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Thin film evaporation on microstructured surfaces is a promising strategy for high heat flux 

thermal management. To enhance fundamental understanding and optimize the overall heat 

transfer performance across a few microns thickness liquid film, however, requires detailed 

thermal characterizations. Existing characterization techniques using infrared thermometry or 

contact-mode temperature sensors such as thermocouples and resistance temperature detectors 

(RTDs) cannot accurately measure the temperature of the thin liquid film near the three-phase 

contact line due to the restriction of low spatial resolution or temperature sensitivity. In this work, 

we developed a non-contact, in situ temperature measurement approach using a custom micro-

Raman spectroscopy platform which has a spatial resolution of 1.5 µm and temperature sensitivity 

within 0.5 oC. We utilized this method to characterize thin film evaporation from fabricated silicon 

micropillar arrays. We showed that we can accurately measure the local thin film temperature 

and map the overall temperature distribution on the structured surfaces at different heat fluxes. 

We investigated the effects of micropillar array geometries and showed that the temperature rise 

of the liquid was reduced with decreasing micropillar pitch due to the increased fraction of thin 
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film area. This work offers a promising method with micro-Raman to quantify phase change heat 

transfer on microstructured surfaces. This characterization technique can significantly aid 

mechanistic understanding and wick structure optimization for various phase-change based 

thermal management devices.  

Evaporation is a common phenomenon in nature and widely used in industrial applications. It plays 

an increasingly important role in thermal management1, water purification2, humidification3 and 

vapor generation2,4. It has been widely that reported the heat transfer of evaporation can be 

significantly enhanced by micro/nanostructures5–9. For this reason, thin film evaporation on 

microstructured surfaces has attracted particular interest for high heat flux thermal management, 

especially for cooling high-performance electronic devices6–9 (e.g., micro-processors1 and high-

power radio-frequency amplifiers10,11 with highly concentrated heat generation > 100 W/cm2). 

Several unique properties highlight the advantage of thin film evaporation. First, the large enthalpy 

of vaporization enables efficient heat dissipation5,8. In addition, the microstructures create liquid-

vapor interfaces that generate high capillary pressure during thin film evaporation, allowing for 

passive liquid transport5,6,8 (Fig. 1(a)). Furthermore, near the three-phase contact line, there is a 

several micron thin liquid film (defined as the thin film region in this work; see red dashed box of 

the zoomed in unit cell in Fig. 1(a))5–8. The heat transfer across this liquid thin film is of very low 

thermal resistance, which has been shown to account for most of the heat dissipation during 

evaporation12. 

Measuring the temperature of this thin film region is, therefore, key to understanding the 

fundamental enhancement mechanisms and optimization of the structure geometry. However, 

directly probing local temperature of the thin film region is difficult using contact-based 

RTDs/thermocouples or infrared thermometry8,13. Specifically, contact-mode sensors are usually 
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placed on the backside of the sample (Fig. 1(a)) and thus can only characterize remotely the 

thermal effects averaged over several millimeters rather than locally on the front structured 

surface8. On the other hand, infrared thermometry, while capable of providing some temperature 

information of the front side, has poor spatial resolutions (~10-30 µm)14,15 and is subject to large 

temperature uncertainties (~5 °C) when measuring the microscale thermofluidic system16. The 

other weakness of infrared thermography is that it does not work well at temperatures below 50 or 

70 °C (as there are not enough photons emitted in the 3-5 μm band at these low temperatures). 

In this work, we developed a non-contact, in situ temperature measurement approach using micro-

Raman thermometry to investigate thin film evaporation from microstructured surfaces. Due to the 

superior spatial resolution (≈ 1 µm) and high temperature sensitivity (≈ 0.5 °C), micro-Raman 

thermometry has been widely used to measure the localized temperature rise11,12 for various 

semiconductor materials17–19and microelectronic devices20,21. Meanwhile, the capability of micro-

Raman in studying phase change heat transfer has not yet been demonstrated. Here, we used silicon 

micropillar arrays (Figs. 1(b) and 1(c)) as a platform for probing thin film evaporation with micro-

Raman. Since silicon emits strong Raman scattering, we can directly focus the laser excitation on 

the top of each silicon micropillar and measure the temperature of the thin film region. By using 

this technique for various micropillar arrays, we can obtain insights into both the local thin film 

region and the temperature distribution of the entire structured surface. Additionally, the general 

thermometry method is not restricted to understand thin film evaporation, but can be also widely 

applied to study many thermofluidic problems at the microscale. 

