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Reluctance Force Magnetic
Suspension Characteristics and
Control for Cylindrical Rotor
Bearingless Motors
In this paper, the modeling and control of reluctance-force-based magnetic suspension in
cylindrical rotor, smooth air-gap bearingless motors are presented. The full suspension
system dynamics, including both the destabilizing forces due to the motor field and the
active magnetic suspension control forces, are modeled, and a transfer function of the
bearingless motor suspension plant is derived. It is shown that the suspension system
dynamics in a bearingless motor depend on the motor winding current amplitude. This
requires the magnetic suspension controllers to address the changing system dynamics
and to stabilize the suspension under different driving conditions. A controller design
with its gains changing with the motor winding current amplitude is proposed. The
derived model and the proposed controller design are verified by experiments with a
hybrid hysteresis–induction type bearingless motor. It is shown that the derived mathe-
matical model provides an effective basis for loop-shaping control design for the
reluctance-force-based magnetic suspension systems in bearingless motors, and the pro-
posed controller design can stabilize the rotor’s suspension under varying excitation
conditions. [DOI: 10.1115/1.4035007]

1 Introduction

In the past decades, there has been significant development in
the area of bearingless drive technology. The bearingless motor
has many distinct advantages. As with other types of magnetic
bearings, the bearingless motors can eliminate mechanical fric-
tion, vibrations, and lubrication in mechanical bearings, which
makes them attractive for precision and in-vacuum applications.
Besides, compared with other magnetic bearing technologies, the
bearingless motor has the advantage of compactness, and this fea-
ture allows them to be used in small devices [1]. It also allows
velocity and position control, so that this motor and bearing con-
cept can be widely used in servo-control applications [2].

The bearingless motors can be roughly categorized by their
motor principles, such as bearingless permanent magnet (PM)
motors [3–5], bearingless induction motors [6], bearingless reluc-
tance motors [7], and bearingless hysteresis motors [8,9]. Among
many different types of bearingless motor, the cylindrical rotor
(no salient poles) bearingless motors with reluctance-force-based
magnetic suspension are the most basic kind. In these motors, the
magnetic reluctance forces between the stator and the rotor pro-
vide the dominant radial forces for magnetic suspension, and the
effect of the rotor field is small compared to that of the reluctance
forces. In this category, there are bearingless hysteresis motors
with highly permeable rotors [8,9], bearingless solid rotor induc-
tion motors with sheet conductor and back iron in rotors [10], and
general bearingless induction motors under no-load condition
[11]. The reluctance force magnetic suspension also forms a prim-
itive for other types of bearingless motors [12].

Similar to other magnetic suspension systems, the reluctance
force magnetic suspension in a bearingless motor has unstable
dynamics when in open-loop. Typically, a bearingless motor has
two sets of windings, called motor windings and suspension wind-
ings, arranged in the stator. The motor windings generate a rotat-
ing magnetic field for torque generation and also produce

destabilizing radial forces, which make the rotor open-loop unsta-
ble at the center position. On top of the motor field, another mag-
netic field generated by the suspension windings interacts with the
motor field and generates suspension control forces. Both these
magnetic fields will influence the rotor’s dynamics in the radial
directions, and a complete model for the rotor’s dynamics is nec-
essary for understanding the system behavior and for suspension
controller synthesis.

Through the years, there have been many studies modeling the
reluctance force magnetic suspension in bearingless motors. The
radial suspension force generation in general bearingless alternat-
ing current (AC) motors has been modeled in Ref. [13] and later
in Ref. [12], where the suspension forces are calculated by means
of magnetic energy. Later work [14] analyzes the suspension force
generation with the rotor eccentricity taken into consideration,
and a bearingless induction motor with suspension force feedback
has been studied in Ref. [15]. However, to the best of our knowl-
edge, the modeling of the plant dynamics of the magnetic suspen-
sion in a PM-less bearingless motor, including the destabilizing
radial forces induced by the motor field, has not yet been reported
in the literature.

