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Abstract

Conventional real estate price indices provide a single measure for the path of asset prices

over time (controlling for the quality of the representative or average property). But it

could be that properties have different price dynamics based on the price segment they

are traded in. On the demand side, investors at different price points are differentiated

by the amount of capital the investor has at their disposal and the type and source of

financing. Smaller, private investors cluster at lower price points, while large institutions

dominate the high price points. On the supply side, properties at different price points

may serve different space markets with different types of tenants, and may reflect differ-

ent supply elasticity and land/structure value ratios. This paper uses an unconventional

approach, quantile regression, to estimate price indices for different price segments in

commercial real estate. Our results show that there are indeed large differences in price

dynamics for different price points. These differences are suggestive of a lack of integra-

tion in the property asset market, because we find apparent differences in the risk/return

relationship. Lower price point properties exhibit less risk (in the form of volatility and

cycle amplitude), but without evidence of lower total returns. Lower price point proper-

ties also show greater momentum and hence, predictability.
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vestment property; equilibrium asset pricing; price of risk.

JEL-codes: R32, C01.

∗This paper was funded by the Real Estate Research Institute. We would also like to thank Real Capital

Analytics for providing to us the data. Mike Acton & Paige Mueller are also greatly acknowledged for their

comments as our RERI mentors.
†Email: dgeltner@mit.edu
‡Email: avdminne@mit.edu, corresponding author

1

mailto:dgeltner@mit.edu
mailto:avdminne@mit.edu


1 Introduction

Asset price dynamics are a fundamental and important consideration for real estate investors.

Price dynamics include characteristics such as the long-term trend, volatility, momentum,

cyclicality, and co-movements in property prices. These characteristics are important for

portfolio analysis including both strategic and tactical investment planning. They largely

determine the nature and amount of investment risk. Combined with income metrics such

as cap rates or yields, price dynamics determine the total returns that investors care about

and relate to the investment risk. Average total returns should reflect investment risk.

What we know about commercial property price dynamics is based on price indices such

as NCREIF, Real Capital Analytics, Green Street, NAREIT, etc. These indices reflect

aggregate price movements, or central tendencies, in the sense that they generally track

with a single index the entire asset class or large sectors of it or entire metro markets.

Such aggregate indices represent properties that span a wide range of different price points

for investors, from properties that sell for only a few million dollars to those that sell in

the hundreds of millions. Yet many institutional investors aim at different price points.

Sovereign Wealth Funds (SWF) may only consider very large (high price point) properties,

while small institutions and private investors may be confined to smaller (lower) price points.

It is also possible in principle to create funds that target different price points, for example,

by aggregating portfolios of many small properties, or by dividing up shares in fewer larger

properties. Thus, price point analysis has important practical value. Figure 1 shows the

proportion of purchases at different price ranges made by different categories of investors,

as classified by Real Capital Analytics (RCA). Institutional investors, public REITs, and

foreign investors almost solely invest in the higher price points, while private investors and

owner/occupiers invest primarily at the lower price points.

The present paper aims to disaggregate the price indices much in the way that a prism

breaks white sunlight into its constituent colors. We develop price indices that explicitly,

separately track properties at different price points. This allows a more detailed and informed

look at whether, and how, price dynamics differ by price point. We also analyze cap rates

corresponding to the different price points. This enables an exploration of risk and return

by price point, as the risk is largely reflected in the price dynamics, and the total return is

reflected in a combination of price trend and income yield. As our analysis is based on the

Real Capital Analytics (RCA) sample of transactions over $2,500,000, we do not consider

the smallest “general” (or “mom-&-pop”) properties. Our analysis is focused on the realm

of ‘investment’ or ‘institutional’ real estate.

Another way to think about what the analysis in this paper does is that we quantify the

full distribution of investment property prices at each period of time, and we form price-point
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Figure 1: Percentage of properties (not total value) bought by type of investor, per five
price-buckets. The starting value of the bucket is given ×1, 000. For example, the price of
over 50% of all the properties bought by institutional investors was $16.5 million or more
between 2005 – 2015. Source of data: Real Capital Analytics.

specific indices from these ditributions. We produce annual indices for the US between 2005

and 2015. This is a particularly interesting span of history because it includes the financial

crisis of 2007 – 2010.

Technically, we use the approach developed by Machado and Mata (2005) to estimate the

different price indices for commercial real estate based on different price points. In essence,

the indices are produced by connecting the same quantile of the price distribution from one

period of time to the next.

Our results show a clear pattern. The quantile indices reveal that higher price points in

the property distribution have more volatility and greater cyclical amplitude over time, less

autocorrelation and move first, compared to the lower price points. While the higher price

points have also exhibited greater mean appreciation, this difference is very slight in relation

to the difference in apparent risk and predictability. The spread between the high and low

price points’ average year-to-year price growth is less than 20 basis points. But the cap rate
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is some 40 basis points lower for the high price point properties in our analyzed period. Thus,

the total return is actually higher for the apparently lower risk low price point properties.

The analysis in this paper is closely related to the economic literature on changes in house-

hold earnings inequality, as well as studies of price dynamics in the art market, and urban

economic studies of housing markets. For example, Buchinsky (1994) and Dickey (2007) find

that the earnings of high-income workers have risn more than that of low-income workers.

Scorcu and Zanola (2011) find that the same Picasso art-collectors appreciate differently the

characteristics of low- and high-price items. Picassos that reach an extraordinary monetary

value, the ”top lots”, appreciated far more than other works of the same artist between 1988

and 2005. However, our work is most closely related to the work done by McMillen (2008). He

uses the same Machado and Mata (2005) decomposition that we use, for housing in Chicago

for two periods, 1995 and 2005. He concludes that high-priced homes in Chicago appreci-

ated the most between 1995 and 2005. The higher appreciation rates are explained solely

by differences in the hedonic price model coefficients between those two dates, the so-called

”shadow prices”. In other words, it was pure price change, not change in the quantitative or

qualitative characteristics of the houses, that drove the differential pricing results. (It was

not that houses in the upper-end of the price distribution became relatively larger in size

over time, for example.)

The present paper is structured as follows. The background, including a discussion of

the possible theoretical reasons for price segmentation in the commercial property market, is

given in Section 2. Section 3 provides the empirical analysis methodology. Section 4 describes

the data and gives some descriptive statistics. In Section 5 the results are presented, and

Section 6 concludes.

2 Background

In real estate, a standard hedonic or repeat-sales price index, or indeed an appraisal-based

index for that matter, provides a single measure for the movement in market values of a

subject population of properties during any period of time (McMillen, 2008). This should

be adequate provided the subject population represents a single, integrated asset market, a

single “population” of properties in terms of pricing.

Fundamental micro-economic theory tells us that, within a single market, the “Law of One

Price” should prevail. That is, the same good cannot sell at different prices at the same time

within the same market. Otherwise, “arbitrage” would be possible, and in a well-functioning,

integrated market, the exploitation of any such arbitrage opportunities would drive prices

to where no such opportunities exist. Thus, a single index tracking the price of the good in

question is all that is needed (Modigliani and Miller, 1958; Rosen, 1974; Freeman III, 1979).
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In the context of the asset market for investment properties, the “goods” being traded

are, essentially, assets that provide investment risk and return. The Law of One Price applies

to the price of risk in these assets, the ex ante investment return premium (over the riskfree

rate) per unit of investment risk (as the market perceives and cares about, hence, prices, such

risk). That price of risk will be evident in the risk and return quantified by a combination of

the income yield and the price dynamics of the population of properties that is the subject

of the price index. In particular, the price dynamics will reveal the volatility and cyclicality

in the asset returns, the major sources of risk. The average income yield (approximated by

the average cap rate) can be combined with the average price growth to provide the average

total return, which is how the investor is compensated for taking on the investment risk.

