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Abstract

Cell-cell communication is critically important to the function of the immune system,
allowing a systems-level determination of the appropriate type of immune response to
a perturbation. The immune system has at its disposal multiple types of responses,
some beneficial and others harmful, all of which require coordination among immune
cells and between the immune system and non-immune tissue cells.

In this thesis, we have explored the use of multiple experimental and computa-
tional methods to understand how intercellular communication shapes the immune
response in health and disease. Applications of this work are primarily focused on en-
dometriosis, a disease characterized by the presence of endometrial glands and stroma
located outside of the uterus. Disease initiation (cell survival) and progression (in-
cluding neovascularization and neurogenesis) are thought to depend on interactions
with the immune system, particularly macrophages. We have investigated these inter-
actions on several levels, using both clinical samples and 3D in vitro culture models.
The model systems used here include endometrial stromal and epithelial cells as well
as peripheral blood monocytes with which to study dynamic processes within either
the eutopic endometrium or the endometriotic lesion environment.
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Chapter 1

Introduction

1.1 Role of the immune system in diseases of chronic

inflammation

The human immune system is responsible for defending the body from foreign pathogens

and also plays a key role in repairing tissue damage after an insult. The innate im-

mune system recognizes molecular patterns that indicate certain types of threats,

including microbial, parasitic, and viral pathogens, as well as sterile injury. While

the adaptive immune response has historically been considered a second step acti-

vated upon failure of the innate immune response to clear a pathogen, it is clear now

that cytokine communication between these two branches of the immune system is

crucial to shaping the response of each. In addition, interactions between the im-

mune system and non-immune tissue cells are critical to determining the appropriate

immune response and repairing tissue after an insult [108].

An appropriate and successful immune response depends heavily on network-level

decision making with input from both immune and non-immune cell types. Our

understanding of how the network reaches a decision is limited by both the number

of interactions and the logical complexity of the system. As such, it is necessary to

gain an improved understanding of the flow of information throughout the intercellular

communication network in order to find the source of a defect that gives rise to an
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inadequate or inappropriate immune response.

When the immune system encounters a particular molecular pattern, it must

decide whether the pattern is indicative of danger and, if so, what type of response

would be most effective. As many patterns encountered will originate from normal,

healthy tissue throughout the body, it is essential that the resulting immune response

is to remain inactivated or to produce anti-inflammatory factors. For this reason, both

T cells and macrophages must be able to adopt anti-inflammatory phenotypes in the

absence of a foreign pathogen, or to return to homeostasis once a pathogen has been

cleared. In the case of an infection, however, the appropriate response is to activate

a killing program appropriate for the type of pathogen detected. If injury occurs in

the absence of a pathogen, the immune system is able to respond by secreting factors

that will encourage tissue growth and angiogenesis 11161.

1.2 Immune involvement in endometriosis

Endometriosis, characterized by the growth of endometrial stroma and epithelial tis-

sue outside of the uterus, is a primary cause of pelvic pain and infertility, affecting 6-

10% of women of reproductive age [601. According to Sampson's hypothesis, proposed

in 1927, endometriotic lesions originate from shed endometrial tissue that travels in a

retrograde direction through the fallopian tubes and into the peritoneal cavity during

menstruation [152, 41]. However, this process of retrograde menstruation occurs in

approximately 90% of women, and it is not well understood why a subset of these

women develop endometriosis while others do not 117]. The quantity of refluxed tis-

sue does not appear to be different in women who develop endometriosis, although it

is likely that defects in eutopic endometrial tissue contribute to disease development

[156, 15, 29].

Evidence suggests that endometriosis develops as a result of a complex set of in-

teractions between cells of the immune system, shed endometrial tissue, and tissue

cells native to the peritoneal cavity. One focus of this thesis will be the differences in

how the immune cells, particularly macrophages, process and respond to cues from
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this complex environment. Ectopic and eutopic endometrial stromal cells are known

to secrete RANTES, a macrophage chemoattractant that may partially explain the

increase in macrophages present in the peritoneal fluid of endometriosis patients 1701.

Additionally, RANTES expression is increased in response to TNFa, which is secreted

by macrophages, suggesting a positive feedback loop between macrophages and en-

dometrial stromal cells present in the peritoneal environment of endometriosis [71].

IL-13 is another cytokine secreted by macrophages which also increases expression of

RANTES in endometrial stromal cells, in addition to promoting angiogenesis, which

is necessary for survival and invasion of endometriotic lesions [166, 701.

In a normal menstrual cycle, immune cell populations, particularly macrophages,

increase just prior to menstruation. Macrophages and other leukocytes secrete pro-

teases that contribute to ECM breakdown and inflammatory factors that induce apop-

tosis in stromal and epithelial cells 1151]. Apoptosis has been shown to be reduced in

both eutopic endometrial cells and shed endometrium from patients with endometrio-

sis compared to tissue from controls [42, 681. This finding provides a possible expla-

nation for how refluxed endometrial tissue is able to survive in some women but not

others. Additionally, apoptotic cells generally induce an anti-inflammatory immune

response; macrophages will respond to clear dying cells and debris, but will not se-

crete pro-inflammatory cytokines or chemoattractants [951. Conversely, if refluxed

endometrial cells fail to undergo apoptosis, they will either establish themselves in

a suitable environment, if they are able to obtain sufficient oxygen and nutrients,

or undergo necrosis. Necrosing cells, often found in sites of injury, release damage-

associated molecular patterns (DAMPs) such as high mobility group box 1 (HMGB1),

heat shock proteins, ATP, and DNA and RNA and tend to induce a wound-healing

response [1631.

Bruner-Tran et al. have developed an ovariectomized rag2y(c) mouse model which

has convincingly shown the role of immune cells in the growth of endometriotic lesions

[14]. Endometriosis was induced in mice by injection of human endometrium with

or without injection of autologous human leukocytes. Mice that received human

leukocytes were more likely to clear endometrial fragments and tended to develop
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smaller lesions than mice that were lacking functional immune cells [14].

There is increasing evidence that macrophages are a key population of immune

cells in the development and progression of endometriosis. In addition to increased

prevalence in the peritoneal cavity of women with endometriosis, macrophages in

endometriosis patients do express markers associated with alternative macrophage

activation, and alternatively activated macrophages increase lesion growth in mice

[14]. This wound healing phenotype is necessary for angiogenesis in endometriotic

lesions [22]. Previous work from our lab has used unsupervised clustering to classify

subjects based on peritoneal fluid cytokines 191. Many of these cytokines are secreted

primarily by macrophages, providing further evidence that macrophage activation

may play a key role in endometriosis. Cytokines which are known to be secreted

by macrophages also appear to affect endometrial cell attachment and invasion into

a mesothelial monolayer in an in vitro model, although studies thus far have been

limited in the complexity of the cue environment to only a few cytokines [127, 821.

Non-endometriotic cells of the peritoneum have also been found to have increased

mRNA expression of some cytokines and proteases, including TGF3, IL-6, and MMP-

3, in women with endometriosis compared to controls, providing further evidence that

peritoneal cells both respond to and contribute to the inflammatory environment of

the peritoneal cavity [50].

1.3 Previous Efforts to Model Cell-Cell Communi-

cation

1.3.1 Experimental Strategies

A major difficulty in studying multicellular systems is isolating signals from each of

the contributing cell types. One commonly employed method for determining which

cell type in multicellular systems is responsible is to simply separate cell type across a

transwell membrane or other divider, including microfabricated systems [159]. These

types of methods allow for recovery of pure populations of each cell type as well
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as exchange of soluble signaling molecules across the membrane, but also cause local

accumulation of signals within each compartment, with a lower concentration reaching

the other cell type(s) of interest.

An alternative method which allows for more proximal interaction among cell

types involves labelling the proteins of each cell type by culturing the cells in heavy or

light medium, then measuring proteins by mass spectrometry [84]. Recently, a method

has been developed to allow similar labeling of proteins in cell lines continuously, so

the time period over which communication can be studied is extended [165, 164].

These methods require relatively larger numbers of cells, so that sufficient protein

can be obtained for the mass spectrometry [84] and as such are challenging for use

with primary cells.

1.3.2 Computational Strategies

To better understand the immune and immune-tissue cell interaction networks, one

would ideally aim both to make the network topology tractable and to assign quan-

titative transfer functions between nodes. Incorporating multiple cell types into the

network also requires the network to include two types of nodes, or nodes and "meta-

nodes" representing cytokines and cells, where cytokines are secreted by specific cell

types and then act to affect specific signaling pathways within specific cell types.

Previous efforts to model immune cell interaction networks have been very difficult

to interpret because of the complexity of the network [157, 54]. In order to make

the network more interpretable, we must first identify the most important cells and

cytokines (nodes) to include in the network.

Enrichment score-based methods, such as gene set enrichment analysis and the

Connectivity Map approach allow specific functions, pathways, cell types, or molecules

to be identified as important distinctions between two populations [103, 161]. En-

richment scores may also be used with measurements that are relative, rather than

quantitative, since they depend only on ranks of analytes measured, which may make

this approach particularly useful for cytokines that have wide concentration ranges,

possibly outside of the range of a standard curve but still within the detection limits of
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an assay such as Luminex. Enrichment scores have previously been used successfully

by Bolen et al. to identify PBMC subsets based on gene expression data using the

Immune Response in Silico (IRIS) database [10, 2]. In addition, Beste et al. used a

similar approach to infer which immune populations were active in the peritoneal fluid

of endometriosis subjects, with the major modification of comparing gene expression

databases to secreted cytokine protein levels rather than gene expression levels [9].

The use of enrichment scores thus provides a method to identify cell types of interest

to be included as nodes, in addition to the cytokines identified directly from Luminex

results.

Previously, deconvolution has also been used to identify subsets of immune cells

that are active in a mixed population. An early example was the application of

expression deconvolution first to identify cell populations present in a mixture of

immune cell lines and then to discover activated cell populations present in different

proportions in systemic lupus erythematosus [1]. An extension of this method which

is of particular interest is the comparison by Qiao et al. of algorithms that include

(1) reference populations only, (2) reference populations plus additional unknown

profiles, and (3) reference profiles adjusted to account for environmental conditions

[141]. Deconvolution-based methods could therefore provide several alternatives to

enrichment scores for identifying activated cell populations.

Principal components analysis (PCA) has been used extensively in the past to

reduce the dimensionality of data collected on complex cell phenotypes in an unsuper-

vised manner. Partial least squares discriminant analysis (PLSDA) is an alternative

method frequently used to distinguish between classes of samples, for example, dis-

eased vs. control, and identify factors most important for differentiating between the

classes [81, 106]. Both PCA and PLSDA are useful for prediction and classification

tasks, but are not able to infer any information about network structure.

Several groups have previously attempted to use computational strategies to infer

information about cell-cell communication or multi-cell systems from ligand-receptor

pairs [146, 7]. By combining receptor-ligand interactions with gene expression data,

cell type-specific interactions can be inferred [146]. Combined with intracellular sig-
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naling prior knowledge, cells could be defined as "meta-nodes" containing their respec-

tive intracellular signals, with "meta-edges" representing cytokines or other soluble

signals involved in receptor-ligand interactions among the cell types of interest.

1.4 Thesis Objectives

Previous work has shown that endometriosis is an extremely common cause of pelvic

pain and infertility affecting up to 10% of women. While the disease is defined by

endometrial glands and stroma located outside of the uterus, it is additionally char-

acterized by an inflammatory environment conditioned by immune cells, including

macrophages. Interactions among these cell types are key to the initiation and pro-

gression of the disease, yet this remains an understudied area. In this thesis, I have

aimed to apply computational methodologies to understand intercellular communi-

cation in physiologically relevant in vitro systems, with a focus on inflammatory

signaling in endometriosis.

I began with a simplified in vitro system of easily obtainable primary cells that

could be cultured in suspension, CD4+ T cells and monocytes, to investigate inter-

actions between the innate and adaptive immune system and characterize cytokine

behavior using self-organizing maps (Chapter 2, published in [154]).

I simultaneously began a project investigating cytokine and protease concentra-

tions in clinical samples (peritoneal fluid and lysed endometrial biopsies) from two

patient cohorts, Boston and Oslo (Chapter 3; partially published in [851). This study

was closest to the clinic, but, due to the nature of the samples, it did not allow for the

development of a robust system for perturbing the cells and obtaining time-dependent

measurements. The clinical studies thus motivated the further development of an in

vitro system that could be manipulated over time.

To gain more computational expertise, I did a 6-month internship at Novartis,

working on benchmarking various network modelling methods (Chapter 4). While

these methods were developed largely for gene expression data, we further tested

their use with a variety of other data types (functional genomics screens, KEGG and
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Reactome pathways, genetic association data, and gene expression from the Connec-

tivity Map[102]) as well as multiple network sources. I independently extended these

methods in some preliminary tests using multi-cell networks as would apply to my

remaining thesis work.

I then proceeded to a more physiological and dynamic 3D model system repre-

senting eutopic endometrium, with which we performed preliminary investigations of

interactions between monocytes and endometrial cells (Chapter 5). We found that

monocytes differentiate into macrophages in the presence of endometrial cells, but fail

to adhere to the gel in the absence of other cell types. We additionally characterized

cytokine secretion of each of the three cell types alone and in combination, applying

methods from Chapter 2 to the same disease area as Chapter 3 (partially published

in [34]).

Finally, I have combined aspects from each of the previous chapters to develop a

3D culture model of an endometriotic lesion. By encapsulating primary endometrial

stromal and epithelial cells and monocytes into a functionalized PEG hydrogel and

stimulating with IL-1b, we were able to impair hormone responsiveness of cells in a

way that mimics endometriosis. Using network modeling methods to incorporate prior

knowledge of intracellular signaling, we then aimed to predict potential drug targets

that may reduce inflammation and restore hormone responsiveness in this disease-like

state (Chapter 6). In the future, this system could be customized to include all three

cell types from an individual patient, to test responsiveness to a panel of drugs in a

personalized lesion model.

The overall impact of this work has two aspects: experimental methods and data

analysis. The development of a synthetic hydrogel lesion model that allows for the

use of primary cells should advance understanding of endometriosis pathogenesis and

treatment. Additionally, the application of existing computational methods (self-

organizing maps, network models) to multi-cell systems will expand our ability to

understand the function of complex tissues. While this work has focused on en-

dometriosis, methods applied here could also be used to further understand other

diseases of chronic inflammation in which immune and non-immune tissue cells inter-
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act, such as cancer or autoimmune disease.
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Chapter 2

A simplified in vitro system to

identify effects of cell-cell

communication on cytokine secretion

2.1 Acknowledgments

Work in this chapter was conceived of and performed in collaboration with Sarah

Schrier Hesse. Follow-up work described in the Discussion was done by Sarah Schrier

Hesse and Deborah Plana. This work has been published in [154].

2.2 Introduction

The innate immune system, the older of the two arms of the immune system, is shared

across animal species. More recent in evolutionary terms, the adaptive immune system

allows for more precise response to specific pathogens. Communication between these

two branches occurs by both direct cell-cell contacts and through soluble factors and

is critical for an appropriate immune response. Cytokine signaling, a major mode of

soluble factor communication, allows for coordination between these two branches as

well as among cells of different or the same type within each branch.

Cytokine profiles have been studied in human serum, plasma, and other fluids in
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many disease states, including specifically immune disorders, such as arthritis [183,

69], lupus [96], and ulcerative colitis [36], as well as diseases of other systems that

also involve chronic inflammatory processes, such as cancer [181, 90], cardiovascular

disease [122, 1371, and endometriosis [9]. Since the introduction of TNFa antibody

infliximab (Remicade) in the 1990's for the treatment of colitis and arthritis [45],

many drugs have been developed for the treatment of chronic inflammatory conditions

which target either cytokines themselves (e.g. ustekinumab for psoriasis and Crohn's

disease [147, 6], secukinumab for psoriasis [73], mepolizumab for asthma [184], and

ixekizumab for psoriasis [118]) or other proteins such as cytokine receptors that are

critical to cytokine signaling (e.g. benralizumab for asthma [128] and sarilumab for

rheumatoid arthritis [58]).

Peripheral blood provides easily accessible cells from both branches of the immune

system. We have elected here to use monocytes as a representative innate immune

cell and CD4+ T cells as a representative adaptive immune cell, as both cells are

populous in the peripheral blood (roughly 10% of peripheral blood mononuclear cells)

and secrete numerous cytokines involved in communication between the two cell types.

2.3 Methods

2.3.1 Isolation of Monocytes and CD4+ T cells

Freshly collected peripheral blood was purchased (Research Blood Components, Boston,

MA). Peripheral blood mononuclear cells were isolated using Lymphoprep (StemCell

Technologies, Cambridge, MA, cat #07811) according to the manufacturer's instruc-

tions. Briefly, blood was diluted 1:1 in PBS 2% FBS. 30 mL diluted blood was layered

slowly on top of 15 mL Lymphoprep in a 50 mL conical tube without mixing. Blood

fractions were separated by centrifuging 20 minutes at room temperature and 800g

with the brake off. The buffy coat layer was collected using a Pasteur pipette, then

rinsed twice with PBS.

CD4+ T cells and monocytes were each isolated by negative enrichment (Stem-
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Cell Technologies, Cambridge, MA, cat #19058 and #14052, respectively). PBMCs

were resuspended at 50x10 6 /mL in EasySep buffer (StemCell Technologies #20144),

then incubated with either CD4+ T cell or monocyte enrichment antibody cocktails

followed by incubation with magnetic particles. EasySep buffer was added up to 2.5

mL, and cells were placed in an EasySep magnet (StemCell Technologies #18000)

for 2.5 minutes, then inverted so that cells that were not bound to magnetic beads

(CD4+ T cells or monocytes) could be collected in a second tube. Live cells were

counted using trypan blue and a hemocytometer.

Cells were thawed and stained for CD4 and CD14 to validate CD4+ T cell and

monocyte enrichment. Cells were incubated in PBS 1% BSA 0.1% tween-20 (PBS-

TB) for 1AAEhour to block, then resuspended with FITC anti-CD4 (BD Pharmingen)

and PerCP-Cy5.5 anti-CD14 (BD Pharmingen) and incubated overnight at 4C. The

following day cells were washed 3x in PBS-TB and analyzed using an Accuri C6 flow

cytometer (Becton Dickinson). Results were analyzed in FlowJo software (FlowJo).