In this paper, an analytical model of the reluctance force radial
magnetic suspension in a cylindrical rotor bearingless motor is
derived based on the fundamental electromagnetics, and a transfer
function model for the suspension system is derived. The model is
validated through experiments with a hybrid hysteresis–induction
type bearingless motor, which is an AC motor with a solid rotor
made of D2 steel. The loop-shaping method is applied for the sus-
pension compensator design, and a controller with its gains vary-
ing with the motor winding current amplitude is proposed. The
test results show that the proposed controller design can stabilize
the suspension system under varying excitation conditions.

The remainder of this paper is organized as follows: The oper-
ating principles of the reluctance force magnetic suspension in a
bearingless motor are briefly introduced in Sec. 2. The mathemati-
cal model of the magnetic suspension system dynamics is derived
in Sec. 3. The experimental validation for the derived model is
presented in Sec. 4, and the suspension controller design and tests
are introduced in Sec. 5. Conclusions are presented in Sec. 6.
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2 Operating Principle

In a bearingless motor, the reluctance-force-based magnetic
levitation of the rotor is achieved by arranging two sets of wind-
ings in the stator slots. One set of windings has P poles, which are
used for motor torque production. The other set of windings has
P62 poles, which are used for the radial suspension force genera-
tion. These two windings are called motor windings and suspen-
sion windings, respectively. Figure 1 shows a schematic diagram
of the multiple-winding-type cylindrical rotor bearingless motor.
Two sets of two-phase windings are wound on the stator: the four-
pole windings are 4a and 4b, and the two-pole windings are 2a
and 2b. The positive current directions in the windings are shown
by the crosses and the dots. In this discussion, we assume that the
four-pole windings are the motor windings, and the two-pole
windings are the suspension windings.

When the motor windings are excited with symmetric AC cur-
rents, and no current is flowing in the suspension windings, a
rotating four-pole magnetic field is produced in the motor. The
four-pole field lines (solid) in Fig. 1 show the motor magnetic
field at a time instant when the four magnetic poles are aligned
with the x- and y-axes. Under this condition, if the rotor is cen-
tered, the magnetic flux density in the air gaps 1 and 3 in Fig. 1 is
equal, and no net radial force is generated on the rotor in the x-
direction.

Under the same current conditions as before, let us slightly per-
turb the rotor’s position toward the negative x-direction in Fig. 1.
In this case, the magnetic field in the air gap 3 becomes stronger
than the magnetic field in the air gap 1. As a result, there will be a
net force in the negative x-direction acting on the rotor, and this
force increases as the rotor eccentric displacement grows. This
indicates that the rotor is open-loop unstable at the center bore of
the stator under applied motor fields, and feedback control is nec-
essary to stabilize the magnetic suspension of the rotor.

On top of the four-pole motor field, when we excite the suspen-
sion winding 2a with a positive current, the two-pole magnetic
field line as is shown in Fig. 1 (dashed) is produced. Under this
circumstance, the magnetic flux density is increased in the air gap
1 and is decreased in the air gap 3. This unbalanced air-gap flux
density generates magnetic reluctance forces in the two air gaps,
and a total force in the positive x-direction is generated on the
rotor, which can accelerate the rotor in the x-direction. Similarly,
with a current in the 2b winding, a y-direction control force can be
generated. From this discussion, one can see qualitatively that the

bearingless motor is a flux steering device [16], where the two-
pole magnetic field is interacting with the four-pole motor field to
produce radial suspension forces.

3 Bearingless Motor Modeling

In this section, the dynamics of the reluctance force magnetic
suspension in a bearingless motor are modeled. We extended the
analysis in Ref. [13] by including the destabilizing forces gener-
ated by the motor field, and derive a transfer function model for
the bearingless motor suspension system.

3.1 Air-Gap Variation and Magnetic Circuit Model. Figure 1
shows a diagram for the motor being analyzed. Here, the two-
phase windings are assumed for simplicity. The analysis can be
readily transformed into a three-phase system by means of Clarke
transformations [17]. The following analysis is based on a sinusoi-
dal distribution assumption of the stator magnetomotive force
(MMF). The higher-order harmonics and saturation effects are
neglected. The perpendicular axes x and y are fixed to the stator.
Define the instantaneous currents that flow in the windings 4a, 4b,
2a, and 2b as i4a; i4b; i2a, and i2b, respectively. N4 and N2 are the
number of turns per phase per pole for the four-pole and two-pole
windings, respectively.

