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ABSTRACT
Complex system design requires managing compet-

ing objectives between many subsystems. Previous field
research has demonstrated that subsystem designers may
use biased information passing as a negotiation tactic and
thereby reach sub-optimal system-level results due to lo-
cal optimization behavior. One strategy to combat the fo-
cus on local optimization is an incentive structure that pro-
motes system-level optimization. This paper presents a new
subsystem incentive structure based on Multi-disciplinary
Optimization (MDO) techniques for improving robustness
of the design process to such biased information passing
strategies. Results from simulations of different utility
functions for a test suite of multi-objective problems quan-
tify the system robustness to biased information passing
strategies. Results show that incentivizing subsystems with
this new weighted structure may decrease the error result-
ing from biased information passing.

1 Introduction

A constant challenge in large engineering organiza-
tions is to design and develop complex systems that suc-
cessfully balance competing subsystem trade-offs. A num-
ber of powerful structured design approaches have been
formulated to model and optimize these trade-offs. In
real-world practice, however, these approaches cannot al-
ways be applied. In fact, teams must make choices based
on time and budget, and may opt for satisficing decision-
making [1], and often must address poorly defined prob-
lems [2].

A rich body of literature exists to help complex system
designers reach more optimal solutions. Formal conflict
resolution processes and associated design support tools,
such as the NASA Jet Propulsion Lab’s Icemaker [3] and
market-based allocation algorithms [4], have also been de-
veloped to facilitate communication and decision-making
between subsystems. Mathematical simulations are also
used to simulate the optimization of complex systems.
Simpson, et al. review the multitude of problems that
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can be addressed through these types of algorithms [5].
Sobieszczanski-Sobieski and Haftka [6] demonstrate the
range of aerospace applications.

Previous field study interviews by the authors with de-
signers of complex systems has demonstrated two key find-
ings about complex system design decision-making within
a large aerospace organization. First, the informal system
of negotiation between subsystems resolved the vast major-
ity of design parameter conflicts. System integrators and
subsystem designers estimated that the formal conflict res-
olution process resolved between 5 to 10% of all conflicts.
Second, biased information passing was a negotiation strat-
egy used by many of the subsystems throughout the de-
sign process. This strategy consists of reporting overly-
conservative estimates of design parameters to other sub-
systems in order to reserve excess capacity as a negotia-
tion chip in future negotiations [7]. In other words sub-
systems tended to optimize around their own needs, rather
than the needs of the overall system. This second observa-
tion was formally modeled, and experiments showed that
biased information passing could have a negative impact
on the speed and feasibility of reaching a design solution.
Reflection on the above two findings suggested one possi-
ble strategy to combat biased information passing, which is
to formulate an incentive structure to bring subsystems into
alignment with the goals of the overall system.

This paper presents results from simulations of biased
information passing that build on [7] by examining the role
of subsystem incentives. In the new proposed incentive
structure, at the end of every iteration each subsystem is
evaluated not only on its own performance but also par-
tially on the performance of the other subsystems. This
may incentivize subsystem designers to consider solutions
that benefit both subsystems instead of just their own. The
simulations use Multi-Disciplinary Optimization (MDO)
techniques to investigate the possible effects of changing
incentive structures for subsystems.

This study seeks to answer the following questions:

1. What is the effect of biased information passing on
system-level optimality in a complex system with the
proposed weighted incentive structure?

2. What impact might these strategies have on the speed
and quality of system optimization?

Speed and optimality are important indicators for com-
paring optimization algorithms and can lead us to a bet-

ter understanding of the impact of the proposed incentive
structure. Is it feasible for such a system to achieve more
optimal results if subsystems are incentivized to consider
the performance of other subsystems? If so, is this struc-
ture more robust to biased information passing than a nor-
mal system?

2 Related Work
This paper draws on previous work in both formal

mathematical models of the design process, negotiation
within complex system design as well as decision-making
literature from a variety of fields. Perspectives from these
sources are used to gain insight into the design of proposed
incentive structure and its effect.

2.1 Complex System Design Process Models
A substantial literature exists on modeling complex

system design. One approach, Game Theoretic design,
attempts to identify a rational design given limits to the
amount and form of information being passed between
designers. The use of Game Theory as an approach
for modeling complex system design has been developed
by Vincent [9], Lewis [10], and Whitfield, et al [11].
Traditional Game Theoretic approaches combined with
Decision-Based Design [12] have been used in a broad
range of design research [13–16], becoming a leading
framework for the study of multidisciplinary design prob-
lems [17].

