efficiently
handle objects that are integers or rational numbers. For
symbolic integration, exact rational arithmetic rather than
approximate arithmetic is appropriate.

d. A symbol manipulating language should be able to
express in a convenient form the manipulation of many kinds of
quantities besides 1list structures, including integer indexed
arrays. In SAINT, the availability of integer indexed arrays
would have allowed the efficient handling of matrices,
convenient for the solution of simultaneous linear equations

needed in the method of partial fractions.



e. The computer language should be directly expressible
in the symbol manipulating language. Then, frequently used
subprograms (inner loops) could be hand coded for increased
speed.

f. For artificial intelligence, a symbol manipulating
language should include a convenient representation for an
executive procedure which can operate a hierarchy of procedures,
roughly corresponding to the hierarchy of subgoals. Such an
executive procedure can abandon or resume the operation of
certain subprocedures, such as attempts to achieve particular
subgoals.

g. For this improved symbol manipuleting language, there
is a need for a more efficient compiler, which, perhaps by
heuristics, can do some optimizing in time and space.

3. BHeuristic programming

a. The behavior of a heuristic program often suggests
improvements in that program. The improvements mentioned in
experiments B and C of chapter V were suggested in this way.

b. Some heuristics in a heuristic program can be easily
tested experimentally (experiment E).

c. A heuristic program can easily include programs for
handling an AND-OR goal tree (such as found in SAINT), which is

often useful in complex’ goal achieving schemes.



Chapter VII

Suggestions for Future Work

Future work will doubtless reveal more and better conclusions
about intelligence than those found in the preceding chapter.
This, the final chapter, describes some of the forms that this
work might take.

Direct Extensions to SAIRT
An improved computer and symhol manipulating language would

facilitate making extensions to SAINT. With his particular

purposes in mind, the prospective programmer shculd select an

improved computer and symbol manipulating language and then,

revise and extend SAINT to take full advantage of the new

machine and language. Below are listed some possible direct

extensions to SAINT. A psychological study of human subjects
would probably suggest other improvements in SAINT.

1. Hyperbolic functions

SAIRT could be extended to handle hyperbolic functions by
incorporating methods analogous to those used in handling
trigonometric functions and by including a method to convert a
hyperbolic function to its equivalent exponential form.

2. BRelative cost estimate and subgoal selection

Estimates of relative cost that depend on several character-

istics of the goal should be tried. In addition to the depth



of the integrand, these characteristics might include breadth,
vhether the integrand is algebraic but not rational,
transcendental but not a rational function of sines and cosines,
the number of occurrences of the variable and the number of
noninteger powers of the variable. Following Samuel's
successful generalization learning experiments, SAINT could
discover the significant characteristics and learn good weights
for each. Moreover, SAINT should extend the basis for subgoal
selection from merely the relative cost estimate to include the
apparent centrality of the subgoal, i.e., SAINT should prefer
the subgoal whose achievement would contribute the most to the
achieving of the original goal. For further discussion of the
selection of subgoals and methods, see section B k.

3. Solution by transposition

This and the next two sections describe some new methods
which might be incorporated in SAINT. SAINT should have the
trick of solving a problem by transposition, often preceded by
a couple of applications of the method of integration by parts,
e.g.,

~/;xcoe x dx = e'cos x -‘/;x(-sin x dx) = e*cos x +

‘/;xain x dx = e“cos x + e 8in x -\/;xcos x dx

Transposing the integral on the right gives

%/;xcos x dx = e‘cog x + eX8in x hence

_/;xcoa x dx = % €* (cos x + sin x)




When SAINT finds that a

newly generated goal is the same as an old one, it could test
for a possible solution by tramsposition.