But suppose the subject population of properties does not represent a single, integrated

market. This could happen in two different ways that are important for us to distinguish in

this paper.

First, we could simply have different “goods”, different products being traded, but no

barriers to cross-trading between the market segments. This might typically occur across

different space markets, for example, different property usage type sectors or different metro

markets. But if the properties are all at similar price points, such that similar investors and

sources of capital are involved, then there should be little in the way of barriers impeding

trading between the market segments. In that case we might observe different price dynamics

in the segments, but we should not observe a different price of risk. The different space

markets might drive one market to have a higher growth trend and lower cap rate, for

example. Or different space markets could result in different volatility or cyclicality in the

asset prices. This could imply different amounts of risk, hence different equilibrium total

return expectations. But the relationship between risk and return should be very similar

across the market segments. That is, they should all have the same risk premium per unit

of risk, the same ”Treynor Ratio,” in principle. Otherwise, investors would trade across the

market segments, selling out of the markets with lower returns per unit of risk and buying

into the markets with higher returns per unit risk. This would bid down and up the prices

in the respective markets until equilibrium (the same price of risk) prevailed.

Such a situation could also exist in the context of price-point indexing. We might observe

different price dynamics, separate price-point indices that do not appear as “parallel” lines

over time. But the risk/return relationship would be similar across the price-point indices.

Indeed, it could be differences in the space markets in which the different price point proper-

ties rent which drive the different asset price dynamics. For example, lower price properties

might rent to a different class of tenants with different demand drivers.

This type of market segmentation, effectively trading different ”goods”, is very important

for investors to understand. It can be very important in portfolio planning. For one thing,
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it can suggest ways to efficiently diversify the real estate investment portfolio. The study of

such segmentation, differential price dynamics, as a function of price points, is the first focus

of this paper.

But now consider the second way in which the population of properties tracked by an

index might not represent a single, integrated market. Suppose there are barriers to the

movement of capital between properties in the different market segments. In the context of

the current paper, there could be barriers to capital flow across the different price points.

For example, investors in small properties might not be able to invest in large properties,

and investors in large properties might not be able to invest in small properties. In this case

the property asset market would not only be segmented, but would be what economists refer

to as “not integrated.”

When market segments are not integrated, the Law of One Price need not then hold

across the price-point segments (or sub-markets). In such a situation we could have multiple

equilibria, a different equilibrium price prevailing in the different segments. Not only would

the price-point indices probably display different price dynamics (non-parallel lines), but

more to the point, the risk/return relationship would be different between the price points,

a different price of risk. Different Treynor Ratios could prevail in the different segments.

Clearly, one motivation to study this question is that if different pricing exists in different

market segments, then arbitrage opportunities may exist for investors who can figure out

how to break through the barriers that prevent the market from integrating.

With the above in mind, let us consider why, or how, different price points of investment

property could exhibit different pricing dynamics. There could be several reasons or sources

for such a phenomenon, relating to the demand or supply sides of the space or asset markets.

Some of these causes do not necessarily or particularly imply differential pricing of risk,

but merely different price dynamics. Others possibilities could indeed suggest barriers or

asymmetries which could support differential risk pricing.

First, consider the property asset market. There is evidence that different types of in-

vestment institutions dominate acquisition markets at different price points. This is true

both regarding debt as well as equity capital. In the case of equity, our data shows that in-

stitutional investors, public REITs, and foreign investors are responsible for the majority of

the purchases at the higher price points. Rather different types of entities, private investors

and owner/occupiers, dominate at the lower price points. There are similar distinctions in

the debt market. Institutions, life insurance companies, and large national and international

banks dominate for large loans, while local and regional commercial banks dominate for small

loans. The large institutions buying at the high price points are often tax-exempt and may

have less need or desire for debt financing.

These different types of investors may have different investment objectives and con-
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straints, as well as different perceptions and knowledge underlying their expectations. The

marginal investors at the various price points may differ sufficiently in objectives, constraints,

and outlook, such that a different equilibrium risk/return relationship could hold, provided

barriers to capital flow prevent the arbitraging away of such differences.

Now consider the space market. Different price dynamics in the asset market could be

attributed in part to different supply elasticity in the space market at different property price

points. Smaller, less expensive properties are easier (and quicker) to supply (through the real

estate development process). Greater supply elasticity enables faster and larger responses to

increases in demand, which prevents rents from increasing as much (Harter-Dreiman, 2004;

Saiz, 2010), which in turn mitigates against rents falling as far, making such properties less

volatile or cyclical in their fundamentals.

Another consideration regards the characteristic type of tenants in lower versus higher

price point properties. The tenant base of cheaper properties is on the whole arguably riskier

than the tenants of expensive properties, as larger properties tend to attract credit tenants

with more established access to capital. Even if this difference is only true in perception, it

may cause the asset market to price less expensive properties at higher cap rates (income

yields), other things equal, to compensate for higher perceived rental risk. (Tenant lease

defaults are likely to be correlated with financial conditions, hence impossible to fully diversify

against.)

In the asset market, if lower price properties tend to have higher cap rates (for example

due to lower long-run growth expectations), then this in itself will also tend to make such

properties less volatile, by making them less vulnerable to swings in real interest rates. A

given shock to real interest rates will produce a lower percentage change in property value in

higher cap rate properties. For example, a 100 basis-point shock in cap rates from 5% to 6%

produces a 17% drop in asset value other things equal while the same 100 basis-point shock

from 8% to 9% produces only an 11% drop in value.

Yet another consideration may be that lower priced properties tend to be located on lower

land value sites, which means that more of the built property value is attributable to the

structure, less to the land, proportionately (Bourassa et al., 2006). Land is more volatile

in value than are structures because land is less elastic in its supply than is construction.

This may be the fundamental reason for greater price elasticity of supply in lower-priced

properties, hence, lower volatility. (See Davis and Heathcote, 2007; Davis and Palumbo,

2008; Glaeser et al., 2008, for examples in housing.)

The above supply-side and space market considerations could result in different price

dynamics across price point segments. But in themselves these considerations do not nec-

essarily imply different risk/return equilibrium pricing. Asset prices could adjust so as to

present the same relationship between risk and expected total return (same Treynor Ratio).
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For example, higher growth markets could exhibit higher asset prices, lower cap rates, keep-

ing total returns the same (if risk is the same). Indeed, in theory such adjustment would

be expected to happen unless there are barriers that prevent capital flowing freely between

the price points. However, if capital flow barriers do exist, then differential price dynamics

across the price point market segments could be associated with different risk/return pricing.

Lower risk price points might not exhibit sufficiently higher prices to bid down the cap rates

and total returns, leaving the return risk premium per unit of risk higher than at higher risk

price points.

This last possibility is the second major focus in this paper. After identifying the nature of

price-point pricing dynamics, we study risk/return pricing by analyzing total returns across

the price points, considering both growth and yield. We quantify a simple version of the

Treynor Ratio for the various price points.

But first, the threshold empirical question is simply whether different price points exhibit

different price dynamics, and the nature of any such differences. This is the indexing question

to which we turn in the next section.

