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Abstract

In the first chapter, I propose a theoretical framework to elucidate how capital from
unsophisticated investors (naive money) is associated with fund performance dynam-
ics. In the framework, when naive money invested in a fund exceeds the ideal amount
for the manager's skill, it leads funds to underperform persistently. In contrast, the
model predicts that, when the amount of invested naive money is smaller than the
ideal size of a fund reflecting the manager's skill, the fund performs the same as the
market on a risk-adjusted basis. Empirical results using mutual fund data support
this prediction.

In the second chapter, I develop a model that characterizes how naive money
influences the decisions of active mutual fund managers: in particular, managerial
effort, fees, marketing expenses, private benefit-seeking, and risk-taking. My model
predicts that managers who receive a surplus of naive money are inclined to reduce
their managerial effort, charge higher fees, allocate more resources towards marketing,
and pursue their private benefit by sacrificing returns to investors. In addition, it also
predicts that a manager is most likely to increase idiosyncratic risk when the amount
of invested naive money gets closer to a certain size of the fund that reflects the
manager's skill.

In the third chapter, I build a model to study how naive money affects funds'
survivorship and entry decisions. Sufficient capital provision from unsophisticated
investors elongates the survival of unskilled managers. Competition among funds
determines the industry equilibrium, and the equilibrium is affected by several key
market conditions: the aggregate investment opportunities, the aggregate capital in-
flows from unsophisticated investors, and the supply of skilled managers. When AM
markets are heterogeneous in investor sophistication, the model shows, AM markets
with more sophisticated investors (say, hedge fund markets) differentiate from those
with less sophisticated investors (say, mutual fund markets). Skilled managers gen-
erate more value in hedge fund markets, and choose to enter those markets.

Thesis Supervisor: Leonid Kogan
Title: Nippon Telegraph & Telephone Professor of Management
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Introduction

Why do active asset management (henceforth, AM) markets exist and persist at all?

This question has puzzled many financial economists, since neoclassical finance and

neoclassical economics, despite their kindred standpoints on most issues in financial

economics, give starkly different answers to the question. The answer from the con-

ventional perspective of neoclassical finance is that market efficiency prevents fund

managers from beating the market even before fees but, nonetheless, actively managed

funds exist since all the investors in those funds are simply irrational. In contrast,

traditional neoclassical economists take the view that investors are rational, and that

the active AM industry persists because active fund managers have skill. These two

different intellectual traditions offer sharply contrasting views on the rationality of

investors and the existence of active managers' skill.

Empirical findings on the performance of active mutual funds are in line with

the view of neoclassical finance. Active mutual funds underperform the market net

of fees on average (e.g., Fama and French (2010)), and persistently outperforming

funds are hard to find (e.g., Carhart (1997)). The former evidence supports a view

that (at least a significant portion of) investors in active mutual funds are irrational.

The latter evidence appears to be consistent with a view that active mutual fund

managers rarely have skill. These two high-profile empirical results seem unfavorable

to neoclassical economists' view, where investors are rational and active managers

have skill.

In order to overcome inconsistency with the empirical evidence, the seminal work

of Berk and Green (2004) refines the view of neoclassical economics. From the per-

spective of traditional neoclassical economists, active AM markets are markets for
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managers' skill, i.e., rational investors look for skilled managers and invest in those

managers' funds. On the other hand, the perspective of asset market efficiency tells

us that the average risk-adjusted excess return on active funds must be zero after

fees, as long as investors are rational and they consider active funds as one type of

asset class. Reconciling these two perspectives leads to a seemingly peculiar idea:

active managers are skilled, but in equilibrium they perform the same as the market

on a risk-adjusted basis. This idea is consistent with the non-persistence of good

performance, but fails to account for the average underperformance in active mutual

fund markets.

Since neoclassical economists' view on the active AM industry is not consistent

with (some) empirical findings on performance, can't we simply take the view of

neoclassical finance and move on? In fact, this view, where active managers do not

have skill and there are only irrational investors in active funds, has difficulties in

explaining the cross-sectional fund performance. There are many empirical studies

(e.g., Gruber (1996)) showing that some active funds perform better than others do,

and may outperform the market in the short run. The traditional view of neoclassical

finance cannot very well accommodate such empirical findings.

In this thesis, I attempt to fill this lacuna by developing a theoretical framework for

understanding the AM industry that reconciles the perspectives of neoclassical finance

and neoclassical economics. This thesis adopts the view of neoclassical finance that

there is a substantial number of irrational investors in AM markets. On the other

hand, this thesis adopts a view that skilled managers exist in AM markets, partially

taking the perspective of neoclassical economics, and this is crucially different from

that of neoclassical finance. This new framework provides a natural explanation for

the two major empirical findings in active mutual fund markets: the non-persistence

of good performance and the average underperformance.

Although Berk and Green (2004) do not take irrational investors into account, it

is worth highlighting their insight into the efficiency of AM markets. When skill is

subject to decreasing returns to scale, fierce competition among investors in capital

provision drives the performance of active funds down to that of the passive bench-
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marks. Since investors in active funds break even, the entire value from skill goes

to the managers in the form of fee profits. Therefore, from the investor rationality

perspective, the competitive nature of capital markets translates into the efficiency of

AM markets as markets for skill: rational investors correctly evaluate and compensate

managers' skill.

By introducing irrational investors, this thesis opens up the possibility of ineffi-

ciency in AM markets: overpricing of managers' skill. Decreasing returns to scale

at the fund level imply that there is a fund size that correctly prices the manager's

skill, given the fee schedule. If there is only a small amount of capital from irrational

investors (henceforth, "naive money" or "naive capital") invested in a fund, rational

investors flow into the fund until the fund reaches its correct size and, consequently,

the manager's skill is fairly priced. In contrast, if the amount of naive money invested

in a fund exceeds that size, the skill of the manager is overpriced, i.e., the manager

receives fee revenues greater than the surplus (or value, interchangeably) that she is

expected to generate. However, rational investors cannot correct for such overpricing,

since they are not able to short-sell funds.

This thesis studies how the overpricing of managers' skill shapes AM markets.

One of the most prominent implications of the new theoretical framework is the

performance dynamic of active funds. In equilibrium, overpriced funds underperform,

and the rest perform the same as the market on a risk-adjusted basis. Moreover, the

underperformance of overpriced funds persists. Such performance dynamics of active

funds, particularly that of active mutual funds, is studied in chapter 1.

Overpricing of skill distorts managers' incentives, and changes their behavior.

Smart investors induce managers to make their best efforts to create value for in-

vestors. However, the possibility of skill overpricing may lead to deviation of man-

agers' behavior from the optimal behavior from the perspective of smart investors.

Existing managers may choose to adjust their choices (intensive margin) such as fees,

effort, etc.. Managers may even want to change their entry and exit decisions (ex-

tensive margin). These industrial organization (10) aspects of the AM industry are

studied in chapter 2 and 3.
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In chapter 1, I build a model that associates naive money with fund performance

dynamics. If funds receive excessive capital from naive investors exceeding the fair

size, at which the managers' skill is fairly priced, those funds underperform persis-

tently. In contrast, when funds only receive small amounts of capital from naive

investors, those funds perform the same as the market on a risk-adjusted basis. Em-

pirical tests using mutual fund data are consistent with these predictions.

In chapter 2, I propose a model of active mutual fund managers' decisions, par-

ticularly effort, fees, idiosyncratic risk, marketing and private benefit-seeking. More

invested naive money is associated with less effort, higher fees, more marketing and

more private benefit. In addition, managers choose to take the maximum amount of

idiosyncratic risk when fee profits from naive investors are at the same magnitude of

those from smart investors.

In chapter 3, 1 develop a model to examine how naive money influences managers'

entry and exit decisions, and how those decisions shape the AM industry. In particu-

lar, when there is heterogeneity of investor sophistication across markets, AM markets

with smarter investors (say, hedge fund markets) differentiate from those with naive

investors (say, mutual fund markets). Hedge funds attract relatively skilled managers

compared to mutual funds do. In addition, hedge fund managers create more value

than they would generate by managing mutual funds.

Lastly, I would like to emphasize that the conclusions of this thesis do not rely on

a set of possibly questionable premises regarding the behavioral patterns of irrational

investors. Theoretical studies that involve irrational investors are often criticized

for being sensitive to how their behavior is modeled. Since we lack a satisfactory

understanding of investor choice in AM markets, such sensitivity is an undesirable

feature for theories. Here, the only crucial assumption in chapter 1 is that naive money

is persistent. In chapter 2, in addition to the assumption of chapter 1, I make an

assumption that unsophisticated investors are less sensitive to fees than sophisticated

investors are. In chapter 3, I make an additional assumption regarding naive money:

competition among funds deteriorates the average naive money flow that a fund can

attract. The modesty of these assumptions should assuage the concern about theories

12



involving irrational investors.

The remainder of this thesis is as follows. In the remainder of the introduction,

related studies on active AM markets, especially those on active mutual fund markets,

are briefly discussed. Chapter 1 discusses the implication of the theoretical framework

for the performance dynamics of active funds, and presents the analysis of empirical

tests on those implications. Chapter 2 theoretically investigates how naive money

affects the decisions of active mutual fund managers, particularly fees, effort, idiosyn-

cratic risk, marketing and seeking private benefit. Chapter 3 theoretically examines

how naive money influences entry and exit decisions of managers in the AM industry,

and how changes in those decisions shape the AM industry, particularly when AM

markets are heterogeneous in investor sophistication.

Related literature

Empirical studies on the average underperformance of active mutual funds go back to

Jensen (1968). More recent studies (Gruber (1996), French (2008), Fama and French

(2010)) confirm the underperformance. Carhart (1997) is a representative study that

empirically shows the non-persistence of good performance. I would like to emphasize

Fama and French (2010), especially their contribution showing that the aggregate

portfolio of actively managed US equity mutual funds is close to the market (with

99% R 2 ), but underperforms the market after fees roughly at the magnitude of the

average fee. This result makes it difficult to argue that the average underperformance

of active mutual funds is simply due to benchmark misspecification or missing risk

factors.

Many empirical studies on active mutual funds associate the characteristics of

funds with their future performance in the short run (usually the following quarter).