The complex system design process can also be
viewed as a multi-objective optimization problem. Multi-
disciplinary Optimization techniques utilize this philoso-
phy [18]. MDO models often rely on a system facilitator
to make optimal trade-offs between subsystems to benefit
the larger system. Design researchers draw from this lit-
erature to appropriately model their particular instance of
complex system design.

2.2 Design Process Simulations
Simulations based on these formal models have al-

lowed researchers to observe the effect of changes on a
number of factors. Researchers have compared team struc-
tures [18–20], information passing strategies [7,21,22] and
decision-making [23]. In doing this analysis, researchers
have also suggested best practices for design processes.
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Collopy proposed gradient-based information passing strat-
egy for reaching optimal solutions [24]. Research areas
such as robust design have explored the use of uncertainty
models to support the decision-making process [25]. This
study relies on this work to inform the design and analysis
of the process simulations.

2.3 Negotiation in Complex System Design
The design of large-scale complex systems often relies

upon negotiation between subsystems to determine the val-
ues of engineering parameters. Due to its importance to de-
sign outcomes, this type of negotiation has been studied in
a variety of fields including design research, management
science, economics and psychology. One area of research
examines current practice within complex system design
teams. Yassine, et al. described the phenomena of infor-
mation hiding in complex system design [26]. The effect
of the team or network structure on subsystem negotiations
has also been studied [27]. Di Marco, et al. investigated
the effect of individual team member culture on the negoti-
ation process [28].

Another branch of research uses these insights to cre-
ate prescriptive strategies for improving design outcomes.
Ledyard et al. propose a market-based mechanism from
economics for optimizing the allocation of resources in the
design of shuttle payloads [4]. Smith and Eppinger utilized
Work Transformation Matrices to help design teams iden-
tify controlling features of a physical design and which sub-
systems that will require more iterations than others [29] .
Yassine and Braha developed a method to help subsystems
represent complex task relationships better when negotiat-
ing through the use of an information exchange model [30]
. This paper draws on these sources to help model the ne-
gotiation between subsystems and serve as a guide for the
development of the proposed incentive structure.

2.4 Margin Use in Complex System Design
Uncertainty and its propagation through complex sys-

tems is a well-studied area in design research. Takamatsu
defined the concept of formal design margins for use in risk
management throughout the complex system design pro-
cess [33]. Based on this work, formal design margins are
often defined as probabilistic estimates of design param-
eter uncertainty relative to either worst-case estimates or
performance objectives. These margins may be used as a

replacement for heuristic margins and intuition previously
used by design teams. Thunnissen proposed methods for
determining these margins and using them to manage risk
tolerances [34]. Eckert et al. describe the multiple defini-
tions of and use cases for margins in current practice. They
then proposed clear definitions for margin use in complex
system design [35]. Other researchers have demonstrated
the range of applications of these concepts in supporting
complex system design [36, 37].

2.5 Incentive Structures
Incentives and rewards can drastically influence indi-

vidual’s behaviors, and aligning subsystem incentives with
the strategic interest at the system level is one of the most
important factors in the success of organization design [45].
Nadler and Tushman summarized that incentives must be
clearly linked to performance, and also relate directly to
the performance at each level of the organization [46]. Or-
ganizations also need create proper incentives structures to
avoid errors and accidents. Paté-Cornell reported cases in
off-shore oil platform design where insufficient incentives
to take safety measures lead to unsafe decisions [47]. Pre-
vious studies suggest incentive structures is a possible way
to mitigate the effect of biased information sharing between
subsystems.

2.6 Design Support Tools
A wide range of design support tools have been de-

veloped based on insights from complex system design re-
search. NASA Jet Propulsion Laboratory’s ICEmaker is
a spreadsheet-based tool for enabling communication of
design parameters and constraints across subsystems [3].
Wang et al. review the use of metamodels to help design-
ers approximate computationally-intensive complex sys-
tem design tasks [38]. Intelligent decision-making sup-
port in Computer-aided Design tools allows subsystems to
collaboratively work on solid models with embedded con-
straints [39, 40]. Other fields such as requirements engi-
neering [41], architecture [42] and structural design [43]
have also developed tools to help manage trade-offs in com-
plex systems.