We fabricated test samples with a total microstructured area of 1 cm2 (red dashed box in Fig. 1(b)). 

The cylindrical micropillars have diameters d of 20 µm and heights h of 50 µm (see the scanning 

electron microscope (SEM) image in Fig. 1(c)). The pitch l of the micropillar arrays was varied 
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from 30 µm to 100 µm to investigate the geometrical effects on thin film evaporation. On the 

backside of the sample, we deposited a 150 nm thick platinum layer which supplies uniform heat 

flux to the structured area (see Supplementary S1 for details). In this work, all structured samples 

were named as “diameter-pitch”. For example, the micropillar array with 20 µm diameter and 50 

µm pitch shown in Figs. 1(b) and 1(c) was denoted as “20-50”.   

  

FIG. 1. (a) Schematic of thin film evaporation on a structured surface. Liquid wicks into the microstructures due to capillarity. Near 

the three-phase contact line in each unit cell, there is a several micron thin liquid film (see “Area of Interest”). The majority of heat 

dissipates through the thin film region (see red dashed box which is a magnification of (a)) due to the very low thermal resistance 

across it. Temperature sensors such as RTDs are typically placed on the backside of the substrate which is far away from the thin 

film region. (b) Image of the front side of a representative fabricated silicon test sample. The red dashed box represents the 1 cm2 

structured area where evaporation occurs. (c) SEM image of the micropillar array on the structured area, where d, h and l represent 

the pillar diameter, pillar height, and pitch of the array, respectively.   

To obtain accurate local temperature measurements, we designed and built a custom micro-Raman 

system. Micro-Raman spectroscopy analyzes the inelastic scattering between an incident photon 

and an optical phonon in the specimen, which is known as the Raman effect. As the phonon 
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frequency (also known as the Raman shift or Raman peak position) is temperature dependent, 

micro-Raman spectroscopy can be used to measure the temperature. Fig. 2(a) shows the schematic 

of the optical path (see Supplementary Material S2 for details on the micro-Raman setup). The 

Raman scattering was excited by a 633 nm wavelength diode laser. This laser excitation was 

focused by a 50X microscope objective with a numerical aperture (NA) of 0.55. The corresponding 

laser spot diameter on the micropillar was ~ 1.5 μm. The uncertainty of the measured Raman peak 

position was controlled within 0.01 cm-1 and the corresponding temperature uncertainty was below 

0.5 °C (see Supplementary Material S2 for the uncertainty analysis). We used a low laser power 

at 0.5 mW to avoid laser heating effect (see Supplementary Materials S2 for the laser heating 

analysis). We showed an example Raman peak of silicon (marked as star in Fig. 2(a)), calibrated 

by neon emission lines (see the spectrum shown in Fig. 2(a)). We measured the temperature of the 

sample by detecting the change of Raman peak position. The change of Raman peak position and 

the corresponding temperature rise is given by, 

Δ𝜔 = 𝐴(𝑇 − 𝑇𝑟𝑒𝑓) (1) 

where Δ𝜔 is the change of Raman peak position, (𝑇 − 𝑇𝑟𝑒𝑓) is the temperature rise with respect 

to the reference temperature 𝑇𝑟𝑒𝑓. We used the ambient temperature as the reference temperature 

in this study. The proportionality constant 𝐴 is known as the linear temperature coefficient of the 

structured sample, which was -0.0225±0.002 cm-1/°C (see Supplementary Materials S3 for 

temperature coefficient measurement). The measured temperature coefficient in this work shows 

good agreement with the results reported by Beechem et al.21 (-0.022 cm-1/°C).  