Gruber (1996) finds that the past risk-adjusted performance (alpha) predicts the fu-

ture performance. Similarly, the "return gap" (Kacperczyk, Sialm and Zheng (2008))

and the "active share" (Cremers and Petajisto (2009)) predict performance. Cohen,

Coval and Pastor (2005) find that managers whose portfolios consist of stocks that
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other successful managers hold outperform. These studies suggest that, to a certain

extent, a group of managers have the ability to make portfolio choices that outperform

the market in the short run.

There are theoretical studies on the active AM industry based on the standard no-

tion of investor rationality. Berk and Green (2004) is the first study that theoretically

addresses the non-persistence of the performance of active mutual funds, by assuming

decreasing returns to scale at the fund level. Pastor and Stambaugh (2012) assumes

decreasing returns to scale at the industry level, and justifies the substantial size of

the active AM industry despite the average poor track record. Glode (2011) associates

the underperformance of active mutual funds with the counter-cyclical component of

their performance, which provides insurance against market downturns. One common

issue with these approaches is that it is hard to see how active funds can underperform

on a risk-adjusted basis without assuming the existence of irrational investors.

Among many empirical studies that document the irrationality of investor deci-

sions (e.g., Benartzi and Thaler (2001)), a set of empirical studies that investigate the

role of brokers and/or financial advisors in the AM industry are particularly inter-

esting. Bergstresser, Chalmers and Tufano (2009) show that brokers do not benefit

investors in most tangible dimensions. Del Guercio and Reuter (2014) provide evi-

dence that funds sold through brokers underperform index funds. These studies show

not only that unsophisticated retail investors exist, but also that the AM industry

possesses effective means of directing those investors towards underperforming funds.

Some theoretical studies on the active AM industry are based on irrational or

"distorted" behavior of investors. A study by Gennaioli, Shleifer and Vishny (2015)

proposes a trust-based model in which trust distorts the investors' perception of

riskiness, and allows the manager to charge high fees despite the underperformance.

Carlin (2009) presents a model of retail financial markets in which firms make their

price structure complex in order to attract less knowledgeable consumers. While

there are other pertinent theoretical studies (e.g., Gabaix and Laibson (2006)) that

are not explicitly written in the context of the AM industry, their implications for

the structure of that industry fall outside the scope of this thesis.
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Chapter 1

Theory and Evidence: Mutual Fund

Performance Dynamics

1.1 Introduction

Are investors in active AM markets rational or not? It is quite well documented

that active mutual funds on average underperform the market (e.g., Jensen (1968)).

Hence, aggregate investors in active mutual fund markets do not seem to make optimal

capital allocation decisions. This supports the view that a non-negligible portion of

investors, especially those in active mutual fund markets, are not fully rational. The

term 'naive money' well captures the nature of such investors, although there is an

ambiguity in the precise meaning of this term.

The rationality of investors is closely linked to the question whether active fund

managers have skills or not. If managers do not have any skill, provided that investors

pay fees, all the investors in active management markets must be 'naive'. On the other

hand, if all the investors are not able to evaluate managers' skill correctly, managers

do not have any incentive to realize their skill. Therefore, the existence of rational

investors in active AM markets implies the existence of skilled managers.

Surprisingly, when the average risk-adjusted return (alpha) is used to measure

active mutual fund managers' skill, the evidence is not favorable to the view that

managers have skills. Compared to the market, active mutual funds underperform on
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average (e.g., Jensen (1968)). Besides, the performance of active mutual funds does

not persist (e.g., Cahart (1997)), with an exception that poor performance persists.

In addition, in order to examine whether alphas of active funds come from luck or

skill, Fama and French (2010) conducted a thorough cross-sectional study of mutual

funds, and found little evidence for skill.

However, if alpha does not correctly measure active managers' skill, there may

well be skilled managers. A rational framework introduced by Berk and Green (2004)

theoretically justifies that view. According to their model, rational investors identify

active funds that exhibit skills and flow into those funds. But there is a limit to

how much a fund can scale up its skill, because of diseconomies of scale (decreasing

returns to scale). In equilibrium, a skilled active fund grows up to a size such that the

net alpha becomes zero, and, as a result, the fund performs exactly the same as the

market. In Berk and Green (2004)'s framework, active managers have skills, but the

managers do not show any superior alpha to the market. Their framework suggests

that alpha may not be a good measure for managers' skill.

Berk and Green (2004) is the model of 'smart money' as opposed to 'naive money':

all the investors are rational in active AM markets. Yet, even empirical studies that

do not involve alpha are not quite supportive of this view. Previous studies (e.g.,

Frazzini and Lamont (2008)) find that aggregate investors in mutual fund markets

lose wealth in the long run from their capital allocation decisions. Moreover, there

is more direct evidence on the irrationality of investors in studies of investors' choice

of funds within 401(k) plans (e.g., Agnew and Balduzzi (2012); Madrian and Shea

(2001)).

In this chapter, I propose a theoretical framework of AM markets, where active

managers have skill, and both smart and naive investors participate in the AM mar-

kets. This framework can be viewed as an extension of Berk and Green (2004) in a

sense that funds are subject to decreasing returns to scale. Due to diseconomies of

scale, there exists a fund size that correctly compensates the manager's skill, and I

call the size the 'fair size'. If the amount of invested naive money exceeds the fair

size, smart investors withdraw all of their capital from that fund, and the fund is
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dominated by naive money. In this case, the skill of the manager is overpriced. On

the other hand, if the amount of invested naive money is smaller than the fair size,

smart investors provide capital up to the fair size. In this case, the marginal investors

are smart investors, and the skill of the manager is fairly priced.

In the equilibrium of the model, overpriced funds underperform, and the rest

perform the same as the market on a risk-adjusted basis. Moreover, the underperfor-

mance of overpriced funds persists. When a manager's skill is overpriced, unsophisti-

cated investors subsidize the overpriced amount in the form of negative average excess

returns (alpha). Since sophisticated investors do not invest in funds with negative

alpha, only unsophisticated investors remain invested in those funds. As long as naive

capital invested in overpriced funds persists, those funds continue being overpriced

and, hence, keep underperforming. On the other hand, when a manager's skill is

fairly priced, both the sophisticated and unsophisticated investors are invested in the

fund, and those investors receive zero risk-adjusted excess returns on average. Since

funds, at best, perform the same as the market, good performance does not persist.

In addition, because some funds underperform while the others do not outperform,

on average active funds underperform.

Using mutual fund data, I test a prediction that funds dominated by naive money

underperform. The main challenge for this test is identifying those overpriced funds,

since both skill and the amount of naive money are not directly observable. In

particular, since size and skill are correlated, large funds are not necessarily dominated

by naive money. In order to overcome the challenge, I identify funds with the worst

track records but the largest capital flows as most likely to be overpriced. In contrast,

funds with the best track records but the smallest capital flows are identified as least

likely to be overpriced. Results are consistent with the prediction that overpriced

funds underperform, and fairly priced funds neither underperform nor outperform.

Additional empirical tests support the mechanism of the model as well.

In the remainder of the chapter, section 2 presents the model. Section 3 discusses

the implications of the model for the performance dynamics of active funds. Section

4 presents the analysis of empirical tests on those implications. Section 5 discusses
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the limitation of the model and future directions for research, and summarizes the

conclusions.

1.2 The Model

In this model, funds charge a flat proportional fee fdt between t and t + dt. I assume

that f is constant and uniform across funds'. Figure 1 illustrates types of investors

and funds in the model:

[See figure 1]

1.2.1 Heterogeneity in skill across managers

There are two types of active managers: skilled (high or H-type) and unskilled (low

or L-type). Skilled managers generate surplus while unskilled managers cannot create

any value. A skilled manager faces decreasing returns to scale (DRS) as her assets

under management (AUM) increase. I assume an extreme form of DRS at fund level:

a skilled manager can generate a fixed amount of value (per time) regardless of her

AUM. Qualitative results of the chapter do not depend on the specific form of DRS.

A skilled manager generates

A dt + -dZ,)

over the passive benchmark between t and t + dt, where A is the average dollar value

per time that the manager creates, Zt is a standard Brownian motion, and s is signal-

to-noise ratio of the fund's excess return. Hence, a skilled manager creates surplus

on average, but there is uncertainty associated with the surplus. The uncertainty is

idiosyncratic across managers, i.e., for manager i and j

dZi, - dZj, = 0 ,Vt, s.

An unskilled manager generates no value on average, but the volatility of the

'Endogenous choice of fees is addressed in chapter 2.
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excess return over the passive benchmark is the same as that of a skilled manager.

This guarantees that the skill of managers is not immediately revealed 2 .

1.2.2 Information and learning

There is no informational asymmetry on managers' skill between investors and man-

agers, i.e., all the agents in the model share the same information about the managers'

skill. When a new manager enters an AM market, the manager and investors have

the same prior on the manager's skill. New information about the manager's skill

comes solely from the manager's performance over time. From the manager's track

record, both investors and the manager learn about her skill. Since the performance

of managers is public information, all the agents solve the same inference problem.

Therefore, all the agents share the same posterior on managers' skill at all times.

The signal-to-noise ratio s determines the speed of learning: small s implies that the

learning process is slow, and large s implies the opposite.

The probability distribution of a manager's skill follows the Bernoulli distribu-

tion, since the manager is either skilled (H-type) or unskilled (L-type). At time t,

the probability pi,t of being H-type is a sufficient statistic for the probability distribu-

tion of skill for manager (fund) i, given the prior and track record of the manager's

performance. Unless the type of manager i is known with certainty, agents cannot

directly observe the physical Brownian motion Zi,t, which governs the uncertainty of

the value created by manager i. Instead, define

dZi, ( = s(li,H -pi,t)dt + dZi, (1.1)

where 1 i,H is 1 if manager i is H-type and 0 otherwise. Zi,t is a standard Brownian

motion under the available information set at time t. Observing the track record of

2Since the model is in continuous time, the volatility of skill can be accurately measured in an
infinitesimally short period of time. If the volatility of the excess return is different between skilled
managers and unskilled managers, agents can instantaneously infer whether a manager is skilled or
not.
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the manager between t and t + dt, the Bayes' rule for pi,t is

dpi,t= spi,t(1 - pi,t)dZi, ,

using results on filtering from Liptser and Shiryayev (1977). Since d~i,t is orthogonal

to dZj,t for all j 4 i, the learning process for one manager's skill is independent of

that for another manager's skill.