Figure 2 shows a diagram of the MMF generated by the full
pitch, concentrated winding 2a and its associated fundamental
component. Here, the horizontal axis corresponds to the angular
coordinate /s in Fig. 1, which is a counterclockwise angular posi-
tion starting from the x-axis. The positive direction of MMF is
defined in the radial direction from the rotor to the stator. With
concentrated conductors 2a at /s ¼ p=2 and 3p=2, the corre-
sponding MMF distribution is a square wave of amplitude
N2i2a=2. By neglecting all higher-order harmonics of this MMF
wave and only considering its fundamental component, the mag-
nitude of the approximating sinusoidal MMF wave is 2N2i2a=p.
Similarly, the fundamental harmonics of the MMF distributions
for the four windings are

H4a ¼
2

p
N4i4a cos 2/s (1)

H4b ¼
2

p
N4i4b sin 2/s (2)

H2a ¼
2

p
N2i2a cos /s (3)

H2b ¼
2

p
N2i2b sin /s (4)

For distributed winding motors, the MMF can be calculated by a
superposition of the MMF generated in each slot [17].

Fig. 1 Winding arrangement in a bearingless motor assuming
a two-phase configuration. Here, the four-pole windings 4a, 4b
are the motor windings, and the two-pole windings 2a, 2b are
the suspension windings.

Fig. 2 The MMF distribution generated by the winding 2a and
its associated fundamental component. The horizontal axis is
the spatial angle /s . The black line shows the MMF of a concen-
trated winding, and the dark green line shows the fundamental
component.
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Figure 3 shows a diagram of air-gap length variation due to an
eccentric displacement of the rotor. The x–y coordinate is fixed to
the stator center. The rotor center is shown displaced in the posi-
tive direction along the two axes. Define the nominal air gap
between the rotor and stator as g0 when the rotor is centered. If
the rotor’s radial displacements are x and y in the corresponding
directions, the air-gap length g between the rotor and the stator
can then be written as

gð/sÞ ¼ g0 � x cos /s � y sin /s (5)

Assume the rotor displacements x and y are small compared to the
nominal air-gap length g0. The air-gap permeance P0 at angular
position /s can be calculated by ignoring second- and higher-
order terms as

P0 /sð Þ ¼
l0Rl

g
¼ l0Rl

g0

1þ x

g0

cos /s þ
y

g0

sin /s

� �
(6)

where l0 is the air permeability, R is the rotor radius, and l is the
motor length.

3.2 Flux Distribution. In this section, the magnetic flux dis-
tributions are calculated to find the radial forces acting on the
rotor. Assume that the stator yoke is infinitely permeable with the
windings on its surface, and thus, the flux distribution as a func-
tion of the angular position /s can be determined by the air-gap
permeance P0 and rotor magnetic potential with respect to the sta-
tor. When the 2a winding is excited by a current i2a, the generated
air-gap flux distribution U2a can be written as

U2að/sÞ ¼ P0ð/sÞðH2að/sÞ þ V2aÞ (7)

where V2a is the magnetic potential of the rotor induced by the 2a
winding current.

According to the Gauss’ law, taking a closed surface around the
rotor, an integral of the flux through this surface equals zero as

ð2p

0

U2að/sÞd/s ¼ 0 (8)

Substituting Eqs. (4), (6), and (7) into Eq. (8), the magnetic poten-
tial of the rotor with respect to the stator induced by winding 2a
can be calculated as

V2a ¼ �

ð2p

0

P0H2ad/sð2p

0

P0d/s

¼ �N2i2a

pg0

x (9)

The above equation implies that the magnetic potential of the
rotor is zero if the rotor is centered, and when there is an eccentric
displacement, the magnetic potential produced by the 2a winding
V2a is proportional to the rotor displacement in the x-direction.
Note that the variable y does not appear in the expression of V2a

under the small displacement assumption. Similarly, we can cal-
culate the rotor magnetic potential induced by all sets of windings,
2b, 4a, and 4b, as

V2b ¼ �
N2i2b

pg0

y (10)

V4a;V4b ¼ 0 (11)

Note that the magnetic potential induced by the four-pole wind-
ings is zero.

