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Abstract A search is presented for the single production
of vector-like quarks in proton–proton collisions at

√
s =

13 TeV. The data, corresponding to an integrated luminosity
of 35.9 fb−1, were recorded with the CMS experiment at the
LHC. The analysis focuses on the vector-like quark decay
into a top quark and a W boson, with one muon or electron
in the final state. The mass of the vector-like quark candidate
is reconstructed from hadronic jets, the lepton, and the miss-
ing transverse momentum. Methods for the identification of
b quarks and of highly Lorentz boosted hadronically decay-
ing top quarks and W bosons are exploited in this search. No
significant deviation from the standard model background
expectation is observed. Exclusion limits at 95% confidence
level are set on the product of the production cross section
and branching fraction as a function of the vector-like quark
mass, which range from 0.3 to 0.03 pb for vector-like quark
masses of 700 to 2000 GeV. Mass exclusion limits up to
1660 GeV are obtained, depending on the vector-like quark
type, coupling, and decay width. These represent the most
stringent exclusion limits for the single production of vector-
like quarks in this channel.

1 Introduction

The discovery of the Higgs boson (H) [1,2] with a mass
of 125 GeV completes the particle content of the standard
model (SM). Even though the SM yields numerous accurate
predictions, there are several open questions, among them
the origin of the H mass stability at the electroweak scale.
Various models beyond the SM have been proposed that sta-
bilise the H mass at the measured value; some examples are
Little Higgs [3–5] or Composite Higgs models [6], in which
additional top quark partners with masses at the TeV scale
are predicted. Since the left- (LH) and right-handed (RH) chi-
ral components of these particles transform in the same way
under the SMelectroweak symmetry group, they are often
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referred to as “vector-like quarks” (VLQs). In contrast to a
fourth chiral quark generation, their impact on the H proper-
ties is small, such that VLQs have not been excluded by the
measurements of H mediated cross sections [7–9].

Several searches for VLQs have been performed at the
CERN LHC, setting lower exclusion limits on the VLQ mass
mVLQ [10–31]. Many of these analyses study the pair pro-
duction of VLQs via the strong interaction. In contrast, the
analysis presented here searches for the single VLQ produc-
tion via the weak interaction, where a hadronic jet is emitted
at a low angle with respect to the beam direction. Further-
more, VLQs with enhanced couplings to the third generation
quarks (i.e. VLQ B and X5/3 quarks with an electric charge
of 1/3 and 5/3 respectively) are produced in association with
a bottom (b) or top (t) quark, leading to the B+b, B+t, and
X5/3+t production modes.

While a VLQ B quark could decay into the Hb, Zb, or
tW final state, a VLQ X5/3 quark could only decay into the
tW final state. This search focuses on the tW final state. In
Fig. 1, two leading-order (LO) Feynman diagrams are shown
for the single production of B and X5/3 quarks and their decay
into tW. This paper presents the first search of this signature
in proton–proton (pp) collision data recorded at a centre-of-
mass energy of 13 TeV. Results at

√
s = 8 TeV have been

obtained by the ATLAS collaboration [32].
In this analysis, final states with a single muon or electron,

several hadronic jets, and missing transverse momenta pmiss
T

are studied. Because of the high mass of the VLQ, the t and
W can have high Lorentz boosts, leading to highly collimated
decays of the W boson, the top quark and non-isolated lep-
tons. For signal events, the mass of the B and X5/3 quarks
can be reconstructed using hadronic jets, the lepton, and the
pmiss

T . The associated b and t, as well as the leptons originat-
ing from their decay, have much lower transverse momenta
pT and are not considered for the reconstruction or selection.

The dominant SM background processes are top quark
pair (tt) production, W+jets and Z+jets production, single t
production, and multijet production via the strong force. All
SM backgrounds contributing to this search are predicted
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Fig. 1 Leading order Feynman diagrams for the production of a single
vector-like B or X5/3 quark in association with a b (left) or t (right) and
a light-flavour quark, and the subsequent decay of the VLQ to tW

from dedicated control regions in data, defined through the
absence of a forward jet.

This paper is organised as follows: Sect. 2 provides a
description of the CMS detector. Section 3 introduces the
data set and the simulated events. This is followed by the
event selection in Sect. 4, as well as by the description of
the reconstruction of the VLQ mass in Sect. 5. In Sect. 6, a
method to estimate the background is discussed. Systematic
uncertainties are detailed in Sect. 7. The final results of the
analysis, as well as the statistical interpretation in terms of
exclusion limits, are discussed in Sect. 8.

