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(Received 6 April 2016)

We establish through numerical simulation conditions for optimal undulatory propul-
sion for a single fish, and for a pair of hydrodynamically interacting fish, accounting for
linear and angular recoil. We first employ systematic 2D simulations to identify condi-
tions for minimal propulsive power of a self-propelled fish, and continue with targeted 3D
simulations for a danio-like fish. We find that the Strouhal number, phase angle between
heave and pitch at the trailing edge, and angle of attack are principal parameters. An-
gular recoil has significant impact on efficiency, while optimized body bending requires
maximum bending amplitude upstream of the trailing edge. For 2D simulations, impos-
ing a deformation based on measured displacement for carangiform swimming provides
efficiency of 40%, which increases for an optimized profile to 57%; for a 3D fish, the
corresponding increase is from 22% to 35%; all at Reynolds number 5000.

Next, we turn to 2D simulation of two hydrodynamically interacting fish. We find
that the upstream fish benefits energetically only for small distances. In contrast, the
downstream fish can benefit at any position that allows interaction with the upstream
wake, provided its body motion is timed appropriately with respect to the oncoming
vortices. For an in-line configuration, one body length apart, the optimal efficiency of
the downstream fish can increase to 66%; for an offset arrangement it can reach 81%.
This proves that in groups of fish, energy savings can be achieved for downstream fish
through interaction with oncoming vortices, even when the downstream fish lies directly
inside the jet-like flow of an upstream fish.

1. Introduction

The grace and agility of swimming fish and marine mammals have excited the curiosity
of scientists for a long time. For example, the the Northern pike (Enox Lucius) can reach
accelerations up to 25g (Harper & Blake 1990); the European eel (Anguilla Anguilla)
annually swims over 5000 km across the Atlantic Ocean while fasting (Ginneken et al.
2005); fish employing body undulation as their primary means of propulsion greatly
surpass all engineered vehicles in terms of fast-starting and maneuvering capabilities.
In the hope of shedding light to the fluid mechanisms behind the aquatic animals’ ex-
traordinary performance, biologists, hydrodynamicists and engineers have observed fish
swimming (Gray 1933; Videler & Hess 1984; Tytell 2004), measured their metabolic rates
(Bainbridge 1961; Webb 1971), proposed hydrodynamic principles and scaling laws (Gero
1952; Lighthill 1960; Triantafyllou et al. 1991; Gazzola et al. 2014; van Weerden et al.
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2014), and built robots replicating the function of fish (Triantafyllou & Triantafyllou
1995; Stefanini et al. 2012; Sefati et al. 2013; Ijspeert 2014).

With the increase in computational power, computational fluid dynamics (CFD) pro-
vides an attractive alternative means of studying fish swimming because of the detailed
flow images it can convey(Deng et al. 2013). Since the viscous simulations of a two-
dimensional self-propelled anguilliform swimmer by Carling et al. (1998), a variety of
methods have been developed to simulate fish swimming. These methods range from
arbitrary Eulerian-Lagrangian methods with deformable mesh (Kern & Koumoutsakos
2006), to immersed boundary methods (Borazjani & Sotiropoulos 2008; Shirgaonkar et al.
2009; Liu et al. 2011; Bergmann et al. 2014), to multiparticle collision dynamics methods
(Reid et al. 2012) and viscous vortex particle methods (Eldredge 2006). CFD is a unique
complement to experiments on live fish that can potentially give access to full three-
dimensional flow structures as well as local forces and power. The application of CFD to
the study of fish swimming is still in its infancy, while a number of modelling decisions
also need to be made. Once these modelling and numerical questions are resolved, CFD
becomes a very powerful tool providing unmatched detail of the flow properties, while al-
lowing wide parametric searches through systematic changes in the body geometry or the
swimming kinematics. As a result, there has recently been a number of publications re-
porting efforts in optimizing fish shape and/or swimming motion (Kern & Koumoutsakos
2006; van Rees et al. 2013; Eloy 2013; Toki & Yue 2012). In this paper we first present
a methodology for simulating fish swimming in which the impact of modelling choices
are carefully quantified. We use this methodology to investigate efficient swimming for
an undulating body.

In addition to optimizing their self-generated flow structures, fish may be able to use
the flow patterns from another swimming fish to save energy. Whether energy saving is an
important reason for schooling has long been a matter of discussion. Weihs (1973) is one
of the few papers proposing a hydrodynamic theory of schooling, viz. that fish can save
energy by swimming in a ‘diamond’ configuration, taking advantage of areas of reduced
average oncoming velocity that form between adjacent propulsive wakes. Partridge &
Pitcher (1979) later commented that saithe, herring and cod do not swim in the diamond
pattern, which led Pitcher (1986) to write that “no valid evidence of hydrodynamic
advantage has been produced, and existing evidence contradicts most aspects of the only
quantitative testable theory published.” Yet, as pointed out by Abrahams & Colgan
(1987), such conclusions may be premature because they ignore the potential trade-offs
involved in school functions. Indeed, despite the difficulty of assessing the importance
of energy saving in schooling due to the dynamic nature of schools, there has been
experimental evidence that fish located in the rear part of a school spend less energy
than those in the front (Killen et al. 2012). A recent paper suggests that in a fish school,
individuals in every position have reduced costs of swimming, compared to when they
swim at the same speed but alone (Marras et al. 2014). Further, the recent finding
that ibises in a flock position themselves and phase their motion such that they can
take advantage of the vortices left by the ibis in front of them, suggests that analogous
mechanisms might be found for fish schools as well (Portugal et al. 2014). In this paper
we investigate the mechanisms by which two fish swimming as a pair can save energy.

By optimizing fish-like swimming kinematics and comparing them with the parameters
observed for various fish species, we can shed light on the processes that led to the
development of the swimming characteristics of each species, while from an engineering
point of view we can derive new design principles for propulsion, inspired by efficient
living organisms, potentially even exceeding their performance (van Rees et al. 2013). By
investigating strategies for fish-to-fish hydrodynamic interaction, we can shed light on
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fish school formation and assess its potential hydrodynamic benefits. In § 2, we discuss
modelling considerations for the simulation of fish swimming and briefly present the
governing equations numerical details specific to fish swimming simulations. We use the
model and numerical method to optimize the gait of an undulating fish-like foil in open-
water (§ 3.1) and the positioning and timing for a pair of undulating fish-like foils (§ 4).

2. Methods: modelling and simulations

Aquatic animals exhibit a wide variety of designs and propulsion modes. However, most
fish and cetaceans generate thrust by bending their bodies into a backward-traveling wave
that extends to the caudal fin, a type of swimming often classified as body and/or caudal
fin (BCF) locomotion (Sfakiotakis et al. 1999). In the present paper, we investigate the
efficiency of BCF propulsion, with particular examples drawn from eels that undulate
their whole body (anguilliform motion), as well as saithe and mackerel that only undulate
the aft third of their body (carangiform motion) (Breder 1926). For expedient calculations
and since the swimming motion bends the body as a plate, i.e. it is quasi-two-dimensional,
we first use two-dimensional simulations to investigate the impact of various kinematic
parameters and then compare the results with three-dimensional simulations of a three-
dimensional, danio-shaped body.

2.1. Fish shape and swimming motion

In order to capture the main parameters of BCF swimming while keeping the problem
complexity manageable, we model the main body of the fish and its caudal fin but not
the other fins or details on the body such as scales, finlets, and other protrusions. We
represent a swimming fish by a neutrally buoyant undulating body of length L = 1, as
illustrated in figure 1. For the two-dimensional simulations, a NACA0012 shape is chosen
at rest, whereas a danio-shaped body, shown in figure 2, is used for the 3D simulations.
The body propels itself at average speed Us in a fluid of kinematic viscosity ν and density
ρ by oscillating its mid-line in the transverse direction y. The leading edge of the body
at rest is located at x = 0 and its trailing edge at x = 1.

In 2D simulations, we will refer to the body as a ‘fish’ rather than a flexible foil to
avoid confusion with the caudal fin, and with non-self-propelled flexible foils used as
propulsors.

We employ traveling wave kinematics including recoil that resemble those observed in
fish according to either carangiform or anguilliform swimming. The lateral displacement,
h, of a point located at x along the foil is given at time t by:

h(x, t) = h0(x, t) +B(x, t) + y1(x)

= a0A(x) sin
(
2π(x/λ− ft+ φ)

)
+B(x, t) + y1(x)

= g(x) sin
(
2π(ft+ ψ(x))

)
+ y1(x) (2.1)

where A(x), with A(1) = 1, is the envelope of the qprescribed backward traveling wave
of wavelength λ and frequency f ,

B(x, t) = (ar + brx) sin
(
2π(ft+ φr)

)
(2.2)

is the recoil term due to the hydrodynamic forces on the fish, and

y1(x) = C(x2 + γx+ β) (2.3)

can be used for steering (see Appendix B) by adding camber to the fish, while γ and β
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Figure 1: Schematic showing the fish model parameters. An elongated body of length
L undulates in a flow of speed Us with a wave traveling backward at speed fλ and
amplitude a at the trailing edge.

Figure 2: Three-dimensional fish geometry based on a giant danio.

ensure that linear and angular momentum are conserved through the deformation. y1 is
necessary to ensure stability but, in steady regime, y1 � a0.

The parameter a0 determines the amplitude of the deformation h0 at the trailing edge.
It is adjusted through a feedback control loop to ensure that the average net drag on
the foil is 0, as described in Appendix B. h0(x, t) can be used without the recoil and
steering terms in order to prescribe the full kinematics of the swimmer, in which case
h(x, t) = h0(x, t). For a freely moving body with prescribed deformation, the recoil is
computed from the hydrodynamic forces on the body. In the latter case, the envelope
of the actual displacement is given by g(x), with peak to peak amplitude at the trailing
edge given by a = 2g(1).

The prescribed kinematics of a carangiform swimmer, based on the experimental obser-
vation of steadily swimming saithe (Videler & Hess 1984; Videler 1993), is often modeled
as:

a0 = 0.1, A(x) = 1− 0.825(x− 1) + 1.625(x2 − 1), λ = 1, B(x, t) = 0. (2.4)

This motion is for example used in Borazjani & Sotiropoulos (2008); Dong & Lu (2007)
and, in the rest of the paper, will be referred to as the carangiform gait. Experimental
observations of American eels (Tytell & Lauder 2004) provide that anguilliform motion
can be represented by:

a0 = 0.1, A(x) = 1 + 0.323(x− 1) + 0.310(x2 − 1), λ = 1, B(x, t) = 0. (2.5)

Figure 3a shows the prescribed envelope A(x) for the carangiform (resp. anguilliform)
swimmer defined in equation 2.4 (resp. equation 2.5). Figure 3b illustrates the resulting
mid-line displacement in the presence of the recoil term.

2.2. Kinematic parameters

The goal of this paper is to identify kinematic parameters that minimize the self-propelled
swimming power Pin for a given speed (Reynolds number) and body shape. In order to
quantify the fitness of each motion, the quasi-propulsive efficiency ηQP is used, which
compares Pin to the useful power, i.e. the resistance R of the rigid-straight towed body



Fish swimming efficiency 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

A

carang
anguil

(a) Prescribed amplitude envelopes

−0.1

0

0.1

carangiform

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

x

anguilliform

h
h

(b) Mid-line displacement

Figure 3: Carangiform and anguilliform motion for f = 1.8 and a0 = 0.1 at Reynolds
number Re = 5000 with recoil.

at the same speed Us times the speed: ηQP = RUs/Pin. Indeed, as discussed in Maertens
et al. (2015), the Froude propulsive efficiency is not appropriate here as it is zero for a
self-propelled body.