3 Model

3.1 Methodology for Price Point Indexing: Traditional and Quantile Ap-

proaches

As noted, traditional real estate price indexing methodology produces a single index value or

return in each period of time. This single value aims to track a central tendency or average

value within the subject population of properties. From the point of view of analyzing price

dynamics, the subject population of properties is treated like a single, integrated market.

With traditional index methodology, the only way to identify and track different price point

dynamics is to segment the sample of properties. We can group the sample into two or more

sub-samples based on price level, and construct separate indexes for each sub-sample, using

a traditional price index methodology like the repeat-sales model or the hedonic model.

This approach can be interesting, and it is one of the approaches we shall pursue in

this paper. However, there are some disadvantages to this approach. First of all, there is

considerable dispersion in property transaction prices, and this makes such indices vulnerable

to estimation error and noise (Francke, 2010; Bokhari and Geltner, 2012; Francke and Van de

Minne, 2016). This puts a premium on the size of the sample, with larger samples being

necessary to get sufficiently accurate and reliable indices. When we break up the estimation

sample into price point segments, we reduce the effective sample sizes on which the indexes

can be based.
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Secondly, conventionally constructed price-point indices are either biased, or not truly

constant quality (that is, not truly controlling for differences in the properties that trade in

one period versus another). If one subdivides the data by price based on the total sample,

properties sold just after the crisis might all fall in the lowest ‘price bucket’, even though

they might actually have been relatively highly valued within that down-market period of

time. This can give a serious bias to the indices.

Subdividing the properties into different price buckets on a year by year basis would solve

that particular issue, but would create new problems. Investors may ‘flee to quality’ during

an overall market downturn and vice versa. For example, in the previous illustration, one

would subdivide properties sold directly after the crisis into three equal buckets. However,

in reality all transacted properties might have been relatively high valued (as investors ‘fled

to quality’ during the down market). In this case, the index would not be truly constant

quality anymore. We would be comparing “apples” (on average “regular quality” properties

before the downturn) with “oranges” (only “high quality” properties during the downturn).

Furthermore, conventional indices are susceptible to bias that can be caused specifically

by stratifying the estimation sample based on price, which is what we need to do to produce

price point indices with traditional methods. To see this, consider Figure 2. The Figure

shows a stylized representation of the effect of random dispersion in property transaction

pricing within a single, integrated property market. Such idiosyncratic dispersion means

that any given transaction is as likely to be priced “high” as “low”, relative to the “true” or

mean (central tendency) of the market pricing. (Fundamentally this is because no one ever

knows the exact “true” market value of any given property at any given time, and so any

given “deal” or negotiation can end up either above or below the central tendency.)

The Figure shows two identical properties transacting at three consecutive points in time

labeled T0, T1, and T2. The random price dispersion is represented by the deviation of

Property 1 above, and Property 2 below, the market value or central tendency in the market

in Period T1. Such idiosyncratic random price dispersion probably tends to be mean reverting

or self-correcting over time, as it would be difficult for individual properties to deviate ever

father and farther from the market central tendency. We represent this by the two properties

both transacting exactly at the market value central tendency in periods T0 and T2, with

the dispersion appearing only in T1.

The lower panel depicts the segmentation of the transaction sample to construct a high

price point index. A lower bound is placed on the value of the first sales for the same-property

transaction pairs that are reflected in the index, so that the index represents a high price

segment. This results in a downward bias for the price index for that high price point. The

opposite situation is represented in the top panel, which depicts the segmentation for the

low price point index, in which an upper bound has been placed on the acceptable first-sale
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price, in order to represent a low price segment. The result is an upward bias in the low price

point index. This type of bias would exist in either a repeat-sales or hedonic index (and even

in an appraisal based index), as it is due fundamentally to the truncation, or censoring, of

the underlying sample of properties.
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Figure 2: Segmentation bias.
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There is evidence that this type of censored sample bias is not of serious concern at the

aggregate level, for tracking the central tendency of a subject population of properties. But

for constructing price point indexes aimed specifically at studying possible differential price

dynamics among price point segments, this problem could be more serious, especially at the

top and bottom extremes of the price points.

3.2 Quantile Hedonic Index

To circumvent such criticisms regarding price-point indexing with conventional indexing tech-

niques, we study price point dynamics by employing a new and less conventional approach.

We employ quantile regression estimation together with representative property simulation.

In the context of property price indexing, the quantile regression methodology lends itself

particularly well to the price point dynamics question that is our focus. While quantile price

indexes lack the direct investor experience basis of repeat-sales indexes, they can address

some of the other problems we have described for the traditional price indexing methods.

Quantile indexes as developed here effectively separately track the performance of properties

at any of a range of price points.

The methodology of price point indexing based on imputed (or “chained”) hedonic quan-

tile regressions that we develop in this paper will be described in detail below. The essence

that should be noted here at the outset is that the full transaction sample is used in each

period to separately estimate the full distribution of pure prices, defined by the coefficients

on the property hedonic characteristics. The notion of ”pure prices” implies value changes

holding the ”quantity” of the property constant, where ”quantity” reflects the qualitative

(hedonic) attributes of the property, for example, the size or age of the property. These pure

prices are estimated based on the coefficients of the hedonic price model, also referred to as

”shadow prices”, or ”implicit prices”.

The estimated distribution of implicit prices (hedonic coefficients) is then applied to a

“representative property” that is in principle held constant across all periods. In other words,

the ”quantities” of the property attributes (the hedonic variables) will remain constant, so

that value changes over time in the indices reflect only changes in the attribute shadow

prices. The representative property is defined to reflect the attribute quantities of the average

property in the overall transaction sample.

Mechanically, for technical practicality considerations, this operation of pairing shadow

prices with representative quantities is done by random sampling with replacement, in effect,

simulation, of both the period-specific price distribution and the constant property charac-

teristics distribution, each period. This creates a distribution, in each period, of property

values, which can effectively represent price points.
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Price point indexes can then be constructed, for any price point, defined as a quantile of

the value distribution, by connecting the values over time of the same quantile in the value

distributions of each period. (Recall that ”values” are pure prices times pure quantities, the

product of the time-varying shadow price vector times the longitudinally fixed vector of the

representative property’s attribute quantities.)

As noted, the type of quantile regression based price point indices that we develop in

this paper do not exactly or directly mimic investor experiences by tracing literally the same

properties across time. However, they effectively control for the most important types of

“apples vs oranges” differences that can cause problems in price point indexing. (And as

noted, traditional index methodologies that ostensibly track same properties across time also

suffer from biases that undercut the ”same property” ideal.) To better understand what is,

and is not, controlled for in the quantile regression based price point indexing procedure we

use, consider two illustrative examples.

First, suppose that one of the hedonic characteristics in the price model is a New York

dummy-variable, and it gets a positive coefficient (NY properties sell at a price premium).

Suppose that that NY coefficient remains constant every year when we re-estimate the hedo-

nic model each year on the transactions of that year. Suppose in Year ”t” there are almost no

NY properties sold, and in Year ”t+ 1” a whole lot of NY properties are sold but otherwise

the ”t” and ”t + 1” samples are very similar. If in constructing our quantile price index we

did not hold ”quantity” (the characteristics x̂ vector) constant between ”t” and ”t+ 1”, this

difference in proportion of NY properties in the sample would tend to cause a NY property

to ”jump buckets” (change quantile) downward from a higher to lower quantile between ”t”

and ”t+ 1”, as its NY price premium gives it less higher rank in the distribution of ”t+ 1”

sales because there are so many other NY properties that year. However, because we DO

hold ”quantity” constant in constructing the index, the index for the quantile in which our

NY property finds itself in ”t” would (probably approximately) well represent the actual

price-change of our NY property between ”t” and ”t+ 1”.

