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ABSTRACT

Large-scale desalination plants are complex systems with
many inter-disciplinary interactions and different levels of sub-
system hierarchy. Advanced complex systems design tools have
been shown to have a positive impact on design in aerospace and
automotive, but have generally not been used in the design of wa-
ter systems. This work presents a multi-disciplinary design opti-
mization approach to desalination system design to minimize the
total water production cost of a 30,000m3/day capacity reverse
osmosis plant situated in the Middle East, with a focus on com-
paring monolithic with distributed optimization architectures. A
hierarchical multi-disciplinary model is constructed to capture
the entire system’s functional components and subsystem inter-
actions. Three different multi-disciplinary design optimization
(MDO) architectures are then compared to find the optimal plant
design that minimizes total water cost. The architectures include
the monolithic architecture multidisciplinary feasible (MDF), in-
dividual disciplinary feasible (IDF) and the distributed architec-
ture analytical target cascading (ATC). The results demonstrate
that an MDF architecture was the most efficient for finding the
optimal design, while a distributed MDO approach such as an-
alytical target cascading is also a suitable approach for optimal

design of desalination plants, but optimization performance may
depend on initial conditions.

INTRODUCTION
Multidisciplinary design optimization (MDO) is a set of

tools used by system engineers to optimize the design of a sys-
tem that involves many disciplines or subsystems. The chal-
lenges that arise in MDO have largely been in the numerical
complexity of performing system wide modeling [1]. To miti-
gate the numerical complexity, a number of strategies or meth-
ods for problem formulation and subsystem organization have
been proposed, also known as MDO architectures [1–4]. An
MDO architecture can be either monolithic or distributed. Exam-
ples of monolithic architectures include Multi-Disciplinary Fea-
sible (MDF) and Individual Discipline Feasible (IDF) [2, 5, 6],
where a single optimization problem is solved. In a distributed
approach the problem is partitioned into multiple subproblems,
examples include Collaborative Optimization (CO), Bi-Level In-
tegrated Synthesis System (BLISS), and Analytical Target Cas-
cading (ATC), to name a few [7–11]. A number of studies have
been conducted to compare the effectiveness and limitations of
different MDO architectures, and these studies have suggested
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that the performance of an MDO architecture often depends on
the nature of the problem [1, 12]. Therefore, it is imperative for
engineers to test multiple architectures on a given problem.

Desalination processes remove salt from saline water to pro-
duce fresh water. Large-scale desalination plants (with capacity
of 30,000 m3/day or more) have been constructed in the Middle
East since the early 1960’s to alleviate the region’s water short-
age. As the cost of desalination technologies, especially reverse
osmosis (RO) technology, continue to decrease, large-scale re-
verse osmosis desalination plants are being constructed in other
areas around the world.

The majority of reverse osmosis numerical optimization
studies only consider the reverse osmosis process itself. As of
today, designers in the field of desalination have not attempted
to apply techniques developed in systems engineering, such as
MDO, in the modeling and optimization of desalination systems.
The reason for this may be that the RO process itself is of a
scope that can be handled by a small design team. However,
when considering the desalination system as a whole, includ-
ing pre-treatment, life-cycle operation, and energy availability,
the system becomes far more complex with major interactions
between subsystems and components. As the world population
continues to grow and fresh water supplies dwindle, there will be
more desalination plants constructed around the world. Future
desalination plant designers will face the problem of designing
regional desalination networks, where a number of desalination
plants must work together cohesively while sharing limited en-
ergy resources. These properties of desalination systems make
them an ideal case example for studying systems engineering
techniques such as multi-disciplinary design optimization.

The objective of this study will be to investigate which type
of MDO architectures are best suited for finding the optimal de-
sign of a reverse osmosis desalination system. The performances
of several different MDO architectures are compared using a
30,000 m3/day reverse osmosis plant in the Middle East as a case
study. This study also serves the purpose of presenting a real
world test problem that will contribute to the on-going research
of evaluating novel MDO architectures.