2.7 Problem Selection
The selection of test problems is a key issue in the val-

idation of design process simulations. Coello, et al. [31]
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provide a framework for multi-objective optimization test
problems and guidelines for selecting a test suite. This
work is part of a larger area of research addressing the de-
velopment of appropriate test suites [32]. Although test
suites can be useful for comparing and evaluating optimiza-
tion algorithms, they may not be representative of algo-
rithm performance on “real-world” problems. Both Coello,
et al. and Deb, et al. recommend test suites comprised of
a variety of types of problems in order to gain the most
insight about performance differences. This paper draws
from several sources to incorporate as many different types
of test problems as possible.

2.8 Research Gap
This paper focuses on the interactions between subsys-

tems in complex system design. Current complex system
design support tools focus on formal interactions between
subsystems through the use of committees, system integra-
tors, contracts, auctions or other mechanisms. Since infor-
mal negotiations between subsystems may dominate formal
interactions, this paper seeks to adapt the insights and tech-
niques from the formal interactions to improve the behavior
in the informal interactions. In particular, this study hopes
to both improve the effectiveness of complex system design
simulations by more realistically modeling the social com-
ponent of human behavior and to improve design outcomes
by suggesting a roadmap for developing a process which is
robust to biased information passing.

3 Method
The work presented in this study consists of MDO sim-

ulations of different biased information passing behavior
under a proposed incentive structure. The simulations aim
to quantify the effect of a change in incentive structure on
system behavior when subsystems bias information pass-
ing. A two-player system was simulated as this is a com-
mon situation in the studied organization and also simpli-
fied initial calculations.

3.1 Previous System Model
Previous work by the authors suggested that design

teams may utilize a design optimization architecture which
is sequential [7], such as fixed-point iteration [44]. The
simulation structure is designed to emulate this behavior.

The two-player system model consists of two subsystems
and their respective associated objective functions. Opti-
mization is performed sequentially. First one subsystem
optimizes its design parameters and then point design in-
formation is passed to the second subsystem. The second
subsystem then uses the passed information to minimize its
design parameters. Point design information is then passed
back to the first subsystem, completing a single system it-
eration.

Figure 1. System schematic for one iteration

The previous study defined the concept of biases in the
passing of point design information between subsystems
and demonstrated their effect on system performance. The
same model is used in this simulation structure. The biased
information model consists of multiplying each passed de-
sign point by a bias factor b. Three models were defined:
no bias with b = 1, static bias b = 1.3, and decreasing bias
where b was initially 1.3 and then decreased by .1 at each
system iteration. These values for the bias were based on
interviews of subsystem designers which found that sub-
systems followed each of these patterns, with the decreas-
ing case being most common. This study builds on the pre-
vious simulations by changing the objective functions of
the subsystems to reflect the proposed incentive structure.
This is presented in Figure 1.

3.2 Proposed Incentive Structure
The proposed incentive structure is based on weighted-

sum approaches from MDO [31]. In weighted-sum ap-
proaches, a single utility function is created consisting of
a weighted sum of the objective functions.

U =
n

∑
i=1

wi fi (1)

where U is the utility function, i is the index of the ob-
jective function, wi is a weighting coefficient between 0 and
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1 with Σwi = 1, and fi is an individual subsystem objective
function. The weighting coefficient is used to determine the
relative importance of each objective function. For a given
set of wi the utility function can be optimized and give an
optimal solution to the system.

In the previously studied organization, subsystem per-
formance is evaluated on the subsystem level. Each sub-
system is given goals by system integrators and meeting
or exceeding the goals determines the performance of the
subsystem. In the proposed incentive structure, subsystem
performance would be evaluated at each system iteration as
a weighted sum of the performance of all subsystems. By
evaluating a subsystem using a utility function as the per-
formance of the subsystem, it is hypothesized that subsys-
tems may choose locally sub-optimal results that achieve
more optimal system-level results.

3.3 Simulation of Impact of Incentive Structure

The proposed incentive structure could impact subsys-
tem designer behavior and thereby system performance in
a variety of ways. Subsystem designers could change the
information passed, their decision-making process, their
team structure, or their negotiation strategy. For example,
subsystem designers could choose to reduce the amount of
bias in the information passed. The simulations presented
in this paper assume that subsystems will use the proposed
utility function directly as their objective function. In addi-
tion, these simulations assume that the subsystem design-
ers will not make any change to their negotiation strategy,
that is they will continue to bias the information passed.
In a real system, this would involve greater effort on the
subsystem designer’s part to determine the response of the
other subsystem to the design inputs. In practice, this could
be achieved through communication between the subsys-
tem designers in their negotiation process. A subsystem
designer might ask for information about the other subsys-
tem’s response to proposed inputs. These simulations test
the situation in which subsystem designers have perfect in-
formation about both subsystem responses but are continu-
ing to bias the information passed to the other subsystem.