For rigid flapping foils, the parameters that characterize the motion and its perfor-
mance have been extensively studied (Anderson et al. 1998; Read et al. 2003)). The
principal kinematic parameters are the Strouhal number and the maximum nominal an-
gle of attack, and, to a lesser degree, the heave amplitude to chord ratio, and the phase
angle between heave and pitch; all, typically, measured at 25% of the chord. The Strouhal
number is a wake parameter, since it characterizes the dynamics of the (unstable) wake
(Triantafyllou et al. 1991, 1993); hence the width of the wake must, in principle, be used
as the characteristic length. However, the width of the wake is unavailable beforehand,
so this characteristic length is approximated typically by the peak to peak motion of
the trailing edge. Hence, for an undulating flexible foil, we define the Strouhal number,
heave amplitude, pitch angle and nominal angle of attack at the trailing edge. These
parameters and others used throughout this paper are summarized in table 1. While the
motion cannot be characterized by these parameters alone, they play an important role
in determining the swimming efficiency. Changing the amplitude of motion and Strouhal
number can be achieved through parameters like a0 and f (though, for a given motion
and average velocity, there is a unique amplitude that ensures a steady velocity), but the
pitch amplitude θmax and maximum angle of attack αmax cannot be directly controlled.
Therefore, when optimizing the swimming gait, it is important to choose a parametriza-
tion that allows to adjust the pitch and angle of attack amplitudes independently of the
heave amplitude and Strouhal number. This is best done by changing parameters that
control the derivative of the prescribed envelope A(x) at the trailing edge.

In this study, the lateral flexing motion (i.e. the lateral motion after the linear and an-
gular recoil are subtracted) is characterized by four parameters: the frequency, amplitude,
and two parameters controlling the shape of A(x), the envelope of the unsteady bending
motion. With prescribed frequency, the amplitude is adjusted to ensure self-propulsion,
while the two remaining parameters are varied systematically in order to identify the
values that minimize the swimming power (equivalently, maximize the quasi-propulsive
efficiency ηQP ) for a given Reynolds number and body flexing shape. In order to explore
a wide range of motions, two different parametrizations are used for A(x): a quadratic
envelope and a Gaussian envelope (see details in § 3.1). The wavelength of the travel-
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Name Symbol Expression

Power coefficient CP 2Pin/(ρU
3
sL)

Quasi-propulsive efficiency ηQP RUs/Pin

Reynolds number Re UsL/ν
Strouhal number St fa/Us

Pitch angle θ
Angle of attack α

Peak to peak heave a
heave-pitch phase angle ψ

Table 1: Kinematic and other dimensionless parameters.

homogeneous 
fine grid region 

Figure 4: Flow configuration for the undulating NACA0012 simulations. The vorticity
field for the carangiform motion with f = 1.8 and zero mean drag is shown as an example.

ing wave is fixed, equal to the body length, and the maximum amplitude is adjusted to
ensure the average swimming speed of the self-propelled fish results in Reynolds num-
ber Re = 5000. The linear and angular recoil terms are computed by integration of the
hydrodynamic forces.

2.3. Governing equations and numerical implementation

In a self-propelled swimming body, its motion is determined by the coupled fluid-body
dynamics. The physical parameters are non-dimensionalized by the fish body length L,
its intended average cruising speed Us, and the density of water ρ.

In order to solve the coupled fluid/body problem described above, we adapted the 2nd
order boundary data immersion method (BDIM) presented in Maertens & Weymouth
(2015). The validation of the numerical method presented in this section for simulating
self-propelled undulating bodies is presented in Appendix A. For the two-dimensional
simulations, constant velocity ~u = ~Us is used on the inlet (x = −6), periodic boundary
conditions on the upper and lower boundaries (y = ±2.4), and a zero gradient exit
condition with global flux correction (x = 7). The Cartesian grid is uniform near the
fish with grid size dx = dy = 1/160 and uses a 2% geometric expansion ratio for
the spacing in the far-field, as illustrated in figure 4. The three-dimensional simulations
are run on a 6 × 3 × 3 domain with constant velocity ~u = ~Us on the inlet, a zero
gradient exit condition with with global flux correction and periodic boundary conditions
along y and z boundaries. The Cartesian grid is uniform near the fish with grid size
dx = dy = dz = 1/100 and uses a 4% geometric expansion ratio for the spacing in the
far-field.

The fluid and body equations are integrated over the fluid and body domains, re-
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spectively, Ωf and Ωb, with a kernel of radius ε = 2 dx. The BDIM equations for the
smoothed velocity field ~uε are valid over the complete domain Ω = Ωf ∪ Ωb and enforce
the no-slip boundary condition at the interface. These equations, integrated from time t
to time t+ = t+ ∆t, are:~uε(t+) = ~v(t+) +

(
µε0(d) + µε1(d)

∂

∂n

)(
~uε(t)− ~v(t+) + ~R∆t − ~∂P∆t

)
~∇ · ~uε(t+) = 0

(2.6a)

(2.6b)

where ~v is the velocity field associated with the closest body, n̂ the unitary normal to
the closest fluid/solid boundary (pointing toward the fluid), and d the signed distance
to the closest boundary (d > 0 within the fluid, d < 0 inside a body). µε0 and µε1 are
respectively the zeroth and first central moments of the smooth delta kernel (see Maertens

& Weymouth (2015) for more details). The pressure impulse ~∂P∆t and ~R∆t accounting
for all the non-pressure terms are defined as:

~R∆t(~u) =

∫ t0+∆t

t0

[
−
(
~u · ~∇

)
~u+ ν∇2~u

]
dt , ~∂P∆t =

∫ t0+∆t

t0

1

ρ
~∇p dt. (2.7)

In order to simplify the equations of motion, we consider motion within the (x, y) plane,
such that the translational velocity of the body center of mass (COM), ~vc, is a two-
dimensional vector (vxc , v

y
c ), and its rotation velocity is ωb = ωzb . We then define the

generalized velocity V , location X, and force F vectors, as well as the generalized mass
matrix M:

V =

vxcvyc
ωb

 , X =
dV

dt
, F =

F xhF yh
Mz
c

 , M =

m 0 0
0 m 0
0 0 Ic

 , (2.8)

where ~Fh is the hydrodynamic force on the body, m is the mass of the body which has
density ρb = ρ and Ic its moment of inertia with respect to the COM. The motion of the
body is governed by:

d

dt
(MV ) = F . (2.9)

The coupled dynamic equations are discretized using a sequentially staggered Euler ex-
plicit integration scheme with Heun’s corrector. Sequentially staggered schemes are com-
putationally efficient, but for large added mass they become unconditionally unstable
(Frster et al. 2007), regardless of the particular scheme used. In order to stabilize the
numerical scheme, we introduce the virtual added mass matrix Ma.

The virtual added mass, which is used in an implicit added mass scheme (Connell
& Yue 2007; Zhu & Shoele 2008; Peng & Zhu 2009), can eliminate the instability due
to large added mass, but its exact value will not affect the results. In the case of an
undulating fish, the coefficients of the matrix can be estimated from the added mass of
the fish at zero angle of attack, or heuristically tuned to avoid instability. In the present
simulations, the virtual added mass is a diagonal matrix with value [0 11m 13m].

We also define the total mass as:

MT = M + Ma. (2.10)

With these new definitions, we integrate equation 2.9 over a time-step ∆t in the form:

V (t+ ∆t) = V (t) + MT
−1

∫ t+∆t

t

[
F + Ma

dV

dτ

]
dτ. (2.11)
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Figure 5: (a) Linear and angular momentum and (b) corresponding velocities for
a neutrally buoyant self-propelled NACA0012 with carangiform motion at frequency
f = 1/T = 2.1.

At each time step tn, the fluid and body velocities, ~un = ~uε(tn) and ~vn = ~v(tn) respec-
tively, are calculated from the velocities and forces at the previous time steps according
to equations 2.6 and 2.11.

2.4. The importance of recoil

Equation 2.11 determines the recoil B(x, t) resulting from the prescribed motion h0(x, t)
and the related hydrodynamic forces F . Due to the significant added complexity in-
curred by the recoil term, most of the earlier simulation studies neglected it (Borazjani
& Sotiropoulos 2008; Dong & Lu 2007). However, the amplitude of this term, and its
impact on the estimated swimming power are substantial (Reid et al. 2012), as illustrated
below.

We consider first the carangiform motion of Eq. 2.4 with frequency f = 2.1. Figure
5a shows the dimensionless linear and angular momentum for the self-propelled fish, in-
cluding the recoil, as determined by the hydrodynamic forces and adaptive amplitude a0.
The angular and transverse momentum are larger than the longitudinal momentum, but
the three amplitudes are comparable. However, the non-dimensional moment of inertia
of the fish is much smaller than its mass:

m = 0.081, Ic = 0.0045, (2.12)

where the mass and moment of inertia are non-dimensionalized by the length L and
density ρ. Therefore, whereas the linear momentum results in velocities smaller than 3%
of the free-stream Us, the rotation of the fish generates velocities at the trailing edge
up to 40% of the free-stream, as shown in Figure 5b. This observation suggests that,
whereas the longitudinal motion of the fish might be negligible, the transverse motion,
and specifically the motion due to the free-rotation, are important.

In order to further illustrate this result, figure 6 shows the quasi-propulsive efficiency
as a function of frequency for the carangiform and anguilliform motions with and without
recoil. The figure shows that, at all frequencies, the undulation with recoil requires more
power than the undulation without recoil. Therefore, simulations that do not allow for
recoil are likely to underestimate the swimming power, as discussed in Reid et al. (2009).
The figure also shows that the optimal frequency without recoil might differ from the
optimal frequency with recoil. In the cases studied here, the optimal frequency for the
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Figure 6: Quasi-propulsive efficiency as a function of frequency for the carangiform and
anguilliform motions with and without recoil.

carangiform undulation without recoil is around f = 1.6, while with recoil it is around
f = 2.1.

In summary, we have shown here that the impact of the pitch motion of the fish
on swimming performance is significant. In order to estimate meaningful values of fish
swimming efficiency, it is critical to allow for recoil.

2.5. Gait optimization procedure

Eloy (2013) and Toki & Yue (2012) combined an evolutionary algorithm with Lighthill’s
potential flow slender-body model to simultaneously optimize the shape and kinematics,
using, respectively, 22 and 9 parameters. In this paper we employ viscous simulations
that are far more demanding computationally, hence we parameterize the amplitude A(x)
using only two parameters, because the small number of parameters allows us to find an
optimum with a reduced number of evaluations, and it also facilitates the visualization
and interpretation of the results.