RELATED WORK
Optimization of Reverse Osmosis System

A number of different studies have examined numerical op-
timization of RO processes, including optimization under differ-
ent feed concentrations [13], optimization of energy costs based
on electricity supply [14], optimization for both capital and oper-
ational costs [15], and optimization considering membrane foul-
ing [16]. All of these works only considered the RO process
itself in rather than a broader systems-oriented approach. Vince,
et al. [17] considered both energy consumption and cost in a
multi-objective optimization approach of RO plants, though their
system model is also limited to the RO process alone. Kim,

et al. [18] published an overview of systems engineering ap-
proaches for large-scale seawater desalination plant. They re-
viewed over 100 papers related to the different subsystems of a
RO plant. However, they did not attempt to map the interactions
between the major subsystems, nor propose methods for system-
wide optimization.

MDO Architectures
A number of surveys and comparison studies of MDO archi-

tectures has been reported in the past decade. Martins, et al. [1]
compiled a comprehensive list of all existing MDO architectures
to date, and included descriptions of features, merits, and ex-
pected performance. Perez, et al. [19] performed an extended
evaluation of five different architectures, based on metrics of sim-
plicity, transparency, portability, efficiency and accuracy, using
an aircraft conceptual design case study. de Wit and Keulen [20]
compared six different distributed MDO methods based on per-
formance and efficiency, using a simple two-beam truss structure
as an example. Allison, et al. [5] compared the performance be-
tween MDF and IDF architectures with test problems of varying
complexity. Honda, et al. [21] compared different information
passing strategies in distributed MDO architectures. Brown, et
al. [12] compared MDO methods with fixed-point iteration meth-
ods using a case example of a reusable launch vehicle. The limi-
tations of these comparison studies include low dimensionality of
test problems and inconsistency of programming skills between
research groups. The consensus from these studies is that the
most appropriate architecture will depend on the nature of the
problem [1, 12, 19].

To the best of the authors’ knowledge, there has not been
a study in which systems engineering tools are used to analyze
an RO desalination plant, capture the interactions between pre-
treatment, the RO process, operations and energy consumption.
Moreover, multi-disciplinary optimization has also not been ap-
plied to desalination technologies. This paper seeks to fill the
gap by considering reverse osmosis plants at a systems level us-
ing MDO techniques.

METHODOLOGY
In this study several different MDO architectures are ap-

plied to the numerical design optimization of a reverse osmosis
plant, to compare the performance of different architectures in
desalination technology applications. This section outlines the
methodologies associated with modeling of the desalination sys-
tem and implementation of the MDO architectures.

Reverse Osmosis System Model Development
In this case study, a 30,000m3/day capacity seawater reverse

osmosis plant is planned for a specific location on the coast of the
Arabian Gulf. Actual cost and capacity numbers from an existing
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FIGURE 1. SYSTEM DIAGRAM OF REVERSE OSMOSIS PLANT [18]

desalination plant is being used to calibrate model parameters.
The system boundary of a reverse osmosis desalination system
is defined to include the intake and pre-treatment system, the RO
process, including the pumps and energy recovery devices, the
RO membranes and pressure vessels, and the life-cycle analysis
considering capital, maintenance and energy costs. The energy
required for the RO plant is assumed to be coming from the elec-
tric grid, and the post-treatment process and water distribution
system is not considered.

Figure 1 shows the layout of the reverse osmosis plant be-
ing modeled. Three different subsystems can be identified based
on the plant layout: the intake & pre-treatment (IP) subsystem,
which deals with preparing the feed seawater for desalination, the
RO process flow structure (FS) subsystem, which is focused on
the selection of pumps, energy recovery devices (ERD) and how
they are connected, and the RO pressure vessel (RO) subsystem
that specialize in selecting the RO membrane and designing the
pressure vessel rack. The life-cycle analysis (LC) that deals with
the finance, operation and maintenance of the plant is a fourth
subsystem.

The IP subsystem covers the design choices associated with
the intake technology and pre-treatment technology. For this
study, two intake structures are possible based on geographical
constraints: deep water intake or shallow water intake. Two
different pre-treatment processes are possible, conventional pre-
treatment with cartridge filters or ultra-filtration pre-treatment
[22, 23]. The capital cost, operational cost and energy consump-
tion of the intake and pre-treatment system depends on the com-
bination of intake and pre-treatment choices [23, 24], as well as
the intake seawater flowrate [25]. The mathematical formulation
for the IP subsystem is:

[CCIP,ECIP,OCIP] = fIP(Qin, Iintake, Ipre) (1)

where CC, EC, OC stand for capital cost, energy consump-
tion, and operational cost, Qin is the intake seawater flowrate,
while Iintake and Ipre are integer variables indicating the choices
of technology in intake and pre-treatment respectively. In this
model of the plant, there are two different possible technology
choices: shallow open intake and deep open intake, the cost of
intake structures are considered fixed. Two pre-treatment tech-
nology choices were considered: conventional pre-treatment and
ultra-filtration. The costs of pre-treatment technologies are mod-
eled by power laws.

