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Abstract— Motion planning that takes into account uncertainty
in motion, sensing, and environment map, is critical for au-
tonomous robots to operate reliably in our living spaces. Partially
Observable Markov Decision Processes (POMDPs) is a principled
and general framework for planning under uncertainty. Although
recent development of point-based POMDPs have drastically
increased the speed of POMDP planning, even the best POMDP
planner today, fails to generate reasonable motion strategies when
the environment map is not known exactly. This paper presents
Guided Cluster Sampling (GCS), a new point-based POMDP
planner for motion planning with uncertain motion, sensing, and
environment map, when the robot has active sensing capability. It
uses our observations that in this problem, the belief space B can
be partitioned into a collection of much smaller sub-spaces, and
an optimal policy can often be generated by sufficient sampling
of a small subset of the collection. GCS samples B using two-stage
cluster sampling, a subspace is sampled from the collection and
then a belief is sampled from the subspace. It uses information
from the set of sampled sub-spaces and sampled beliefs to
guide subsequent sampling. Preliminary results suggest that
GCS generates reasonable policies for motion planning problems
with uncertain motion, sensing, and environment map, that
are unsolvable by the best point-based POMDP planner today,
within reasonable time. Furthermore, GCS handles POMDPs
with continuous state, action, and observation spaces. We show
that for a class of POMDPs that often occur in robot motion
planning, GCS converges to the optimal policy, given enough
time. To the best of our knowledge, this is the first convergence
result for point-based POMDPs with continuous action space.

I. INTRODUCTION

Motion planning under uncertainty is critical for robots
to operate reliably in our living spaces, such as homes,
offices, and outdoor environment. Uncertainty in robot motion
planning are caused by three main sources: control error,
sensing error, and imperfect environment map. Control error
and sensing error are common traits of controllers and sensors.
Imperfect environment map is unavoidable as maps of our
living spaces are acquired through sensors subject to various
substantial noise. Despite the significance of all three causes
of uncertainty to motion planning problems, most work take
into account only one [5, 8, 16] or at most two sources of
uncertainty [4, 20]. This paper presents a new motion planner
that takes into account all three sources of uncertainty.

Our new planner uses the Partially Observable Markov
Decision Processes (POMDPs) framework. POMDP is a math-
ematically principled and general framework for planning
under uncertainty. To cope with uncertainty, POMDP planners
reason over beliefs, where a belief is a distribution over the

state space. They plan in the belief space B, which is the set of
all possible beliefs. Although solving a POMDP is computa-
tionally intractable in the worst case [17], recent development
of point-based POMDPs [15, 18, 21] have drastically increased
the speed of POMDP planning. Key to point-based POMDPs
is to sample a set of representative beliefs from B and plan
with respect to the set of sampled beliefs, instead of the
entire B. By doing so, point-based POMDPs can generate a
good approximate solution for motion planning problems with
moderate difficulty, within a few minutes [10, 14, 15, 21].

However, three major challenges remain to hinder the ap-
plicability of POMDPs in motion planning under uncertain
environment map. First is the curse of dimensionality. When
both the map and robot’s configuration are not perfectly
known, the state space S is a joint product between the space
E of possible environment maps and the configuration space
Q, causing the dimension dim(S) of S to be extremely high.
Consider a simplistic problem of a 2-DOFs robot operating in
an environment containing two triangular obstacles where the
positions of the vertices are not known perfectly. Dim(S) is
already 14! This dimensionality is aggravated in POMDPs, as
they plan in B whose size is doubly exponential in dim(S).

Second is the long planning horizon typical of motion
planning problems. In a motion planning task, a robot often
needs to take many actions to reach the goal, resulting in
a long planning horizon. The complexity of planning often
grows exponentially with the horizon.

Third is continuous control space. The control space of
most robots is continuous, but most POMDP planners assume
discrete control space. Although sampled representation of
the continuous control space can be used, it is not known
whether a good approximation to the optimal policy can be
guaranteed. POMDP planners compute a max over the control
space. While sampling has been shown to approximate the
average operator well, almost no result is known on how well
sampling approximates the max operator.

This paper presents a new point-based POMDP planner,
called Guided Cluster Sampling (GCS), that alleviates the
above three challenges for a robot that localizes itself through
active sensing. GCS constructs a more suitable sampling
distribution based on two observations. First, in many cases,
the optimal policy consists of a small number of sensing
actions. Second, the marginal distribution of E in the robot’s
belief changes only after a sensing action is performed. These



observations mean that, if B is partitioned into a collection
C of sub-spaces, where each sub-space consists of all beliefs
with the same marginal distribution of E, then the set R∗(b0)
of beliefs reachable under an optimal policy, often lies in a
small subset of C . Since the size of a subspace in C is doubly
exponential in dim(Q), which is much smaller than dim(S),
and since an optimal policy can be constructed from sufficient
sampling of R∗(b0) [11], we only need to sufficiently sample
a much smaller subspace of B.

Using the above observations, GCS performs two-stage
cluster sampling. To sample a belief, it samples a sub-space
from the collection C and samples a belief from the sub-space.
To sample a small representative set of beliefs, GCS aims
to sample from R∗(b0). Of course, R∗(b0) is not known a
priori, as knowing R∗(b0) is the same as knowing the optimal
policy. Therefore, GCS uses information from the sampled
sub-spaces and beliefs to guide subsequent sampling. This
sampling strategy alleviates the curse of dimensionality issue.

To alleviate long planning horizon issue, GCS adopts the
strategy in [14]. It reduces the effective planning horizon by
using action sequences, instead of a single primitive action, to
guide sampling B.

GCS deals with continuous state, control, and observation
spaces by using sampled representations. We show that for a
class of POMDPs that often occur in robot motion planning,
GCS converges to the optimal policy, given enough time. To
the best of our knowledge, this is the first convergence result
for point-based POMDPs with continuous control space.

II. RELATED WORK AND BACKGROUND

A. Motion planning under uncertainty

In motion planning, uncertainty arises from three main
sources, i.e., imperfect control, imperfect sensing, and im-
perfect information about the environment. However, most
work on motion planning under uncertainty takes into account
only one or two causes of uncertainty: Stochastic Motion
Roadmap [1] considers only control uncertainty, [5] considers
only sensing uncertainty, [8, 16] consider only imperfect
information about the environment, [4, 20] consider only
control and sensing uncertainty, and restricts them to Gaussian.
Our new planner takes into account all three sources of
uncertainty and allows any type of distribution with bounded
support for control, sensing, and environment map uncertainty.

A few work that take into account all three sources of
uncertainty during planning [13, 22] are designed specifically
for exploration task. [13] restricts control, sensing, and map
uncertainty to be Gaussian. [22] finds an approximate solution
using a greedy one-step lookahead method, which is often
inadequate for general motion planning problems as they often
require long planning horizon.