2 The CMS detector and physics objects

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapid-
ity coverage provided by the barrel and endcap detectors.
Muons are detected in gas-ionisation chambers embedded in
the steel flux-return yoke outside the solenoid.

The particle-flow event algorithm [33] aims to reconstruct
and identify each individual particle with an optimised com-
bination of information from the various elements of the CMS
detector. The energy of photons is directly obtained from the
ECAL measurement, corrected for zero-suppression effects.
The energy of electrons is determined from a combination of
the electron momentum at the primary interaction vertex, the
energy of the corresponding ECAL cluster, and the energy
sum of all bremsstrahlung photons spatially compatible with
originating from the electron track [34]. The energy of muons
is obtained from the curvature of the corresponding track
[35]. The energy of charged hadrons is determined from a
combination of their momentum measured in the tracker and

the matching ECAL and HCAL energy deposits, corrected
for zero-suppression effects and for the response function of
the calorimeters to hadronic showers. Finally, the energy of
neutral hadrons is obtained from the corresponding corrected
ECAL and HCAL energy.

The reconstructed vertex with the largest value of summed
physics-object p2

T is taken to be the primary pp interaction
vertex. The physics objects used are the jets, clustered with
the jet finding algorithm [36,37] with the tracks assigned to
the vertex as inputs, and the associated missing transverse
momentum, taken as the negative vector sum of the pT of
those jets.

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [38].

3 Data and simulated samples

In this analysis, pp collision data at a centre-of-mass energy
of 13 TeV taken in 2016 by the CMS experiment are analyzed.
The data have been collected with muon and electron triggers
[39]. For the muon trigger, a muon candidate with pT >

50 GeV is required. Data events in the electron channel are
collected using a logical combination of two triggers: the
first requires an electron candidate with pT > 45 GeV and
a hadronic jet candidate with pT > 165 GeV, the second
requires an electron candidate with pT > 115 GeV. In the
trigger selection, reconstructed leptons and jets must be in
the central part of the detector, with a pseudorapidity of |η| <

2.4. No lepton isolation criteria are applied at the trigger level.
The collected data correspond to an integrated luminosity of
35.9 fb−1 [40].

For the study of dominant SM background processes and
for the validation of the background estimation, simulated
samples using Monte Carlo (MC) techniques are used. The
top quark pair production via the strong interaction and sin-
gle top quark production in the t-channel, and the tW process
are generated with the next-to-leading-order (NLO) genera-
tor powheg [41–43] (version v2 is used for the first two
and version v1 for the third). The event generator Mad-

Graph5_amc@nlo (v2.2.2) [44] at NLO is used for single
top quark production in the s-channel. The W+jets and Z+jets
processes are also simulated using MadGraph5_amc@nlo

(v2.2.2). The W+jets events are generated at NLO, and the
FXFX scheme [45] is used to match the parton shower emis-
sion. The Z+jets events are produced at LO with the MLM
parton matching scheme [46]. The production of quantum
chromodynamics (QCD) multijet events has been simulated
at LO using pythia [47]. All generated events are inter-
faced with pythia for the description of the parton shower
and hadronisation. The parton distribution functions (PDFs)
are taken from the NNPDF 3.0 [48] sets, with the preci-
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sion matching that of the matrix element calculations. The
underlying event tune is CUETP8M1 [49,50], except for the
simulation of top quark pairs and single top quark production
in the t-channel, which use CUETP8M2T4 [51].

Signal events are generated at LO using MadGraph5_
amc@nlo for B and X5/3 with VLQ decay widths relative
to the VLQ mass of (�/m)VLQ = 1, 10, 20, and 30%. The
samples with 1% relative VLQ width are simulated in steps
of 100 GeV for masses between 700 and 2000 GeV. Samples
with 10, 20, and 30% relative VLQ widths are generated in
steps of 200 GeV for masses ranging from 800 to 2000 GeV,
using a modified version of the model proposed in Refs. [52–
54]. Separate signal samples are generated for the two main
production modes, in which VLQs are produced in associa-
tion either with a b quark or with a t quark, viz. pp → Bbq and
pp → Btq. The theoretical cross sections for VLQ produc-
tion are calculated using Refs. [55–57], where a simplified
approach is used to provide a model-independent interpreta-
tion of experimental results for narrow and large mass width
scenarios, as already used for the interpretation of singly pro-
duced vector-like T and B quarks [18,19]. The MADSPIN

package [58,59] is used to retain the correct spin correlations
of the top quark and W boson decay products. Interference
effects between signal and SM processes have been found to
be negligible in this analysis.