Now consider a counter-example, of bucket-jumping that we cannot control against in the

quantile indices. Suppose the same situation as before, only now assume similar proportion

of NY properties traded both years, but now assume that the coefficient on the NY dummy-

variable increases substantially from ”t” to ”t + 1”. In other words, the market values NY

properties a lot more (relatively speaking) in t + 1 than it did in t. Otherwise things are

very similar between ”t” and ”t + 1”. In this case, our NY property would jump UP to a

higher quantile in t + 1 than it was in t (surpassing some otherwise fine non-NY properties

in the distribution that had been above it in ”t”). In this case, the quantile price index for

the quantile in which our property found itself in ”t” would not be a good representation of

what actually happened to the price of our NY property between ”t” and ”t+ 1”.
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Thus, the idea of the quantile index is to track the performance of properties at each

price point, at each period of time. It is not generally to track the performance of individual

(same) properties across time, such as governs the experience of investors. Properties can

change their price quantiles over time, but price-points do not (as we define them in our quan-

tile indices). However, usually price coefficients do not change drastically relative to other

price coefficients (of other attributes) from one period to the next. Most properties don’t

significantly jump across quantiles from one period to the next. So, the quantile index gives

an approximation of same-property price-point based performance. Moreover, there is some

interest in tracking price-point performance as distinct from same-property performance.

Price-point performance reflects the functioning of price-point market segments, consistently

reflecting the same price-point segments across time.

One way to ”correct” or address the concern raised for investors by the second New York

illustrative example above, is that we can try to construct quantile indices at a more granular

level, so that all the properties in the samples over the years are more homogeneous (e.g.,

in the above illustration ALL & ONLY NY properties would be included in the indices). In

Section 5.4 in the Results section of this paper, we summarize the key findings from applying

the quantile model to a granular set of indices, estimated separately for property type sectors,

and for 18 specific metro markets.

A second approach to addressing any concern about the quantile index not being a same-

property index is to indeed follow the traditional index methodology described at the outset

of this paper. In part as a robustness check, and to compare the two approaches, we also

present this traditional approach in this paper. In Section 5.1 of the Results section we esti-

mate classical repeat-sales indices based on price-bucket stratified sub-samples (hypothesized

potential price-point market segments). The sub-samples are defined by the price (bucket)

of the first-sale in the repeat-sale pairs.

Both of these approaches are trying to represent something closer to the actual price-

change experience of investors, holders of individual (same) properties across time. The

Repeat-sale approach models this experience directly, but faces problems of limited sample

sizes with also some possible sample selection bias (including the asymmetric censoring of the

sample by conditioning on a bounded first-sale price: biasing low price-point indices upward

and high price-point indices downward). The granular price-point indices based on quantile

hedonic regressions are not literally same-property indices, but they should significantly

mitigate the major potential sources of any significant differences between price-point indices

and same-property indices.

In order to estimate our quantile price indices we use the multi-step procedure proposed

by Machado and Mata (2005), in combination with imputed (or “chained”) hedonic models

(de Haan and Diewert, 2011). The three steps are presented in depth in the following sub-
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sections.

3.2.1 Step 1. Quantile hedonic model

First we estimate a Quantile hedonic model on a period-by-period basis (similar to the

“chained” hedonic methodology, see: de Haan and Diewert, 2011). Quantile regression pro-

duces estimates of the entire distribution of the predicted (dependent) variable, based on the

minimization of weighted absolute errors (rather than the minimization of squared errors in

traditional OLS regression). The predicted variable is the transaction prices of the traded

properties. The quantile regression analysis models the τ th conditional quantile of p given x

as:

Qpit(τ |xit) = xTitβ(τ) for t = 1, . . . , nt (1)

where p is the transaction prices of the traded properties, and x is the vector of hedonic

attributes (quantities) in the traded properties. (1) is equivalent to the standard OLS hedonic

model with Qεit(τ |xit) = 0. The τ -specific coefficient vector βt(τ) for every t is estimated by

minimizing the loss function:

min
βt(τ)

nt∑
i=1

ρτ (pit − xTitβt(τ)) (2)

separately for every t, where ρτ (u) = µτ if µ ≥ 0, and ρτ (u) = µ(τ − 1) if µ < µ; see

Koenker and Bassett Jr (1978). In total we estimate almost 100 quantiles, going through

q = 0.01, 0.02, . . . , 0.99 for every year t. We have k explanatory variables in the x vector.

3.2.2 Step 2. Sampling with Replacement of Coefficients and Data

Next we draw with replacement a vector of coefficients (1 × k) from the (k × Q) coefficient

matrix, separately for every t. Every draw is denoted β̂tb, with b = 1, . . . , B, where every

quantile q from 0.01 through 0.99 is equally likely to be drawn. In this paper we set B to

200, 000. Note that β̂tb now has dimensions k×B for every t. We also draw with replacement

- again B times - observations (1 × k) from the (N × k) matrix of explanatory variables x∗b
across the N property transactions in the entire temporal sample (all periods). Note that

x∗b has no subscript t, as it should be a representative property. However, different values

of x∗ will result in slightly different index numbers during our final step (see de Haan and

Diewert, 2011, for more details on this topic). As will be discussed in Section 5 we will use

different values for x∗ for robustness. As in the previous step, every observation vector is

equally likely to be drawn. The new attribute (quantity) matrix, denoted x̂∗b , has dimensions

B × k.
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Next we calculate x̂∗b β̂t=1,b, x̂
∗
b β̂t=2,b, . . . ,x̂∗b β̂t=T,b for every b. These values represent

the estimated values of p for every b. For every t, the dimensions are therefore 1 × B. If

x∗ represents the full population of buildings, vector x̂∗b β̂t,b gives the full (predicted) price

distribution of every single property in period t (including the ones that were not sold in

that year). This distribution is denoted f̂t(p). Note that in a perfect world we would have

liked to ‘simply’ map all quantile coefficients to the entire stock of properties. However, the

random sampling process will give us the same target distribution, without storing matrices

with potentially millions of rows.1

3.2.3 Step 3. The Quantile Indices

Price point indexes can then be constructed, for any price point (defined as a quantile of the

value distribution, from 0.01 through 0.99), by connecting the values over time of the same

quantile in the value distributions of each period. The full change in price density is now

simply given by the difference between two target price densities (∆(p)):

f̂t+1(p)− f̂t(p) = x̂∗b β̂t+1,b − x̂∗b β̂t,b (3)

Note again, that the price changes are constant quality as we fix x∗. A graphical stylized

example of a change in density (f̂t(p)) between two different periods (let’s assume the periods

2005 and 2015) is given in Figure 3. The price densities in Figure 3 are simulated and prices

are log transformed. The density distributions are for log values holding the distribution of

attributes (hedonic quantities) constant, thus representing a ”constant quality” price index

(pure price changes). The indicated difference in the Figure would be the percentage change

in the 50th quantile (median) price-point index.