Motion planning under uncertain control, sensing, and en-
vironment map is essentially a POMDP problem, and general
POMDP planners can conceptually be used. However, despite
the impressive progress of such planners [15, 18, 21], they
face significant difficulties when the environment map is
uncertain. Recently, [7] alleviates these difficulties by using

online POMDP. However, this strategy does not perform global
planning in the belief space. As a result, it may not converge
to the optimal policy. Our planner performs global planning
in the belief space by utilizing domain specific properties.

B. POMDP Background
Formally, a POMDP is specified as a tuple

〈S,A,O,T,Z,R,γ〉, where S is the set of states, A is the
set of actions, and O is the set of observations. In each time
step, the agent lies in a state s ∈ S, takes an action a ∈ A,
and moves from a start state s to an end state s′. Due to
the uncertainty in action, the end state s′ is modeled as a
conditional probability function T (s,a,s′) = P(s′|s,a). The
agent may then receive an observation. Due to the uncertainty
in observation, the observation result o ∈ O is again modeled
as a conditional probability function Z(s′,a,o) = P(o|s′,a).
In each step, the agent receives a reward R(s,a), if it takes
action a in state s. The goal of the agent is to maximize its
expected total reward by choosing a suitable sequence of
actions. When the sequence of actions has infinite length, we
specify a discount factor γ ∈ (0,1) so that the total reward is
finite and the problem is well defined.

POMDP planning computes an optimal policy that maxi-
mizes the agent’s expected total reward. A POMDP policy
π : B→A is a mapping from B to A, which prescribes an action
a, given the agent’s belief b. A policy π induces a value func-
tion Vπ(b). The value function Vπ(b) = E [∑∞

t=0 γ tR(st ,at)|b,π]
specifies the expected total reward of executing policy π . To
execute a policy π , an agent executes action selection and
belief update repeatedly. For example, if the agent’s current
belief is b, it selects the action referred to by a = π(b). After
the agent performs action a and receives an observation o, it
updates b to a new belief b′ given by

b′(s′) = τ(b,a,o) = ηZ(s′,a,o)
∫

s∈S
T (s,a,s′)b(s)ds (1)

where η is a normalization constant.
A policy can be represented by various representations. GCS

is general enough to be used with any policy representation
for continuous S and O, e.g., [2, 19, 23].

C. Point-based POMDP
Point-based POMDPs trade optimality with approximate

optimality in exchange for speed. It reduces the complexity
of planning in B by representing B as a set of sampled beliefs
and planning with respect to this set only. To generate a
policy, most point-based POMDPs use value iteration, utilizing
the fact that the optimal value function satisfies Bellman
equation. They start from an initial policy, represented as a
value function V . And iteratively perform Bellman backup on
V at the sampled beliefs, until the iteration converges. Over
the past few years, impressive progress have been gained by
improving the strategy for sampling B [15, 18, 21].

Despite the impressive progress, even the best point-based
POMDP planners today face significant difficulties in solv-
ing motion planning under uncertain environment map. GCS
alleviates these dificulties by constructing a more suitable
sampling strategy based on domain specific properties.



Furthermore, most point-based POMDPs are designed for
discrete state, action, and observation spaces. Although a
few [9, 19] handle continuous state, action, and observation
spaces, they do not provide convergence guarantee when the
action space is continuous. For a class of POMDP problems
with continuous state, action, and observation spaces, that
often occur in robot motion planning, GCS is guaranteed to
converge to the optimal policy, given enough time.

III. POMDP FORMULATION

Let’s first consider

Fig. 1. The robot is a pentagon. The two
blue pentagons represent the possible initial
configurations of the robot. The grey polygons
are obstacles. The position of each vertex is
not perfectly known, and maybe anywhere
within the rectangular region.

a robot operating in a
2D environment pop-
ulated by polygonal
obstacles. The num-
ber of obstacles, the
number of vertices in
each polygon, and the
connectivity between
the vertices in each
polygon are perfectly
known. However, the
position of the ver-

tices are not perfectly known and are represented as probability
distributions with bounded support (e.g., Figure 1). Due to
imperfect information about the robot’s configuration and the
environment it operates in, we model both robot configuration
and environment map as state variables in POMDP. The map
is feature-based, where the features are the obstacles’ vertices
and goal features. A goal feature is a mark in the environment,
indicating the robot’s goal position. Suppose the features are
numbered sequentially from 1 to n. And suppose Ei is the set
of all possible positions of feature-i. Then, the POMDP state
space, S = Q×E, where Q is the robot’s configuration space
and E = E1×·· ·×En is the environment space.

The robot uses a visibility sensor with stop-and-go mech-
anism. Therefore, the action space A consists of two subsets,
control set U and {sensing}. When the robot performs a
control action u ∈ U , it moves according to a control law
which is noisy and perceives no observation. When sensing
is performed, the robot does not move but perceives an
observation about the position of the features that lie inside
the field of view of its sensor, with probability as modeled
in Z. The function Z depends only on the relative position of
the features with respect to the robot. GCS can use any data
association method [24]. Data association is a large domain
in itself and is outside the scope of this paper. Notice that in
this problem, regardless of the exact T and Z, the marginal
distribution of E in the robot’s belief changes only when a
sensing action is performed. GCS exploits this property to
generate a more suitable strategy for sampling B.

The robot’s objective is to reach a goal region with as little
cost as possible. The goal region is the set of points within a
small pre-specified distance from a goal feature. The cost is
the sum of moving/sensing cost and collision cost. To model
this objective, for any state s ∈ S and any action a ∈ A, we

define R(s,a) = Rgoal(s)+Raction(s,a)+Rcollision(s,a), where
Rgoal(s) is the goal reward, i.e., a large constant if s is in a goal
region and 0 otherwise, Raction(s,a) is the cost of performing
a from s, and Rcollision(s,a) is the expected collision cost of
moving according to a from s. Notice that R depends only on
the action performed and the relative position of environment
features with respect to the robot. GCS uses this property to
generate a more effective sampling guide (Section V-A).

Unlike most work in POMDP planners, in this paper, S,
U , and O are continuous. Continuous spaces are more natural
for modeling robotics problems. To represent these continuous
spaces, GCS uses sampled representations.

Now, we define the continuity properties of R, Z, and T
with respect to S and A, so that convergence to the optimal
policy can be guaranteed even when A is approximated with
its sampled representation. The approximation result is in
Section VI. The properties with respect to S are,
Definition 1 Suppose 〈S,A,O,T,Z,R,γ〉 is a POMDP with
continuous S. Let DS be a metric in S. The POMDP is LS-
continuous with parameter (KRS,KZ), KRS,KZ ∈ R, when:
1) The motion uncertainty is the same everywhere. For any

displacement vector d on S and any s,s′ ∈ S, T (s,a,s′) =
T (s+d,a,s′+d).

2) The observation function Z is Lipschitz continuous in S.
For any s,s′ ∈ S, any a,a′ ∈ A, and any o ∈O, |Z(s,a,o)−
Z(s′,a,o)| ≤ KZ ·DS(s,s′).