All generated events are passed through a Geant4 [60]
based detector simulation of the CMS detector. Additional
pp interactions originating from the same bunch crossing
(in-time pileup), as well as from the following or previous
bunch crossings (out-of-time pileup) are taken into account
in the simulation.

4 Event selection

The physics objects used in this analysis are muons, elec-
trons, hadronic jets, �pmiss

T , and ST,lep (defined as the scalar
sum of the lepton pT and pmiss

T ).
For each event, jets are clustered from reconstructed par-

ticles using the infrared and collinear safe anti-kT algorithm
[36] with a distance parameter R = 0.4 (AK4 jet). Addition-
ally, jets with R = 0.8 (AK8 jet) are also clustered in every
event with the anti-kT algorithm, which are used for t and
W tagging. The jet clustering is performed with the FastJet
[37] package. Jet momentum is determined as the vectorial
sum of all particle momenta in the jet, and is found from sim-
ulation to be within 5–10% of the true momentum over the
whole pT spectrum and detector acceptance. Additional pp
interactions within the same or nearby bunch crossings can
contribute additional tracks and calorimetric energy depo-
sitions to the jet momentum. To mitigate this effect, tracks
identified to be originating from pileup vertices are discarded,
and an offset correction is applied to correct for remaining

contributions. Jet energy corrections are derived from simu-
lation studies so that the average measured response of jets
becomes identical to that of particle level jets. In situ mea-
surements of the momentum balance in dijet, photon+jet,
Z+jet, and multijet events are used to account for any resid-
ual differences in the jet energy scale in data and simulation.
Additional selection criteria are applied to each jet to remove
jets potentially dominated by anomalous contributions from
various subdetector components or reconstruction failures
[61].

From the corrected and reconstructed AK4 jets, those are
considered that have pT > 30 GeV and |η| < 4, while AK8
jets must have pT > 170 GeV and |η| < 2.4.

Events selected in the analysis are required to have one
reconstructed muon or electron with pT > 55 GeV and
|η| < 2.4. Electrons and muons are selected using tight qual-
ity criteria with small misidentification probabilities of about
0.1% for muons and 1% for electrons [34,62]. In the electron
channel, a AK4 jet must have pT > 185 GeV and |η| < 2.4 if
the electron has pT < 120 GeV, reflecting the trigger selec-
tion. Events with more than one muon or electron passing the
same tight identification criteria and having pT > 40 GeV
and |η| < 2.4 are discarded. Selected events contain two
AK4 jets with pT > 50 GeV, which are in the central part of
the detector with |η| < 2.4. Additionally at least one AK8
jet is required. For the reconstruction AK4 jets are used with
pT > 30 GeV and |η| < 2.4, while the AK4 jets emitted close
to the beam pipe and employed in the background estimation
must fulfill pT > 30 GeV and 2.4 < |η| < 4.

Because of the high Lorentz boosts of the top quarks
and W bosons from the heavy VLQ decay, signal events
can have leptons in close vicinity to the jets. For this rea-
son, standard lepton isolation would reduce the selection
efficiency considerably. Therefore, for the suppression of
events originating from QCD mulitjet processes, either the
perpendicular component of the lepton momentum relative
to the geometrically closest AK4 jet pT,rel, is required to
exceed 40 GeV or the angular distance of the lepton to the
jet, ΔR(�, jet) =

√
(Δη)2 + (Δφ)2, must be larger than 0.4,

where φ is the azimuthal angle in radians. Furthermore, for
selecting an event, the magnitude of �pmiss

T has to be greater
than 50 GeV in the muon channel and greater than 60 GeV in
the electron channel. This requirement reduces the amount
of background from multijet production. The final selection
is based on the variable ST,lep, which is required to be larger
than 250 GeV in the muon channel and 290 GeV in the elec-
tron channel.