For a given kinematic parametrization and frequency, the envelope A(x) is optimized
using derivative-free optimization (Rios & Sahinidis 2013). We apply the BOBYQA al-
gorithm that performs bound-constrained optimization using an iteratively constructed
quadratic approximation for the objective function (Powell 2009). For each set of param-
eters, the viscous simulation is run for 15 non-dimensional time units, and the average
power coefficient CP across the last 10 undulation periods is calculated. Based on the
values of CP , the implementation of BOBYQA provided by the NLopt free C library
(Johnson n.d.) interfaced with Matlab computes the next set of parameters. In order to
avoid finding a local minimum due to numerical noise, after the algorithm has converged,
it is run again using the previously found minimum as a starting point.

3. Efficiency of swimming in open-water

The goal in this section is to identify undulatory gaits that require the minimum
amount of power (Pin) to drive an elongated body at speed Us, such that the Reynolds
number is Re = 5000. In other words, we want to maximize the quasi-propulsive effi-
ciency ηQP of the self-propelled undulating body and identify the key parameters under
the constraints of fixed body size and shape, as well as Reynolds number. We first con-
sider a two-dimensional NACA0012-shaped fish and then apply the results to a three-
dimensional danio-shaped body.



10 Audrey P. Maertens, Amy Gao, and Michael S. Triantafyllou
(a) (b) ηQP

Figure 7: ηQP as a function of A(0) or f and A(1/2) for quadratic envelopes. The black
dots show the location of the points that have been used to build the thin-plate smooth-
ing spline (tpaps function in Matlab with smoothing parameter p = 0.999) represented
in color. (a): fixed frequency f = 1.8. The carangiform and anguilliform motions are
respectively denoted by a black square and a black diamond, and a dashed line shows
the location of linear envelopes (points below this line correspond to convex envelopes,
while above it the envelopes are concave). (b): fixed leading edge value A(0) = 0.

3.1. Gait optimization for a two-dimensional foil

For several values of undulation frequency, we optimize the deformation envelope A(x).
A(x) has been traditionally modeled by a quadratic function, of the form:

A(x) = 1 + c1(x− 1) + c2(x2 − 1). (3.1)

In the figures we parametrize each envelope by A(0) and A(1/2), the envelope amplitude
at the leading edge and mid-chord respectively (the amplitude at the trailing edge being
constrained to A(1) = 1). Indeed, A(0) and A(1/2) are more meaningful than c1 and
c2 and can easily be restricted to a rectangle. First, we fix the undulation frequency to
f = 1.8 and optimize the quadratic envelope A(x), restricting A(0) to positive values.
Figure 7a shows the efficiency as a function of A(0) and A(1/2). The carangiform en-
velope used in previous sections is denoted by a black square, and the anguilliform gait
through a diamond. It is clear that the envelopes above the dashed line, which are con-
cave envelopes with a peak upstream from the trailing edge, have good efficiency. The
efficiency decreases very quickly below the dashed line, as the envelope becomes convex
with an increasing amplitude at the trailing edge. Therefore, the envelope traditionally
used to model carangiform swimming is inefficient, whereas the anguilliform envelope,
which is closer to a straight line, is much more efficient. Among the concave envelopes,
A(0) = 0 seems best, together with 1 6 A(1/2) 6 1.7, where the efficiency reaches a value
of 48%. Since the optimal quadratic gait saturates the constraint A(0) > 0, we then fix
the leading edge amplitude to A(0) = 0 and optimize the undulation frequency f and
the second envelope parameter A(1/2). Figure 7b shows the efficiency as a function of f
and A(1/2). Here again, around the optimal point, the efficiency is not very sensitive to
the exact value of f and A(1/2). The optimal quadratic envelope (A(0) = 0, A(1/2) = 1,
A(1) = 1) has a maximum amplitude at x = 3/4 and reaches an efficiency of ηQP = 49%
around f = 1.6.

A quadratic envelope has been traditionally used to describe the displacement enve-
lope of undulating fish which is maximum at the trailing edge, but the envelope of the
curvature amplitude in saithe and mackerel has a distinctive peak around the peduncle
section Videler & Hess (1984). The results from figure 7 also suggest that the efficiency
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Figure 8: Definition of the parameters for a Gaussian envelope.

is higher if the deformation is largest upstream of the trailing edge rather than at the
trailing edge itself. Such envelopes can be better modeled by a Gaussian function of the
form:

A(x) = exp

(
−
(
x− x1

δ

)2

+

(
1− x1

δ

)2
)
, (3.2)

where x1 parametrizes the location of the peak and δ its width, as shown in figure 8. With
the Gaussian function, it is easy to change the pitch and angle of attack amplitudes at
the tail by adjusting the location and width of the peak. Since the Gaussian envelope is
always positive, the entire (x1, δ) space can be used to search for an optimal gait without
running into degenerate gaits.

Figure 9 shows the efficiency as a function of x1 and δ in the neighborhood of the
optimal envelope for λ = 1 and five frequencies ranging from f = 1.5 to f = 2.7. For all
frequencies, the efficiency decreases very rapidly as δ is decreased below its optimal value,
while the efficiency is much less sensitive to increases above this optimal value. Moreover,
while for all frequencies it is possible to find a region in the (x1, δ) space that reaches an
efficiency of 50% (see table 2a for details), the optimal envelope clearly depends on the
frequency.

At low frequency, gaits with undulations of the entire body (x1 = 0.73 and δ = 0.52 at
f = 1.5) are most efficient, while at high frequency, the undulations should be restricted
to a narrow region (δ = 0.21 at f = 2.7) located around 25% of the trailing edge
(x1 = 0.88 at f = 2.7). However, for all frequencies, the optimized deformation envelope
A(x), shown in figure 10a, is qualitatively similar to the curvature envelope from Videler
& Hess (1984), with a small amplitude at the leading edge, a peak 10 to 30% from the
trailing edge, and a sharp decrease in amplitude at the trailing edge. Moreover, for all
frequencies, the amplitude of the peak is very close to 0.1.

The corresponding displacement envelopes g(x) are shown in figure 10b. The displace-
ment envelopes are qualitatively similar to the carangiform displacement envelope from
Videler & Hess (1984), with a minimum amplitude around x = 0.25 and a maximum
amplitude at the trailing edge. While the amplitude at the leading edge decreases by a
factor of two from f = 1.5 to f = 1.8, it remains almost constant for f from 2.1 to 2.7
with a value g(0) = 0.02 very close to that of Videler & Hess (1984).

It is interesting to note that, since quadratic envelopes can only result in functions with
a wide peak, they can reach the same efficiency as the wide peak Gaussian envelopes at
low frequency (f = 1.5), but not at high frequency (f = 2) where a sharp peak is
advantageous.
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δ
δ

Figure 9: ηQP as a function of x1 and δ near the optimum for Gaussian envelopes. (a):
f = 1.5, (b): f = 1.8, (c): f = 2.1, (d): f = 2.4, (e): f = 2.7, (f): colorbar. The black dots
show the location of the points that have been used to build the thin-plate smoothing
spline (tpaps function in Matlab with smoothing parameter p = 0.999) represented in
color.
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Figure 10: Optimized (a) prescribed deformation envelopes and (b) displacement en-
velopes for the Gaussian parametrization. λ = 1 and f = [1.5, 1.8, 2.1, 2.4, 2.7].

3.2. Characterization of efficient swimming gaits for a two-dimensional fish

We showed in the previous section that, by changing the location and width of the peak
in a Gaussian deformation envelope, a very efficient gait can be designed for a large range
of undulation frequencies.

Figure 11 shows the deformed fish for three optimized gaits. As expected from figure
10, at f = 1.5 the entire length of the fish undergoes noticeable deformation and displace-
ment, resulting in a swimming motion that is similar to that of an anguilliform swimmer,
with a moderate curvature along the entire body: the deformation of the fish matches
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Figure 11: Superimposed body outlines over one undulation period for three frequencies.
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ω:

Figure 12: Snapshots of vorticity for optimized gaits at t/T = 0 (mod 1). (a): f = 1.5,
(b): f = 1.8, (c): f = 2.1, (d): f = 2.4, (e): f = 2.7, (f): colorbar.

the large wavelength trajectory of the trailing edge and thus avoids the efficiency loss
associated with a large angle of attack. At higher frequency, the front half of the fish
undergoes virtually no deformation, resulting in a swimming motion very similar to a
carangiform (f = 2.1) or even a thuniform (f = 2.7) swimmer. At this frequency, the
region that would correspond to the peduncle deforms with a very large curvature caused
by the sharp peak in the Gaussian envelope. This allows the deformation of the fish to
match the small wavelength trajectory of the trailing edge and thus avoid the efficiency
loss associated with a large angle of attack.

Figure 12 shows the deformed fish and vorticity snapshots for the five optimized gaits at
t/T = 0 (mod 1), where T = 1/f is the undulation period. With a Gaussian deformation
envelope, a peak width specifically tailored to the undulation frequency allows for reduced
angle of attack at all frequencies. This helps the boundary layer remain attached, as
previously observed for waves traveling faster than the free stream (Taneda 1977; Shen
et al. 2003). As for thrust-producing flapping foils, a reverse Kármán vortex street forms
in the wake. The width and wavelength of the reverse Kármán vortex street decreases with
increasing undulation frequency, and secondary small vortices develop at low frequency.

Table 2a summarizes the parameters and properties of the five optimized gaits. The
quasi-propulsive efficiency ηQP of these undulatory gaits is of prime interest. The effi-
ciency reaches 57% for f = 2.7, whereas the least efficient frequency, f = 1.5 reaches
ηQP = 49%. An other important parameter is the Strouhal number, which is close to
St = 0.35. The consistency of the Strouhal number for the optimized envelopes across
frequencies suggests that, for a given Reynolds number, there exists an optimal Strouhal
number that can be reached with a large range of frequencies. Like the Strouhal number,
the maximum pitch angle θmax and maximum angle of attack αmax are almost constant
across the five optimized gaits, with a value close to θmax = 31◦ and αmax = 17◦. The
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f x1 δ a0 a θmax(◦) αmax(◦) ψ(◦) St CP ηQP

1.5 0.73 0.52 0.084 0.23 31 17 82 0.34 0.093 0.49
1.8 0.77 0.36 0.066 0.18 28 19 82 0.33 0.089 0.52
2.1 0.81 0.28 0.062 0.16 29 20 81 0.35 0.087 0.53
2.4 0.87 0.23 0.079 0.15 35 16 82 0.37 0.083 0.56
2.7 0.88 0.21 0.073 0.13 34 15 84 0.36 0.081 0.57

(a) Optimized envelopes at several frequencies.

f x1 δ a0 a θmax(◦) αmax(◦) ψ(◦) St CP ηQP

1.8 0.65 0.50 0.050 0.17 22 22 82 0.30 0.097 0.45
1.8 0.78 0.49 0.068 0.18 26 21 78 0.32 0.093 0.47
1.8 0.80 0.29 0.082 0.22 36 17 84 0.40 0.096 0.46
1.8 0.85 0.31 0.101 0.22 37 16 82 0.40 0.095 0.46
1.8 0.90 0.37 0.103 0.21 35 19 78 0.38 0.094 0.46
1.8 0.90 0.25 0.186 0.32 53 10 87 0.57 0.140 0.31

(b) Examples of envelopes around the optimal gait at f = 1.8.

