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Abstract

This thesis addresses situated, embodied agents interacting in complex domains. It
focuses on two problems: 1) synthesis and analysis of intelligent group behavior, and
2) learning in complex group environments.

Behaviors are proposed as the appropriate level for control and learning. Basic
behaviors are introduced as building blocks for synthesizing and analyzing system
behavior. The thesis describes the process of selecting such basic behaviors, for-
mally specifying them, algorithmically implementing them, and empirically evaluat-
ing them. All of the proposed ideas are validated with a group of up to 20 mobile
robots using a basic behavior set consisting of: avoidance, following, aggregation,
dispersion, and homing. The set of basic behaviors acts as a substrate for achiev-
ing more complex high-level goals and tasks. Two behavior combination operators
are introduced, and verified by combining subsets of the above basic behavior set to
implement collective flocking and foraging.

A methodology is introduced for automatically constructing higher-level behav-
jors by learning to select among the basic behavior set. A novel formulation of
reinforcement learning is proposed that makes behavior selection learnable in noisy,
uncertain multi-agent environments with stochastic dynamics. It consists of using
conditions and behaviors for more robust control and minimized state-spaces, and
a reinforcement shaping methodology that enables principled embedding of domain
knowledge with two types of shaping functions: heterogeneous reward functions
and progress estimators. The methodology outperforms two alternatives when
tested on a collection of robots learning to forage. The proposed formulation en-
ables and accelerates learning in complex multi-robot domains. The generality of the
approach makes it compatible with the existing reinforcement learning algorithms,
allowing it to accelerate learning in a variety of domains and applications.

The presented methodologies and results are aimed at extending our understand-
ing of synthesis, analysis, and learning of group behavior.

Thesis Supervisor: Rodney A. Brooks
Title: Professor of Computer Science and Engineering
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Chapter 1
Overview of the Thesis

One of the goals of Al is to gain insight into natural intelligence through a synthetic
approach, by generating and analyzing artificial intelligent behavior. In order to
glean an understanding of a phenomenon as complex as natural intelligence, we need
to study complex behavior in complex environments.

Traditionally, Al has concerned itself with complex agents in relatively simple
environments, in the sense that they could be precisely modeled and involved little
or no noise and uncertainty. In contrast, reactive and behavior-based systems have
placed agents with low levels of cognitive complexity into complex, noisy and uncer-
tain environments. This thesis describes work that attempts to simultaneously scale
up along both dimensions. The environmental complexity is scaled up by introducing
other agents, and agent cognitive complexity is scaled up by introducing learning
capabilities into each of the agents (figure 1-1).

This thesis addresses two problems:
1. synthesis and analysis of intelligent group behavior
2. learning in complex group environments

I will present a methodology for generating various robust group behaviors, includ-

ing following, homing, and flocking (figure 1-2). I will also introduce a formulation
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Figure 1-1: Traditional Al has addressed complex agents in simple environments while
reactive and behavior-based approaches have dealt with simple agents in noisy and
uncertain worlds. This work attempts to scale up along both dimensions simultane-
ously, by addressing synthesis and learning of complex group behavior.
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Figure 1-2: This figure shows examples of physical robot data for three different
group behaviors: following, homing, and flocking. The robots are plotted as black
rectangles, with whi’ » arrows indicating their heading. The dark robots in the row of
rectangles at the bot\ .m shows the robots that were used in the experiment. Boxes
on the lower right indicate frame numbers and the elapsed time for each of the runs.
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Figure 1-3: An example of the foraging behavior of 7 robots, shown after 13.7 minutes
of running. About eight pucks have been delivered to the home region, marked with
a grey box. The two robots near home are following each other on the way to the
drop-off. Other robots are searching for additional pucks.

of reinforcement learning that allows a group of agents to learn complex tasks such
as foraging (figure 1-3). Finally, I will validate the proposed approaches with experi-
ments on groups of mobile robots.

This chapter gives a brief summary of the novel approaches, the experimental
data, and the implications of the thesis. The organization f the remainder of the

thesis is outlined at the end of the chapter.

1.1 Synthesis and Analysis of Group Behavior

This thesis is based on the assertion that intelligent collective behavior in a decen-
tralized system results from local interactions which are based on simple rules. Basic
behaviors are proposed as a methodology for structuring those rules through a prin-
cipled process of synthesis and evaluation. A behavior is a control law that achieves

and maintains some goal. For example, wall following is a behavior that maintains
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an agent within a given range of distances from a wall.

For each domain, a set of behaviors can be found that are basic in that they are
required for generating other behaviors, as well as being a minimal set the agent needs
to reach its goal repertoire. The process of choosing the set of basic behaviors for a
domain is dually constrained. From the bottom up, the process is constrained by the
agent and environment dynamics. From the top down, the process is constrained by
the repertoire of the agent’s goals.

The example of group interactions between mobile robots will be used to illustrate
this process. High-level goals of the system are defined as consisting of collectively
manipulating objects (pucks) in the environment in an efficient fashion. Efficiency is
defined in terms of minimizing energy. The agents are embodied, and endowed with
specific mechanical, sensory, and effector constraints.

An effective set of basic behaviors in the spatial domain should enable the agents
to employ a variety of flexible strategies for puck manipulation, collection, and dis-
tribution. The effectiveness of all such strategies depends on minimizing inter-agent
interference while achieving the necessary goals.

The following set of basic behaviors is proposed:

e avoidance - minimizes collisions between agents

e following - minimizes interference by structuring movement of any two agents
e aggregation — gathers the agents

o dispersion - dissipates the agents

e homing - enables the agent to find an arbitrary location

The above behavior set is minimal in that its members are not further reducible
to each other. Additionally, it will be shown that they are sufficient for achieving the

set of pre-specified goals. The described basic behaviors ae defined with respect to
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the group. A number of other utility behaviors can be a part of an agent’s repertoire,
such as grasping, dropping, and searching, the only other behaviors used in this work.

The basic behavior set is evaluated by giving a formal specification of each of the
behaviors, and comparing the collection of those specifications to a formal specifica-
tion of the set of global tasks required for the group.

Once a basic behavior set is established, it can be implemented with a variety of
algorithms. The first step in the verification of basic behavior algorithms is a com-
parison between the formal behavior specification and the formal correctness of the
algorithm. It will be argued that it is difficult to prove properties of the exact be-
havior of individual agents within a group, but it is possible to evaluate and predict
the behavior of the ensemble as a whole. Algorithms utilizing a centroid operator
will be proposed, well suited to the group domain as they have statistical properties
that allow for making predictions about the group behavior. Basically, centroid com-
putations allow for averaging the inputs of each of the agents and minimizing small
perturbations of individuals.

This thesis provides detailed specifications and algorithms for each of the basic
behaviors. Instead of analytical proofs, it provides empirical evaluations of the per-

formance ¢f each of the algorithms, based on the following criteria:
e repeatability: how consistent is the behavior over different trials?
e stability: does the behavior oscillate under any conditions?

e adaptability: how robust is the behavior in the presence of sensor and effector

error and noise?
o scalability: how is the behavior effected by increased and decreased group sizes?

The abs ve criteria were applied to the data obtained by running at least 50 trials
of each basic behavior. The experiments were performed on two different multi-

agent environments, in order to minimize domain biases. The first environment was
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Figure 1-4: The simulator environment called the Interaction Monitor was used to
validate the methodologies for synthesizing and analyzing group behavior described
in the thesis. The agents are shown as black circles, with white markers indicating
their heading. The large rectangle represents the agents’ workspace.

a multi-agent simulator (the Interaction Monitor) featuring up to 50 agents with local
sensing and distributed, local control (figurel-4).

The second environment was a collection of 20 physical mobile robots equipped
with local sensors and local control (figure 1-5). Each of the robots is equipped with
a suite of infra-red sensors for collision avoidance and puck detection and stacking,
and micro switches and bump sensors for contact detection. In addition to the local
sensors, the robots were equipped with radios and sonars for triangulating their po-
sition relative to two stationary beacons, and for broadcasting that position within a
limited radius. The radios were used to detect other robots and gather data for local
centroid computations.

The basic behaviors, each consisting of one or a small set of simple rules, generated
robust group behaviors that met the prespecified evaluation criteria. A small subset
of the data is shown here, using the Real Time Viewer! which allows for displaying
and replaying each of the robots runs, for plotting their positions over time, and for

displaying each frame and the elapsed time for each experiment. The figures show

!Written by Matthew Marjanovié.
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Figure 1-5: Some of the 20 mobile robots used to validate the group behavior method-
ologies described in the thesis. These robots demonstrated group avoidance, following,

aggregation, dispersion, flocking, foraging, and docking.
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Figure 1-6: Continuous following behavior of 3 robots. The entire time history of the
robots’ positions is plotted.
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Figure 1-7: Dispersion behaviors of 3 robots.
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Figure 1-8: Homing behaviors of 5 robots. Four of the five robots reach horne quickly
and the fifth joints them about € second later.
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Figure 1-9: The control architecture for generating group behaviors consists of di-
rect and temporal combinations of subsets from a fixed basic behavior set. Direct
combinations are marked with @, temporal combinations with .

following (figure 1-6), dispersion (figure 1-7), and homing (figure 1-8). More of the
data, the algorithms, the specifications, and a detailed evaluation can be found in
Chapter 5.

Basic behaviors are intended as building blocks for achieving higher-level goals.
They are embedded in an architecture that allows two types of combination of the
basic behaviors: direct (by summation) and temporal (by switching) (see figure 1-9).
Both types of combination operators were tested empirically. A simple and robust
flocking behavior was generated by summing the outputs of avoidance, aggregation,
and homing (figure 1-10). A more complex behaviors, called foraging was imple-
mented by switching between avoidance, dispersion, following, and homing, and the
addition of puck manipulation and searching. The controller for foraging uses the ba-
sic behaviors to generate a global behavior of group collecting of pucks and delivering
them to a home location (figure 1-11).

In addition to empirical testing of the behaviors and their combinations, the pro-
posed methodology for generating decentralized group behavior was compared to a
centralized, “total knowledge” approach, and found to be only a constant factor slower

in the case of dispersion and aggregation algorithms.
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Figure 1-10: Flocking behavior of 5 robots. The robots are started out in a linear
dispersed state. They quickly establish a flock and maintain it as the positions of the
individual robots within the flock fluctuate over time.
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Figure 1-11: An example of the foraging behavior of 6 robots. About eight pucks
have been delivered to the home region, marked with a grey box. Two of the robots

are dropping off pucks while the others are searching for additional pucks to pick up
and deliver home.
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1.2 Learning in Complex Group Environments

The first part of the thesis introduces basic behaviors as a methodology for structuring
simple rules into flexible and effective 1epertoires of group hehavior. It also presents
combination operators that allow for constructing and achieving higher-level goals.
The second part of the thesis, starting with Chapter 7, describes a methodology for
automatically generating higher-level behaviors by having the agents learn through
their interactions with the world and other agents, i.e., to improve by reinforcement
learning.

Reinforcement learning (RL) is a very popular learning methodology that has been
successfully applied to a variety of domains. However, most domains that have been
considered to date have been modeled as Markovian, such that the agent-environment
interaction can be described as a Ma..iov Decision Process (MDP). Unfortunately,
that assumption does not directly apply to the stochastic, noisy, and uncertain multi-
agent environment addressed in this thesis.

The traditional formulation of RL problems as states, actions, and reinforcement
required a reformulation in order to be applied to our complex domain. The notion
of state as a monolithic descriptor of the agent and the environment did not scale
up to the multi-agent domain used here, given the continuous and discrete aspects
describing the agent (e.g., velocity, IR sensors, radio data), and the existence of many
other agents in the environment. The traditional notion of actions was inappropriate
since atomic actions were too low level and had unpredictable and noisy effect to
be useful to a learning algorithm. Finally, delayed reinforcement also proved to be
inappropriate.

To make learning possible in this domain, a reformulation is proposed that, in-
stead of using actions, learns at the level of behaviors. Behaviors are more appropriate
since they hide low-level control details, and are thus more general and robust. Fur-

thermore, they fit directly into the described basic behavior framework . If actions
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Figure 1-12: The mobile robots used to validate the group behavior and learning
methodologies described in this thesis. These robots demonstrated learning to forage
by using group avoidance, following, searching, and resting behaviors.

are replaced with behaviors, states can be replaced with conditions, the necessary
and sufficient subsets of state required for triggering the behavior set. Conditions are
many fewer than states, thus greatly diminishing the state space and speeding up any
RL algorithm.

In addition to the use of behaviors and conditions, two ways of shaping the re-
inforcement function are proposed, in order to aid the learner in a nondeterministic,
noisy, and dynamic environment. Heterogeneous reward functions are introduced,
which partitioned the task into subgoals, cach of which could provided more immedi-
ate reinforcement. Within a single behavior (i.c., .. single goal), progress estimators
are introduced as functions associated with particular conditions that provided some
metric of the learner’s performance. Progress estimators, or internal critics, decrease
the learner’s sensitivity to noise, minimize thrashing among inappropriate behaviors
by encouraging exploration, and minimize fortuitous rewards by correlating some do-
main knowledge about progress with appropriate behaviors the agent has taken in
the past. The details of the reformulation are given in Chapter 8.