3) The reward R is Lipschitz continuous in S. For any s,s′ ∈ S
and any a ∈ A, |R(s,a)−R(s′,a)| ≤ KRS ·DS(s,s′).

Property-1 may seem odd as it means that the robot may go
through an obstacle. However, notice that in motion planning,
the modeling of actual physical dynamics during collision
is essentially a way to generate motion strategy with low
collision cost. We can generate the same strategy without
modelling the effect of collision in T , by setting a high
penalty for collision. This trick is similar to the use of
potential function in deterministic motion planning. Property-
1 simplifies proving the convergence result (Section VI), as
transition from all states can be treated equally.
Property-2 means that the robot receives similar observation
when it is at nearby configuration in similar environment. This
is a common assumption in robotics.
Property-3 means that the robot receives similar immediate re-
ward when it is at nearby configuration in similar environment.
Since Lipschitz condition is closed under summation, to satisfy
this property, we only need to ensure that each component of
R is Lipschitz. This can be satisfied easily, for instance by
setting Rgoal to be linearly increasing as the robot becomes
closer to the goal region, Raction for the same action to be the
same everywhere, and Rcollision to be linearly increasing as the
robot becomes closer to an obstacle. This reward function is
similar to potential functions used in motion planning [6].

Now, we define the properties of R, Z, and T on A.
Definition 2 Suppose 〈S,A,O,T,Z,R,γ〉 is a POMDP where S
is continuous. And A can be partitioned into a finite collection
P of disjoint continuous sets, where two actions a,a′ ∈ A are



in the same set P∈P whenever Oa
⋂

Oa′ 6= /0, Oa is the set of
observations that can be perceived when a ∈ A is performed,
i.e., Oa = {o ∈O | ∃s ∈ S Z(s,a,o)> 0}. Suppose DS and DP
are metrics on S and on set P ∈P . Then, the POMDP is LA-
continuous with action partition P and parameters (KRA,h)
when the three properties below hold. The parameter KRA ∈R,
while h is an increasing function with h(0) = 0, that maps
distance in A to distance in S. The properties are:

1) For any P∈P , any a,a′ ∈P, and any s,s′ ∈ S, T (s,a,s′) =
T (s,a′,s′ + f (a,a′)), where f is a function that maps a
pair of actions in A to a displacement vector in S, such
that DS(s,s+ f (a,a′))≤ h(DP(a,a′)).

2) The observation function is the same for any action in the
same set of P . For any o ∈O, any s ∈ S, any P ∈P , and
any a,a′ ∈ P, Z(s,a,o) = Z(s,a′,o).

3) The reward R is Lipschitz continuous on each set in P .
For any s ∈ S, any P ∈P , and any a,a′ ∈ P, |R(s,a)−
R(s,a′)| ≤ KRA ·DP(a,a′).

An example of P in our POMDP model is {U,{sensing}}.
Property-1 means that when nearby actions within the same
element of P , are applied to the same state, the resulting states
would be close too. The function f can be linear or non-linear,
which means that this property can be satisfied by both linear
and non-linear control. Property-2 means that within the same
action set P∈P , the observation that can be perceived by the
robot depends only on the robot’s configuration and features’
positions. This requirement is common in robotic system with
visibility sensor that operates in a stop-and-go mode. Property-
3 is similar to property-3 of Definition 1, but applied to A.

IV. OVERVIEW OF GCS

A key idea of point-based POMDP planners is to sample
a representative set of beliefs from B and use it as an
approximate representation of B. For computational efficiency,
most of the recent point-based POMDP planners sample from
the set of points reachable from b0, instead of the entire B,
and consider nearby beliefs to be the same. The sampled
beliefs are represented as a belief tree T , where each node
represents a sampled belief and the root is b0. To sample a new
belief, these planners sample a node b ∈ T , an action a ∈ A,
and an observation o ∈ O according to suitable probability
distributions or heuristics. They then compute b′ = τ(b,a,o)
using (1). Whenever the distance between b′ and its nearest
node in T is larger than a given threshold ε , b′ is inserted
into T as a child of b. Otherwise, b′ is discarded. The number

of different beliefs that can be sampled is then O( 1
ε

1
δ

dim(S)

)
where δ is a given threshold used to determine if two
states s,s′ ∈ S are the same. Furthermore, when the problem
requires a planning horizon of h, T needs to have at least h
levels. Therefore in the worst case, the size of the sampling
domain is doubly exponential in dim(S) or exponential in h,
whichever is smaller. Together, the large dim(S) and planning
horizon generate a huge sampling domain that pose significant
difficulty for even the best POMDP planners today.

Although the sampling domain is huge, a good sampled
representation of B, i.e., one that enables the generation of
an optimal policy, often lie in a much smaller subspace of B.
Let’s first define a partitioning C of B as,
Definition 3 The partition C of B is a collection
{C(b1

E),C(b2
E),C(b3

E), . . .} of disjoint sub-spaces, where
each C(bE) = {b ∈ B | ∫q∈Q b(〈q,e〉)dq = bE ,e ∈ E}.
We observe that the optimal motion strategies often perform a
small number of sensing actions. Since a robot’s belief over its
environment changes only when a sensing action is performed,
our observation implies that R∗(b0) often lie in a small
subset of C . Since dim(C(bE)) of any C(bE) ∈ C is doubly
exponential in dim(Q), instead of the much larger dim(S),
R∗(b0) lies in a much smaller subspace of B. This observation
and the results [11] that a good sampled representation of B
can be constructed by sufficient sampling of R∗(b0), indicate
that it is sufficient to sample from a small subset of C .

Utilizing the above observations, GCS alleviates the difficul-
ties due to huge B by performing a two-stage cluster sampling.
It samples a small number of relevant subspaces from C and
samples beliefs only from the sampled subspaces. Of course
ideally, the sampled beliefs are all in R∗(b0). However, since
R∗(b0) is not known apriori, GCS samples B incrementally.
It uses heuristics based on environment distributions in the
sampled subspaces and the sampling history, to guide sampling
subsequent subspaces and to guide sampling representative
beliefs in each subspace. To further alleviate the planning
complexity, GCS reduces the planning horizon by using action
sequences, instead of primitive actions, to guide sample B.

b0

. . .

(a1, a2, . . . , al) (a′1, a
′
2, . . . , a

′
k)

. . .

o1 o2 o3

B

C(bE)

C(b′E)

Fig. 2. The belief tree T (left) and the belief space B (right) it represents.
Each node in T lies in an element of C . Suppose b ∈ T lies in C(bE ) ∈ C .
Each out-edge of a node b corresponds to a path in the C(bE ).