2.3.2 Experimental setup

Cells were cultured 24 hours in a 96 well U-bottom plate with cell compositions of

100,000 CD4+ T cells; 75,000 CD4+ T cells and 25,000 monocytes; 25,000 CD4+ T

cells and 75,000 monocytes; or 100,000 monocytes. PMBCs were seeded at a density

of 100,000 total cells per well. Mixtures of cells came from the same subject. Cells

were unstimulated or stimulated with 2.5aAEpL/well anti-CD3/CD28 beads (TCR;

Dynabeads, Thermo-Fisher) to stimulate T cells; 20 ng/well lipopolysaccharide (LPS,

Sigma), to stimulate monocytes; or 1:500 diluted PMA/ionomycin cocktail (PI; Cell

Stimulation Cocktail, eBioscience), to stimulate both cell types. Conditioned medium

was collected at 24 hours post stimulation, clarified by centrifugation 15 min at 15,000

RPM and immediately used in Luminex assays. Each condition was performed in

technical triplicate (3 wells for each stimulation condition) and biological triplicate (3

separate human donors). Cell culture was performed in RPMI media supplemented

with 10% FBS.

In addition to conditioned medium, plasma from the same subjects was collected
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from one 10mL tube of blood. One 10mL vial from each subject was centrifuged for

15 minutes at 2000 g at 4*C. Plasma was collected from the supernatant and frozen

at -80'C until use.

2.3.3 Viability measurements

Viability was measured using cells from one subject after 24 hours of mono- or co-

culture using propidium iodide (BioLegend). Cells and medium were collected after 24

hours of incubation, and wells were rinsed with PBS and rinsate collected to retrieve

remaining cells from the bottom of the well. Propidium iodide was immediately added

to cells at a 1:200 dilution. Cells were analyzed using an Accuri C6 flow cytometer

(Becton Dickinson), and gating was performed manually.

2.3.4 Cytokine measurements

Cytokines in undiluted conditioned medium and plasma were measured by Luminex

(BioPlex 27-plex and 21-plex cytokine kits) immediately following each experiment,

without freezing. Protocols provided by the manufacturer were adapted to allow the

assay to be performed in a 384 well plate to avoid introducing batch effects. Eight-

point standard curves plus blanks (medium) were included for quantification and

prepared according to manufacturers instructions.

For each cytokine, 5-parameter logistic curves were fit to the standards, including

the blanks using MATLAB (MathWorks) and the L5P function [231. Curves were used

to calculate concentrations for each sample replicate. Median fluorescence intensities

for the samples below the lower asymptote or above the upper asymptote of the

standard curve were imputed to be either the MFI of minimum asymptote or 99%

of the MFI of the maximum asymptote, respectively. Lower limit of quantification

was calculated for each cytokine as the lowest standard concentration that could be

distinguished from (at least three standard deviations above) the media-only blank

for that cytokine. One cytokine, IL-7, was excluded from further analyses because

measurements for all subjects and conditions fell below the background, which was
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taken to be equal to the blank plus 3 standard deviations.

2.3.5 Self-organizing maps

Self-organizing maps were used to identify patterns of cytokine communication be-

tween CD4+ T cells and monocytes. Self-organizing maps allow for unsupervised

clustering of data into lower-dimensional space, frequently selected to be 1- or 2-

dimensions for visualization purposes.

Cytokine concentrations across different donors and stimuli were considered as

a function of cell composition (100% monocytes, 75% monocytes with 25% CD4+

T cells; 25% monocytes with 75% CD4+ T cells; 100% CD4+ T cells) and were

normalized to be between 0 and 1 across the 4 cell fractions. Cytokine-conditions

that were zero across all 4 fractions were omitted. The SOM was generated using

the neural network toolbox in MATLAB 2015b (The MathWorks, Natick, MA). The

map was initialized with a 2-dimensional 4x4 square grid, resulting in 16 clusters, and

the algorithm was allowed to continue for 107 iterations, with an initial neighborhood

size of 4. The number of clusters (24) was selected to allow for clusters of high or low

values for each of the 4 cell fractions, although varying the number of clusters did not

affect the overall conclusions (Fig. 2-1).

2.4 Results

2.4.1 Cell isolation and viability

PBMCs and isolated CD4+ T cells and monocytes were stained for CD4 (CD4+T

cell-specific) and CD14 (monocyte-specific). PBMCs (excluding neutrophils) without

any isolation steps were roughly 20% CD4+ T cells and 35% monocytes, compared to

>90% CD4+ T cells after CD4+ T cell isolation and 70% monocytes in the isolated

monocyte population.

It is unknown exactly how cell death would affect conditioned medium levels of

each cytokine. Thus we wanted to ensure that cell death was comparable across
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Figure 2-3: Cell viability was assessed in each fractional population and PBMCs after
24 hours at rest in assay conditions.

cell compositions. Due to sample limitations, viability staining was performed on

cells from one donor only, in the resting condition. The percent of dead cells was

lowest in whole PBMCs (18.4%) and highest in monocytes only (38.9%) (Fig. 2-

3). Of particular importance for this study, interactions between CD4+ T cells and

monocytes did not appear to increase cell death.

2.4.2 Single cell-type behavior

Stimulation conditions in this work were chosen to capture both cell types at rest (no

stimulation), activated monocytes (LPS), activated T cells (TCR) or dual activation

of both cell types (PMA + ionomycin). Behavior of the single cell types reflected

these patterns, with strong activation of monocyte-secreted cytokines present when

monocytes were stimulated with LPS (e.g. IL-1a and / and IL-6) [37] and activation

of known CD4+ T cell-secreted factors under TCR stimulation (e.g. IL-2 and IL-
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4). Similarly, CD4+ T cells behaved similarly under LPS stimulation as at rest,

consistent with a lack of response to LPS. Monocytes had only a limited response

to TCR stimulation beads, possibly due to an ability to phagocytose particles rather

than the actual molecular TCR stimulus.

2.4.3 Identification of nonlinearities in monocyte-CD4+ T cell

cytokine secretion

Some cytokines are secreted primarily by one cell type without substantial effects due

to communication between the two cell types, and concentrations of such cytokines

in conditioned medium were roughly proportional to the fraction of the secreting cell

type. An example of this type of behavior is IL-1a under PMA/ionomycin stimulation

(Fig. 2-5A); IL-la within the immune system is secreted mainly by myeloid cells, and

the concentration measured decreases as the fraction of monocytes decreased.

On the other hand, many cytokines exhibited highly non-linear relationships to

the fractional composition of the cells. IP-10, for example, was detected at relatively

low levels in either 100% monocytes or 100% CD4+ T cells but at much higher levels

in cell mixtures (Fig. 2-5B). We can thus infer that IP-10 is affected in some way by

interactions between the two cell types.
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2.4.4 Classification of cytokine behavior using self organizing

maps

We were interested in classifying the types of linear and, more interestingly, non-linear

relationships between fractional cell composition and cytokine concentrations mea-

sured in the conditioned medium. We were interested in patterns that occur in any

stimulation condition or in any individual donor, across any of the 47 cytokines de-

tected above background, so data used consisted of a matrix of 564 cytokine-conditions

by 4 fractional compositions.

Self-organizing maps were used to identify these patterns of secretion resulting

from CD4+ T cell-monocyte communication (Fig. 2-6). Self-organizing maps are an

unsupervised clustering technique that allows multi-dimensional data to be mapped

into clusters in a lower-dimensional space, frequently in one or two dimensions to

allow for visualization, where similar clusters appear close together [98, 182]. For each

cytokine and stimulation condition, the three donors were generally clustered into the

same or neighboring clusters, with the median (0.667) of the mean distances between

assigned clusters for the three donors for a given cytokine and stimulus resulting from

two donors being in one cluster and the third being in a neighboring cluster. Only

four conditions had a mean donor-to-donor cluster distance of greater than 2, two of

which were resting (MCP-3 and SCGF-b), indicating possible differences in baseline

activation of each cell population across subjects.

The algorithm identified a natural organization of the data by clustering together

cytokines secreted primarily by monocytes (Fig. 2-6, cluster 1) or by CD4+ T cells

(cluster 16) as well as cytokines enhanced (cluster 4) or depleted (cluster 13) due to

communication between the two cell types. As expected, 10 out of 12 conditions in

cluster 1 were stimulated with LPS (blue), inducing strong monocyte activation, and

all conditions in cluster 16 were stimulated with either TCR (green) or PI (red). While

few cytokines were observed to decrease due to interactions between the cell types,

many cytokines were increased. Of particular interest, cluster 4 included measures

of IP-10, MIG, and IL-16 from all three subjects, indicating a consistently elevated
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response due to interactions between the cell types. Cluster 8 also included cytokines

elevated in both mixture conditions relative to individual populations, including TCR-

stimulated IL-lb and MIP-13 from all three donors. In the case of IL-1, TCR

stimulation of CD4+ T cells induces IFNy, which in turn induces monocyte secretion

of IL-13. IL-13 and MIP-13 are also known to induce secretion of each other in

multiple cell types, suggesting positive feedback regulation among cytokines in this

cluster. IFN-y, a possible effector of these and other observed communication events,

appears in clusters nine and seven in the absence of T cell stimulation and clusters 12,

14, 15, and 16 under TCR or PI. IL-10, a well-studied example of an anti-inflammatory

cytokine, appears in clusters associated with either monocyte or CD4+T cell secretion

under stimulation of those individual cell types (LPS or TCR, respectively) but is one

of the few cytokines to be decreased due to communication under resting (cluster 9)

or PI (cluster 14) stimulation. It is likely that other less well-studied cytokines in

these clusters, such as CTACK (CCL27), may have an inhibitory role under some

conditions.

2.5 Discussion and conclusions

In the CD4+ T cell-monocyte co-culture experimental setup described here, we ob-

served that secretion of most cytokines differs in co-culture from what would be

expected based on a linear combination of mono-culture cytokine responses. Thera-

peutics targeting the function of specific populations of immune cells are currently of

great clinical interest, and this work indicates that understanding how such interven-

tions affect not only the cell type of interest but interactions with other immune cell

populations is critical.

Clustering using SOM allowed us to identify key features of secretion patterns. For

example, we could ascertain whether, under a given stimulation condition, a cytokine

is secreted primarily by CD4+ T cells or by monocytes, and whether a cytokine is

increased or decreased due to interaction between the two cell types. More cytokines

were increased due to communication between cell types than decreased, as might be
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Figure 2-6: Self-organizing map separates patterns of cytokine communication re-
sponses in CD4+ T cell/monocyte cocultures.
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expected given the known ability of innate immune cells to activate adaptive immune

cells, and increasing evidence that adaptive immune cells also influence the innate

immune response [57]. As appropriate functioning of the immune system is dependent

on coordination of many branches of a complex network of cell types and proteins,

understanding this interplay between cells can potentially impact many studies of

disease biology. In fact, the immune system plays a role in many acute and chronic

diseases, and improved understanding of the inflammatory environment conditioned

by interactions between the immune and non-immune tissue cells using similar types

of co-culture assays is likely to improve our understanding of many disease states.

2.5.1 Follow-up work

In this chapter, we identified many examples of intercellular communication effects on

cytokine signaling, but this observational design did not allow us to directly elucidate

mechanisms behind the observed interaction effects. Combined with published data,

however, we could use this information to hypothesize mechanisms for follow-up. As

shown in Schrier et al. [154], one such example is the high level of IP-10 (IFNy-

inducible protein) observed in 75% monocyte 25% CD4+ T cell condition under

TCR stimulation, despite being low in either individual cell population. IP-10 is

induced in monocytes under stimulation with IFN-y, which is in turn induced by

TCR stimulation of CD4+ T cells. Thus, the production of IP-10 is not expected in

the absence of intercellular communication. It was observed that conditioned medium

from TCR-stimulated (but not resting) CD4+ T cells was sufficient to induce IP-10,

indicating that the effect is due to communication via soluble factors rather than

cell-cell contact.
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Chapter 3

Alteration of cytokine profiles in

peritoneal fluid and endometrial

biopsies from women with

endometriosis
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Gynepathology Research, and Newton-Wellesley Hospital.

3.2 Introduction

Endometriosis, or growth of endometrial glands and stroma outside of the uterus, is

a common cause of pelvic pain and infertility affecting up to 10% of women. Current

first-line therapy is hormonal medications, which may treat pain but are counter-

productive for fertility and often have unpleasant side effects; definitive treatment

requires hysterectomy.

The most commonly held hypothesis for the pathogenesis of the disease, proposed

by Sampson in 1927, is retrograde menstruation, whereby endometrial tissue shed

during menstruation is transported in a reverse direction through the fallopian tubes

and deposited into the peritoneal cavity [152]. It is thought that over 90% of women

have evidence of retrograde menstruation, however, and the mechanisms of disease

initiation and progression are unclear. Alternative hypotheses include (1) that lesions

are of Mullerian origin and (2) aberrant differentiation into endometrial-like cells

in situ [191, and it is likely that these alternatives explain some subset of cases of

endometriosis.

In the case of retrograde menstruation, immune cells and the inflammatory en-

vironment of the peritoneal cavity may play a key role in determining whether dis-

placed tissue is cleared or able to develop into endometriotic lesions. If shed endome-

trial tissue was undergoing apoptosis, the tissue should release signals instructing

nearby macrophages to phagocytose the cells, in which case macrophages are stim-

ulated towards more of an anti-inflammatory phenotype. In contrast, if shed tissue

is undergoing necrosis, the tissue is more likely to promote more of a wound-healing

macrophage phenotype, which promotes tissue growth and angiogenesis. In the le-

sion microenvironment (similar to a tumor microenvironment) these alternatively

activated macrophages can thus promote survival, growth, and invasion by lesions
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Figure 3-1: Comparisons among data sets.

[4].

Previous work from our lab and others has shown that inflammatory cues in the

peritoneal fluid may be related to the presence of endometriosis or to disease severity

[9, 86]. In this chapter, we investigate cytokines and proteases in peritoneal fluid and

endometrial biopsies from three cohorts of patients (Fig. 3-1).

3.3 Materials and Methods

3.3.1 Sample Collection

Peritoneal fluid samples were collected from pre-menopausal women who were under-

going surgery for benign gynecological conditions. Peritoneal fluid was aspirated at

the beginning of surgery, then centrifuged 5 min at 330g to separate cells and fluid.

The cells were resuspended in PBS, and the samples were transported on ice to the

laboratory.

Endometrial biopsies were similarly taken from pre-menopausal women undergo-

ing surgery for benign gynecological conditions. Biopsies were taken using a 3mm
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Pipelle, with up to 3 biopsies/patient. Biopsies were expelled into cryovials and flash

frozen in either a dry ice-ethanol slurry (NWH) or liquid nitrogen (Oslo University).

Biopsies were then stored at -80*C until use. Biopsies collected in Oslo were shipped

to MIT on dry ice.

3.3.2 Endometrial biopsy processing

Initially, endometrial biopsies were processed in several ways, and the most consistent

method was selected for further analysis across all samples. Because biopsies consist

of varying amounts of solid tissue, blood, and mucus, protocol tests were done with

tissues either not rinsed, rinsed with PBS to remove blood, or rinsed with both PBS

and dithiothreitol (DTT) to dissolve mucus prior to cell lysis. Biopsies were lysed

by addition of 250pLL lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA,

1% NP40 substitute, and 10% glycerol in DI water, with cOmplete mini protease in-

hibitor (Roche) and phosphatase inhibitor cocktail II (Boston Bioproducts)), followed

by tissue disruption using a pellet pestle (Kimble Kontes), then addition of 750pL

additional lysis buffer and incubation at 4*C for 30 minutes. Lysates were clarified

by centrifugation 15 minutes at 16,100x g and 4'C. Supernatant was collected and

stored at -80*C until use.

For actual data collection, biopsies were divided into three sections each, with one

section lysed, one section re-frozen, and the third section used for histology. Samples

for histology were prepared in two ways: formalin-fixed paraffin embedded (FFPE) or

frozen in optimal cutting temperature (OCT) compound. FFPE samples were placed

in a bag inside of a cassette and fixed for 6 hours at room temperature on a plate

rotator.

3.3.3 Measurement of cytokines and proteases

Concentrations of cytokines and proteases were measured in neat peritoneal fluid, con-

ditioned medium, and clarified lysates using multiplexed bead-based immunoassays

(human cytokine panels I and II, BioRad; human MMP and TIMP luminex panels,

48



R&D systems). The concentrations of 48 different cytokines, chemokines, and growth

factors in the PF were measured with the BioPlex FLEXMAP 3D system (Bio-Rad

Laboratories), and data were collected with xPONENT version 4.2 (Luminex Cor-

poration). The cytokines were all included in human cytokine panels I and II from

Bio-Rad. The samples were assayed in triplicate of undiluted PF samples. The mean

of median fluorescence intensity (MFI) in 10 parallel aliquots of standard diluents

was used to establish the background MFI. The lowest limit of detection was defined

as the background +2 SD. Average MFI from three parallels of PF samples were con-

verted to absolute concentrations above the lowest limit of detection via calibration

to ninepoint standard curves using the L5P function 123] in MATLAB R2015b (The

Mathworks).

3.3.4 Network Analysis

As both cytokine signalling and protease activity are known to play roles in en-

dometriosis, we aimed to find relationships between these two systems. We combined

cytokine MFI data from [9] and protease (concentration) MFI measurements from

the same peritoneal fluid samples. For each analyte, technical replicates were av-

eraged, and Spearman correlations were found for each other analyte in the assays.

Correlations were included in a network model if Benjamini-Hochberg FDR<0.025.

Correlation networks are highly susceptible to artifacts from confounding effects [105].

To account for this and further investigate relationships between individual analytes,

a partial correlation network was generated from the same data. Partial correlations

are found by regressing one analyte "A" against all but one "B" of the remaining

analytes, then finding the Spearman correlation of "B" with the residuals from the

regression of "A" against the other analytes. Edges were included if p<0.025, without

multiple hypothesis correction.
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3.4 Results

3.4.1 Histology of previously frozen endometrial biopsies

Only one third of each biopsy vial was used for cytokine measurements, so we aimed

to use some of the remaining tissue for histology. Endometrial biopsies used for

diagnostic purposes are typically formalin fixed in the operating room, then paraffin

embedded; however, all endometrial biopsies from this study were previously flash-

frozen in the OR in order to preserve cytokine levels. We thus attempted two methods

of sample preparation, either formalin-fixed, paraffin embedded (FFPE) or frozen in

optimal cutting temperature (OCT) compound. While OCT-frozen samples did not

retain much glandular structure, epithelial glands and stroma were visible in the

H&E-stained FFPE sample (Fig. 3-3).