Events are separated into categories exploiting the tagging
techniques for boosted top quarks and W bosons decaying
hadronically, as well as for hadronic jets originating from b
quarks. Jets with R = 0.8 are used to identify the hadronic
decays of highly boosted top quarks and W bosons [63,64].
For top quark jets pT > 400 GeV is required, and for W
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boson jets the requirement is pT > 200 GeV. The “soft
drop” (SD) declustering and grooming algorithm [65,66]
with z = 0.1 and β = 0 is employed to identify subjets and to
remove soft and wide-angle radiation. The groomed jet mass,
mSD, is used to identify top quark and W boson candidates.
Tagged top quark candidates (t tagged) are required to have
105 < mSD < 220 GeV and one of the subjets must fulfill
the loose b tagging criterion, based on the combined sec-
ondary vertex (CSVv2) [67] algorithm. The loose criterion
is defined to give a 80% efficiency of correctly identifying
b jets, with a 10% probability of incorrectly tagging a light
quark jet. Additionally, the jet must have a N-subjettiness
[68,69] ratio τ3/τ2 < 0.5 and its angular distance to the lep-
ton ΔR(�, t tag) must be larger than 2. Identified W boson
candidates (W tag) must have 65 < mSD < 95 GeV. The
medium b tag criterion is used on AK4 jets, defined to give
a 60% efficiency of correctly identifying b jets, with a 1%
probability of incorrectly tagging a light quark jet.

Selected events are attributed to different mutually exclu-
sive event categories. Events containing at least one t tag
constitute the first category (“t tag”). If no t tag is found,
all events with at least one W tag are grouped into a second
category (“W tag”). The remaining events are attributed to
three further categories based on the multiplicity of b tags
found in the event. We distinguish events with at least two
(“≥2 b tag”), exactly one (“1 b tag”), and no b tag (“0 b tag”).
These five categories are built separately in the muon and in
the electron channel leading to a total of ten categories.

5 Mass reconstruction

Hadronic jets, leptons, and �pmiss
T are used to reconstruct the

mass of the VLQ, denoted mreco. In signal events, the lep-
ton in the final state always originates from the decay of
a W boson, either the W boson from the VLQ decay or
the W boson from the top quark decay. The neutrino four-
momentum can thus be reconstructed from the components
of �pmiss

T , the W mass constraint, and the assumption of mass-
less neutrinos.

In the case when a hadronic jet with a t tag is found, mreco

is calculated from the four-momentum of the t-tagged jet and
the four-momentum of the leptonically decaying W boson.
If several hadronic jets with t tags are present, the one with
the largest angular distance to the reconstructed leptonic W
boson decay is used. Once the t-tagged jet has been selected,
all overlapping AK4 jet jets in the event are removed in order
to avoid double counting of energy. For the shown mreco

distributions these events form the t tag category. For events
in the other categories the hadronic part of the VLQ decay is
reconstructed from combinations of AK4 jets with |η| < 2.4.
Each possible jet assignment for the decays of the W boson
and t quark is tested exploiting the following χ2 quantity

χ2 = (mt − mt)
2

σ 2
t

+ (mW − mW)2

σ 2
W

+ (ΔR(t, W) − π)2

σ 2
ΔR

+
(
pT,W/pT,t − 1

)2

σ 2
pT

. (1)

For each event, the jet assignment with the maximum
χ2 probability is selected. For the χ2 quantity the pT bal-
ance, pT,W/pT,t , the angular distance, ΔR(t, W), and the
reconstructed masses of the top quark candidate mt and
the W boson candidate mW are used. The expected values
mt and mW, and their standard deviations σt and σW are
obtained from simulation for correctly reconstructed events
and it is verified that the values are independent of the VLQ
mass. Here, correctly reconstructed events are defined by
the assignment of jets to generated t quarks and W bosons,
where the generated particles from the VLQ decay are unam-
biguously matched within a distance of ΔR < 0.4 to the
reconstructed particles. It was also verified in simulation
that the expected values of ΔR(t, W) and the pT balance
are π and 1, with their standard deviations σΔR and σpT . In
order to account for cases where the W boson from the VLQ
decay decays into a lepton and neutrino, the χ2 is calculated
for each permutation with the second term omitted. Cases
where the hadronic decay products of the W bosons or the
top quark are reconstructed in a single AK4 jet are included
by omitting the first or second term in the calculation of
the χ2.