Similar to most point-based POMDP planners, GCS con-
structs a belief tree T , but expands T using the above idea.
The overall algorithm is in Algorithm 1. Given a node b ∈ T
to expand, GCS finds a subspace C(bE) ∈ C that contains
b (line 4). It uses the environment map distribution bE as a
guide to generate an action sequence (line 5) that leads to
the goal state with high probability and low collision cost,
or to a belief where useful sensing data can be gained with
high probability. The action sequence is either a sequence with
no sensing action or a sequence with a single sensing action,
located at the end. The node b is then expanded using the
generated action sequence. To expand b∈ T using an action se-
quence (a1,a2, . . . ,al), GCS iteratively apply (1) to b. Specif-
ically, τ(b,(a1,a2, . . . ,al),noObservation) (line 6) means that



it computes a sequence of beliefs (b1,b2, . . . ,bl), where b1 =
τ(b,a1,noObservation) and bi = τ(bi−1,ai,noObservation)
for i ∈ [2, l], and returns the last belief bl . A new belief is
inserted into T only when the distance between the new belief
and its nearest node in T is more than a given threshold. The
action edge that connects b with the newly inserted belief is
then annotated with the action sequence. Figure 2 shows an
illustration of T . The detailed expansion process is in line 7–
16, while more detailed on GCS is in Section V.

Algorithm 1 Guided Cluster Sampling (N)
1: Initialize T by setting b0 as the root.
2: for i = 1 to N do
3: b = Sample a node from T inversely proportional to the number of

times b has been sampled.
4: 〈0,bE 〉 = Transform(b).
5: (a1,a2, . . . ,al) = GenerateAnActSeq(bE , nNotImproved(bE )).
6: Let bl−1 = τ(b1,(a1,a2, . . . ,al−1),noObservation).
7: if al is a sensing action then
8: Let O′ ⊂ O be the set of sampled observations.
9: for each o ∈ O′ do

10: bl = τ(bl−1,sensing,o).
11: if minb′∈T DB(bl ,b′)< ε then
12: Insert bl into T as a child of b.
13: else
14: Let bl = τ(bl−1,al ,noObservation)
15: if minb′∈T DB(bl ,b′)< ε then
16: Insert bl into T as a child of b.
17: for all b′ = children of b do
18: BACKUP(b′).
19: if V (b0) does not improve then
20: Increase nNotImproved(bE ) by 1.
21: else
22: Reset nNotImproved(bE ) to 0.

Algorithm 2 GenerateAnActSeq(bE , nNotImproved)
1: if T (bE ) has not been initialized then
2: Initialize T (bE ) by setting 〈0,bE 〉 as root and nNotImproved to be 0.
3: Constructs an uncertainty roadmap G(bE ).
4: if nNotImproved > maxNotImproved then
5: if getRandomNumber() < 0.5 then
6: Refine(G(bE )) and update T (bE ).
7: (a1,a2, . . . ,al) = ExpandTowardsGoal(T (bE )).
8: else
9: (a1,a2, . . . ,al) = ExpandTowardsSensing(T (bE )).

10: else
11: (a1,a2, . . . ,al) = ExpandTowardsGoal(T (bE )).
12: Return (a1,a2, . . . ,al).

V. GUIDED CLUSTER SAMPLING (GCS)

A. Finding a subspace in C that contains b

To find a subspace in C that contains b, GCS first transforms
the environment map to the robot’s local coordinate system
(line-4 of Algorithm 1). More precisely, let g : S→ S be a many
to one function where g(s) = g(〈q,e〉) = 〈0,Φ(e)〉, 0 is the
origin of the robot’s coordinate system, and Φ(e) is a function
that transforms the position of each environment feature to the
robot’s local coordinate system. The transformation for beliefs
is then defined as follows. Suppose b′ = Trans f orm(b), then

b′(s′) =
∫

s∈S
b(s) · I(s,s′)ds where I(s,s′) =

{
1 if g(s) = s′.
0 otherwise. (2)

The transformed belief b′ has probability one that the robot’s
configuration is at 0. This transformation transforms the

robot’s uncertainty to the environment map’s uncertainty, such
that a sampling guide based on bE takes into account both
the robot and environment uncertainty, and hence is more
effective. Details on the sampling guide is in Section V-B.

Now, the question is would Tran f orm changes the com-
puted optimal policy. The answer is no, more precisely,
Theorem 1 On problems where motion uncertainty is the
same everywhere, and the reward and observation functions
depend only on the relative configuration of the robot with
respect to the environment, Vπ(b)=Vπ(Trans f orm(b)) for any
POMDP policy π and any belief b ∈ B. 1

This theorem means that the belief and its transformation can
be used interchangeably in computing the optimal solution.

B. Generating an action sequence
Given b ∈ T to expand and 〈0,bE〉 = Trans f orm(b), GCS

generates action sequences using information from bE . The
action sequences are represented as a partial belief tree T (bE).
The root of T (bE) is 〈0,bE〉. The nodes in T (bE) are beliefs
in C(bE)∈C or exit nodes. An exit node acts as an exit point
from C(bE), and is reached after a sensing action. The nodes
in T (bE) are classified into terminal nodes and non-terminal
nodes. Terminal nodes consist of goal nodes, depth nodes,
and exit nodes. A node bp in T (bE) is a goal node whenever
bp(goalRegion) is more than a given threshold. Depth nodes
are all nodes at a given maximum depth in T (bE). Each
edge bpb′p in T (bE) is annotated by either a control sequence
(u0, . . . ,uk) where b′p = τ(bp,(u0, . . . ,uk),noObservation), or a
sensing action, in which case b′p is an exit node. Each action
sequence for expanding b corresponds to a path from the root
of T (bE) to a terminal node. It is a concatenation of the actions
that annotate the edges in the path.

The tree T (bE) is constructed incrementally. Each call to
GenerateAnActSeq (Algorithm 2) inserts a new path into
T (bE), and returns the action sequence that corresponds to
the newly inserted path.

To add a new path into T (bE), GCS samples a non-terminal
leaf node bp ∈ T (bE) and iteratively expands bp until a goal
node or a depth node is reached. Since we would like T (bE) to
cover C(bE) well, GCS samples a leaf node of T (bE) inversely
proportional to the sampling density of C(bE). To each bp ∈
T (bE), GCS assigns a weight w(bp) which is equal to the
number of non-leaf nodes in T (bE) that lie within a small
pre-specified distance from bp. It samples a leaf node from
T (bE) with probability ∼ 1/w(bp).

To expand a node bp ∈ T (bE), GCS uses an uncertainty
roadmap G(bE) (Figure 3) constructed in the robot’s C-space
Q with obstacles distributed as bE , to quickly generate action
sequences that are more likely to move the robot to the goal
region with high probability and low cost. The milestones in
G(bE) are the initial configuration 0, the goal configurations,
and sampled configurations from Q. Each sampled configura-
tion has expected collision cost lower than a given threshold
thc. An edge vv′ in G(bE) is a straight line segment between
v and v′ with expected collision cost lower than thc. It is

1All proofs are in the Appendix.



associated with a sequence of controls that move the robot
from v to v′ with non-zero probability.