The FS subsystem covers the discipline specific to the RO
process flow, configuring the connectivity between pumps, pres-
sure vessels, and energy recovery devices. The majority of RO
optimization work in the past has focused on this area, and
many novel approaches have been developed, especially super-
structure optimization [17, 26]. In this study, a constant single-
pass single-stage flow structure will be implemented. The math-
ematical formulation for the FS subsystem is:

[CCFS,ECFS,Q f ,Qp,c f ] = fFS(Qin,Pf ,Ntrain,r,SR,Pdrop) (2)

where Q f and c f are the flow rate and the salt concentration
of the feed water entering the RO pressure vessel rack, Qp is the
fresh water product flow rate, Pf is the feed pressure, Ntrain is the
number of individual trains, r, SR, Pdrop are outputs from the RO
unit subsystem, which are recovery ratio, salt rejection ratio, and
pressure drop across the RO unit, respectively. For additional
details of the flow structure model refer to [17].

The RO subsystem covers the design of the pressure vessel
rack, and the selection of membrane. A library of seawater RO
membranes is constructed based on information supplied by the
Dow Chemical Company. A physics-based model is constructed
that computes the permeate and brine conditions based on feed
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water properties such as flow rate and pressure. The choice of
the pre-treatment technology plays a major role in the design of
the pressure vessels, since the result of pre-treatment will affect
the feed water quality, which governs the maximum allowable
recovery ratio of the membrane. The mathematical formulation
of the RO subsystem is:

[CCRO,CCmemb,r,SR,Pdrop]

= fRO(NPV,Nmemb, IRO,Q f ,Pf ,c f , Ipre) (3)

where NPV is the number of pressure vessels in parallel,
Nmemb is the number of RO membranes inside a single pressure
vessel, IRO is the type of RO membranes selected from the mem-
brane library. All three of these variables are integer variables.
All pressure vessels are identical and are connected in parallel.
In each pressure vessel, Nmemb number of identical RO mem-
branes are connected in series, and each RO membrane is mod-
eled using a solution-diffusion lumped parameter model. The
solution-diffusion model is commonly used to describe the be-
havior of RO membranes, details of the model can be found in
references: [16, 17, 27].

The life-cycle (LC) subsystem first determines the cost of
operating the RO unit based on flow rate, membrane type, and
pre-treatment technologies, then combine the operational cost
with the rest of the costs, amortized over the life-cycle of the
plant to compute a total water price (TWP) in $/m3 of water pro-
duced. The plant is assumed to have a life-cycle of 25 years, the
discount rate is 5%, and the electricity cost is $0.3/kWh. The
mathematical formulation of the subsystem is:

TWP = fLC(CCRO,CCmemb,CCFS,CCIP,ECFS,ECIP,OCIP,

Qin,Qp, Ipre,Ntrain) (4)

Figure 2 shows the N2 diagram of the reverse osmosis sys-
tems. There are a total of eight input variables to the system,
and one objective variable as output. The diagram suggests that
there is a strong coupling between the subsystems FS and RO as
indicated by the feedback loop between them, and only a weak
coupling between the rest of the subsystems. The IP, FS, and RO
subsystems all have outputs that feed into the life-cycle subsys-
tem, forming a hierarchy of three lower level subsystems report-
ing to a central system administrator. The variables associated
with each subsystem and their connectivity are shown in Table 1.