3.4.2 Development of a protocol for cytokine measurements

in endometrial biopsies

Test biopsies were collected from Newton-Wellesley Hospital hospital and split into

three cryotubes before freezing. On three separate days, one cryotube per biopsy was

thawed and divided into three sections. Biopsies were processed in three ways prior

to lysis: (1) without rinsing, (2) rinsing with PBS to remove blood, or (3) rinsing

with both PBS and DTT to remove blood and mucus. In addition, both total protein

and DNA were measured as a method of normalizing to either amount of tissue

(including mucus) or number of cells. This process was repeated two additional times

on different days to determine reproducibility. In general, both median coefficient of

variation (CV) across the measured cytokines and mean squared error were lowest for

unrinsed biopsies (Table 3.1). While rinsing was intended to remove components of

the samples that would confound tissue cytokine measurement, the extra processing

steps added additional sources of variability.
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Cytokine concentration Wash step Median CV MSE

Subject 0162 None 0.31 98365
PBS 0.49 140102
PBS + DTT 0.65 154076

Subject 0163 None 0.31 20115
PBS 0.13 104671
PBS + DTT 0.18 144091

Subject 0175 None 0.76 5527307
PBS 0.34 2211603
PBS + DTT 1.11 5464672

Normalized to total protein

Subject 0162 None 0.25 425
PBS 0.34 4259
PBS + DTT 0.38 181421

Subject 0163 None 0.31 330
PBS 0.52 34336
PBS + DTT 0.28 65666

Subject 0175 None 0.77 27756
PBS 0.19 20549
PBS + DTT 1.05 132360

Normalized to DNA content

Subject 0162 None 0.43 238
PBS 0.57 2043
PBS + DTT 0.96 28737

Subject 0163 None 0.32 56265
PBS 0.44 54439
PBS + DTT 1.08 4016489

Subject 0175 None 0.78 1771
PBS 0.25 1013
PBS + DTT 0.62 6529

Table 3.1: Error associated with lysis preparation and normalization methods.

3.4.3 Cytokines in endometrial biopsies of infertile women with

and without endometriosis

48 cytokines were measured in the lysed endometrial biopsies from 89 subjects, 54

with endometriosis and 35 without. Patient characteristics were similar across no

endometriosis, stage I-II, and stage III-IV, although the prevalence of dysmenorrhea

increased with endometriosis stage (Table 3.2).
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No Endo Stage I-II Stage III-IV
Subjects 35 41 13
Mean Age (Years) 33.8 (27-41) 32.0 (24-39) 34.2 (30-37)
Gravidity 0.57 (0-2) 0.41 (0-2) 0.69 (0-4)
Duration of Infertility (Months) 33.3 (11-99) 29.3 (12-83) 38.2 (11-99)
Any pain 0.31 0.27 0.38
Dysmenorrhea 0.60 0.70 0.85
Dyspareunia 0.46 0.34 0.46
Biopsy total protein 9.93 (0.48-21.74) 11.87 (0-50.54) 11.67 (1.54-19.45)

Table 3.2: Subject characteristics by presence of endometriosis, shown as mean

(range).

Cytokine concentrations measured from endometrial biopsies were normalized to

total protein. No normalized cytokine concentrations were significantly different be-

tween patients with vs. without endometriosis when all subjects were considered,

regardless of cycle phase or other patient characteristics. Principal components anal-

ysis also failed to separate subjects by either endometriosis stage or spontaneous

pregnancy within 12 months of surgery (Fig. 3-4).

When patients were separated by cycle phase, GRO-a and SDF-la were both

lower in endometriosis than control patients in endometrial biopsies taken during the

luteal phase but not significantly different in the follicular phase. However, samples

from endometriosis vs. control cases were not easily distinguishable based on these

two cytokines alone (Fig. 3-5). Principal components analysis was thus repeated

on subsets of the data from biopsies from each cycle phase; however, unsupervised

analysis again failed to show any clear separation between endometriosis and control

patients even in data from luteal phase only (Fig. 3-6).

3.4.4 Cytokines in peritoneal fluid of infertile women with and

without endometriosis

The same panel of 48 cytokines was measured in peritoneal fluid samples collected

from the same set of patients as the endometrial biopsies, with some small number

of non-overlapping patients due to either low peritoneal fluid sample volume or lack
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Figure 3-4: PCA on all cytokine concentrations normalized endometrial biopsy cy-
tokines. Samples are color-coded by disease stage (A) or whether they achieved
spontaneous pregnancy by 12 months of follow-up (B).

of solid tissue in biopsy samples, resulting in a total of 85 subjects with both sets

of measurements. Of the 48 cytokines measured in peritoneal fluid, four cytokines

(IL-8, SCGF-#, HGF, and MCP-1) were significantly elevated in peritoneal fluid from

endometriosis patients while one (IL-13) was lower. Within only luteal phase samples,

IL-8, HGF, and SCGF-# were significantly higher; in the follicular phase, IL-13 was

significantly lower in endometriosis cases while IL-iRA, IP-10, and SCGF-0 were all

elevated.

3.4.5 Comparison of endometrial biopsy and peritoneal fluid

cytokines

Within the Oslo cohort of subjects, 85 subjects had sufficient peritoneal fluid volume

and solid endometrial biopsy tissue for both sets of measurements to be made. Signif-

icant differences between endometriosis and control subjects either overall or within

specific cycle phases did not overlap between the two sample types. We were thus

interested in whether cytokines would be correlated between the endometrium and

peritoneal fluid samples across patients. Although some correlations were statistically
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Figure 3-6: PCA on separated Luteal and Follicular phase normalized endometrial
biopsy cytokines.

significant, no strong (lPearson pl>0.5) positive or negative correlations existed be-

tween peritoneal fluid and endometrial biopsy cytokines, with the median correlation

across the 45 cytokines detectable in both samples being -0.03 (Fig. 3-7).

3.4.6 Comparison of peritoneal fluid cytokines across patient

cohorts

Several different studies within the Center for Gynepathology Research at MIT per-

formed similar analyses on subjects recruited from multiple cohorts. Patients at

Newton Wellesley Hospital were undergoing surgery primarily for pain and were gen-

erally older; patients at Oslo University Hospital were being evaluated for infertility

and were generally younger adults; and adolescent patients with endometriosis and

pain were recruited from Boston Children's Hospital. We aimed to compare peritoneal

fluid cytokine findings across these three populations to determine how consistent our

results were and to assess whether the patients' primary complaint(s) corresponded

to particular differences in cytokine profiles (Fig. 3-1). In all cases, p-values reported

here are not adjusted for multiple hypotheses (Table 3.3).

Few cytokines were significant across multiple cohort comparisons; only IL-8 was
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Figure 3-7: No cytokines were strongly correlated between endometrial biopsies and

peritoneal fluid samples across the Oslo patient cohort.

significantly higher in endometriosis subjects from both the Oslo and Boston adult

cohorts. HGF was significantly higher in endometriosis patients in the Oslo cohort but

significantly lower in the adolescent endometriosis patients vs. adult controls in the

Boston cohort. For most cytokines with at least one significant difference, levels were

higher in endometriosis cases compared to their respective control populations. The

only cytokine that was consistently lower across all three comparisons was CTACK.

3.4.7 Network analysis of cytokines and proteases in peri-

toneal fluid samples

MFIs related to cytokine, protease, and protease inhibitor (TIMP) concentrations

were measured in peritoneal fluid samples from the Boston cohort of samples. A

subset of this data was collected by Michael Beste and previously published in [9]. A

Spearman correlation network was generated from data combined for endometriosis

and control cases, for a total of 69 subjects. In the correlation network, nearly all

cytokines, MMPs, and TIMPs were positively correlated with one another (Fig. 3-8).

This relationship may be reflective of positive feedback among the analytes or due to
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Cytokine
IL-8
SCGF3
HGF
IL-13
MCP-1
MCP-3
IL-12(p40)
TNF-#3

-NGF
CTACK
IL-5
IL-15
IL-1/3
IL-4
IL-9
IL-17
G-CSF
IFN--
RANTES
TNF-a
IL-16
MIF

Oslo endo v ctrl
higher, p=0.001
higher, p=0.001
higher, p=0.002
lower, p=0.008

higher, p=0.023
higher, n.s.
higher, n.s.

n.d.
higher, n.s.
lower, n.s.
lower, n.s.

higher, n.s.
higher, n.s.
higher, n.s.

n.d.
n.d.

higher, n.s.
n.d.

higher, n.s.
higher, n.s.
higher, n.s.
higher, n.s.

Boston stage III/IV
endo v ctrl

higher, p<0.001
higher, n.s.
higher, n.s.
higher, n.s.
higher, n.s.
higher, n.s.
lower, n.s.

equal
lower, n.s.
lower, n.s.

higher, n.s.
higher, n.s.

higher, p<0.001
higher, p<0.001
higher, p=::0.011
higher, p=::0.012
higher, p<0.001
higher, p<0.001
higher, p=0.003
higher,p=0.024

higher, p=0.029
higher, p=0.014

Adolescent
endo v adult ctrl

lower, p=0.005

higher,
higher,

lower,
lower,
lower,

higher,
higher,

p=0.002

p< 0 .0 0 1

p< 0 .0 0 1

p=0.014
p=0.004
p=0.041

p< 0 .0 0 1

Table 3.3: Cytokine significance across three cohorts.

other confounding factors, such as fluid volume. To account for potential confounding

factors, we then generated a partial correlation network using the same data (Fig.

3-9).

Most cytokines and proteases were positively correlated in the correlation net-

work, possibly due to confounding factors such as peritoneal fluid volume. We thus

proceeded to generate a partial correlation network using the same data. The partial

correlation network is expected to be less sensitive to co-regulation and other non-

causative relationships. Comparing between the two networks, the partial correlation

network was much less dense than the regular correlation network, but the density of

edges between cytokines and proteases/TIMPs was higher (Table 3.4). Of particular

interest, the network showed evidence of much more complicated regulatory mecha-

nisms, as many more negative correlations were present, suggesting more inhibitory
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interactions. The top 10% most connected nodes in the partial correlation network

were MMP-10, MIF, IL-12(p40), IL-18, MMP-2, and TIMP-4, indicating that both

proteases and cytokines play a central role. The network includes partial correlations

between species with known interactions, such as the inhibition of MMP-2 by TIMP-2

and TIMP-4. The network also includes partial correlations between species with no

known interactions, such as between MMP-10 and IL-2, making it potentially useful

as a hypothesis-generating tool.

Original Correlation Network Edges Pairs Density
All 63 analytes 190 1953 9.7%
Cytokines (CK)/Growth Factors (GF) 158 1225 12.9%
CK/GF - Proteases/TIMPs 14 650 2.2%
Preateases/TIMPs 18 78 23.1%

Partial Correlation Network
All 63 analytes 87 1953 4.5%
Cytokines (CK)/Growth Factors (GF) 47 1225 3.8%
CK/GF - Proteases/TIMPs 34 650 5.2%
Proteases/TIMPs 6 78 7.7%

Table 3.4: Density of subsets of the full and partial correlation networks.

3.5 Discussion and Conclusions

3.5.1 Use of endometrial biopsies

Here we evaluated, as far as we are aware for the first time, a panel of cytokine

concentrations in lysed endometrial biopsies from a cohort of women being evalu-

ated for infertility. As endometriosis involves an interplay between shed endometrial

tissue and the peritoneal environment in which lesions develop, the investigation of

inflammatory processes within the eutopic endometrium may be complementary to

similar studies performed on peritoneal fluid samples [85, 9]. In this particular pa-

tient cohort, we found no strong relationships between endometrial cytokines and

either endometriosis stage or fertility outcomes; however, further study on additional

populations, particularly including patients with a primary complaint of pain, may
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be informative.

In this work, endometrial cytokines were not significantly different across cycle

phase, but GRO-a and SDF-la were significantly different between endometriosis

and non-endometriosis subjects in the luteal phase but not in the follicular phase.

Cycle phases were established by asking patients about their menstrual cycle, not by

histological evaluation of the endometrial biopsies. Because we have established that

at least some tissue features can be observed in FFPE and H&E-stained biopsies, and

we now have FFPE biopsy samples from each patient, it is possible that examination

by a pathologist could yield more accurate cycle staging for these samples.

3.5.2 Peritoneal fluid cytokines across cohorts

Significance of cytokine differences between endometriosis and control cases was not

generally consistent across different patient cohorts. The three cohorts here had sub-

stantial differences in terms of age and primary symptoms, and it is likely that both

larger sample sizes and additional subdivision of subjects by symptoms and other pa-

tient characteristics could lead to additional insights into, for example, endometriosis-

associated pain vs. endometriosis-associated infertility.

3.5.3 Network analysis

Network analysis of cytokine and protease concentrations suggest that these two sys-

tems are highly interrelated in the peritoneal fluid. Unfortunately, mimicking the

peritoneal fluid environment in vitro is nontrivial. In fact, efforts to follow up on

these results by testing for causal relationships between connected nodes in the net-

work using cell lines cultured in tissue culture plastic were largely unsuccessful. This

result is actually unsurprising when considering that the cell types present in the

peritoneal cavity (not only immune cells and possibly shed endometrial cells, but a

large number of mesothelial cells forming the lining of the peritoneal cavity) were not

adequately represented in our simple 2D culture system.

Finally, going forward, it would be informative to identify differences in cytokine/protease
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networks between patients with and without endometriosis. Tradiational partial cor-

relation requires a larger number of samples than analytes, which we achieved here for

all patients combined but not for disease stage-specific subsets of patients. More ro-

bust methods for partial correlation networks could improve our ability to subdivide

patients into smaller categories 167]. Additionally, larger studies, or meta-analysis

combining data collected across multiple sites, could allow for more in-depth charac-

terization of patient subpopulations.

3.5.4 Future work: In vitro models for time-dependent studies

Using primary samples collected from patients undergoing surgery, we are unable

to follow disease progression or changes over time throughout the menstrual cycle.

While we found some cycle-dependent associations between cytokine concentrations

and endometriosis stage, it is likely that patient-to-patient variability confounded

with cycle day masks real intra-patient cycle-dependent changes. In the future, in

vitro model systems using primary cells would allow for additional types of data to be

collected, including hormone response and inflammatory responses to perturbations

of cytokine /protease networks.
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Chapter 4

Benchmarking of network modeling

methods

4.1 Acknowledgments

Work shown in this chapter was done during an internship at Novartis, supervised

by Melody Morris. The author would like to thank Scott Gleim, FrWdric Sigoillot,

Joseph Loureiro, and Jeremy Jenkins for scientific guidance on this project; Yuan

Wang, Jaison Jacob, Nicole Renaud, and Zinger Yang for discussions about specific

datasets used here; and Mike Steeves and Mikhail Serkov for technical help with

cluster computing.

4.2 Introduction

In 2000, Schwikowski et al. demonstrated the utility of the Guilt by Association

principle to assign function of yeast genes by examining the function of neighboring

genes in a protein-protein interaction [155]. Since then, the scientific community has

launched a massive effort to determine protein-protein interaction (PPI) networks for

model organisms [169, 79, 144, 1791 and humans [150, 160]. At the same time, a

multitude of computational approaches have been developed for enhancing interpre-

tation of high throughput data by enabling contextualization of genes of interest with

65



known molecular interactions. The promise of these algorithms is to connect genes of

interest into functionally relevant networks by extending the list to include additional

genes relevant to the initial list.

While many of these network contextualization algorithms have been developed

in academia in the context of specific biological questions [112, 621, others are part of

commercially available tools (eg. Metacore, IPA). However, despite the growing num-

ber of available algorithms, to our knowledge there has been no systematic effort to

benchmark their ability to return meaningful, actionable hypotheses. In this work, we

aim to characterize 18 network contextualization algorithms in terms of the fraction

of novel findings in the output, degree of nodes returned, and performance for a cross

validation task with the ultimate aim of applying the algorithms to contextualize and

extend hits from siRNA and CRISPR phenotypic screens.

4.3 Methods

4.3.1 Network algorithms

In this work, we consider eighteen algorithms (Table 4.1) implemented as part of the

Computational Biology for Drug Discovery (CBDD) collaboration between Clarivate

Analytics and sixteen pharmaceutical companies. A key deliverable of CBDD is the

CBDD R package which implements published algorithms in a consistent interface.

Algorithms chosen were available in CBDD version 5.0 and had no major performance

considerations that would limit systematic benchmarking efforts. Additionally, the

aim of these algorithms was consistent with our aim: to use the network to contex-

tualize and extend genes of interest. Of these algorithms, we divide them into three

main types: node prioritization, causal reasoning, and subnet identification. Node

prioritization algorithms seek to prioritize network nodes that are near input nodes,

where the definition of "near" varies depending on the specific algorithm. Causal rea-

soning algorithms seek to prioritize network nodes that regulate input nodes based

on their network connectivity. Subnetwork identification algorithms seek to identify
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regions of the network that connect input nodes and include additional nodes for

their connection if warranted. In the case of subnetwork identification algorithms, we

wanted to be able to compare to the simplest case of network connections between

nodes. Thus, we implemented two additional algorithms: StartNodeLinks, which con-

nects input nodes, and StartNodeNeighborLinks, which includes connections between

input nodes and their immediate neighbors.