The air-gap flux generated by winding 2a can be calculated by
substituting Eq. (9) into Eq. (7), and the result can be written as

U2a /sð Þ ¼ P0 /sð Þ H2a /sð Þ �
N2i2a

pg0

x

� �
(12)

Similarly, when windings 2b, 4a, and 4b are excited by the corre-
sponding currents, the generated air-gap magnetic flux distribu-
tions are

U2b /sð Þ ¼ P0 /sð Þ H2b /sð Þ �
N2i2b

pg0

y

� �
(13)

U4að/sÞ ¼ P0ð/sÞH4að/sÞ (14)

U4bð/sÞ ¼ P0ð/sÞH4bð/sÞ (15)

3.3 Negative Stiffness. When the motor is operating, the
motor windings are excited with symmetrical AC currents. Under
this condition, the rotor is unstable in the radial directions, since
the radial forces acting on the rotor at the magnetic poles are
pointing in the same direction as the rotor eccentric displacement.
In this section, this destabilizing radial force is calculated, and a
negative stiffness of the system is derived via linearizing the force
with respect to the rotor displacement.

Let us assume that the two-phase AC currents in the four-pole
motor windings are

i4a ¼ I4 cos 2h; i4b ¼ I4 sin 2h (16)

where I4 is the peak amplitude for the motor currents, h is the
motor mechanical angle indicating the position of the magnetic
poles, and 2h is the corresponding electrical angle. When the
motor is running, 2h ¼ xet, where xe is the electrical frequency
of the excitation currents. The sinusoidal MMF distributions gen-
erated by these AC motor winding currents can be calculated by
substituting Eq. (16) into Eq. (2). Four magnetic poles are be gen-
erated along the stator at angular positions /s ¼ h; hþ p=2; hþ
p and hþ 3p=4. Unstable attractive magnetic forces between the
rotor and the stator are generated at these positions, and the rotor’s
eccentric displacement driven by these forces is also toward one
of these directions. In this analysis, let us assume that the eccen-
tric displacement of the rotor is toward the direction of /s ¼ h
without loss of generality. Figure 4 shows a diagram of the rotor’s
displacement under the motor field at a time instant that h¼ 0.
Define the rotor’s displacement in x- and y-directions as

Fig. 3 Air-gap length variation with a rotor eccentric displace-
ment to the h-direction
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x ¼ s cos h; y ¼ s sin h (17)

The total flux distribution generated by the four-pole windings
can then be calculated by a superposition of the U4a and U4b that
are given in Eqs. (14) and (15), respectively. Substituting Eqs. (6)
and (17) into Eqs. (14) and (15), the total motor field flux distribu-
tion can be calculated as

U4a4b ¼
l0Rl

g0

1þ s

g0

cos h cos /s þ
s

g0

sin h sin /s

� �

� 2N4I4

p
cos 2h cos 2/s þ sin 2h sin 2/sð Þ (18)

The destabilizing radial forces between the rotor and the stator
can be calculated by means of the Maxwell stress tensor. The
reluctance radial force per unit area generated by the motor field
can be calculated by r4a4b ¼ B2

4a4b=2l0, where B4a4b is the air-gap
magnetic flux density generated by four-pole motor excitations.
The total radial force acting on the rotor in the direction of /s ¼ h
can be calculated as

f m ¼
ð2p

0

U2
4a4b

2Rll0

cos /s � hð Þd/s (19)

Substituting Eq. (18) into Eq. (19), the radial force acting on the
rotor is

f m ¼ 2l0RlN2
4I2

4

pg3
0

s (20)