4. Algorithm-like transformations

SAINT should have more algorithm-like transformations
including certain reduction formmlas, the Chebyshev integral,
the binomial integral and substitution for a constant power
of the variable of integration. Once SAINT has exact rational
arithmetic, the last three of these four transformations can be
conveniently added.

a. Reduction formulas
SAINT should have certain reduction formulas, e.g.,

especially useful for odd n > 3 is the reduction formula.

kl;ecnv v = = } I [sec® 2y tan v + (n - 2) sec” 2y dv] note
that when n is even, heuristic transformation IV A 11 b (3),
"substitution for a trigonometric function", suggests the
substitution u = tan v which turns out to be preferable to the
reduction formula. Equipped with this reduction formula, SAINT
would quickly find the following solution:

~/;ec3x dx = % [sec x tan x +~/;ec x dx] = % [sec x tan x + 1n

(sec x + tan x)]. This problem can also be done directly in

the same way that the reduction formula is derived - by doing

an integration by parts (vhere secax is the part to be integrated),

by using the secant tangent trigonometric identity and by finishing



with a solution by transposition similar to that described in
Section 3. The fact that heuristics tc motivate the latter
procedure are hard to f£ind probably explains why most people
find this problem difficult. Similar remarks apply to cosecant,
hyperbolic secant and hyperbolic cosecant. Other reduction
formulas found to be useful may also be added as algorithm-like
transformations.

b. Chebyshev integral

r r
If the problem is of the formg/‘v l(cl + cav) 23v where c

1
and 5 are nonzero constants, ry and Ty are not both integers,
rl is a rational nonzero comstant and r2 is a rational constant

which, if an integer, is positive. Try the substitution in the
first applicable case below:

(1) If r, is a positive integer, then substitute

1
u=cy +c,V.
(2) 1r r, is a (negative) integer, then substitute
ud = v where d is the denominator of r) -
(3) 1Ir r) is a negative integer then substitute
ud = ¢, + c¢,v where 4 is the denominator of r,.

1 2 2

(%) 1Ir r) + 1, is an integer, then substitute
a C t oV

u = S where 4 is the denominator of ri and ré.

Equipped with this transformation, SAINT would be able to

solve a problem in which it previously failed. In




yl;\[; +x .dx (2 Aug. '56,.2), the first case of this trans-
formation gives the substitution, y = 1 + X, which leads to
an easy solution.

c. PBinomial integral

2 1

and s are nonzero constants, not all three of p, q and r are

integers, p is a constant, q is a constant which is neilther

If the problem is of the-formU/;P (cl +c. v3)T dv where c

zero nor unity and r is a rational constant which, if en
integer, is positive, then substitute u = vl. The result of
this transformation is often a Chebyshev integral.
d. Substitution for a constant power of the variable
of integration
The transformation which will be described in this section
will enable SAINT to solve many more problems including the
following two, the first of which is one Jf the two problems
on which SAINT failed.

In j::OBJ; dx (2 June '59, 2b), SAINT khould substitute

y =J;. In, dx — , SAINT should substitute y = x".
x (ax” + c¢)

The way that SAINT should discover these and other similar good

substitutions may be seen from the following consideration.
c

c
Every integral is of the form v° elf {v l, ceey V k] dv where

c, ¢ are comstants. For any nonzero constant 4,

l’ '..’ ck



the substitution u = vﬁ transforms the above integral into

c c

e+l 3 4
1 d elf {u ~, ..., u '} du. From this it is
FU
easily seen that 4 should be chosen 8o as to make the ratios
cs1 O °k
3 g 'y gos simple as possible, which occurs when 4

is sort of a generalized greatest common divisor. Iet C be the
set which results'from deleting the zero elements from the set
{c +1, Cis vees ck}. Then finding a good d involves finding
the common divisor (including the greatest common divisor of the
integers ) of the numerators in C and in finding the common
multiple (including the least common multiple of the integers)
of the denominators in C. If the d which is so found is not
unity, substitute u = vd.

5. Heuristic transformations

To SAINT's heuristic transformations we have the following
list of changes and additions which should improve its
performance.

&. Rationalizing the denominator

SAINT should try the method of rationalizing the denominator.