The proposed formulation was validated on learning to associate the conditions

and behaviors for group foraging with a collection of robots. The bhehaviors in-
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cluded the foraging subset of basic behaviors, augmented with grasping, dropping,
and searching, as well as with resting, a new internally generated behavior.? The
condition set was reduced to the power set of the following: have-puck?, at-home?,
night-time?, and near-intruder?.

A new, smaller group of robots with more reliable hardware was used for the
learning experiments. In terms of sensors and effectors, the robots were function-
ally identical to the first set (figure 1-12), and the implemented basic behaviors and
combinations were shown to be directly portable to the new robots.

Three learning algorithms were implemented and tested on the foraging task. The
first was standard RL Q-learning, while the other two simply summed the reinforce-
ment received over time.

Q-learning received a reward whenever a robot dropped a puck in the home region.
The second algorithm was based on the reinforcement received from heterogeneous
reward functions based on reaching subgoals including grasping and dropping pucks,
and reaching home. The third algorithm used reinforcement both from the heteroge-
neous reward functions and from two progress estimators: one monitoring progress
in getting away from an intruder, and the other monitoring progress toward home.
The two progress estimators were found to be necessary and sufficient for making
the given learning task possible. The absence of either one disabled the robots from
learning the complete policy for foraging, and the two were sufficient for consistent
and complete learning performance.

The performance of each of the three algorithms was averaged over 20 trials (fig-
ure 1-13). The analysis of the learning performance showed that the parts that were
not learned by the first two algorithms relied on the progress estimators and were
successfully learned in the third case. Detailed analysis of the results is given in

Chapter 9.

2Resting is merely homing at appropriate intervals.
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Figure 1-13: The performance of the three reinforcement strategies on learning to
forage. The x-axis shows the three reinforcement strategies. The y-axis maps the
percent of the correct policy the agents learned, averaged over twenty trials.

1.3 Thesis Outline

The preceding sections briefly summarized the contributions of the thesis. This sec-
tion outlines the structure of the thesis and summarizes each of the chapters.

Chapters 2 through 6 deal with synthesizing and analyzing group behavior. Chap-
ters 7 through 10 address learning in multi-agent domains. All newly introduced, fre-
quently used, or ambiguous termns are defined in Appendix C. Readers interested in
moving directly to the details of the basic behavior approach should skip to Chapter
4. Those interested in going directly to the learning part of the thesis should skip to
chapter 7. The following are summaries of the chapter contents.

Chapter 2 describes the biological, sociological, and pragmatic motivation behind
this work, and presents an overview of related work in robotics, simulation, Artificial
Life, and Distributed Al

Chapter 3 discusses the issues in designing and analyzing the behavior in multi-
agent systems. It begins by describing individual-agent control as the foundation for
most multi-agent work. It then discusses the difficulties of analyzing such multi-agent

behavior and overviews related work in analysis. It then introduces an approach to
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estimating interference in such systems and using it as a measure of global behav-
ior. Finally, it describes the role of positive and negative feedback in describing and
controlling multi-agent systems.

Chapter 4 introduces the basic behavior approach, defines key terms, and de-
scribes and motivates the imposed constraints.

Chapter 5 describes the methodology for selecting basic behaviors, and illustrates
the process by defining the basic behaviors for a collection of mobile agents interacting
in the plane. The chapter describes the experimental environments, basic behavior
specifications and algorithms, and the empirical data and the criteria for evaluating
the performance of each of the behaviors as well as their efficacy relative to centralized
alternatives.

Chapter 6 describes two methodologies for combining basic behaviors into more
complex, higher-level behaviors. The methodologies are demonstrated by combining
the basic behaviors described in Chapter 5 to generate two kinds of higher-level be-
haviors, and demonstrate and evaluate their performance. This chapter also discusses
methods for minimizing interference between behaviors within an agent.

Chapter 7 motivates learning in situated agents and reviews the existing learning
work based on the type of information being acquired by the agent. It then defines
the group learning problem discussed in the thesis as an instance of reinforcement
learning (RL) and overviews existing RL models and algorithms as applied to the
situated agent domain.

Chapter 8 describes a formulation of RL that enables and facilitates learning in
multi-agent domains. It introduces the use of behaviors and their conditions in place
of actions and states, and describes a method for shaping the learning process thirough
the use of heterogeneous reward functions and progress estimators.

Chapter 9 presents the experimental robot environment and the learning task used

to validate the methodologies proposed in Chapter 8. It describes the experimental
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design, the three learning algorithms that were implemented and compared, and
discusses the results. In conclusion, the chapter addresses the problem of learning
social rules and multiple concurrent tasks.

Chapter 10 summarizes the thesis.
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Chapter 2

Motivation and Related Work

2.1 Biological and Sociological Motivation

Why study multiple agents?

The motivation for this work comes from two quite different but complementary
directions: the desire to understand and analyze natural systems and the need to
design and synthesize artificial ones. The following observations constitute the natural
motivation.

Intelligence is a social phenomenon. Most intelligent animals live, obey the rules,
and reap the benefits of a society of kin. Societies vary in size and complexity, but
have a key common property: they provide and maintain a shared culture.

Culture is both a result and a cause of intelligent behavior. Intelligent creatures
create and refine social rules in order to perpetuate the society. These rules constitute
a culture which is communicated and shared by the society, and has important effects
on its individual members.

Culture enables genetic parsimony. Social interaction is used to transfer infor-
mation across generations, though social learning. Thus, less genetic investment is
necessary, as fewer abilities need to be innate. Interestingly, as culture adapts, grow-

ing complexity of social rules makes increased demands on individual intelligence,
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specifically on the ability to absorb and adapt to the culture. Humans are an ex-
treme example of cultural complexity, requiring the longest learning and training
developmental period of all animals.

Culture allows for faster adaptation. As an alternative to evolution, culture al-
lows for testing and adapting social behaviors at a much shorter time scale. Social
interactions can be created and destroyed within a single generation. For example,
elephants have been shown to learn to avoid humans even if no harm was inflicted
for generations, based on a distant cultural memory of past abuse (Gould 1982).

Culture allows for Lamarckian evolution. It enables the direct transfer of learned
information to future generations. A single individual’s discovery can be adopted by
an entire population and passed on. For example, an individual Japanese macaque
monkey discovered washing of sweet potatoes. The practice was transmitted cultur-
ally through the society and on to later generations (Gould 1982).

Culture makes up for genetic deficiencies. Social interactions can compensate
for individual limitations, both in terms of physical and cognitive capabilities. For
example, pack organization allows animals to attack larger prey. At the cognitive end,
nature abounds with examples of group information sharing, including bee dance,
warning calls and signals, and pheromones.

In order to be understood, individual intelligence must be observed and analyzed
within its social and therefore cultural context. In contrast to traditional Al, which
addresses intelligence as an individualistic phenomenon, this work is based on the
belief that intelligent behavior is inextricably tied to its cultural context and cannot
be understood in isolation. The emphasis is similar to the principles of ethology, the
study of animal behavior. Unlike the behaviorist branch of biology, which studies
animals in controlled laboratory settings, ethology observes animals in their natural
habitats. Analogously, this research attempts to study intelligent behavior in its

natural habitat: situated within a culture.
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The complexity of culture results from the interactions among individuals. This
research will focus on exploring simple social interactions which result in purposive
group behaviors. These behaviors, which are the building blocks of culture, will be

studied with the goal of:

1. understanding social and group behavior in nature, and

2. developing a methodology for principled design of group behavior in artificial

systems.

The study of social agents and culture as a basis and structure of intelligent
behavior, is necessarily exploratory. Thus, the part of the thesis that addresses that
domain is phenomenological, but hopefully also scientific in its attempt to understand

natural phenomena and explain them in principled terms.

2.2 Pragmatic Motivation

While nature offers challenges for analysis, engineering demands synthesis. in particu-
lar, it strives for efficient, automated, reliable, and repeatable methods of synthesizing
useful systems.

Discoveries about systems of multiple interacting agents can be applied to many
parallelizable computational problems. The idea of applying multiple computational
(or physical) agents to a variety of distributed domains, from terrain exploration and
mapping, to fire fighting, harvesting, and micro surgery, has been around for many
years. However, in spite of the potentially numerous applications, the distributed,
multi-agent approach is an exception rather than the rule in most domains.

Parallel, decentralized, non-hierarchical computation requires a paradigm shift
(Resnick 1992). Regardless of the domain of application, this approach raises a num-
ber of difficult issues. The particular few that motivate this research and are addressed

in this thesis include:
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e What common properties and prirciples of organization are shared among dif-

ferent domains of apglication of multi-agent systems?

e How do the interactions of the individuals affect the behavior of the group?

e How does the group get the job done?

e How much does each individual need to know about the group, the task, the

environment, and the other agents?

This research is aimed at finding common properties across various domains of
multi—agent interaction. Identifying these properties allows for classifying group be-
haviors into common categories and thus simplifies the process of both design and
analysis.

The behavior of a group is determined by the interactions between the agents.
These interactions are usually local, but have global consequences. As this work is
focused on decentralized computational models, the question of global behavior from
local interacticns is critical.

In a distributed model of control, no central fccus of control oversces the progress
of the group with respect to the particular task. In addition to the global-from-
local problem, which addresses getting the job done by local control, the issues of
monituring progress and correcting errors must also be addressed at the local level.

Given all those demands on the individual agents, what are the limits on the
simplicity each agent can have? What information about itself, its neighbors, and
the global task does an agent in such a system need to have? Hcw much does it
need to communicate with others in order to succeed? The thesis will address these
questions by focusing on a particular type of a multi-agent system, synthesizing and

analyzing behaviors in its domain, and studying their generulity.
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2.3 Related Group Behavior Work

This thesis focuses on the problems involved in synthesizing and analyzing intelli-
gent group behavior. In particular, the work described here applies to agents that
are embodied in physically constrained bodies and situated in physically constrained
worlds, inhabited by other agents of the same kind, and dealing with multiple goals
ranging from basic survival to accomplishing one or more tasks. The experimental en-
vironments in which the work was validated included mobile robots and multi-agent
simulations.

Consequently, this work is related to a number of lines of research within and
outside of Al, including mobile robotics, intelligent control, simulations of multi-agent
systems, distributed artificial intelligence, artificial life, machine learning, ethology,
and cognitive science. This section presents an overview of the work in these related
fields, with the exception of machine learning, which is covered in the second part of

the thesis.

2.3.1 Control of Multiple Physical Robots

The last decade has witnessed a shift in the emphasis of robotics in general and
mobile robotics in particular away from theoretical problems and toward physical im-
plementations. Most of the work in robotics so far has focused on control of a single
agent. Few projects have dealt with control of multiple physical robots. Fukuda,
Nadagawa, Kawauchi & Buss (1989) and their subsequent work describe an approach
to coordinating multiple homogeneous and heterogeneous mobile robotic units, and
demonstrate it on a docking task. Caloud, Choi, Latombe, LePape & Yim (1990),
Noreils (1992) and Noreils (1993) remain faithful to the state-based framework, and
apply a traditional planner-based control architecture to a box-moving task imple-
mented with two robots in a master-slave configuration. Kube (1992) and Kube

& HongZhang (1992) describe a series of simulations of robots performing a collec-
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tion of simple behaviors which are being incrementally transferred to physical robots.
Barman, Kingdon, Mackworth, Pai, Sahota, Wilkinson & Zhang (1993) report on a
preliminary testbed for studying control of multiple robots in a soccer-playing task.
Parker (1993b) and Parker (1994) describes a behavior-based task-sharing architec-
ture for controlling groups of heterogeneous robots, and demonstrates it on a set of
physical robots performing toxic waste cleanup and box pushing. Donald, Jennings
& Rus (1993) report on the theoretical grounding for implementing a cooperative
manipulation task with a pair of mobile robots.

In these early stages of research with multiple physical robots, approaches have
largely fallen along two ends of the cooperation and communication spectrum. One
direction includes work on systems designed to be cooperative. In these, the two
or more robots are aware of each other’s existence, can sense and recognize each
other directly or through communication. This type of research explores explicit
cooperation, usually through the use of directed communication and is represented
by Caloud et al. (1990), Noreils (1992), and Parker (1993a).

The other category includes work on implicit cooperation, in which the robots
usually do not recognize each other but merely coexist and indirectly cooperate by
having identical or at least compatible goals. Such work includes Dallas (1990) and
Kube (1992). The work described in this thesis falls nearer this end of the spectrum,
but is focused on agents that can discriminate each other from the rest of the world,

and use this ability as a basis for social behavior.

2.3.2 Simulations of Multiple Agents

The problem of multi-agent control has been treated mostly in simulation and under
two major categories: simulations of situated systems and simulations of abstract
agents.