Table 2: Parameters and properties of gaits with Gaussian envelopes. Motion parameters
are the frequency f , peak location x1, peak width δ and amplitude a0. Properties are
the peak to peak displacement amplitude at the trailing edge a, maximum pitch angle
at the trailing edge θmax, maximum angle of attack αmax, heave and pitch phase angle
ψ, Strouhal number St, time-averaged power coefficient CP and the quasi-propulsive
efficiency ηQP .

corresponding phase angle between the heave and pitch of the trailing edge is ψ = 82◦.
The results from this optimization show that, as in rigid flapping foils, the efficiency of
undulating fish is primarily driven by the Strouhal number, angle of attack, heave mo-
tion (or pitch motion), and heave-pitch phase angle, all at the trailing edge. The optimal
Strouhal number, pitch angle, and angle of attack can be attained by tuning the envelope
peak for each frequency.

In order to better understand the impact of x1 and δ on the gait properties, table
2b summarizes these properties for several values of x1 and δ near the optimum for
f = 1.8. As the location of the peak moves aft and its width decreases, the portion
of the fish undergoing significant deformation reduces, therefore a larger amplitude is
necessary to ensure that enough thrust is produced. As a result, the Strouhal number
and maximum pitch angle increase. This observation also allows us to interpret the
optimization results. For a fixed envelope A(x), the Strouhal number of a self-propelled
undulating fish increases with decreasing frequency. In order to mitigate this effect, an
envelope with widespread undulations (small x1 and large δ) that can produce the same
thrust with smaller amplitude makes it possible to reach the optimal Strouhal number
even at low frequency. Similarly, at high Reynolds number, a large x1 and a small δ make
it possible to generate the required thrust at the optimal Strouhal number. When the
undulation frequency reaches about 2.5, the optimal envelope parameters reach a plateau
at x1 ≈ 0.9 and δ ≈ 0.2.

Figure 13 shows the pressure field and body velocity for the optimized envelopes with
frequency f = [1.5, 2.1, 2.7] at their respective time of minimum and maximum power.
For f = 1.5 (figures 13a,b) and f = 2.7 (figures 13e,f), there are three distinct sections
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Figure 13: Snapshots of pressure field with arrows showing the body velocity. (a, b):
optimized Gaussian envelope at f = 1.5; (c, d): optimized Gaussian envelope at f = 2.1;
(e, f): optimized Gaussian envelope at f = 2.7. (a, c): t/T = 0.12 (mod 1) (minimum
power for f = 1.5 and f = 2.1); (e): t/T = 0 (mod 1) (minimum power for f = 2.7); (b,
d): t/T = 0.34 (mod 1) (maximum power for f = 1.5 and f = 2.1; (f): t/T = 0.29 (mod 1)
(maximum power for f = 2.7).

along the upper side of the fish: high pressure near the leading edge, low pressure in the
middle and high pressure near the trailing edge (and the opposite on the other side). In
figures 13b,f, these sections almost exactly match transverse velocity of respectively pos-
itive, negative, and positive sign, resulting in very large instantaneous swimming power.
Conversely, in figures 13a,e, the sign of the transverse velocity is reversed, resulting in a
significant negative swimming power. For f = 2.1, the pressure changes along the fish are
smaller, and the pressure is close to zero along a large portion of the fish. Moreover, un-
like for f = 2.7, the sign changes in pressure do not match the sign changes in transverse
velocity. For instance, at t/T = 0, the pressure along the bottom side of the fish near
the trailing edge is positive (not shown here), which would result in a positive swimming
power. Therefore, the minimum power is reached at a later time t/T = 0.12, at which
point the amplitude is largest in areas where the pressure is close to zero, resulting in a
very small power. Similarly, the maximum power reached at t/T = 0.34 is not as large
as for f = 2.7 because the sections of high pressure do not exactly match the sections of
large transverse velocity.

It must be pointed out that there are additional parameters affecting the efficiency of
an undulating fish, since the efficiency ranges from ηQP = 0.49 at f = 1.5 to ηQP = 0.57
at f = 2.7. Shen et al. (2003) found that a slip ratio around sr = 0.8 (f = 1.2) is optimal
for a body undergoing traveling wave motion of constant amplitude, in order to reduce
separation effects and turbulence intensity. In our case, however, these results do not
strictly apply because the undulations have a non-constant envelope, and especially for
higher frequency are confined to a small section of the fish.
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Figure 14: Snapshot of the vorticity field around a two-dimensional fish with a separate
tail fin.

(a) (b)

Figure 15: ηQP as a function of x1 and δ near the optimum for (a) 2D and (b) 3D
geometries with f = 2.4. The black dots show the location of the points that have been
used to build the thin-plate smoothing spline (tpaps function in Matlab with smoothing
parameter p = 0.999) represented in color.

3.3. Application to a three-dimensional danio-shaped swimmer

We have so far modeled a fish by a two-dimensional fish-like flexible foil. However, fish
have a highly three-dimensional geometry. In particular, most carangiform and thunni-
form swimmers are characterized by a region of reduced depth, around 20% from the
trailing edge, the peduncle. In order to model this region of reduced added mass with a
two-dimensional geometry, it might be more appropriate to model a fish with a separate
foil for the tail, as illustrated in figure 14. The fish model shown in this figure undulates
with the optimized gait at frequency f = 2.4 identified earlier, and the performance
(ηQP = 0.54) is very close to that obtained with a single foil, indicating that the results
are robust to changes in the geometry.

In the rest of this section, we consider a simplified three-dimensional fish shape, shown
in figure 2, which is based on a giant danio (Devario aequipinnatu). For this geometry,
we fix the undulation frequency to f = 2.4 and optimize a Gaussian envelope for quasi-
propulsive efficiency (for a fixed swimming speed Us, we minimize the expanded power
Pin). In figure 15 we compare how ηQP changes with the envelope parameters x1 and δ
for a two-dimensional fish and for the three-dimensional shape. The efficiency is generally
lower with the three-dimensional shape, but the dependence on x1 and δ is very similar
for both geometries: the most efficient gaits are for 0.8 < x1 < 0.9 and 0.2 < δ < 0.3
with a sharp decrease in efficiency for δ < 0.2. This shows that, even though three-
dimensional effects reduce the swimming efficiency, most of the conclusions about BCF
swimming drawn from the two-dimensional study extend to three-dimensional shapes.

The parameters and properties of the optimized gait for f = 2.4 are compared to
those of the carangiform gait in table 3. Like in the 2D case, the optimization decreases
the power consumption by 50% compared with the carangiform gait. As in 2D, the
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f x1 δ a0 a θmax(◦) αmax(◦) ψ(◦) St CP ηQP

3.0 carangiform 0.099 0.18 34 41 59 0.53 0.035 0.22
2.4 0.84 0.26 0.085 0.18 37 17 87 0.43 0.023 0.34

Table 3: Parameters and properties of 3D undulating gaits. Properties are the peak to
peak displacement amplitude at the trailing edge a, maximum pitch angle at the trailing
edge θmax, maximum angle of attack αmax, heave and pitch phase angle ψ, Strouhal
number St, time-averaged power coefficient CP , and the quasi-propulsive efficiency ηQP .
The optimized gait at f = 2.4 is compared to the carangiform gait at f = 3.
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Figure 16: Prescribed deformation envelope a0A(x) and displacement envelope g(x) for
(a) carangiform gait with f = 3 and (b) optimized gait with f = 2.4.

optimized gait manages to bring the phase angle between the heave and pitch motion
of the trailing edge close to 90◦, which significantly reduces the angle of attack. As a
result, the optimized gait for the three-dimensional fish shape have a pitch angle, phase
angle and angle of attack very close to the optimized gait for the two-dimensional fish.
However, since the 3D effects reduce the thrust produced by the undulating motion, the
Strouhal number is higher than in 2D, especially for the carangiform gait.

Figure 16 shows the deformation envelope A(x) and the displacement envelope g(x)
for the carangiform gait at f = 3 and for the optimized gait. The superimposed body
outlines for the optimized gait shown in figure 17b also look very similar to the body
outlines of the optimized motions in 2D: the deformation of the tail follows the trajectory
of the trailing edge, resulting in an efficient low angle of attack. The body outlines for
the carangiform motion, on the other hand, show that the pitch of the tail is out of phase
with its velocity (phase angle far from 90◦), which results in a very inefficient gait, with
a large angle of attack.

Finally, we show the flow structure around the 3D fish model for both gaits in figure
18. The performance difference between the two gaits is accompanied by noticeable dif-
ferences in the wake structure of the two swimmers. For both gaits, figures 18a and 18b
show wakes comprised of two interconnected vortex loops per cycle, together with other
smaller structures. In particular, the structure in the wake of the optimized motion is
complex, with many vortex tubes interlaced with each other. Indeed, as can also be seen
in the vorticity field at z = 0 (figure 18d), the deformation at the peduncle is quite large
for the optimized gait, resulting in vortex tubes separating from the main body and then
interacting with the structures shed from the tail.
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(a) (b)

Figure 17: Superimposed body outlines over one undulation period for (a) the carangiform
motion and (b) the optimized gait.

Borazjani & Sotiropoulos (2010) also observed in their 3D simulations that, for Strouhal
number greater than St = 0.3, the wake structure observed in 2D, dominated by a sin-
gle vortex pair (or ring in 3D), transitions to vortex loops wrapping around each other.
Dong et al. (2006) showed that the same phenomenon happens to elliptical flapping foils
of finite aspect ratio: at low aspect ratio/large Strouhal number, two vortex rings are
shed each cycle. As the aspect ratio increases or the Strouhal number decreases, the
tip vortices do not merge together any more and the wake consists of interconnected
loops. As the Strouhal number further decreases or the aspect ratio increases, the three-
dimensional effects become even weaker and the linkage between tip vortices disappears.
At this point, the 3D wake looks similar to the (reverse) Kármán vortex street observed
in 2D.

In the carangiform example shown here, the tip vortices merge, while with the op-
timized gait, which has a lower Strouhal number and angle of attack, they do not. At
higher Reynolds number, the Strouhal number would be smaller and a wake similar to
that observed in 2D would probably emerge. Figure 18c,d shows that, near the tail, the
vorticity in the z = 0 plane looks very similar to that behind a 2D foil. However, under
the influence of the tip vortices, the vortex sheets shed by the tail do not evolve into
two strong vortices as in 2D. As a result, whereas the pressure field around the undu-
lating fish-like shape is very similar to the pressure around an undulating airfoil, the
pressure signature in the wake shown at the plane z = 0 is very weak (18e,f). However,
the pressure signature in the plane z = 0.06, just above the peduncle is much stronger
(18g,h).

Figure 19 shows a magnified view of the vortex structures generated by the carangiform
motion. A red line shows the formation of a clear vortex ring at the trailing edge of the tail
between figures 19a and 19c. In figure 19e, the vortex ring is fully formed and detached
from the tail. Since the vortex rings are oblique, they produce a large transverse velocity,
which is inefficient and results in waste of energy. We also see a spanwise narrowing
of the vortex rings as they convect downstream, as also observed in the simulations of
Blondeaux et al. (2005) and Dong et al. (2006) for a respectively rectangular and elliptical
pitching and heaving foil.