Thus, inJ[‘ dx » SAINT would successfully try

, 2 2
X +8&8 +X
2

multiplying the numerator and denominator by \[;2 + a8 - X.
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b. Transformation of an elementary furction of
trigonometric or hyperbelic functions
Heuristic transformation IV A 1lla, "transformation of an
elementary'function of trigonometric functions"” should be
extended to the hyperbolic case. In addition, some work should
be done to reduce in number the many bad suggestions which
this transformation makes.
c. Integration by parts
SAINT should give priority to partitions of the integrand
which result in differentiating (rather than integrating)
expressions that are logarithmic, inverse hyperbolic, inverse
trigonometric, or positive integer powers of the variable of
integration.
d. Method of partial fractions
SAINT should have the method of partial fractions which requires,
emong other things, the ability to factor polynomials and to solve
similtaneous linear equations with symbolic coefficients.
Designing a procedure for factoring polynomials is a fairly
interesting project in itgelf. LISP has Jjust provided for the
convenient representation and rapid manipuvlation of integer
indexed arrays of symbolic expressions. This facility provides
the convenient framework for the matrix manipulations used in

solving simultaneous linear equations with symbolic coefficients.
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6. Generalization

Some work should be done to give SAINT the ability to
generalize a problém into plausible related forms. By using
methcds similar to those that solved the problem, SAINT could
try to integrate each such form. If this attempt is successful
and if the result is useful, SAINT could incorporate such
generalizations in its own pattern recognition procedures.

7. Approximate definite integration

SAINT should be given a procedure for performing approximate
definite integration with a symbolic input. When its exact
symbolic procedures fail on a definite integration problem,
SAINT could resort to this approximate uwethod, which, under
appropriate circumstances, might be applied to one or more
subprotlems rather than to the original problem directly.

8. Differential equations

SAINT could be extended to the symbolic solution of some
differential equations thus, the present SAINT procedure could be
called upon when the problem of solving a differential equation
has been reduced to that of solving an integral. More drastic
but probably better would be the opposite embedding, i.e.,
to embed the techniques for solving differential equations

into the goal achieving structure of SAINT.
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9. Machine as a mathematical assistant

In addition to the ability to solve differential equations,
many other mathematical .skills may be added to SAINT, e.g.,
the series :expansion in orthogonal functions, such as Fourier
series. The machine would gradually accumulate a wide variety
of procedures for performing commonly encountered mathematical
tasks. Probably a good way to use such a machine is as follows.
The machine would be directly connected to many remote consoles.
From time to time, the human user at his console types a request
for the performance of some elementary mathematical skill, e.g.,
symbolic integration. The machine types back the required
answver.

10. Machine as a mathematician

As time goes on, the procedureswhich the machine can perform
will increase in number and complexity. It seems quite possible
that such a machine will eventually equal and then surpass the
mathematician at his own game.
. Some General Areas Requiring Investigation

This section contains a few of the author's thoughts about
some of the areas which must be understood before machines can
solve really difficult problems. See also in this connection
reference [7]. Most of the questions discussed in this section

are essentislly open.
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1. Patterns

More work should be done to enable machines to construct,
use and evaluate patterns.

2. Lgarning

The machine should be able to discover new methods and
adjust old ones. It should also be able to learn which methods
are appropriate for goals of a certain character.

3. Structure among goals

Work should be done to develop a system to handle a very
general type of goal tree independently of any particular problem
domain. 1In addition to the AND and OR relationship, this system
should handle many other common relationships among goals, e.g.,

a. MODEL relationship

A goal m is said to be a model of a goal g when the achieving
of m will furnish a plan (tentative sequence of methods) which
has a better than random chance to achieve g.

b. VEILING relationship

An example of this relationship occurs in integration by
parts, e.g., when the goal 1s~/; secex tan x dx, then
~/;ec2x tan x dx is a veiling subgoal for, when it is achieved

2

( secex tan x dx = % sec"x), it reveals another subgoal,

% sectx dx, of the original goal.



c. SIMULTANEOUS relationship

In this relationship, not only must all the subgoals be
achieved (as in the AND relationship), but alsc all of them
mist be achieved at the same time.