Simulations of situated systems involve some degree of faithfulness to the physical
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world, at least to the extent of employing the simplest models of sensors, effectors,
and physical laws. A number of simulations of behavior-style controlled systems have
been implemented. For instance, Steels (1989) describes a simulation of simple robots
using the principles of self-organization to perform a gathering task. Brooks, Maes,
Matari¢ & Moore (1990) report on a set of simulations in a similar task domain,
with a fully decentralized collection of non-communicating robots. Arkin (1992)
describes a schema-based approach to designing simple navigation behaviors, used
for programming multiple agents working in a simulated environment with future
extensions to physical agents; Arkin, Balch & Nitz (1993) apply the approach to a
multi-agent retrieval task. Brock, Montana & Ceranowicz (1992) describe SIMNET
simulations of large numbers of tank-like robots performing avoidance and formation
following. Kube, Zhang & Wang (1993) propose a behavior-arbitration scheme that
will be tested on physical robots.

In contrast to simulations of multiple robots, “swarm intelligence” refers to sim-
ulations of abstract agents dealing with more theoretical problems of communication
protocols, the design of social rules, and strategies for avoiding conflict and deadlock
often in societies with with large numbers of simple agents. Representative work
includes Fukuda, Sekiyama, Ueyama & Arai (1993), Dario & Rucci (1993), Dudek,
Jenkin, Milios & Wilkes (1993), Huang & Beni (1993), Sandini, Lucarini & Varoli
(1993), Kurosu, Furuya & Soeda (1993), Beni & Hackwood (1992), Dario, Ribechini,
Genovese & Sandini (1991), and many others. This work is also related to DAI (see
below) but in contrast to DAI it deals with agents of comparatively low cognitive

complexity.

2.3.3 Artificial Life

The field of Artificial Life (Alife) focuses on bottom-up modeling of complex sys-

tems. Alife work relevant to this thesis is often labeled “swarm intelligence” and
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features simulations of colonies of ant-like agents, as described by Corbara, Drogoul,
Fresneau & Lalande (1993), Colorni, Dorigo & Maniezzo (1992), Drogous, Ferber,
Corbara & Fresneau (1992), Travers (1988), and many others. Deneubourg, Goss,
Franks, Sendova-Franks, Detrain & Chretien (1990), Deneubourg & Goss (1989), and
Deneubourg, Goss, Pasteels, Fresneau & Lachaud (1987) have experimented with
real and simulated ant colonies and examined the role of simple control rules and
limited communication in producing trail formation and task sharing. Deneubourg,
Theraulax & Beckers (1992) define some key terms in swarm intelligence and discuss
issues of relating local and global behavior of a distributed system. Assad & Packard
(1992), Hogeweg & Hesper (1985) and other related work also report on a variety of
simulations of simple organisms producing complex behaviors emerging from simple
interactions. Schmieder (1993) reports on an experiment in which the amount of
“knowledge” agents have about each other is increased and decreased based on local
encounters. Werner & Dyer (1990) and MacLennan (1990) describe systems that
evolve simple communication strategies. On the more theoretical end, Keshet (1993)
describes a model of trail formation that fits biological data.

Work in Artificial Life is related to the work in this thesis in that both are con-
cerned with exploiting the dynamics of local interactions between agents and the
world in order to create complex global behaviors. However, work in Alife does not
usually concern itself with agents situated in physically realistic worlds. Additionally,
it usually deals with much larger populations sizes that the work presented here. Fi-
nally, it most commonly employs genetic techniques for evolving the agents’ simple

control systems.

2.3.4 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAI) is another field that deals with multi-agent

interactions (see Gasser & Huhns (1989) for an overview). DAI focuses on negoti-
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ation and coordination of multi-agent environments in which agents can vary from
knowledge-based systems to sorting algorithms, and approaches can vary from heuris-
tic search to decision theory. In general, DAI deals with cognitively complex agents
compared to those considered by the research areas described so far. However, the
types of environments it deals with are relatively simple and low complexity in that
they feature no noise or uncertainty and can be accurately characterized.

According to Rosenschein (1993), DAI can be divided into two subfields: Dis-
tributed Problem Solving (DPS) and Multi-Agent Systems (MAS). DPS concerns
itself with centrally designed systems solving global problems and using built-in co-
operation strategies. In contrast, MAS work deals with heterogeneous, not necessarily
centrally designed agents faced with the goal of utility-maximizing coexistence.

For example, Ephrati (1992) describes a master-slave scenario between two agents
with essentially the same goals. Miceli & Cesta (1993) describe an approach to using
an estimate of the usefulness of social interactions at the individual agent level in order
for agents to select what other agents to interact with. This decision is based on an
estimate of possible future payoff in terms of help given the agents’ attitudes and skills.
Unfortunately, the estimation of dependence relations scales poorly with the size of
the group, and as is the case of most DAI work, is best suited for a small number
of highly deliberative, non-situated knowledge-based agents. Along similar lines,
Kraus (1993) describes negotiations and contracts between selfish agents. Durfee, Lee
& Gmytrasiewicz (1993) discuss game-theoretic and Al approaches to deals among
rational agents. The paper describes the added advantages of introducing meta-level
information for the purposes of delineating knowledge.

Aspects of DAI work are purely theoretical and deal with the difficulty of multi-
agent planning and control in abstract environments. For example, Shoham & Ten-
nerholtz (1992) discuss the complexity of automatically deriving social saws for agent

groups. They show that the problem is NP-complete but can, under a number of
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restrictions, be made polynomial.

Some DAI work draws heavily from less abstract mathematical results in the field
of parallel distributed systems. In particular, Huberman (1990) describes the effects
of information exchange on the performance of a collection of agents applied to a
class of search problems. He also addresses the ubiquity of log-normal distributions
of performance found across different domains. and hypothesizes a universal law of
distribution for all large systems of interdependent agents using resources allocated
based on perceived progress. Clearwater, Huberman & Hogg (1991) present related
work on cooperative strategies for solving constraint satisfaction problems.

Decker & Lesser (1993a) is a good example of work in distributed problem solv-
ing. It addresses the task of fast coordination and reorganization of agents on a
distributed sensor network with the goal of increasing system performance and de-
creasing performance variance. Hogg & Williams (1993) is another good example
showing how parallel search performs better with distributed cooperative agents than
with independent agents.

DATI and Alife merge in the experimental mathematical field that studies computa-
tional ecosystems, simulations of populations of agents with well defined interactions.
The research is focused on global effects and the changes in the system as a whole over
time. This process of global changes is usually referred to “co-evolution” (Kephart,
Hogg & Huberman 1990). Often the systems studied have some similarities to the
global effects fouad in biological ecosystems, but the complex details of biological
systems cannot be reasonably addressed. Co-evolution experiments are used to find
improved search-based optimization techniques. For example. Hillis (1990) demon-
strates how co-evolution can be used to overcome local maxima in evolving optimal

sorting algorithms.
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2.4 Summary

The work in this thesis shares motivations and goals with a number of related fields,
but does not cleanly fit into any of them. It deals with attaining and maintaining
goals in ways quite different from those employed by traditional Artificial Intelligence.
In contrast to traditional robotics, it does not attempt to solve a particular problem
but instead proposes a methodology for dealing with synthesis and analysis of group
behavior in general. Unlike most of mobile robotics, it is concerned with multiple mo-
bile agents. Different from both types of Distributed Al, it deals with less cognitively
complex but embodied agents situated in physically constrained, noisy, uncertain and
thus complex worlds. Finally, unlike Artificial Life, it deals not with large popula-
tions but with relatively small groups of realistic agents coordinating, cooperating,
and iearning in real-time rather than at the genetic level.

The next chapter focuses on specific related single-agent and multi-agent work
in order to set the stage for the theory and experiments presented in the rest of the

thesis.
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Chapter 3

Multi—Agent Control

This chapter describes the multi-agent control problem by first overviewing ap-
proaches to individual agent control, and then discussing their extensions to multiple
agents. Many issues in and methods for behavior analysis are presented and their
limitations are discussed, in order to set the stage for the new model, presented in
the next chapter.

Domains for multi-agent research include a vast array of natural and artificial
systems ranging from the brain, to operating systems, bird flocks, and collection of
robots. For the purposes of this work, an agent is a process capable of perception,
computation, and action within its world!. A multi-agent system consists of two or
more such agents.

The problem of multi-agent control can be viewed at the individual agent level
and the collective level. The two levels are interdependent and the design of one
is, or should be, strongly influenced by the other. However, multi-agent control has
grown out of individual agent control, and this history is often reflected in the control
strategies at the collective level. The next section describes the main approaches
to individual agent control and their extensions and applicability to multi-agent do-

mains.

1The world may or may not be physical
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3.1 Individual Agent Control

At one extreme of the agent control spectrum lie traditional planner-based strategies
that use a centralized world model for verifying sensory information and generating ac-
tions in the world (Giralt, Chatila & Vaisset 1983, Chatila & Laumond 1985, Moravec
& Cho 1989, Laird & Rosenbloom 1990). The information in the world model is used
by the planner to produce the most appropriate sequence of actions for the task at
hand. Planner-based approaches have been criticized for scaling poorly with the
complexity of the problem and consequently not allowing for reaction in real-time
(Brooks 19905, Brooks 1991¢).

Various attempts at achieving real-time performance have been proposed. Per-
haps the most prominent are purely reactive approaches which implement the agent’s
control strategy as a collection of preprogrammed condition-action pairs with min-
imal state (Brooks & Connell 1986, Agre & Chapman 1987, Connell 1990). These
systems maintain no internal models and perform no search, but simply look-up and
command the appropriate action for each set of sensor readings. They rely on a di-
rect coupling between sensing and action, and fast feedback from the environment.
Purely reactive strategies have proven effective for a variety of problems that can be
well defined at design-time, but are inflexible at run-time due to their inability to
store information dynamically (Matari¢ 1992a).

Rosenschein & Kaelbling (1986) presented work on situated automata that achieve
real-time performance by compiling all of the system’s goals and the ways of their
achievement into a language that compiles into circuits with constant-time computa-
tion properties. Subsequently, Schoppers (1987) proposed a related idea of precom-
piling the entire control system as a decision graph into a collection of reactive rules
(“universal plans™) in order to achieve real-time performance.

Hybrid architectures attempt a compromise between purely reactive and planner-

based approaches, usually by employing a reactive system for low-level control, and
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a planner for higher-level decision making. Hybrid systems span a large and diverse
body of research. It includes reactive planning or reactive execution exemplified by
Firby (1987), who introduced RAPs (Reactive Action Packages), higher-level prim-
itives for planning which hide and take care of the details of execution. Similarly,
Georgeff & Lansky (1987) proposed PRS (Procedural Reasoning System), an archi-
tecture for flexible control rule invocation. Alternative approaches were proposed
by Arkin (1989), Payton (1990), and Connell (1991), among others. These systems
tend to separate the control system into two or more communicating but otherwise
independent parts. In most cases, the low-level reactive process takes care of the
immediate safety of the robot, while the higher level uses the planner to select action
sequences.

Behavior-based approaches are an extension of reactive systems that also fall be-
tween the purely reactive and the planner-based extremes. The approach grew out
of reactive work of Brooks (1986) and was extended by Maes (1989) and others. Al-
though often confused in the literature, behavior-based strategies are strictly more
powerful than purely reactive approaches since they have no fundamental limitations
on internal state. While behavior-based systems embody some of the properties of
reactive systems, and usually contain reactive components, their computation is not
limited to look—up. Other than centralized reasoning engine and representation, these
systems may use different forms of distributed internal representations and perform
distributed computations on them in order to decide what effector action to take
(Matari¢ 1992a).

The choice of control architecture is largely based on individual biases rather
than on objective criteria of evaluation. Indeed, a comparative classification of above

methodologies based on domains of applicability has not yet been undertaken.
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3.2 Multi-Agent Control

Having overviewed single-agent control, this section discusses how the described ap-
proaches scale to multi-agent problems.

Extending the planing paradigm? from single-agent to multi-agent domains re-
quires expanding the global state space to include the state of each of the agents.
Such a global state space is, in the worst case, exponential in the number of agents.
Specifically, the size of the global state space G is: |G| = s* where s is the size of the
state space of each agent, here assumed to be equal for all agents, or equivalently the
maximum for all agents, and a is the number of agents. Exponential growth of the
state space makes the problem of global on-line planning intractable for all but the
smallest group sizes, unless control is synchronized and has SIMD form3. Further,
since global planning requires communication between the agents and the controller,
the bandwidth also grows with the number of agents. Additionally, the uncertainty
in perceiving state grows with the increased complexity of the environment. Con-
sequently, global planner-based approaches to control do not appear well suited for
problems involving multiple agents acting in real-time based on uncertain sensory
information.

