

MIT Open Access Articles

PYRITIZED CRYOGENIAN CYANOBACTERIAL FOSSILS FROM ARCTIC ALASKA

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Moore, Kelsey R. et al. "PYRITIZED CRYOGENIAN CYANOBACTERIAL FOSSILS FROM ARCTIC ALASKA." PALAIOS 32, 12 (December 2017): 769–778 © 2017 Society for Sedimentary Geology

As Published: https://doi.org/10.2110/palo.2017.063

Publisher: Society for Sedimentary Geology

Persistent URL: http://hdl.handle.net/1721.1/120081

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

1	PYRITIZED CRYOGENIAN CYANOBACTERIAL FOSSILS FROM ARCTIC
2	ALASKA
3	KELSEY R. MOORE, ¹ TANJA BOSAK, ¹ FRANCIS MACDONALD, ² KIMBERLY
4	DU, ³ SHARON A. NEWMAN, ¹ DANIEL J. G. LAHR, ⁴ SARA B. PRUSS ³ *
5	¹ Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary
6	Sciences, Cambridge, Massachusetts 02139, USA
7	² Harvard University, Department of Earth and Planetary Sciences, Cambridge,
8	Massachusetts 02138, USA
9	³ Department of Geosciences, Smith College, Northampton, Massachusetts 01063, USA
10	email: <u>spruss@smith.edu</u>
11	⁴ Department of Zoology, University of São Paulo, São Paulo SP 05508-90, Brazil
12	*Corresponding author.
13	RRH : FOSSILS FROM THE IKIAKPUK FORMATION
14	LRH: MOORE ET AL.
15	Keywords: Cyanobacteria, Snowball Earth, Obruchevella, pyritization
16	
17	ABSTRACT
18	
19	The Cryogenian was a time of climatic extremes, with two extended and
20	severe global glaciations bracketing hothouse conditions. The effect of these extreme
21	climate conditions on ocean chemistry and the marine biosphere remain poorly
22	understood. Most of the previous studies of the fossil record from this interval focus
23	on benthic organisms, with few examples of organisms with an inferred planktonic

24	lifestyle and no firm evidence for photosynthetic organisms. Here, we present
25	helically coiled, straight, and curved fossils composed of fine crystalline or
26	framboidal pyrite in limestone samples from the Ikiakpuk formation of Arctic
27	Alaska. These structures are morphologically identical to fossils of Obruchevella, a
28	cyanobacterial form genus that has been reported in pre-Sturtian and post-
29	Marinoan strata, but not in deposits from the Cryogenian non-glacial interlude. We
30	interpret fossils of the Ikiakpuk formation as planktonic cyanobacteria based on
31	their morphology, which is identical to that of some modern planktonic
32	cyanobacteria. Further evidence for a planktonic lifestyle comes from the
33	preservation of these pyritized fossils in deep-water facies that lack evidence of
34	microbial lamination. They provide the first direct evidence for bacterial primary
35	productivity in the pelagic realm during the Cryogenian non-glacial interlude.
36	
37	INTRODUCTION
38	
39	The Earth experienced two Neoproterozoic Snowball Earth events: the older
40	Sturtian (~717-660 Ma) and the younger Marinoan (>640-635 Ma) glaciations (Rooney
41	et al., 2015). During the Sturtian glaciation, glaciers are thought to have been ~1000 m
42	thick on the continents (Liu and Peltier, 2010) and oceans (Tziperman et al., 2012), with
43	ice extending to the equator. The low temperature and ice covering the oceans decreased
44	the availability of liquid water and sunlight, and likely reduced primary productivity
45	(Costas et al., 2008). As a result of the stress placed on microbial ecosystems during the
46	Sturtian glaciation, it has been suggested that there was a significant decrease in diversity

47	during the 20 million years of the Cryogenian non-glacial interlude (Riedman et al.,
48	2014; Cohen and Macdonald, 2015). The interval during and after the deglaciation saw
49	greenhouse conditions with increased temperatures and other rapid changes in pCO ₂ ,
50	continental weathering, alkalinity, and salinity (Hoffman et al., 1998; Kasemann et al.,
51	2005; Bao et al., 2008), though many of these environmental conditions were likely short
52	lived. The effects of these changes on the emerging biosphere are poorly constrained,
53	largely due to the scarcity of fossil assemblages described from this time.
54	Sedimentary deposits that sample a range of environments and lithologies enable
55	the assessment of biodiversity during the Cryogenian non-glacial interlude. Most
56	recently, this has included investigation of cap carbonates deposited after the Sturtian
57	glaciation. For example, fossil assemblages in the dark, micritic facies of cap carbonates
58	in Zambia, Namibia, and Mongolia preserve communities of diverse eukaryotes (Bosak
59	et al., 2011a; Dalton et al., 2013; Moore et al., 2017). These communities include a
60	variety of agglutinated testate eukaryotes (Bosak et al., 2011a, 2012; Dalton et al., 2013;
61	Moore et al., 2017), some organic-walled fossils of presumed planktonic eukaryotes from
62	cap carbonates (Bosak et al., 2011b), benthic eukaryotes from later Cryogenian
63	carbonates (Cohen et al., 2015), and organic remnants of filamentous and coccoidal
64	microorganisms (Bosak et al., 2011a). In contrast, analyses of the siliciclastic facies
65	including glacial deposits and shales deposited after the Sturtian glaciation reveal rare
66	spheroidal vesicles, interpreted as eukaryotes, and few examples of filamentous
67	microfossils, interpreted broadly as the remnants of bacteria (Riedman et al., 2014).
68	However, the simple morphologies of these fossils prevent further characterization of
69	their taxonomic identity, and hinder inferences relating to the life modes of such