The distributions of mreco in simulation for the B+b pro-
duction mode with right-handed couplings are shown in
Fig. 2 for events with a muon in the final state. The recon-
struction of events with a t tag (top) is best suited for high
VLQ masses where the decay products of the top quark are
highly boosted, while the χ2 method (bottom) yields a stable
performance for all VLQ masses, where the decay products
of the W boson and top quark are reconstructed from sev-
eral jets. Additionally, the latter method enables the recon-
struction of events with a lepton from the top quark decay
chain. Mass resolutions between 10–15% are achieved for
both reconstruction methods, with peak values of the mreco

distributions at the expected values. The VLQs with left-
handed couplings (not shown) have a lower selection effi-
ciency by 20–25% because of a smaller lepton pT, on aver-
age, but otherwise features a behaviour similar to VLQs
with right-handed couplings. Distributions obtained for the
final states with an electron are similar to those with a
muon.

6 Background estimation

The data sample obtained after the selection is then divided
into a signal region with a jet in the forward region of
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Fig. 2 Distributions of mreco for the B+b production mode, obtained
for simulated events with a muon in the final state, reconstructed with a
t tag (top) and with the χ2 method (bottom) for right-handed VLQ cou-
plings and various VLQ masses mB. Signal events are shown assuming
a production cross section of 1 pb and a relative VLQ decay width of
1%

the detector with 2.4 < |η| < 4.0 and a control region
without such a jet. The distribution of background pro-
cesses in the signal region is estimated using the shape of
the mreco distribution in the control region. Residual differ-
ences in the shapes of the mreco distributions between sig-
nal and control regions are investigated in each of the sig-
nal categories by using simulated SM events. Differences
can arise from different background compositions in sig-
nal and control regions due to the presence of a forward
jet. The observed differences are small, with average val-
ues of 10%, and are corrected for by multiplicative fac-
tors applied to the background predictions in the valida-
tion and signal regions. The largest differences are observed

for mreco values below 800 GeV, with values no larger than
about 20%.

In order to validate the VLQ mass reconstruction, data
are compared to simulation in the control region. In Fig. 3
the distributions of mreco are shown in the muon (upper)
and electron (lower) channels for events with a t tag (left)
and events reconstructed with the χ2 method (right). The
tt and tW standard model processes provide irreducible
backgrounds in the reconstructed VLQ mass distributions,
showing good agreement between the data and simulation.
The contribution of signal events in the control region is
small and is taken into account by a simultaneous fit to sig-
nal and control regions in the statistical extraction of the
results.

In order to validate the background estimation, a valida-
tion region is constructed from requiring events with recon-
struction p-values smaller than 0.08. The p-values are cal-
culated as the probability of obtaining the χ2 as given by
Eq. (1), where the number of degrees of freedom of the
selected hypothesis are taken into account. For events with
a t tag, the same χ2 quantity is evaluated for the selected
hypothesis. The validation region has an order of magnitude
fewer events than the signal region and a negligible amount
of signal contamination. The mreco distributions for the two
most sensitive categories are shown in Fig. 4 for the muon
(upper) and electron (lower) channels. The observed number
of events is found to be in good agreement with the pre-
dicted number of events from the background estimation in
the validation region, with no statistically significant devi-
ations. Similar observations are made for the other signal
categories.

7 Systematic uncertainties

Systematic uncertainties can affect both the overall normali-
sation of background components and the shapes of themreco

distributions for signal and background processes. The main
uncertainty in the shape of the mreco distribution from the
background estimation based on a control region in data is
related to the kinematic difference between the signal and
control regions. Correction factors are applied to account
for this difference, obtained from SM simulations. These
uncertainties have a size of 10% on average, with maxi-
mum values of 20% at small values of mreco. Compared
to these uncertainties, the effects from uncertainties in the
SM simulations are negligible on the background estima-
tion, as these cancel to a large degree when building the
ratios between signal and control regions. The uncertain-
ties in the overall normalisation of the background pre-
dictions are obtained from a fit to the data in the signal
region.
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Fig. 3 Distributions of mreco in data and simulation in the control
region for the muon (upper) and electron (lower) channels for events
reconstructed with a t tag (left) and with the χ2 method (right). The
VLQ signal is shown for the B+b production mode and right-handed
VLQ couplings. The vertical bars illustrate the statistical uncertainties

on the data, while the shaded area shows the total uncertainties for the
background simulation. The lower panels show the ratio of data to the
background prediction. The dark and light gray bands correspond to the
statistical and total uncertainties, respectively

Uncertainties in the MC simulation are applied to all sim-
ulated signal events. In the following, the systematic uncer-
tainties are summarized.