At the other end of the control spectrum, extending the reactive and behavior-
based approaches to multi-agent domain results in completely distributed systems
with no centralized controller. The systems are identical at the local and global levels:
at the global level the systems are a collection of reactive agents each executing task-
related rules relying only on local sensing and communication. Since all control in such
distributed systems is local, it scales well with the number of agents, does not require

global communication, and is more robust to sensor and effector errors. However,

2The planning paradigm includes includes traditional and hybrid systems. In terms of multi-
agent extensions, hybrid systems fit into the planner-based category since their collective behavior
is generally a result of a plan produced by a global controller.

3All agents perform the same behavior at the same time.
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global consequences of local interactions between agents are difficult to predict.

The following table summarizes the properties of these two approaches to multi-

agent control:

| centralized approaches distributed approaches
can optimize global parameters | can only optimize locally
scale poorly scale well
require global sensing use local sensing
require global communication | may not require communication
contain a bottleneck have ne bottleneck
impose hierarchical control use flat control
may degrade poorly are usually redundant

Table 3.1: A comparaiive summary of typical centralized and distributed approaches.

The work described in this thesis was dually motivated: in part by the disadvan-
tages of the centralized approach and its variations, and in part by the ubiquitous
apparent advantages of distributed approaches to group behavior in nature. Conse-
quently, this thesis will focus on fully distributed systems for multi-agent control.

The next section describes the key properties of such systems.

3.3 Distributed Multi-Agent Control

This thesis will focus on fully distributed multi-agent systems, thosc in which the
behavior of each agent is determined by its own control system rather than by an
external controller. Such systems are by definition complex. either because they are
composed of a large number of elements, or because the inter-element interactions are
not simple. Multi-agent systems consisting of several situated agents with uncertain
sensors and effectors fit into this category. This section addresses how these properties

affect their behavior and its analysis.
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3.3.1 Behavior Analysis

The exact behavior of an agent situated in a nondeterministic world, subject to real
error and noise, and using even the simplest of algorithms, is impossible to predict
exacily. By induction, the exact behavior of each part of a multi-agent system of
such nature is also unpredictable. However, according to Simon (1969), a system is
analyzable, and thus well designed, if it is decomposable into non-interacting mod-
ules. Thus, minimizing inter--module interactions is considered good engineering and
principled Al, and most of traditional Artificial Intelligence relies on this style of top-
down modularity. In contrast, nature abounds with complex systems whose global
behavior results from precisely the type of interactions that current research method-
ologies try to avoid. These effects can be found at all scales, from the subatomic
(Gutzwiller 1992), to the semantic (Minsky 1986), to the social (Deneubourg et al.
1990).

Global behavior of complex multi-agent systems is determined by the local in-
teractions between individuals. These interactions merit careful study in order to
understand the global behavior. In natural systems, such interactions result i.. the
evolution of complex and stable behaviors that are difficult to analyze using tradi-
tional, top-down approaches. In order to reach that level of complexity synthetically,
such behaviors must be generated through a similar, interaction-driven, incrementally
refined process.

Precise analysis and prediction of the behavior of a single situated agent, specif-
ically, a mobile robot in the physical world, is an unsolved problem in robotics
and Al Previous work has shown that synthesis and analysis of correct plans can
be intractable even in highly constrained domains (Lozano-Pérez, Mason & Taylor
1984, Canny 1988, Erdmann 1989). Physical environments pose a greater challenge
as they usually do not contain the struc:ure, determinism, and thus predictability

usually required for formal analysis (Brooks 1991¢, Brooks 19915). Predicting the
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behavior of a multi-agent system is more complex than the single-agent case. The

difficulty in analyzing comes from two properties intrinsic to complex systems:
1. the acticns of an agent depend on the states/actions of other agents,

2. the behavior of the system as a whole is determined by the interactions between

the agents rather than by individual behavior.

In general, no mathematical tools are available for predicting the behavior of a
system with several, but not numerous, relatively complex interacting components,
namely a collection of situated agents. In contrast to physical particle systems, which
consist of large numbers of simple elements, multi-agent systems in nature and Al
are defined by comparatively small groups of much more complex agents. Statistical
methods used for analyzing particle systems do not directly apply as they require
minimal interactions between the components (Weisbuch 1991). While systems with
large numbers of simple and simply interacting components can be analyzed this way
(Wiggins 1990), no tools are currently available for systems consisting of compara-
tively few but more complex components with complex interactions.

Instead of attempting to analyze arbitrary complex behaviors, this work focuses
on providing a set of analyzable behavior primitives that can be used for synthesizing
and analyzing a particular type of complex multi-agent systems. The primitives
provide a kind of a programming language for designing analyzable control programs

and an interaction calculus for analyzing the resulting group behaviors.

3.3.2 Emergent Behavior

Emergent behavior is a popuiar topic of research in the field of complex systems
(see Forrest (1989), Chris G. Langton (1989), Langton (1990), and Steels (1994) for
overviews). Such behavior is characterized by the following properties: 1) it is mani-

fested by global states or time-extended patterns that are not explicitly programmed
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in but result from local interactions between a system’s components, and 2) it is
considered interesting by some observer-established metric. Because emergent phe-
nomena are by definition observed at a global level, they depend on the existence of
an observer.

Emergent behavior can be observed in any sufficiently complex system, i.e., a
system which contains local interactions with temporal and/or spatial consequences.
Perhaps because of their pervasiveness, emergent phenomena have been objects of
interest, although perhaps not objects of analytical study, for a long time. The
property of observer-dependence make emergent phenomena more difficult to study.
Kolen & Pollack (1993) eloquently describe why in general the complexity of a physical
system is not an intrinsic property but is dependent on the observer, and further why
traditional measures of complexity do not apply to physical systems. Subjective
evaluation is also discussed by Bonabeau (1993).

Emergent phenomena are appealing to some researchers because they appear to
provide something for nothing. These types of systems are referred to as “self-
organizing” because of their apparent ability to create order. In reality, the dynamics
of such self-organizing systems are carefully crafted (usually by eons of evolution) to
produce the end-results. Theoretical analysis of multi-agent systems of the type used
in this research is difficult, and, as will be shown, exact prediction of the behavior
of such systems is not currently within reach. Consequently, work on situated group
behavior can benefit from synthesiz and experimentation.

In order to structure and simplify this process of experimental behavior design,
this work will provide a set of basic group behaviors and methods for synthesizing
them from local rules. These basic behaviors and their combinations are emergent in

that they result from the local interactions, but are predictable and well understood.
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3.3.3 Limits of Analysis

The difficulty in analyzing complex multi-agent systems lies in the level of system
description. Descriptions used for control are usually low level, detailed, and con-
tinuous. In contrast, planning and analysis are usually done at a high level, often
using an abstract, discrete model. A more desirable and manageable level may lie in

between these two (figure3.2).

| approach | level of description —I
complex dynamics | microscopic & continuous
<> macroscopic & quasi-continuous
state spaces macroscopic & discrete

Table 3.2: A desirable level of system description for control and analysis lies between
the commonly employed ends of the spectrum.

In general, this work is concerned with predicting the global behavior of the sys-
tem rather than the precise behavior of any of its components. At the high level
of precision requiring a low level of description, most interactions are chaotic and
unpredictable. The goal of analysis is to gain predictive power by modeling the sys-
tem at the right level. In the case of complex systems, however, it is not possible to
determine that level without generating and testing the system itself.

For the case of a fully deterministic agent and world, it is possible, but usually not
realistic, to enumerate all trajectories the agent can take in its behavior space. This
is equivalent to elaborating the agent’s phase space. Early AI methods for proving
correctness consisted of showing that, for a given set of possible initial conditions,
usually expressed as discrete states, the agent would, through a series of actions,
reach the desired terminal (often designed to be goal) state. Search-based methods
for plan or action generation are particularly amenable to this type of analysis (Fikes

& Nilsson 1971). However, besides the scaling problem, this approach to hehavior
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analysis fails in more realistic worlds in which both the agent and the environment
are not deterministic.

Nondeterministic worlds can be modeled probabilistically (e.g., Doyle & Sacks
(1989)) but obtaining appropriate values for the probabilities is in general very diffi-
cult since it requires a complete and accurate model of the world. Even small inaccu-
racies in the values can accrue and result in artifactual dynamics of the system as a
whole. Another way of looking at it is that the behavior space is complex enough that
even a small amount of error in the estimated trajectory can introduce a perturbation
which causes the system to diverge from the actual trajectory. Consequently, most
probabilistic models fail to capture the stochastic dynamics of the kinds of complex
behavior this work is concerned with.

This need for accurate descri- ‘ion is again related to the level of system de-
scription. Quantitative analysis is extremely difficult for any but the simplest of
deterministic systems. On the surface, this does not appear to be a problem, as
most researchers would be satisfied with knowing the system’s “global, qualitative

behavior.”

However, such behavior is generally defined in quantitative terms since
qualitative analysis requires first a quantitative description which can then be ab-
stracted to a higher level of description. For instance, qualitative dcscriptions of
spatial information are derived from quantitative ones whether it be on macroscopic
scale of building maps (e.g., Chatila & Laumond (1985)) or on the microscopic scale
of particle interacticns (e.g., Abraham & Shaw (1992)).

The only path to a qualitative description of a system is indirect, through ab-
stracting away the details or through clustering analytical, quantitative information.
A qualitative description is a collection of non-analytic symbols (i.e., words instead of
numbers) with complicated associated semantics. When these semantics are defined,

they are either stated in terms of other symbols or eventually grounded in numerical

terms.
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Given the difficulty of the problem, most analysis approaches to date have been
limited to constrained, special case, scenarios. This is not surprising since any general
method for analyzing complex systems with nonlinear interacting components is un-
likely to be powerful enough to provide useful predictions. The next section overviews
a selection of representative approaches to analysis of multi-agent systems that have

been cons.dered to date.

3.3.4 Related work on analysis

As described earlier, Distributed Artificial Intelligence (DAI) deals with multi-agent
negotiations and coordination in a variety of abstract environments. Decker & Lesser
(1993b) is an example of a DAI approach to modeling a distributed system. It depends
on the ability to specify the agents’ beliefs, intentions, and their quality and duration.
These types of models do not scale well to large groups of agents. Further, in order
to apply at all they need to abstract away the “low-level” properties of the system
such as the exact noise and error models and side-effect. However, as has been shown
in physical systems, these “low-level” properties determine the high-level behavior.
Similarly, Kosoresow (1993) describes a probabilistic method for agent coordina-
tion based on Markov processes. This method relies on specifying agents inference
mechanisms (as chains), and having agents with compatible and specifiable goals and
preferences. This type of approach applies to domains where the problem of resource
allocation can be clearly specified. However, the ability to predict agents’ behavior in
order to assess the resource allocation problem is not achievable in a physical system.
If it were, a nuinber of mathematical and game-theoretic paradigms would apply.
The classical robotics field of motion-planning has dealt with the problem of
planning for multiple objects. For example, Erdmann & Lozano-Pérez (1987) describe
theoretical results on the motion-planning problem for multiple polygonal moving

objects. The presented solution searches the two-dimensional representation of space-
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time slices to find a safe path. These results depend on having only one object move at
a time, a constraint that cannot be easily enforced in situated systems. Furthermore,
the proposed strategy is too computationally intensive to be applied for real-time
control.

Donald et al. (1993) discuss motion-planning algorithms for coordinated manip-
ulation with different numbers of agents and different amounts of a priori knowledge
about the object to be moved. The theoretical aspect of the work focuses on com-
puting the information requirements for performing particular robot tasks. The work
is directly applicable to manipulation tasks, such as box—pushing, and solutions that
can apply one or more cooperating robots as “force-appliers.” In contrast, the work
in this thesis does not focus on algorithms for explicit cooperation on tasks such as
object manipulation, but instead on distributed solutions to problems that do not
necessitate cooperation but can benefit from it.

Strategies for proving distributed algorithm correctness are tangentially related to
analyzing multi-agent behavior. Lynch & Tuttle (1987), for example, describe such
methods for distributed systems with hierarchical components. More closely related is
work by Lynch (1993), which uses a simulation method for reasoning about real-time
systems modeled as general automata. This work is targeted at proving properties
of message-passing protocols, most of which are more constrained and less uncertain
than communication among distributed physical agents.

Work on stochastic analysis of qualitative dynamics, such as that by Doyle &
Sacks (1989), is appealing for its qualitative nature. However, the proofs depend on
the ability to represent the system as a series of transitions in a graph and the system’s
dynamics as a Markov chain over that graph. The difficulty lies in establishing such
a model for a multi-agent system. It is in general difficult to obtain the values for the
transition probabilities that capture the complex dynamics of such systems. Simpler

models can be constructed but fail to contain enough detail to conserve the dynamics.
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Related work on analysis of group behavior has been conducted in branches of
biology. For example, Beli¢, Skarka, Deneubourg & Lax (1986) present a model for
honeycomb constructions based on partial differential equations describing the bee
density distribution in the hive and their wax distribution behavior. Less struc-
tured group behavior, such as exploration and foraging, have aiso been addressed.
For instance, Benhamou & Bovet (1990) describe a probabilistic model for foraging.
The work closest to the domains addressed in this thesis is done by Deneubourg,
Aron, Goss, Pasteels & Duernick (1986), Deneubourg et al. (1987), Calenbuhr &
Deneubourg (1992), etc. The authors propose strategies for describing and analyzing
various collective behaviors in ants. Their work is closest in nature to the kind of
analysis proposed here as viable for describing group behavior of situated, embodied
agents.