70	organisms before death and burial (Riedman et al., 2014). The abundance and
71	morphological diversity of fossils found in carbonates from the Cryogenian non-glacial
72	interlude, therefore, highlight the importance of continued investigation of carbonate
73	facies to build a more complete fossil record from this interval.
74	Here, we describe an assemblage of pyritized microfossils that were preserved in
75	Cryogenian limestone of the Ikiakpuk formation in Arctic Alaska (Strauss et al., in press).
76	Such microfossils have never before been described from this interval and come from
77	strata that are distally deposited age equivalents of Cryogenian platform carbonates of
78	unit 1 of the Katakturuk Dolomite (Macdonald et al., 2009). The limestone samples
79	contain pyritized fossils with distinct coiled morphologies that are identical to the
80	previously described fossil Obruchevella, interpreted as a fossil of a type of
81	photosynthetic cyanobacterium analogous to some modern planktonic cyanobacteria.
82	This finding provides the first direct evidence of oxygenic, photosynthetic bacteria that
83	were primary producers in the marine water column during the Cryogenian non-glacial
84	interlude.
85	
86	GEOLOGIC SETTING
87	
88	Fossils were recovered from thin-bedded black limestone of the informal
89	Ikiakpuk formation (Strauss et al., accepted), sampled in the Fourth Range of Arctic
90	Alaska (Figure 1). This unit has previously been referred to as the "Black Limestone" or
91	"Fourth Range Limestone" (Macdonald et al., 2009 and references therein). Carbon and
92	strontium isotope chemostratigraphy suggest that the Ikiakpuk formation is Cryogenian in

93	age and a deep-water equivalent of unit K1 of the Katakturuk Dolomite in the
94	Sadelerochit, Shublik, and Kikiktat Mountains (Macdonald et al., 2009; Strauss et al., in
95	press). Unit K1 consists predominantly of shallow marine dolostone and contains a
96	Sturtian-age cap carbonate that overlies the Hula Hula diamictite. A maximum age on the
97	Hula Hula diamictite is provided by a U/Pb zircon date of 719.47 ± 0.29 Ma on the
98	underlying Kikiktat volcanics (Cox et al., 2015). Globally, strata deposited in the
99	Cryogenian non-glacial interlude are constrained in age between ca. 660 Ma and >635
100	Ma (Rooney et al., 2015).
101	In the Fourth Range, the Ikiakpuk formation is ~1000 m thick and consists
102	predominantly of thin-bedded, platy limestone with minor shale and sandstone
103	(Macdonald et al., 2009). The base of the Ikiakpuk formation is not exposed and is
104	unconformably overlain by the Devonian-Carboniferous Endicott and Lisburne groups.
105	The samples analyzed here come from 10.3 to 49 m of the Ikiakpuk formation in the
106	Fourth Range. The limestone lacks microbial lamination and some samples display
107	normal grading from calcisiltite to micrite, consistent with lower-slope turbidite
108	deposition on the flanks of a carbonate bank (Macdonald et al., 2009; Strauss et al., in
109	press). Dark micritic limestone facies were sampled for this study because previous work
110	on carbonates from the Cryogenian non-glacial interlude have shown that they are more
111	likely to preserve fossils than lighter, more cement-rich facies or other carbonate facies
112	(e.g. Bosak et al., 2011a; supplemental material in Bosak et al., 2012; Dalton et al.,
113	2013). Future work will focus on examining different facies.
114	

METHODS

117	Twelve samples from dark, unlaminated limestone facies of the Ikiakpuk
118	formation that covered ~ 40 m of section were analyzed in this study. Approximately 4-10
119	g of each sample was placed in a solution of 10% HCl to remove any surficial
120	contaminants, and was then dissolved in a solution of 10% acetic acid buffered with 0.65
121	M hydrated ammonium acetate to produce a residue containing microfossils following
122	Dalton et al. (2013). The residues were filtered through 0.2 $\mu m,$ 41 $\mu m,$ and 100 μm
123	Millipore nylon net filters (EMD Millipore, HNWP04700, NY4104700, and
124	NY1H04700, Billerica, MA, USA) using vacuum filtration. A Nikon SMZ645
125	stereoscopic microscope was used to examine residues in the >100 μ m and the 41-100
126	μ m size fractions, because those sizes were previously shown to contain microfossils
127	(e.g., Dalton et al., 2013). Structures that had repeating morphologies and were distinct
128	from the angular minerals in the surrounding residues were isolated for further analysis.
129	Such structures occurred in eight of the twelve samples.
130	Samples with distinct morphological characteristics were imaged using a scanning
131	electron microscope (FEI Quanta 450, Smith College, Northampton, MA). Before
132	imaging, samples were placed on 12.7 mm diameter SEM stubs (Ted Pella Inc., Product
133	#16111, Redding, CA, USA) with 12 mm ultra thin carbon adhesive tabs (Electron
134	Microscopy Sciences, Product #77825-12-SP, Hatfield, PA) and coated with gold and
135	palladium using a Hummer V Sputter Coater (Smith College, Northampton, MA). We
136	used EDS Team software with the 20 kV acceleration voltage to analyze the elemental
137	composition of structures using point analyses and elemental mapping.

138	To determine whether organic carbon was present in putative microfossils, we
139	acquired their Raman spectra using a Horiba LabRam Evolution Spectrometer (Harvard
140	University, Center for Nanoscale Systems, Cambridge, MA) at 50X magnification.
141	Samples were placed on glass slides and spectra were collected at 50X magnification
142	using a 633 nm wavelength laser. Data were analyzed with LabSpec software. We also
143	examined thin sections of the eight samples determined to be fossiliferous by residue
144	analysis to further characterize the mineralogy of the limestone matrix and the fossils, but
145	microfossils observed in thin section were generally rare.
146	
147	RESULTS
148	
149	Morphology
150	
151	Residues from the Ikiakpuk formation contained microfossils with coiled
152	morphologies that were not previously reported at other fossiliferous localities from this
153	time. A total of 44 microfossils were identified in 8 out of 12 analyzed samples. The
154	structures included both coil fragments and complete coils that exhibited varying degrees
155	of degradation (Figure 2). Coiled structures consisted of a single solid strand, ~20 μ m to
156	30 μm -thick, wound helically into a coil. Coil diameters ranged from ~50 μm to 170 $\mu m.$
157	Some specimens had a uniform grainy, fine crystalline texture (18 out of 44 specimens;
158	e.g., Figure 2.A), while others had ~5 μm to 10 μm wide spherical structures embedded
159	within the strands (26 out of 44 specimens; e.g. sample 3.A). The textures and
160	thicknesses of the strands were consistent among specimens and across samples from