The above equation demonstrates the relationship between the
destabilizing radial force fm generated by the motor field only and
the rotor eccentric displacement s. This relation resembles the
mechanical impedance of a spring: The force is proportional to
the corresponding displacement. Note here that the spring con-
stant is negative, in that the magnetic force produced by the motor
field is in the same direction as the displacement. This makes the
rotor unstable at the center of the stator bore. Let us define the

coefficient in Eq. (20) as the negative stiffness of the reluctance
force magnetic suspension in a bearingless motor as

Ks ¼
2l0RlN2

4I2
4

pg3
0

(21)

The radial force generated by the motor field acting on the rotor
can then be written as f m ¼ Kss.

3.4 Force Constant. In this section, the radial suspension
forces generated by the interactions between the motor windings
and the suspension windings are derived. This derivation uses the
Maxwell stress tensor method. Alternatively, the same result can
be derived using the magnetic energy method, which has been
presented in Ref. [13]. Let us first consider the suspension force
generation by the interaction between the 4a winding and the 2a
winding. When the 4a and 2a windings are excited with the corre-
sponding currents i4a and i2a, the total flux can be calculated by a
superposition of the four-pole field and the two-pole field as

U4a2a ¼ U4a þ U2a

¼ P0 H4a þH2a �
N2i2a

pg0

x

� �
(22)

Substituting in Eqs. (6), (4), and (2), Eq. (22) can be rearranged to

U4a2a ¼
l0Rl

g0

1þ x

g0

cos /s

� �

� 2

p
N4i4a cos 2/s þ

2

p
N2i2a cos /s �

N2i2a

pg0

� �
(23)

The radial force per unit area generated by the currents in the 2a
and 4a windings can be calculated by means of the Maxwell stress
tensor as

r4a2a ¼
B2

4a2a

2l0

� 2l0

p2g2
0

1þ 2x

g0

cos /s

� �

� N4i4a cos 2/sð Þ2 þ 2N4N2i4ai2a cos 2/s cos /s

h i (24)

Note that in the final expression for r4a2a, the terms that are pro-
portional to x2=g2

0 or N2
2 i22a are ignored. This is because the incre-

mental displacement of the rotor is usually small compared to the
nominal air-gap length, and thus, the second-order terms for x=g0

are neglected here. Also, the ampere-turns of the suspension wind-
ings N2i2a are usually about ten times smaller than that of the
motor windings N4i4a, and thus, the magnetic force generated by
the suspension winding alone is neglected.

There are then two remaining terms left in the last bracket in
Eq. (24). They are the stress generated by the four-pole motor
field only and the stress generated by the interaction between the
four-pole field and the two-pole field. The first term corresponds
to the destabilizing radial force generated by the 4a winding, as
discussed in Sec. 3.3. The second term corresponds to the suspen-
sion control forces, which are generated by the interactions
between the motor field and suspension field. Define the suspen-
sion stress part of Eq. (24) as rs

2a4a. Integrating it over the air gap,
the suspension control force acting on the rotor in the positive x-
direction can be calculated as

f s
x ¼

ð2p

0

RlFs
2a4a cos /sd/s ¼

2l0RlN4N2i4a

pg2
0

i2a (25)

The suspension forces generated by the coupling of other wind-
ings can be calculated by the same approach. With the four-pole
windings excited with symmetrical AC currents specified in Eq.
(16), we can express the suspension forces in matrix form as

Fig. 4 Unstable radial force generation when only the four-
pole motor windings are excited. Attractive forces are gener-
ated in the air gaps 1, 2, 3, and 4. The rotor has an eccentric dis-
placement s in the air gap 1 direction, which induces a radial
force in this direction.
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f s
x

f s
y

� �
¼ 2l0RlN4N2I4

pg2
0

cos 2h sin 2h
sin 2h �cos 2h

� �
i2a

i2b

� �
(26)

Note again that in this derivation, only the magnetic reluctance
forces due to the coupling of the four-pole and two-pole field are
considered, and the effect of the rotor’s magnetic field, rotor
eccentricity, and the force generated by the two-pole field only are
neglected. It can be seen that the calculated suspension forces are
linear with respect to the suspension control currents, and they do
not depend on the rotor’s eccentric displacements. This is due to
the hard linearization in the magnetic designs. The reluctance
force magnetic levitation in a bearingless motor can be viewed as
a flux steering device, where the suspension control field is steer-
ing the motor field in a rotating magnetic field to generate control
forces. Readers are referred to Ref. [16] for details about flux
steering devices.