Figure 20 shows a magnified view of the vortex structures generated by the optimized
gait. The structure of the wake is more intricate than for the carangiform motion. In
particular, instead of one set of interconnected vortex tubes, there are two sets of tubes,
marked in red and green in the figure. The loop marked in red is the same as observed
for the carangiform gait, but at this lower Strouhal number, it never fully closes into
a clearly defined vortex ring. The tubes marked in green are formed upstream of the
tail and are shed from the body as a result of the large curvature at the peduncle. The
resulting vortex tubes are interlaced with the vortex loops from the tail with which they
have a phase difference of close to 180◦.

For a three-dimensional fish shape with two-dimensional undulation, as for a two-
dimensional foil, the Strouhal number, pitch angle (or heave motion), nominal angle of
attack and phase angle at the trailing edge are the key parameters for efficient swimming.
The optimization results in a lower Strouhal number and angle of attack, which reduces
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Figure 18: Snapshots of the flow around a three-dimensional fish with (a,c,e,f) a carangi-
form and (b,d,g,h) an optimized gait . (a,b): Three-dimensional vortical structures visu-
alized using the λ2-criterion; (c,d): z component of the vorticity in the z = 0 plane; (e,f):
pressure in the z = 0 plane; (g,h): pressure in the z = 0.06 plane.

the three-dimensional effects observed behind the non-optimized gait, such as formation
of inefficient oblique vortex ring chains. With the optimized gait, the production of thrust
is also distributed between the body and the tail, which shedd vortex structures with
opposite phase. It has been shown with turbines, for instance, that distributing the thrust
production (or energy capture) could significantly improve the efficiency, and it is possible
that fish use the same process. Finally, while we used a simplified fish geometry with a
two-dimensional undulation, fish can also rely on three-dimensional motion of their dorsal
and pectoral fins to save energy (Lauder & Madden 2007; Drucker & Lauder 2001).

4. Energy saving in two fish swimming in close proximity

The experimental study by Gopalkrishnan et al. (1994) and the theoretical study by
Streitlien et al. (1996) demonstrated that flapping rigid foils placed within a Kármán street
can extract significant energy from the flow through vorticity control. Subsequently, it
was documented that live fish swimming within a Kármán vortex street formed behind
a cylinder tend to synchronize their motion to the oncoming cylinder vortices. This al-
lows them to significantly reduce the energy spent to hold station (Liao et al. 2003b,a;
Akanyeti & Liao 2013), or even generate propulsive force with no input power as evi-
denced by the passive propulsion of anaesthesized fish (Beal et al. 2006). The phenomenon
of fish Kármán gaiting has been explained by the faculty of fish to sense and harness the
energy of the vortices.
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Figure 19: (a,c,e) Side-view and (b,d,f) top-view of the vortex structures at several time-
steps for the carangiform gait. (a,b): t/T = 0.1 (mod 1); (c,d): t/T = 0.4 (mod 1); (e,f):
t/T = 0.7 (mod 1). A red line shows the formation of a vortex ring.

Figure 20: (a,c,e) Side-view and (b,d,f) top-view of the vortex structures at several time-
steps for the optimized gait. (a,b): t/T = 0.1 (mod 1; (c,d): t/T = 0.4 (mod 1; (e,f):
t/T = 0.7 (mod 1. A red line shows a vortex shed from the tail that never fully develops
into a ring, while green lines show the vortices shed from the body.
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Figure 21: Wake behind a self-propelled undulating fish for the optimized gait with
Gaussian envelope and λ = 1 at frequency f = 1.5. (a): instantaneous vorticity field;
(b): instantaneous x-velocity field; (c): time-averaged vorticity field; (d): time-averaged
x-velocity field.

Since a foil or a fish can extract energy from the vortices in a Kármán street, in principle
there is no reason why they could not extract energy from the vortices in a reverse
Kármán street. Boschitsch et al. (2014) recently showed that the net propulsive efficiency
of a pitching foil located behind a similarly pitching foil could be anywhere between 0.5
and 1.5 times that of an isolated foil, depending on the phase. This indicates that the
energy extracted from the vortices in a reverse Kármán street more than compensates for
the effect of increased drag caused by the jet forming in a reverse Kármán street (unlike
the energetically beneficial drag wake forming behind a bluff body). Despite the strong
evidence that it is possible to harness the energy of individual vortices within a reverse
Kármán street, there is no conclusive evidence that fish actually do harness this energy.
Liao summarizes in his review of fish swimming in altered flows that no hydrodynamic
or physiological data exist to evaluate the hypothesis that fish can increase swimming
performance by taking advantage of the wake of other members (Liao 2007).

Due to the difficulty of experimentally measuring the swimming power of individual fish
in a school, simulations can provide valuable information to help clarify this issue. Hence,
we consider next a pair of undulating fish-like foils. We have shown in the previous section
that a two-dimensional fish, undulating in open-water, can attain a quasi-propulsive
efficiency of almost 60% by optimizing its gait. The goal in this section is to determine
whether, by working as a pair, fish can further reduce the power required to travel at
constant speed Us.

4.1. Flow in the wake of a self-propelled undulating fish

The flow in the wake of a self-propelled undulating fish consists of vortices of alternating
sign. The vorticity snapshot in figure 21a shows that the vortices decrease in strength
under the effect of diffusion, but this is a slow process and the wake is primarily charac-
terized by its periodicity. Figure 21b shows that the vortices are arranged in such a way
that the flow along the y = 0 axis is faster than the ambient flow (jet-like flow), whereas
the flow away from the centerline moves slower than the ambient flow; consistent with
the momentum-less wake, on average, of a self-propelled body (Triantafyllou et al. 1993).
As a result, the time-averaged vorticity field in figure 21c is characterized by four shear
layers of alternating sign, resulting in a jet along the centerline with strips of slowed-down
flow on either side, as shown in figure 21d.
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Figure 22: Vorticity phase in the wake of self-propelled undulating fish as a function of
(a) distance and (b) distance times frequency. For each frequency, the optimized gait
with Gaussian envelope is used.

The reverse Kármán vortex street behind a self-propelled undulating fish is character-
ized by its periodic structure with vortices moving parallel to the y = 0 axis in stable
formation. The vorticity at longitudinal distance d from the trailing edge in the wake of
an undulating fish can be modeled as:

ω(d, y, t) = ωy(y, t)ωd(d) sin
(
2π (φ1(d)− ft)

)
, φ1(d) = d/λw + φw, (4.1)

where the frequency f is given by the undulation frequency and the wavelength λw and
phase φw of the wake need to be determined. For the five optimized gaits with Gaussian
envelope and λ = 1 presented in § 3.1, we estimated from the vorticity field the phase φ1

at several distances d along the wake. In figure 22a we show the phase φ1 as a function
of the distance d, as well as the least squares linear fit for each swimming gait. The
coefficients for the linear fit are summarized in table 4. For all the gaits, the phase is
essentially proportional to the distance d, with a coefficient of proportionality very close
to the undulation frequency f . Since λw = fcw, where cw is the speed at which the
vortices travel in the wake, this result shows that the vortices travel at the same speed as
the free-stream. Moreover, for the five gaits considered, the phase at d = 0 is around 0.25,
which means that the vortices are shed by the fish when the trailing edge has maximum
transverse velocity. Finally, we confirm these observations by plotting φ1 as a function
of fd in figure 22b. Assuming cw = 1, the least-squares estimate (± standard deviation)
of the phase φw is:

φw = 0.24± 0.02. (4.2)

From now on, λw = 1/f and φw = 0.25 will be used to estimate the phase φ1 encountered
by a downstream fish whose leading edge is located at distance d from the upstream fish.

Whereas the pressure signature in the wake shown at the plane z = 0 is very weak
(18e,f), the pressure signature in the plane z = 0.06, just above the peduncle is much
stronger (18g,h), and could still be used by a downstream fish to reduce its swimming
energy.

4.2. Effect of phase and distance for two fish in-line

Here we consider two fish-like foils following each other and undulating at frequency f =
1.5 with the optimized gait for this frequency, as illustrated in figure 24. The amplitude
of undulation, a0, is adjusted independently for each fish to ensure that both fish are in a
stable position and produce zero net thrust on average. We vary the distance d between
the trailing edge of the upstream fish and the leading edge of the downstream fish, as
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Gait parameters φ1 linear fit cw = 1

f x1 δ 1/λw φw φ1 − fd
1.5 0.73 0.52 1.52 0.19 0.22
1.8 0.77 0.36 1.77 0.26 0.24
2.1 0.81 0.28 2.07 0.30 0.26
2.4 0.87 0.23 2.37 0.29 0.26
2.7 0.88 0.21 2.65 0.29 0.25

Table 4: Parameters of the gaits used in the wake vorticity phase estimate and fitted phase
and wavelength for the vorticity in the wake. An estimate of the phase φw assuming a
phase speed cw = λw/f = 1 is also provided.

Figure 23: Time-averaged power coefficient CP and amplitude a0 for (a) the upstream
fish as a function of ditance d and (b) the downstream fish as a function of phase ∆φ.
The solid (resp. dashed) line marks the average value with respect to the phase (resp.
distance) and the shaded area indicates the range of values reached across the various
distances (resp. phases).

well as φ, the phase of the downstream fish motion as defined in Eq. 2.1. An important
parameter will be ∆φ, the phase difference between the motion of the downstream fish
leading edge and the vortices it encounters: ∆φ = φ − φ1(d). In order to measure the
impact of the pair configuration on each fish, we define R(CP ) (resp. R(a0)), the ratio of
the power coefficient (resp. amplitude) in the pair configuration over the power coefficient
(resp. amplitude) for the corresponding gait in open water.

Both fish can benefit from swimming in pair, but the trends are very different. The
swimming power and amplitude of the upstream fish is virtually independent of the phase
of the downstream fish, as shown in figure 23a. For large separations d, the downstream
fish does not impact the upstream fish whose efficiency is then almost the same as in
open-water. However, as the downstream fish gets close (d < 0.5), the high pressure
around the leading edge of the downstream fish ‘pushes’ the upstream foil, regardless of
their phase difference. As a result, the upstream fish can reduce its swimming amplitude,
expending less power than it would in open-water. At d = 0.25, the undulation amplitude
is reduced by 10%, resulting in 28% energy saving, corresponding to a quasi-propulsive
efficiency (based on the towed drag on open-water) of ηQP = 69%.

For the downstream fish, the situation is very different. Even when the upstream fish is
several chord lengths ahead, the downstream fish encounters its wake. The performance
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d

Figure 24: Snapshot of the vorticity field for two fish undulating at f = 1.5 with separa-
tion distance d = 1 and optimal phase ∆φ = 0.83 at time t/T − φ = 0.25 (mod 1). The
color axis is the same as in figure 12.

of the downstream fish is determined by its interaction with the vortices of the wake. It
appears from 23b that the swimming power of the downstream fish depends primarily on
the phase difference ∆φ between its undulation and the encountered vortices. Regardless
of the distance d, the swimming power of the downstream fish is low if ∆φ is between
0.7 and 1, and it is high if ∆φ is between 0.1 and 0.5. Like for the upstream fish, the
reduced swimming power results from a reduced undulation amplitude a0, but despite a
more significant reduction in amplitude (27% for ∆φ = 0.8), the power reduction does
not exceed that of the upstream fish. For the downstream fish, a maximum energy saving
of 24% is reached at ∆φ = 0.85, corresponding to an efficiency of ηQP = 65%.