In summary, the simulations consist of the optimiza-
tion of two subsystems whose objective functions are utility
functions. The utility functions are defined as the weighted
sum of the subsystem objective functions from the test

problem.

U1 = w1 f1 +w2 f2 (2)

U2 = w2 f1 +w1 f2 (3)

For example, a system consisting of the utility func-
tions U1 = .9 f1 + .1 f2 and U2 = .1 f1 + .9 f2 would model
a system where 10% of each subsystem’s performance was
based on the other subsystem’s performance. During each
system iteration, the passed point design information was
multiplied by a bias factor b. This is presented in Figure 2.

Figure 2. System schematic for one iteration

In this study, the weighting coefficients were varied to
see the effect on system performance. A system without
the incentive structure is represented by w1 = 1, while the
extreme case of each subsystem equally considering the
performance of both subsystems is represented by w1 =
w2 = 0.5. The weighting coefficient was varied by 5% be-
tween 0.5 and 1 in order to get an overview of the incen-
tive space. Thus, the weighting coefficients were defined as
w1 = 0.5+0.05n for n = 0,1, . . .10. This work also tested
the three bias conditions presented in the previous study.

These test conditions were simulated on a test suite of
two-objective problems drawn from Multi-objective Evo-
lutionary Algorithms by Coello, et al. [31] and from a test
suite proposed by Deb, et al. [32] as described in section
2.7.

The final system performance was defined as the Eu-
clidean distance of the final system design from the Pareto
Frontier after satisfying the stopping condition. This can be
considered the system-level optimality. This distance was
normalized by the Euclidean distance between the Pareto
maximum and minimum [1]. A value of zero for this nor-
malized distance, dPF , would indicate a solution directly on
the Pareto Frontier and a value of 100% would indicate a

5 Copyright © 2015 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 01/14/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



solution at the normalizing distance. The stopping condi-
tion was defined as either convergence for both subsystems
f1(i) = f1(i−1); f2(i) = f2(i−1) or reaching a Nash Equi-
librium [8] f1(i) = f1(i− 2); f2(i) = f2(i− 2). The Pareto
Frontier for these test problems was often given as an ana-
lytical solution in the test suite. If not available, the Pareto
Frontier was calculated using the MATLAB Genetic Al-
gorithm function GAmultiobj. The minimization of each
subsystem was performed using the MATLAB optimiza-
tion function f min con with the interior-point algorithm.

Several parameters were varied at each condition. Each
condition and test problem was solved starting at 100 ran-
domly selected points to check for robustness to initial con-
ditions. The order of sequential optimization was also var-
ied for each testing condition. This checked whether having
the first or second subsystem optimize first in each system
iteration changed the behavior of the system.

The system optimization behavior was then analyzed to
determine what the effect of each testing condition was on
the performance metrics. The behavior was also compared
to the specific problem characteristics such as types of con-
straints and objective functions. This analysis is presented
in the results and discussion sections.

4 Results
Simulation results are shown in Figures 3 and 4. Sys-

tem performance under the test conditions was measured
in terms of optimality and speed. Optimality was defined
as the mode of the normalized Euclidean distance to the
Pareto Frontier, dPF [7]. Two characteristics of the opti-
mization setup were varied at each bias condition: the sub-
system sequential optimization order and the initial starting
points. The sequential optimization order had a negligible
effect on the final system performance. In a small minor-
ity of test problems, changing the sequential order added a
few extra solutions to the set of final system results from
the 100 random starting points. However, the use of linear
utility function did change the sensitivity of system perfor-
mance to the initial conditions. This was seen in the impact
on the number of runs resulting in the modal optimality.
Weighted-sum methods have been shown to have problems
realizing Pareto Frontiers for problems whose true Pareto
Frontier is concave [31]. This was also true in these simu-
lations. For the test problems with concave Pareto Fron-
tiers, the average number of runs resulting in the mode

was reduced from 77 to 42 with the introduction of util-
ity functions. Additionally, only results from the static
bias test condition are shown. This because the previous
study demonstrated the decreasing bias and no bias case
resulted in optimal solutions. Thus, adding a utility func-
tion to these strategies did not improve on the performance.
Also, adding a utility function increased the number of it-
eration necessary in both the no bias and decreasing bias
conditions.
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Figure 3. Ratio of the Modal Distance vs. Weighting Coefficient: graph

presents the ratio of the mode of the normalized Euclidean distance to

the Pareto Frontier for the tested weighting coefficient to the mode of the

normalized Euclidean distance to the Pareto Frontier in the unweighted

case
dPF,wi

dPF,wi=1
.