Since prediction of group behavior is too difficult from the individual perspective,
approaches that focus on describing and analyzing ensemble properties appear better
suited for the domains addressed in this work. The next section describes an approach
to assessing and predicting global behavior by measuring interfcrence, a local property

that has collective consequences.

3.4 Interference and Conflict

Interference is any influence that opposes or blocks an agents’ goal-driven behavior.
In societies consisting of agents with identical goals, interference manifests itself as
competition for shared resources. In diverse societies, where agents’ goals differ, more
complex conflicts can arise, including goal clobbering?, deadlocks, and oscillations.
Two functionally distinct types of interference are relevant to this work: interfer-

ence caused by multiplicity, which will be called resource competition, and interference

4The term is used in the same sense as in Sussman & McDermott (1972) and Chapman (1987).
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caused by goal-related conflict, which we will call goal competition.

Resource competition includes any interference resulting from multiple agents
competing for common resources, such as space, information, or objects. This type
of interference is the cause of decline in performance in multi-agents systems as more
agents are added. It is also the primary impetus for social rules.

Resource competition is caused by physical coexistence among potentially iden-
tically behaving agents. In contrast, goal competition arises between agents with
different behavior. Such agents may have identical high-level goals (such as a family,
for example), but individuals can pursue different and potentially interfering subgoals
at any particular instance, i.e., they can be “functionally heterogeneous.” Such het-
erogeneity does not arise in SIMD-style groups® in which all agents are executing
exactly the same program at each point in time.

Goal competition is studied primarily by the Distributed Al community (Gasser
& Huhns 1989). It usually involves predicting other agents’ goals and intentions, thus
requiring agents to maintain models of each other (e.g., Huber & Durfee (1993) and
Miceli & Cesta (1993)). Such prediction abilities require computational resources that
do not scale well with increased group sizes®. In contrast, in the work discussed here,
goal competition, and thus the need for agents to model each other, is minimized
by agent homogeneity, and the thesis largely focuses on dealing with direct resource

competition.

3.4.1 Individual vs. Group Benefit

Social rules attempt to eliminate or at least minimize both resource and goal competi-

tion. In particular, their purpose is to direct behavior away from individual greediness

5Single instruction multiple data, groups of functionally identical agents.
6The problem of maintaining internal models or so called theories of mind is discussed in detail
in section 4.3.3.
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and toward global efficiency’. In general, agents in groups must give up individual
optimality in favor of collective efficiency because greedy individualistic strategies
perform poorly in group situations since resource competition grows with the size of
the group.

Since social rules are designed for optimizing global resources, it is in the inter-
est of each of the individuals to obey them. However, since the connection between
individual and collective benefit is rarely direct, societies can harbor deserters who
disobey social rules in favor of individual benefit. Game theory offers elaborate stud-
ies of the effects of deserters on individual optimality (Axelrod 1984), but domains
treated in game theory are much more cleanly constrained than those treated here. In
particular, game theory deals with rational agents capable of evaluating the utility of
their actions and strategies. In contrast, this work is concerned with situated agent
domains where, due to incomplete or nonexistent world models, inconsistent rein-
forcement, and noise and uncertainty, the agents cannot be assumed to be rational.

Furthermore, the goal of this work is not to devise optimal strategies for a specific
group behavior but to provide methodologies for finding efficient approaches to a va-
riety of related problems. Optimality criteria for agents situated in physical worlds
and maintaining long-term achievement and maintenance goals are difficult to char-
acterize and even more difficult and largely impossible to achieve. For example, while
in game theory interference is a part of a competing agent’s predictable strategy, in
the embodied multi-agent domain interference is largely a result of direct resource
competition, which can be moderated with relatively simple social rules. For example,
complex traffic jams can be alleviated through the appropriate use of yielding.

So far in this document interference was viewed as a destructive, and thus unde-
sirable, influence on group behavior. However, in many situations controlled interfer-

ence can be used to regulate group behaviors, in particular those based on positive

7Also referred to, in cultural contexts, as “the common good.”
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feedback. Appropriate interfering actions can be used to slow down or completely ter-
minate undesirable feedback®. Such regulatory feedback is discussed in more detail

in the next section, following an approach to estimating interference.

3.4.2 Estimating Interference

Understanding interference is an integral part of synthesizing and analyzing group
behavior. In synthesis, the task must be distributed over multiple agents in a way that
minimizes interference, or the benefits of concurrent execution are lost. In analysis,
interference must be taken into account in order to characterize the realistic behavior
of a distributed system as well as motivate the existence of social rules and protocols.

Attempting to precisely predict inter-agent interference is equivalent to trying to
predict the system’s exact behavior. As has been argued about analysis in general,
this level of prediction is impossible to reach. This section proposes a qualitative
alternative that can be applied to obtain useful estimates.

Agent density is a key parameter for estimating interference since it measures
likelihood of interaction. The higher the density the higher the probability that any
two agents will interact. Even without evaluating the outcome of interaction, being
able to predict its estimated frequency is a useful part of describing the dynamics
of a group. For example, the probability of interaction based on density determines
how “collectively-conscious” an agent must be, or how much greedy behavior it can
get away with. Not surprisingly, particular densities are critical for the nucleation of
group behaviors based on positive-feedback.

Density estimation is straight—forward. [ define group density to be the ratio of
the sum of the agents’ footprints and the size of the available interaction space. An
agent’s footprint is the sphere of its influence. In the spatial domain, for example,

an agent’s footprint is based on its geometry, its motion constraints, and its sensor

8In many societies, including human, non-conformists either become leaders or social outcasts,
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range and configuration. The size of the interaction space is the area of the physical
space the agents can inhabit. The same idea applies in more abstract domains as
well. In many such domains the interaction space is time, and the agent’s footprint is
the duration of information exchange. For instance, in a telecommunications domain
density can be estimated as the ratio of the duration of all the calls in one day.
Highway traffic is another example in which the relevant space of interactions is time.
The density can be represented by the ratio of the sum of the agents’ footprints and
the total surface area of the road.

The density metric allows for computing how much interaction space is necessary
for a group to perform any task, and whether a specific amount of interaction space is
sufficient. In the spatial domain, for example, using the number and size of the agents
is enough to compute the mean free path of an agent and use it to estimate how many
collisions are expected between agents executing random walks. Similarly, for the
telecommunications domain the average uninterrupted call duration relative to the
average number of calls per unit time can be computed, which gives an estimate of
how much “phone interaction space” is available for the given parameters. Finally, for
the highway domain the same computation yields the average length of free speeding®.

Such an approximate measure of density can then be used to estimate how much
interaction space, on average, is required for the system, even before the specifics of
the task are considered. By bringing the constraints of the task into the computation,
the expected interference over the duration of the task can also be estimated. For
most tasks, interference will vary depending on the fluctuations of the density over
the lifetime of the task. This temporal density distribution demonstrates which parts
of the task require social rules. Although the exact computation of relevant density
is dependent on the particular domain and task, a rough approximation provides

useful metrics for estimating the dynamics of the group and the time-evolution of the

9This model does not include stationary police cars.
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system’s behavior as a whole.
Agent density is a particularly important parameter in group behaviors that rely
on positive and negative feedback. The next section describes such behaviors and

their relevance to this thesis.

3.5 Feedback and Group Behavior

Situated behavior is based on the interaction with, and thus feedback from, the
environment and other agents. Both negative and positive feedback are relevant.
Negative feedback has a regulatory effect, damping the system’s response to external
influences, while positive feedback kas an amplifying effect, increasing the system’s
response. In multi-agent environments, negative feedback controls the local structure
among the agents while positive feedback recruits more agents into the structure.

Behaviors based on positive feedback usually require a critical mass to initiate
and accelerate with increased group size. All of these behaviors are variations on re-
cruitment; the more agents that are engaged in an activity, the more agents that join
in. Such behaviors are usually unstable as they are sensitive to the particular con-
ditions and resources required to maintain the recruitment effect. Numerous natural
group behaviors are based on positive feedback: lynch mobs, public polls, popular-
ity ratings, and traffic jams all fit in this category. Ant trail formation and worker
recruitment in both ants and bees are also instances of positive feedback (Camazine
1993, Deneubourg et al. 1990, Deneubourg et al. 1986).

The behavior of a group of interacting agents is a dynamical system. Most such
systems have a few stable states and some transient oncs. Negative and positive
feedback behaviors correspond to the different regimes of the system. For example,
Miramontes, Sole & Goodwin (1993) present a framework for describing ant behavior
as individually chaotic but collectively stable and periodic. Spatial distributions of

activity display similar symmetries. Brown & McBurnett (1993) describe a model
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of a simple political voting system which displays a large array of group behavio.s
based on simple local feedback (i.e., recruitment or persuasion) mechanisms. The
system has only two stable states: a homogeneous distribution and a collection of
invariant blocks. Intuitively, this is an analogy of an equal power distribution, in
which any imbalance results in a transient instability. Camazine (1993) shows an
analogous pattern for honey-comb population, nectar foraging, and brood sorting.
DeAngelis, Post & Travis (1986) demonstrates how most aggregation-type behaviors
can be shown to fit this pattern.

Another form of common feedback-based behavior involves the synchronization
of rhythmic patters of activity. For example, Meier-Koll & Bohl (1993) describe the
synchronization of circadian rhythms of in human and animal subjects and models
them as a collection of coupled oscillators. Analogous eifects are commenly observed
in horinonal cycles (Vander, Sherman & Luciano 1980). in such systems, the synchro-
nized state is a stable behavior, as is the evenly dispersed equal-power state, while
all other states are transient. Sismondo (1990) reports on similar synchronization
behavior in insect rhythmic signaling and proposes a similar model of the behavior.

The work in this thesis is based on the notion of regulatory negative-feedback
group behaviors. The next chapter will introduce a methodology that uses such
behaviors as a basis of synthesis and analysis of higher-level interactions in multi-
agent systems. The behaviors have a regulatory purpose of maintaining goal-driven
behavior through local minimization of interference. Furthermore, these bhehaviors

are not sensitive to or dependent on external rescurces and are thus more stable.

3.6 Summary

This chapter has described the individual and multi-agent control problem. It also
focused on the complexities introduced by the coexistence of multiple situated agents.

It was proposed that precise predictive analysis of distributed, decentralized, embod-
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ied multi-agent systems of the type studied in this thesis is currently out of reach, but
that methods for predicting the ensemble behavior of a group are available. The issues
of interference and conflict were discussed as possible means of qualitative analysis.
The next chapter outlines an approach to analysis and synthesis of group behaviors

through ihe use of building blocks at the appropriate level of description.
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Chapter 4
The Basic Behavior Approach

One of the hardest problems in Al is finding the right level of system description for
effective control, learning, modeling, and analysis. This thesis proposes a particu-
lar description level, instantiated in so-called basic behaviors, building blocks for
synthesizing and analyzing complex group behavior in multi-agent systems.

Basic behaviors are intended as a tool for describing, specifying, and predicting
group behavior. By properly selecting -uch behaviors one can generate repeatable
and predictable group behavior. Furthermore, one can apply simple compositional
operators to generate a large repertoire of higher-level group behaviors from the basic
set.

The idea behind basic behaviors is general, but particular sets of such behaviors are
domain-specific. In order to demonstrate the methodology, basic behaviors for group
interaction in the spatial domain will be derived, combined, analyzed theoretically,
and tested empirically.

The following table summarizes the research goals, the approach, and the experi-

mental methodology:
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problem  synthesis and analysis of intelligent group behavior
in order to understand the phenomenon (science)
and apply it (engineering)

assertion  complex group behavior results from
local interactions based on simple rules

approach propose basic behaviors for structuring
such simple rules

validation implement robot group behaviors using
a basic behavior set and combinations

—

Table 4.1: A summary of the group behavior problem being addressed in the thesis,
and the structure of the proposed solution.

4.1 Defining Behavior

The notion of “behavior” is the main building block of this work. In the last few
years the use of behaviors has been popularized in the Al, control, and learning
communities. Approaches labeled “behavior-based AI” and “behavior-based control”
are becoming mainstream, but behavior is yet to be cleanly defined and circumscribed.

I define behavior to be a control law for reaching and/or maintaining a particular
goal. For example, in the robot domain, following is a contrul law that takes inputs
from an agent’s sensors and uses them to generate actions which will keep the agent
moving within a fixed region behind another moving object.