Figure 24 shows the vorticity field around the two fish undulating with frequency
f = 1.5 at distance d = 1 for the phase ∆φ = 0.83 that minimizes the swimming power
of the downstream fish. At t/T −φ = 0.25, the downstream fish approaches the negative
vortex (at x = −0.1 on its left) as it is turning its “head” (leading edge) to the right.
This acceleration of the head causes a low pressure on the left side of the head, as shown
in figure 25e. Due to its position, the approaching negative vortex causes an increase in
the longitudinal velocity, as shown in figure 25b, which results in an increased stagnation
pressure (figure 25f). However, this vortex also generates a large transverse velocity with
negative sign, as shown in figure 25d. As a result, the effects of the head motion are
amplified by the incoming vortex, displacing the stagnation point downstream on the
right side and deepening the low pressure on the left side (figure 25f). While the energy
required by the fish to rotate its head is increased, the drag is decreased, despite the
faster flow encountered by the fish.

At the same time, the positive vortex located at x = 0.2 on the right side of the fish
thickens the boundary layer and significantly accelerates the flow in a region where the
fish undulation already accelerates it (figure 25a,b). This interaction between the vortex
and the fish results in a very large pressure drop around x = 0.3 that also contributes to
the reduction in drag while increasing the swimming power. The vortices are convected
downstream at a speed which is substantially lower than the phase speed of the fish de-
formation. Further downstream, the distance between the vortices and the fish increases,
and their interaction becomes weaker. At the trailing edge, the phase between the vor-
tices and the fish motion is close to π, such that the positive vortex reaches x = 1 as the
trailing edge of the fish is at its leftmost position. This vortex will be shed just upstream
of the same sign vortex shed by the downstream fish. The resulting wake configuration
is unstable and it takes several body lengths for the wake to reorganize into two pairs of
opposite sign vortices per cycle.

The results presented in this section are consistent with the experimental results from
thrust producing rigid pitching foils in an in-line configuration (Boschitsch et al. 2014).
We found that for small separation distance the propulsive efficiency of the upstream fish
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Figure 25: Snapshot of the velocity and pressure field for two fish undulating at f = 1.5
with separation d = 1 and optimal phase ∆φ = 0.83. (a,b) x-velocity; (c,d): y-velocity;
(e,f): pressure and arrows showing the velocity of the fish. (a,c,e): upstream fish at t/T =
0.25 (mod 1); (b,d,f): downstream fish at t/T −φ = 0.25 (mod 1). The same color axis as
in figure 13 is used for the pressure, and the same as in figure 21b is used for the velocity
(centered in 0 for the y-velocity).

is greatly improved. We also showed that the efficiency of the downstream fish only weakly
depends on the separation distance, the primary parameter being the phase difference
between the wake from the upstream fish and the undulating motion of the downstream
fish. If the undulation amplitude was fixed, the downstream fish would experience an
increased drag and decreased power for 0 6 ∆φ 6 0.5, whereas it would experience
a decreased drag and increase power for 0.5 6 ∆φ 6 1. For a self-propelled fish, the
energetic benefits of a reduced amplitude resulting from a reduced drag overcome the
power increase caused by the vortices.

4.3. Effect of frequency for two undulating fish in-line

Next, we fix the distance between the two fish to d = 1 and vary their undulation
frequency. For frequencies f = [1.5, 1.8, 2.1], their optimized Gaussian envelope is used,
for which the parameters are summarized in table 4. Figure 26 shows that most of the
conclusions drawn in § 4.2 still hold as the undulation frequency is increased. While the
upstream fish is mostly unaffected by the presence and phase of the downstream fish, the
undulation amplitude of the downstream fish is largest for 0 6 ∆φ 6 0.5 and smallest for
0.5 6 ∆φ 6 1. However, the correlation between amplitude and power coefficient is not as
strong any more, and the exact value of the optimal phase depends on the frequency. For
instance, at f = 2.1, the amplitude is minimum for ∆φ = 0.85, but the power coefficient
is minimum for ∆φ = 0. Whereas with f = 1.5 most phases result in an increased
amplitude and power coefficient, with f = 1.8 and f = 2.1, the amplitude and power
coefficient of the downstream fish never exceed that of the upstream fish. Therefore, at
these frequencies, it is always beneficial to swim in the wake of an undulating fish, despite
the increased average velocity of the encountered flow.

At frequency f = 1.8, the results for the optimal phase, shown in figure 27, are very
similar to those described in the previous section for f = 1.5, with the vortices from
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Figure 26: Ratio of (a) amplitude and (b) power coefficient as a function of frequency f
and phase ∆φ for two fish swimming in-line at distance d = 1. The ratios are defined
with respect to the corresponding gait in open water. The black dots show the location of
the points that have been used to build the thin-plate smoothing spline (tpaps function
in Matlab with smoothing parameter p = 0.999) represented in color.

the upstream fish reinforcing the effect of the body undulation. However, the wake at
this frequency is narrower; therefore the vortices are closer to the fish and they lose
more strength through their interaction with the boundary layer. Moreover, since the
distance between two consecutive vortices is proportional to the undulation frequency,
the vortices are spaced closer to each other. The resulting wake is dominated by two single
vortices shed by the downstream fish, each accompanied by weaker vortices of opposite
sign from the upstream fish. This is identical to the destructive vortex interaction mode
of a flapping foil within a Kármán street in Gopalkrishnan et al. (1994), which has been
associated with increased efficiency.

Figure 28 illustrates the cases of the downstream fish undulating with the phase pro-
viding the worse swimming efficiency for f = 1.8. In this configuration, the vortices from
the upstream fish counteract the effects of the undulating motion of the downstream
fish. As the fish turns its head to the right, displacing the stagnation point to the right
and causing a low pressure on the left side of the head, the positive y-velocity caused by
the approaching positive vortex has the opposite effect. The high velocity regions caused
by the vortices along the fish correspond to low velocity regions from the undulating
motion. Finally, when the vortices from the upstream fish reach the trailing edge, they
merge with the same sign vortices from the downstream fish. The resulting wake is very
stable and is a classical reverse Kármán vortex street much wider than the one behind a
single fish. This corresponds precisely to the constructive interaction mode of a flapping
foil within a Kármán street in Gopalkrishnan et al. (1994), which has been shown to
have reduced efficiency.

As the frequency increases further, the vortices from the upstream fish lose even more
energy through interaction with the boundary layer of the downstream fish; therefore for
each period of oscillation the wake behind the two fish contains a pair of single vortices, as
shown in figure 29. Moreover, since the efficiency of the downstream fish mostly depends
on the phase of the leading edge with respect to the arrival of the upstream fish reverse
Kármán street vortices, the phase of the trailing edge with respect to the incoming
vortices in the optimal configuration changes with frequency.

For all the frequencies considered here, a self-propelled fish can save energy by un-
dulating behind another self-propelled fish undulating at the same frequency, reaching
efficiencies close to ηQP = 70%. By properly phasing its motion with respect to the in-
coming vortex street, the vortices can reinforce the effect of the undulation. Whereas for
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Figure 27: Snapshot of the vorticity, velocity and pressure field for two fish undulating at
f = 1.8 with separation distance d = 1 and optimal phase ∆φ = 0.87. (a,b) vorticity; (c,d)
x-velocity; (e,f): y-velocity; (g,h): pressure and arrows showing the velocity of the fish.
(a,c,e,g): upstream fish at t/T = 0.25 (mod 1); (b,d,f,h): downstream fish at t/T − φ =
0.25 (mod 1). The same color axis as in figure 13 is used for the pressure, and the same
as in figures 21a and b for vorticity and velocity (centered in 0 for the y-velocity).

(b)

(c)

(a)

Figure 28: Snapshots of (a) vorticity, and (b) pressure field for two fish undulating at
f = 1.8 with separation distance d = 1 and phase ∆φ = 0.38 at t/T −φ = 0.25 (mod 1).
The same color axis as in figure 21a is used for the vorticity and the same as figure 13
for the pressure.
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Figure 29: Snapshot of the vorticity field for two fish undulating at f = 2.1 with sep-
aration distance d = 1 and phase ∆φ = 0. The same color axis is used as in figure
21a.

a fixed amplitude this phase would result in an increased swimming power, the reduction
in drag results in an overall decreased swimming power.

4.4. Fish undulating in the reduced velocity region of the wake

We have so far considered the case of a pair of fish swimming in an in-line configuration.
Since our fish model has a feedback controller ensuring its stability in y, it is also possible
to impose an asymmetric configuration with an offset in the y direction. Indeed, according
to Weihs’ theory (Weihs 1973), the only way for a fish to save energy in a school is to swim
in the region of reduced velocity located between two wakes. We have already shown that
a fish can save energy by swimming directly in the wake of another self-propelled fish and
will now investigate if additional savings are possible by swimming in areas of reduced
flow velocity. Figure 21d shows that, even with a single fish upstream, the flow on either
side of the wake is slower than the free stream: for f = 1.5 the average flow is slowest
at y = ±0.17. With the downstream fish offset from the upstream fish by ∆y = 0.17, we
vary the phase difference ∆φ in order to see if the downstream fish can also save energy
when swimming at this location.

Figure 30 shows that, even when the downstream fish is offset from the vortex street,
its swimming performance greatly varies with the phase. However, it is easier for the fish
to save energy in this region of reduced flow velocity than directly behind the upstream
fish. Directly behind the upstream fish, only 30% of the phases result in energy savings,
and by using the unsteadiness of the wake, the quasi-propulsive efficiency at f = 1.5 can
be brought up from 50% to 60%. When undulating in the region of reduced flow velocity,
it is easier to save energy since over 70% of the phases result in energy savings. The
energy savings can even be very large since ηQP = 80% is possible for ∆φ = 0.65.

Figure 31 shows that, at the optimal phase, the leading edge of the downstream fish
reaches its leftmost position at the same time as it reaches a positive vortex. Figure 32b
shows that the leading edge of the downstream fish exactly passes through the region
where the longitudinal velocity is smallest. As a result, the stagnation pressure is greatly
reduced (figure 32d). Moreover, the region of accelerated flow between the negative vortex
and the fish (x = 0.4) reinforces the accelerated region caused by the undulation, which
we showed earlier is beneficial.

5. Discussion

5.1. Optimal BCF propulsion and the role of fish shape

It is interesting to note that, as the peak of the Gaussian describing the fish bending
motion becomes sharper, the curvature imposed by the envelope in the peduncle section
becomes much larger than the curvature caused by the traveling wave. This is particularly
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Figure 30: Ratio of undulation amplitude a0 and time-averaged power coefficient CP as a
function of phase for two fish undulating at f = 1.5 with longitudinal separation distance
d = 1. In-line fish and fish at an offset ∆y = 0.17 are compared.

Figure 31: Snapshot of the vorticity field for two fish undulating at f = 1.5 with longi-
tudinal separation distance d = 1, transverse separation ∆y = 0.17 and optimal phase
∆φ = 0.65 at time t/T − φ = 0.1 (mod 1). The color axis is the same as in figure 12.