GCS constructs G(bE)

G(bE)

Fig. 3. An environment map where the
obstacles are distributed according to bE .
The roadmap G(bE ) is the uncertainty
roadmap to guide sampling C(bE ).

once during initialization
step (line 2 of Algo-
rithm 2). The strategy in
[8] or slight modification
of any sampling based mo-
tion planner [6, 12] can be
used to construct G(bE).

GCS uses the actions
associated with paths in
G(bE) to expand T (bE). It
annotates each node bp ∈

T (bE) with the milestone used to generate bp. The root of
T (bE) is annotated with the initial configuration 0. Suppose
a node bp, annotated with milestone v of G(bE), is to be
expanded. GCS finds the shortest path ψ in G(bE) from v to a
goal milestone, and then expands bp according to ψ . Suppose
ψ consists of edge sequence (vv1,v1v2, . . . ,vn−1vn). GCS first
expands bp with every out-edge of v. Let vv′ be an out-edge of
v and is associated to a sequence of controls (u1,u2, . . . ,uk).
GCS computes b′p = τ(bp,(u1,u2, . . . ,uk),noObservation), in-
serts b′p as a child node of bp, annotates the edge bpb′p with
(u1,u2, . . . ,uk), and annotates b′p with v′. Let b1

p be the child of
bp that is annotated with v1, the end-milestone of the first edge
in ψ . If b1

p is not a terminal node, GCS continues expanding b1
p

with all out-edges of v1 using the above expansion procedure.
All other newly inserted children of bp is not expanded in
the current action sequence generation. The expansion process
is then repeated for the child of b1

p that is annotated by v2,
and so on, until the last edge in ψ is used to expand T (bE)
or a terminal node is reached. Suppose bn

p is the belief that
is annotated with vn, the last milestone in ψ . If bn

p is not a
terminal node, GCS samples a state s∈ S according to bn

p, and
continues expanding bn

p using the shortest path from s to vn.
This process is repeated until a terminal node is reached.

Now, when V (b) does not improve after a pre-specified
number of b’s expansions and backups, GCS expands a belief
in T (bE) with a sensing action or refines G(bE). GCS selects
one of them with equal probability (line 5 of Algorithm 2).

To expand T (bE) with a sensing action (line 9 of Algo-
rithm 2), GCS first samples a belief bp ∈ T (bE) that has
a potential for generating useful sensing data. To sample
such belief, GCS samples uniformly at random from the set
of beliefs that satisfies these two conditions: (1) The belief
has not been expanded with a sensing action. (2) At the
belief, at least one of the environment features lies within
the sensor’s field of view, with probability larger than a pre-
defined threshold. GCS inserts an exit node into T (bE) as
a child of bp, and annotates the edge bpexitNode with a
sensing action. GCS then finds the path from root to the newly
inserted exit node, and returns the concatenation of the action
sequences that annotate the edges in the path.

To refine G(bE), GCS samples additional vertices and
reconstructs the roadmap. It updates T (bE) by creating new

edges that correspond to new edges in the roadmap. Finally,
it proceeds to expand T (bE) using the refined uncertainty
roadmap (line 6–7 of Algorithm 2).

C. Backup

The function BACKUP(b) for b∈ T (line 18 of Algorithm 1)
finds a path from b to the root of T and performs point-
based backup at each belief in the path, starting from b to
the root node. It can use a slight modification of any backup
computation for continuous S and O (e.g., [2, 19, 23]). The
modification accommodates continuous control space, i.e.

ĤbV (b) = max
(a1,...,al)∈outEdge(b)

{
R(b,(a1,a2, . . . ,al))

+γ
l
∫

o∈O
P(o |bl ,al)V (τ(bl ,al ,o))

}
where bl = τ(b,(a1, . . . ,al−1),noObservation)
and R(b,(a1,a2, . . . ,al)) = R(b,a1)+∑

l−1
i=1 γ iT (bi,ai,bi+1)R(bi+1,ai+1)

with b1 = b. The approximation results for using sampled
representation for A is in Section VI.

D. Belief space metric

To compute distance between beliefs in B (line 11 & 15
of Algorithm 1), GCS uses Wasserstein distance, a metric
that is dependent on the underlying state space metric. The
Wasserstein distance WD(b,b′) between two beliefs b,b′ ∈ B
is the minimum expected distance in S among all possible
joint densities whose marginal densities are b and b′. More
precisely we use the squared 2nd Wasserstein distance,

DB(b,b′) =WD(b,b′) = inf
f

{∫
s∈S

∫
s′∈S

DS(s,s′) f (s,s′)dsds′

| b =
∫

s′
f (s,s′)ds′,b′ =

∫
s

f (s,s′)ds
}

(3)

where DS is L2 norm in S and f (s,s′) is joint density function.
Compared to KL-divergence, which is commonly used in

POMDPs with continuous S, Wasserstein distance is a true
metric. This makes analysing approximation bound using
Wasserstein distance easier than using KL-divergence.

Furthermore, Wassertein distance is more suitable than KL-
divergence, denoted as KL, for goal-reaching tasks, which is
common in motion planning. As an illustration, consider a 1D
navigation problem where the robot’s position is not known
exactly. The state space here is R. Suppose the goal is g and
the goal belief bg is a belief where the support is all points
in [g−1,g+1]. Now, suppose b is a belief where the support
is all points in [g− 100,g− 99] and b′ is a belief where the
support is all points in [g−10,g−9]. Then, regardless of the
exact distribution, KL(b,bg) and KL(b′,bg) are both undefined,
even though the robot is actually much closer to g when it is
at b′ than when it is at b, assuming the robot’s belief is a
good estimate of the robot’s true position. On the other hand,
WD(b′,bg)<WD(b,bg), as desired.

The Wasserstein distance satisfies the Lipschitz condition,
Theorem 2 In an LS-continuous POMDP with parameter
(KRS,KZ) and normalized observation space, for any two
beliefs b,b′ ∈ B and any policy π , if WD(b,b′)≤ δ ,



then |Vπ(b)−Vπ(b′)| ≤ 2
(

KRS
1−γ

+ γKZRmax
(1−γ)2

)
δ , where Rmax is the

maximum possible immediate reward. 1

This property means that two nearby beliefs under this metric
have similar values, and hence with a small error, one can be
used to represent the other.

VI. APPROXIMATION BOUND

Our main concern is how sampled representation of the
action space A affects the quality of the generated policy. Ap-
proximation results are available when sampled representation
of S and O are used [2, 19]. However, no results are available
when sampled representation of A is used. Here we show that
when the POMDP problem satisfies LS-continuous and LA-
continuous properties, the optimal policy can be approximated
proportional to the sampling dispersion of A.