The above definition of behavior specifies that a behavior is a type of an operator
that guarantees a particular goal. In order to serve as general building blocks, basic
behaviors must be capable of dealing with both attaining and maintaining goals.
Goals of attainment are terminal states; having reached a goal, the agent is finished
with all related subgoals. Such goals include reaching a home region and picking

up an object. Maintenance goals persist in time, and are not always representable
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with terminal states, but rather with dynamic equilibria that must be maintained.
Examples include avoiding obstacles and minimizing interference. Maintenance goals
can usually be expressed as sequences of achievement goals but may require fine
granularity of description. Situated agents generally have multiple concurrent goals,
including at least one goal of attainment, and one or more goals of maintenance.

This thesis will attempt to show that behaviors are a natural, convenient, and
efficient abstraction for control, planning, and learning for situated agents. Behaviors
hide the low-level details of control that deal with precise control parameters. They
allow for specifying robot tasks and goals in terms of higher-level primitives that cut
down on the state space and are more intuitive for the user. Finally, they are a good
basis for learning in noisy and uncertain situated domains.

The next two chapters will focus on designing behaviors for controlling groups of
agents, and combining such behaviors into higher-level aggregates. Chapters 7, 8,
and 9 will focus on learning to select among such behaviors in order to automatically

produce coherent and efficient higher-level composite behaviors.

4.2 Defining Interaction

Interaction is another foundational concept in this work. Typically, interaction is
viewed as any influence that affects an agent’s behavior. By this definition, an agent
interacts with everything it can sense or be affected by, since all of its external and
internal state can have an impact on its actions.

This work is largely concerned with the interaction that takes place between
agents. Thus I propose a stricter definition: interaction is mulual influence on behav-
ior. Consequently, objects in the world do not interact with agents, although they
may affect their behavior. The presence of an object affects the agent, but the agent

does not affect the object since oviects, by definition, do not behave, only agents do.
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4.3 Domain Description

Having defined the key concepts of the thesis, behavior and interaction, we turn to
the specification of the domain being addressed.

In order to focus and constrain the study of group behavior, this work focuses
on interactions among agents situated in physical worlds. Some key constraints were
imposed on the experimental domain in order to structure the cxploration while
still providing sufficient variety of behaviors to study. The following are the key

constraining properties:

e Agents are homogeneous.
e Agents do not use explicit models of each other.

e Agents do not use directed communication or explicit cooperation.

The reasons for and implications of each of the constraints are described and

discussed in the following sections.

4.3.1 Implications of Homogeneity

This work focuses on groups of agents that are homogeneous in that they are situated
in the same world and have the same goal structure.! Homogencous agents will also
be referred to as similar, as distinct from identical, a property that can be ascribed

to SIMD-style agents. Homogeneity has some important implications.

Predictability

The fact that all agents are similar makes their behavior predictable to one another

in that they do not require internal explicit models of each other. This predictability

'Furthermore, the agents in this work are embodied with similar dynamics. While the dynamics
of simulated agents can be made identical, those of physical robots often vary enough to significantly
effect their group behavior. The section on hardware limitations explains this in detail. The terms
homogeneous and similar will be used interchangeably.
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can be used explicitly, allowing agents to infer other agents’ actions and use that
information to make individual decisions, or implicitiy, to simplify the control of each
individual. This work focuses on the latter approach. For example, identical control
laws can take advantage of inherent symmetry, in spatial as well as in more abstract
domains.

Homogeneity eliminates goal-related conflicts and resulting strategies such as de-
serting and cheating. Furthermore, homogeneity allows for leaving much of the infor-
mation about the world implicit. Although the agents in this work do not use explicit
expectations about other agents’ behavior, their decision process implicitly takes that
information into account.

Given their similarity, agents do not need identities and thus do not require abil-
ities for identification. This presents a significant cognitive savings. As homogeneity
and similarity greatly reduce individual cognitive requirements, they can be used for
simplifying the synthesis and understanding of group behavior.

Finally, homogeneity can result in increased global robustness through redun-
dancy. Failure of any subset of agents should not seriously affect the system, since
the agents are similar and thus interchangeable, and no particular agent or group of
agents is critical for the accomplishment of the task. To preserve robustness, no spe-
cific roles, such as leaders and followers are designated a priori. However, temporally

(and spatially) local, replaceable leaders may emerge in various situations.

4.3.2 A Necessary Condition: Recognition of Kin

Taking advantage of homogeneity depends on a critical property: the agents must be
able to recognize other similar agents. The ability to distinguish the agents with whom
one is interacting from cverything else in the environment is a necessary condition for
intelligent interaction and group behavior. This ability is innate and ubiquitous in

nature, and enables almost all creatures to distinguish others of their own kind, and
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more specifically to recognize kin from others (McFarland 1985, McFarland 1987).

It is important to note that species and kin recognition need not be explicit, i.e.,
the agent need not “know” or “be aware” that the other agent being recognized is
kin, as long as its response to it is kin-specific. For example, slime mold bases its
behavior on the concentration of slime produced by its kin. It cannot be said that
it actively “recognizes” kin but it does act in species-specific ways which result in
complex group behavior such as the construction of multi-cellular organisms (Kessin
& Campagne 1992). Similarly, ants cannot be presumed to “know” that pheromones
they sense are produced by their conspecifics. However, the appropriate responses
to those pheromones result in the formation of trails and other complex structures
(Franks 1989).

Besides being biologically inspired, the ability to recognize kin is pragmatic as it
allows even the simplest of rules to produce purposive collective behavior, as will be

demonstrated in the following sections.

4.3.3 Mental Models and Theory of Mind

A dominant school of thought in cognitive psychology and Al is based on the premise
that social interaction require< a theory of mind. Namely, in order to engage in social
discourse, agents need to have models of, understand the intentions of, and maintain
beliefs about each other. Indeed, an entire field of theory of the mind rests on the
necessity of inferring the internal workings of the mind of the agent(s) with whom
one is interacting (Read & Miller 1993).

Maintaining a theory of mind is a complex task and requires a high computational
and cognitive overhead (Gasser & Huhns 1989, Rosenschein & Genesereth 1985, Axel-
rod 1984). Further, controversy surrounds its necessity, as work in both developmental
psychology and ethology indicates that theory of mind is not necessary for a large

repertoire of complex social interactions (Tomasello, Kruger & Rather 1992, Cheney
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& Seyfarth 1990, McFarland 1987, Gould 1982, Rosenthal & Zimmerman 1978).

Research in developmental psychology has shown that young children engage in
various forms of social interaction even before attaining the sense of self-awareness, a
necessary component of constructing a theory of mind. Prior to this stage, occurring
around the age of two, children are incapable of separating the internal and external
perception of the world (Piaget 1962, Bandura & Walters 1963, Bandura 1971). Even
after achieving sclf-awareness, as determined with the typical dot-and-mirror test
(Asendorpf & Baudonniere 1993), aroun¢ the age of two, children require a number
of years before reaching the adult ability to form theories of mind (Bandura 1977,
Abravanel & Gingold 1985).

Much research has been aimed at testing whether primates have theories of mind.
It has recently been demonstrated that certain species of monkeys, while involved in
complex social and cooperative interactions, apparently do not form theories of mind
at all (Cheney & Seyfarth 1990, Cheney & Seyfarth 1691). In contrast, chimps appear
to have more complex abilities and are indeed able to infer goals of their conspecifics
(Cheney & Seyfarth 1990, McFarland 1987). How the internal models are represented
and whether they are based on explicit or internal representations, remains open for

further study (Gomez 1991).

An Alternative to the Theory of Mind

Exploring the existence and limits of theory of mind in biology is difficult. The type
and amount of knowledge and representation that an animal brings to bear in its social
interactions is impossible to circumscribe. In an ideal scenario the experimenter would
be able to control for the type and amount of this knowledge and test the resulting
behavior, in order to determine what is necessary and what is not.

Computational and robot experiments allow us to do just that. The agents being

experimented with are much simpler than those in nature, but it is exactly this
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simplicity that allows us to focus on the specific question of internal social models.
In order to study the necessity of theory of mind, this work started from the bottom
up, by exploring agents which had none at all.

This work studies group behaviors resulting from the simplest interactions among
the simplest of agents. The agents have no explicit models of each other, expectations,
or intentions. The goal of this approach is to demonstrate what types of complex in-
teractions can be achieved with such simple basic abilities. The results demonstrate
that, particularly in homogeneous groups, significant amount of information about
an individual’s goals is reflected in the observable external state and behavior, and
can be obtained with no direct communication. The next section descriizes the com-

munication constraints.

4.3.4 Communication and Cooperation

Communication and cooperation have become popular topics in both abstract and
applied multi-agent work (for example see Dudek et al. (1993), Altenburg & Pavicic
(1993), and others). Communication is the most common means of interaction among
intelligent agents. Any observable behavior and its consequences can be interpreted
as a form of communication so for purposes of clarity, some definitions are introduced
that will apply to the rest of the thesis.

Direct communication is a purely communicative act, one with the sole purpose of
transmitting information, such as a speech act, or a transmission of a radio message.
Even more specifically, directed communication is direct communication aimed at a
particular receiver. Directed communication can be one-to-one or one-to-many, but
in both cases the receivers are identified.

In contrast, indirect communication is based on the observed behavior, not com-
munication, of other agents, and its effects on the environment. This type of com-

munication is referred to as stigmergic in biological literature, where it refers to com-
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munication based on modifications of the environment rather than direct message
passing.

Both direct and indirect communication are practiced by most species in nature.
For example, bees use signals, such as the waggle dance, with the sole purpose of
transmitting information and recru ‘ing. In contrast, they also use cues, such as the
direction of their flight, which transmit hive information as a by-product of their
other behaviors (Seeley 1989).

Cooperation is a form of interaction, usually based on communication. Certain
types of cooperative behavior depend on directed communication. Specifically, any
cooperative behaviors that require negotiation between agents depend on directed
communication in order to assign particular tasks to the participants.

Analogously to communication, ezplicit cooperation is defined as a set of interac-
tions which involve exchanging information or performing actions in order to benefit
another agent. In contrast, implicit cooperation consists of actions that are a part of
the agent’s own goal-achieving behavior repertoire, but have effects in the world that
help other agents achieve their goals.

Having defined precise terminology, the communication and the resulting coop-
eration constraints imposed on the experimental domain can now be described. In
order to study the role of communication in a controlled fashion, and to explore how
much communication is needed for the group behaviors described here, a minimalist
approach was chosen.

No directed, one-to-one communication between the agents was used in any of
the experiments. Indirect communication was based on sensing the external state of
neighboring agents, as well as sensing their density, and the effects of their actions.
Direct communication was undirected, and limited to local broadcasi: agents could
transmit messages that could be received by others near by. However, the agents did

not have the ability to choose the receivers of their messages, and thus to engage in
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directed communication.

The undirected communication constraint affects the kinds of communication that
can be implemented or can emerge in a multi-agent system. This work focused on
implicit cooperation that emerged without explicit task sharing. For an alternative

perspective, see Parker (1994).

4.4 Summary

This chapter has described the domain constraints that were imposed in order to
structure the study of group behavior. This work in the thesis is focused on ho-
mogeneous agents using no explicit world models, non-directed communication, and
implicit cooperation. All of these constraints were chosen in order to approach the
group behavior problem bottom-up and incrementally. This work is concerned with
testing the limits of minimal internal modeling and communication in order to find
when such simple abilities are sufficient and when more complex representation and

communication abilities are necessary.
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Chapter 5

Selecting and Evaluating Basic

Behaviors

This chapter describes how basic behaviors, building blocks for control, planning,
and learning, are selected, specified, implemented, a?nd evaluated.

The idea of basic behaviors is general: they are the intended as primitives for
structuring, synthesizing, and znalyzing system behavior. Basic behaviors include
natural modes of operation, dynamic attractors, or states of equilibria, and vari-
ous other terms used to describe stable, repeatable, and primitive behaviors of any
system. This work is concerned with finding ways of identifying such behaviors for
a specific system, and using them to structure the rest of the system’s behavioral
repertoire. The power of basic behaviors lies in their individual reliability and in
their compositional properties.

This work focuses on basic behaviors for generating intelligent group interactions
in multi-agent systems. It is based on the belief that global behavior of such systems
results from local interactions, and furthermore, that those interactions are largely
governed by simple rules. Basic behaviors present a mechanism for structuring the
space of possible local rules into a small basis set.

This chapter will illustrate the process of selecting basic behaviors on concrete ex-
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amples of behaviors for a group of agents interacting in physical space. The process of
identifying the basic behaviors, formally specifying them, implementing them, testing
their properties both theoretically and empirically, and finally combining them, will
be carried out. The criteria for selecting basic behaviors for the domain of spatially

interacting agents are described first.

5.1 Criteria for Selection

Ensemble, collective or group behavior is an observer-defined temporal pattern of
interactions between multiple agents. Because group behavior is subjectively labeled,
of the infinitely many possible such behaviors for a given domain, only a small subset
is relevant and an even smaller subset is desirable for achieving the agents’ goals.