1.2.3 Naive investors

Regarding fund performance dynamics, what matters is the amount of invested capital

from naive investors. Hence, I do not explicitly model capital allocation decisions of

naive investors. Rather, I model the amount of invested naive money in a reduced

form. In order to obtain the fund performance results of this chapter, I only need one

assumption: the amount 4t of invested naive money is persistent. In continuous-time

setup, this assumption is automatically guaranteed as long as there are no jumps in

it. Any process of 4t satisfying this assumption (e.g., geometric Brownian motion,

Cox-Ingersoll-Ross process, etc.) results in fund performance results that follow in

the next section. Note that due to the short-sale constraint, it cannot be negative.

1.3 Theoretical Results

In this section, I first consider a case without naive investors as a benchmark, and

then consider general cases with naive investors.

1.3.1 Benchmark: no naive investors

Surplus that a manager generates is distributed to the investors, in proportion to

the amount of investment that each investor made in the fund. Therefore, all the

investors in a certain fund receive the same (gross and net) excess return to the

passive benchmark. The gross excess return on a fund between t and t + dt is given
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by
A (iHdt + !dZt)

dRX = I
qt

where 1 H is 1 if the manager of the fund is H-type and 0 otherwise, and qt is the

AUM of the fund. Investors pay a proportional fee fdt between t and t + dt. Hence,

the net excess return on a fund between t and t + dt is

A (lHdt + !dZt)
dr" = dRt" - fdt = d ) fdt.

qt

Investors can diversify away idiosyncratic risks by themselves. Therefore, the stochas-

tic discount factor does not depend on idiosyncratic risks. If the net expected excess

return (net alpha) on a fund is strictly positive, sophisticated investors are strictly

better off increasing their investment in the fund slightly. As a result, the net alpha

must be non-positive in equilibrium.

On the other hand, if the net alpha is strictly negative, sophisticated investors

do not invest any dollars in the fund. Therefore, strictly negative net alpha cannot

constitute an equilibrium. Therefore, the net alpha must be zero in equilibrium.

Mathematically, this statement translates into

ptA
Et [drex] = 0 qt = q*(pt)

t qt

where q*(p) is the fair size of the fund. The skill of the fund manager is correctly

priced and compensated: between t and t + dt the manager receives fee revenues of

f qtdt = ptAdt = Et A 1Hdt + - dZ)]

which is the expected surplus generated by the manager. Therefore, when there are

no naive investors, funds perform the same as the market on a risk-adjusted basis.
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1.3.2 With naive investors

If the net alpha on a fund is strictly positive, sophisticated investors are strictly better

off increasing their investment in the fund slightly. As a result, the net alpha must be

non-positive in equilibrium. On the other hand, if the net alpha on a fund is strictly

negative, sophisticated investors are strictly better off decreasing their investment

in the fund. However, since investors cannot short-sell funds, there is no way that

sophisticated investors can benefit beyond withdrawing the entire investment from

the fund. Therefore, the net alpha on a fund must be either zero, if any sophisticated

investor is remaining in the fund, or negative, if only unsophisticated investors remain

invested in the fund.

Mathematically, these statements translate into

Et[&-ex] (ptA f) dt 0 , 41 < qt

( qt <0 , 4t-qt

where qt is the AUM of the fund at t, and 4t is the amount of naive capital invested

in the fund at t. When there are sophisticated investors invested in the fund,

qt = q* (pt) = p ,A

where q*(p) is the fair size of the fund. As long as 4t < q*(pt), i.e., naive capital

does not exceed the fair size of the fund, the net alpha of the fund is zero, and

sophisticated investors remain invested in the fund. The amount of invested capital

from sophisticated investors in the fund is q*(pt) - 4t. In this case, the skill of the

fund manager is correctly priced and compensated: between t and t + dt the manager

receives fee revenues of

fqtdt=ptAdt=E A lHdt+ 1dZt)

which is the expected surplus generated by the manager.
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If qi q*(pt), i.e., the amount of naive capital exceeds the fair size of the fund,

Et[dr] = pA-f d dt( A f) dt=

where the first inequality comes from the fact that investors cannot short-sell funds.

Hence, the net alpha on a fund is negative when the amount of naive capital goes

beyond the fair size of the fund. Since the net alpha is negative, sophisticated investors

do not invest in the fund, and only unsophisticated investors remain in the fund, i.e.,

qt = q. In this case, the skill of the fund manager is overpriced: between t and t + dt

the manager receives fee revenues of

f qtdt = f 4tdt > ptAdt = Et A (Hdt + -dZt)]
I ( s

The fund manager is compensated more than the surplus that she is expected to

generate, if there is excessive naive capital invested in the fund. Therefore, the

manager does not have an incentive to block capital from unsophisticated investors.

The following proposition summarizes the analysis.

Proposition 1.1 The A UM of a fund is

q = max ,(qI ,

i.e., the AUM is the fair size if the amount of invested naive capital is smaller
f

than the fair size, and the A UM is qt if the amount of invested naive capital exceeds

the fair size.

The net expected excess return on the fund is

Et[dr V=(ptA -- f) dt0={4
\ 9 /< 0 ,4t > Pt

i. e., the fund underperforms if the amount of naive capital exceeds the fair size.

The investors are a mix of sophisticated and unsophisticated investors if the net
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alpha is zero, and only unsophisticated investors remain invested if the net alpha is

negative.

Proof. Proof provided in the above analysis. m

The mechanism of skill overpricing is graphically illustrated in figure 2:

[See figure 21

The following corollary gives some intuitions regarding flows to funds:

Corollary 1.1 Given the skill of a manager at t and t + T (p, and Pt+T), flows to

the fund between t and t + T are

(Pt+T A ~ptA4
Aqt,t+T =-qt+T -qt = maX f , qt+T} - maX { pA }f f

The flows are the largest for 4t+T = t+T and 4t < qt, and the smallest for 4t+T < qt+T

and 4t = qt, i.e., given pt and Pt+T, flows are the largest if fairly priced funds become

overpriced, and the smallest if overpriced funds become fairly priced.

Proof. If it+T =-qt+T and qt < qt, then

Aqt,t+T = Pt+T-J t A Pt+TA - pA
f f f

i.e., flows to overpriced funds that were previously fairly priced are always greater

than flows to continuously fairly priced funds, and

ptA -axptAI4

t,t+T 4t,+T -~- t i+T -max
f f

i.e., flows to overpriced funds that were previously fairly priced are always greater

than flows to continuously overpriced funds.

Similarly, if 4t+T < qt+T and qt = qt,

q1 +T = Pt+TA t Pt+TA ptA
Aq~t--i- f -t f f
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i.e., flows to fairly priced funds that were previously overpriced are always smaller

than flows to continuously fairly priced funds, and

Pt+rTA ~ Pt+TA ~+ ~ ~i
Aqt,t+T = - 4t < max f , qtJT -t Vqt+r

i.e., flows to fairly priced funds that were previously overpriced are always smaller

than flows to continuously overpriced funds.

Combining these two sets of results, given pt and Pt+T, flows are the largest to

overpriced funds that were previously fairly priced, and the smallest to fairly priced

funds that were previously overpriced. m

Lastly, the following corollary provides additional implications for the magnitude

of underperformance:

Corollary 1.2 When a fund is overpriced, i.e., the amount of invested naive money

exceeds the fair size of the fund, the magnitude of underperformance increases in the

amount i of naive capital, and decreases in the expected skill ptA.

Proof. When a fund is overpriced, the magnitude of underperformance is given by

ptA ptA
|Et [dre"||= - f - .

qt qt

The magnitude is increasing in 4t and decreasing in ptA. m

1.4 Empirical Results

1.4.1 Empirical challenges

Empirical tests of this chapter involve active mutual funds. The model suggests that

a mutual fund underperforms when only naive capital is invested in the fund (when

the manager's skill is overpriced). However, identifying funds that are dominated by

naive money is quite a challenging task, since we cannot directly observe both the

skill of managers and the amount of naive money invested in funds. In particular,
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the size of a fund may not be a good indicator for whether the fund is overpriced or

not, because skill and size are positively correlated.

In order to overcome this challenge, I employ capital flows instead of size. This by

itself does not fully address the issue, since capital flows may be from sophisticated

investors and/or unsophisticated investors. Corollary 1.1 is helpful since, controlling

for the perceived skill, the largest capital flows can be associated with the funds

becoming overpriced. Similarly, the smallest capital flows can be associated with the

funds becoming fairly priced, controlling for changes in perceived skill. Thus, extreme

flows can be exploited in order to distinguish overpriced funds and fairly priced funds.

In addition to the main challenge of identifying funds dominated by naive money,

the performance evaluation of mutual funds is subject to several types of bias. Sur-

vivorship bias (Brown et al. (1992)) and incubation bias (Evans (2010)) are upward

biases, and are widely recognized in mutual fund studies. Reverse-survivorship bias

(Linnainmaa (2013)) is a more recent concern, and is a downward bias. Since the em-

pirical tests of this chapter examine underperformance, downward bias is a particular

concern. The concern is that, if reverse-survivorship bias contributes to the estimate

of underperformance, the true performance of (those identified as) overpriced funds

may not be significantly different from the market performance, on a risk-adjusted

basis.