161	different parts of the examined ~40 m of limestone. In most specimens, the strand was
162	wound tightly into a helically coiled, hollow cylinder $\sim 50 \ \mu m$ to 170 μm in diameter
163	(Figure 2.A, B, C, D). Some forms were more loosely coiled (Figure 2.E, F), and many
164	fragments of coiled structures were present as curved (Figure 3.A, B) or straight strands
165	(Figure 3.C, D) between ~70 μm and 200 μm -long and ~20 μm to 40 μm -wide. The
166	loosely coiled structures were still broadly helical and appeared to have been either
167	compressed or uncoiled.
168	
169	Chemical Data and Petrography
170	
171	To understand the processes that preserved microfossils in the Ikiakpuk
172	formation, we determined the elemental composition of microfossils using Energy
173	Dispersive X-ray Spectra (EDS) spectra and chemical maps. These showed strong iron
174	and sulfur peaks (Figure 4) consistent with the mineral pyrite (FeS ₂) in specimens from
175	all samples. Pyrite was also present as cubes and framboids in the insoluble residues. We
176	used additional chemical analysis with Raman spectroscopy to determine whether or not
177	the process of pyritization preserved organic matter in the microfossils. Spectra revealed
178	that microfossils contained carbonaceous material, shown by distinct peaks at ~1348 cm ⁻¹
179	and ~1609 cm ⁻¹ (Figure 5), consistent with a D-band and G-band Raman shift indicative
180	of organic carbon (e.g., Ferrari and Robertson, 2000; McNeil et al., 2015).
181	We examined petrographic thin sections of limestone samples that yielded fossils
182	in the preceding residue analysis to demonstrate that microfossils were found in situ.
183	Microfossils were difficult to identify in thin sections of limestone samples from the

184	Ikiakpuk formation, perhaps because both the microfossils and the microcrystalline
185	limestone matrix were dark, or because fossils were generally rare. However, we
186	identified a few distinct examples in thin section, with cross sections of the coiled helices
187	visible as two parallel lines of dark circles separated by ~50 μ m of micrite (Figure 6).
188	These dark circles were mineralogically distinct, as demonstrated by their dark, opaque
189	appearance against the surrounding micritic matrix and demonstrated that the
190	microfossils were preserved in situ.
191	
192	DISCUSSION
193	
194	Interpretation of pyritized structures
195	
196	Coiled structures of the Ikiakpuk formation of Arctic Alaska closely resemble the
197	previously described fossil Obruchevella (Knoll and Ohta, 1988; Knoll, 1992;
198	Mankiewicz, 1992; Butterfield and Rainbird, 1998). The oldest Obruchevella were found
199	in shales of the Neoproterozoic Wynniatt Formation of arctic Canada (~800 Ma;
200	Butterfield and Rainbird, 1998), in which the three dimensional, organic-walled, coiled
201	fossils had an overall helix diameter of ~40 μm and were made up of filaments ~10 μm -
202	wide. These fossils are one component of a more diverse fossil assemblage that includes
203	other filamentous morphologies as well as acritarchs (Butterfield and Rainbird, 1998).
204	Obruchevella have also been identified as a component of assemblages containing other
205	organic-walled filaments in younger siliciclastic deposits that postdate the Marinoan
206	glaciation. Fossils preserved in chert in metasedimentary rocks of the Neoproterozoic

207	Baklia Formation from the Prins Karls Forland, western Svalbard, (Ediacaran in age) are
208	morphologically similar to those of the Wynniatt Formation, comprised of single
209	filaments helically coiled into cylinders (Knoll and Ohta, 1988; Knoll, 1992). The
210	Ediacaran fossils are described in two size classes: a smaller form with strand diameters
211	${\sim}4~\mu m$ to 5 μm and cylindrical coil diameters between 25 and 30 $\mu m,$ and a larger form
212	with strand diameters ~28 μm to 33 μm and cylindrical coil diameters up to 230 μm
213	(Knoll and Ohta, 1988; Knoll, 1992). Mankiewicz (1992) also described Obruchevella
214	from the Burgess Shale (middle Cambrian), and these have variable helix (36.4 μm to
215	71.5 μ m) and filament diameters (9.1 μ m to 18.2 μ m). The largest fossils of the
216	Cambrian assemblages have coil and filament diameters similar to the largest
217	Obruchevella from the Prins Karls Forland (Knoll and Ohta, 1988; Knoll, 1992), and
218	both are nearly identical in size and shape to those of the Ikiakpuk formation.
219	Other occurrences include 2-3 μ m-wide, helically coiled <i>Obruchevella</i> from the
220	pre-Sturtian Chichkan Formation of Kazakhstan preserved in chert (~800 to 750 Ma;
221	Sergeev and Schopf, 2010) and ~40 μ m-wide loosely coiled <i>Obruchevella</i> in chert
222	nodules from the post-Marinoan Doushantuo Formation of China (~600-550 Ma; Zhang
223	et al., 1998; Xiao, 2004). Both of these occurrences have identical shapes to coiled
224	microfossils preserved in the Ikiakpuk formation. The previously described occurrences
225	of Obruchevella span ~300 My period between their first appearance Neoproterozoic
226	(~800 Ma) and those preserved in the middle Cambrian Burgess Shale (>500 Ma).
227	However, there has been a clear gap in the fossil record of Obruchevella between the
228	beginning of the Sturtian glaciation and end of the Marinoan glaciation. The fossils
229	described here are morphologically identical to previously described Obruchevella, and

are the first occurrence of these fossils to bridge that gap. Their presence in limestone
deposited during the Cryogenian non-glacial interlude shows that these cyanobacteria not
only survived in geographically restricted environments through the glaciations, but were
also an important component as primary producing organisms in some pelagic marine
ecosystems during or after the deglaciation.