If we look at the median (or 50th quantile) of the two simulated price densities in Figure

3, we see that that quantile shifted to the right. In 2005 the median (log) price was just

under 11 (horizontal axis). In 2015 it was close to 13. Thus, in the median, prices increased:

exp(13− 11)− 1 ≈ sixfold. Note that Figure 3 depicts normal distributions for illustration.

But the estimated price densities found in our application can have any shape (i.e. we use

simple histograms).

To summarize the price indexing in this paper, we use two approaches: standard repeat-

sales indices of price buckets, and quantile price-point indices based on chained hedonic

price models. The two approaches can be viewed as ”triangulating” onto the price dynamics

behavior of different price points in the US commercial properties in the RCA database. But

it is also interesting from a methodological perspective to compare the two approaches.

1For robustness we re-ran the entire procedure multiple times. The estimated price distributions did not
change notably.
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Figure 3: Example of a log price change of the 50th quantile (median) between two periods.
The x-axis gives the log values, and the y-axis the densities.

The last part of the analysis in this paper involves modeling total returns, including

income. This is to enable us to draw some conclusions about the risk/return performance of

the different price buckets or price points. To do this, we develop a cap rate model based

on price points that correspond to those in the price dynamics analysis. By combining the

estimated cap rates with the corresponding quantile price growth trends, we can relate total

returns by price point to the investment risk characteristics by price point. Investment risk

is largely determined by asset price evolution, as income returns contain very little volatility

or cyclicality compared to price change returns (capital returns). Thus, we obtain the risk

measures from the price indices, and income to compute total returns from the cap rate

model.

4 Data and Descriptives

Real Capital Analytics. (RCA) provided the data to make this research possible. RCA is a

data and analytics company that focuses particularly on the institutional investment market
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for commercial real estate in the United States and various international markets. RCA has

been collecting, analyzing, and interpreting comprehensive commercial real estate transaction

information within all investment-grade strata of United States commercial property asset

markets since 2000.

Since 2005 RCA tracks all commercial properties sold for $2, 500, 000 or above (whereas

before 2005 the lower limit was $5, 000, 000). RCA claims to have a capture rate of over

90% after 2005. The transaction database therefore gives a good representation of the entire

population of major investment properties in the US, both residential and non-residential.

We are interested in the following characteristics; Size (units for hotels and apartments,

square feet for other property types), land site (acres), age (years), property type (we distin-

guish between warehouses, industrial, full or limited service hotels, garden and mid/highrise

apartments, CBD versus non-CBD offices, malls and strips) and metro dummies. For large

metros (Los Angeles, New York and San Fransisco) we also define subregions, for a total of

30 (sub)metro dummies. Finally, we also take up a separate CBD dummy (which coexists

next to the CBD-office dummy for property types) per region (6 in total) and a dummy

which flags distressed sales. The exact definitions used by RCA can be found on the website

of RCA.

In total we observe approximately 200, 000 transactions in the data after 2005, of which

178, 000 unique and 60, 000 repeat sales. As we are interested in the hedonics described

above, we lose observations due to missing characteristics. After filtering the data for missing

characteristics we end up with 110, 000 observations - of which 70, 000 unique sales (important

for x∗b) - or over 10, 000 per year on average. The loss of observations are mostly random and

are shared equally by all years (i.e. almost no selection bias is introduced). The means and

standard deviation of the sales price (the only variable that is always observed) before and

after the filters, together with the results of an ANOVA are printed for a selection of years in

Table 1. Table 1 shows that in most years (except 2015) the difference in mean is less than

1%. Only in year 2015 do we find a significant difference, but note that the difference is still

small (5%).

Table 1: ANOVA of the data before and after filters: Log price

means std.dev Pr(>F)
before after before after

2005 15.733 15.733 1.044 0.995 0.983
2007 15.821 15.828 1.052 0.998 0.483
2010 15.602 15.609 1.070 1.042 0.656
2015 15.773 15.824 1.044 1.051 0.000

Table 2 gives some descriptive statistics of the data. Table C1 in Appendix C provides
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Table 2: Descriptive statistics of the data

Mean Std. Dev. Min Max
Year 2005 – 2015 (111,001 Obs.)

Log of sales price 15.856 0.910 9.328 20.492
Cap rate (%) 0.068 0.016 0.010 0.135

Log of # of units 4.595 0.944 1.386 7.822
Log of building area 10.884 1.088 6.477 14.809
Log of lot size (ac) 1.072 1.389 -2.303 3.689
Age 31.318 24.604 0 115
Distress dummy 0.078 0.268 0 1
CBD dummy 0.128 0.334 0 1

the same statistics, but for a selection of years (2005, 2007, 2010 and 2015). Interestingly, the

years 2005, 2007 and 2015 give almost the same descriptives (except for the distress dummy).

In 2010 (just after the crisis), prices are (as expected) lower compared to the other years.

The average square feet (second to 2005) and the CBD dummy return the highest value in

2010. This could indicate a ‘flight to quality’ during the crisis years.

5 Results

5.1 Repeat Sales Model

Before we present the main findings of the quantile regression we first look at the results of a

more traditional repeat-sales model, based on the Bailey et al. (1963) methodology. Repeat-

sales indexes have the advantage of directly modeling investor (same property) experience.

Repeat-sales indexes are based only on the price changes experienced between the “buy” and

the “sell” of the same properties over time. This is exactly the type of price change that real

estate investors actually experience, as investors must sell the same properties which they

have previously bought. However, Repeat-sales indices can only be based on properties that

have sold more than once, and this may further exacerbate the sample size problem and the

censored sample bias problem noted in Section 3.1.

The standard repeat-sales model is given by:

pjt − pjs = µt − µs + εjt − εjs (4)

where p are log transaction prices of pair j and µ is a dummy matrix for time of buy (s) and

time of sale (t). The error is denoted ε which is assumed to be normally distributed with

mean 0. The model can be estimated using OLS.

In order to build price segment indices using Eq. (4), we estimate the model on different

subsamples of the data, based on price level cohort. First we take properties that were bought
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in 2005 (approximately 5, 000 observations). We group those transactions into three equal

sized (observation-wise) price buckets, from lowest to highest. We redo this procedure for

every year in our data for a total of approximately 50, 000 pairs. This way we circumvent

possible correlation between time of sale and the placement in certain buckets (i.e. properties

sold during the crisis would all be in the lowest bucket and vice versa).

Next, we trace each property’s subsequent sales and create a repeat-sales index for the

entire period, one for each price ”bucket”. In such an index, properties cannot ‘jump’ to

another quantile.

The resulting price indices are shown in Figure 4. Some descriptive statistics on the

returns of these indices can be found in Table 3 in Section 5.2. It is evident from both Figure

4 and Table 3 that the index representing low valued properties had less volatility and higher

overall price growth than the high price point properties between 2005 and 2015. However,

the middle price bucket index does not seem to be consistent with this pattern. Nevertheless,

comparing the high and low price points, there is clearly greater risk yet lower return (at

least in terms of price growth) in the high price point properties.
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Figure 4: Repeat sales model of properties in three price-buckets
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As mentioned earlier, this methodology has several drawbacks. Firstly it does not give

the full distribution of prices, as subdividing the data into (infinite more) price buckets will

decrease the number of observations (per bucket), and therefore make the indices more noisy

Francke (2010). Secondly, the buckets are not truly constant quality, as the ‘top’ bucket in

one year might consist of different types of properties compared to another year. Finally, the

indices suffer from the censored sample bias stylized in Figure 2.