In order to address the concern about reverse-survivorship bias, I take a portfolio

approach: I form portfolios and estimate the performance of those portfolios, instead

of measuring the performance of individual funds. Reverse-survivorship bias comes

from the positive correlation between idiosyncratic shocks to fund performance and

the survival time. Simplistically, suppose that the risk-adjusted excess return on fund

i is

it= ai + 6 i't ,

where cg is the mean-zero idiosyncratic component of fund returns that is orthogonal

to systematic risks that the fund bears. The conventional estimate of alpha of an
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individual fund can be written as

Tar,

t=1

where T is the survival time of fund i. The estimate of alpha is downward biased:

E[&- =E Tir =oi +E Ti <ai,
.i t=1 _Ti t=1 .

as long as the survival time T and idiosyncratic shocks t, 1 j,t are positively corre-

lated. On the other hand, by forming a portfolio of funds, the conventional estimate

of alpha of the portfolio can be written as

ITE Nt

aP - EE wi,tr e
t=1 i=1

where TE is the length of the estimation period that is exogenously set by the re-

searcher, Nt is the number of funds existing in period t, and wi,t is the portfolio

weight on fund i in period t. Suppose that all the funds in the portfolio have the

same ai =a. Then, the estimate of the portfolio alpha is

1E K- N ex[] TE Nt 'TE NtE [&p] =E E :w ,tri [ EEwi'tai + E[ EEwi'tesi'
_ t=1 i=1 T t=1 i=1 [ t=1 i=1

Since wi,t is determined before ct is realized, the estimate of the portfolio alpha is

unbiased:

E1 TNt 1[ TE Nt
E T Z,tw,,t = 0 - E [&p] = E =wtai = a .

Therefore, by taking a portfolio approach, reverse-survivorship bias is no longer a

concern.

However, if funds in a portfolio have heterogeneous a, there is another concern.

Since low a funds are more likely to die out than high a funds, portfolio weights
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on high a funds are likely to increase in time within the estimation period for any

sensible weighting scheme. For instance, consider equal weighting. If the attrition

rate is independent of a,

E [p]= [ITE I Nt 1ei N

E[p EVE NY: a,
t=1 i=1 . i=1

where N is the number of funds that exist at the beginning of the estimation period.

In this case, the expected value of the estimated portfolio alpha is exactly the average

alpha of all the funds included in the portfolio. Yet, if the attrition rate is higher for

low a funds,
TE Nt 1 N

LE JtEt=1 i=1 ] i=1

In this case, the expected value of the estimated portfolio alpha is above the average

alpha of all the funds included in the portfolio: the estimate is upward-biased. I

refer to this upward bias as "general survivorship bias," as opposed to the narrow

interpretation of survivorship bias (Brown et al. (1992)) due to missing data of

dead funds. While the general survivorship bias is a valid concern, underperformance

cannot be overestimated due to such upward bias. Therefore, the bias is less of a

concern of this chapter.

1.4.2 Empirical tests

I employ an identification strategy that compares two groups of mutual funds: one

group of funds that are most likely to be dominated by naive money, and another

group of funds that are least likely to be dominated by naive money. If the former

group mostly consists of overpriced funds, and the latter group mostly consists of

fairly priced funds, then the model predicts that the former group underperforms,

and the latter group performs the same as the market on a risk-adjusted basis.

In the main test, I identify funds with the worst past performance, but the largest

capital flows, as most likely to be overpriced; likewise, funds with the best past

performance, but the smallest capital flows, are least likely to be overpriced. In the
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model, past performance is the most directly related to changes in the perceived

skill of funds. By controlling for past performance, from corollary 1.1, funds having

received the largest flows are likely to be overpriced, and those having received the

smallest flows are likely to be fairly priced. Among the former, funds with the worst

track records and largest flows are the most likely to be overpriced, because past

underperformance implies that a significant portion of those funds are overpriced.

Similarly, funds with the best track records and smallest flows are the least likely to

be overpriced.

In the second test, I identify funds with the smallest return gap, but the largest

capital flows, as most likely to be overpriced; likewise, funds with the largest return

gap but smallest capital flows are least likely to be overpriced. The return gap, pro-

posed by Kacperczyk, Sialm and Zheng (2008), is defined by the difference between

the gross return of a fund and the hypothetical return on the most recently disclosed

portfolio of the fund. The return gap measures whether managers improve perfor-

mance by changing their holdings, and hence the return gap is an indirect measure

of manager skill. Funds are more likely to be overpriced when the skill of managers

is low, given the same amount of invested naive money. Therefore, from corollary

1.1, funds with the smallest return gap and largest flows are the most likely to be

overpriced, and funds with the largest return gap and smallest flows are the least

likely to be overpriced.

In the third test, I take a different approach that provides less direct support for

the model's mechanism than the other tests do. Instead of looking into the entire

set of active (domestic equity) funds, I consider a subset of funds that are involved

in mergers. Mutual fund mergers are quite common in the industry: 4-9% of mutual

funds exit each year, and roughly half of them are merged into other funds. However,

our understanding of why some funds choose to acquire other funds is quite limited.

In particular, the investor rationality view does not provide a good explanation.

This chapter takes the view that mergers benefit acquiring funds by transferring

naive money from target funds to acquiring funds. In order for acquiring funds to

benefit, they have to be overpriced after mergers. Under this view, from corollary 1.2,
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the performance of acquiring funds worsens after mergers since the amount of naive

money invested in those funds increases as a consequence of mergers. In particular,

corollary 1.2 implies that the magnitude of underperformance after mergers increases

with the size of the target funds: funds that acquire larger target funds obtain more

naive capital and, hence, underperform more after mergers compared with their per-

formance before mergers. I test this prediction, which is a joint test of corollary 1.2

and the hypothesis that mergers are transfers of naive money.

1.4.3 Data and methodology

The main data source of this chapter is the CRSP Survivor-Bias-Free US Mutual Fund

Database. The database provides the characteristics of mutual funds and their net

returns. As previously discussed, I take a portfolio approach by double-sorting funds

into 5 x 5 bins. In order to have sufficient numbers of funds in each bin, I focus on

data from January 1991 through December 2016'. Since the CRSP database assigns

separate identifiers for different share classes of a single fund, I construct returns of

funds by value-weighting returns of their share classes. I only include US domestic

equity funds based on the CRSP style code, and exclude index funds and ETF/ETN

in order to include active funds only.

I take further steps in order to address known biases - in particular, incubation

bias. The concern of (the narrow interpretation of) survivorship bias is mostly ad-

dressed by using the CRSP Survivor-Bias-Free US Mutual Fund Database. However,

incubation bias is still a valid concern. In order to assuage the concern, I only include

returns of a fund after the point that the fund reaches $15 million AUM (in end of

2016 dollars) for the first time. For computing the real AUM of funds, I use the GDP

implicit price deflator, which is obtained from the FRED website4 .

In the main test, I double-sort funds on their performance and flow. I use the

Fama-French-Carhart four-factor (FFC4F) model for evaluating the performance of

'In the CRSP database, after data cleaning, there are 656 domestic equity funds in January 1991,
and 2,776 domestic equity funds in December 2016. In 1990, there are less than 100 domestic equity
funds in the CRSP database.

4https://fred. stlouisfed.org
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portfolios of funds. The four factors are obtained from Kenneth French's website5 .

Funds are sorted on their past 12-month performance (FFC4F alpha), and then are

sorted on the flow in the past 12 months, which is defined by

Fl = AUMt - (1+ rt)AUMt_1
AUMt_ 1 '

where rt is the net rate of return on the fund between t - 1 and t, and the time

interval is one year (12 months). I double-sort funds at the beginning of each year,

starting from the 1st of January 1992 through the 1st of January 2016, and, hence,

annually rebalance portfolios in each bin. This procedure gives me returns of 5 x 5

mutual fund portfolios from January 1992 through December 2016. I measure the

performance of these 25 portfolios.

In the second test, I double-sort funds on their return gap and flow. In order to

compute the return gap, I obtain the holdings of mutual funds from the Thomson-

Reuters Mutual Fund Holdings Database. In order to compute the hypothetical

return, I obtain return data of individual stocks from the CRSP US Stock Databases.

The gross return of a fund is computed by adding the expense ratio to the net return.

When linking data from the Thomson-Reuters Database to data from the CRSP

database, I employ the Mutual Fund Links (MFLINKS) database. I rebalance 5 x 5

portfolios annually based on the past year's return gap and flow, similar to the main

test. These procedures moderately reduce the number of samples compared with the

main test.

In the third test, I sort mergers by the size of target funds. Since I am interested

in the total amount of naive money acquired through mergers, I aggregate the AUM

of all the target funds if mergers involve multiple target funds at the same time.

Mergers of one share class into another share class of the same fund are not included.

Since mergers occur at different points of time, I cannot take a portfolio approach

here: I need to estimate the performance of individual funds. This brings up the

concern of reverse-survivorship bias. In order to address reverse-survivorship bias,

5http: //mba. tuck. dartmouth. edu/pages/f aculty/ken. french/data-library. html
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I only include acquiring funds that have at least 12-month returns before and after

mergers (24-month returns at minimum). Since I only consider acquiring funds that

survive for longer than 12 months after mergers, there is no reverse-survivorship bias.

However, there can be survivorship bias for after-merger performance6 . Since the bias

is upward, the magnitude of the underperformance estimate is never overestimated by

the bias. For the performance of target funds, there is a concern about selection bias,

since negative idiosyncratic shocks are likely associated with their attrition. Thus,

the performance of target funds is likely downward-biased.

1.4.4 Results

Performance-Fund flow double-sort

[See table 11

The past year's underperformance predicts this year's underperformance'. In Ap-

pendix Table 1, when funds are sorted on the past year's FFC4F, poor-performing

funds tend to underperform in the next year. However, the difference in the next year's

performance between the best-performing funds and the worst-performing funds is

only marginally significant (at the 10% level), when the difference in performance is

measured by the FFC4F alpha. In addition, when that difference is measured by the

CAPM alpha, the difference is not statistically significant.

Similarly, the past year's fund flow predicts this year's underperformance. In

Appendix Table 2, when funds are sorted on the past year's fund flow, funds that

receive large flows tend to underperform in the next year. However, the difference in

the next year's performance between the funds receiving the largest flow and those

receiving the smallest flow (or the largest outflow) is only marginally significant (at the

10% level), when the difference in performance is measured by the FFC4F alpha. Yet,

when the difference of performance is measured by the CAPM alpha, the difference

becomes quite significant (at the 1% level).

6I do not have survivorship bias for before-merger performance, because acquiring funds must
survive until the point of mergers in order to acquire target funds.