235 The coiled structures of the Ikiakpuk formation are analogous to the range of 236 morphologies described in previous assemblages of *Obruchevella*, with tightly coiled 237 helices identical to those of the Baklia, Wynniatt and Chichkan formations (Knoll and 238 Ohta, 1988; Knoll, 1992; Butterfield and Rainbird, 1998), and loosely coiled forms 239 similar to those of the Doushantuo Formation (Zhang et al., 1998; Xiao, 2004). 240 Furthermore, coils of the Ikiakpuk formation have size ranges (strand diameters $\sim 20 \,\mu m$ 241 to 30 μ m and total structure diameter ~50 μ m to 170 μ m) comparable to the larger classes 242 of *Obruchevella* described in the Baklia Formation (Knoll and Ohta, 1988), the Wynniatt 243 Formation (Butterfield and Rainbird, 1998), and the Burgess Shale (Mankiewicz, 1992). 244 The straight and curved strands of the Ikiakpuk formation are less diagnostic than the 245 coiled structures, and may be either fragments of *Obruchevella* or remnants of other 246 filamentous bacteria with uncertain taxonomic affinities. 247 The microfossils described here as well as some previously described 248 *Obruchevella* fossils are much larger than most modern cyanobacteria, but their helically 249 coiled morphology closely resembles that of modern cyanobacteria including *Spirulina*, 250 *Cyanospira, Arthrospira*, and some species of *Anabaena* (Florenzano et al., 1985; 251 Margheri et al., 2003; Komárek and Zapomělová, 2007). All of these modern groups 252 have helically coiled trichomes that can be either loosely coiled (e.g., *Cyanospira* and

253 *Anabaena*; Florenzano et al., 1985; Komárek and Zapomělová, 2007) or tightly coiled 254 (e.g., *Spirulina*; Margheri et al., 2003). In fact, some species such as *Cyanospira* 255 *capsulata* possess a mucilaginous capsule that creates a single smooth coating over the 256 trichome with diameters up to ~20 μ m (Sili et al., 2011), consistent with the size of coiled 257 structures of the Ikiakpuk formation (Figure 2).

258 Some modern filamentous algae, such as Spirogyra, Zygnema, Mougeotia, and 259 *Klebsormidium*, have cell diameters of $>10 \,\mu\text{m}$ (Poulíčková et al., 2007; Mikhailyuk et 260 al., 2014), but these lack the coiled morphology characteristic of the microfossils 261 described here. In the case of Spirogyra, it is the chloroplast organelle that demonstrates a 262 spiraled morphology, not the filamentous organism itself, and the chloroplast has a width 263 of <10 µm (Wongsawad and Peerapornpisal, 2015), much smaller than the fossils of the 264 Ikiakpuk Formation. Filamentous sulfur oxidizing bacteria like *Beggiatoa* have similar 265 cell widths up to 200 μ m, but lack any spiraled morphology (Salman et al., 2013). Some 266 strains of sulfate reducing bacteria have been described as spiraled, including some 267 species of Desulfovibrio and Desulfonatronospira (Caumette et al., 1991; Tee et al., 268 1996; Castro et al., 2000; Sorokin and Chernyh, 2017), but these forms are rod shaped, 269 occasionally forming wavy chains (e.g., Zaarur et al., 2017). Such morphological 270 characters are entirely distinct from the long, wide, tightly coiled filaments of the 271 Ikiakpuk formation. 272 In summary, two arguments can be made in support of a cyanobacterial origin for 273 the pyritized coiled fossils described here: 1) fossils of the Ikiakpuk formation are 274 morphologically identical to the larger size classes of previously described Obruchevella,

which have been interpreted as cyanobacteria (Knoll and Ohta, 1988; Knoll, 1992;

Mankiewicz, 1992; Butterfield and Rainbird, 1998), and 2) these and previously
described Obruchevella are similar to modern coiled planktonic cyanobacteria
(Florenzano et al., 1985; Tomaselli, 1997; Tomaselli et al., 1997; Margheri et al., 2003;
Komárek and Zapomělová, 2007)-whose morphologies are not found among other
modern bacterial or eukaryotic groups.
Preservation and Depositional Environment
All microfossils described here are composed of pyrite (FeS ₂ ; Figure 5), and
pyrite is also present in the insoluble residues as grains. Pyritization is an important form
of fossil preservation in both Proterozoic and Phanerozoic fossil assemblages (e.g.,
Oehler and Logan, 1977; Steiner and Reitner, 2001; Anderson et al., 2011; Wacey et al.,
2013; Borjigin et al., 2014). The pyrite framboids and the smooth, fine-crystalline pyrite
that preserves fossils in the Ikiakpuk formation (Figures 2 and 3) closely resemble
pyritized filamentous fossils reported in the Proterozoic McArthur H.Y.C. deposit
(Oehler and Logan, 1977), the Neoproterozoic Ust-Pinega Formation of Russia (Steiner
and Reitner, 2001) and the Ediacaran Doushantuo Formation of China (Anderson et al.,
2011; Borjigin et al., 2014). Still, few examples of pyritized filamentous fossils
interpreted as bacteria have been reported in Proterozoic sediments, and those that are
known are preserved in siliciclastic deposits from either before the Sturtian glaciation or
after the Marinoan glaciation. The fossils from the Ikiakpuk formation are the first
examples of preservation by pyritization in carbonates of the Cryogenian non-glacial
interlude, and are one of the few examples of pyritized bacteria in the fossil record.

299 This study is among one of the few three-dimensional analyses of *Obruchevella*, 300 which is largely possible due to their unique preservation by pyrite within carbonate 301 rocks. Previously described assemblages of *Obruchevella* are preserved as organic 302 remnants compressed in shales and cherts, and are therefore predominantly studied 303 petrographically, although Butterfield and Rainbird (1998) were also able to isolate three-304 dimensional organic-walled fossils using HF dissolution in addition to their petrographic 305 analyses. The preservation of *Obruchevella* in dark, unlaminated limestone is unique for 306 this interval and rare for these fossils, and highlights an important distinction between the 307 environment in which these organisms lived and the environment in which they were 308 preserved. Obruchevella are the remnants pelagic photosynthetic bacteria that lived in 309 surface waters, but were preserved by pyritization in deep-water carbonates that lack 310 microbial lamination. Raman spectra reveal the presence of the D- and G-bands of fossil 311 kerogen (Figure 5), which further support an originally carbonaceous composition of the 312 structures and suggest that pyrite precipitated immediately around and within the 313 formerly organic filaments, which preserved the shape of the filaments. The preservation 314 of these organic filaments by pyrite and the occurrence of pyrite in the insoluble residues 315 not associated with the fossils suggests that the zone of sulfate reduction and sulfide 316 release was very close to the sediment-water interface, possibly extending up into the 317 water column. The organisms would have sunk to the seafloor after death, where they 318 were preserved through localized and rapid post-mortem pyritization prior to degradation 319 in the carbonate sediments.