5.2 Quantile Regression

To calculate the Machado and Mata (2005) decomposition we first estimate the almost 100

quantile regressions for all 10 years, see step (1) in Section 3. For readability we focus on the

years 2005, 2007, 2010 and 2015 as they represent the main cycle.

Several variables exhibit significant quantile effects over the analyzed years. By “quantile

effects”, we mean that the hedonic coefficients, the pure “price” elements (holding quantity

and quality of the properties constant), vary across the quantiles (price points), in possibly

different ways over time. A few examples are given in Figure A.1 in the Appendix A.

For example, the extra price premium purely for being located in the CBD (the shadow

price of CBD location) is greater for higher price-point properties than for lower price-point

properties, but this quantile effect shifted slightly over time and was greatest in 2015 and

least in 2010.

We also estimate the goodness of fit measure developed by Koenker and Machado (1999).

The measure itself and the results are given in Appendix B. The R1 reveals that the goodness

of fit increases for high quantiles. The goodness of fit is sufficiently high and stable for

quantiles above approximately the 25th quantile. The explanatory power (for the selected

years) is lowest for 2010 and equally as good for 2005 and 2007.

Regarding the quantile effects on the prices, Figure A.1 shows that an additional unit

or square foot of structure size (both log transformed) adds much more to the price at high

quantiles for all the years. The CBD dummy and the dummy for strip retail also shows a

strong quantile effect. In some cases we see quantile effects disappear. For example, in 2005

there is still a quantile effect in Washington DC. However, this effect is no longer observed

in any of the other years.

Next we draw with replacement from both the quantile coefficients and the data, as

described in step (2) in Section 3. In total we use five different samples from which we draw

with replacement from the total data, in order to construct x̂∗b . For the main model we

draw with replacement from all the properties that were (uniquely) sold in the RCA data,

from which we have data for all characteristics. This will essentially give us a representative

(i.e. average) property for the RCA database of 2005-15. We denote this as the ‘quasi

21



Fisher’ index.2 In the ‘Laspeyeres’ (‘Paassche’) index we only draw with replacement from

the properties that were sold in 2005 (2015). The chained returns - step (3) - are indexed in

Figure 5 for a selection of quantiles. Some statistics on the returns are given in Table 3.

Table 3: Return statistics for the different quantiles (q).

Panel A: quasi Fisher Index
quantile mean mean∗ sd |mean| ACF1 ACF2 Crisis

q = 0.25 0.026 0.024 0.072 0.059 0.271 -0.027 -0.152
q = 0.35 0.028 0.025 0.076 0.062 0.273 -0.105 -0.158
q = 0.50 0.029 0.026 0.086 0.074 0.219 -0.195 -0.200
q = 0.65 0.030 0.026 0.095 0.083 0.174 -0.262 -0.232
q = 0.75 0.031 0.026 0.101 0.089 0.136 -0.317 -0.253
q = 0.90 0.032 0.025 0.115 0.097 0.017 -0.307 -0.279
q = 0.95 0.033 0.025 0.125 0.102 -0.050 -0.301 -0.293

Panel B: Laspeyeres Index
quantile mean mean∗ sd |mean| ACF1 ACF2 Crisis

q = 0.25 0.026 0.023 0.072 0.058 0.297 -0.098 -0.149
q = 0.35 0.027 0.024 0.078 0.067 0.246 -0.171 -0.181
q = 0.50 0.029 0.025 0.088 0.078 0.184 -0.255 -0.219
q = 0.65 0.030 0.025 0.100 0.088 0.097 -0.297 -0.250
q = 0.75 0.031 0.025 0.106 0.092 0.058 -0.302 -0.263
q = 0.90 0.032 0.025 0.120 0.099 -0.046 -0.285 -0.287
q = 0.95 0.034 0.025 0.131 0.105 -0.082 -0.286 -0.301

Panel C: Paassche Index
quantile mean mean∗ sd |mean| ACF1 ACF2 Crisis

q = 0.25 0.026 0.024 0.070 0.059 0.317 -0.040 -0.152
q = 0.35 0.027 0.025 0.075 0.061 0.302 -0.115 -0.154
q = 0.50 0.028 0.025 0.085 0.073 0.224 -0.205 -0.201
q = 0.65 0.029 0.025 0.093 0.082 0.187 -0.280 -0.234
q = 0.75 0.029 0.024 0.101 0.088 0.146 -0.317 -0.255
q = 0.90 0.031 0.024 0.118 0.100 0.049 -0.343 -0.291
q = 0.95 0.033 0.025 0.124 0.104 0.010 -0.340 -0.298

Panel D: Repeat Sales Index
bucket mean mean∗ sd |mean| ACF1 ACF2 Crisis

Lowest 0.002 -0.007 0.133 0.105 0.556 0.043 -0.401
Middle -0.014 -0.032 0.190 0.135 0.528 0.015 -0.525
Highest -0.014 -0.031 0.188 0.114 0.272 -0.158 -0.472

mean∗ is the Geometric mean, in contrast to the arithmetic mean. sd stands for
the standard deviation of the returns, and ACF1 and ACF2 is the serial
correlation with either 1 or 2 lags respectively. The crisis range is the % difference
between the min of the max (of the index) for the periods 2006 and 2010.

From both the graphical depiction of the indices and from the statistics it is evident that

2With a ‘real’ Fisher index one takes the average between the end (2015) and the beginning (2005) of the
characteristics of the good being tracked. Whereas we take the average of the entire market.
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Figure 5: Quantile price indices US, 2005 – 2015
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(a) quasi Fisher.
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(b) Laspeyeres.
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(c) Paassche.
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the higher price point indices are more volatile (approximately 70% more) than the lower

quantile indices. They also exhibit correspondingly greater down-cycle amplitude. The high

price-point indices also display greater overall average return (price growth), but only slightly

so. The difference in geometric mean returns (mean∗) is less than 20 bps between the high

price point and low price point indices.

Finding autocorrelation in real estate prices is not uncommon, as private property markets

are not perfectly informationally efficient (Barkham and Geltner, 1995; Case and Shiller, 1989;

Quan and Quigley, 1991). However, our findings suggest that there is more autocorrelation

(and thus predictability) in lower quantiles. Though not reported here, we also found evidence

that higher quantiles Granger-cause lower quantiles (that is, they lead them or “predict” them

in time). This can be seen visually in Figure 5. Indeed, the lower quantiles go down (up) one

year later than the upper quantiles at the beginning (end) of the crisis. Greater predictability

means that the volatility or cyclicality is less of a concern to investors. Predictable price

movements are arguably not “risk”, but rather, present investors with opportunities (to

“buy low and sell high”).

5.3 Total Returns and Treynor Ratios

The findings reported above reveal interestingly different price dynamics by price-point. Back

in Section 2 we described several reasons and sources for such differential price dynamics.

For example, lower price growth trends for the lower price point properties, as well as lower

volatility and cyclicality, could be caused by greater supply elasticity in the space market.

Different price dynamics suggests some degree of market segmentation by price point. But

as noted in Section 2, market segmentation may, or may not, be associated with differential

risk pricing, that is, a different risk/return relationship which might possibly suggest the

existence of capital flow barriers and some potentiality for arbitrage across the price points.

This is the question we turn to next.

In order to study the risk pricing question we must quantify not just price change dynam-

ics, but differences in the average total returns, including income, across the price points.