In the reluctance force magnetic levitation in a bearingless
motor system, the suspension winding currents are usually
regarded as the control input signals. Let us define the coefficient
in Eq. (26) as the force constant of the radial suspension system of
a bearingless motor as

Ki ¼
2l0RlN4N2I4

pg2
0

(27)

3.5 Transfer Function. In this section, a transfer function
model of the reluctance force radial suspension in a bearingless
motor is derived. Without loss of generality, in this analysis let us
consider the magnetic levitation in the x-direction at a time instant
that the stator field angle h¼ 0, and the rotor’s radial eccentric
displacement is in the x-direction. The four-pole motor currents at
this instance are i4a ¼ I4 and i4b ¼ 0, and the rotor’s radial dis-
placements in the x- and y-directions are x¼ s and y¼ 0, respec-
tively. The unstable radial force generated by the four-pole motor
windings can then be written as f m ¼ Ksx, and the suspension
force in the x-direction is f s ¼ Kii2a. Define the rotor mass as m.
The mechanical dynamic equation of the rotor along the x-
direction at the vicinity of the center can then be written as

m
d2x

dt
¼ Kii2a þ Ksx (28)

By rearranging and taking the Laplace transform of Eq. (28), a
transfer function model from the suspension winding current i2a to
the rotor displacement x can be derived as

X sð Þ
I2a sð Þ

¼ Ki

ms2 � Ks
(29)

Note the negative sign in front of Ks in this result. This transfer
function is consistent with the dynamics of a single degree-of-
freedom magnetic levitation system, where an unstable pole exists
in the suspension dynamics due to the negative stiffness.

Although in this analysis only the x-direction is considered, we
can use a rotational transformation to generalize the above analy-
sis to any radial direction. This model can also be applied to
three-phase AC motors via the Clarke transformation to transfer
between two-phase and three-phase systems. Note that a coeffi-
cient of

ffiffiffi
3
p

=
ffiffiffi
2
p

needs to be added to all current amplitudes due to
the Clarke transformation. For a commonly used three-phase bear-
ingless motor, the negative stiffness and the force constant values
in Eq. (29) become

Ks ¼
3

p
l0RlN2

4

g3
0

I2
m N=mð Þ (30)

Ki ¼
ffiffiffi
6
p

p
l0RlN2N4

g2
0

Im N=Að Þ (31)

where Im is the zero-to-peak current amplitude in the three-phase
motor windings.

4 Experimental Validations

4.1 Experimental Setup. A bearingless motor in an one-axis
magnetically suspended reaction sphere (1D-MSRS) is being used
to test the suspension system dynamics. Figure 5 shows the

Fig. 5 Photograph of the experimental hardware for the bearingless motor 1D-MSRS: (a)
structure and (b) stator and rotor
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photographs of the experimental setup. Readers are referred to
Ref. [9] for a detailed description of the system. The motor drive
in the 1D-MSRS is a hybrid hysteresis–induction motor, whose
rotor is made of a piece of solid, conductive, and magnetically
hard D2 steel. When the motor is running in asynchronous mode,
the eddy current inside the rotor is a major torque generation
means, and the motor demonstrates hysteresis and induction motor
behavior. The motor can also perform synchronous operation, and
in this operation mode, the hysteresis effect of the rotor is the only
source of torque generation.

The stator of the 1D-MSRS has 24 slots. Two sets of three-
phase windings with four-pole and two-pole configurations,
respectively, are arranged in the stator slots, where the four-pole
windings are the motor windings, and the two-pole windings are
the suspension windings. Table 1 presents the design parameters
of the bearingless motor system in the 1D-MSRS. In this system,
the spherical rotor diameter is much larger than the stator length, and
the torque and suspension force generations are assumed as only gen-
erated on the rotor surface that is engaged with the stator. That is, the
bearingless motor in the 1D-MSRS is approximated as a cylindrical
rotor bearingless motor of length equal to the stator length.