- 320
- 321

Microbial Ecology

323	Microfossils preserved in the Ikiakpuk formation contribute to our growing
324	understanding of the marine realm during the Cryogenian non-glacial interlude, and
325	suggest a clear presence of primary productivity in the pelagic marine realm during this
326	greenhouse interval. The coiled structures and fragments are identical to previously
327	described Obruchevella, interpreted as photosynthetic cyanobacteria (Knoll and Ohta,
328	1988; Knoll, 1992; Mankiewicz, 1992; Butterfield and Rainbird, 1998). The life mode of
329	Obruchevella preserved in the Ikiakpuk formation is different from that of agglutinated or
330	carbonaceous benthic eukaryotes preserved in the Rasthof Formation of Namibia, the
331	Kakontwe Formation of Zambia, and the Taishir Formation of Mongolia (Bosak et al.,
332	2011a, 2012; Dalton et al., 2013; Cohen et al., 2015; Moore et al., 2017), which are
333	interpreted as eukaryotic organisms similar to testate amoebae, foraminifera, or other
334	unicellular eukaryotes or multicellular algae. Riedman et al. (2014) identified filamentous
335	Siphonophycus sp. and Rugosoopsis tenuis in shale deposits from the Cryogenian non-
336	glacial interlude, though the ecological niche of these organisms was not specified, and
337	other occurrences of Siphonophycus have been reported in benthic rather than planktonic
338	assemblages (Buick and Knoll, 1999). The fossils described here-identical to some
339	older and younger Obruchevella, which were previously interpreted as cyanobacteria
340	(Knoll and Ohta, 1988; Knoll, 1992; Mankiewicz, 1992; Butterfield and Rainbird,
341	1998)— provide the first direct evidence that planktonic, photosynthetic, oxygen-
342	producing organisms were present in surface waters during this interval.
343	Little is known about the recovery of the biosphere following the Sturtian
344	glaciation. The few fossil assemblages preserved in marine deposits from the Cryogenian

345	non-glacial interlude are key to understanding the response of organisms and ecosystems
346	to the hypothesized environmental conditions during this time. This is especially true for
347	fossils from the Ikiakpuk formation. Obruchevella first appear in the fossil record during
348	the Neoproterozoic, and were described in formations that both predate and postdate the
349	Snowball Earth events. Therefore, it follows that these organisms must have survived
350	through these events. However, to the best of our knowledge, this study provides the first
351	tangible evidence for the presence of such organisms in post-Sturtian marine ecosystems.
352	The morphology of Obruchevella is interpreted as diagnostically cyanobacterial, as has
353	been previously suggested (Knoll and Ohta, 1988; Knoll, 1992; Mankiewicz, 1992;
354	Butterfield and Rainbird, 1998). The presence of cyanobacteria in the Ikiakpuk formation
355	suggests that these organisms were the main primary producers in surface waters, and
356	that the overall morphological and species diversity was limited. However, further studies
357	of carbonate deposits from the Cryogenian non-glacial interlude are necessary to test the
358	hypothesis of limited diversity against the alternative hypothesis of taphonomic bias.
359	
360	CONCLUSIONS
361	
362	The Ikiakpuk formation of Arctic Alaska preserves fossils of photosynthetic,
363	planktonic organisms that lived during the Cryogenian non-glacial interlude. We interpret
364	fossils recovered in this study with distinctly coiled morphologies as Obruchevella
365	because their coiled morphology is identical to that of previously described older and
366	younger fossil occurrences of Obruchevella and to some modern planktonic
367	cyanobacteria such as Spirulina, Cyanospira, or Anabaena. Microfossils are preserved as

368	pyritized internal molds, indicating that pyrite formed inside of the cells soon after the
369	organisms died. In contrast to previously studied carbonates from this interval-including
370	the Kakontwe, Taishir and Rasthof formations, which preserve agglutinated and other
371	benthic eukaryotic organisms-the Ikiakpuk formation was deposited in a deeper water
372	setting and preserved mostly planktonic cyanobacteria. The fossil cyanobacteria
373	preserved in the Ikiakpuk formation provide the first direct evidence of photosynthetic,
374	oxygen-producing, planktonic organisms in the marine realm following the Sturtian
375	glaciation, and expand our understanding of the pelagic ecosystem and the preservational
376	conditions of deep-water settings during the Cryogenian non-glacial interlude. The
377	presence of coiled and straight filaments, and the absence of other morphologies in this
378	assemblage may indicate a reduced diversity in open marine ecosystems during this
379	interval, though further time-equivalent marine deposits are necessary to fully address
380	this hypothesis.
381	
382	ACKNOWLEDGMENTS
383	
384	We thank the Smith College Tomlinson Fund, the Smith College Geosciences
385	Department, the MIT NAI node, and a grant from the Simons Foundation ([344707],
386	[TB]) for funding this research. We thank Andrew Knoll for helpful conversations and
387	assistance with fossil identification and Justin Strauss for helping with stratigraphic
388	context. We also thank J. Wopereis, J. Brady, M. Vollinger, and A. McClelland for
389	assistance with sample analyses, M. Abedinejad and D. Kortes for technical support, and
390	the Bosak and Pruss labs for their support and conversations.