Algorithm Algorithm Type Output Reference

1 Guilt by Association Node Prioritization Node Score 1155]
2 Neighborhood Scoring Node Prioritization Node Score [132]
3 Interconnectivity Node Prioritization Node Score [72]
4 Network Propagation Node Prioritization Node Score [174]
5 Random Walk Node Prioritization Node Score [97]
6 ToppNet HITS Node Prioritization Node Score [26]
7 ToppNet KM Node Prioritization Node Score [26]
8 GeneMania Node Prioritization Node Score [125]
9 Hidden Nodes Node Prioritization Node Score [40]

10 Overconnectivity Node Prioritization Node Score [130]
11 Causal Reasoning Causal Reasoning Hypothesis Score [28]
12 SigNet Causal Reasoning Hypothesis Score [80]
13 Active Modules Subnetwork ID Network [77]
14 Pathway Inference Subnetwork ID Network [145]
15 HotNet Subnetwork ID Network [173]
16 HotNet2 Subnetwork ID Network [110]
17 DIAMOnD Subnetwork ID Network [59]
18 CASNet Subnetwork ID Network [55]
19 StartNodeLinks Subnetwork ID Network Custom
20 StartNodeNeighborLinks Subnetwork ID Network Custom

Table 4.1: Network Algorithms

For each algorithm, parameters were chosen to moderate the behavior of the al-

gorithms (Table 4.3.1). For example, both random walk and network propagation

contain a parameter that sets the probability that the random walk will restart at

the start nodes at each step; this parameter was set to 0.5 for both to allow for com-

parison between the two algorithms. If the value of the parameter that would result

in moderate behavior was not obvious, it was set based on author recommendations.
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Algorithm

Network Propagation

Random Walk

Neighborhood Scoring
ToppNet HITS

ToppNet KM
Overconnectivity

Hidden Nodes

GeneMANIA

Active Modules

Pathway Inference

HotNet

HotNet2

DIAMOnD

Parameter 
Notes

alpha = 0.5
LlThreshold=0.000001
r = 0.5
LlThreshold = 0.000001
alpha = 0.5
r = 0.5
iterations = 100
eps = 0.0001
K = 4
FDR =TRUE
alpha = 1
background.list = "

fdr = TRUE
alpha = 1
networkw = 'startnodes'
colNets 'source'
netCats NULL
numberOfModules = 10
iterations = 10000
activationProbability = 0.5
startTemp = 1000
dmin = 10
backgroundRuns = 100
beta = 1
d = 2
iterations = 100
verbose = FALSE
iterations = 100
t = 0.1
delta = 0.01
minSize = 3
minScore = 0
scoreType = 'pvalue'
sizeLimit = 10000
delta 0.01
beta NA
iterations = 100
min.size = 3
delta.max.size = 10
min.score 0
score.type 'pvalue'
n = 200
alpha = 1
method = 'default'

Limit Java heap memory

Default =overconnectivity
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Algorithm

Causal Reasoning

SigNet

General

Parameter

scoreThreshold = -200
correctnessThreshold = -200
enrichment Threshold = 1.1
pollardThreshold = 1.1
trSteps = 'relaxed'
unknown 'ignore'
maxSteps 2
maxSteps 2
rankBy c("power _weight","exp _weight","lambda")
combine min
trSteps 'relaxed'
directed TRUE

Table 4.2: Algorithm parameters

4.3.2 Data sets

We aimed to test the algorithms on a large selection of data sets of different types and

confidences (Table 4.3). For high-confidence, well-characterized input sets, we used

pathways from KEGG and Reactome. All sets with 20 or more nodes were included,

yielding 165 sets from KEGG and 307 from Reactome. We also used curated gene-

disease associations from DisGeNet [139, 138] (accessed 7 June 2016). Nodes were

included in a disease set if they had at least 2 Pubmed IDs, and disease sets were run

if the number of associated genes was at least 20, giving 117 disease sets. For these

publicly available data sets, where fold changes and p-values are not available, nodes

were assigned a log2 fold change of 1 and p-value of 0.05 to allow input lists to be run

with algorithms that require fold change or p-value.

To test the algorithms using real experimental data, 43 pooled CRISPR screens

from Novartis were used as an example set of experimental data with relatively low

noise. For CRISPR experiments, cells were transfected with a GFP-tagged target

protein of interest and Cas9, then exposed to a pooled library of sgRNA. Cells were

FACS-sorted into high- and low-GFP populations, and sgRNA count was used to

calculate fold changes and RSA p-values for each targeted gene [38]. Genes were

included in start lists if the RSA p-value < 1x10-4, and for each experiment (which
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may have included multiple comparisons) the start list with length closest to 150 genes

was used. Experiments were excluded from the benchmarking data if the longest start

list was <20 genes.

The algorithms involving causal reasoning were originally developed to identify

proteins upstream of observed gene expression changes. Since this approach was not

specifically relevant to the pathway and screening data described above, we also used

data from the Connectivity Map [102], with more appropriate parameters for the

causal reasoning algorithms.

Data Source Data Type # Sets Min Size FC p-val Ref

KEGG/ Pathways 472 20 1 0.05 [87, 89, 88]
Reactome [48, 35]
DisGeNET Genetic Association 117 20 1 0.05 [139, 138]

CRISPR Screening Results 43 20 Var Var Internal Data
cMAP Differential Expression 2068 20 Var Var [102]

Table 4.3: Data sets used for algorithm benchmarking

4.3.3 Networks

Five different network sources were used for this work: two previously published undi-

rected networks, HumanNet [109] and BarabasiNet [119]; HithubMetabase, consisting

of manually curated interactions from MetaBase [18] (Clarivate Analytics) trans-

lated into Entrez IDs; HithubStringBioplex, consisting of interactions from STRING

[177, 162] and BioPlex [76]; and HithubPublishable, a combination of HithubMetabase

and HithubStringBioplex (Table 4.4). For networks in which edges were annotated by

type of interaction and confidence, edges were included if they were high-confidence

and represented either protein-protein or transcription factor-gene interactions.

4.3.4 Crossvalidation and target validation

Ten repeats of 10-fold crossvalidation were performed for each data set to calculate

the area under the ROC curve (AUC). Each data set was divided into tenths, with

one tenth left out each time; then that process was repeated ten times for a total
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Directed TF-Gene
Network Components Edges Nodes Edges (%) Edges (%) Refs

Hithub- STRING + 597,538 18,286 22.63 7.59 [177, 162]
Publishable BIOPLEX + [76, 18]

Metabase

Hithub- STRING + 434,808 14,701 15.96 0 [177, 162]
StringBioplex BIOPLEX [76]

HithubMetabase Metabase 189,675 16376 39.47 23.90 [18]

HumanNet Human Net 476,399 16243 0 0 [109]

BarabasiNet Barabasi Net 141,296 13,460 0 0 [119]

Table 4.4: Input network properties

of 100 lists each with 90% of the original input list. Sensitivity and specificity were

found using the omitted 10% of nodes as "true" nodes to be found by the algorithms.

When omitted input nodes were not included in the network used, they were excluded

from the list of "true" nodes, as the use of that network prevented them from being

included in the output regardless of the algorithm used.

For connectivity map data, drug target validation was used in place of crossvali-

dation. Sensitivity and specificity were calculated for inclusion of known drug targets

in algorithm outputs.

4.3.5 Empirical null distributions

To determine whether nodes were highly ranked based on the network properties only

(irrespective of the input list) we generated lists of randomly selected input nodes.

Fold changes were chosen from a random distribution with mean 0 and standard de-

viation 1, with corresponding p-values. Fold change and p-value pairs were randomly

assigned to all possible nodes, and the nodes with highest fold change were used as

the input list. We generated 10,000 random gene lists each of lengths 50, 100, 150,

200, 300, and 500 and ran the algorithms on these input lists. We were thus able to

determine, for each node, algorithm, and network, the rank above which nodes had

a less than 5% chance of scoring at random. Nodes which were highly ranked with
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Figure 4-1: Overview of use of network algorithms.

actual input lists but had a greater than 5% chance of getting that rank or higher in

the random lists were flagged as possible artifacts.

4.4 Results

4.4.1 Overview of algorithm workflow

For all algorithms considered here, inputs include a data set consisting of gene IDs,

fold changes, and p-values and a network of protein-protein interactions (Fig 4-1).

Algorithms are divided up into three main classes: subnetwork ID algorithms, which

return highly connected subnetworks; node prioritization algorithms, which return

ranked lists of genes; and causal reasoning algorithms, which return ranked lists

of hypotheses corresponding to a positive or negative effect of a given gene on the

observed data. In the case of node prioritization and causal reasoning algorithms,

subnetworks can be constructed from the interactions among the most highly ranked

genes in the output lists.

Initial characterization was performed using the genetic association datasets from
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DisGeNET, as these sets were considered to contain disease-revelant gene sets but also

reflected properties of real data such as the presence of false negatives, false positives,

and representation of multiple biological processes. We then generalized to additional

collections of datasets derived from pathway databases, hits from phenotypic CRISPR

screens, and Connectivity Map gene expression response.

4.4.2 Algorithms differ in ranking of start nodes

To determine which algorithms were extending the list of interesting genes beyond

the input list provided, we first sought to determine the proportion of output nodes

that were represented in the input. For our purposes, outputs were considered to be

the top n nodes ranked by the algorithm, where n was the length of the input start

list. Thus an algorithm that ranked all start nodes above all other network nodes

would have a start node fraction of 1. For reference, we note that based on a typical

start list size of 100 and network size of 18,286 nodes (as in HithubPublishable), an

algorithm that selected output nodes entirely at random with no preference for start

nodes would have a start node fraction of 0.005.

Most subnetwork ID algorithms showed a strong preference for start nodes; in

the case of StartNodeLinks, ActiveModules, and the HotNet algorithms, only start

nodes are scored, so these algorithms re-order start nodes but do not add any new

nodes not included in the start list. Pathway Inference and CASnet also shows a

strong preference for start nodes but is capable of adding some additional nodes. Of

the subnetwork ID algorithms, only StartNodeNeighborLinks and DIAMOnD show

a preference for non-start nodes. In the case of StartNodeNeighborLinks, this is ex-

pected since by definition it extracts all neighbors of start nodes without taking into

account any network properties. The fact that DIAMOND's behavior is more similar

to the node prioritization algorithms is also expected, since it employs the overconnec-

tivity node prioritization algorithm iteratively until it reaches a user-defined number

of nodes (in this case 200).

Within the node prioritization algorithms, Random Walk, ToppNet HITS, and

GeneMANIA showed clear preferences for start nodes. While Neighborhood Scor-
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ing shows an intermediate preference, all other node priorization algorithms have a

tendency to rank non-input nodes highly. In the case of Guilt by Association, the

fraction of start nodes is 0.0056, near the value expected if nodes were selected at

random.

Causal reasoning algorithms are divided into different output lists based on pos-

itive and negative hypotheses and the ranking method used. As causal reasoning

algorithms are intended to identify nodes that are capable of influencing the start

nodes, possibly from several steps away, they generally did not have a strong prefer-

ence for including the start nodes themselves in output lists.

Taken together, these results demonstrate that algorithms significantly differ in

their preference for extending the input gene list to additional network nodes, and if

the aim of the analysis is to bring in additional nodes, most subnetwork ID algorithms

should be avoided.

4.4.3 Algorithms differ in preference for node degree

We also sought to understand which algorithms had a tendency to include hub nodes

in the output. A common concern with interpreting the results from network algo-

rithms is if the presence of hub nodes in results is due to actual relevance to the start

nodes or simply due to the number of edges. Within lists of output nodes as defined

in the previous section, some algorithms have a stronger preference for hub nodes

than others.

Across all Subnetwork ID and Node Prioritization algorithms, several returned

extremely high-degree outputs: StartNodeNeighborLinks, DIAMOnD, Interconnec-

tivity, and Overconnectivity. The behavior of StartNodeNeighborLinks is not sur-

prising, since nodes were scored based on the total number of start node-connected

edges. The other three algorithms in this class, DIAMOnD, Interconnectivity, and

Overconnectivity, are all enrichment-based methods.

At the other end of the spectrum, ToppNet KM and Guilt by Association returned

nodes of very low degree. This is consistent with the scoring metric employed by these

algorithms: both depend strongly on the fraction of a node's immediate neighbors
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that are start nodes, meaning that these algorithms rank very highly nodes that have

a degree of only one, if that one neighbor is a start node. Neighborhood Scoring

uses an algorithm similar to Guilt by Association, but with a bonus for start nodes,

making it intermediate in terms of node degree.

Other subnetwork ID and node prioritization algorithms had intermediate but

rather variable median degree within the outputs. Several of these algorithms (eg.

Pathway Inference, CASNet, HotNet, HotNet2, Active Modules, and GeneMANIA)

also strongly favored start nodes, so the median degree of the output depended heavily

on the degree of the start nodes. Of the remaining algorithms that showed interme-

diate behavior by this metric (ToppNet HITS, Hidden Nodes, Random Walk, and

Network Propagation), all are walk-based.

Turning to the Causal Reasoning algorithms, we hypothesize that the results are

due to the data and network processing requirements of the algorithms. For example,

because we introduced a default positive fold change for the DisGeNET list, SigNet

has a very high median degree for only positive hypotheses in this dataset, but both

positive and negative hypotheses in the real data.

4.4.4 Algorithm sensitivity and specificity found through cross-

validation

In practice, these algorithms should be most useful if they are able to identify nodes

that were not found directly in experimental data. To test the ability of the algorithms

to find "missing" nodes, we used 10 repeats of 10-fold cross-validation, then found the

area under the ROC curve (AUC) for including the omitted nodes from the original

input lists in the output (Fig. 4-4). Subnetwork ID algorithms were omitted from

this analysis because most of them did not add in non-start nodes.

To summarize across individual data sets from each source, we found the frac-

tion of data sets for which each algorithm appeared in the top 3 when ranked by

AUC. While performance varied across data sources, longer-distance node prioriti-

zation algorithms generally performed the best. In data from DisGeNET, which
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was high confidence but non-overlapping with information included in the network,

Interconnectivity, ToppNet HITS, and Overconnectivity performed the best. Short-

range node prioritization algorithms (Guilt by Association, Neighborhood Scoring,

and ToppNet KM) performed better in KEGG and Reactome data sets but less well

in real experimental data (CRISPR). Causal reasoning algorithms were developed for

a different type of task, identifying drug targets upstream of differentially expressed

genes, and all causal reasoning methods were in the worse half of the algorithms by

crossvalidation across all three data sources.

We also observed that, for most algorithms, data sets with very high confidence

pathways such as KEGG and Reactome had much higher crossvalidation AUC than

did the slightly lower-confidence DisGeNET lists, and real experimental data had

much lower crossvalidation AUC.

4.4.5 Use of algorithms for target identification using Connec-

tivity Map

Because causal reasoning algorithms were developed to identify upstream regulators

of differentially expressed genes, we tested their ability to accomplish this goal us-

ing the Connectivity Map [102]. For this analysis, start nodes were differentially

expressed genes after treatment with drugs with known targets and we tested the

algorithms' ability to highly rank the real drug target. To our surprise, the causal

reasoning algorithms did not outperform many of the node prioritization algorithms

(GeneMANIA, Interconnectivity, ToppNet HITS, Random Walk, Interconnectivity,

and Network Propagation) (Fig. 4-5). Of the conisistently high-performing node

prioritization algorithms in our previous analysis, only Overconnectivity performed

worse than the causal reasoning algorithms.

4.4.6 Comparison of network sources

To determine whether network source (and associated network size and confidence)

affected results, we compared areas under the ROC curves for five different networks
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(Table 4-6). Results shown up until this point were obtained using the HithubPub-

lishable network, the largest of the five networks considered here. We also consider

the freely available proportion of Hithub, HithubStringBioplex, separate from the

curated content available from a vendor, HithubMetabase. Finally, we included two

published networks: HumanNet and BarabasiNet. Importantly, both of these net-

works contained only undirected edges, so edges were assigned both directions for

algorithms that required direction.

Results shown up until this point were all obtained using the HithubPublish-

able network, the largest of the five networks considered here. To determine whether

network source (and associated network size and confidence) affected results, we com-

pared areas under the ROC curves for five different networks (Table 4.4.6). Algorithm

performance across networks was generally similar. HithubPublishable, which was the

largest network, performed best in most cases with the exception of Guilt by Associa-

tion, ToppNet KM, Neighborhood Scoring, and Causal Reasoning, algorithms which

generally performed less well than the others.

Whether the improvement in performance seen in HithubPublishable compared to

the other two Hithub networks was due to HithubStringBioplex or HithubMetabase

was algorithm-dependent. Walk-based methods appeared to perform better with

HithubMetabase, whereas more local methods (Guilt by Association, ToppNet KM,

Neighborhood Scoring, and Overconnectivity) performed better with HithubString-

Bioplex. Causal reasoning and SigNet are also limited to considering information

from at most two steps away, making them effectively local methods as well.

Human Net and Barabasi Net generally had worse performance than the other

three networks. This may be because both of these networks are undirected. However,

their performance did not seem to be particularly worse than the partially directed

networks in algorithms that used edge direction.
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4.4.7 Empirical significance determined using random input

lists

In order to determine whether certain nodes, particularly hub nodes, are highly ranked

by a given algorithm regardless of the input list, we ran 10,000 randomly selected

input lists of sizes 50, 100, 150, 200, 300, and 500. For each node, the cumulative

distribution of output ranks below a given threshold for each algorithm indicates the

significance of that node's rank when found using real data.

Using random start node lists, cumulative distribution functions for the probabil-

ity of a hub node (POLR2B) or a non-hub node (WDR4, degree 19) being ranked

below a certain cutoff for an algorithm that is insensitive (Guilt by Association) or

one that is sensitive to node degree (Random Walk) shows that algorithms treat nodes

of varying degrees quite differently.

Empirical significance of an output node was calculated as the percent of ranks

for that node in outputs generated from random input lists at or below the rank

in the actual output list. For most node prioritization algorithms, no nodes were

ranked in the top 100 nodes in more than 5% of randomly generated list. However,

a few algorithms did tend to highly rank a few nodes even at random. These were

Network Propagation (23 nodes), Hidden Nodes (37 nodes), Random Walk (36 nodes),

ToppNet HITS (293 nodes), and Interconnectivity (1109 nodes).

4.4.8 Algorithm choice for different tasks

The previous sections have highlighted three characteristics of the algorithms: ability

to highly rank non-start nodes, tendency to highly rank hubs, and performance by

cross-validation. We summarize these features (Fig. 4-8) and use these summaries as

well as additional considerations highlighted to make recommendations.

If the main aim of the analysis is to prioritize and contextualize genes of interest

found in the experimental results, this work indicates that ToppNet HITS, Random

Walk, and GeneMANIA would accomplish the aim. Alternatively, if the analyst

would like to contextualize genes of interest and also consider additional network

83



guiltAssoc POLR2B

o 2000 4000 8000 8000 10000

Rank

guiltAssoc WDR4

----------------T -I I I I

0 2000 4000 6000 8000 10000

Rank

randWalk POLR28

2L

IL

U

0 2000 4000 6000 8000 10000

Rank

randWalk WDR4

0 200 4000 6000 8000 10000

Rank

Figure 4-7: Cumulative distributions of ranks with random input lists vary by node
degree and algorithm used.

84

II

d

d

d

0



AUC.Avg vs. medianDegAvg
UcM

Ft;Fne rop
e

.1
0'~

sprrutira r ________

.0 0 T -'

geneticAssocData2017

0.95

0.9 nep~l~lw|

0.85,

0.75

0.7-

0.651

0.6

CRISPRscreeningData2017

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

r-t-C'-

50 100 150 200 250 300 0 50 100 150 200 250 300
efiwanDegAvg
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nodes, Hidden Nodes, Network Propagation, Overconnectivity, and Interconnectivity

would be more suitable. However, Interconnectivity in particular was shown to also

rank a significant number of nodes highly with random input, so statistical significance

of ranked nodes should be taken into account.