7This is a well known empirical regularity since Carhart (1997).
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When funds are double-sorted on performance and fund flow, the next year's net

performance measured by the FFC4F alpha is perceptibly aligned: the (risk-adjusted)

performance of funds that previously outperformed and received small flows is not dis-

tinguishable from zero, and funds that previously underperformed and received large

flows keep significantly underperforming. The performance difference between best-

performance-smallest-flow funds and worst-performance-largest-flow funds is about

4% annually (both for equal-weighted and value-weighted portfolios), and statisti-

cally significant at the 1% level.

When the next year's performance is measured by the CAPM alpha, the re-

sult is qualitatively quite similar, and can be seen in Appendix Table 4. Quan-

titatively, the annual performance difference between best-performance-smallest-flow

funds and worst-performance-largest-flow funds is 4.35% for equal-weighted portfolios,

and 5.18% for value-weighted portfolios. Those differences are statistically significant

at the 1% level.

Return gap-Fund flow double-sort

[See table 21

The past year's small return gap predicts this year's underperformance. In Appendix

Table 3, when funds are sorted on the past year's return gap, funds with small return

gaps tend to underperform during the next year. In Kacperczyk, Sialm and Zheng

(2008), the return gap predicts the short-run outperformance (in the next quarter)

of funds. Yet, in this chapter, the return gap does not predict outperformance in the

long run (in the next year).

Small return gaps do not predict underperformance as well as other variables (un-

derperformance and large flows) do. In Appendix Table 3, only the equal-weighting

scheme combined with the FFC4F alpha as the performance measure generates a sta-

tistically significant difference in performance between funds with the largest return

gap in the past year and those with the smallest return gap.

When funds are double-sorted on return gap and fund flow, the next year's net per-

formance measured by the FFC4F alpha is aligned: the (risk-adjusted) performance
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of funds that previously had large return gaps and received small flows is not distin-

guishable from zero, and funds that previously had small return gaps and received

large flows keep significantly underperforming. The annual performance difference

between largest-return gap-smallest-flow funds and smallest-return gap-largest-flow

funds is 2.42% for equal-weighted portfolios, and 3.14% for value-weighted portfolios.

These differences are statistically significant at the 5% level.

When the next year's performance is measured by the CAPM alpha, the perfor-

mance pattern is less evident, as can be seen in Appendix Table 5. This is partly due

to the finding (in Appendix Table 3) that the return gap does not predict the next

year's CAPM alpha very well. However, the annual performance difference between

largest-return gap-smallest-flow funds and smallest-return gap-largest-flow funds is

still statistically significant at the 5% level: the difference is 2.36% for equal-weighted

portfolios, and 3.75% for value-weighted portfolios.

Performance of funds before/after mergers

[See table 3]

As predicted, the difference between the performance of acquiring funds after merg-

ers and that before mergers increases with the size of target funds. In particular, the

difference is pronounced for funds that acquire target funds the size of which is in

the biggest quintile. The after-merger performance of those acquiring funds is 1.57%

lower than the before-merger performance of the same funds, and statistically signif-

icant at the 1% level, when the FFC4F alpha is used as the performance measure.

When performance is measured by the CAPM alpha, funds that acquired the largest

target funds perform 1.64% lower after mergers than they did before mergers, and

the difference is statistically significant at the 5% level.

There are other interesting aspects that this chapter does not address. While

target funds significantly underperform acquiring funds before mergers, the magnitude

of underperformance tends to decrease with the size of target funds. After mergers,

the combined funds perform better than target funds, except for those which acquired
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the largest target funds. Funds that acquired the smallest target funds seem to

improve their performance after mergers, but the improvement is only statistically

significant when the performance is measured by the CAPM alpha.

1.5 Discussions and Conclusions

The main empirical challenge for the predictions of the model is that neither the

skill of managers nor the amount of invested naive money is observable. In order to

address this challenge, I employ mismatches between changes of the perceived skill of

managers, measured by the recent risk-adjusted performance of funds, and the changes

of fund size. While this identification strategy results in the empirical pattern of future

fund performance as predicted by the model, it cannot still perfectly distinguish 'naive

money' from 'smart money'. Using more micro-level data in order to identify naive

money would lead to more convincing empirical results for the predictions of the

model.

In conclusion, this chapter proposes a theoretical framework that seriously takes

into account the role of unsophisticated investors in AM markets. The model predicts

that the skill of active managers is "overpriced" once the amount of capital from

unsophisticated investors exceeds the size that fairly prices the skill. Overpriced

funds underperform the passive benchmark, while fairly priced funds perform the

same as the benchmark. The mechanism of the model delivers several predictions on

the fund performance dynamics, which are empirically tested and supported.

35



Figures

Figure 1: Types of investors and types of funds

The following figure illustrates two types of investors, sophisticated (smart) investors

and unsophisticated (naive) investors, and two types of funds, active funds and passive

benchmarks. Among active funds, smart investors never choose to invest in active

funds with negative net alpha, while naive investors do invest in those with negative

net alpha.

Sophisticated Naive
Investors Investors

Passive Zero Negative
Benchmarks net alpha net alpha

(e.g., Index Funds)
Active Funds

Types of investors and types of funds
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Figure 2: Mechanism of skill overpricing

The following figure illustrates the mechanism that excessive inflows of naive money

overprice the skill of managers.

Fair Size

f

Smart
Money

Naive
Money

Naive
Money

Mechanism of skill overpricing by naive investors
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Tables

Table 1: Performance-Fund flow double sort

The tables show the Fama-French-Carhart 4-factor model (FFC4F) monthly alpha

for 25 portfolios from 1992 to 2016. The 25 (5 x 5) portfolios are double-sorted

on the previous year's performance and the previous year's fund flow (firstly on the

performance and then the flow). The previous year's performance is measured by

FFC4F, and the previous year's fund flow is the percentage growth of the previous

year's AUM adjusting for the net return. The portfolios are rebalanced at annual

frequency on the 1st of January each year.

Table la: Equal-weighted portfolios

Flow
12 x a Low 2 3 4 High

Low -1.83** -1.67* -2.87*** -2.71*** -3.62***
2 -1.18** -1.41*** -1.05** -1.63*** -1.75***

FFC4F a 3 -1.03** -0.85* -1.14*** -1.41*** -1.36***
4 -0.78 -0.47 -0.74 -1.18** -1.23***

High 0.39 -0.21 -0.53 -0.78 -2.16**

(High a & Low flow) minus (Low a & High flow): 4.02*** (std err: 1.22)

Standard errors

Flow
12 x a Low 2 3 4 High

Low 0.81 0.91 1.03 0.86 0.86
2 0.54 0.49 0.49 0.54 0.50

FFC4F a 3 0.49 0.48 0.41 0.40 0.41
4 0.57 0.65 0.58 0.50 0.46

High 0.89 0.82 0.83 0.80 0.98
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Table 1b: Value-weighted portfolios

12 x a

FFC4F a

Low
2
3
4

High

Flow
Low 2
-2.17**
0.07
-1.54**
-1.64**
-0.27

4 High
-2.63***
-1.27*
-1.12*
-1.03*
-1.89*

-4.41***F
-2.14***
-1.61***
-1.89***
-2.97**

3
-2.68***
-0.68
-1.22**
-0.09
-0.07

-2.69***
-0.61
-1.27***
0.05
-0.20

(High a & Low flow) minus (Low a & High flow): 4.14*** (std err: 1.41)

Standard errors

12 x a
Low

2
FFC4F a 3

4
High

Flow
Low 2 3
0.94 0.74
0.90 0.58
0.63 0.56
0.76 0.72
0.88 0.86

0.77
0.52
0.46
0.60
0.87
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4 High
0.77
0.70
0.65
0.59
1.01

0.99
0.56
0.62
0.55
1.16



Table 2: Return gap-Fund flow double sort

The tables show the Fama-French-Carhart 4-factor model (FFC4F) monthly alpha

for 25 portfolios from 1992 to 2016. The 25 (5 x 5) portfolios are double-sorted on

the previous year's return gap and the previous year's fund flow (firstly on the return

gap and then the flow). The previous year's return gap is measured as in Kacperczyk,

Sialm and Zheng (2008), and the previous year's fund flow is the percentage growth of

the previous year's AUM adjusting for the net return. The portfolios are rebalanced

at annual frequency on the 1st of January each year.

Table 2a: Equal-weighted portfolios

Return Gap

12 x a

Low
2
3
4

High

Low
-1.88***
-0.87
-1.14*
0.19
-0.24

2
-2.00**
-1.27**
-1.19*
-0.70
-0.63

Flow
3
-2.03***
-0.73
-0.64
-0.63
-0.51

4
-1.99***

-1.67***
-0.96
-1.20*
-0.44

High
-2.66***

-1.17**
-1.87***
-1.52*

(High return gap & Low flow) minus (Low return gap &
2.42**

(std err: 1.17)

Standard errors

Return Gap

12 x a

Low
2
3
4

High

Flow
Low 2 3
0.71
0.58
0.69
0.80
0.89

0.85
0.54
0.63
0.75
0.93

0.67
0.46
0.50
0.66
1.02
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High flow):

4 High
0.73
0.46
0.65
0.67
0.89

0.76
0.48
0.49
0.52
0.81



Table 2b: Value-weighted portfolios

Return Gap

12 x a
Low

2
3
4

High

Low 2
-2.23**
-0.18
-1.42*
-0.62
0.56

-1.34
-2.62***
-0.70
-0.49
-0.23

Flow
3
-1.71*
0.02
-1.27**
-0.03
0.22

(High return gap & Low flow) minus (Low return gap & High flow):
3.14**

(std err: 1.49)

Standard errors

12 x a | Low 2

Return Gap

Low
2
3
4

High

1.10
0.67
0.73
0.78
1.01

1.01
0.72
0.77
0.88
1.04

Flow
3
0.96
0.69
0.51
0.76
1.05

4 High
1.00
0.60
0.74
0.67
0.92

1.14
0.72
0.66
0.62
1.03

41

High
-2.58**
-1.46**
-0.67
-2.38***
-2.99***

4
-1.33
-0.46
-0.54
-1.88***
-1.59*



Table 3: Performance of funds before/after mergers

The tables show the performance of target and acquiring funds before mergers, and

the performance of acquiring funds after mergers, for mergers in period 1991-2016.