The suspension force generation in the bearingless motor in the
1D-MSRS is achieved by means of magnetic reluctance forces. In
the 1D-MSRS, the induced rotor magnetic field on the sphere sur-
face is approximately ten times weaker compared to the stator
field, and thus, the effects of rotor field on the suspension force
generation are neglected.

4.2 Test Results. The modeled system dynamics is presented
first. Substituting the parameters in Table 1 into the transfer func-
tion model given in Eqs. (29)–(31) yields the modeled plant Bode
plot of the bearingless motor system in 1D-MSRS shown in
Fig. 6. Note that the break frequency and the direct current (DC)

gain of the system Bode plot vary with the motor winding current
amplitude, while the phase of the system remains �180 deg for all
frequencies due to the negative stiffness.

The dynamics of the bearingless motor are measured and are
compared with the modeled dynamics. The x-directional rotor sus-
pension system dynamics in the 1D-MSRS are being measured
under different four-pole winding current amplitude values, with
the two-phase, two-pole current amplitude in the stationary coor-
dinate being the input, and the x-directional rotor displacement
being the output. The measurements are taken when the motor is
under synchronous operation at 1800 rpm. Note that this measure-
ment must be carried out with the feedback control loop closed
since the open-loop system is unstable. The measured Bode plot is
presented in Fig. 7. It is consistent with the modeled dynamics
shown in Fig. 6, where the system dynamics becoming faster as
the motor winding current Im is increased.

Figure 8 plots the break frequencies of the modeled and meas-
ured plant frequency responses with respect to the motor winding
current amplitude Im. The break frequency of the plant Bode plot
is nearly linear with the motor winding excitation current Im, and
the modeled break frequency data well match the experimental
measured data. This change of the break frequency also implies
that the reluctance force magnetic suspension in a bearingless
motor requires a minimum driving current amplitude in the motor
windings, even when no driving torque is needed, in order to
maintain radial suspension.

Table 1 Design parameters for bearingless motor in 1D-MSRS

Parameter Value

Rotor radius 27 mm
Stator length 10 mm
Rotor mass 0.63 kg
Air-gap length between stator and rotor 0.5 mm
Number of slots on stator 24
Number of phase for motor winding 3
Number of poles for motor winding 4
Number of turns per slot for motor winding 80
Number of phase for suspension winding 3
Number of poles for suspension winding 2
Number of turns per slot for suspension winding 40

Fig. 6 Modeled plant frequency response for the x-directional
suspension of bearingless motor in 1D-MSRS under different
motor winding current amplitudes Im (zero-to-peak)

Fig. 7 Experimentally measured plant frequency response for
x-direction rotor suspension from the equivalent two-phase
suspension control current i2a (A) to the x-directional rotor dis-
placement x (m) under different three-phase four-pole excita-
tion amplitudes Im (zero-to-peak)

Fig. 8 Modeled and measured break frequencies of plant Bode
plot with varying driving current amplitudes
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Figure 9 shows the DC gains of the modeled and measured
plant frequency responses of the bearingless motor suspension
system. It shows that in terms of the DC gain, the variation trend
of the model and the measurement is consistent, but the data are
not aligned as well, in that the model has a larger variation of the
DC gain. To our understanding, this is because in the experiment
when the motor winding current value is relatively low, the
assumption of motor winding ampere-turns is way larger than that
of the suspension winding no longer holds. To correct this devia-
tion will require including the radial forces generated by the sus-
pension windings themselves, which leads to a nonlinear model.
In this work, this error is accepted since it does not prevent us
from using the model for system prediction and linear controller
design.