– The uncertainty in the integrated luminosity measure-
ment recorded with the CMS detector in the 2016 run at√
s = 13 TeV is 2.5% [40].

– The estimation of pileup effects is based on the total
inelastic cross section. This cross section is determined
to be 69.2 mb. The uncertainty is taken into account by
varying the total inelastic cross section by 4.6% [70].

– Simulated events are corrected for lepton identification,
trigger, and isolation efficiencies. The corresponding cor-
rections are applied as functions of |η| and pT. The sys-
tematic uncertainties due to these corrections are taken
into account by varying each correction factor within its
uncertainty.

– The scale factors for the jet energy scale and resolution
are determined as functions of |η| and pT [61]. The effect
of the uncertainties in these scale factors are considered
by varying the scale factors within their uncertainties.
Jets with distance parameters of 0.4 and 0.8 are modified
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Fig. 4 Distributions of mreco in the validation region of the two most sensitive categories in the muon channel (upper) and electron channel (lower).
The lower panels show the difference of data and background expectations in units of the total (stat. and sys.) uncertainty on the background estimate

simultaneously. The results of variations for AK4 jets are
propagated to the measurement of �pmiss

T .
– The uncertainties due to the PDFs are evaluated by con-

sidering 100 replicas of the NNPDF 3.0 set according
to the procedure described in Ref. [71]. The associated
PDF uncertainties in the signal acceptance are estimated
following the prescription for the LHC [71].

– Uncertainties associated with variations of the factorisa-
tion μf and renormalisation scales μr are evaluated by
varying the respective scales independently, by factors
of 0.5 and 2.

– Corrections for the b tagging efficiencies and misiden-
tification rates for AK4 jets, and subjets of AK8 jets
are applied. These are measured as a function of the jet

pT [67]. The corresponding uncertainties are taken into
account by varying the corrections within their uncertain-
ties for heavy- and light-flavour jets separately.

– An uncertainty on the t tagging efficiency of + 7 and
− 4% is applied to signal events with a t tag [64]. The
uncertainty on the W tagging efficiency is determined
from jet mass resolution (JMR) and scale (JMS) uncer-
tainties, which are added in quadrature. An additional
JMR uncertainty is derived from the differences in the
hadronisation and shower models of pythia and her-

wig++ [72]. The uncertainty depends on the pT of the W
boson; for VLQs with a mass of 700 GeV it is around 2%
and for a mass of 1800 GeV it is around 6%. An uncer-
tainty of 1% is assigned to the JMS, as obtained from
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Table 1 Uncertainties considered for simulated signal events in the B+b
production mode (mB = 900 GeV) for right-handed VLQ couplings for
the t tag and W tag categories. The uncertainties in the b tag categories
are of comparable size to those in the W tag category

Uncertainty t tag (%) W tag (%)

W tagging Rate – 3.3

t tagging Rate +7
−4 –

Luminosity Rate 2.5 2.5

Pileup Shape 1–3 0.2

Lepton reconstruction Shape 2–3 2–3

b tagging Shape 2.5 2.5

Jet energy scale Shape 2–6 1–5

Jet energy resolution Shape 1–2 1–2

PDF Shape 2–3 0.5

μ f and μr Shape 0.3 0.2

studies of the jet mass in fully merged hadronic W boson
decays.

In Table 1, a summary of the uncertainties considered for
signal events is shown, where the largest uncertainties come
from the jet energy scale and the jet tagging. For the uncer-
tainties connected to the PDF, μf and μr only the signal
acceptance and shape differences are propagated. The uncer-
tainties with the largest impact on the analysis are the uncer-
tainties associated with the data-driven background estima-
tion, being more than two times larger than the jet energy
scale uncertainties in the signal.