For clarity, we analyze a simplified version of GCS. We
assume that the belief tree T is expanded using a primitive
action, instead of a sequence of actions. In this case, the
partition P of A (Definition 2) is {U,{sensing}}.
Theorem 3 Consider a POMDP that is LS-continuous with
parameters (KRS,KZ), and LA-continuous with parameters
(KRA,h) and action partition P . Suppose the distance between
two nearest sampled actions in any P ∈ P is ≤ δA, the
distance between two nearest sampled beliefs is ≤ δB, and
the maximum immediate reward is Rmax. Then, 1

|V ∗(b′)−Vt(b′)| ≤ 1
1−γ

(
KRAδA +

(
KRS
1−γ

+ KZRmax
(1−γ)2

)
(4δB + γh(δA))

)
Since h is an increasing function with h(0) = 0, |V ∗(b′)−
Vt(b′)| converges to zero as δB and δA goes to zero. Similar
results hold for GCS as described in Section IV and Section V.
However, the terms in the approximation bound becomes much
more complex, and hinders understanding.

VII. EXPERIMENTAL SETUP AND RESULTS

A. Scenarios

ASV-parking. Navigation-1. Navigation-2.

Fig. 4. Initial beliefs of the scenarios.

We tested GCS on three scenarios (Figure 4) of an Au-
tonomous Surface Vehicle (ASV) operation in coastal zone.
The environment is populated by obstacles made of floating
platforms. Weights are tied underneath, so that the platforms
only move within a certain limit, despite currents and wakes.
We model the obstacles as polygons, where the vertices’
positions are distributed uniformly within a bounded support.

The ASV has 3DOFs and holonomic control. Each time step
is 0.25s. Due to control error and currents, whenever a control
u is applied for 0.25s to a configuration q, the robot moves

to a new configuration q′ = q+u+N, where N is a uniform
distribution over a disc of radius 2.5cm with center q+u.

The ASV is equipped with a laser sensor. It has 3600 field of
view. Due to obstruction from waves, the effective range limit
is only 10m. Furthermore, the sensor has 25cm error radius,
whenever it sees an object at x, the actual position may be
anywhere within 25cm distance from x, with equal probability.
GPS is not available. Due to obstructions from piers and other
structures near coastal zones, GPS error is around 10m, which
is too large for navigation purposes.

The initial belief of the environment and the robot’s con-
figuration is shown in Figure 4. In all scenarios, the goal is
defined in terms of robot’s position, not configuration. The cost
for each control action is -1, while the cost for each sensing
action is -5,000. The high sensing cost may seem odd for an
ASV with laser sensor. However, the ASV is a test platform
before the algorithm is used for Autonomous Underwater
Vehicle (AUV) navigation using sonar. Since sonar waves
disturb underwater life, the cost for sensing is high. We would
like to reflect this scenario in our test. Each collision incurs a
-100,000 penalty. A reward of 10,000,000 is given when the
goal is reached. The discount factor is 0.995.

B. Experimental setup
For each scenario, we ran GCS to generate 30 policies,

as GCS uses random numbers. Each policy is generated for
10min. To estimate the expected total reward of each policy,
we ran 100 simulation runs and compute the average total
discounted rewards.

For comparison, we use BURM [8] and reactive greedy
strategy [3]. BURM takes into account uncertainty in the
environment map only. Comparison with BURM would show
the importance of taking into account motion and sensing
uncertainty. We ran BURM to generate 30 different paths.
Each path is considered as an open-loop policy. To estimate
the expected total reward of each path, we ran 100 simulation
runs and compute the average total discounted rewards.

Variants of reactive greedy strategy are often used in ASVs
and AUVs. Our ASV has used [3]. The strategy uses con-
tinuous sensing to handle motion, sensing, and environment
uncertainty. Comparison with this strategy would show how
we perform compared to current practice in marine robotics.

We can not compare with existing POMDP planners be-
cause the state space is too large for even the best planners
(HSVI2 [21] and SARSOP [15]). As an illustration, if we
discretize the possible position of each feature in Navigation-
1 (scenario with smallest number of environment features) into
only 4 cells, the possible robot’s position into 10× 10 cells,
and the robot’s possible heading into 4 cells, |S|> 2.5×107,
which is beyond the capability of HSVI2 and SARSOP.

All planners were implemented in C++, and ran in a PC
with 2.27GHz Intel processor and 1.5GB RAM.

C. Experimental results
Table I shows GCS outperforms BURM and reactive greedy

strategy. They suggest the importance of taking into account
motion and sensing uncertainty, as well as the benefit of



a. Parking b. Navigation-1

Fig. 5. A typical simulation run of GCS policies. Only one sensing action was performed. Left is before sensing. Right is after sensing.

Expected Total Discounted Reward
Scenario BURM Reactive GCS

Greedy (10 min)
Parking -395,632 -428,140 14,867

Navigation-1 -1,242,902 -662,019 8,030
Navigation-2 -1,697,339 -761,415 8,149

TABLE I
COMPARISON RESULTS

global motion planning under uncertain motion, sensing, and
environment map.

Figure 5 shows a typical simulation run of the policy
generated by GCS. The policy for Navigation-2 is similar to
that of Navigation-1, and we do not show it here due to lack
of space. The simulation shows that when the ASV performs
sensing, it generally perceives observation that significantly
reduce its uncertainty. Therefore, the ASV can reach its goal
with only a few sensing actions.

Figure 5(a) shows the benefit of global motion planning
under uncertainty to Parking mission. Recall that we only
require the robot position to be inside the goal region, and
do not impose a particular heading. However, by taking
into account uncertainty in the environment map and robot’s
position, the ASV always parks in a horizontal orientation,
as this orientation has lower collision probability than the
vertical orientation. Furthermore, to reach the chosen goal
configuration, the ASV performs the necessary maneuvering
outside the base station. It avoids maneuvering inside the tight
space of the base station to reduce expected collision cost.

VIII. CONCLUSION

This paper proposes a new global motion planner under mo-
tion, sensing, and environment map uncertainty, called Guided
Cluster Sampling (GCS). GCS is a point-based POMDP plan-
ner that uses domain specific properties to construct a more
suitable sampling strategy. Preliminary results show that GCS
successfully solves motion planning problems with uncertain
motion, sensing, and environment map that are unsolvable by
the best POMDP planners today, within reasonable time.

GCS is designed for POMDPs with continuous state, ac-
tion, and observation spaces. We showed that for a class of
POMDPs that often occur in motion planning problems, given
enough time, GCS converges to the optimal policy. To the
best of our knowledge, this is the first convergence result for
point-based POMDPs with continuous action space.
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APPENDIX

To prove Theorem 1 and Theorem 2, we use α-function as
the policy representation. The policy π is represented by a set
of α-functions Γ, where π(b) = argmaxα∈Γ

∫
s∈S α(s) ·b(s)ds.