When a single fund acquires multiple target funds at the same time, those target

funds are aggregated, and their returns are value-weighted. The significance level is

based on the p-value of the null that the difference in the average performance before

mergers and that after mergers is zero.

Table 3a: FFC4F alpha (annualized)

FFC4F a
Target Before After Before-Target After-Target After-Before

Total 1 -2.95 -0.86 -1.02 2.09*** 1.93*** -0.16
-3.47
-2.83
-3.42
-3.17
-1.86

-1.32
-0.45
-0.89
-1.30
-0.35

-0.41
-0.84
-1.32
-0.63
-1.92

2.15***
2.38***
2.53***
1.88***
1.51**

3.06***
1.99***
2.10***
2.55***
-0.06

p-values

FFC4F a
Before-Target After-Target After-Before

Total 0.00 0.00 0.55
Small

2
3
4

Big

0.00
0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.00
0.93

0.13
0.52
0.48
0.26
0.01
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Small
2
3
4

Big

0.91
-0.39
-0.43
0.67
-1.57***



Table 3b: CAPM alpha (annualized)

CAPM a
T. at B fr Aft B fr Tp t+ A ftT r +

Total -2.96 -0.29 -0.15 2.66*** 2.80*** 0.14
Small

2
3
4

Big

-3.91
-2.68
-2.34
-3.60
-2.25

-1.50
-0.20
0.56
-0.26
-0.07

1.82
-0.42
-0.10
-0.35
-1.70

2.41***
2.48***
2.90***
3.35***
2.18***

5.73***
2.26***
2.23***
3.26***
0.55

3.32***
-0.22
-0.67
-0.09
-1.64**

p-values

Before-Target
FFC4F a

After-Target After-Before
Total 0.00 0.00 0.65

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.42

0.00
0.74
0.33
0.90
0.02

43

Small
2
3
4

Big

Aft B f



Appendix Tables

Appendix Table 1: Performance single sort

The tables show the Fama-French-Carhart 4-factor model (FFC4F) monthly alpha

and the CAPM monthly alpha for 10 portfolios from 1992 to 2016. The 10 portfolios

are sorted on the previous year's performance. The previous year's performance is

measured by FFC4F. The portfolios are rebalanced at annual frequency on the 1st of

January each year. The standard errors are reported in parentheses.

Appendix Table la: FFC4F alpha (annualized)

FFC4F a
Equal-weighted I Value-weighted

Low -2.90** (1.15) -3.75*** (0.97)
2 -2.21*** (0.56) -2.62*** (0.56)
3 -1.47*** (0.46) -0.72 (0.55)
4 -1.34*** (0.44) -1.08** (0.47)
5 -1.42*** (0.38) -1.24*** (0.48)
6 -0.90** (0.40) -1.29*** (0.43)
7 -1.13** (0.47) -0.80** (0.38)
8 -0.64 (0.51) -0.47 (0.54)
9 -0.85 (0.60) -1.00* (0.59)

High -0.47 (0.99) -1.31 (1.04)
High-Low 2.43* (1.43) 2.44* (1.38)
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Appendix Table 1b: CAPM alpha (annualized)

CAPM a
Equal-weighted I Value-weighted

Low -2.62** (1.33) -3.68*** (1.07)
2 -1.73** (0.71) -2.52*** (0.62)
3 -1.10** (0.56) -0.66 (0.55)
4 -0.98* (0.50) -0.96** (0.46)
5 -0.99** (0.46) -1.04** (0.49)
6 -0.46 (0.46) -0.98** (0.48)
7 -0.87* (0.52) -0.63 (0.39)
8 -0.35 (0.58) -0.62 (0.56)
9 -0.81 (0.73) -1.13 (0.74)

High -0.35 (1.41) -1.70 (1.50)
High-Low 2.27 (1.48) 1.98 (1.50)

Appendix Table 2: Fund flow single sort

The tables show the Fama-French-Carhart 4-factor model (FFC4F) monthly alpha

and the CAPM monthly alpha for 10 portfolios from 1992 to 2016. The 10 portfolios

are sorted on the previous year's fund flow. The previous year's fund flow is measured

by the percentage growth of the previous year's AUM adjusting for the net return.

The portfolios are rebalanced at annual frequency on the 1st of January each year.

The standard errors are reported in parentheses.

Appendix Table 2a: FFC4F alpha (annualized)

FFC4F a
Equal-weighted Value-weighted

Low -0.85 (0.55) -1.28* (0.70)
2 -1.12* (0.61) -0.83 (0.68)
3 -1.23** (0.60) -1.34** (0.62)
4 -1.09** (0.53) -0.78 (0.50)
5 -1.13** (0.52) -0.68 (0.45)
6 -1.38*** (0.50) -0.72* (0.41)
7 -1.24** (0.49) -0.66 (0.50)
8 -1.56*** (0.51) -1.57*** (0.57)
9 -1.55*** (0.51) -1.68*** (0.53)

High -2.09*** (0.59) -2.94*** (0.78)
High-Low -1.24* (0.65) -1.66* (0.87)
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Table 2b: CAPM alpha (annualized)

CAPM a
Equal-weighted Value-weighted

Low 0.05 (0.82) -0.22 (1.02)
2 -0.28 (0.73) 0.24 (0.76)
3 -0.63 (0.68) -0.57 (0.64)
4 -0.81 (0.59) -0.36 (0.51)
5 -1.06* (0.59) -0.72 (0.45)
6 -1.29** (0.56) -0.95** (0.40)
7 -1.18* (0.61) -1.17** (0.53)
8 -1.46** (0.68) -1.96*** (0.67)
9 -1.43** (0.73) -1.88*** (0.67)

High -2.02** (0.90) -3.15*** (1.14)
High-Low -2.07*** (0.69) -2.93*** (0.94)

Appendix Table 3: Return gap single sort

The tables show the Fama-French-Carhart 4-factor model (FFC4F) monthly alpha

and the CAPM monthly alpha for 10 portfolios from 1992 to 2016. The 10 portfolios

are sorted on the previous year's return gap. The previous year's return gap is

measured as in Kacperczyk, Sialm and Zheng (2008) The portfolios are rebalanced at

annual frequency on the 1st of January each year. The standard errors are reported

in parentheses.

Appendix Table 3a: FFC4F alpha (annualized)

FFC4F a
Equal-weighted Value-weighted

Low -2.17*** (0.75) -1.78* (1.01)
2 -2.03*** (0.56) -2.21** (0.88)
3 -1.32*** (0.43) -1.47** (0.63)
4 -1.03*** (0.39) -0.25 (0.53)
5 -0.94* (0.51) -0.88* (0.52)
6 -1.10** (0.49) -1.01* (0.53)
7 -0.96* (0.54) -0.77 (0.48)
8 -0.75 (0.67) -2.06*** (0.64)
9 -0.69 (0.82) -1.16 (0.72)

High -0.65 (0.84) -1.32 (0.85)
High-Low 1.52** (0.74) 0.47 (0.88)
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Table 3b: CAPM alpha (annualized)

I CAPM a
Equal-weighted Value-weighted

Low -1.82 (1.20) -1.99 (1.40)
2 -1.28 (0.92) -2.22* (1.27)
3 -0.84 (0.64) -1.44* (0.77)
4 -0.49 (0.57) -0.33 (0.60)
5 -0.48 (0.57) -1.06* (0.55)
6 -0.78 (0.57) -1.05** (0.54)
7 -0.64 (0.61) -0.95* (0.49)
8 -0.54 (0.74) -2.52*** (0.69)
9 -0.67 (0.94) -1.22 (0.97)

High -0.66 (1.37) -1.50 (1.45)
High-Low 1 1.16 (0.75) 0.49 (0.88)

Appendix Table 4: Performance-Fund flow double sort - CAPM

a

The table shows the CAPM monthly alpha for 25 portfolios from 1992 to 2016. The

25 (5 x 5) portfolios are double-sorted on the previous year's performance and the

previous year's fund flow (firstly on the performance and then the flow). The previous

year's performance is measured by FFC4F, and the previous year's fund flow is the

percentage growth of the previous year's AUM adjusting for the net return. The

portfolios are rebalanced at annual frequency on the 1st of January each year.

Appendix Table 4a: Equal-weighted portfolios

Flow
12 x a

Low
2

FFC4F a 3
4

High

Low 2 3
-0.70
-0.32
-0.16
0.02
0.85

-0.92
-0.93*
-0.35
-0.06
-0.01

4
-2.97**
-0.89
-0.90**
-0.71
-0.90

High
-2.66***
-1.52***
-1.07**
-1.09*
-0.80

-3.50***
-1.53**
-1.09**
-1.12*
-2.00

(High a & Low flow) minus (Low a & High flow): 4.35*** (std err: 1.19)
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Standard errors

12 x a
Low

2
FFC4F a 3

4
High

Flow
Low 2 3
1.08
0.67
0.60
0.67
1.08

1.02
0.54
0.52
0.70
0.90

1.18
0.55
0.43
0.63
1.00

Appendix Table 4b: Value-weighted portfolios

12 x a Low

Low
2

FFC4F a 3
4

High

-1.08
0.91
-0.48
-0.58
0.46

Flow
2 3
-2.09***
0.01
-0.40
0.23
-0.12

4
-2.49***
-0.53
-0.85*
-0.41
-0.90

High
-2.96***
-1.52**
-1.63**
-1.25**
-2.06

-4.73***
-2.53***
-1.98***
-1.94***
-3.07*

(High a & Low flow) minus (Low a & High flow): 5.18*** (std err: 1.40)

Standard errors

12 x a I Low
Low

2
FFC4F a 3

4
High

1.22
0.94
0.72
0.92
1.08

2
0.79
0.62
0.59
0.81
0.84

Flow
3
0.81
0.51
0.47
0.65
0.99

4 High
0.84
0.69
0.66
0.61
1.38

1.10
0.65
0.74
0.66
1.69
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4 High
0.99
0.58
0.49
0.56
1.16

1.03
0.62
0.53
0.60
1.49



Appendix Table 5: Return gap-Fund flow double sort - CAPM

a

The table shows the CAPM monthly alpha for 25 portfolios from 1992 to 2016. The 25

(5 x 5) portfolios are double-sorted on the previous year's return gap and the previous

year's fund flow (firstly on the return gap and then the flow). The previous year's

return gap is measured as in Kacperczyk, Sialm and Zheng (2008), and the previous

year's fund flow is the percentage growth of the previous year's AUM adjusting for the

net return. The portfolios are rebalanced at annual frequency on the 1st of January

each year.