4.5 Discussion and Conclusions

4.5.1 Algorithm selection depends on desired outcomes.

The benchmarking results shown here suggest that certain categories of algorithms

may have different applications, and the choice of algorithm(s) may depend on the

specific use case. If experimental results are to be ranked for a small-scale follow-up

experiment, subnetwork ID methods may actually be the preferred choice. Some node
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prioritization algorithms that have a strong preference for start nodes (e.g. Random

Walk, ToppNet HITS, or GeneMANIA) could also be suitable choices. Alternatively,

if the purpose of using a network algorithm is to identify new nodes that may be

involved in a disease process or response, Interconnectivity or Hidden Nodes could be

better selections. In typical siRNA or CRISPR screening data, for example, nodes

with redundant functions may be missed [136]; algorithms with a lower preference for

start nodes would be more effective at identifying such missed nodes.

Surprisingly, causal reasoning algorithms performed poorly even in tests of target

prediction using Connectivity Map data, which was the type of task these algorithms

were developed to do. It is possible that these algorithms rely heavily on network

information that is not known with sufficient accuracy, and improved network infor-

mation in the future may contribute to improved performance of these algorithms.

4.5.2 Effects of network size and confidence on results

Network size and confidence were investigated here in an indirect manner by using

different networks, including a relatively large but lower-confidence network (Hithub-

StringBioplex) and a much smaller but manually-curated, high-confidence network

(HithubMetabase). A more direct test of the tradeoff between network size and con-

fidence would be to try including lower-confidence edges, for example from STRING.

There would likely be a confidence threshold after which the network becomes too

noisy, and larger networks cease to add useful information. Alternatively, one could

directly test the effect of network quality by adding random network edges and of net-

work quantity by removing real network edges, although this is less likely to represent

how networks are identified in practice.

4.5.3 Biases inherent in gold standard input lists

In the benchmarking work done here, we used "gold standard" data sets consisting

of publicly available genetic associations and pathways. In both cases, because the

data did not come directly from an experiment, fold changes and p-values were not
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available, so default fold changes of 1 and p-values of 0.05 were used for the genes

included in the start lists, and other genes not included in the lists were treated as

unmeasured. For algorithms that weight start nodes or consider whether changes in

start nodes are positive or negative, these "gold standard" lists omit information that

would be available in the use case of actual experimental data.

The networks used here contain information from KEGG, Reactome, or both.

Thus the results of the "gold standard" start lists taken from either KEGG or Reac-

tome rely on redundant information. For this reason, benchmarking results using Dis-

GeNET start lists are likely more representative of real data. While Interconnectivity,

Overconnectivity, and Network Propagation performed similarly well in DisGeNET

and KEGG/Reactome, the relative rankings of some local (Guilt by Association and

ToppNet KM) vs. more distant (Random Walk and ToppNet HITS) algorithms were

reversed. Using actual experimental data from CRISPR screens, results were more

similar to those found using DisGeNET, in which Random Walk and ToppNet HITS

outperformed Guilt by Association and ToppNet KM.

Finally, hub nodes tend to be more frequently studied, appear more frequently

in KEGG and Reactome pathways, and are actually involved in many different cell

processes. In this work, we did not attempt to account for the fact that, while

hubs may appear frequently within the pathways or disease-gene associations used as

inputs, they may not be specific to one or a few processes and thus may contribute

to high scores seen in some algorithms here out of proportion with their usefulness as

specific drug targets.
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Chapter 5

Development of a hydrogel tri-culture

system to study intercellular

interactions in endometrial tissue

5.1 Acknowledgments

Work in this chapter was done in collaboration with Christi Cook. Some figures and

text appear in previously published work [341. In addition, I would like to thank Julia

Papps, Linda Stockdale, and Deborah Plana for their experimental contributions,

Alex Brown and Marianna Sofman for help with hydrogel protocols, and Deborah

Plana for work on implementing the mixed effects model. Confocal images shown

here were taken in the Koch Institute Microscopy Core Facility, with assistance from

Eliza Vasile.

5.2 Introduction

5.2.1 Normal endometrial function

Endometrial tissue is unique in the human body in that it goes through a regular

cycle of tissue destruction and regeneration. Endometrial tissue consists of a stro-
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mal portion, which contains stromal fibroblasts as well as immune cells and blood

vessels, surrounded by a monolayer of epithelial glands. During the menstrual cycle,

endometrial tissue proliferates in response to estrogen during the first half of the cy-

cle, then decidualizes in response to progesterone. Decidualization induces secretion

of prolactin and IGFBP-1. In the absence of implantation of an embryo, progesterone

withdrawal induces menstruation.

5.2.2 Endometriosis and adenomyosis

Endometriosis is defined as endometrial glands and stroma outsie of the uterus, and

adenomyosis is similarly endometrial glands and stroma within the muscle layer of

the uterus. In both cases, lesions have phenotypic differences from eutopic tissue,

but eutopic tissue is also different between patients with the diseases vs. without

1156, 29]. Specifically, eutopic tissue in patients with endometriosis appears to be less

responsive to progesterone signaling (15, 781 and more resistant to apoptosis (42, 121

than in controls.

5.2.3 Immune-endometrial crosstalk

The stromal compartment of endometrial tissue contains a large number of immune

cells, particularly macrophages and natural killer (NK) cells 181. Macrophages, in

particular, are critical for both tissue breakdown during menstruation and tissue

repair and angiogenesis during the proliferative phase [1681, and various immune

populations within the endometrium are critical in pregnancy 11241. Previous work

has shown that immune cells and endometrial stromal cells communicate through

secreted factors, and certain effects of this communication include elevation of genes

previously shown to be upregulated in endometriosis [471.

5.2.4 Hydrogel models

Poly(ethylene glycol) (PEG) hydrogel systems have been used previously to model a

variety of tissue systems, including liver [1291, vasculature [1111, neural tissue 15], and
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intestine [61]. PEG hydrogels are a fully synthetic and thus more fully controllable

alternative to natural matrices such as Matrigel. Modification of PEG with cell

adhesion peptides as well as protease-degradable peptides allows for tuning of gel

properties to better mimic in vivo environments and to facilitate modification of the

environment by the cells themselves [39].

5.3 Methods

5.3.1 Endometrial cell isolation

Endometrial biopsies were obtained from patients undergoing hysterectomy or en-

dometrial biopsy at Newton Wellesley Hospital (NWH) for benign gynecological con-

ditions, including endometriosis, adenomyosis, fibroids, and abnormal uterine bleed-

ing. Exclusion criteria were prior endometrial ablation or uterine artery embolisation,

prior endometrial cancer or current chemotherapy, post-menopause, lack of regular

cycles, and known infection with HIV or hepatitis. Endometrial stromal and ep-

ithelial cells were isolated following the protocol developed by Osteen [133]. Up to

three endometrial biopsies per patient were collected with a 3mm Pipelle after induc-

tion of anesthesia but before the beginning of surgery. Biopsies were expelled into

DMEM/F12 medium and transported from NWH to MIT. Biopsies were then rinsed

2x in DMEM/F12 medium to remove red blood cells. Tissue was then cut into 1-

2mm3 pieces and enzymatically digested in 9.8 mL DMEM/F12 with 200pL chicken

serum, 50mg collagenase IV, and 2 mg DNase for 1 hour in a 37'C water bath with

periodic vortexing. After digestion, tissue was filtered through 100 pm and 70pm

filters.

Stromal cells passed through the filters and were further purified by differential

sedimentation. Stromal cells were resuspended in 2 mL of DMEM/F12 medium with

10% FBS, then layered drop by drop over 10 mL DMEM/F12 10% FBS. Sedimenta-

tion occurred over 30 minutes at 370C. The top 8 mL (containing stromal cells) were

collected and resuspended in 2 mL DMEM/F12 10% FBS, and the sedimentation pro-
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cess was repeated. The top 8 mL were again collected and filtered through a 40Am

filter to further purify the stromal population. Stromal cells were then expanded in

tissue culture plastic over 2 weeks, and red blood cells were further depleted through

medium changes.

Epithelial cells were retained on the 100pm and 7 0 pm filters after the first enzy-

matic digestion. A second enzymatic mix was prepared from 9.8 mL DMEM/F12,

200pL chicken serum, 50mg collagenase IV, 2mg DNAse, 10mg hyaluronidase, and

10mg protease. Epithelial cells were backflushed from the filters and resuspended in

5mL of the second enzyme mix, and cells were incubated for 20 minutes in a 30'C

water bath. Cells were then filtered through a 70pm filter and again backflushed with

the remaining 5mL of the second enzyme mix, then incubated for 30-45 minutes in

the 370C water bath. Epithelial cells were then further purified by differential sedi-

mentation. Cells were resuspended in 2 mL of DMEM/F12 medium with 10% FBS

and layered drop by drop over 10mL DMEM/F12 10% FBS. Sedimentation occurred

over 30 minutes at 37'C, after which the bottom 2 mL (containing epithelial cells)

were retained and sedimentation was repeated. After the second sedimentation, the

bottom 2mL were again retained.

5.3.2 Cell culture

Ishikawa human adenocarcinoma cells [131] (Sigma-Aldrich) and hTERT-immortanlized

human endometrial stromal cells (tHESCs)[100 (ATCC) were used as model en-

dometrial epithelial and stromal cell populations. Primary endometrial stromal cells

(ESCs) were also maintained in cell culture. All three cell lines were routinely cul-

tured in phenol red-free DMEM/F12 medium with 10% dextran/charcoal-stripped

FBS and 1% penicillin-streptomycin in tissue culture plastic, with medium replaced

every 2 days. Following reports of possible contamination of endometrial cell lines

by HeLa or other lines[991, STR profiling analysis (Genetic Resources Core Facility,

Johns Hopkins School of Medicine, Institute of Genetic Medicine) was used to confirm

the fidelity of the tHESCs and Ishikawa cell lines against known cell databanks.
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5.3.3 Monocyte isolation

Peripheral blood was purchased (Research Blood Components, Boston, MA). Periph-

eral blood mononuclear cells were isolated using Lymphoprep (StemCell Technologies,

Cambridge, MA, cat #07811) according to the manufacturer's instructions. Briefly,

blood was diluted 1:1 in PBS 2% FBS. 30 mL diluted blood was layered slowly on top

of 15 mL Lymphoprep in a 50 mL conical tube without mixing. Blood fractions were

separated by centrifuging 20 minutes at room temperature and 800g with the brake

off. The buffy coat layer was collected using a Pasteur pipette, then rinsed twice with

PBS. Isolated PBMCs were frozen at 30x106 per mL in 90% FBS 10% DMSO.

On the day on which gels were made, PBMCs were thawed, and monocytes

were isolated by negative enrichment (StemCell Technologies, Cambridge, MA, cat

#19359). PBMCs were resuspended at 50x106 /mL in EasySep buffer (StemCell Tech-

nologies #20144), then incubated with monocyte isolation and human platelet re-

moval cocktails followed by incubation with magnetic particles. EasySep buffer was

added up to 2.5 mL, and cells were placed in an EasySep magnet (StemCell Tech-

nologies #18000) for 2.5 minutes, then inverted so that cells that were not bound

to magnetic beads (monocytes) could be collected in a second tube. Live cells were

counted using trypan blue and a hemocytometer.

5.3.4 Gel synthesis

Gels used here are as described in previously published work [341. Eight-arm, 40kDa

PEG macromers functionalized with vinyl sulfone (PEG-VW) were purchased from

JenKem Technology (Beijing). Peptides were custom synthesized and purified to

>95% by Boston Open Labs (Cambridge, MA): "MMP-CL," a dithiol crosslinking

peptide containing a matrix metalloproteinase (MMP)-sensitive substrate, (Ac)GCRD-

GPQGIAGQ-DRCG(Am) [135]; "PHSRN-K-RGD," a fibronectin-derived adhesion

peptide, (Ac)PHSRNGGGK(Ac)GGGERCG-GGRGDSPY(Am) [20, 101]; "FN-binder,"

a fibronectin-binding peptide, (Ac)GCRE-TLQPVYEYMVGV(Am) [56]; and "BM-

binder," a peptide with affinity for both collagen IV and laminin, (Ac)GCRE-
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ISAFLGIPFAEPPMGPRRFLPPEPKKP(Am) [831. Peptides were reconstituted in

Milli-Q water (Millipore) at 10 mM for adhesion and matrix binding peptides and 45

mM for MMP-CL.

To synthesize the hydrogels, PEG-VS was used at 5 wt%, with 1mM PHSRN-K-

RGD and 0.5 mM FN-binder and BM-binder. Peptide-functionalized PEG macromers,

"fPEG-VS," were synthesized by incubating peptides with PEG-VS in 1x PBS, 1M

HEPES (pH 7.8) buffer for 30 minutes to create macromers with 20% of the -VS

groups functionalized with peptide (2 mM final concentration). Peptide incorpora-

tion was >99% as assessed by Ellman's reaction, occurring after 30 minutes.

Stromal cells were added to the gel mix before crosslinking at a concentration

of 50,000 cells/12 pL gel. The fPEG-VS solution was crosslinked with MMP-CL,

adjusted to pH 7.8 with 1 M NaOH just prior to addition, in a 0.4 thiol:VS ratio.

Hydrogels were prepared on Transwell inserts (Corning cat #3470, polyester, 6.5mm

diameter, 0.4pm pores, 0.33 cm2 area) using Michael-type reaction chemistry.

Hydrogel gelation, as defined by the point at which the solution could no longer

be pipetted, occurred approximately 8 minutes after crosslinker addition at pH 7.8,

although it varied between 8 and 12 minutes depending on the specific hydrogel

formulation. The hydrogel solution was pipetted for 2 minutes to keep stromal cells

in suspension, allowed to sit in tube for 3-7 minutes (where wait time = gelation time

- 5 minutes), transferred to the transwell inserts (12 pL per insert), manually spread

with a pipette tip, and then centrifuged for 4 minutes at 330 rcf so that gelation

occurred in the middle of centrifugation creating a flat, meniscus-free hydrogel on

top of the cell culture inserts. Plates were then incubated an additional 10 minutes

at RT to allow crosslinking to proceed to completion. After gelation was complete,

DMEM/F12 medium with 10% dextran-charcoal stripped FBS and 1% penicillin-

streptomycin was added to the apical (top) (100 pL) and basolateral (bottom) (600

pL) sides of the transwell inserts to achieve hydrostatic equilibrium. Cultures were

maintained in a humidified incubator at 370C, 95% air, 5% C02.

Endometrial epithelial cells were seeded on top of the hydrogels 24 h after initiation

of stromal cultures. Ishikawa cells were harvested via trypsinization, resuspended in
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Figure 5-1: Schematic of triculture hydrogel experimental setup.

DMEM/F12/FBS, and seeded at a density of 75,000 cells per Transwell (225,000 cells

per cm2). Primary epithelial cells were harvested via trypsinization and seeded at

50,000 to 75,000 cells per Transwell (150,000 to 225,000 cells per cm2). Apical medium

was changed 24 h after seeding to remove non-adherent epithelial cells. On day 3 of

co-culture, medium was changed to maintenance media comprising DMEM/F12 sup-

plemented with 1% DC-FBS, 1% penicillin/ streptomycin, and 2% Cell Maintenance

Supplement (Cocktail B) (LifeTechnologies CM4000) on the apical side (100 AL)

and Williams E Medium (LifeTechnologies A1217601) supplemented with 1% peni-

cillin/streptomycin, 4% Cell Maintenance Supplement (Cocktail B) (LifeTechnologies

cat #CM4000) and 100 nM hydrocortisone (Sigma cat #50-23-7) on the basolateral

side (600 pL), with changes every 2 to 3 days thereafter.

Monocytes were isolated two days after gel synthesis. When cell tracker was used

to image monocytes, they were stained following isolation in a 1:1000 dilution in

PBS for 30 minutes at 370 C, then rinsed in apical medium. Isolated monocytes were

counted using trypan blue and added to the gels in apical medium at a concentration

of 1X106 cells/mL. Medium was changed after 2 days, removing monocytes that did

not adhere to the gel during that time.
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5.3.5 Imaging

At the end of the culture period, gels were fixed using 4% paraformaldehyde (Electron

Microscopy Sciences) in PHEM buffer for 1 hour at room temperature, permeabilized

in 0.2% TritonX-100 in PBS for 30 minutes, and blocked either overnight at 4'C or

1 hour at room temperature in 1% BSA (Sigma) in PBS. Hydrogels were incubated

overnight while rocking at 4*C with CD68 or CD206 antibodies and rhodamine phal-

loidin (1:1000) (Life Technologies). Gels were then rinsed 3x with blocking buffer.

Nuclei were stained with DAPI (1:1000) (Life Technologies) for 15 minutes at room

temperature. Hydrogels were then rinsed 3 times with Ix PBS and rocked overnight

at 4C. Hydrogels were cut out of the transwell insert and mounted using Prolong

Gold Antifade (Life Technologies cat #P36935) on glass coverslips.

Phase and fluorescent images were acquired using a Leica DMI 6000 microscope

with Oasis Surveyor software. Confocal images were acquired using a Nikon AIR Ul-

trafast Spectral Scanning Confocal Microscope with Nikon NIS Elements acquisition

software.

5.3.6 Cytokine Measurements

Concentrations of 27 cytokines, chemokines, and growth factors were measured in

undiluted conditioned medium using cytokine panel I (Bio-Rad, cat #) adapted for

use in a 384 well plate. Samples were run in technical duplicate. In addition, a

standard curve generated by a series of 10 serial 1:3 dilutions of the manufacturer-

provided standard was run in triplicate for quantification of cytokine levels in the

samples. Beads were diluted 1:20 (twice the manufacturer's dilution) and added at

201iL per well (instead of 50pL). Washes were performed with PBS 0.1% tween-20

using a magnetic plate washer (BioTek 405LS), and residual liquid was removed after

each wash using a hand-held magnetic bead separation block (V&P Scientific, cat

#VP771HH-Q) . Samples and beads were incubated overnight at 4'C on a plate

shaker instead of 30 minutes at room temperature to complete binding. Detection

antibody was diluted 1:20 (twice the manufacturer's dilution) at added at 7.5pL per
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well (instead of ). Streptavidin-PE was added at the manufacturer's recommended

dilution at 25jpL per well. The assay was read using the BioPlex FLEXMAP 3D

system (Bio-Rad Laboratories), and data were collected with xPONENT version 4.2

(Luminex Corporation).