Figure 3 shows the ratio of the dPF for the tested
weighting coefficient to dPF for the unweighted case w1 = 1
for several example test problems under the static bias con-
dition b = 1.3. This ratio can be used to demonstrate
whether there is an advantage to using the utility func-
tion. If this distance ratio is less than 1, or beneath the
red dashed line, the system reached a more optimal solu-
tion in the weighted case. Lower values correspond with
more optimal solutions compared to the unweighted case.
Values above 1, or above the red dashed line, show the sys-
tem performed less optimally at that weighting coefficient.
Multi-Objective Problems 2, 3, and 7 from Coello, et al.’s
test suite (MOP2, MOP3, and MOP7) were chosen as rep-
resentative problems as they illustrate the different types of
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behavior exhibited by the test problems. When designers
had increasing shared incentives (x-axis of Figure 3), three
different behaviors were observed: decrease in optimality
(MOP7), both decrease and increase in optimality (MOP3),
and increase in optimality (MOP2).

As seen in Figure 3, MOP2 reaches a more optimal
solution for every tested weighting coefficient. It reaches
the most optimal solution for the weighting coefficients
w1 = 0.55,w2 = 0.45. Seven of the 15 test problems be-
haved this way. MOP7 always performs worse with weight-
ing coefficients than in the unweighted case. In fact the
edge case, w1 = w2 = 0.5 is off the chart in the less opti-
mal direction. Four of the test problems behaved this way.
MOP3 is an interesting result in that the system performs
better for weighting coefficients between w1 = 0.95 and
w1 = 0.7, and worse for w1 < 0.7 Three problems behaved
this way. In one of the test problems (DTLZ6) the system
optimality was unaffected by changes in the weighting co-
efficient.

Figure 4 shows the ratio of the number of iterations
until the stopping condition for the tested weighting coeffi-
cient to the number of iterations for the unweighted objec-
tive function. Similarly, a value above 1, or above the red
dashed line, indicates worse performance, and below 1 or
the line indicates improved performance. Three different
behaviors were observed: decrease in iterations (MOPC1),
both decrease and increase in iterations (MOPC3), and in-

crease in iterations (MOP6).
For example, MOP6 always takes more iterations when

using a utility function. Seven of the test problems were in
this group. MOPC1 always takes fewer iterations to con-
verge for all weighting coefficients. Only two of the test
problems exhibited this behavior. MOPC3 takes more iter-
ations for weighting coefficients in between w1 = 0.95 and
w1 = 0.85 and then fewer iterations for the rest of the tested
utility functions. MOP3 was the only other test problem to
take longer on average for some weighting coefficients and
then improve for others. In four cases the speed is unaf-
fected by weighting coefficients.

5 Discussion
The results presented here demonstrate that using util-

ity functions as the subsystem objective function does have
an effect on system behavior given biased information pass-
ing. In 10 of the 15 test problems, overall system perfor-
mance improved when the subsystems consider the per-
formance of the other subsystem. This suggests that fur-
ther study of this incentive structure on real-world prob-
lems with human designers would be worthwhile. A key
question is how to determine the best weighting for a given
problem. The simulations suggest that there is not a gen-
eralizable direction for choosing a weighting as the opti-
mal weighting is sensitive to the test problem characteris-
tics and this would be especially true for real-world prob-
lems. Literature has suggested tools for finding regions of
greatest attraction when estimating other subsystem behav-
ior [25]. The results from this study suggests that a sim-
ilar approach may be beneficial for mitigating the effects
of biased information passing. For example, system inte-
grators could choose the weighting dynamically based on
past system performance, as in the adaptive weighted-sum
approach from MDO [48].