Appendix Table 5a: Equal-weighted portfolios

Flow
12 x a Low

Return Gap

Low
2
3
4

High

-1.06
0.36
-0.18
0.95
0.08

2 3 4
-1.07
-0.70
-0.68
-0.28
-0.61

-1.81*
-0.71
-0.42
-0.57
-0.76

High
-1.58
-1.32**
-0.98
-1.28*
-0.72

-2.28*
-0.88
-0.89
-1.68***
-1.30

(High return gap & Low flow) minus (Low
2.36**

(std err: 1.16)

Standard errors

return gap & High flow):

Return Gap

12 x a
Low

2
3
4

High

Flow
Low 2 3
1.14
0.87
0.79
0.87
1.12

1.15
0.64
0.68
0.81
1.08

0.98 1.15
0.56 0.58
0.54 0.69
0.69 0.73
1.16 1.24
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4 High
1.18
0.71
0.60
0.65
1.34



Appendix Table 5b: Value-weighted portfolios

12 x a I Low

Return Gap

Low
2
3
4

High

-0.96
1.22
-0.74
0.14
0.98

2
-0.57
-2.06**
-0.27
-0.20
-0.20

Flow
3
-1.97
-0.61
-1.45***
-0.11
-0.37

4
-1.67
-0.67
-0.99
-2.58***
-2.16

(High return gap &

Return Gap

Low flow) minus (Low return gap
3.75**

(std err: 1.47)

Standard errors

12 x a
Low

2
3
4

High

Flow
Low 2 3
1.59
0.95
0.79
0.90
1.35

1.25
0.80
0.77
0.88
1.15

1.26
0.75
0.55
0.74
1.18

& High flow):

4 High
1.41
0.72
0.75
0.71
1.43

1.49
0.88
0.71
0.70
1.52

50

High
-2.76*
-1.66*
-0.92
-2.83***
-2.89*



Chapter 2

IO of Active Mutual Funds

2.1 Introduction

This chapter theoretically addresses the decisions of active mutual fund managers

under an assumption that a significant portion of investors in mutual fund markets

are unsophisticated. In particular, this chapter focuses on the managerial choice of

fees, effort, idiosyncratic risk, marketing and the pursuit of private benefit. The key

variables that govern the choices of managers are the skill of managers and the amount

of invested naive money. To be more precise, the relative magnitude of fee profits

that managers can earn from naive investors compared to that from smart investors

is the most crucial variable that determines the managerial choices.

If funds attract more naive money, managers raise fees and reduce their effort to

create value for investors. Since naive investors are less sensitive to fees than smart

investors are, increasing fees leads to higher fee profits from naive investors and lower

fee profits from smart investors. If the amount of invested naive money increases,

marginal fee profits from naive investors increase while those from smart investors

decrease. As a result, managers would want to charge higher fees when more naive

money flows into their funds. Because managerial effort is compensated by smart

investors, as marginal fee profits from smart investors decrease, managers choose to

reduce their effort.

Managers choose to bear the maximum idiosyncratic risk when the magnitude of
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expected profits from naive investors is the same as that from smart investors because

fee profits follow the same payoff structure as a call option. When there is only a

small amount of invested naive money, fee profits are determined by smart investors,

and the magnitude is fixed at a certain level that reflects managers' skill. Hence, fee

profits from smart investors can be thought of as the strike price. In contrast, when

excessive naive money flows into funds, fee profits are determined by naive investors,

and are proportional to the amount of invested naive money. Since the call option

vega, which is the sensitivity of option price to changes in the volatility of the stock,

is maximized when stock price is the same as the strike price, the marginal benefit

of increasing idiosyncratic risk is maximized when the magnitude of expected profits

from naive investors is the same as that from smart investors.

As funds receive more naive money, managers choose more marketing and pursue

more private benefit. Since the marginal benefit of marketing is proportional to the

probability that naive money dominates funds, the marginal benefit increases as more

naive money flows into funds. Hence, managers would want to increase the level

of marketing if they receive more capital from naive investors. Similarly, because

the marginal cost of private benefit obtained by sacrificing returns to investors is

proportional to the probability that smart investors are the marginal investors, the

marginal cost decreases as funds attract more naive money. As a result, managers

choose to pursue more private benefit as more naive money is invested in their funds.

In the remainder of the chapter, section 2 presents the baseline model. Section

3 discusses the equilibrium of the model and its implication for managerial decisions

of fees and effort. Section 4 discusses the extensions of the baseline model with

the endogenous choice of i) idiosyncratic risk, ii) marketing, and iii) private benefit.

Section 5 discusses the limitations of the model and future directions for research,

and summarizes the conclusions.
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2.2 Baseline Model

Managers have skill, and the skill is captured by a parameter a. Managers choose an

effort level et in each period. The AUM of funds in time t is denoted by qt. Managers

generate value subject to decreasing returns to scale.

In time t, a manager generates

At = (aet )-aqt (2.1)

dollar amount of value in expectation, where 0 < a < 1. As a result, the gross excess

return on the fund in time t is

Rex' = At+ Ct ,Et ~ N(0, U2),

where ct is an idiosyncratic component of the gross excess return, and the distribution

of et follows a normal distribution with zero mean and the standard deviation of o.

The fund charges fees ft that is proportional to the AUM of the fund in time t.

Fees ft in time t is determined in the previous period t - 1. Therefore, the net excess

return on the fund in time t is

rex = - ft + Cet.t qt

In each period, the fund bears costs that are proportional to the AUM, and costs

of fixed amount:

Oqt + F.

In addition, the fund also bears an effort cost ,e(et) that is convex in the level of

a managerial effort et. For the sake of analytic convenience, I choose the following

quadratic form of Pe(et):

XVe ( -t) 2a(et)2
2
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As a result, the net profit to the fund is given by

(ft - #)qt - F - Ie(et) ,

and the objective of the manager in time t is to maximize the discounted sum of

expected profits:

00
max I StEt [(fs - #)qs - F - Te(es)] ,

{fs+1,es} =t,t+1,... S=t(1 r )

where rf is the constant risk-free rate. Fee profits are discounted at the risk-free rate

since all the shocks in the model are idiosyncratic. Funds cannot choose to exit.

There are two types of investors: smart investors (sophisticated investors) and

naive investors (unsophisticated investors). Smart investors invest in a fund as long

as the net expected excess return (net alpha) of the fund is greater than or equal to

zero1 . In contrast, naive investors invest in a fund partly based on the fund's recent

performance and partly based on unmodeled reasons. In addition, the amount of

capital invested by naive investors (naive money) responds to fees: higher fees lead

to lower amounts of invested naive money in the fund. The amount of invested naive

money in a fund is modeled as

q = max{, qt"} , = g(ft) g +_Y(ft)Ut_1+_e(ft)- , ut - N(O, 1) , (2.2)

where g(f) is a decreasing function in f, and captures the responsiveness of naive

investors to fees. A' captures the expected value of the invested naive money in time

t measured in time t - 1, and is modeled as

where p captures how sticky naive money is.

'One crucial assumption is that smart investors can diversify idiosyncratic risk by themselves.
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I make the following assumption:

(ft - 0)-yN(ft) - u = const , (ft - 0)'yE(ft) = c = const. (2.3)

This assumption assures that a fee choice ft only affects the mean of the distribution

of (ft - #)qt", which determines fee profits from naive investors. Therefore, under the

assumption (2.3), changes in fee choices ft do not affect the volatility of fee profits

from naive investors. In an extended version of the model, the optimal choice of

volatility (of fee profits from naive investors) will be examined2

For the sake of analytic convenience, I choose the following form of g(ft):

g(ft) 1 - ft
K

I make an additional assumption on the value of K:

2
K > - - 1) 0. (2.4)

Since K is the inverse sensitivity of naive money to fees, large K means that naive

investors are insensitive to fees. Assumption (2.4) implies that, roughly speaking,

naive investors are less sensitive to fees than smart investors are.

2.3 Equilibrium

As benchmark cases, I consider two cases: one where there are no naive investors and

the other where there are no smart investors. Then, I solve for the equilibrium of

general cases.

2 This analysis provides the marginal benefit of increasing the volatility of fee profits from naive
investors. Suppose that changes of fees affect both the mean and the volatility of fee profits from
naive investors. Adding the marginal benefit of increasing the volatility to the marginal benefit of
increasing the mean, one can easily figure out the marginal benefit of increasing fees in this case.
The marginal cost stays the same for the same fees.
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2.3.1 First benchmark - no naive investors

Investors' capital allocations

Smart investors competitively provide capital to a fund as long as the net alpha of

the fund is positive. In contrast, smart investors do not provide capital to the fund if

the net alpha is negative. Therefore, in equilibrium, the net alpha of the fund is zero

i.e.,

At At
Et [r] = -ft = 0 4=> qt - =q

qt ft

where q* is the fair size of the fund. From (2.1) the AUM of the fund reads

qt = (aet)laqi <--> qt = aet(ft)-i
ft

Managers' decisions

Fee profits in time t read

(ft - #)qt - F - e- F - -a(et)2
2

Since the effort choice et in time t only affects fee profits in time t, given ft, the

optimal choice of et solves the following first-order condition:

a(ft - 0)(ft)-ct - aet = 0 +-> et = (ft - 0)(ft)- .

As a result, fee profits in time t can be written as

1 1 2

2a [(ft - #)(ft)~- ] - F .