We can do this by combining information about cap rates by price point with our previous

information on price dynamics by price point.

The first step in this process is to estimate a (quantile) cap rate model (and the price

model), in a seemingly unrelated regression framework. Thus, we regress cap rates (in %,

not log transformed) onto the same variables that we previously used in the price model. As

before, we draw with replacement from the coefficients of the cap rate model, and multiply

them times the previously drawn matrix x∗. Thus for every property in x∗ we get both the

price density for every t, but also now a density of the cap rates. The big difference is that
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Figure 6: Average cap rates per price quantile, quasi Fisher model

now we are not so much interested in the change in density of the cap rates. We are simply

using the cap rate density distributions to identify the typical cap rates for certain price

points. The purpose is to model total returns by price point, to relate to the investment risk

implications by price point that we found in the differential price dynamics of Section 5.2.

As noted previously, and as is obvious in Figure 6, income returns (essentially similar to

cap rates) do not exhibit nearly as much volatility as capital returns (price changes). The

cap rates in Figure 6 range only over a couple hundred basis-points even across the Financial

Crisis. In contrast, the price changes in Figure 5 show over ten times as much percentage

variation. Thus, almost all of the risk in real estate returns is reflected in the asset price

dynamics, effectively, the capital returns, not in the income returns. (This is characteristic

not only of real estate but other asset classes as well, for example, stock dividends move only

slightly as a fraction of the stock price, while the stock price itself moves dramatically more.)

Figure 6 shows our estimates of the average RCA cap rates over time for the price quantiles

used in Section 5.2. Recall that with the quantile model we are estimating a distribution of

cap rates around different price points, not just a single cap rate. (For simplicity we show the
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quasi Fisher results, but other definitions of the representative property give similar results.)

We see in Figure 6 that cap rates have been between 6% and 8.5%. And it is clear that

higher price point properties have provided lower cap rates. Higher price point cap rates

are also more volatile (which is simply a reflection of the greater price volatility we already

noted in Section 5.2). It is interesting that during the crisis cap rates more or less coincided

over all price points. Other than that, the cap rates show a familiar pattern: a mirror image

of the price indices. However, the lead-lag relationship in the quantile price indices seem to

absent in the cap rates.

On average the difference between the cap rates associated with the 95th percentile price

point properties was 44 basis points lower compared to its 25th percentile equivalent. As

noted before, the average difference in return was about 15 basis points. Thus in total, the

return was not higher for higher price point properties in our analyzed period, even though

the high price point displayed greater investment risk.

To quantify this point more explicitly, we calculate the Treynor Ratios for the different

quantiles. The Treynor ratio (T) is given by:

Tq =
Rtot,q −Rf
Riskq

(5)

where Rtot is the total return (cap rate plus index returns) for quantile q and Rf is the

riskfree rate. We used the average 30-day Treasury Bill rate during our analyzed period as

the riskfree rate, which was 1.3%. The exact choice of the riskfree rate will not change the

ordering of Treynor Ratios as it is constant across the quantiles.

The risk in the denominator of the ratio can be quantified in different ways. Keep in mind

that we simply need to quantify risk in a manner that allows a risk adjusted comparison of

the returns across real estate price points. We use two alternative metrics: (i) The price

index quantile volatility, and (ii) The price index quantile crash magnitude (% trough/peak).

We report the Treynor Ratio based on both risk measures, and for the different definitions

of the representative property. Thus, the Treynor Ratio measures risk premium per unit of

risk. A higher Treynor Ratio implies a higher price of risk, that the investor gets a ”better

deal” for taking on risk, at least insofar as the risk that matters is proportional to the risk

metric in the denominator of the Treynor Ratio.

A graphical representation of the Treynor ratios as a function of the price points is given

in Figure 7. The relationship is strong and nearly linear. The Treynor ratio for the lowest

analyzed price point is double that of the Treynor ratio of the highest price point. The results

are robust to the two different risk metrics.
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Figure 7: Treynor ratios.
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5.4 Results from Granular Indices

The above results suggest that real estate markets are not fully integrated across price points.

They suggest that there could be capital flow barriers and that arbitrage opportunities could

be obtained if any such barriers could be pierced. However, before we draw such a strong

conclusion, other possibilities should be considered. We will consider alternative explanations

in Section 5.5 below. But a relevant empirical issue can be pursued further here. What if what

we think are price point segments are in fact reflecting other types of market segmentation?

The analysis in this paper so far has been at a national aggregate level for all property types

and locations (albeit with hedonic dummy variables and re-estimation every period, which

does provide considerable control).

But suppose the higher price points are dominated by offices (with higher volatility)

and major markets, while lower price points are characterized by NNN and owner occupied

properties. While that would not change the above finding of differential risk pricing, it would

suggest that the cause might not simply be differential price points. And this might cast a

different light on the nature of the capital flow barriers or differences in investor clientèles

across the price points.

To test if this (or anything similar) is the case, we re-estimate our Treynor Ratio analysis

based on more granular indices. As we noted in Section 3.2, increasing the granularity of the

quantile indices also helps to address a theoretical issue with these indices, which is the fact

that they are not literally ”same property” indices.
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With this in mind, we replicate the previously described analysis separately for a set

of indices that are based on more homogeneous stratified sub-samples of the overall RCA

national sample. Thus, we only sample with replacement from the corresponding market/-

sector, such as office, or New York. We construct the relevant x∗ representative properties in

this manner for both the prices and cap rates. Within these more granular and homogeneous

indices, the quantile indices will more purely represent the effect of price points. They will

also more closely approximate investor experience same-property indices.

To conserve space we only show the difference between the highest and lowest price-point

quantiles’ Treynor ratios (Tq=0.25 − Tq=0.95), based on the ‘quasi’ Fisher chaining technique.

The resulting Treynor Ratios according to both risk measures are given in Figure 8.
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Figure 8: Difference in Treynor ratios (Tq=0.25 − Tq=0.95) for different markets and sectors in
the US, using both measures for risk. Positive number indicates better risk/return for low
price point properties within that sector/market and vice verse.

A positive value in the Figure means that the apparent risk/return pricing differential

in favor of the low price points exists in the given market / sector. While it must be born
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in mind that some of these granular indices are based on small samples, the overall result is

again strong and clear. The favorable risk/return pricing for low price points holds for all

sectors and for 13 of the 18 metro markets for which we have enough data.

Interestingly, this holds even though the overall level of the price points varies considerably

across the sectors and metros. For example, the median (q = 0.50) price point in New York

is much higher than the median price point in Phoenix, in dollar terms. This applies to any

quantile, and also to the difference between the highest and lowest quantiles in dollar terms.

We note that where the ‘spread’ in price points is larger in dollar terms, there is a tendency

for that market to show a greater difference in the high-minus-low price point Treynor ratios.

Thus for example the relatively small difference in Treynor Ratios for apartments in part

reflects relatively little spread in apartment price points in dollar terms.

5.5 Alternative Explanations for our Findings

Back in Section 2 we suggested that different price dynamics across price points do not

necessarily imply a violation of the Law of One Price regarding the risk/return relationship.

We pointed out that even if different price points exhibit different risk, it is possible for asset

pricing to reflect this, such that the same price of risk (expected return risk premium per unit

of risk prevails across the price points, i.e. same Treynor Ratio). But the results described in

the previous two sections have found apparent violation of the Law of One Price, evidenced

by higher Treynor Ratios associated with lower price points. In this case, the suggestion

in Section 2 was that barriers likely exist to capital flowing between price points, and that

arbitrage type opportunities await the investors fortunate enough to pierce the barriers.