The mathematical formulation of the design optimization
problem of this reverse osmosis plant is shown below:

TABLE 1. Number of variables in subsystems

IP FS RO LC

input variables

design variable (shared) 3(2) 3(3) 4(1) 3(3)

coupling variable 0 3 3 8*

total: 3 6 7 11

output variables

shared with upper level 3 3 3 0

shared with lower level 0 3 3 0

objective 0 0 0 1

total: 3 6 5 1

*outputs of lower level subsystems

min.
x

TWP = fLC(yIP,yFS,yRO,xLC)

s. t. yIP = fIP(xIP)

[yFS,yFS-RO] = fFS(xFS,yRO-FS)

[yRO,yRO-FS] = fRO(xRO,yFS-RO)

g(x)≤ 0
x = [xIP,xFS,xRO,xLC] (5)

Where x is the design variable vector, ysub are the intermedi-
ate state variables, and g(x) are the constraints associated with
the system. A summary of design variables and their respective
bounds are presented in Table 2. Constraints that are considered
include the following:

1. water production equal to 30,000m3/day
2. product water TDS less than 500ppm
3. feed water flow rate less than 150,000m3/day
4. feed pressure less than rated maximum
5. single membrane flow rate less than rated maximum
6. single membrane recovery rate less than rated maximum

MDO Architectures
Three different architectures are tested in this study, which

include two of the most common monolithic architectures:
Multi-disciplinary feasible (MDF) and Individual Discipline
Feasible (IDF). The third architecture is analytical target cascad-
ing (ATC), which is a distributed architecture. Due to the mixed
integer nature of the design problem, distributed architectures
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TABLE 2. Summary of Design Variables

Symbol Description Bounds

NPV Number of pressure vessel (PV) up to 100

Nmemo Number of membranes per PV up to 8

Ntrain Number of RO trains up to 6

IRO Type of membrane 4 types to choose from

Iintake Type of intake structure shallow vs deep

Ipre Type of pre-treatment conventional vs ultra-filtration

Qin Feed water flow rate 50,000 to 100,000 m3/day

Pf Feed water pressure 50 to 83 bar

IP 

FS 

RO r, SR 

NPV, Nmem, IRO 

CCRO 

Qf, Pf 

Pf, Ntrain 

Qin 

Qp, ECfs, CCFS 

LC 

Qin, Iintake, Ipre 

OCIP, ECip, CCIP, Qin, Ipre 

TWP 

Ipre 

FIGURE 2. N2 DIAGRAM OF REVERSE OSMOSIS PLANT

that require gradient information such as BLISS cannot be used.
Analytical target cascading is a more recently developed archi-
tecture that has shown to work with mixed-integer problems [28],
and thus selected for this application. Detailed descriptions of
each of the three architectures are provided below.

Multidisciplinary feasible (MDF) The MDF architec-
ture is the most straight-forward architecture, and its formula-
tion has the fewest design variables of any monolithic architec-
ture [1, 5, 19]. In this architecture (Figure 3a) the optimization
routine wraps around a multidisciplinary design analysis (MDA),
which iterates through the disciplines sequentially until a feasi-
ble design is reached. The advantage of MDF, besides its simple
problem definition, is that it always produces a feasible design.
The disadvantage is that coupled subsystem models may need to
be evaluated several times before convergence, resulting in long
computation time. The mathematical formulation of the MDF

architecture is:

min.
x

TWP = fMDA( fIP, fFS, fRO, fLC)

s. t. g(x)≤ 0 (6)

There is only one optimization routine in the MDF architecture,
and the optimization stops when the objective function reaches a
steady-state value and the design satisfies all constraints.

Individual discipline feasible (IDF) In the IDF archi-
tecture shown in Figure 3b, complete MDA is avoided by includ-
ing the coupling variables in the optimization routine as decision
variables, and introducing consistency constraints to ensure fea-
sibility. IDF results in a larger optimization problem, but each
subsystem model only needs to be evaluated once in every opti-
mization iteration. The disadvantage is that the system design
may not be feasible until the optimization process converges.
The mathematical formulation of the IDF architecture is:

min.
x,ŷ

TWP = fMDA( fIP, fFS, fRO, fLC)

s. t. g(x)≤ 0
ŷFS-RO− yFS-RO(x, ŷRO-FS) = 0
ŷRO-FS− yRO-FS(x, ŷFS-RO) = 0 (7)

where ŷ is a copy of the coupling variable. There is also only
one optimization routine in the IDF architecture, however, there
are a few more variables in the optimization and the associated
equality constraints. The optimization stops when the objective
function reaches a steady-state value and all equality constraints
and design constraints are satisfied.
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FIGURE 3. MULTIDISCIPLINARY DESIGN OPTIMIZATION ARCHITECTURES

Analytical Target Cascading (ATC) The ATC archi-

tecture (Figure 3c) takes advantage of the hierarchical structure

of the system. An optimization problem is formulated for every

subsystem to meet a set of performance targets. Instead of intro-

ducing equality constraints on the targets and coupling variables,

a Lagrangian relaxation penalty function is formulated [29, 30].