We integrated the micro-Raman setup with a thin film evaporation test rig. Fig. 2(b) shows the 

schematic of the flow loop. We used a syringe pump to supply de-ionized degassed water and a 
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second syringe pump to control the reservoir water level to avoid flooding on the structured area 

(see the magnified image of Fig. 2(b) for details of the sample fixture). The reservoir was 

maintained at 40 °C (see Supplementary Material S4 for details of experimental procedures). We 

characterized heat loss through the system by measuring a non-wetting structured surface (see 

Supplementary Material S5 for details of heat loss characterization). In the absence of evaporation, 

the heating power represents the heat loss Qloss which is proportional to the temperature rise 

(proportionality is 0.060 W/°C). Therefore, the heat flux q” through evaporation of water was 

given by, 

𝑞′′ =
𝑄𝑡𝑜𝑡 − 𝑄𝑙𝑜𝑠𝑠

𝑆
 (2) 

where Qtot is the total Joule heating power and S is the structured area (1 cm2 in this study).  
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FIG. 2. (a) Optical path of the custom micro-Raman setup interfaced with thin film evaporation setup developed in this work. “BS” 

and “L” represent the beam splitter and lens, respectively. Dotted black box shows an example Raman spectrum of silicon 

(indicated by the star) with 633 nm excitation. The other three peaks are the neon emission lines used for calibration. (b) Schematic 

of the thin film evaporation test rig integrated with a flow loop which is interfaced with the micro-Raman system. Right: Optical 

image of the sample fixture. The sample fixture was placed on a microscope adaptor plate. Two XYZ stages were used to hold the 

bended needles, which infuse/withdraw water. The structured sample was fixed by sample cover plate on the right side.   

We experimentally demonstrated the high spatial resolution and temperature sensitivity of micro-

Raman thermometry by measuring the temperature distribution on top of a single micropillar. As 

shown in Fig. 3, we performed temperature mapping (0.5 μm scanning step size) using micro-

Raman thermometry on a micropillar located at the center of a 20-60 structured sample with an 
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applied heat flux q” of 1 W/cm2 and 21 W/cm2. In both cases, as expected, the temperature was 

very uniform at 46 °C and 100 °C due to the relatively high thermal conductivity of silicon 

compared to liquid water (see Supplementary Material S6 for detailed analysis). This uniform 

temperature distribution was also consistent with our heat transfer simulations (see Supplementary 

Material Fig. S7 for simulation results). As the thin film region is isothermal12, we could obtain 

the temperature of the liquid thin film near the edge of the micropillar by measuring any arbitrary 

point on top of the micropillar. In this study, therefore, only the temperature at the center of the 

micropillar was measured.         

  

FIG. 3. Top-down view of the temperature distribution of a single micropillar located at the center of a 20-60 sample with an 

applied heat flux of (a) q” = 1 W/cm2 and (b) q” = 21 W/cm2. The step size of the micro-Raman temperature mapping was 0.5 µm.  

To understand the effects of micropillar array geometries on heat transfer performance, we 

characterized the evaporation process by measuring the local temperature of the liquid thin film at 

various heat fluxes and on different structured samples. The micro-Raman probe was focused on 

a micropillar located at the center of the structured area (see the inset of Fig. 4(a)) for all samples. 

The heat flux q” was increased gradually from 0 to 30-40 W/cm2 until dryout was observed. We 

determined the dryout when the liquid at the end of the structured area started receding. The dryout 

heat fluxes were relatively low because of the long wicking length L (1 cm) chosen in this study, 

and qdryout scales with 1/L2. Fig. 4(a) shows the evaporation curves of different structured samples. 

There are two distinct regimes based on the slope of the curves. When the temperature of the thin 
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film region was well below the saturation point (100 oC at 1 atm), the evaporation was limited by 

vapor diffusion in the air and increased slowly with temperature rise. The heat dissipation in this 

regime significantly relied on the sensible cooling of the liquid as well as the liquid-to-vapor phase 

change. When the temperature approached the saturation point, evaporation became the dominant 

heat transfer mechanism and the heat flux increased sharply with a slight temperature rise. On the 

20-100 sample, the maximum temperature was found to be 106 °C, indicating the liquid thin film 

was in a superheated state during evaporation. This maximum temperature decreased as the pitch 

decreased. The evaporation curves generally shifted to the left with decreasing pitch, indicating 

that higher heat transfer coefficients were achieved on the smaller pitch samples. Fig. 4(b) shows 

the liquid film temperature as a function of the micropillar pitch at various heat flux conditions. 