(a) (b)

(c) (d)

Figure 32: Snapshot of the (a,b) x-velocity and (c,d) pressure field for two fish undulating
at f = 1.5 with longitudinal separation distance d = 1, transverse separation dy = 0.17
and optimal phase ∆φ = 0.65. (a,c): upstream fish, t/T = 0.1 (mod 1); (b,d): downstream
fish, t/T − φ = 0.1 (mod 1).The same color axis as in figure 13 is used for the pressure,
and the same as in figure 21b for the velocity.
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noticeable for f = 2.7, at which frequency the undulations are mostly restricted to what
would be the peduncle and tail sections for a fish.

The increase of the curvature in the peduncle region corresponding with a decreased
stride length and increased swimming frequency is essential, allowing the instantaneous
deformation of the fish to match the trailing edge trajectory (Figure 11). This serves
to avoid the efficiency loss associated with a large angle of attack at the tail, as well
as to keep the boundary layer attached to the fish. Indeed, the boundary layer remains
attached to the fish as previously observed for waves traveling faster than the free stream
(Taneda 1977; Shen et al. 2003), and a reverse Kármán vortex street forms in the wake,
consistent with previous studies of efficient thrust production in oscillating foils (Tri-
antafyllou et al. 1991; Anderson et al. 1998). The width and wavelength of the reverse
Kármán vortex street decreases with increasing undulation frequency, and secondary
small vortices develop at low frequency.

The total lateral displacement of a live swimming fish is maximum at the trailing edge,
but, once recoil is substracted, it becomes apparent that the body deformation is largest
around the peduncle. We show that efficiency improves when the envelope of the body
deformation is largest upstream of the trailing edge, because this creates a part of the
body that is capable of acting as a caudal fin (and has roughly the length of the caudal
fin). The high curvature of the peduncle region allows the (equivalent) caudal fin area
to pitch independently from the motion of the body, in order to control the timing of
trailing edge vortex shedding.

Fish employing the carangiform and thunniform swimming mode generally have a
narrow peduncle, and our results suggest that there is function associated with this
form. The narrow peduncle allows for sharp bending of the tail even at an angle with
respect to the body deformation (providing a discontinuous slope), such as in the optimal
motion at high frequency. Tunas, for example, have a special anatomy at the peduncle
that allows powerful tendons to actuate the tail with substantial torque. This allows for
the independent control of the tail in manipulating vorticity formed upstream of the tail
along the body (Zhu et al. 2002), or from externally generated vortices. Wolfgang et al.
(1999) demonstrated experimentally and numerically that high flexibility of the peduncle
region allows for the caudal fin to precisely redirect vorticity shed upstream for optimal
propulsion. In the 2D simulations conducted here the high curvature in the peduncle
region serves the same purpose in allowing the fish shed vortices optimally.

Similar to (Borazjani & Sotiropoulos 2010), we show that the optimal kinematics is
mostly independent of body shape. Indeed, even a two-dimensional geometry can help
assess the energetic performance of swimming kinematics.

5.2. Proposed schooling theory and comparison with Weihs’ theory

To our knowledge, the only existing hydrodynamic theory of schooling has been proposed
by Weihs (1973). This theory provides useful insight based on time- averaged flow con-
siderations, but does not factor in the potential benefits of energy extraction from the
vortices. According to Weihs, a fish swimming directly behind another fish would expe-
rience higher relative velocity and would therefore have to spend extra energy. On the
contrary, a fish swimming between two adjacent fish wakes would experience a reduced
relative speed, allowing it to save energy. This strategy is known as flow refuging (Liao
2007) or drafting.

As we have shown in this paper it is possible for a fish to save energy regardless
of whether it swims directly behind another fish or at a lateral offset that allows it to
benefit from a reduced flow velocity. The phase difference between its undulation and the
wake vortices, ∆φ, determines whether its drag is reduced or enhanced. When swimming
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f d ∆y ∆φ (mod 1) ηQP (upstream) ηQP (downstream)

1.5 1 0 0.83 0.52 0.60
1.8 1 0 0.84 0.55 0.61
2.1 1 0 0.00 0.56 0.62
1.5 0.25 0 0.83 0.67 0.66
1.5 1 0.17 0.65 0.51 0.81

Table 5: Efficiency for a pair of undulating fish in various advantageous configurations.
The undulation frequency f , longitudinal separation d, transverse distance ∆y and the
phase difference ∆φ between the leading edge of the downstream fish and the vortices in
the wake of the upstream fish are considered.

directly behind another fish, where the averaged flow is faster than the free-stream,
the fish cannot save energy through drafting, and must therefore capture energy from
individual vortices in order to save energy. We show that by using the transverse velocity
of the individual vortices to amplify the pressure effects of the undulating motion, the
fish can reduce its drag. Conversely, swimming in the region of the wake where the flow
is, on average, slower, does not guarantee a reduced drag. However, we observed that it is
possible to reduce drag and save energy by undulating in the region of reduced velocity
than directly behind another fish, due to the possibility of taking advantage of both
drafting and individual vortex energy capture. Up to 81% quasi-propulsive efficiency can
be reached for a fish undulating with proper phase in the region of reduced flow velocity,
compared with a maximum of 66% for a fish swimming directly behind another fish
(Table 5).

The energy contained in individual vortices can be harnessed in several ways. For a
flapping foil in a Kármán vortex street, it is well known that the efficiency increases
if the foil vortices destructively interact with the oncoming vortices, while the thrust
can be enhanced if the foil vortices constructively interact with the oncoming vortices
(Gopalkrishnan et al. 1994; Streitlien et al. 1996). For a fish swimming within a wake,
constructive and destructive interaction can occur between the oncoming wake vortices
and vortices emanating from the boundary layer of the fish, as well as between the
wake vortices and the vortices shed at the fish’s trailing edge. Indeed, at the tail of the
downstream fish, we observed that constructive interactions between the oncoming wake
vortices and the vortices shed at the trailing edge were associated with reduced efficiency,
while destructive interactions correlated with increased efficiency.

The interactions between the fish body and the oncoming vortices can result in en-
hanced thrust and/or improved efficiency. We show that the downstream fish can reduce
its drag by consistently turning its head in a manner that employs the oncoming vortex
flow to increase the transverse velocity across the head, amplifying the pressure field
created at the head. While this increases the power consumed by the fish to rotate its
head, the pressure drag at the head is decreased substantially to result in an overall
improvement to the efficiency.

While reduced drag implies a reduced undulation amplitude for open-water self-propelled
swimming, the correlation with energy saving is not as straightforward within a school,
because the vortices impact both the drag and the swimming power. Since the quasi-
propulsive efficiency is defined as RUs/P̄in, the power consumed must be reduced for an
increased efficiency. However, it can be directly or indirectly reduced. Directly, the power
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is reduced when vortices along the body of the fish exert force in the direction the fish is
oscillating, thereby doing work on the fish. Indirectly, the vortices can help to reduce the
overall drag on the fish, therefore reducing the amount of work the fish must perform to
self-propel. If the undulation amplitude was kept constant, phases 0 6 ∆φ 6 0.5 would
result in an increased drag and decreased power, and the reverse would apply to phases
0.5 6 ∆φ 6 1. The energy benefits of a reduced amplitude generally more than com-
pensate for the increased swimming power, such that drag reduction tends to result in
power reduction. However, the phase resulting in the smallest amplitude usually does not
coincide with the optimal one. This suggests that multiple mechanisms are important for
the efficiency of the downstream foil. In particular, the drag is mostly governed by the
interaction between the head of the fish and the vortices, whereas the power is mostly
governed by the interaction between these vortices and the tail, where the transverse
velocities are much larger. The exact value of the optimal phase, therefore, depends on
the undulation frequency and the gait.

In summary, a fish undulating in a vortex street cannot be considered as a rigid body
with a propeller, located inside a jet. Regardless of the exact location of the fish in the
vortex street, constructive interactions between the undulating body and the individual
vortices can result in enhanced thrust, while destructive interactions result in increased
swimming power. The exact value of the optimal phase depends on the gait details, but
in general the drag reduction configurations are the most advantageous, and it is easier
to reduce drag when undulating in a region of averaged reduced flow velocity, even in an
asymmetric configuration.

6. Summary and Conclusions

We established through 2D and 3D numerical simulation the conditions for optimal
propulsion in undulatory fish swimming, first for a single self-propelled fish, and then for
a pair of identically shaped self-propelled fish moving in-line or at an offset, separated
axially by a distance d.

First, we considered the problem of optimal propulsion of an undulating, self-propelled
fish-like body, fully accounting for linear and angular recoil. We employed 2D simulations
to conduct an extensive parametric search and then by employing targeted 3D simulations
we established that properties found in 2D are qualitatively similar to those for 3D
simulations.

In summary, the assumptions we employed in order to render the study feasible are:
(a) Simulations were conducted at a Reynolds number of 5000.
(b) For the 2D simulations, we modeled the fish body as an undulating NACA0012,

while a danio-shaped body was used for 3D simulations. We model the main body
of the fish and its caudal fin but not the other fins or details on the body such as
other fins, finlets, eyes and other protrusions, and scales.

(c) The motion of the fish consists of a steady axial translation at a prescribed speed,
and a lateral body deformation in the form of a traveling wave of constant fre-
quency f and wavelength λ = 1. Free axial rigid body motion as well as lateral and
angular recoil were permitted and studied for their effect on propulsive efficiency.

(d) The bending envelope was chosen to be either a quadratic or a Gaussian function
of the length along the fish. For both functions, two parameters were sufficient
to specify the shape of the envelope, with a third parameter a0 to control the
amplitude of the envelope. The total displacement envelope of live carangiform and
anguilliform swimmers can be approximated by a quadratic function, but, after
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subtraction of the recoil, the envelope of body deformation is best approximated
by a Gaussian function.

(e) To maximize the quasi-propulsive efficiency (i.e. to minimize the energy expended),
the two parameters used to specify the shape for each envelope (equations 3.1 and
3.2) were varied using an optimization scheme.

(f) A PID controller adjusts the amplitude of oscillation a0 until self-propulsion is
obtained, and additionally maintains the heading of the fish by adjusting the
camber.

The conclusions for optimal 2D swimming are as follows:
(a) As with rigid flapping foils, the Strouhal number, phase angle between heave and

pitch at the trailing edge, and nominal angle of attack are the principal parameters
affecting the efficiency of propulsion.

(b) Angular recoil has a significant impact on the efficiency of propulsion and hence
must always be accounted for.

(c) A Gaussian envelope enables a body deformation with high curvature in the region
where the peduncle of the fish would be. This effectively allows the caudal fin to
pitch independently with respect to the peduncle motion, and this extra degree
of freedom allows for the control of flow patterns forming upstream of that posi-
tion. Hence, whereas the convex profile traditionnaly used to model carangiform
swimming provides quasi-propulsive efficiency of around 40%, an optimized profile
results in efficiency of 57%.

For 3D swimming of a danio-shaped fish, which explicitly models the peduncle and
caudal fin, the optimality conditions were observed to be very close qualitatively to those
of 2D swimming, although the efficiency was consistently lower:

(a) Angular recoil has significant impact on efficiency, as in 2D swimming.
(b) Similarly to finite aspect ratio rigid flapping foils, the Strouhal number and maxi-

mum angle of attack are principal parameters affecting efficiency: For higher values
of the Strouhal number the wake is also found to bifurcate, from a single row of
connected vortex rings to a double row of vortex rings, resulting in reduced effi-
ciency, as well as a complex three-dimensional structure in the wake. As expected,
optimization reduces the Strouhal number to be closer to the optimal range, and
hence the effect of wake bifurcation is also reduced. Within our parametric space,
the Strouhal number was not reduced to values close to 2D swimming, and hence
the effect of a bifurcating wake was not totally eliminated. It is expected that
by, for example, increasing the span of the caudal fin, which reduces the required
thrust coefficient, further increase in efficiency is possible.