391	
392	REFERENCES
393	
394	ANDERSON, E.P., SCHIFFBAUER, J.D., AND XIAO, S., 2011, Taphonomic study of Ediacaran
395	organic-walled fossils confirms the importance of clay minerals and pyrite in
396	Burgess Shale-type preservation: Geology, v. 39, p. 643-646, doi:
397	10.1130/G31969.1.
398	BAO, H., LYONS, J.R., AND ZHOU, C., 2008, Triple oxygen isotope evidence for elevated
399	CO ₂ levels after a Neoproterozoic glaciation: Nature, v. 453, p. 504–506, doi:
400	10.1038/nature06959.
401	BORJIGIN, T., YIN, L., BIAN, L., YUAN, X., ZHOU, C., MENG, F., XIE, X., AND BAO, F., 2014,
402	Nano-scale spheroids and fossils from the Ediacaran Doushantuo Formation in
403	China: The Open Paleontology Journal, v. 5, p. 1–9, doi:
404	10.2174/1874425701405010001.
405	BOSAK, T., LAHR, D.J.G., PRUSS, S.B., MACDONALD, F.A., DALTON, L., AND MATYS, E.,
406	2011a, Agglutinated tests in post-Sturtian cap carbonates of Namibia and
407	Mongolia: Earth and Planetary Science Letters, v. 308, p. 29-40, doi:
408	10.1016/j.epsl.2011.05.030. http://dx.doi.org/10.1016/j.epsl.2011.05.030.
409	BOSAK, T., LAHR, D.J.G., PRUSS, S.B., MACDONALD, F.A., GOODAY, A.J., DALTON, L.,
410	AND MATYS, E.D., 2012, Possible early foraminiferans in post-Sturtian (716-635
411	Ma) cap carbonates: Geology, v. 40, p. 67–70, doi: 10.1130/G32535.1.
412	BOSAK, T., MACDONALD, F., LAHR, D., AND MATYS, E., 2011b, Putative Cryogenian
413	ciliates from Mongolia: Geology, v. 39, p. 1123-1126, doi: 10.1130/G32384.1.

- 414 BUICK, R., AND KNOLL, A.H., 1999, Acritarchs and microfossils from the Mesoproterozoic
- 415 Bangemall Group, northwestern Australia: Journal of Paleontology, v. 73, p. 744–
- 416 764, doi: 10.1017/S0022336000040634.
- 417 BUTTERFIELD, N.J., AND RAINBIRD, R.H., 1998, Diverse organic-walled fossils, including
- 418 "possible dinoflagellates," from the early Neoproterozoic of arctic Canada:
- 419 Geology, v. 26, p. 963–966, doi: 10.1130/0091-
- 420 7613(1998)026<0963:DOWFIP>2.3.CO;2.
- 421 CASTRO, H.F., WILLIAMS, N.H., AND OGRAM, A., 2000, Phylogeny of sulfate-reducing
- 422 bacteria: FEMS Microbiology Ecology, v. 31, p. 1–9, doi: 10.1111/j.1574-
- 423 6941.2000.tb00665.x.
- 424 CAUMETTE, P., COHEN, Y., AND MATHERON, R., 1991, Isolation and characterization of
- 425 *Desulfovibrio halophilus* sp. nov., a halophilic sulfate-reducing bacterium isolated
- 426 from Solar Lake (Sinai): Systematic and Applied Microbiology, v. 14, p. 33–38,
- 427 doi: 10.1016/S0723-2020(11)80358-9. http://dx.doi.org/10.1016/S0723-
- 428 2020(11)80358-9.
- 429 COHEN, P.A., AND MACDONALD, F.A., 2015, The Proterozoic record of eukaryotes:
- 430 Paleobiology, v. 41, p. 610-632, doi: 10.1017/pab.2015.25.
- 431 http://www.journals.cambridge.org/abstract_S0094837315000251.
- 432 COHEN, P.A., MACDONALD, F.A., PRUSS, S., MATYS, E., AND BOSAK, T., 2015, Fossils of
- 433 putative marine algae from the Cryogenian glacial interlude of Mongolia: Palaios,
- 434 v. 30, p. 238–247, doi: 10.2110/palo.2014.069.
- 435 http://palaios.sepmonline.org/cgi/doi/10.2110/palo.2014.069.

436 COSTAS, E., FLORES-MOYA, A., AND LÓPEZ-RODAS, V., 2008, Rapid adaptation of

- 437 phytoplankters to geothermal waters is achieved by single mutations: were
- 438 extreme environments "Noah's Arks" for photosynthesizers during the
- 439 Neoproterozoic "snowball Earth"? New Phytologist, v. 180, p. 922–932, doi:
- 440 10.1111/j.1469-8137.2008.02620.x.
- 441 COX, G.M., STRAUSS, J. V., HALVERSON, G.P., SCHMITZ, M.D., MCCLELLAND, W.C.,
- 442 STEVENSON, R.S., AND MACDONALD, F.A., 2015, Kikiktat volcanics of Arctic
- 443 Alaska Melting of harzburgitic mantle associated with the Franklin large
- 444 igneous province: Lithosphere, v. 7, p. 275–295, doi: 10.1130/L435.1.
- 445 http://lithosphere.gsapubs.org/cgi/doi/10.1130/L435.1.
- 446 DALTON, L.A., BOSAK, T., MACDONALD, F.A., LAHR, D.J.G., AND PRUSS, S.B., 2013,
- 447 Preservational and morphological variability of assemblages of agglutinated
- 448 eukaryotes in Cryogenian cap carbonates of northern Namibia: Palaios, v. 28, p.

449 67–79, doi: 10.2110/palo.2012.p12-084r.

- 450 http://palaios.sepmonline.org/cgi/doi/10.2110/palo.2012.p12-084r.
- 451 FERRARI, A.C., AND ROBERTSON, J., 2000, Interpretation of Raman spectra of disordered
- 452 and amorphous carbon: Physical Review B, v. 61, n. 20, p. 14095 14097, doi:
- 453 10.1103/PhysRevB.61.14095.
- 454 http://link.aps.org/doi/10.1103/PhysRevB.61.14095.
- 455 FLORENZANO, G., SILI, C., PELOSI, E., AND VINCENZINI, M., 1985, Cyanospira rippkae and
- 456 *Cynospira capsulata* (gen. nov. and spp. nov.): new filamentous heterocystous
- 457 cyanobacteria from Magadi lake (Kenya): Archives of Microbiology, v. 140, p.
- 458 301–306, doi: 10.3109/00206098409072832.