The results from this study highlight an interesting
tradeoff between additional system-level information and
sequential optimization. Giving the subsystems informa-
tion in their objective function about the overall system of-
ten improved system optimality. However, given that the
subsystems only minimized along their design parameters,
the system performance was negatively effected in several
of the test problems as they got stuck in local minima when
considering both subsystems at each subsystem iteration.

Another notable result is that using utility functions
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also increased system sensitivity to initial conditions. In
many of the test problems, the unweighted case converged
to a single solution regardless of the starting point. In the
weighted cases, a larger set of the system solutions was
found. This may be due to the interaction between the
weighting and sequential optimization. This is further ev-
idence that determining the correct set of weighting coef-
ficients is crucial to system performance in this incentive
structure.

The number of iterations was either unaffected or in-
creased with the introduction of weighted utility functions
in the majority of test problems. This was likely due to
several factors. First, the additional information may make
the problems more difficult to solve resulting in more it-
erations. Subsystems which compromise but are unable to
control all design variables are likely to take smaller steps
in the optimal direction. Finally, in real-world tasks, a mul-
tidisciplinary team would require additional engineering
resources at the subsystem level to understand additional
information from outside of the subsystem’s expertise. This
would likely increase the time needed for each iteration as
well as the overall time to project completion.

Several limitations exist for this study. First, the in-
centive structure may affect subsystem behavior in several
ways. One way is to consider the other subsystem perfor-
mance when making design decisions. This is modeled
in this study by the utility functions. However, this as-
sumes that subsystems can accurately access information
about the other subsystem and have the necessary knowl-
edge to process this information. The degree to which this
assumption is accurate depends on the skills within the sub-
systems and the connection between the subsystems. If
the subsystems have previously worked closely together
on projects this may be a good assumption. Subsystems
may change their behavior in other ways, such as reduc-
ing the bias in their information, perhaps switching to other
negotiation tactics. Although this is not modeled in this
simulation, this would be a desirable outcome as the bi-
ased information passing strategy has been shown to be
sub-optimal. Secondly, these simulations were performed
on well-formulated test problems. These do not necessar-
ily reflect the behavior of real-world problems. The sub-
system models, or objective functions, also do not change
with time as they would in real-world problems. Addition-
ally, using the mode of the final system results to define
system behavior may introduce errors in the test problems

with concave Pareto Frontiers. Literature has shown that
linear utility functions may not realize or converge to the
Pareto Frontier in these cases [31]. This was shown in the
greater sensitivity to initial conditions of the results for test
problems with concave Pareto Frontiers. Finally, this study
presents results from a two-player case. Real systems have
many more subsystems and the negotiations would be be-
tween multiple subsystems. Results from this study suggest
that it is worthwhile to explore this incentive structure for
larger systems.

6 Conclusions and Future Work
Previous work in subsystem decision-making has

demonstrated that subsystem designers in some organiza-
tions use biased information passing as a negotiation tactic.
This tactic can lead to sub-optimal results. Previous re-
search also found that this negotiation happens at an infor-
mal level between subsystem designers and is not affected
by the formal conflict resolution processes in place. This
study proposes an incentive structure based on weighted-
sum approaches from MDO which evaluates subsystem
performance based on a weighted sum of all subsystems.
Results from simulations of biased information passing
within this structure were used to answer the following re-
search questions.

1. What is the effect of biased information passing on
system-level optimality in a complex system with a
weighted incentive structure?

Simulations suggest that the optimality of systems
whose subsystems are using a biased information pass-
ing strategy but are considering the other subsys-
tems performance can be improved depending on the
weighting coefficients. However, this is problem spe-
cific and several test problems converged to less opti-
mal solutions. Also, the sensitivity to inital conditions
was increased which may lead to sub-optimal results in
real-world problems.

2. What impact might these strategies have on the speed
of system optimization?

The number of iterations used in the simulations was
negatively affected by the introduction of utility func-
tions in most of the test problems. Additionally, in
a real-world task, considering the performance of the
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other subsystem would use up engineering resources
and would likely increase the time needed for each iter-
ation as well as the overall time to project completion.

6.1 Future Work
This study paints a road map for influencing informal

negotiations in complex system design teams. Although re-
sults from simulations suggest the proposed incentive struc-
ture may be more robust to biased information passing,
further study is needed to determine what effects new in-
centive structure will have an real design teams. Future
work will include simulations of larger teams and experi-
ments with human design teams. It will also include mod-
eling different incentive structures, such as implementing
mandatory formal conflict resolution processes randomly
throughout the larger team hierarchy.
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