For each cytokine, 5-parameter logistic curves were fit to the standards (including

blanks) using the L5P function in MATLAB (MathWorks) [231. Curve fits were used

to calculate concentrations for each sample replicate. Median fluorescence intensities

(MFI) for the samples below the lower asymptote or above the upper asymptote of

the fit were imputed to be either the MFI of the minimum asymptote or 99% of the

MFI of the maximum asymptote, respectively. Values reported in tables are the mean

of 2 technical replicates for the Luminex assay and the number of gel replicates (n)

specified in figures/tables. Concentrations that fell above the highest standard but

below the maximum asymptote (due to incomplete coverage of the quantifiable range

by the standard curve) were judged to be unreliable; these values are given as greater

than the concentration of the highest standard and excluded from statistical testing.

5.3.7 Principal Components Analysis

Principal components analysis was used to identify the main sources of differences in

cytokine environments found in apical medium of hydrogels with different cell combi-

nations [81]. Data input were z-scored cytokine concentrations from tHESC/Ishikawa/

monocyte gels on days 6 and 12 after monocyte addition. Principal components anal-

ysis was performed using the pca.m function in MATLAB (The Mathworks, Natick,

MA).

5.3.8 Mixed effects model

A mixed effects model was constructed to find the contributions of individual cell

types and interactions between cell types, and to account for random effects associated

with repeated trials [31]. For each cytokine, the data was fit using fitlme in MATLAB

2015b to the formula:
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'Concentration =1 + mono + tHESC + Ishikawa + day + mono:tHESC +

mono:Ishikawa + tHESC:Ishikawa 4 mono:tHESC:Ishikawa + mono:day + tHESC:day

+ Ishikawa:day + mono:tHESC:day + mono:Ishikawa:day + tHESC:Ishikawa:day +

mono:tHESC:Ishikawa:day + (ltrial) + (11trial:mono) + (11trial:tHESC) + (11trial:

Ishikawa) + (1 trial:day) + (1jtrial:mono:tHESC) + (1 trial:mono:Ishikawa) + (11trial:

tHESC:Ishikawa) + (1 trial:mono:tHESC:Ishikawa) + (1 day:trial:mono) + (11day:

trial:tHESC) + (1 day:trial:Ishikawa) + (1 trial:day:mono:tHESC) + (1 trial:day:mono:

Ishikawa) + (I trial:day:tHESC:Ishikawa) + (1 day:trial:mono:tHESC:Ishikawa)'

Fixed effects were presence/absence of Ishikawa cells, tHESCs, monocytes, and

day of cell culture as well as combinations of those factors. Random variables were

trial and all terms containing trial. For each cytokine, a model was fit using all terms,

then each term was omitted and a set of models were fit to the subset of terms. The

best model was then selected using the Akaike Information Criterion (AIC). From the

reduced model, each term was again omitted to generate a new set of models, from

which one was selected by AIC. This process was repeated until removing a term did

not reduce the AIC.

5.4 Results

5.4.1 Monocytes survive, invade, and differentiate into macrophages

in endometrial hydrogels.

Cell tracker-stained monocytes were added to gels with encapsulated tHESC and

an Ishikawa monolayer at a concentration of 100,00/100pL apical medium for each

gel. Gels were fixed after 7 days of triculture, and confocal microscopy showed that

monocytes were present both at and below the epithelial monolayer at the top of

the gel (Fig 5-2). Additionally, monocytes stained positively for CD68, indicating

differentiation towards macrophages [167.

To determine whether monocytes require interactions with other cells to be able

to attach or migrate into the gels, monocytes were added to gels with and without
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Figure 5-2: Monocytes survive, migrate into the gel, and differentiate in the presence
of endometrial cells.
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Figure 5-3: Monocytes are retained in culture over time in the presence of endometrial
cells.

endometrial cells. After 10 days in culture, imaging revealed that more monocytes

were retained on gels with endometrial cells than on "empty" gels, suggesting that

either physical contact with or chemotactic signaling from endometrial cells induces

monocyte adhesion and/or invasion into the gels. In addition, monocyte-derived

cells in the triculture gels expressed CD206, a marker of alternative macrophage

activation (ref), while monocytes remaining in the otherwise cell-free gels remained

rounded rather than spread and did not express CD206, suggesting a lesser degree of

differentiation/activation in the absence of endometrial cells.
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tHESC+Ishikawa+Mono, Day 12 vs. Day 6
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Figure 5-5: Apical cytokine concentrations are stable over time. Each cytokine is
centered at the mean of three replicate gels of three monocyte donors each, with error
bars representing standard deviations. A two-fold (or half-fold) change is indicated
by dashed lines.

5.4.2 Cytokine secretion is stable over time

Cytokine concentrations in apical medium were measured on day 6 and day 12 of co-

culture. In general, net cytokine production was found to be consistent over time, with

less than a 2-fold change over that time period (Fig. 5-5). Additional experiments

using tHESC and Ishikawa cells only also showed similar cytokine concentrations on

days 4, 8, and 12 of coculture. In the absence of hormonal or inflammatory stimuli

or other perturbations, cytokine secretion (in concert with any uptake of cytokines

or regulatory feedback loops) seem to be stable.
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5.4.3 Apical and basal cytokine environments differ

To further investigate properties of the endometrial triculture system, we measured

cytokine levels in the basal medium as well as the apical compartment. In the absence

of communication among the cell types included, two transport-based null hypotheses

existed: (1) cytokines can diffuse freely across the gel, in which case apical and basal

concentrations should be equal, or (2) no diffusion occurs across the gel, in which

case uniform secretion would result in a 6-fold dilution of cytokines in the basal

medium (600piL) compared to the apical medium (100pL). Most cytokines fell within

two-fold of one of these two hypotheses, indicated by dashed and dotted lines (Fig.

5-6). Cytokines that were higher than expected in basal medium compared to apical

medium included RANTES, G-CSF, IL-15, IL-17A, and IL-7.

5.4.4 Cytokine profiles are cell-type dependent

To understand the role of each cell type and cell-cell interactions, hydrogels were

made with each individual cell type alone an in combination. For most of the 27

cytokines measured, Ishikawas were the primary secreters (Fig. 5-7).

Principal components analysis showed that the main source of variance in apical

cytokine measurements was the presence or absence of Ishikawa cells (PCi, 35% vari-

ance explained), which confirmed what was observed qualitatively based on univariate

cytokine measurements. Monocytes and tHESCs did not have a large effect on the

overall cytokine environment, likely because the total number of monocytes remain-

ing in the gel system by the time the measurements were made, 10,000 monocytes

and 50,000 tHESCs, was small compared to the 75,000 Ishikawa cells, and because

the Ishikawa cells both physically blocked diffusion of tHESC- and monocyte-secreted

cytokines into the apical component and were themselves in close proximity to the

apical medium.
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Figure 5-6: Apical and basal concentrations may be affected by diffusion, binding
within the gel, dilution effects, and polarized secretion. Dotted lines represent roughly
equal concentrations in apical and basal medium, corresponding to free/fast diffusion
across the gel. Dashed lines represent roughly 6-fold higher concentrations in the
apical medium, as would be expected from dilution effects if diffusion was negligible
and production of cytokines was constant across the gel volume.
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5.4.5 Evidence of cell-cell communication in cytokine signaling

Mixed effects modeling was employed to determine the degree to which cell-cell in-

teractions affected the overall cytokine environments. While Ishikawa cells again had

a large positive effect on secretion of many cytokines, coefficients of two-cell interac-

tions (tHESC:Mono, Ish:Mono, and Ish:tHESC) were also important, and coefficients

of three-cell interactions (Ish:tHESC:Mono) had the largest negative effects on the

overall cytokine milieu, indicating that some negative feedback may occur amongst

the three cell types (Fig. 5-9).

5.4.6 Cell lines vs. primary cells

In the experiments discussed here, primary monocytes were combined with cell lines

representing endometrial stromal and epithelial cells. To determine whether cell lines

were in fact appropriate models of the behavior of primary cells, we compared apical

cytokine measurements from hydrogels prepared with Ishikawas and tHESCs to the

apical cytokine measurements from primary cell gels (Fig. 5-10 A). Out of the 27

cytokines measured, few were similar between primary cells and cell lines (IL-1, IL-

10, and IL-9). Four out of the 27 were lower in primary cells (IL-13, IL-12p70,

VEGF, and PDGF-BB), all of which were secreted highly by Ishikawa cells. All other

measured cytokines were either higher in the primary cell cultures or only detectable

in the primary cell cultures, indicating that primary cells are capable of a much

broader range of cytokine secretion than are the cell lines. Of particular interest for

communication between the endometrial cells and macrophages, cytokines known to

affect macrophage differentiation and activation phenotypes are qualitatively different

between primary cells and cell lines, with many cytokines higher in primary cells (G-

CSF, GM-CSF, IL-4, TNF-a), but others unchanged (IL-10) or lower (IL-13).

In addition, primary cells were stimulated with cAMP and MPA to induce decidu-

alization. While previous experiments using tHESC and Ishikawa cell line co-cultures

showed no significant effects of hormone stimulation on cytokine secretion, primary

cells from one subject showed significant increases in IL-10 and IL-15 with decid-
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ualization, and the other two subjects had qualitatively similar effects (Fig. 5-10

B).

5.5 Discussion and Conclusions

5.5.1 Importance of multicellular interactions in representing

tissue biology

Previous work has also suggested an important role for 3-cell interactions[1481. Inter-

estingly, our previous work investigating two cell types in the immune system, CD4+

T cells and monocytes, showed primarily synergistic effects on cytokine secretion due

to interactions between the two cell types [1541. However, in this system, multiple

cytokines were observed to be lower in triculture than the sum of concentrations of

that cytokine in the three monocultures.

5.5.2 Alternative methods for model selection

The initial full formula for the mixed effects model used here included 32 terms,

meaning that there were 232 (or over 4 billion) possible reduced models. Because the

space was so large, not all possible models could be tested. The approach used here,

removing one term at a time to give the lowest AIC, finds a local minimum but not

necessarily a global minimum across all possible sets of terms. Genetic algorithms

are also not guaranteed to find a global minimum, but adding terms back in at

random allows for the model to "jump" from one AIC valley to another, increasing

the probability that a global minimum will be found [172].

5.5.3 Primary endometrial cells differ from cell lines in cy-

tokine secretion

In the endometrial coculture system, primary ESC and EEC were much more active

cytokine producers than were the tHESC and Ishikawa cell lines. While primary cells
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are more difficult to handle and are obtained in limited quantities, it appears that cell

lines may not be representative of primary endometrial cell behavior. In addition,

eutopic endometrium has been shown to differ between healthy and endometriosis

patients [156, 29], so primary cells may be useful for differentiating between healthy

and disease conditions. Future work investigating cytokine communication between

monocytes and endometrial cells should be done using primary cells, where sample

availability allows.

5.5.4 Confounding effects complicate use of transwell system

for studying cell-cell communication

In this system, the different spatial location of the three cell types makes it difficult to

say with certainty which cytokine effects are due to active communication among the

cell types as opposed to physical barrier or diffusion effects. Because the epithelial

monolayer on top of the gel may affect levels of cytokines not only through soluble

factor-mediated communication with the other cell types but also through uptake of

certain cytokines or by blocking diffusion into the apical medium, it is not possible to

isolate actual communication events. Similarly, cytokines secreted by the epithelial

cells may be secreted in a polarized manner, and would need to diffuse through the

height of the gel in order to be detected in the basal medium.

5.5.5 Methods for more physiological addition of monocytes

In the experiments discussed here, monocytes were added to the apical side of gels

representing endometrial tissue, and we observed that monocytes subsequently mi-

grated into the stromal compartment, where they would be found in vivo. However,

in vivo, monocytes would migrate into the endometrial tissue by extravasating from

blood vessels within the stromal compartment, not from the lumen side of the tissue.

A possible extension of this system would be to have endothelial cells seeded on the

bottom side of a transwell, then add the encapsulated stromal cells in hydrogel into

the inside of the transwell, seed epithelial cells on top of the stromal hydrogel, and
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then add monocytes into the basal compartment, possibly with some fluid movement

[64, 43, 27].
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Chapter 6

Development of an

endometriosis/adenomyosis lesion

model

6.1 Introduction

6.1.1 Endometriosis

Endometriosis is a common cause of pelvic pain and infertility for which study has

been limited relative to its prevalence and economic impact on society [1581. Current

therapies include either hormonal medication, with often undesirable side effects, or

surgery. Development of additional therapies has been hindered by lack of under-

standing of disease pathophysiology and the low availability of suitable models [66].

Due to the importance of cyclic hormonal changes in endometrial tissue, it is necessary

to follow tissue phenotypes over time, which is not feasible for human patients[63].

Few animals other than humans undergo menstruation, limiting animal models to

either non-human primates, commonly baboons [411, or other animal models such as

mice in which endometriosis is induced in a more artificial manner [65, 16].

In order to better understand the physiology of endometriosis, we aimed to mod-

ify a previously developed model of eutopic endometrial tissue to better represent
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endometriosis or adenomyosis lesions[34]. Lesions differ from healthy eutopic en-

dometrial tissue in three main ways: (1) although epithelial glands do retain apical

and basal polarization, entire lesions lack a clear apical and basal side, with glands

mixed into the stromal compartment; (2) lesions have a more inflammatory environ-

ment; and (3) lesions have increased influx of immune cells, including macrophages

[153].

6.1.2 Dysregulation of signaling in endometriosis

While current therapies for endometriosis consist of either hormonal medication or

surgery, evidence that both intra- and inter-cellular signaling are dysregulated sug-

gests that additional therapeutic avenues may exist. Previous work from our lab

investigated inflammatory cytokine signaling in peritoneal fluid samples using unsu-

pervised clustering through non-negative matrix factorization and found a cytokine

signature (IL-8, RANTES, MIF, IL-6, MCP-1, G-CSF, MIG, HGF, IL-10, IL-16, IL-

1ra, GROz, and IL-1/3) associated with more severe endometriosis[9]. Other groups

have similarly reported dysregulation of cytokine signaling in endometriosis [25, 49].

A number of intracellular signaling pathways have also been implicated in the

pathogenesis of endometriosis. Following from the work that identified macrophage-

secreted cytokines associated with endometriosis symptoms, Beste et al. tested a

panel of kinase inhibitors and found that c-Jun inhibition most substantially decreased

inflammatory cytokines [9]. Inhibition of c-Jun using bentimapimod was also shown

to reduce the size (although not the number) of lesions in an induced lesion baboon

model [75]. Increased phosphorylation of AKT has been observed in cultured stromal

cells from endometriosis patients 192], and inhibition of AKT improved decidualization

of cultured endometrial stromal cells from endometriosis patients[185. Within the

MAPK pathway, p38 was shown to decrease lesion size in mice [186], and pERK

displayed less cycle variation in eutopic or ectopic endometrial cells from patients with

endometriosis [126].As endometriosis is known to involve inflammatory processes, it is

likely that JAK/STAT signalling may play a role in the response to aberrant cytokine

signalling in endometriosis. STAT3, specifically, has been shown to be phosphorylated
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in eutopic endometrium of women with endometriosis [91].

While conflicting reports exist in the literature as to which pathways might make

for the most relevant targets in endometriosis, the large number of pathways reported

to be involved suggests that targeting intracellular signaling related to cytokine net-

works may be fruitful in the search for additional treatments for endometriosis.

6.1.3 Prior use of in vitro hydrogel models

Properties of natural tissues/matrices: Three-dimensional hydrogel culture systems

have increasingly allowed for more complete representations of tissue environments in

vitro. Specifically, hydrogels allow for the presentation of physical cues, localization

of soluble factors secreted by cells, and multidirectional cell-cell interactions 1114].

Several natural matrices have been used for in vitro 3D culture systems. Matrigel

is a complex mixture of extracellular proteins produced by Engelbreth-Holm-Swarm

sarcoma in mice. While it has the advantage of being a complete natural matrix, it

has the disadvantages of not being chemically defined, containing unknown amounts

of various growth factors, originating from a cancer cell line rather than from healthy

cells, and having large variability between lots [178, 74]. Other natural matrices used

in vitro include collagen and fibrin gels, both of which are more well-defined than

Matrigel but lack many components of natural tissue matrices. Within the last 25

years, however, synthetic hydrogels including poly(ethylene glycol) (PEG) have been

used for various in vitro applications. PEG gels are functionalized with RGD and

other cell adhesion peptides as well as protease-degradable crosslinkers to allow cells

to migrate and create 3D structures within the gel and peptides capable of binding

cell-secreted matrix proteins [135, 142, 187].

Prior applications of functionalized PEG hydrogels include use with both stromal

and epithelial cells, including for the study of fibroblast migration [11] and epithelial

morphogenesis 130]. The use of cell-responsive synthetic hydrogels is intended to allow

for physiological behavior of both stromal and epithelial cells as well as immune cells

[115, 34].
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6.1.4 Prior use of multicellular in vitro systems

As tissues generally consist of many cell types organized into a three-dimensional

structure, several groups have previously attempted to model tissues using multicel-

lular systems. Recent examples include a microfluidic triculture of endothelial cells,

pericytes, and astrocytes to model transport across the blood-brain barrier [180];

mono-, co-, and tri-culture conditions to study the importance of multicellular inter-

actions among breast cancer, stromal, and immune cells impact gene expression[148];

and a multicellular model to study drug resistancef 104].

6.2 Methods

6.2.1 Endometrial cell isolation

Endometrial biopsies were obtained from patients undergoing hysterectomy or en-

dometrial biopsy at Newton Wellesley Hospital (NWH) for benign gynecological con-

ditions, including endometriosis, adenomyosis, fibroids, and abnormal uterine bleed-

ing. Exclusion criteria were prior endometrial ablation or uterine artery embolisation,

prior endometrial cancer or current chemotherapy, post-menopause, lack of regular

cycles, and known infection with HIV or hepatitis. Endometrial stromal and epithe-

lial cells were isolated following the protocol developed by Osteen 11331. Up to three

endometrial biopsies per patient were collected with a 3mm or 4mm Pipelle after

induction of anesthesia but before the beginning of surgery. Biopsies were expelled

into DMEM/F12 medium and transported from NWH to MIT. Biopsies were then

rinsed 2x in DMEM/F12 medium to remove red blood cells. Tissue was then cut

into 1-2mm3 pieces and enzymatically digested in 9.8 mL DMEM/F12 with 200pIL

chicken serum, 50mg collagenase IV, and 2 mg DNase for 1 hour in a 37'C water

bath with periodic vortexing. After digestion, tissue was filtered through 100 pm and

70[tm filters.