The targets of lower-level subsystems are cascaded from the op-

timization results of upper-level subsystems. The advantages of

the ATC architecture are mainly in its distributed nature, fairly

easy to implement, minimizing the necessary communications

between subsystems, and allow parallel processing of some of

the subsystems. The disadvantage is that ATC, like other dis-

tributed architectures, are numerically inefficient compared to a

monolithic architecture, and require a large number of function

and discipline evaluations [1]. The mathematical formulation of

the ATC architecture is shown in Equations 8 and 9.

min.
x,ŷL

fMDA( fIP, fFS, fRO, fLC)+φLC(ŷL,yL)

s. t. gLC(x)≤ 0 (8)

Equation 8 shows the formulation of the upper level problem,

where φLC is an augmented Lagrangian penalty function based

on the responses from the lower level subsystems yL.

min.
xi,ŷL,i,ŷU,i

φU,i(ŷU,i,yU,i)+φL,i(ŷL,i,yL,i)

s. t. [yU,i,yL,i] = fi(xi, ŷU,i, ŷL,i)

gi(x)≤ 0 (9)

Equation 9 outlines the general formulation of the lower level

problems, where the objective is to minimize the discrepancy be-

tween the system response and upper level target φU,i, and also

the discrepancy between variables shared among lower level sub-

systems φL,i. There are in total four optimization routines in

this architecture, one for each subsystem. ATC runs in an iter-

ative fashion, the targets and responses update during each iter-

ation. The optimization is complete when the objective function

reaches a steady-state value, and the targets’ and responses’ val-

ues converge, indicated by φ → 0.

For this study, the optimization architectures are imple-

mented in Matlab 2013b, using the built-in genetic algorithm

function ga which is capable of handling mixed-integer prob-

lems, and it used for solving the optimization problems in each

of the architecture.

RESULT
The reverse osmosis plant design problem outlined in the

previous section is solved independently with each of the three

MDO architectures. The Matlab default settings for the mixed in-

teger genetic algorithm [31] was used with some modifications:

the number of population is set to 50, and the maximum number

of generations is set to 600. Since the mixed integer GA does not

accept equality constraints, the equality constraints IDF architec-

ture are implemented as inequality constraints using the absolute

value function and a relaxation value of 0.001.

Each of the MDO architectures was executed five times in-

dependently, while a counter algorithm is implemented to keep

track the number of times each subsystem function is evaluated.

Table 3 summarizes the number of function evaluations, showing

the average numbers of function evaluations from the five inde-

pendent analyses. The monolithic architectures have comparable

complexity in terms of function evaluations, IDF has higher num-

bers of function evaluation due to a higher number of variables

and the additional equality constraints. Due to the coupling na-
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TABLE 3. MDO Architectures Complexity Comparison

MDF IDF ATC

# of optimizer 1 1 4

# of variables 8 12 27

# of equality constraints 0 4 0*

system iterations - - 11

function evaluations

IP 5,303 15,445 29,179

FS 10,606 15,445 59,802

RO 10,606 15,445 35,330

LC 5,303 15,445 197,132

Total 31,818 61,782 321,444

*inconsistencies between targets and responses are penalized
in optimization objective function

ture of the FS and RO subsystems, they are evaluated more times
compared to the IP and LC subsystems in the MDF architecture.
The ATC architecture is significantly more complex compare to
the other two, with an order of magnitude more function evalua-
tions. This was to be expected since ATC is an iterative process.

Out of the five independent executions of each MDO archi-
tecture, the resulting design with the lowest TWP was selected
and presented in Table 4. MDF and ATC resulted in very simi-
lar designs with total water price equal to $0.52/m3. IDF on the
other hand, produced a design that has a higher total water price
that is less optimal compared to the results of MDF and ATC,
although IDF and MDF have been shown to provide equally op-
timal results in past studies [2, 32]. This discrepancy observed
here could be caused by the added complexity to the non-linear
equality constraints in IDF optimization problem. Fine tuning of
the genetic algorithm should improve the performance of IDF.