8 Results

The mreco distributions in the ten categories are measured
in the signal and control region, which are defined by the
presence or absence of a forward jet with |η| > 2.4. For
the background estimate in the signal regions, a simultane-
ous binned maximum likelihood fit of both regions is per-
formed using the Theta [73] package. In these fits, the sig-
nal cross section and the background normalisations in the
different signal categories are free parameters. The shapes
of the mreco distributions for the SM background in the sig-
nal regions are taken from the corresponding control regions.
Systematic uncertainties are taken into account as additional
nuisance parameters. A common nuisance parameter is used
for uncertainties in the muon and electron channels if a sim-
ilar effect is expected on the shape or normalisation of the
mreco distribution in both channels similarly. The nuisance
parameters for the shape uncertainties are taken to be Gaus-
sian distributed. For the uncertainties on the normalisation
log-normal prior distributions are assumed.

The measured distributions of mreco for the signal cate-
gories are shown in Figs. 5 and 6 for the muon and electron
channels, together with the background predictions obtained
from the control regions. The signal mreco distributions for
a vector-like B quark with right-handed couplings produced
in association with a b quark are shown for illustration, for
two different VLQ masses with an assumed production cross
section of 1 pb and a relative VLQ width of 1%. No signifi-
cant deviation from the background expectation is observed
in any of the categories.

Exclusion limits on the product of the VLQ production
cross section and branching fraction are calculated at 95%
confidence level (CL) for VLQ masses between 700 and
2000 GeV by using a Bayesian statistical method [73,74].
Pseudo-experiments are performed to extract expected upper
limits under the background-only hypothesis. For the sig-
nal cross section parameter an uniform prior distribution,
and for the nuisance parameters log-normal prior distribu-
tions are used. The nuisance parameters are randomly var-
ied within their ranges of validity to estimate the 68 and
95% CL expected limits. Correlations between the system-
atic uncertainties across all channels are taken into account
through a common nuisance parameter. The statistical uncer-
tainties of the background predictions are treated as an addi-
tional Poisson nuisance parameter in each bin of the mreco

distribution.
Figure 7 shows the 95% CL upper limits on the product

of the cross section and branching fraction for the B+b pro-
duction mode for left- and right-handed VLQ couplings and
a relative VLQ width of 1% (upper left and upper right), for
the left-handed VLQ couplings and a relative VLQ width of
10% (lower left), as well as a comparison of the observed
exclusion limits for relative VLQ widths between 10 and
30% (lower right). In Fig. 8, the 95% CL upper limits on
the product of the cross section and branching fraction for
the production modes B+t (upper left) and X5/3+t (upper
right) and right-handed VLQ couplings are shown. The fig-
ure also shows the X5/3+t exclusion limits for left-handed
VLQ couplings with a 10% relative VLQ width (lower left)
and a comparison of the observed exclusion limits for VLQ
widths between 10 and 30% for left-handed couplings (lower
right). The predicted cross sections for variations of the rel-
ative VLQ mass width (dashed lines) are taken from Refs.
[55–57]. For a set of VLQ masses the expected and observed
95% CL upper limits for the B+b and the X5/3+t production
modes are also given in Table 2 for VLQs with widths of 1%
and 10% and left-handed couplings, as well as for widths
of 1% and right-handed couplings. The exclusion limits for
the B+t production mode are similar to those for the X5/3+t
production mode.

The obtained exclusion limits range from 0.3 to 0.03 pb
for VLQ masses between 700 and 2000 GeV. For VLQs with
a relative width of 1% and purely left-handed couplings an
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Fig. 5 Distributions of mreco measured in the signal region for events
with a jet in the forward direction with |η| > 2.4 in the muon chan-
nel. Shown are the sensitive categories: t tag (upper left), W tag (upper
right), ≥2 b tag (middle left), 1 b tag (middle right) and 0 b tag (lower).

The background prediction is obtained from control regions as detailed
in the main text. The distributions from two example signal samples
for the B+b production mode with right-handed VLQ couplings with a
cross section of 1 pb and a relative width of 1% are shown for illustration
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Fig. 6 Distributions of mreco measured in the signal region for events
with a jet in the forward direction with |η| > 2.4 in the electron chan-
nel. Shown are the sensitive categories: t tag(upper left), W tag(upper
right), ≥2 b tag (middle left), 1 b tag (middle right) and 0 b tag (lower).
The background prediction is obtained from control regions as detailed