(c) The sharp curvature of the envelope of body deformation at the peduncle affects
efficiency significantly. The efficiency increases from 22% for a convex imposed
motion to 35% for an optimized body deformation with large deformation around
the peduncle; both at Reynolds number 5000.

(d) Heave and pitch motion at the trailing edge is close to 90◦, as for a 2D swimming
fish. The parametric dependence of the envelope shape is also qualitatively similar
(Figure 16).

The resulting wake has a periodic 3D structure with coherent vortices that another fish
can use to save energy by properly timing its motion. However, the three dimensional
flow around a fish is far more complex than the flow around a two-dimensional flow.
Since the three-dimensional effects mostly result in a loss of efficiency, the optimization
reduces these effects while distributing the production of thrust between the body and
the tail (resulting in ηQP = 34%).

Turning to the 2D swimming of two identical, self-propelled fish in close proximity,
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the geometric models and assumptions employed for a single fish optimization were used,
under the following additional conditions: Both fish swim at the same speed and at a
constant distance; the downstream fish is either directly behind the upstream fish, or at
a lateral offset. The amplitude of motion of each fish is adjusted separately to achieve
self-propulsion, and their kinematics are also optimized separately for expended energy.
The power of each fish is compared with the power required when swimming alone. The
following results are obtained:

(a) The upstream fish may benefit from the mere presence of the downstream fish for
very short relative distances. For example, a 28% energy saving at a distance of
d = 0.25 is achieved, but as the distance increases this is quickly reduced.

(b) The downstream fish can benefit energetically even at axial distances equal to sev-
eral times the body length, and in both the in-line position and in an offset position.
This proves that energy saving is achieved through interaction with individual vor-
tices as opposed to taking advantage of reduced oncoming flow (drafting), because
in the in-line position the downstream fish is in a region of averaged increased
relative velocity, which would be expected to cause an increase in drag.

(c) The axial force on the downstream fish is mostly affected by the interaction be-
tween the head of the fish and the oncoming vortices, whereas the power required
to sustain the undulating motion is affected by the interaction between these vor-
tices and the body motion downstream from the head. The critical parameter for
efficiency is the phasing between the head motion and the arrival of the vortices,
since in general, a reduced drag results in a greater power reduction.

(d) For the in-line arrangement, when fixing the relative distance to one body length,
d = 1, and varying the frequency, the efficiency of the downstream fish can increase
to 66% for the optimal phase between the head motion and the arrival of the
upstream fish vortices.

(e) For the offset arrangement, at ∆y = 0.17, efficiency increases further, as the down-
stream fish also exploits the reduction in oncoming velocity. Still, an optimized
phase is required, which makes it possible the reach a quasi-propulsive efficiency
81%, even though the fish can only interact with every other vortex produced by
the upstream fish. It is expected that the efficiency of the downstream fish would
increase further if there were two fish in the front, spaced by ∆y = 0.34 and
perfectly synchronized.

(f) Although the upstream fish vortices interact with the downstream fish over its
entire length, as described above, it is remarkable that at the tail of the down-
stream fish the upstream and downstream fish vortices interact following the rules
of Gopalkrishnan et al. (1994), viz. constructive interaction results in reduced
efficiency, while destructive interaction provides increased efficiency.

Hence, we can conclude that swimming power can be reduced by swimming in a group
for any position of the downstream fish; and for the upstream fish when positioned at
close distances from the downstream fish. For the downstream fish, it can improve its
thrust by interacting with oncoming vortices, and since reduced drag also reduces the
power required to swim, this results in an increase of efficiency. On the contrary, bad tim-
ing leads to enhanced drag and swimming power. The schooling theory by Weihs (1973)
predicts that a fish swimming directly behind another fish would experience increased
drag and have to expend more power than in open-water. Wee show here that an addi-
tional consideration must be made on energy capture from the oncoming vortices, which
depends on the phasing of the undulating motion with respect to the vortex street. When
swimming in an offset location, energy savings can be maximized by simultaneously ex-
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Figure 33: Time-averaged drag and power coefficients for an undulating NACA0012 as a
function of frequency, compared with values from Dong & Lu (2007).

tracting energy from individual vortices and taking advantage of reduced oncoming flow
velocity.

Acknowledgements

The authors wish to acknowledge support from the Singapore-MIT Alliance for Re-
search and Technology through the CENSAM Program, and from the MIT Sea Grant
Program.

Appendix A. Numerical method validation

Problems previously studied with BDIM include ship flows and flexible wavemaker
flows (Weymouth et al. 2006), shedding of vorticity from a rapidly displaced foil (Wibawa
et al. 2012), and a cephalopod-like deformable jet-propelled body (Weymouth & Tri-
antafyllou 2013). In Maertens & Weymouth (2015) we have demonstrated the ability of
BDIM to handle several moving bodies and generalized the original method to accurately
simulate the flow around streamlined foils at Reynolds numbers on the order of Re = 104.

In order to validate the code for simulating undulating foils, the force and power result-
ing from a fully imposed kinematics are compared with results reported in the literature.
Finally, a convergence study and sensitivity analysis on a self-propelled undulating foil
are performed.

A.1. Undulating NACA0012 with fully imposed kinematics

Using a fully imposed carangiform undulation:

h(x, t) =
(
0.1− 0.0825(x− 1) + 0.1625(x2 − 1)

)
sin
(
2π(x− ft)

)
, (A 1)

the undulation frequency is varied from f = 0.5 to f = 2 and the resulting time-averaged
force and power coefficients are compared to the values from Dong & Lu (2007) in Figure
33. Note that in these simulations the kinematics is fully imposed, not allowing for recoil.

Similarly to Dong & Lu (2007), we find that the average power coefficient, slightly
negative at f = 0.5, increases to around 0.25 at f = 2, and that the drag is positive
for f < 1.6 and negative for f > 1.6. The good agreement between our method and the
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Figure 34: (a) Drag and (b) pressure coefficient on an undulating NACA0012 with
carangiform motion at f = 1/T = 2.1. Various grids and constraints are compared.
Grid 2 is twice as fine as grid 1, while the computational domain of grid 3 is twice as
large as that of grid 1.

results from Dong & Lu (2007) serves as a validation of the force and power calculation
routines for an undulating foil.

A.2. Self-propelled undulating NACA0012

We now ensure that the simulation results presented here are independent of the grid
parameters. In this section we consider the carangiform motion with frequency f = 2.1.

Figure 34 shows the evolution of power and drag coefficients during an undulation
period T=1/f for various configurations. By comparing the free undulation and the fixed
x case, we first notice that fixing the x location of the foil does not impact the power,
confirming the observations from Bale et al. (2014). The amplitude of the drag oscillations
are a bit larger for the case with fixed x location, as would be expected, but this does not
impact any of the results discussed in this paper. On the other hand, precluding all recoil
completely changes the phase and amplitude of the power and drag coefficients. Figure
34 also shows that the power and drag coefficients estimated on grid 1 (introduced in
§ 2.3) are very close to those estimated on a grid twice as fine (grid 2, dx = dy = 1/320)
and a grid twice as large (grid 3, x ∈ [−12, 14], y ∈ [−4, 4]). Table 6 summarizes the
mean and maximum power, maximum drag, and undulation amplitude a0 for all these
cases.

These results confirm that, while fixing the x location of the foil will not impact our
swimming efficiency estimates, the foil should be let free to heave and pitch. Therefore,
a foil fixed in x, free to heave and pitch under the influence of the hydrodynamic forces
will be used throughout this chapter. Moreover, the estimates on grid 1 being very close
to those on a finer and larger grid, grid 1 (5 points across the boundary layer) will be
used for the optimization procedures with a fish in open-water, whereas grid 2 (10 points
across the boundary layer) will be used for visualization and for a swimming pair.

Appendix B. Feedback controller

In steady state, the time-averaged velocity of a swimming fish is constant and the
mean forces on the swimmer are 0. In order to ensure that the system converges toward
a steady state in which the swimming velocity is the prescribed velocity Us, we designed
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Case CP (CP − CP )max (CD)max a0

free, grid 1 0.124 0.153 0.054 0.100
fixed x, grid 1 0.125 0.155 0.065 0.100
no recoil, grid 1 0.093 0.087 0.054 0.065
fixed x, grid 2 0.112 0.165 0.068 0.097
fixed x, grid 3 0.125 0.156 0.065 0.099

Table 6: Mean and maximum amplitude of power coefficient, amplitude of drag coefficient
and undulation amplitude for a NACA0012 with carangiform amplitude at f = 2.1 and
0 drag.

a proportional-integral-derivative (PID) controller that adjusts the thrust by tuning the
amplitude of the swimming gait a0. If the fish is fully self-propelled, the time-averaged
linear momentum in x is used as feedback (referred to as displacement control).

Since the amplitude of the oscillations in vxc is very small, in most cases we actually fix
the fish in x in order to reduce the PID convergence time. In this case (referred to as force
control), the time-averaged drag is used as feedback. However, it is important to let the
fish move freely in heave and pitch under the effect of the hydrodynamic forces. In order
to ensure stability of the fish in heave and pitch, the time-averaged linear momentum
in y is used as the input to a PID controller that tunes the camber parameter C of the
y1(x) function defined in Eq. 2.3.

For a self-propelled fish with flapping frequency f = 1/T , we define the error as:

~e(tn) = f

n−1∑
k=n0

m~vc(tk)(tk+1 − tk), (B 1)

where n0 is the first index k such that tk > tn − T . If the x motion is fixed and force
control is used, F xh replaces mvxc in the calculation of ex.

The integral of the error is calculated as:

~ei(tn) =

n∑
k=0

~e(tk)(tk+1 − tk), (B 2)

and its derivative is:

~ed(tn) = f

[(
tn0 − (tn − T )

)
~e(tn0−1) +

(
(tn − T )− tn0−1

)
~e(tn0)

tn0
− tn0−1

]
. (B 3)

At the beginning of each time step, the parameters a0 from equation 2.1 and C from Eq.
2.3 are updated as:{

a0(tn) = max
[
a0(tn) + (tn − tn−1)

(
Kx
p e
x(tn) +Kx

i e
x
i (tn) +Kx

d e
x
d(tn)

)
, 0
]
,

C(tn) = −
(
Ky
p e
y(tn) +Ky

i e
y
i (tn) +Ky

de
y
d(tn)

)
,

(B 4a)

(B 4b)

where ex and ey denote respectively the x and y components of the error vector ~e.
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The gain coefficients used in this study are

for force control in x : Kx
p = 5, Kx

i = 5, Kx
d = 5, (B 5)

for displacement control in x : Kx
p = 5, Kx

i = 1, Kx
d = 100, (B 6)

for displacement control in y : Ky
p = 8, Ky

i = 10, Ky
d = 12, (B 7)
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