Stromal cells passed through the filters and were further purified by differential

sedimentation. Stromal cells were resuspended in 2 mL of DMEM/F12 medium with
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10% FBS, then layered drop by drop over 10 mL DMEM/F12 10% FBS. Sedimenta-

tion occurred over 30 minutes at 370C. The top 8 mL (containing stromal cells) were

collected and resuspended in 2 mL DMEM/F12 10% FBS, and the sedimentation pro-

cess was repeated. The top 8 mL were again collected and filtered through a 40Pm

filter to further purify the stromal population. Stromal cells were then expanded in

tissue culture plastic over 2 weeks, and red blood cells were further depleted through

medium changes. During gel synthesis, stromal cells were trypsinized and counted

using trypan blue.

Epithelial cells were retained on the 100pm and 70pm filters after the first enzy-

matic digestion. A second enzymatic mix was prepared from 9.8 mL DMEM/F12,

200pL chicken serum, 50mg collagenase IV, 2mg DNAse, 10mg hyaluronidase, and

10mg protease. Epithelial cells were backflushed from the filters and resuspended in

5mL of the second enzyme mix, and cells were incubated for 20 minutes in a 30*C

water bath. Cells were then filtered through a 70pm filter and again backflushed with

the remaining 5mL of the second enzyme mix, then incubated for 30-45 minutes in

the 37"C water bath. Epithelial cells were then further purified by differential sedi-

mentation. Cells were resuspended in 2 mL of DMEM/F12 medium with 10% FBS

and layered drop by drop over 10mL DMEM/F12 10% FBS. Sedimentation occurred

over 30 minutes at 37C, after which the bottom 2 mL (containing epithelial cells)

were retained and sedimentation was repeated. After the second sedimentation, the

bottom 2mL were again retained. A 100pL aliquot of epithelial cells was taken for

counting. Cells from this aliquot were resuspended in 100pL trypsin-EDTA, incu-

bated at 37"C until cells were mostly single cells rather than glands, then counted.

Epithelial cells were used on the day of biopsy collection.

6.2.2 Monocyte isolation

Peripheral blood from female donors was purchased (Research Blood Components,

Boston, MA). Peripheral blood mononuclear cells were isolated using Lymphoprep

(StemCell Technologies, Cambridge, MA, cat #07811) according to the manufac-

turer's instructions. Briefly, blood was diluted 1:1 in PBS 2% FBS. 30 mL diluted
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blood was layered slowly on top of 15 mL Lymphoprep in a 50 mL conical tube

without mixing. Blood fractions were separated by centrifuging 20 minutes at room

temperature and 800g with the brake off. The buffy coat layer was collected using a

Pasteur pipette, then rinsed twice with PBS. Isolated PBMCs were frozen at 30x106

per mL in 90% FBS 10% DMSO. On the day on which gels were made, PBMCs

were thawed, and monocytes were isolated by negative enrichment (StemCell Tech-

nologies, Cambridge, MA, cat #19359). PBMCs were resuspended at 50x106 /mL

in EasySep buffer (StemCell Technologies #20144), then incubated with monocyte

isolation and human platelet removal cocktails followed by incubation with magnetic

particles. EasySep buffer was added up to 2.5 mL, and cells were placed in an EasySep

magnet (StemCell Technologies #18000) for 2.5 minutes, then inverted so that cells

that were not bound to magnetic beads (monocytes) could be collected in a second

tube. Live cells were counted using trypan blue and a hemocytometer.

6.2.3 Triculture hydrogels

Hydrogels used here were adapted from previously published work [34, 171]. Eight-

arm, 20kDa PEG macromers functionalized with norbornene (PEG-N) were pur-

chased from JenKem Technology (Beijing). Peptides were custom synthesized and

purified to >95% by Boston Open Labs (Cambridge, MA): "MMP-CL," a dithiol

crosslinking peptide containing a matrix metalloproteinase (MMP)-sensitive substrate,

(Ac)GCRD-LPRTG-GPQGIAGQ-DRCG(Am) [135, 171]; "PHSRN-K-RGD," a fibro-

nectin-derived adhesion peptide, (Ac)PHSRNGGGK(Ac)GGGERCG-GGRGDSPY(Am)

[20, 101]; "FN-binder," a fibronectin-binding peptide, (Ac)GCRE-TLQPVYEYMVGV

(Am) 1561; and "BM-binder," a peptide with affinity for both collagen IV and laminin,

(Ac)GCRE-ISAFLGIPFAEPPMGPRRFLPPEPKKP(Am) [83]. Peptides were re-

constituted in Milli-Q water (Millipore) at 10 mM for adhesion and matrix binding

peptides and 15wt/wt% for MMP-CL.

PEG-N was used at 3 wt%, crosslinked with the dithiol MMP-CL at a stoichio-

metric ratio of 0.5 thiols per norbornene. PHSRN-K-RGD was added at a nominal

concentration of 1 mM, and FN-binder and BM-binder were added at 0.5 mM. Gel mix
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Biopsy k Cell Expand Store _ Thaw and expand in
Isolation ESC in TC in LN2 culture (6+ days)

plastic

Peripheral PBMC Store Monocyte 0 Syringe Gels
Blood Isolation in LN2 Isolation

Cell Fresh Epithelial Encapsulated mix of:

Biopsy -+ Cs t 100k endometrial stromal cells
Isolation Glands 50k endometrial epithelial glands

50k peripheral blood monocytes

Figure 6-1: Addition of cells to syringe gels.

was prepared with 10x PBS plus milliQ water such that the overall salt concentration

was equivalent to lx PBS. Cells were added at a concentration of 100,000 ESC, 50,000

EEC, and 50,000 monocytes per 20uL gel. Unless otherwise indicated, IRGACURE

2959 (Ciba cat #0298913AB) was used as a photoinitiator at 0.1 wt%. Gels were

prepared in lmL syringes with the tips cut off at the 0.1mL mark, and 20[pL gel mix

were added per syringe. Crosslinking was induced by exposure to 75 mW/cm 2 UV for

45 seconds. Gels were then removed from the syringes and placed into DMEM/F12

medium containing 1% dextran-charcoal stripped FBS, 1% penicillin/streptomycin,

1pM -estradiol, and 100ptM ascorbic acid.

6.2.4 Hormonal stimulation and inhibitor treatment

Triplicate gels (using cells from the same set of donors) were used for each stimula-

tion/inhibitor condition. All gels were cultured for 2 days in base medium (DMEM/F12

supplemented with 1% dextran-charcoal stripped FBS, 1% penicillin/streptomycin,

1pM #-estradiol, and 100[pM ascorbic acid). On day 2 of culture, gels were either

moved to fresh base medium or induced to decidualize by exposure to base medium

plus (conc) 8-Br-cyclic AMP (cAMP) (Sigma cat #B5386) + (conc) medroxypro-

gesterone acetate (MPA) (Sigma cat #M1629). A subset of gels were additionally

inflamed to induce a more lesion-like phenotype by exposure to (conc) IL-10. Gels

were moved to fresh medium of the same type on day 4. On day 6, JNK inhibitor

(Millipore Sigma, Darmstadt, Germany, cat #420128) at 100pM, 10pM, or 1pM or
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Akt inhibitor (Millipore Sigma, cat #A6730) at 1OAM, 1gM, or 0.1pM was added to

treated gels, with 1% DMSO added to untreated decidualized gels as a control. Con-

ditioned medium was frozen at -20'C every two days, each time the gels were moved

to fresh medium. Before the first assay, samples were thawed on ice and clarified by

centrifugation for 15 minutes at 2755g and 4C, and the supernatant was collected in

a 96-well plate for further assays.

6.2.5 LDH assays

Lactate dehydrogenase was measured as a relative readout of cell death. As a positive

control, gels were killed by UVC-irradiation (254 nm) using a dose of 5 J/cm 2 from

a UVGL-58 handheld UV lamp on day 2 [188], and medium was also collected from

the killed gels on days 4, 6, and 8. LDH was measured using the CytoTox 96 assay

(Promega #TB163) adapted by reducing the volume to fit into a 384-well plate.

Clarified conditioned medium samples were thawed on ice and diluted 1:5 in PBS,

and all samples were run in technical duplicate. 12pL of diluted sample and 12pL

of substrate mix were added to each sample well in a clear 384-well plate, and the

plate was incubated 30 minutes at room temperature on a plate rotator protected

from light. After the incubation, 12 uL stop solution were added to each well, and

absorbance was measured at 490nm and 680nm. LDH absorbance was taken to be

the absorbance at 490nm minus absorbance at 680nm to correct for plate defects.

Corrected absorbance was then normalized to the mean corrected absorbance from

the UV-killed gels on day 4 (2 days after UV irradiation), assuming that those gels

had undergone near-complete cell death.

6.2.6 Prolactin and IGFBP-1 ELISAs

Prolactin was measured in conditioned medium using the human prolactin DuoSet

ELISA kit (R&D Systems, cat #DY682) and ELISA ancillary reagent kit (R&D

Systems, cat #DY008) adapted for use in a 384 well plate. A black-walled, clear-

bottom 384-well plate was coated with 23pL/well capture antibody diluted in PBS
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according to the manufacturer's instructions and incubated overnight at 4'C on a

plate rotator. The plate was washed 3x with PBS 0.1% tween-20, and blocked with

46pL/well of PBS 1% BSA for 2 hours at room temperature. Samples were thawed on

ice and diluted 1 to in PBS. The plate was washed 3x with PBS 0.1% tween-20, and

23piL of diluted sample were added per well. Samples were run in technical duplicate.

In addition, an 8-point standard curve was generated using the manufacturer-provided

standard. Samples were incubated overnight at 4'C on a plate rotator. Detection

antibody was diluted in PBS 1% BSA according to the manufacturer's instructions.

The plate was then washed again 3x, and 23pL diluted detection antibody were added

per well. Detection antibody was incubated 2 hours at room temperature on the plate

rotator. The plate was washed 3x, and 23pL diluted streptavidin-HRP were added

per well and incubated 20 minutes at room temperature. A mix of 50% Substrate

Reagent A and 50% Substrate Reagent B was prepared, and 23pL were added per

well. Once the highest standards had turned purple, stop solution (2N H2SO4) was

added at 11.5ptL/well.

IGFBP-1 was measured in conditioned medium using the human IGFBP-1 DuoSet

ELISA kit (R&D Systems, cat #DY871) and ELISA ancillary reagent kit (R&D

Systems, cat #DY008)adapted for use in a 384 well plate. A black-walled, clear-

bottom 384-well plate was coated with 23pL/well capture antibody diluted in PBS

according to the manufacturer's instructions and incubated overnight at 4*C on a

plate rotator. The plate was washed 3x with PBS 0.1% tween-20, and blocked with

46puL/well of PBS 5% tween-20 for 2 hours at room temperature. Samples were

thawed on ice and diluted 1 to x in PBS. The plate was washed 3x with PBS 0.1%

tween-20, and 23pL of diluted sample were added per well. Samples were run in

technical duplicate. In addition, an 8-point standard curve was generated using the

manufacturer-provided standard. Samples were incubated overnight at 40C on a plate

rotator. Detection antibody was diluted in PBS 5% tween-20 2% normal goat serum

according to the manufacturer's instructions. The plate was then washed again 3x,

and 23pL diluted detection antibody were added per well. Detection antibody was

incubated 2 hours at room temperature on the plate rotator. The plate was washed 3x,
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and 23pL diluted streptavidin-HRP were added per well and incubated 20 minutes at

room temperature. A mix of 50% Substrate Reagent A and 50% Substrate Reagent B

was prepared, and 23pL were added per well. Once the highest standards had turned

purple, stop solution (2N H2SO4) was added at 11.5pLL/well.

Absorbance for both ELISA plates was measured at 450nm and 540nm. Ab-

sorbance at 450nm was corrected by subtracting the absorbance at 540nm to correct

for plate defects. Results were quantified by fitting 4 parameter logistic curves to the

standards using the L4P function [241 in MATLAB 2015b (The Mathworks, Natick,

MA).

6.2.7 Cytokine measurements

Concentrations of 27 cytokines, chemokines, and growth factors were measured in

undiluted conditioned medium using cytokine panel I (Bio-Rad, cat #) adapted for

use in a 384 well plate. Samples were run in technical duplicate. In addition, a

standard curve generated by serial 1:3 dilutions of the manufacturer-provided stan-

dard was run in triplicate for quantification of cytokine levels in the samples. Beads

were diluted 1:20 (twice the manufacturer's dilution) and added at 201 iL per well

(instead of 50[L). Washes were performed with PBS 0.1% tween-20 using a magnetic

plate washer (BioTek 405LS), and residual liquid was removed after each wash using

a hand-held magnetic bead separation block (V&P Scientific, cat #VP771HH-Q) .

Samples and beads were incubated overnight at 4'C on a plate shaker instead of 30

minutes at room temperature to complete binding. Detection antibody was diluted

1:20 (twice the manufacturer's dilution) at added at 7.5pL per well (instead of ).

Streptavidin-PE was added at the manufacturer's recommended dilution at 25PL per

well. The assay was read using the BioPlex FLEXMAP 3D system (Bio-Rad Labora-

tories), and data were collected with xPONENT version 4.2 (Luminex Corporation).

Median fluorescence intensities (MFI) were converted to absolute concentrations via

calibration to ninepoint standard curves using the L5P function [23] in MATLAB

R2015b (The Mathworks).
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6.2.8 Network modeling

A generic protein-protein interaction network was downloaded from STRING v10[162].

Interactions were selected for high confidence and experimental evidence. To filter

the network according to the cell types of interest, gene expression data from GEO

was obtained for primary endometrial stromal cells (GSM423834) [120], primary en-

dometrial epithelial cells (GSM1174412) [140], and primary peripheral blood mono-

cytes (GSM422109) [3]. Cell-cell interactions were obtained from Ramilowski et al.

[1461 and also filtered by gene expression. A random walk algorithm was used to

find nodes (potentially including intracellular signaling pathways and potential drug

targets) closely related to hormone signalling and the cytokines affected by the IL-13-

induced endometriotic environment [21, 97]. Start nodes were cytokines significantly

different between decidualized and decidualized + IL-1# stimulated gels as well as

the two markers of decidualization, IGFBP-1 and prolactin, and the estrogen and

progesterone receptors.

6.3 Results

6.3.1 Cell survival in primary triculture hydrogels

Several gel compositions were tested to identify a formulation that would gel con-

sistently and withstand proteolytic degradation by the mixture of cells (primary en-

dometrial stromal and epithelial cells and peripheral blood monocytes) over the course

of 8+ days (Table 6.1. These gels are a modification of previously published work [34]

(Table 6.2). Additionally, the ratio of epithelial to stromal cells was decreased from

previous work 134] both to better represent lesion composition and because primary

epithelial cells appear to proteolytically degrade the hydrogels more quickly than did

the Ishikawa cells.

Overall cell death, as normalized to gels that were UV-treated to intentionally kill

the cells, was between 6 and 69%, with highest cell death generally ocurring early

on in the culture period (Fig. 6-2). Decidualization and stimulation with IL-1/3 did
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PEG PI SynK- BM FN Xlink Gel
wt% wt% RGD binder binder Ratio Quality

3 0.05 1 0.5 0.5 0.5 Did not gel

3 0.1 1 0.5 0.5 0.5 Good

3 0.5 1 0.5 0.5 0.5 Good

4 0.1 1 0.5 0.5 0.5 Good

4 0.5 1 0.5 0.5 0.5 Hard to manipulate

Table 6.1: Gel formulations and overall gel quality.

Endometrial Lesion

Property Gels [34] Gels

Gel Type Transwell Free-floating

Gel Volume 12 pL 20 pL

PEG 40 kDa PEG-VS 20 kDa PEG-N

Wt% PEG 5 3

X-link Ratio 0.4 0.5

W-link Method pH UV + photoinitiator

SynK-RGD (mM) 1 1

BM-binder (mM) 0.5 0.5

FN-binder (mM) 0.5 0.5

Table 6.2: Comparison of endometrial vs. lesion hydrogel systems.

not increase cell death as measured by LDH, although treatment with the highest

concentration of Akt inhibitor (100 pM) did increase LDH release substantially over

the control condition (E2 only).

To determine whether cell death could be reduced by use of a different photoini-

tiator, we did a comparison of Irgacure and LAP (Fig. 6-3). Using the same intensity

and duration of UV (which may be able to be titrated to lower levels for one or both

of the photoinitiators), Irgacure-initiated gels had lower overall LDH release than did

LAP-initiated gels at 2, 4, 6, and 8 days after gel synthesis. Continued gel synthesis

was thus performed using Irgacure.

124



E
0 02

 
on

ly
 

-

cA
M

P
 +

 M
PA

 
-

-[7

CD CD CD CD CD PD

-
0

S

-
0@

-m -0

-@
5

-0 -m

C
el

l 
de

at
h 

(N
or

m
 to

 U
V

 k
ill

ed
 g

el
s)

0
 

0
0 

in
 

-0
 

in
1

0 4
0
0-

e 
e 

-

-
-

-
S

.-

-
5

-C
e

-

-
.

-
e
 

e 
1

0
0

S
. 0

.5

-

-
-

-
-

-
em

e

-
e

cr

c
-I

l

cA
M

P
 +

 M
PA

 +
 IL

-lb

cA
M

P
 +

 M
PA

 +
 IL

-l
b

 +
 D

M
SO

 1
%

cA
M

P
 +

 M
PA

 +
 L

-l
b
 +

 A
kt

i 
lO

O
uM

cA
M

P
 +

 M
PA

 +
 IL

-l
b

 +
 A

kt
I 

1 O
uM

cA
M

P
 +

 M
PA

 +
 IL

-1
b 

+ 
A

kt
i 

lu
M

cA
M

P
 +

 M
PA

 +
 J

N
K

 1
0 

uM

cA
M

P
 +

 M
PA

 +
 J

N
K

i 
1 

uM

cA
M

P
 +

 M
PA

 +
 J

N
K

I 
0.

1 
uM



Photoinitiator comparison:
Cell death
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Figure 6-3: Cell death is higher in gels with LAP as the photoinitiator vs. Irgacure
under the same UV conditions.
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6.3.2 Primary triculture hydrogels respond to hormone stim-

ulation

To induce decidualization, gels were stimulated with cAMP + MPA every two days

beginning on the second day of culture. Decidualization response as measured by

either IGFBP-1 or prolactin secretion was detectable by the first medium change

after stimulation, on day 4, and continued through the end of the culture period on

day 8 (Fig. 6-4, first two conditions from the left).