This work proposes that, for a given domain, a small set of basic behaviors can
be selected, from which other complex relevant and desirable group behaviors can be
generated. Basic behavior should meet the following criteria:

Necessity: A behavior within a basic behavior set is necessary if it achieves a
goal required for the agent’s accomplishment of its task(s), and that goal cannot bhe
achieved with any of the other basic behaviors or their combinations. Thus, a basic
behavior cannot be implemented in terms of other behaviors and cannot be reduced
to it.

Sufficiency: A basic behavior set is sufficient for accomplishing a set of tasks in
a given domain if no other behaviors are necessary. The basic behavior set should,
under the combination operators, generate all of the desirable higher-level group
behaviors.

Generality: A behavior is general if it can aid in the achievement of multiple
goals.

If such behaviors are designed by hand, as opposed to being chserved in an ex-

isting system, they should, in addition to the above criteria, also have the following
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properties:

1. Simplicity: the behavior should be impleme:ted as simply as possible by Oc-

cam’s Razor,

2. Locality: the behavior should be generated by local rules, utilizing locally avail-

able sensory information,

3. Correctness: within the model in which it is tested, the behavior should provably
attain (and in some cases maintain) the goal for which it was intended and

within the set of conditions for which it is designed,

4. Stability: the behavior should not oscillaie under the set of conditions for which

it is designed,

5. Repeatability: the behavior should perform according to specification in each

trial under reasonable conditions and error margins,

6. Robustness: the performance of the behavior should not degrade significant!y

in the presence of specified bounds of sensory and effector error and noise,

7. Scalability: the behavior should scale well with increased and decreased group

size.

1M

There is no fixed metric for selecting an “optimal” set of behaviors and this work
makes no attempt to devise such criteria in any formal sense. Furthermore, this work
does not provide theoretical proofs of correctness of the algorithms for the presented
behaviors. The proofs are omitted because, while they may be computabl- for a
simple model of the agents and the environment, they become prohibitively difficult
for increasingly more realistic models that included sensors, effectors, and dynamics.
As an alternative to simplified modeled environments, the behaviors were tested in

the fully complex worlds with all of the error, noise, and uncertainly. In order to
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make the evaluation more complete, various initial conditions and group sizes were
tested, ard a large amount of data was obtained for analysis. Behavior evaluation is
described in detail in section 5.6.

The next section illustrates the process selecting basic behaviors for the domain

of planar mobile agents.

5.1.1 Basic Behaviors for Movement in the Plane

The expeiimental work in this thesis is focused on interactions among mobile agents in
two-dimensional space. This domain is realistic in that it has the desired complexity
properties: the number of possible collective behaviors is unbounded. Fortunately,
the infinite space of possible spatial and temporal patterns can be classified into
categories, and thus effectively viewed from a lower level of resolution. The cate-
gories are based on task and domain-specific criteria which allow for selecting the
(comparatively) few relevant categories and eliminating the rest from consideration.
The proposed basic behaviors impose such categories; they define a group behavior,
without specifying particular rules that implement it.

Group behaviors in the spatial domain are spatio-temporal patterns of agents’
activity. Certain purely spatial fixed organizations of agents are relevant, as are
certain spatio-temporal patterns. Purely spatial fixed organizations of agents corre-
spond to goais of attainment while spatio-temporal patterns correspond to goals of
maintenance.

In the process of selecting basic behaviors, the designer attempts to decide what
behavior set will suffice for a large repartoirz of goals. While the dynamical properties
of tne system provide brttom-up constraints, the goals provide top~down structure.
Both of these influences guide the behavior selection process. Energy minimization
is a universal goal of powerad physical systems. In the planar motion domain this

goal translates into minimization of non-goal-driven notion. Such motion is either
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Avoidance the ability of a group of agents to move around while avoid-
ing collisions with each other and other obstacles. Here, the
homogeneous nature of the agents can be used for inter-agent
collision avoidance. Thus, two distinct strategies can be de-
vised; one for other agents of the same kind, and another for
everything else.

Following the ability of two or more agents to move while staying behind
each other.

Dispersion  the ability of a group of agents to spread out over an area in
order to establish and maintain some predetermined minimum
separation.

Aggregation the ability of 2 group of agents to gather in order to establish
and maintain some predetermined maximum separation. This
behavior can be implemented as an inverse of dispersion.

Homing the ability to reach a goal region or location.

Table 5.1: A basic behavior set for the spatial domain, intended to cover a variety of
spatial :nteractions and tasks for a group of mobile agents.

generated by poor behavior design, or by interference between agents. Thus, minimiz-
ing goal-driven interference means maximizing goal-driven behavior and minimizing
unnecessary motion.

Minimizing interference translates directly into an achievement goal of immediate
avoidance and a maintenance goal of moving about without collisions. Avoidance in
groups can be achieved by dispersion, a behavior that reduces interference locally.
It can also serve to minimize interference in classes of tasks that require even space
coverage, such as those involving searching and exploration.

In contrast tc various goals that minimize interaction by decreasing physical prox-
imity, many goals involve exchange of resources through physical proximity. Conse-
quently, aggregation is a useful primitive. Maintaining aggregation can be translated

into following, an interference-minimizing behavior that imposes structured motion
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constraints on the group.

The above list constitutes a set of basic behaviors for a flexible repertoire of
spatial group interactions, as illustrated in table 5.1. Biology offers numerous justifi-
cations for these behaviors. Avoidance is a survival instinct so ubiquitous it obviates
discussion. Following, often innate, is seen in numerous species (McFarland 1985).
Dispersion is commonplace as well. DeScnutter & Nuyts (1993) show elegant evi-
dence of gulls dynamically rearranging their positions in a field to maintain a fixed
distance from each other. Camazine (1993) demonstrates similar gull behavior on
a ledge. People maintain similar arrangements in enclosed spaces (Gleitman 1981).
Similarly, Floreano (1993) demonstrates that evolved systems of ants use dispersion
consistently. Aggregation, as a protective and resource-pooling and sharing behavior,
is found in species ranging from the slime mold (Kessin & Campagne 1992) to social
animals (McFarland 1987). The combination of dispersion and aggregation is an ef-
fective tool for regulating density. Density regulation is a ubiquitous and generically
useful behavior for collecting and distributing objects and information. For instance,
army ants stabilize the temperature of their bivouac by aggregating and dispersing
according to the local temperature gradient (Franks 1989). Temperature regulation
is just one of the many side-effects of density regulation. Finally, homing is a basis of
all navigation and is manifested by all mobile species (for biological data on pigeons,
bees, rats, ants, salmon, and many others see Gould (1987), Muller & Wehner (1988),
Waterman (1989), Foster, Castro & McNaughton (1989), and Matarié (1990b)),

Besides the described behavior set, numerous other useful group behaviors exist.
For example, biology also suggest surrounding and herding as frequent patterns of
group movement, related to a higher level achievement goal, such as capture or mi-
gration (McFarland 1987). These and other behaviors can be generated by combining
the basic primitives, as will be described and demonsirated in the next chapter. The

reminder of this chapter is dedicated to presenting the experimental environment and
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data from implementing basic behaviors for the spatial domain.

5.2 Basic Behavior Experiments

This chapter covers the experimental part of the group behavior research described
in this thesis. The chapter describes the experimental environments, presents the
algorithms for implementing the proposed basic behaviors, and evaluates their per-

formance based on a battery of tests and a collection of criteria.

5.3 Experimental Environments

Behavior observation is one of the primary methods for validating theories in syn-
thetic Al projects like the one described in this thesis. In order to have conclusive
results, it is necessary to try to separate the effects caused by the particular experi-
mental environment from those intrinsic to the theory being tested. In order to get
to the heart of group behavior issues rather than the specific dynamics of the test
environment, two different environments were used, and the results from the two were
compared. The two environments are the Interaction Modeler, and the collection of
physical robots.

Another motivation for using both a physical and a modeled environment is the
attempt to isolate any observable inconsistencies between the two. In general, it is
difficult to determine what features of the real world must be retained in a simulation
and what can be abstracted away. By testing systems in the physical world some
of the effects that arise as artifacts of simulation can be isolated (Brooks 1991a).
This is the motivation behind using data from.physical robots. By the same token,
the current state of the art of physical robot gr.lvironrnents imposes many constraints
and biases on the types of experiments that can be conducted. Consequently, results

from any physical environment must also be validated in an alternative setup. Two
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Figure 5-1: The interaction modeler cnvironment. The agents are shown as black
circles with white markers indicating their heading. The large rectangle indicates

the boundaries of their workspace. The agents are equipped with local sensors and
simplified dynamics.

different robot types were experimented on, in order to eliminate system-specific

hiases.

S’ince this work is concerned with basic principles of interaction and group behavior
rather than a specific domain, it is especially concerned with «ffects that are common

to both the modeled and the physical worlds.

5.3.1 The Agent [nteraction Modeler

The Interaction Modeler (IM) is a imulator which allows for modeling a simplified
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version of the physics of the world and the agent sensors and dynamics (figure 5-1).
The Modeler and the control software for the agents are written in Lisp. However,
for purposes of realism, the modeler is divided into three distinct components: the
simulator, the physics modeler, and the agent specification. The simulator executes
the agent specifications and moves the agents according to their control algorithms
and their sensory readings. The simulator implements the physics of the sensors, but
not the physics of the world. The latter are implemented by the physics modeler that
checks the positions and motions computed by the simulator against simplified phys-
ical laws, and applies corrections. The IM consists of a simple loop of the simulator
and the physics modeler.

The main purpose of the Interaction Modeler is to observe and compare phe-
nomena to those obtained on physical robots. However, the Modeler is also useful
for preliminary testing of group behaviors which are then implemented on physical
robots. Although it is difficult to directly transfer control strategies from simulations
to the physical world, the modeler is useful for eliminating infeasible control strategies
at an early stage, as well as tor testing vastly larger numbers of agents, performing

many more experiments, and varying parameter values.

5.3.2 The Mobile Robot Herd

Group behavior experiments are implemented and tested on a collection of 20
physically identical mobile robots affectiona.ely dubbed “The Nerd Herd.” FEach
robot is a 12”-long four-wheeled vehicle, equipped with one piezo-electric bump
sensor on each side and two on the rear of the chassis. Fach robot has a two-
pronged forklift for picking up, carrying, and stacking pucks (figure 5-2). The forklift
contains two contact switches, one on each tip of the fork, six infra-red sensors: two
pointing forward and used for detecting objects and aligning onto pucks, two break-

beam sensors for detecting a puck within the “jaw” and “throat” of the forklift, and
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Iligure 5-2: Bach of the Nerd Herd robots is a 12”-long four-wheeled base equipped
with a two-pronged forklift for picking up, carrying, and stacking pucks, and with a
radio transmitter and receiver for inter-robot communication and data collection.

\ / ‘

contact = = contact
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L ) o)
|
bump  bump

Figure 5-3: Each of the Nerd Herd robots is equipped with contact sensors at the
ends of the fork, piezo-electric bump sensors on each side and two on the rear of the

chassis, and six infra-red sensors on the fork. T'wo forward-pointing IRs are located
at the ends of the forks, two break beam IRs in the jaw and throat of the fork, and
two down-pointing IR for stacking pucks in the middle of ecach of the fork arms.
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two down-pointing sensors for aligning the fork over a stack of pucks and stacking
(figure 5-3). The pucks are special-purpose light ferrous metal foam-filled disks, 1.5
inches diameter and between 1.5 and 2.0 inches in height. Theyv are sized to fit into
the unactuated fork and be held by the fork magnet.

The robots are equipped wi.u radio transceivers for broadcasting up to one byte
of date. per robot per second. The system uses two radio base stations to triangulate
the robots’ positions. The radio system is used for data gathering and for simulating
additional sensors. In particular, radios are used to distinguish robots from other
objecis in the environment, an ability that cannot be implemented with the on-board
IR sensors!.

The mechanical, communication, and sensory capabilities of the robots allow for
~xploration of the environment, robot detection, and finding, picking up, and carrying
pucks. These basic abilities are used to construct various tasks and experiments, in
which the robots are run autonomously, with all of the processing and power on board.
The processing is performed by a collection of four Motorola 68HC11 microprocessors.
Two of the processors are dedicated to handling radio communication, one is used by
the operating system, and one is used as the “brain” of the robot, for down-loading
the control system used in the experiments. The control systems are programmed in
the Behavior Language, a parallel programming language based on the Subsumption

Architecture (Brooks 1990a).

5.3.3 Hardware Limitations

The types of tasks and experiments that can be implemented on the robots are
strongly limited by the various sensory, mechanical, and computztional limitations of

the hardware. In addition to the expected sensory and mechanical error, the robots

!The IRs are all the same frequency and mechanically positioned for obstacle detection rather
than communication.
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suffer from a number of problems. i

The mechanical steering system is extremely inaccurate and cannot guarantee
commanded direction. This property results in a slow reaction and recovery time,
forcing robot speed to be decreased in order to recover from steering errors.