The effect of small pitch in reducing the liquid film temperature was more significant at relatively 

high heat fluxes (20-30 W/cm2) than at low heat flux conditions (below 15 W/cm2). For example, 

when the heat flux was 27 W/cm2, the liquid film temperature was reduced by approximately 8 oC 

when the pitch decreased from 80 μm to 30 μm. This improvement in evaporation heat transfer 

can be explained by the increase in thin film area. With the decrease of the pitch, more thin film 

regions around the micropillar were created per unit area, which offer more effective areas to 

dissipate the heat load (Fig. 4(c)).         
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FIG. 4. (a) Evaporative heat flux as a function of temperature rise for various structured samples. The experiments were stopped 

when dryout was observed at the end of the structures. Inset: Optical image of sample showing the location of the measured 

temperature, i.e. the red spot.  Schematic showing structure effects on thin film evaporation. Reduced liquid film temperature 

at small pitch sample is attributed to the creation of more thin film area. (b) The liquid film temperature as a function of 

micropillar pitch at a variety of heat fluxes. At the same heat flux, liquid film superheat was reduced as the pitch decreased. 

For the 100 μm pitch, dryout already occurred at 27 W/cm2 and therefore no data point is shown. 

We also studied the effects of micropillar array geometries on the temperature distribution of a 

structured surface sample. We scanned the temperature distribution from 1 mm to 9 mm along the 

capillary flow direction on 20-30, 20-80, and 20-100 samples (see the XY coordinate in the inset 

of Fig. 5). The heat flux q” was maintained at approximately 22 W/cm2. As this heat flux was 

significantly smaller than the dryout heat flux for the 20-30 sample (33 W/cm2), the meniscus in 

each unit cell was almost flat, resulting in similar local heat transfer coefficients (see the schematic 

of the inset of Fig. 5). Therefore, the temperature distribution on the 20-30 sample was uniform 

along the flow direction. However, nonuniform temperature distributions were observed on the 

20-80 and 20-100 samples (Fig. 5). Generally, along the flow direction, the temperature of the 

micropillar increased first and then dropped slightly (as small as 1-2 °C). The increase of 

temperature at the inlet of the structured surface is attributed to the decrease in sensible cooling 

and heat conduction effects because the water in the reservoir was kept at about 40 °C (see 
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Supplementary Material S4 for more details). The slight decrease of temperature from the middle 

part (3 mm for 20-100 and 4 mm for 20-80 samples) to the end (9 mm) is due to the interface shape 

change. As this heat flux (q” = 22 W/cm2) was close to the dryout heat fluxes of 20-80 and 20-100 

samples (26 W/cm2 and 23 W/cm2, respectively), the apparent contact angle of the liquid in the 

last unit cell approached the receding contact angle (see the schematic of the inset of Fig. 5). 

Consequently, the liquid films near the three-phase contact line became thinner along the flow 

direction. Since the thinner liquid film had smaller thermal resistance, the temperature decreased 

from the middle of the sample towards the end gradually.    

 

FIG. 5. Temperature distribution along the flow direction of different structured samples at a constant heat flux q” = 22 W/cm2. 

When the heat flux approached the dryout heat flux of the sample, the temperature increased first due to the sensible cooling and 

heat transfer to the reservoir and then decreased 1-2 °C gradually from the middle part to the end due to the change of the 

meniscus liquid-vapor interface. Inset: Optical image on the front side of the test sample and the XY coordinate used for 

scanning. Schematics of the meniscus liquid interface varying along the capillary flow direction on different structured samples. 

In summary, we showed the use of micro-Raman spectroscopy for in situ temperature 

measurement of liquid thin film in micropillar arrays during evaporation, where 1.5 µm spatial 

resolution and 0.5 °C temperature sensitivity were achieved. We precisely measured the liquid 

film temperature in superheated state which cannot be measured by the conventional thermometry. 

http://dx.doi.org/10.1063/1.5048837


12 
 

We characterized evaporation from micropillar arrays of different geometries, showing that the 

liquid film temperature reduced as the pitch of the micropillar decreased due to the increase of thin 

film area. We also found the nonuniform temperature distribution occurred along the flow direction 

when the sample approached dryout. The high resolution local temperature measurement method 

presented in this work is not only beneficial to the characterization and optimization of thin film 

evaporation but can be potentially utilized to reveal physical insights into a variety of other phase 

change heat transfer processes such as condensation and pool/flow boiling on structured surfaces. 

See supplementary materials for more information on sample fabrication, experimental setup, 

sample calibration, additional experimental results, simulation and data analysis. 
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