4. Planning

Mechines that can plan well must be developed. A machine
must be able to formulate a new plan end to modify an old one
which nearly worked. One way that a machine might get a plan
is through a model, e.g., a plan for solving & problem may
sometimes be constructed from a sequence of methods that solve
a model of that problem. In addition, the machine must be able
to make a sensibly balanced allocation of 1ts rescurces (time
and space) to the various phases of its task, e.g., goal and
method selection,application of methods to goals, models and
learning. Minsky in [7], discusses goal selection according
to centrality and difficulty of the goal by methods which are
either giobal or local and hereditary. A very general approach
is to select a goal method pair according to the centrality
of the goal and the 'promise" of the goal method pair. In
appropriate problem domains, the increased generality and
flexibility of this scheme may well Jjustify its use despite
the increased complexity in the selection process compared to
selecting the goal first and then the method. Two methods of

selection with their accompanying advantages are:

-104-
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a. Global or Gestalt methods
A global or Gestalt method of selection is one which, before
deciding, considers all the "live" goals in the goal structure.
From ell the heuristic goals, SAINT selects the one whose integrand
is the mgst shallow. The advantages of the global method are:

(1) The best available selection can be made.

(2) The selection criteria may be arbitrarily
elaborate.

(3) It is easy to handle equivalent goals.

(4) Accurate prediction of a goal's heuristic level
and powerful terminetion criteria (such as needed in local
methods ) ere not required.

(5) The global method avoids premature termination
of all lines of attack which may occur in a local method.

b. ILocal, hereditary, recursive or line of attack methods
Before deciding, such a selection method considers only some
"Jive" subgoals (often only one); criteria are given for terminating
a line of attack. The advantages of this scheme are:

(1) It is easy to pursue a promising line of attack.

(2) It is economical with time and space.

(3) Such a recursive procedure is easily represented
in a language such avaISP.

(4) The relationship between parent and child goals is

clear and easy to use.
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C. Other Specific Projects in Artificial Intelligence

Projects from the following list should be undertaken. Many
of them would be useful in themselves. All of them would shed
uew light on the general areas requiring investigation discussed
in Section B which in turn would help in designing for the
projects of this section.

1. The methematics machine

First the machine would be a mathematical assistant and later
a mathematician. Three projects which could be done right now
are a trigonometric identity proving machine, a machine for
checking proofs in formal systems and a four-dimensional
geometry theorem proving machine. A machine would have an
advantage over people with diagrams in four or more dimensions.

2. A general-purpose problem solver

As more is learned about how people and special-purpose
machines (such as SAINT) solve problems, there will emerge
additional general-purpose problem solving techniques including
the ability to plan and learn. Many of these techniques should
be incorporated in a heuristic program for a computer. After
receiving a description of, and possibly some training in, some
suitable particular problem domain, such & machine could solve

problems in that domain.
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3. The commnicator

This machine should be able to commnicate with other machines
and people. To reduce the burden on humans, it should be
able to communicate in a language easy for people to use. Thus,
the inputs and outputs of the machine should be imperative,
declarative, and interrogatory sentences. As in McCarthy's
proposed advice-taker system [5] the machine should be able to
exhibit "common sense", i.e., the ability to make simple
deductions from premises. Probably a good way tc use the
communicator is as follows. A man would tell the machine the
situation and make certain requests for action. Questions
would be asked and answered back and forth. When the machine
haed the information 1t needed, it would carry out the task.

4. 1Induction and learning machines

An important thing to work on is the problem of getting
machines to make inductions, i.e., to draw general conclusions
from a finite amount of special data. The machine should be
designed to discover scientific laws from data. A machine for
exploring space must be able to make inductions about its
environment both for more efficient communication to earth of its
discoveries and for adapting itself to a possibly hostile
environment. Turing has suggested that it would be easier to

construct a "child" machine rather then an "adult" machine;
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with an appropriate training sequence, this "child" machine
could learn to become an "adult" machine.

5. The teaching machine

The student would sit at one of many consoles directly
connected to the machine. The eventual goal is the creation
of a machine which would act as a superb tutor, adapting
itself to the requirements of each student.

6. The programming machine

Here will occur a progression through compilers which use
heuristics until at a certain stage it could fairly be called
a programming machine. Such & machine could program in a general-
purpose programming language. A human would give the machine
more or less informal specifications for a program.: The machine
and person would commnicate until the machine decided that the
specifications were consistent and sufficient to specify the
program. Then the machine would write the progranm. Note that
the programming machine could learn by incorporating in its own
procedures a program which it has written. Note also that Just
s in the GEOMETRY THEOREM PROVING MACHINE [3] the machine
would have available a convenient interpretation of a program,
i.e., the execution of the program with legal inputs selected

at random.
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