6.3.3 IL-13-induced inflammation decreases hormone response,

and hormone responsiveness is not rescued by JNK or

Akt inhibitor treatment

IL-10 stimulation beginning at the same time as decidualization stimuli decreased

the effect of cAMP and MPA on both IGFBP-1 and prolactin secretion (Fig. 6-

4, third condition from left).Three concentrations each of JNK inhibitor and AKT

inhibitor were added on day 6 (after 4 days of hormonal and IL-13 stimulation), but

neither inhibitor had a positive effect on decidualization response as measured by

either IGFBP-1 or prolactin on day 8 (after 2 days of inhibitor treatment) (Fig. 6-4,

bottom plots).

6.3.4 Cytokine communication profiles

Initially, we aimed to identify cytokines that were affected by decidualization, and

to further find a subset of those cytokines for which the effect of decidualization

was attenuated by IL-1/3-induced inflammation. cAMP + MPA decreased medium

concentrations of many cytokines, consistent with the anti-inflammatory properties

of progestins (Fig. 6-5).

While hormone response was not improved by treatment of either inhibitor tested

here, a few cytokines demonstrated more similar responses to cAMP + MPA stimulus

in the presence of IL-13 plus inhibitors compared to IL-13 alone (Fig. 6-6). TNFa,
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IP-10, GM-CSF, and MIP-1,3 all showed decreased concentrations upon decidualiza-

tion but increased levels in the presence of IL-13. TNFa and IP-10 both responded

more to AKT inhibition, whereas GM-CSF responded more to JNK inhibition and

MIP-1# responded similarly to both.

6.3.5 Network model of disease

The random walk algorithm was initiated from the cytokines affected by IL-13-

induced inflammation in addition to prolactin, IGFBP-1, and the estrogen and pro-

gesterone receptors. The top 100 ranked nodes were included in a network graph that

relates inflammation and hormone signaling (Fig. 6-7). The network includes the

start nodes used (CCL4, IL1B, IL4, IL2, IL17A, CCL3, PRL, IGFBP1, ESR1, ESR2,

and PGR). Nodes added to the network include the two targets investigated here,

JUN and AKT, as well as several other nodes previously reported to be involved in

endometriosis: NFKB, FOS, JAKs, STATs, MAPKs, and P53. In addition, there are

several nodes which interact with many nodes in the network but may not be specific

to endometriosis, including UBC, UBB, and FAU.

6.4 Discussion and conclusions

6.4.1 Cytokine response in model system recapitulates some

aspects of clinical phenotypes

In this experimental system, several cytokines were significantly affected by the

cAMP+MPA stimulus after 4 days of treatment, with significant decreases in GM-

CSF, IL-10, IL-10, IP-10, and MIP-la. Interestingly, these differed from findings

from the previous endometrial tissue model, which included primary endometrial

stromal and epithelial cells but not monocytes, in which IL-10 and IL-15 were sig-

nificantly increased in at least one donor due to decidualization [34]. Similar eutopic

endometrial gels prepared using Ishikawas, tHESCs, and primary monocytes did not

demonstrate any effect of hormone stimulus on the concentrations of the same 27
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Figure 6-7: Network related to inflammatory cytokines and hormone response.

cytokines measured here. GMCSF and IP-10 have been reported to increase with

progestin withdrawal in decidualized human endometrial cells [46].

Additionally, several cytokines were found to be affected by IL-10 stimulation (IL-

17A, IL-2, IL-4, MIP-la, and MIP-10). (IL-10 was also higher in IL-1/-stimulated

gels, but cell production of IL-1/3 could not be distinguished from exogenously added

IL-1# in this system.) IL-17 and IL-4 were both observed to be higher in endometriosis

in the Oslo and Boston adult cohorts studied previously [85, 9], consistent with the IL-

1-induced inflammation. The strongest evidence for altered cytokine levels in clinical

samples was for an elevation in IL-8, which was higher in endometriosis subjects in

both the Oslo and Boston cohorts, but IL-8 was not quantifiable due to the range of

the standard curve in this assay; further experimental work is needed to determine

whether the behavior of IL-8 in this system is representative of the elevation observed

in vivo.

The inhibitor results presented here are from triplicate gels but only one set of

donors. Previous work (not shown) has indicated that hormone response of primary
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endometrial cells in vitro varies greatly across subjects. We plan to repeat the exper-

iment shown here with additional sets of donors in order to determine how consistent

the results are.

6.4.2 Death of primary cells in hydrogels

The high levels of cell death observed in the gels, particularly early on in the culture

period, may have an effect on both the ratio of cell types present in the gels and

the behavior of remaining cells. While the stromal cells used here were in culture for

a period of time before use, both primary epithelial cells and monocytes are known

to have low survival in 2D culture. For monocytes, for example, it is common to

observe 10% cell survival after a week of culture, even in the presence of growth

factors such as GM-CSF; thus it is not surprising that large numbers of primary cells

die early on in 3D culture. Further modification of the gel system, particularly the

functional peptides, to improve survival of encapuslated epithelial cells and monocyte

may improve the robustness of this model.

6.4.3 Identification of additional drug targets and/or treat-

ment protocols

The tests shown here of JNK and Akt inhibition did not indicate that either in-

hibitor was useful for improving hormone responsiveness or decreasing levels of most

inflammatory cytokines. It is possible that these inhibitors require a longer treatment

time to have an effect, or that diffusion or partitioning between the gel and medium

necessitate additional time or higher concentrations of inhibitors for an effect to be

observed. In addition, network analysis linking cytokines with hormone response sug-

gest possible additional targets, including JAKs and STATs, NFiB, and MAPKs. It

is not clear whether some or all of these inhibitors are harmful during pregnancy[32].

Previous work has also suggested that combination therapies may be a more effective

strategy, for example by targeting both ERK and AKT pathways[117].

Finally, we have investigated only inhibitors of intracellular signaling pathways,
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but antibodies against inflammatory cytokines or their corresponding receptors may

be another approach. Based on immunostaining of intact gels (not shown), it may

take an extended period of time (>24 hours) for large molecules such as antibodies

to diffuse into the gels, necessitating a longer treatment time. Ongoing efforts to

increase porosity of the gels may improve transport of large molecules.

6.4.4 Use of model system to study cell-cell communication

Earlier work in this thesis investigated the effects of cell-cell communication in a

simplified system involving CD4+ T cells and monocytes [154]. More recent work

investigated cell-cell interactions in a eutopic endometrium model consisting of mono-

cytes, endometrial stromal cells, and endometrial epithelial cells. In both cases, we

could gain insight into intercellular communication by studying cytokines produced

by individual cell types as well as pairs or higher order combinations of cell types.

All three cell types included here as well as interactions between these cell types have

been shown to play a role in the function of the eutopic endometrium, particularly

in menstruation and regrowth of the endometrial layer during the menstrual cycle,

and all three cell types have also shown aberrant behavior in endometriosis [13, 107].

Because no single cell type can be isolated as the driving cause of the disease, com-

munication among the three cell types is clearly important for disease progression.

In addition, the lesion syringe model system has fewer confounding factors (e.g. api-

cal and basal medium compartments, epithelial monolayer barrier to diffusion, etc.),

making it a more convenient system with which to study cell-cell communication.

6.4.5 Phenotype and activity of myeloid cells in lesion model

As endometriosis lesions are known to have a large population of immune cells, it

would be of particular interest to investigate the effects of myeloid populations on

the overall lesion model behavior. Previous studies involving the eutopic endome-

trial tissue model suggested that monocytes may differentiate and express markers of

alternative activation when exposed to endometrial stromal and epithelial cells. As
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peritoneal macrophages in endometriosis patients have been shown to have a more

alternatively activated phenotype [41, it would be of interest to see whether mono-

cytes 1 differentiate into macrophages in the gels and 2 display markers of alternative

activation. Thus far, efforts to stain fixed 20pL gels have had mixed results, but

more recent work in the lab has shown that gels can be cryosectioned and stained,

potentially allowing for a more thorough investigation of monocyte/macrophage phe-

notype. Myeloid cells have also been shown to affect the matrix environment [93],
which is another potential avenue for future work, particularly if macrophage pheno-

type could be shown to influence tissue properties to induce a more or less fibrotic

state.

6.4.6 Use of lesion model for personalized medicine applica-

tions

Endometriosis is a heterogeneous disease, with at least 3 different broad types of

lesions: peritoneal endometriosis, ovarian cysts or endometriomas, and rectovaginal

nodules [17, 123]. Patients also present with a diverse set of symptoms of varying

severity [175, 52], and only subsets of patients respond favorably to current hormonal

therapies. As such, it is likely that patients will respond differently to any additional

therapies that are developed. The lesion model presented here could potentially be

used to test an individual's cells for drug response using two different approaches.

The simpler approach would be to simply dissect and then enzymatically digest

an entire endometrial biopsy, containing a mix of endometrial stromal and epithelial

cells, a variety of immune cells, and red blood cells. In this manner, all cell types

would be derived from an individual patient, although precise numbers or proportions

of each cell type would not be controlled. In addition, lesions are known to have

large amounts of heme [941, which has not been included in the lesion model system

presented in this chapter.

An alternative approach would be to expand epithelial cells following a protocol

currently in development in the Griffith Lab (personal communication, Christi Cook
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and Julia Papps, 2017). Stromal cells from the same biopsy could be expanded as they

are for the current system. A separate blood sample could be taken from the same

patient either before or after surgery, with PBMCs isolated and frozen. Expansion of

the epithelial cells could possibly allow for testing of more drugs, concentrations, or

treatment times than we have been able to achieve from un-expanded epithelial cells

currently.

6.4.7 Intercellular network models

The network modeling approach used here may be useful for identifying novel poten-

tial drug targets, as it successfully identified several intracellular signaling pathways

implicated in endometriosis in previously published literature, but several caveats

remain. First, gene expression is not necessarily representative of protein level or

protein activity. For most genes, when that gene is considered across different cells,

gene expression and protein level are generally correlated [1131. However, expression

levels across different genes do not correlate well with protein levels, and protein ac-

tivity changes on a much shorter time scale than transcription and translation. Mass

spectrometry data would provide a more directly relevant measure of which proteins

are present in the cell types of interest, and has previously been used to infer intercel-

lular networks within the immune system f1491. Additionally, the particular data sets

used here had different numbers of expressed genes. Many fewer genes were detected

in the epithelial cells, possibly because a different array was used, which led to fewer

epithelial proteins being included in the network. A second drawback to the use of

network algorithms as used here is that certain nodes, particularly hub nodes, tend

to be ranked highly regardless of the input. Confidence in the relevance of the highly

ranked nodes found here to endometriosis and the experimental model used depends

on further tests using input lists selected randomly from the cytokines measured.

Nodes that are highly ranked when using randomly selected input lists can then be

excluded from the network and/or from further experimental follow-up.
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Chapter 7

Conclusions and Future Work

7.1 Summary of findings and impact on field

7.1.1 Multicellular Interactions

Previous work has shown that interactions among cell types influence systems-level

behavior of tissues. Work in this thesis has shown additional evidence for the impor-

tance of cell-cell interactions in a two-cell system (CD4+ T cells and monocytes) and

two related three-cell systems (endometrial stromal and epithelial cells and mono-

cytes/macrophages).

Early work in this thesis adopted a very simplified model of CD4+ T cells and

monocytes in suspension, cultured for 24 hours in different fractional mixtures. In this

system, cytokine secretion was generally synergistic; most cytokines were increased

as a result of interactions between the two cell types. This finding makes rational

sense as both cell types are involved in mounting an immune response, and signals

from the innate immune system in particular are critical for stimulating the adaptive

immune system to respond.

Subsequent work involving stromal, epithelial, and myeloid cells in the endometrium

and endometriotic lesion model systems further demonstrated the importance of

studying multicellular systems. Including even three-cell interactions improved the

mixed-effects model for over half of the cytokines (14/23) in the system, suggesting
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that higher-order interactions rather than just pairs of interacting cells are worth

further study.

Finally, while multicellular interactions were not explicitly studied in the variety of

patient samples analyzed in Chapter 3 of this thesis, it is likely that certain differences

between in vivo and in vitro measurements were due to the absence of some cell

types in the in vitro systems. Culture of peritoneal fluid cells or even coculture of

representative cell lines did not replicate the cytokine environment observed in the

peritoneal fluid itself. It is likely that interactions between the cell types investigated

here and additional cell types (mesothelial cells, NK cells, endothelial cells, etc.)

contribute substantially to cytokine regulation in vivo.

7.1.2 In Vitro Model Systems

The most basic type of in vitro assay consists of a simple 2D culture of a single

cell line, either from a cancer or genetically modified to survive outside of the body.

Over time, in vitro assays have advanced to use 3D hydrogel scaffolds [114], primary

non-cancerous cells [134], and co-cultures of multiple cell types [170] so as to better

represent complex tissues or organoids [531 and even replicate some functions of multi-

organ systems [441.

In this work, we used two different 3D PEG hydrogel models that incorporated

primary cells and allowed the cells to modify their environment, the first an endome-

trial tissue model published in Cook et al. [34], and the second a modification of

that system to better represent endometriotic lesions. Our earlier work with clinical

samples suggested that the ability to follow cells from an individual patient over time,

particularly through a hormonal cycle, would be of value, as patient-to-patient vari-

ability confounded our ability to detect cycle-dependent changes. While monocytes

and epithelial cells do not survive well in 2D culture, these 3D systems allowed us to

culture stromal and epithelial cells and monocytes over time and test their response

to hormones and inflammatory cues. In addition, monocytes are exposed to 3D cues

and tissue matrix as they extravasate, migrate into their destination tissues, and

differentiate into macrophages; exposure to 3D cues should thus improve the physi-
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ological relevance of the environment to monocyte /macrophage behavior. (mention

particular integrin engagement)

7.1.3 Patient Stratification in Endometriosis

Work shown in this thesis and elsewhere [9, 34] has suggested that (1) endometriosis

patients have a wide variety of symptoms and (2) relevant samples from cohorts of

endometriosis and control samples have widely different behaviors in vitro. Due to

the high patient-to-patient variability, it is possible that enrolling larger numbers of

patients and stratifying by symptoms or inflammatory signatures could greatly im-

prove our ability to identify potential novel therapeutic approaches. It is unclear,

for example, if endometriomas have the same disease pathobiology as does deep in-

filtrating endometriosis, or why some patients experience high levels of pain despite

having mild disease according to ASRM criteria. In fact, the World Endometriosis

Research Foundation (WERF) has established protocols to standardize collection of

samples and data across many practices around the world, so that much larger patient

populations can be studied going forward [176, 143, 511.

7.2 Future work

7.2.1 Characterization of Endometriotic Lesion Model

The endometriotic lesion model used here was modified from a previous model of en-

dometrial tissue developed by Christi Cook [34]. As such, peptide concentrations and

other aspects of gel formulation were not thoroughly investigated for this particular

system but were taken from that model. It is possible that encapsulated primary cells

may have different phenotypes depending on the concentrations of various peptides

in the gel. Additionally, matrix deposition was not measured in this system.

Cell death in the lesion model was relatively high. EDU staining could elucidate

whether cell death as measured by LDH was due to one cell type more so than the

others. It is likely that epithelial cells and monocytes are largely responsible for the
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cell death, as these cells are more fragile in tissue culture. Slight modifications of

the PEG gel, crosslinking protocol, or medium composition could possibly improve

survival of these cell types.

7.2.2 Macrophage differentiation and activation in lesion model

Monocytes were previously shown to differentiate into alternatively activated macrophages

in the presence of endometrial cell lines in the endometrial tissue model, but lesion gels

were never successfully stained for macrophage markers. As macrophage phenotype is

thought to play a role in proliferation and invasiveness of endometriotic lesions, test-

ing whether monocytes encapsulated in the gels differentiate and whether phenotype

is affected by the inflammatory milieu induced by IL-10 stimulation would provide an

assessment of the use of the model for studying immune-endometriosis interactions.

As an alternative, macrophages can be differentiated from monocytes in 2D and

induced to adopt classical or alternative activation phenotypes before addition to the

gels. This process was not attempted here because of logistical difficulties in tim-

ing macrophage differentiation, stromal cell expansion, and availability of sufficient

epithelial cells from fresh endometrial biopsies on the day of surgery. However, the

switch in biopsy collection protocol from 3mm to 4mm Pipelle biopsies greatly im-

proved the reliability of epithelial cell isolation, and tuning of macrophage phenotype

would provide an additional dimension along which to alter the model to be more

representative of lesion biology.

7.2.3 Intercellular communication in lesion model

Similarly, cytokine secretion by each individual cell type and combinations of cell

types was studied in the endometrium model. Very few monocytes/macrophages

remained in the gel by the end of the culture period, however, so the myeloid con-

tribution to the overall cytokine environment in that system was very small. In the

lesion model, where cells are all encapsulated in the gel, monocyte persistence is ex-

pected to be much higher, possibly allowing the myeloid component to contribute
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more to the cytokine milieu.

7.2.4 In-gel measurement of cytokines

Hydrogels used in this work were designed to be compatible with sortase degradation

[171]. Measurement of cytokines within the gel itself would provide a more accurate

view of what the cells encapsulated in the gel are actually exposed to. Considering

that cells within the gel are actively secreting and consuming cytokines as well as

matrix that may selectively bind certain cytokines, it is likely that the gel cytokine

environment differs substantially from the supernatant cytokines measured here [331.
It would be valuable to first compare whether in-gel cytokine measurements are in

fact very different from supernatant measurements and, if so, repeat the analyses

from Chapter 6 using the in-gel cytokine concentrations.

7.2.5 Experimental methods for multicellular interactions

In some cases, such as the induction of IP-10 secretion by monocytes stimulated by

IFN'} produced by activated CD4+ T cells observed in Chapter 2, cellular sources of

observed cytokines can be inferred from prior knowledge and then tested experimen-

tally. However, to definitively identify the cellular sources of proteins secreted as a

consequence of intercellular communication, such cytokines need to be experimentally

linked to the cell type of origin.

One option for linking cell types to secreted proteins is to use heavy and light

medium to label cells before mixing them. This technique could be used for up

to three cell types (using heavy, light, and neutral medium), albeit only for short

time points in culture. Given the current culture system of 20PL gels, conditioned

medium from multiple gels would need to be combined to achieve enough protein for

mass spectrometry. Alternatively, we have tested some larger transwell gels with the

same gel height but larger radius, and it is possible that larger syringe gels could be

similarly synthesized.

An alternative method for linking cytokine production to certain cell types is by
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staining for intracellular cytokines. Cytokine secretion could be blocked using mon-

ensin or brefeldin A, after which gels could be stained and imaged or sortase dissolved

followed by staining of cells for flow cytometry. In either case, cytokine staining would

be limited to a small number of cytokines at once, and blocking cytokine secretion is

known to be imperfect.
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