The position triangulation system works sufficiently well when the robots are
within the predetermined range of the base stations. However, the exchange of in-
formation between the robots, which nominally ought to take place at 1Hz, suffers
from extensive loss of data. Consequcnt.]y, as much as half of the transmitted data is
lost or incorrect, and in spite of filtering the data, the robots must e further slowed
down in order to minimize errors due to bad radio data.

The infra-red sensors used for stacking have a long range, and vary in sensitivity.
Consequently, not only do different robots have different sensing ranges (which cannot
be tuned due to hardware restrictions), but the sensitivity between the two sides of
the fork on a single robot varies as well.

Given the ahove limitations, the robots are best viewed as a testbed for a subsct
of behaviors studied in this work, but are not intended as the exclusive source of data.

Although frustrating, some aspects of physical hardware are heneficial to exper-
imental validity. For instance, hardware variability between robots is reflected in
their group behavior. Even when programmed with identical software, the robots be-
have differently due to their varied sensory and actuator properties. Small differences
among individuals become amplified as r:.any robots interact over extended time. As
in nature, individual variability creates a demand for more robust and adaptive be-
havior. The variance in mechanics and the resulting behavior provides a stringent

test for all of the experimental behaviors.
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5.3.4 Experimental Procedure

All robot and modeler programs wers archived and all basic behaviors were tested
in both domains. All robot implementations of basic and composite behaviors were
tested in at least 20 trials2. In the case of the Modeler, all behaviors were tested in at
least 20 trials, with both identical and random initial conditions. Different strategics
for the same group behaviors were tested and compared across the two domains.

Modeler data was gathered by keeping a record of relevant state (such as position,
orientation, and gripper state) over time. The same data was gathered in robot
experiments through the use of the radio system. The system allowed for recording
the robots’ position and a few bytes of state over time. For each robot experiment,
the robots’ IDs and initial positions were recorded. Some of the experiments were
conducted with random initial state (i.e., random robot positions), while in others
identical initial state was used in order to measure the repeatability of the behaviors.
All robot data was alsu recorded on video tape, for validation and cross referencing,.

Throughout this chapter, the Interaction Modeler data is shown in the form of
discrete snapshots of the global state of the system at relevant times, including initial
state and converged state. The robot data is plotted with the Real Time Viewer
(RTV), a special purpose software package designed for recording and analyzing robot
data®. RTV uses the transmitted radio data to plot, in real-time, the positions of
the robots and a time-history of their movements, i.e. a trail, the positions of the
previously manipulated pucks, and the position of home. It also allows for replying
the data and thus recreating the robot runs.

The robots are shown as black rectangles aligned in the direction of their heading,
with theit ID numbers in the back, and white arrows indicating the front (see, for

example, figure 5-7). In some experiments rohot state is also indicated with a symbol

2In the case of foraging, most data was obtained with another set of robots, described in sec-
tion 9.1.
3RTV was implemented and maintained by Matthew Marjanovié.
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or a bounding box. In all data snapshots, the size of the rectangles representing the
robots is scaled so as to maintain the correct ratio of the robot/environment surface
area, in order to demonstrate the relative proximity of all active robots. The bottom
of cach plot shows which of the twenty robots are being run. The corner display

shows elapsed time for each snapshot of the experiment.

5.4 Basic Behavior Specifications

This section gives formal specifications for each behavior in terms of the goal it
achieves and maintains.
R is the set of robots: R = {R;}, 1 <i<n
Basic behaviors in 2D space are specified in terms of positions p, distances d, and
distance thresholds 6,u0id; bdisperses and baggregate:

; Thome

Di = Phome =
Yi Yhome

dhome.:’ = \/(whome - '7::')‘2 + (yhome - yi)2

di = /(@i — 23 + (i — ;)

N is the neighborhood operator which, given a robct R and a distance threshold 6,

returns all other robots within that neighborhood:
N(i,6)={j € R d;; < 6}

C is the centroid operator which, given a robot R and a distance threshold 6, returns
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the local centroid:
. Y ieN(i5) P
C(z,6) = ==
8= "IN, 0)

Using this notation, the basic behavior goals are specified as follows:

Avoidance:

‘v’(z,]) di.j > 6auaid

Following:

t = leader, j = follower
dp; _| 9P ,
di '(Pt"pJ) _" dt ”" (P:—PJ) “

The goal of following is to achieve and maintain a minimal angle § between the
position of the leader and the heading of the follower. Thus, the above equality is

derived from:

P (. — -
cosf = dp‘“ (pi — pi)
| =z Il (i = p3) ||
0=0, cosf=1
Dispersion:
\VI(Z,]) di,j > 6disperse and 6d|'aperac > 6auoid
Aggregation:
V(Z,J) di.j > Sauoid and di.j < 6ag_qregate
Homing:
.o . . dp_,' )
V"a] dt,] > 6avmd and 'Et" . (p] - phomk) <0
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5.5 Basic Behavior Algorithms

This section presents the algorithms used to implement each of the proposed basic
behaviors in the Interaction Modeler and on the robots. All algorithms will be given

formally as velocity commands of the form:
command( 2, v)

where R is the robot and v is some function of R’s position, orientation, and its
location relative to the local robot distribution. The formal notation will be translated

into algorithmic pseudocode for each of the implemented behaviors.

5.5.1 Avoidance

Strategies for avoiding collisions are perhaps the most studied topic in mobile robo-
tics. The work in this thesis was concerned with finding avoidance strategies that
performed well in group situations and, in particular, did not decline or oscillate
with increasing group sizes. Finding a guaranteed general-purposc collision avoid-
ance strategy for an agent situated in a dynamic world is difficult. In a multi agent
world the problem can become intractable. Biological evidence indicates that insects
and animals do not have precise avoidance routines (Wehner 1987).

Inspired by such simple strategies, the following general avoidance behavior was

used:

s(0
command(R, v cos(0+u) )
sin(0 + )

where u is R’s orientation and € is the incremental turning angle away from the

obstacle. The following simple Avoid-Other-Agents rule was devised:
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Avoid-Other-Agents:
If ancther apent is within d_avoid
If another agent is on the left
turn right
otherwise turn left.

The Avoid-Other-Agents behavior takes advantage of group homogeneity. Since
all agents execute the same strategy, the behavior can rely on and take advantage of
the resulting spatial symmetry. If an agent fails to recognize another with its other-
agent sensors (in this case radios), it will subsequently detect it with its collision-
avoidance sensors (in this case IRs), and treat it as a generic obstacle, using the

Avoid-Everything-FElse behavior:

Avoid-Everything-Else:
If an obstacle is within d_avoid
If an obstacle is on the right only, turn left, go.

If an obstacle is on the left only, turn right, go.
After n consecutive identical turns, backup and turn.

e

obstacleis—on both sides; stopand wait-
obstacle persists on both sides,
turn randomly and back up.

[
H Hh
E B

A provably correct avoidar.ce strategy for arbitrary configurations of multiple
agents 1s difficult to devise. In order to guarantee convergence, these strategies take
advantage of the unavoidable noise and errors in sensing and actnation, which result
in naturally stochastic behavior. This stochastic component guarantees that the an
avoiding agent will not get stuck in infinite cycles and oscillations. In addition to the
implicit stochastic nature of the robots’ behavior, Avoid-Everything-FElse also utilizes
an explicit probabilistic strategy by employing a randomized move.

Different variations of the above avoidance algorithm were experimented with,
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testing simpler versions and different values of n. The various algorithms were com-
pared based on the amount of time the agent spent avoiding relative to the amount,
of time spent moving about freely. This ratio is an indirect measure of the quality
of the avoiding strategy in that the more time the agents spend avoiding the worse
the strategy is. Avoiding time is dependent on the agent density, so it was used as
a controlled variable in the experiments. The ratio used to evaluate avoidance is an
indirect metric; a direct measure of being stuck would be more useful, but the robots
did not have the appropriate sensors for determining this state.

Because of the great space of possible configurations of multiple agents, it was
difficult to measure “average” performance of an avoiding algorithm. However, no

significant performance differences were found among the strategies that were tested.

5.5.2 Following

Following is defined with respect to two agents, the leader and the follower. It can

be achieved with a simple rule that steers the follower to the position of the leader:

Pleader — Pfollower
“ Pleader — Pjollower ”

command(R, v(

It can be implemented as a complement of the avoidance behavior:
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rollow:
1f another agent is within d_follow
~ If an agent is on the right only, turn right.

If an agent is on the lert only, turn left.

If an agent is newly in front
keep going and count time,

If an agent is in front persistently
- stop for an instant.

All but “"{,he last rule above are direct complements of the Awvoid-FEverything-FElse
behavior. Tl‘le last rule is needed to prevent collisions. In the case of the robots, it
converts a binary IR sensor into a range sensor through the use of time. Distance
from the objé:ct being followed in terms of time-to—collision is estimated from the
time an ob ject has continuously remained within the IR sensor range.

Figure 5-4“il]ustrates following on three robots. Additio::nal data on following will
be prese‘nted‘and analyzed in the next section.

Incidentally, this approach to following models tropotaxic behavior in biology,
in which two sensory organs are stimulated and the difference between the stimuli
determines the motion of the insect (McFarland 1987). Ant osmotropotaxis is based
on the differential in pheromone intensity perceived by the left and right antennae
(Calenbuhr & Deneubourg 1992), while the agents described here use the binary state
of the two directional IR sensors.

Under conditions of sufficient density, avoidance and following can produce more
complex global behaviors. For instance, osmotropotactic behavior of ants exhibits
emergence of unidirectional lanes, i.e., regions in which all ants move in the same

direction. The same lane-forming effect could be demonstrated with robots executing

following and avoiding behaviors. However, more complex sensors must be used in
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Figure 5-4: An example of following with three robots. Continuous time trails are
shown. In spite of deviations in individual paths, the queue is conserved.
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order to determine which direction to follow. If using only IRs, the agents cannot
distinguish between other agents heading toward and away from them, and are thus

unable to select whom to follow.

5.5.3 Dispersion

A robust dispersion behavior can be designed as an extension of the existing avoid-
ance. While avoidance relies on the presence of a single agent, dispersion uses the
local distribution of all of the nearby agents (i.e., the locations of other agents within
the range of the robot’s sensors) in order to decide in which direction to move. The al-
gorithm below computes the local centroid to determine the local density distribution

of nearby agents, and moves away from the highest density:

C(R1 6disperse) — PR
“ C(Ra 5diaperse) — PR ”

))

command(R, —v(

Centroid-Disperse:
If exactly 1 agent is within d_disperse
avoid, then go forward.

If multiple agents are within d_disperse
move away from the Centroid_disperse, then go forward.

Otherwise, stop.

Under conditions of high density, the system can take a long time to achieve a
dispersed state since local interactions propagate far and the motion of an individual
can disturb the state of many others. Thus, dispersion is best viewed as an ongo-
ing process which maintains a desired distance between the agents while they are
performing other tasks.

A number of dispersion algorithms were tested in the modeled environment as

well. As in the robot implementation, all of the approaches were based on detecting
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the position of the nearest agents. However, the modeler allowed for using more pre-
cise information, such as the exact distance and direction of the nearest neighbors.

The following algorithm was most successful in terms of speed and reliability:

Neighbor-Disperse:
If 1 or O neighbors are within d_disperse
stop.

Find n nearest neighbors within d_disperse
Compute the angle between them,

Compute the negative of the bisector,

align the agent in that direction and go forward.

This algorithm was effective in the modeler but did not transfer to the available
robots due to their sensing limitations.

Figure 5-5 shows the initial state and the final state of a dispersion experiment
using the above centroid-based dispersion rule tested in the Interaction Modeler.
Initially crowded in one part of the available free space, the agents apply the sim-
ple dispersion rule in order to to establish maximum available inter-agent distance.
Figure 5-6 shows the same dispersion algorithm applied to four robots.

Dispersion was also evaluated based on time to convergence. Algorithms using
the local centroid, and the nearest two agents, were compared to each other and to
a potential field summation approach, in which the scalar distance from each nearby
agent was proportional to the magnitude of a repulsive vector associated with it.
The vectors of all nearby agents were summed and the agent moved in the direction
of the resultant. The performance of the three algorithms was compared using two
different initial conditions, random and densely packed. Both were tested in order
to normalize for different density distributions through the lifespan of the task. As
expected, the random initial position results in faster convergence times than a packed

initial condition for all three algorithms. No statistically significant difference was

102



W 1NE e cwEe I s

X e
z: » o SR
© & 9 E—
¢ 'Q. oog®
¢ 0
©s? & o
¢0 20¢ I ¢S
e & 09 o ® st
® ‘ L
?, . S

wogn
) L e e il seaset 30 init Tiaeiis-lalt evisvuls S grouey Fepert S'print-state)
Doy (/b0 17 gny
fran-irate Pwia))

P R
] Fortisin dpdetier ot
—_ ——<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>