Each α-function corresponds to a policy tree Tα . Each node
in Tα corresponds to an action and each edge corresponds to
an observation. The value α(s) is the expected total reward of
executing Tα from s. Let a0 denotes the root of Tα and let’s
use the same notation to denote a node and its corresponding
action. Then, executing Tα starting from s means that the robot
at state s starts execution by performing a0. An arc from a0
to a node at the next level of Tα is followed, based on the
observation perceived. Suppose the arc points to node a1, then
at the next step, the robot performs a1. This process is repeated
until a leaf node is reached. The value α(s) can be written as,

α(s) = R(s,a0)+

γ

∫
s1∈S

∫
o∈O

T (s,a0,s1)Z(s1,a0,o1)αa0o(s1)dods1 (4)

where αa0o is the α-function that corresponds to the sub-tree
of Tα whose root is the child of a0 via edge o.

A. Proof of Theorem 1

To prove the theorem, we first show that for any α-vector,
α(s) = α(g(s)). For this purpose, we show that for any
function f : S→ S that does not change the robot’s relative
configuration with respect to the environment, α(s)=α( f (s)).
Since g is an instance of such function, α(s) = α(g(s)), too.

We prove α(s) = α( f (s)) by induction on the levels of Tα .
When Tα has only one level, α(s) = R(s,a0). Since the reward
function depends only on the relative configuration of the robot
and since applying f to s does not change this relative config-
uration, α(s) = R(s,a0) = R( f (s),a0) = α( f (s)). Assume that
for any f , any α , and any s ∈ S, α(s) = α( f (s)) when Tα

has i levels. Now, we show that α(s) = α( f (s)) when Tα has
(i+ 1) levels. The key is to show that applying f to s does
not change the integration term in (4). Let’s first look at the
transition function. Based on property-1 of LS-continuous, we
have T (s,a0,s1) = T ( f (s),a0,s′1) where s′1 = s1 +( f (s)− s).
Since, the displacement vector ( f (s)− s) does not change the
relative robot’s configuration with respect to the environment,
the relative robot’s configuration at s1 is the same as that at
s′1. Since Z depends only on the relative robot’s configuration,
Z(s1,a0,o) = Z(s′1,a0,o) for any o ∈O. Using the result from
level-i, α(s1) = α(s′1). Hence, the integration term of (4)
for α(s) and α( f (s)) are the same. This result and the fact
that the reward function depends only on the robot’s relative
configuration, gives us α(s) = α( f (s)).

Now, we prove that for any policy π , Vπ(b) =
Vπ(Trans f orm(b)). Let R be a partition of S, such that each
set Rs ∈R consists of all states in S where the robot’s relative
configurations with respect to the environment, is the same as
that of s. This means that each state in the same set of R has
the same α-value. And hence we can write,

Vπ(b) = max
α∈Γ

∫
s∈S

α(s) ·b(s) = max
α∈Γ

∫
Rs∈R

α(s)
∫

s′∈Rs

b(s′). (5)

From the definition of Trans f orm in (2),
(Trans f orm(b))(s) =

∫
s′∈Rs

b(s′). Therefore, (5) can be
rewritten as Vπ(b) = maxα∈Γ

∫
Rs∈R α(s) · (Tran f orm(b))(s) =

Vπ(Trans f orm(b)), which is the result we want. 2.

B. Proof of Theorem 2

To prove Theorem 2, we first need the following lemma.
Lemma 1 In an LS-continuous POMDP with parame-
ter (KRS,KZ) and normalized observation space, for any
α-function and any state s,s′ ∈ S, |α(s) − α(s′)| ≤(

KRS
1−γ

+ γKZRmax
(1−γ)2

)
DS(s,s′).

Proof of Lemma 1. Using the definition of α value in (4) and
the triangle inequality, we have

|α(s)−α(s′)| ≤
∣∣R(s,a0)−R(s′,a0)

∣∣+
γ

∣∣∣∣∫s1∈S

∫
o∈O

T (s,a0,s1)Z(s1,a0,o)αa0o(s1)dods1 −∫
s1∈S

∫
o∈O

T (s′,a0,s1)Z(s1,a0,o)αa0o(s1)dods1

∣∣∣∣ (6)

Based on property-3 of LS-continuous, we can bound the
first absolute term on the right hand side of (6) as
|R(s,a0)−R(s′,a0)| ≤ KRSDS(s,s′).
Now, we bound the second absolute term on the right hand
side of (6). Let d = s′− s. Property-1 of LS-continuous gives
us T (s,a0,s1) = T (s′,a0,s1 + d). Hence, we can rewrite the
last absolute term in (6) as,∣∣∣∣∫s1∈S

T (s,a0,s1)
∫

o∈O

(
Z(s1,a0,o)αa0o(s1)−

Z(s1 +d,a0,o)αa0o(s1 +d)
)

dods1

∣∣∣∣ .
Using property-2 of LS-continuous, we have Z(s1+d,a0,o)≥
Z(s1,a0,o)−KZ ·DS(s1,s1 +d).
Substituting the above bounds to (6) gives

|α(s)−α(s′)| ≤ KRS ·DS(s,s′)+ γ

∣∣∣∣∫s1∈S
T (s,a0,s1)∫

o∈O
Z(s1,a0,o)

(
αa0o(s1)−αa0o(s1 +d)

)
do +∫

o∈O
KZ ·DS(s1,s1 + v)αo(s1 +d)do

∣∣∣∣
≤

(
KRS

1− γ
+

γKZRmax

(1− γ)2

)
DS(s,s′)

The last inequality holds, after αa0o is expanded recursively
and assuming that O is normalized. 2.

Now, we proof Theorem 2. Let Vπ(b) = α ·b and Vπ(b′) =
α ′ ·b′. Then, there must always be a point bc = ab+(1−a)b′

such that α ·bc = α ′ ·bc, as α ·b≥ α ′ ·b and α ′ ·b′ ≥ α ·b′

|V ∗(b)−V ∗(b′)| = |α ·b−α
′ ·b′|

≤ |α ·b−α ·bc|+ |α ′ ·bc−α
′ ·b′| (7)

Suppose f is the joint density function used in com-
puting WD(b,bc) with b(s) =

∫
s′∈S f (s,s′)ds′ and bc(s′) =∫

s∈S f (s,s′)ds. And suppose g is the joint density function



used in computing WD(bc,b′) with bc(s) =
∫

s′∈S g(s,s′)ds′ and
b′(s′) =

∫
s∈S g(s,s′)ds. Then, we can rewrite (7) as,

|V ∗(b)−V ∗(b′)| ≤∣∣∣∣∫s∈S
α(s)

∫
s′∈S

f (s,s′)ds′ds−
∫

s′∈S
α(s′)

∫
s∈S

f (s,s′)dsds′
∣∣∣∣+∣∣∣∣∫s∈S

α
′(s)

∫
s′∈S

g(s,s′)ds′ds−
∫

s′∈S
α
′(s′)

∫
s∈S

g(s,s′)dsds′
∣∣∣∣

≤
∫

s∈S

∫
s′∈S

f (s,s′)
∣∣α(s)−α(s′)

∣∣ds′ds+∫
s∈S

∫
s′∈S

g(s,s′)
∣∣α ′(s)−α

′(s′)
∣∣ds′ds

Substituting the difference between α values in the above
inequality with the result of Lemma 1, and using the definition
of Wasserstein distance give us,

|V ∗(b)−V ∗(b′)| ≤
(

KRS

1− γ
+

γKZRmax

(1− γ)2

)(
WD(b,bc)+WD(bc,b′)

)
Using the convexity property of WD, we get the desired result.
2.