459	HOFFMAN, P.F., KAUFMAN, A.J., AND HALVERSON, G.P., 1998, Comings and goings of
460	global glaciations on a Neoproterozoic tropical platform in Namibia: GSA Today,
461	v. 8, p. 1–9, doi: 10.1130/GSAT01707GW.1.
462	KASEMANN, S.A., HAWKESWORTH, C.J., PRAVE, A.R., FALLICK, A.E., AND PEARSON, P.N.,
463	2005, Boron and calcium isotope composition in Neoproterozoic carbonate rocks
464	from Namibia: evidence for extreme environmental change: Earth and Planetary
465	Science Letters, v. 231, p. 73-86, doi: 10.1016/j.epsl.2004.12.006.
466	KNOLL, A.H., 1992, Vendian microfossils in metasedimentary cherts of the Scotia Group,
467	Prins Karls Forland, Svalbard: Palaeontology, v. 35, p. 751-774.
468	KNOLL, A.H., AND OHTA, Y., 1988, Microfossils in metasediments from Prins Karls
469	Forland, western Svalbard: Polar Research, v. 6, p. 59-67.
470	KOBLUK, D.R., AND RISK, M.J., 1977, Algal borings and framboidal pyrite in Upper
471	Ordovician brachiopods: Lethaia, v. 10, p. 135–143, doi: 10.1111/j.1502-
472	3931.1977.tb00602.x. http://dx.doi.org/10.1111/j.1502-3931.1977.tb00602.x.
473	KOMÁREK, J., AND ZAPOMĚLOVÁ, E., 2007, Planktic morphospecies of the cyanobacterial
474	genus <i>Anabaena</i> = subg. <i>Dolichospermum</i> - 1. part: coiled types: Fottea, v. 7, p.
475	1-31, doi: 10.5507/fot.2007.001.
476	LIU, Y., AND PELTIER, W.R., 2010, A carbon cycle coupled climate model of
477	Neoproterozoic glaciation: influence of continental configuration on the formation
478	of a "soft snowball": Journal of Geophysical Research Atmospheres, v. 115, doi:
479	10.1029/2009JD013082.
480	MADONALD, F.A., MCCLELLAND, W.C., SCHRAG, D.P., AND MACDONALD, W.P., 2009,
481	Neoproterozoic glaciation on a carbonate platform margin in Arctic Alaska and

- the origin of the North Slope subterrane: Geological Society of America Bulletin,
- 483 v. 121, p. 448–473, doi: 10.1130/B26401.1.
- 484 MANKIEWICZ, C., 1992, *Obruchevella* and other microfossils in the Burgess Shale:
- 485 preservation and affinity: Journal of Paleontology, v. 66, p. 717–729, doi:
- 486 10.1017/S0022336000020758.
- 487 MARGHERI, M.C., PICCARDI, R., VENTURA, S., VITI, C., AND GIOVANNETTI, L., 2003,
- 488 Genotypic diversity of oscillatoriacean strains belonging to the genera
- 489 *Geitlerinema* and *Spirulina* determined by 16S rDNA restriction analysis: Current

490 Microbiology, v. 46, p. 359–364, doi: 10.1007/s00284-002-3869-4.

- 491 MIKHAILYUK, T., HOLZINGER, A., MASSALSKI, A., AND KARSTEN, U., 2014, Morphology
- and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales,
- 493 Streptophyta) with special reference to cell division and thallus formation:
- European Journal of Phycology, v. 49, p. 395–412, doi:
- 495 10.1080/09670262.2014.949308.
- 496 http://www.tandfonline.com/doi/full/10.1080/09670262.2014.949308.
- 497 MOORE, K.R., BOSAK, T., MACDONALD, F.A., LAHR, D.J.G., NEWMAN, S., SETTENS, C.,
- 498 AND PRUSS, S.B., 2017, Biologically agglutinated eukaryotic microfossil from
- 499 Cryogenian cap carbonates: Geobiology, v. 15, p. 499-515, doi:
- 500 10.1111/gbi.12225. http://doi.wiley.com/10.1111/gbi.12225.
- 501 OEHLER, J.H., AND LOGAN, R.G., 1977, Microfossils, cherts, and associated mineralization
- 502 in the Proterozoic McArthur (H.Y.C) lead-zinc-silver deposit: Economic
- 503 Geology., v. 72, p. 1393–1409, doi: 10.2113/gsecongeo.72.8.1393.

504	POULÍČKOVÁ, A., ŽIŽKA, Z., HAŠLER, P., AND BENADA, O., 2007, Zygnematalean
505	zygospores: morphological features and use in species identification: Folia
506	Microbiologica, v. 52, p. 135–145, doi: 10.1007/BF02932152.
507	RIEDMAN, L.A., PORTER, S.M., HALVERSON, G.P., HURTGEN, M.T., AND JUNIUM, C.K.,
508	2014, Organic-walled microfossil assemblages from glacial and interglacial
509	Neoproterozoic units of Australia and Svalbard: Geology, v. 42, p. 1011-1014,
510	doi: 10.1130/G35901.1.
511	ROONEY, A.D., STRAUSS, J. V., BRANDON, A.D., AND MACDONALD, F.A., 2015, A
512	Cryogenian chronology: two long-lasting synchronous Neoproterozoic
513	glaciations: Geology, v. 43, p. 459-462, doi: 10.1130/G36511.1.
514	SALMAN, V., BAILEY, J. V., AND TESKE, A., 2013, Phylogenetic and morphologic
515	complexity of giant sulphur bacteria: Antonie van Leeuwenhoek, International
516	Journal of General and Molecular Microbiology, v. 104, p. 169–186, doi:
517	10.1007/s10482-013-9952-y.
518	SERGEEZ, V.N., AND SCHOPF, J.W., 2010, Taxonomy, paleoecology and biostratrigraphy of
519	the late Neoproterozoic Chichkan microbiotoa of south Kazakhstan: the marine
520	biosphere on the eve of metazoan radiation: Journal of Paleontology, v. 84, p.
521	363-401, doi: doi.org/10.1666/09-133.1.
522	SILI, C., MASCALCHI, C., AND VENTURA, S., 2011, Evolutionary differentiation of the
523	cyanobacterial genera Cyanospira Florenzano, Sili, Pelosi et Vincenzini and
524	Anabaenopsis (Woloszyińska) Miller in response to extreme life conditions:
525	Fottea, v. 11, p. 107–117, doi: 10.5507/fot.2011.011.