While this could be a reasonable conclusion from our analysis, we should briefly point

out a couple of possible alternative explanations, at least in principle, that could explain our

findings. In the framework presented in Section 2, these alternative explanations could be

viewed as suggesting that the different price points effectively represent different ”goods”,

although the nature of the difference has less to do with space market differences and more

to do with particular challenges in the asset market for investment in the lower price point

properties.

First, there could be differences in the type and amount and quality of information about

the property assets. Perhaps larger properties have better information, less uncertainty about

the facts and characteristics and considerations that affect their value at the individual

property level. Indeed, our finding noted at the end of Section 5.2 that the lowest price

point index is predicted by the higher price point indices suggests that higher price point

properties reflect relevant information sooner than the bottom price point properties. (While

predictability can provide opportunities for investors in the aggregate, if it reflects greater
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uncertainty at the individual property level then that poses a challenge for investors who must

buy individual properties, not whole indices.) Investors are very averse to uncertainty, more

so perhaps than they are averse to risk. (Risk is quantifiable future dispersion in possible

outcomes, ”known unknowns”; uncertainty is non-quantifiable future dispersion, ”unknown

unknowns”.) If information quality is correlated with asset price point, then this could lead

to different equilibrium risk/return pricing, even without implying capital flow barriers or

any sort of arbitrage between price points. In effect, due to informational differences, large

and small properties would in an important sense be ”different goods” (which could therefor

sell at different prices).

A second possibility is that search and transaction costs could be greater, per dollar

invested, in the low price point properties. To some extent this explanation overlaps with

the previous. Perhaps with sufficient time and investment, potential buyers could unearth as

much good information about small properties as is available about bigger properties. But

the necessary additional search and transaction costs could wipe out the apparent arbitrage.

One might view these alternative explanations as, indeed, a type or cause of the ”capital

flow barriers” that we have said can allow differential risk pricing. But unless and until

such issues can be mitigated, they prevent high price point investors from being able to take

advantage of the more favorable risk/return pricing in the lower price points. Another way

of looking at it is that information and search/transaction challenges with smaller properties

may eliminate any risk/return bargain. If the denominator in our Treynor Ratios could reflect

these other dimensions of investment ”disutility”, then the Treynor Ratios might equalize

across the price points.

Finally, there is a third possible alternative explanation that any empirical study of risk

and return must not neglect to note. The time period measured could have some bias –

starting somewhere around the last peak but not getting to the next peak yet. Maybe there

is yet further upside in the future that the market figures will benefit the larger properties.

Unfortunately, we do not presently have the ability to test rigorously for these alternative

explanations to the price point risk/return puzzle that this paper has documented. We must

leave such a quest for future research.

6 Concluding Remarks

Conventional real estate price indices provide a single measure for the path of asset prices

over time (controlling for the quality of the representative or average property). But it could

be that properties have different price dynamics based on the price segment they are traded

in. On the demand side, investors at different price points are differentiated by the amount

of capital the investor has at their disposal and the type and source of financing. Smaller,
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private investors cluster at lower price points, while large institutions dominate the high

price points. On the supply side, properties at different price points may serve different

space markets with different types of tenants, and may reflect different supply elasticity and

land/structure value ratios. This paper uses an unconventional approach, quantile regression,

to estimate price indices for different price segments in commercial real estate. We make our

analysis more robust by also analyzing a traditional repeat-sales index, and by developing

quantile indices on more homogeous, granular populations of properties.

Our results show that there are indeed large differences in price dynamics for different

price points. On the risk side, we find clear evidence that high price-point properties are

more risky. The quantile indices show almost twice the volatility and twice the downturn

magnitude compared to low price-point properties.

At first sight, it might seem that high price point properties are at least partially compen-

sated for their greater risk by a higher providing about 15 bps more growth, as our indices

show. However, the cap rate of the high price point properties is 44 bps lower on average.

Hence, the average total return of high price point properties is approximately 30 bps less,

in spite of the greater risk. In addition, lower price point properties show greater momentum

and hence, predictability, which should make investment in them more appealing.

This would seem to reveal a violation of Law of One Price, a type of arbitrage opportunity

in the investment property market. This should be possible only if there are significant

barriers to capital flow across the price points. It is possible that such barriers to exist, and

that bargains await investors who can break through the barriers.

On the other hand, there could be mitigating factors, such as poorer information qual-

ity (greater uncertainty), and higher search and transaction costs, associated with smaller

properties in secondary locations. And our analysis is based on only 10 years of data. The

history covers the financial crisis, but it is not clear if it encompasses a complete cycle, much

less the multiple cycles that would be necessary to give great confidence to empirical results.

It is thus recommended to redo this study in the future.
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B Goodness-of-fit for the Quantile Regression

The Koenker and Machado (1999) measure of fit (R1) is given in Figure B.1. The R1 is

similar to the more conventional R2 and is calculated for every quantile (q) by estimating a

restricted model in parallel to the full model described in Section 3.2. The restricted model

is simply the same quantile regression, but with only a constant as explanatory variable (α).

The R1 is calculated as follows (Eq. (6)):

R1(q) = 1−
∑
p̂qit − xitβ̂qt∑
p̄qit − ᾱqt

(6)
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Figure B.1: Goodness-of-fit of the Quantile regressions, R1
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C Descriptive Statistics per Year

Table C1: Descriptive statistics for a selection of years

Mean Std. Dev. Min Max
Year 2005 (11,859 Obs.)

Log of sales price 15.907 0.890 14.039 19.519
Cap rate (%) 0.069 0.016 0.020 0.135

Log of # of units 4.681 0.945 1.946 7.822
Log of building area 11.019 1.040 7.148 14.557
Log of lot size 1.143 1.364 -2.303 3.689
Age (years) 27.349 22.356 0 105
Distress dummy 0.010 0.085 0 1
CBD dummy 0.117 0.321 0 1

Year 2007 (11,615 Obs.)

Log of sales price 15.937 0.884 12.995 19.467
Cap rate (%) 0.066 0.015 0.020 0.134

Log of # of units 4.676 0.892 1.386 7.256
Log of building area 10.896 1.063 7.116 13.911
Log of lot size 1.112 1.364 -2.303 3.689
Age (years) 28.714 23.128 0 107
Distress dummy 0.119 0.324 0 1
CBD dummy 0.119 0.324 0 1

Year 2010 (4,835 Obs.)

Log of sales price 15.743 0.930 11.918 19.592
Cap rate (%) 0.075 0.016 0.018 0.135

Log of # of units 4.634 0.946 1.792 7.601
Log of building area 10.991 1.087 7.480 14.078
Log of lot size 1.104 1.407 -2.303 3.689
Age (years) 30.263 24.591 0 110
Distress dummy 0.225 0.418 0 1
CBD dummy 0.139 0.346 0 1

Year 2015 (16,191 Obs.)

Log of sales price 15.937 0.932 11.513 19.698
Cap rate (%) 0.064 0.017 0.010 0.134

Log of # of units 4.518 0.972 1.609 7.005
Log of building area 10.798 1.118 6.908 14.241
Log of lot size 1.017 1.395 -2.303 3.689
Age (years) 34.393 25.052 0 115
Distress dummy 0.051 0.220 0 1
CBD dummy 0.125 0.331 0 1
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