Effects of Initial Design on ATC
The ATC architecture requires an initial design point to pro-

vide the necessary intermediate variables. Three different initial
design points were tested to compare the effects of different ini-
tial designs on the performance of the ATC architecture. The
results are shown in Table 5.

Case 1 used a feasible design as the initial starting point,
case 2 used a different feasible design as initial starting point, al-
though less optimal compared to the initial design in case 1 (low
recovery, high pressure, high TWP), and case 3 used a infeasible
initial design point. In the first case ATC found a solution with
a TWP value very similar to the results of the MDF architecture.
In case 2, the final solution is more optimal compared to the ini-

TABLE 4. Optimization Results

MDF IDF ATC

Number of PV 95 91 71

Number of membranes/PV 7 6 8

Number of RO trains 5 6 5

Type of intake structure shallow shallow shallow

Type of pre-treatment UF* UF UF

Feed water flow rate [m3/d] 75,500 86,200 64,300

Feed water pressure [bar] 68.6 61.7 71.7

System recovery 46.2% 36.3% 47.9%

Total water price [$/m3] 0.52 0.55 0.52

*Ultra-filtration

tial design, indicated by the lower objective function value (total
water price), but less optimal compared to the results found pre-
viously. In case 3, when a completely infeasible initial design
point was used, the ATC architecture failed to converge even af-
ter 100 system iterations (compared to < 20 iterations for the first
two cases).

The results show that the design found through ATC is
highly dependent on the initial design point. This problem is
caused by the mixed-integer nature of the design problem. Stud-
ies in the past have noted that mixed-integer implementations of
ATC tend to converge prematurely [28], and this is evident in
case 2, where the ”type of intake” and ”type of pre-treatment”
did not change from the initial design point.

CONCLUSIONS AND FUTURE WORK
In this study, systems engineering techniques are applied

to the design and optimization of a large scale reverse osmosis
desalination system. Four subsystems and their interactions are
identified and modeled using a mixed-integer numerical model.
The system model includes intake and pretreatment, as well as
life-cycle operation and finance analysis of the plant, both of
which are rarely considered in previous studies involving numer-
ical optimization of desalination plants. Three different multi-
disciplinary design optimization architectures: multidisciplinary
feasible (MDF), individual disciplinary feasible (IDF) and ana-
lytical target cascading (ATC) are applied in the numerical opti-
mization of the desalination system, and their performances are
compared in terms of design optimality and complexity. The re-
sults show that for this particular system model with a relatively
low degree of fidelity (eight design variables and only strong cou-
pling between two of the four subsystems), the MDF architecture
produced the most optimal design with the least number of func-
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TABLE 5. Effects of Initial Design on ATC Results

initial 1 final 1 initial 2 final 2 initial 3 final 3

Number of PV 65 71 90 58 1 -

Number of membranes/PV 7 8 5 6 1 -

Number of RO trains 6 5 6 4 1 -

Type of intake structure shallow shallow deep deep shallow -

Type of pre-treatment UF UF conv.* conv. conv. -

Feed water flow rate [m3/d] 77,300 64,300 84,000 76,800 50,000 -

Feed water pressure [bar] 70 71.7 80 81 50 -

System recovery 44% 47.9% 35.9% 41.8% - -

Total water price [$/m3] 0.55 0.52 0.60 0.56 - -

System iteration 11 17 D.N.C.†

*conventional
† did not converge

tion evaluations. ATC is also capable of producing highly opti-
mal design, but requires significantly higher numbers of function
evaluation, and the final result is affected by the initial design
point.

This paper demonstrated that the complexity associated with
desalination plants requires the use of system engineering tech-
niques to model and capture full system interactions. Extension
of this work should focus in two different areas. First is to in-
crease system model fidelity by including water distribution sub-
system and energy source subsystems, and eventually create a
regional desalination network system model that include multi-
ple desalination plants and power plants that service the water
and energy demand of a local area.

Although the monolithic architecture MDF is shown to be
the most effective architecture in this study, distributed architec-
tures still have merits in areas such as parallel processing, and or-
ganization of distributed design teams, both of which are critical
in the design of large-scale systems such as the energy-water net-
work described above. Analytical target cascading is a promising
technique but has its limitations when applying to mixed-integer
design problems. Therefore more distributed MDO architectures
should be evaluated in the future to find the best distributed ar-
chitecture for large-scale water systems.
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