526	SOROKIN, D.Y., AND CHERNYH, N.A., 2017, Desulfonatronospira sulfatiphila sp. nov., and
527	Desulfitispora elongata sp. nov., two novel haloalkaliphilic sulfidogenic bacteria
528	from soda lakes: International Journal of Systematic and Evolutionary
529	Microbiology, v. 67, p. 396–401, doi: 10.1099/ijsem.0.001640.
530	http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.0016
531	40.
532	STEINER, M., AND REITNER, J., 2001, Evidence of organic structures in Ediacara-type
533	fossils and associated microbial mats: Geology, v. 29, p. 1119-1122, doi:
534	10.1130/0091-7613(2001)029<1119:EOOSIE>2.0.CO;2.
535	STRAUSS, J.V., MCCLELLAND, W.C., AND MACDONALD, F.A., in press. Pre-Mississippian
536	stratigraphy and provenance of the North Slope subterrane of Arctic Alaska I:
537	Platformal rocks of the northeastern Brooks Range and their significance in
538	circum-Arctic evolution, Geological Society of America Special Papers.
539	TEE, W., DYALL-SMITH, M., WOODS, W., AND EISEN, D., 1996, Probable new species of
540	Desulfovibrio isolated from a pyogenic liver abscess: Journal of Clinical
541	Microbiology, v. 34, p. 1760–1764.
542	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=229109&tool=pmcent
543	rez&rendertype=abstract.
544	TOMASELLI, L., 1997, Spirulina Platensis Arthrospira: Physiology, Cell-Biology And
545	Biotechnology (A. Vonshak, Ed.): Taylor & Francis Ltd., London, 1-15 p.
546	TOMASELLI, L., BOLDRINI, G., AND MARGHERI, M.C., 1997, Physiological behaviour of
547	Arthrospira (Spirulina) maxima during acclimation to changes in irradiance:
548	Journal of Applied Phycology, v. 9, p. 37-43, doi: 10.1023/A:1007956210329.

549	TZIPERMAN, E., ABBOT, D.S., ASHKENAZY, Y., GILDOR, H., POLLARD, D., SCHOOF, C.G.,
550	AND SCHRAG, D.P., 2012, Continental constriction and oceanic ice-cover
551	thickness in a Snowball-Earth scenario: Journal of Geophysical Research: Oceans,
552	v. 117, C05016, doi: 10.1029/2011JC007730.
553	WACEY, D., MCLOUGHLIN, N., KILBURN, M.R., SAUNDERS, M., CLIFF, J.B., KONG, C.,
554	BARLEY, M.E., AND BRASIER, M.D., 2013, Nanoscale analysis of pyritized
555	microfossils reveals differential heterotrophic consumption in the ~1.9-Ga
556	Gunflint chert: Proceedings of the National Academy of Sciences of the United
557	States of America, v. 110, p. 8020-8024, doi: 10.1073/pnas.1221965110.
558	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3657779&tool=pmce
559	ntrez&rendertype=abstract.
560	WONGSAWAD, P., AND PEERAPORNPISAL, Y., 2015, Morphological and molecular profiling
561	of Spirogyra from northeastern and northern Thailand using inter simple sequence
562	repeat (ISSR) markers: Saudi Journal of Biological Sciences, v. 22, p. 382-389,
563	doi: 10.1016/j.sjbs.2014.10.004. http://dx.doi.org/10.1016/j.sjbs.2014.10.004.
564	XIAO, S., 2004, New multicellular algal fossils and acritarchs in Doushantuo chert nodules
565	(Neoproterozoic; Yangtze Gorges; south China): Journal of Paleontology, v. 78,
566	p. 393-401, doi: 10.1666/0022-3360(2004)078<0393:NMAFAA>2.0.CO;2.
567	ZAARUR, S., WANG, D.T., ONO, S., AND BOSAK, T., 2017, Influence of phosphorus and cell
568	geometry on the fractionation of sulfur isotopes by several species of
569	Desulfovibrio during microbial sulfate reduction: Frontiers in Microbiology, v. 8,
570	doi: 10.3389/fmicb.2017.00890.

571	ZHANG, Y., YIN, L., XIAO, S., AND KNOLL, A.H., 1998, Permineralized fossils from the
572	terminal Proterozoic Doushantuo Formation, south China: Journal of
573	Paleontology, v. 72, p. 1–52.
574	
575	FIGURE CAPTIONS
576	
577	FIG. 1.—Stratigraphic column of the Sadlerochit and Kikiktat Mountains and the Fourth
578	Range of Artic Alaska (Strauss et al., accepted; Macdonald et al., 2009 and
579	references therein). Samples (labeled in green as F609) come from the base of the
580	Ikiakpuk formation in the Fourth Range.
581	
582	FIG. 2.—SEM images of dominant coil morphologies. Morphologies include tightly
583	coiled helices with fine crystalline granular texture (A, B, C, D), loosely coiled
584	helices with fine crystalline granular texture (E), loosely coiled helices with some
585	framboids embedded within the fine crystalline granular texture, and broken coils
586	showing solid cross sections of the strands comprising the coils (G, H).
587	
588	FIG. 3.—SEM images of other morphologies. Strands are curved with uniform thickness
589	throughout the specimen and comprised of framboids (A, B), straight with
590	framboids and some areas of fine crystalline granular texture (C, D), or curved
591	and comprised of framboids that taper toward a narrow point (E, F).
592	

593	FIG. 4.—EDS chemical map of a representative coil. Chemical maps show the
594	compositional distribution of all elements present (A, B) and demonstrate a clear
595	dominance of Fe (C) and S (D) covering the structure.
596	
597	FIG. 5.—Raman spectrum of a representative coil demonstrating dominant peaks at ~1348
598	cm^{-1} and ~1609 cm ⁻¹ , consistent with D-band and G-band Raman shift indicative
599	of organic carbon (e.g., Ferrari and Robertson, 2000; McNeil et al., 2015).
600	
601	FIG. 6.—Petrographic thin section of a representative limestone of the Ikiakpuk
602	formation showing dark circles (outlined in dotted lines). These circles are rarely
603	observed in thin section due to the surrounding dark micrite, and show cross-
604	sections through the solid pyritized strands.