in the main text. The distributions from two example signal samples
for the B+b production mode with right-handed VLQ couplings with
a cross section of 1 pb and a relative VLQ width of 1% are shown for
illustration
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Fig. 7 Upper limits at 95% CL on the product of the VLQ production
cross section and branching fraction for the B+b production mode for
a relative VLQ width of 1% and left- and right-handed VLQ couplings
(upper left and right), for 10% relative VLQ width and left-handed VLQ

couplings (lower left), and a comparison of the observed exclusion lim-
its for relative VLQ widths of 10, 20, and 30% for left-handed couplings
(lower right). The dashed lines show the theoretical predictions

increase of about 25% of the 95% CL upper limits is observed
because of the reduced signal acceptance, in comparison to
the right-handed couplings. The expected limits for VLQ
with relative widths of 10–30% and left-handed couplings
only show small differences. Although the predicted cross
sections for the SM backgrounds are considerably larger at
13 TeV, similar exclusion limits on the product of cross sec-
tion and branching fraction are achieved compared to the
results obtained at 8 TeV in the more restricted mass range
considered in Ref. [32]. However, because of the increase
of the VLQ signal cross section at 13 TeV, with this analy-
sis, the existence of VLQ B (X5/3) quarks with left-handed
couplings and a relative width of 10, 20, and 30% can be
excluded for masses below 1490, 1590, and 1660 GeV (920,
1300, and 1450 GeV) respectively. The results represent the
most stringent exclusion limits for singly produced VLQ in
this channel.

9 Summary

A search for singly produced vector-like quarks decaying
into a top quark and a W boson has been performed using the
2016 data set recorded by the CMS experiment at the CERN
LHC. The selection is optimised for high vector-like quark
masses, with a single muon or electron, significant missing
transverse momentum, and two jets with high pT in the final
state. Vector-like quarks in the single production mode can
be produced in association with a t or a b quark and a for-
ward jet. The latter feature is used to obtain the background
prediction in the signal regions from data. The mass of the
vector-like quark is reconstructed from the hadronic jets, the
missing transverse momentum, and the lepton in the event.
Different decay possibilities of the t and W are considered.
The reach of the search is enhanced by t, W, and b tagging
methods. No significant deviation from the standard model
prediction is observed. Upper exclusion limits at 95% confi-
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Fig. 8 Upper limits at 95% CL on the product of the VLQ production
cross section and branching fraction for the B+t and X5/3+t produc-
tion modes for right-handed VLQ couplings assuming a relative VLQ
width of 1% (upper left and right), for the X5/3+t production mode with

left-handed VLQ couplings and a 10% relative width (lower left) and a
comparison of the observed exclusion limits for left-handed couplings
for relative widths of 10, 20, and 30% (lower right). The dashed lines
show the theoretical predictions

Table 2 Observed (expected) upper limits at 95% CL on the product of
the cross section and branching fraction for the B+b and X5/3+t produc-
tion modes, for a set of VLQ masses, for VLQs widths of 1% and 10%,

and for left-handed and right-handed couplings. The exclusion limits
for the B+t production mode (not shown) are very similar to those for
the X5/3+t mode

mVLQ (TeV) B+b X5/3+t

1% LH 10% LH 1% RH 1% LH 10% LH 1% RH

0.8 0.29 (0.36) 0.27 (0.36) 0.25 (0.29) 0.31 (0.27) 0.32 (0.25) 0.21 (0.18)

1 0.29 (0.17) 0.29 (0.19) 0.21 (0.12) 0.25 (0.15) 0.25 (0.16) 0.15 (0.10)

1.2 0.10 (0.10) 0.11 (0.11) 0.07 (0.07) 0.10 (0.09) 0.10 (0.10) 0.06 (0.06)

1.4 0.07 (0.07) 0.06 (0.08) 0.03 (0.05) 0.05 (0.06) 0.05 (0.07) 0.03 (0.05)

1.6 0.05 (0.05) 0.05 (0.06) 0.03 (0.04) 0.04 (0.04) 0.05 (0.05) 0.03 (0.03)

1.8 0.04 (0.04) 0.05 (0.04) 0.03 (0.03) – 0.05 (0.04) –

dence level on the product of the production cross section and
branching fraction range from around 0.3–0.03 pb for vector-
like quark masses between 700 and 2000 GeV. Depending on
the vector-like quark type, coupling, and decay width to tW,

mass exclusion limits up to 1660 GeV are obtained. These
represent the most stringent exclusion limits for the single
production of vector-like quarks in this channel.
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