C. Proof of Theorem 3

To proof Theorem 3, we first need the following lemma that
bounds the error generated by a single backup operation.
Lemma 2 Consider a POMDP that satisfies LS-continuous
with parameter (KRS,KZ) and LA-continuous with parame-
ter (KRA,h). Suppose the sampling dispersion in each el-
ement of P is ≤ δA. Then, the error generated by a
single simplified GCS backup at a belief b is bounded
as, |HV (b)− ĤbV (b)| ≤ KRAδA + γ

(
KRS
1−γ

+ KZRmax
(1−γ)2

)
h(δA).

Proof of Lemma 2. To shorten the proof writing, let’s use the
Q-value notation. For any b ∈ B and any a ∈ A,

Q(b,a) =
∫

s∈S
R(s,a)b(s)ds+

γ

∫
s∈S

∫
s′∈S

∫
o∈O

T (s,a,s′)Z(s′,a,o)b(s)α(s′)dods′ds (8)

The single backup error is then,∣∣HV (b)− ĤbV (b)
∣∣ = max

P∈P
max
a∈P

Q(b,a)−max
P∈P

max
a∈Samp(P)

Q(b,a)

≤ max
P∈P

(Q(b,a∗P)−Q(b, â∗P)) (9)

where Samp(P) is the sampled representation of P ∈P ,
a∗P = argmaxa∈P Q(b,a), and â∗P = argmina∈Samp(P) DP(a,a∗P).

Let’s compute Q(b,a∗P)−Q(b, â∗P) for an element P of P .
For writing compactness, we drop the P subscript. Using (8)
and triangle inequality, we get

Q(b,a∗)−Q(b, â∗) ≤
∫

s∈S
|R(s,a∗)−R(s,a)|b(s)ds+

γ

∫
s∈S

b(s)
∣∣∣∣∫s′∈S

∫
o∈O

T (s,a∗,s′)Z(s′,a∗,o)b(s)α(s′)dods′−∫
s′∈S

∫
o∈O

T (s, â∗,s′)Z(s′, â∗,o)α(s′)dods′
∣∣∣∣ds (10)

Using property-3 of LA-continuous, we bound the first term in
the right hand side as

∫
s∈S |R(s,a∗)−R(s,a)|b(s)ds≤ KRAδA.

Using property-1 of LA-continuous, T (s,a∗,s′) = T (s, â∗,s′+
f (a∗, â∗). Therefore, (10) can be rewritten as,

Q(b,a∗)−Q(b, â∗) ≤ KRAδA + γ

∣∣∣∣∫s∈S

∫
s′∈S

b(s)T (s,a∗,s′)∫
o∈O

(
Z(s′,a∗,o)α(s′)−

Z(s′+ f (a∗, â∗), â∗,o)α(s′+ f (a∗, â∗))
)

dods′ds
∣∣∣∣

Since a∗ and â∗ belong to the same element of P , using
property-2 of LA-continuous, we get Z(s′+ f (a∗, â∗), â∗,o) =
Z(s′ + f (a∗, â∗),a∗,o). Using property-2 of LS-continuous,
we get Z(s′ + f (a∗, â∗),a∗,o) ≥ Z(s′,a∗,o) − KZDS(s′,s′ +
f (a∗, â∗)). Using these properties and the assumption that O
is normalized, rearranging the above inequality gives us

Q(b,a∗)−Q(b, â∗) ≤ KRAδA + γ

∣∣∣∣∫s∈S

∫
s′∈S

b(s)T (s,a∗,s′)(
KZDS(s′,s′+ f (a∗, â∗))α(s′+ f (a∗, â∗))+∫
o∈O

Z(s′,a∗,o)
(
α(s′)−α(s′+ f (a∗, â∗))

)
do
)

ds′ds
∣∣∣∣

≤ KRAδA + γ

(
KRS

1− γ
+

KZRmax

(1− γ)2

)
h(DP(a∗, â∗))

The last inequality holds based on three properties: (1) any α

value does not exceed Rmax
1−γ

, (2) property-1 of LA-continuous,
i.e., DS(s′,s′+ f (a∗, â∗))≤ h(DP(a∗, â∗)), and (3) Lemma 1.

Using the above inequality and the fact that for any
P ∈ P , DP(a∗P, â

∗
P) ≤ δA, and h is an increasing function,∣∣HV (b)− ĤbV (b)
∣∣≤ KRAδA + γ

(
KRS
1−γ

+ KZRmax
(1−γ)2

)
h(δA). 2.

Now, we can prove Theorem 3. The difference between the
optimal value V ∗ and the value Vt computed by the simplified
GCS after t steps are,

|V ∗(b)−Vt(b)| ≤
∣∣V ∗(b)−V ∗(b′)

∣∣+ ∣∣V ∗(b′)−Vt(b′)
∣∣+ ∣∣Vt(b′)−Vt(b)

∣∣ .
Applying Theorem 2 to V ∗ and Vt , and bounding
|V ∗(b′)−Vt(b′)| ≤ εt , we get

|V ∗(b)−Vt(b)| ≤ 4
(

KRS

1− γ
+

KZRmax

(1− γ)2

)
δB + εt . (11)

To compute εt , notice that by definition, V ∗(b′) = HV ∗(b′)
and Vt(b′)≤ ĤbVt−1(b′). Hence,
|V ∗(b′)−Vt(b′)| ≤

∣∣HV ∗(b′)− ĤbVt−1(b′)
∣∣ and the following

holds∣∣V ∗(b′)−Vt(b′)
∣∣ ≤ ∣∣HV ∗(b′)−HVt−1(b′)

∣∣+∣∣HVt−1(b′)− ĤbVt−1(b′)
∣∣ . (12)

Using the contraction property of H and (11), we can bound
the first absolute term on the right hand side of (12) as
|HV ∗(b′)−HVt−1(b′)| ≤ γ

(
4
(

KRS
1−γ

+ KZRmax
(1−γ)2

)
δB + εt−1

)
. The

last absolute term of (12) can be bounded using Lemma 2. As



a result, we get∣∣V ∗(b′)−Vt(b′)
∣∣ ≤ γ

(
4
(

KRS

1− γ
+

KZRmax

(1− γ)2

)
δB + εt−1

)
+

(
KRAδA + γ

(
KRS

1− γ
+

KZRmax

(1− γ)2

)
h(δA)

)
Expanding the recursion gives us,∣∣V ∗(b′)−Vt(b′)

∣∣≤ 1
1− γ

(
KRAδA +(

KRS

1− γ
+

KZRmax

(1− γ)2

)
(4δB + γh(δA))

)
,

which is the result we want. 2.
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