5 Suspension Control

This section discusses the suspension controller design of the
bearingless motor. Figure 10 shows a block diagram of the reluc-
tance force magnetic suspension control for a bearingless motor.
The four-pole motor windings are excited with symmetrical three-
phase AC currents. The rotor radial displacements in the x- and y-
direction are detected by two displacement sensors and compared
with their reference values. The error signals are then amplified
by the independent proportional–integral–derivative (PID) con-
trollers to generate the control effort signals ux and uy, and these

commands are transformed into the rotating three-phase coordi-
nates through Park and Clarke transformations, and are then
amplified into the two-pole suspension winding current values.
The Park transformation in Fig. 10 uses the stator field angle as
the transformation angle, which aligns the suspension control field
with the motor field. This treatment is based on the assumption
that the magnetic field due to the rotor’s magnetization is small
compared with the stator field, and thus, the reluctance forces are
the main suspension control force generation mechanism.

In many applications, the motor winding currents of a bearing-
less motor need to adjust according to the motor torque require-
ment. Since the plant dynamics of the bearingless motor depend
on the motor winding current level, the controllers need to be able
to stabilize the system under all excitation conditions. In order to
enhance the stable suspension capability of the bearingless motor,
the suspension controllers with varying PID controller gains are
designed based on the analytical model presented in this paper.
The transfer function of the lead–lag form PID controller can be
written as

C sð Þ ¼ Kp 1þ 1

Tis

� �
� assþ 1

ssþ 1
(32)

where Kp is the proportional gain; Ti is the integral time, which
determines the zero position of the lag compensator; a is the sepa-
ration ratio of the lead compensator; and s is the time constant
that determines the pole and zero locations in the lead
compensator.

In the design of the controller, we choose loop crossover at b
times the plant break frequency, with a fixed phase margin of /m.
Hence under certain excitation amplitude Im, the desired crossover
frequency is xc ¼ b� 2p� fbreak, where fbreak is varying with the
excitation condition Im. The phase peak of the lead compensator is
placed at the desired crossover frequency; therefore, s need to
adjust by s ¼ 1=

ffiffiffi
a
p

xc. The zero position of the lag compensator
1=Ti is selected at one decade below the desired crossover fre-
quency. The controller gain Kp is selected to make the loop cross-
over at the desired frequency. As a result, three parameters in the
controller, Kp, s, and Ti, are adjusted in real-time as a function of
the excitation amplitude Im. This approach has operated success-
fully in the experiments.

The aforesaid controller design was implemented and tested
with the bearingless motor in the 1D-MSRS. In this experiment,
we selected a¼ 10 and b¼ 3, and the target phase margin is
/m ¼ 40 deg. The loop return ratios of the magnetic suspension
system are measured under different motor winding current ampli-
tudes, which is achieved by measuring the frequency response

Fig. 9 Modeled and measured DC gain of plant Bode plot with
different driving current amplitudes

Fig. 10 Block diagram of the reluctance force magnetic suspension control system for the bearingless motor
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from the x-directional position error signal (ex in Fig. 10) to the x-
directional rotor position (x in Fig. 10), and the data are shown in
Fig. 11. It can be seen from the measured data that the proposed
controller design can stabilize the lateral suspension control under
different motor current amplitudes. With this controller design,
the loop reached a bandwidth varying with the excitation current
amplitude and a fixed phase margin of approximately 40 deg.
Under 0.2 A excitation current, the loop has a crossover frequency
of 150 rad/s. With 0.7 A excitation, the crossover frequency is
620 rad/s. In this way, the radial position of the bearingless motor
is successfully regulated at the center of the stator under changing
motor excitation amplitudes.

6 Conclusion

In this paper, an analytical dynamic model of the reluctance
force magnetic suspension in bearingless motors was derived
based on the fundamental electromagnetics. A transfer function
model of the system is derived, which provides an effective basis
for the loop-shaping control design for the bearingless motor sys-
tems with varying motor currents. Measurements with a hybrid
hysteresis–induction type bearingless motor are used to validate
the model. A suspension controller design approach based on the
model is proposed and tested, and the results show that this con-
troller design can effectively maintain the stable suspension oper-
ation of the bearingless motor under varying motor current levels.
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