The proportional fee ft is determined in the previous period t - 1. The optimal fee

choice maximizes expected fee profits in time t:

1 1 2
ft = arg max a [(ft - 0)(ft)-1- - F,
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which leads to the following first-order condition:

[(ft - )(ft)-1a] (f)1-C (ft - (ft - ) = .
dft1-a

Therefore, the optimal choice of ft is

1
ft= - f 1 Sf > #a

2.3.2 Second benchmark - no smart investors

Since there are no sophisticated investors, investors' capital allocation decision is

given by

qt = qu = max {0, 4"} ,

where q' is given by (2.2). Fee profits in time t read

(ft - #)qu - F - Ia(et )2

The optimal choice of et is zero, since fee revenues are unaffected by the choice of et

but there are costs associated with positive et. Define

Qt"(ft ; At') _ (ft - #)g(ft)i4 + .ut-i + i'Ct- 1 .

Note that the distribution of Qu"(ft) in time t - 1 is a normal distribution with the

mean of

and the variance of

'.I 2 or 2
f Y U*

Fee profits now read

(ft - #)q' - F = max{0, Q"(ft)} - F.
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The optimal choice of fee ft maximizes the expected profits in time t:

f, = arg max Et- 1 [max {0, Q"(ft)} - F]
ft

Since only the mean of QY(ft) is affected by changes in ft, the optimal choice of

ft maximizes the mean of Q"(ft). The optimal ft satisfies the following first-order

condition:

d + r, _ #+
(ft - ) 1 -- Jt = -(+#- 2ft) = 0 - ft 2 f

dft [ K 2

Therefore, when there are no smart investors, the optimal choices are et = 0 and

ft = 0$'. Note that assumption (2.4) guarantees that fu is greater than f8 .

2.3.3 General cases

Investors' capital allocations

Smart investors competitively provide capital to a fund as long as the net alpha of the

fund is positive. Therefore, in equilibrium, the net alpha of the fund is nonpositive ,

i.e.,
Atf At qEt [rt"| = -f ; -> qt ;> -- tq,
qt ft

where the the net alpha of the fund is zero at qt = q* (fair size). The AUM of a fund

is the sum of capital invested by smart investors (smart money) and capital invested

by naive investors (naive money):

qt = q' + q'

If the amount of invested naive money in a fund is smaller than q*, smart money

flows into the fund until the fund reaches the size q*, at which the net alpha of the

fund becomes zero:

q=q* ,q'=q*-q".
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If the amount of invested naive money is greater than qt*, smart investors withdraw

their capital invested in the fund since the net alpha of the fund is negative. However,

because investors cannot short-sell funds, the amount of capital qt invested by smart

investors cannot be negative. As a result, smart investors choose to invest zero amount

of capital in those funds in which the amount of invested naive money is greater than

q*:

qt = q' ,' q= 0.q>=O

Therefore, the equilibrium AUM of a fund is either the fair size q*, if the amount of

invested naive money is smaller than the fair size, or the amount qu of invested naive

money, if the amount qu is greater than the fair size:

qt = max {q*, q}= max ,t qu .(2.5)

Combining (2.1) and (2.5) leads to

q(=max { (ae) qq

When qu is smaller than the fair size

qt, = t qtq -4 g aet (ft )-6

As a result, qt can be rewritten as

qt = max aet(ft)- qt}

Managers' decisions

Fee profits in time t read

(ft - #)qt - F - 'I'g(et) = max I(ft - #)aet(ft) ,(ft - #)q - F a(et)1 2
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Since the effort choice et in time t only affects fee profits in time t, given ft, the

optimal choice of et solves

et = arg max {(ft - #)aet(ft)-a , (ft - #)q} - F - a(et)2

Suppose that the amount q' of invested naive money is smaller than the fair size of the

fund. In this case, the optimal choice of et solves the following first-order condition:

1 1

a(ft - 0)(ft)-1 - aet = 0 4--> et = (ft - #)(ft)-1- . (2.6)

In contrast, suppose that the amount qu of invested naive money is larger than the

fair size of the fund. In this case, the marginal cost of effort et is always negative for

et > 0:

[(ft - 0),qu - F - -a(et)2= -act < 0 .
det 2

As a result, in this case, the optimal choice is et = 0.

In the former case where q' is smaller than the fair size, fee profits net of costs in

time t can be written as

ja [ft - #)(ft)-Q] - F.

In the latter case where qu is greater than the fair size, fee profits net of costs in time

t read

(ft - #)qt - F.

Therefore, the threshold q' above which naive money dominates is determined by

(ft - #)qu - F = a [(ft - )(ft)- - F - ~ = 2a(ft - k)(ft)~ .l

To summarize, if the amount of invested naive money is smaller than the threshold q,

the manager chooses et as determined in (2.6). In contrast, if the amount of invested

naive money is larger than qu, the manager chooses et = 0. As a result, fee profits in
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time t can be written as

max {a 2

(ft - #)(ft) i

Define

Q (ft) a (ft (2.7)

where the value of Q8(ft) is maximized at ft = fS = q. Then, fee profits in time t

can be rewritten as

max {Q8 (ft), (ft - #) max {0, q~,"}} - F = max {Q5 (ft), Q'(ft)} - F ,

where the equality comes from the fact QS(ft) > 0. The optimal choice of ft maximizes

the expected fee profits in time t:

ft = arg max Et_ 1 [max {Qs(ft), Qu (ft)}] - F
ft

The following proposition characterizes the range of the optimal f t :

Proposition 2.1 The optimal ft is between fs and fu, i.e., fs < ft < fu.

Proof. The optimal ft solves the following first-order condition:

d
Et[max{Qs(ft ), Qu"(ft )}] = 0

dft - (2.8)

Define

Q (ft; p) = (ft -_) ( -
ft) q

2 2 = 2+ 2 2

where ItQ(ft) is the mean and ou is the variance of Q"(ft), respectively. Note that

PQ(ft) is maximized at ft = fu = > fs. Then, the FOC (2.8) can be written as

d
dft II Q (ft)-00

dx
cOQ

+ If (x - ipt(ft) dx 0
O-Q ) OQ

where yo(x) is the probability distribution function (PDF) of the standard normal
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distribution function. Substituting y = -t(ft) leads to
cYQ

/00 

aQt 
t 

t (Qs(ft) - pQ(f,) ) (y) dy

dy] =0,

which reads

dQ
d P tQ (ft)

dft
+ Qs(ft) -( q(ft)

+<9Q - Ptut)) = 0,

where <b(x) is the cumulative distribution function (CDF) of the standard normal

distribution function. The left-hand side can be written as

(1 - 04M) d (ft)

which is the marginal fee profits to the manager as ft increases, and a(ft) is defined

by

aMft)dt - <ut
UQ

where 0 < a(ft) < 1. pu?(ft) and QS(ft) are both smooth functions and have only

one maximum, respectively. Since p?(ft) is maximized at ft = f' and QS(ft) is

maximized at f' < f',

d
dft

> 0

= 0

< 0

if ft < fU

if ft = fu

if ft > fu

dQS(ft)
dft

> 0

= 0

< 0

if ft

if ft

if ft

< fS

= fS

> fs

Therefore at ft = fs,

(1 - aeUS) d t( )
d

+ ZfUS) QQSfS) > 0.
dft
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As a result, the manager can increase fee profits to the fund by increasing fees at

ft = fS, which implies the optimal ft is strictly greater than fs. On the other hand,

at ft = fu,
dd

(1 - a(fM)) d Q(fU) + a<UU)-Q5(f") < 0.
dft dft

As a result, the manager can increase fee profits to the fund by decreasing fees at

ft = f", which implies the optimal ft is strictly smaller than fu. In sum, the optimal

fee choice ft satisfies fs < ft < f". m

The intuition of this result is as follows: due to the existence of naive investors,

who are relatively less sensitive to fees than smart investors are, managers want to

choose fees that are higher than f'. However, since there is a possibility that they

only receive small amounts of naive money, managers would not want to increase fees

up to fu.

2.3.4 Comparative statics

The skill of a manager (captured by a) and the amount of invested naive money in

the fund (captured by ft) affect the optimal choices of et and ft. In the benchmark

cases where there are either no naive investors or no smart investors, optimal et and

ft are affected neither by the skill of the manager nor by the amount of invested naive

money. However, in general cases where investors are a mix of both smart and naive

investors, both skill and the amount of invested naive money affect the optimal choice

of et and ft.

The following proposition characterizes how the optimal choices are affected by

the skill of a manager:

Proposition 2.2 Suppose that there exists a unique ft that satisfies the first-order

condition (2.8). As the skill a of a manager increases, the optimal fee ft decreases.

The optimal effort et becomes flrst-order stochastically dominant as a increases.

Proof. By the definition (2.7) of QS(ft),

Q"(ft ; a) = 1-a [(ft - #)(ft)-1 ,
2
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QS(ft) is proportional to a. In contrast, Qu"(ft) is not affected by changes of a. Denote

the optimal fee choice before an increase of a by f . At ft,

d 2 a d
(I - cv(ft; a)) dtpt (ft') + a (ft; a) dftQ'(ft; a) = 0,

which implies that the marginal fee profit is zero at f = ft.

finitesimal increase of a by 6a. At fe?,

(1- a(ft; a + 6a))4d p't(fto) + a(ft; a + 6a)d Q(ft;

Now consider an in-

a 6a) < 0,

since

a(ft; a + 6a) > a(ft; a)
dQ(ft; a + da) < Q(fo; a) < 0

df a dft

Denote the optimal fee choice after the increase of a by ft. From the above analysis,

f,' < ff. Since fs < ft < ft < fu, the optimal choice of et when naive money does

not dominate satisfies

et(ft) = (fN - #)(f1< ) > (12 - 0)#)(ff- = t)

because

et(ft) = -_ (ft) (ft - a < 0 , Vft > fs - -

In addition,

pQ~f ) > pfIt(fti),

since
dQ 2d fg- (fu _ ft) > 0 , Vft < f" .

dft Ke

Since the variance of Q"(ft) is unaffected by the fee choice ft, Qu(fft) first-order

stochastically dominates Q"(ft). On the other hand, QS(fF; a) is smaller than QS(ft; a+
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6a):

QS(ft?; a) = 2a (ft - (ft) < 2(a+6a) [(ft - 0)(fi)-i = QS(fl; a+-a).

The optimal choice of et is given by

(ft - ) (f )~1 , Qu(ft ) Qs(ft; a)
et(f?; a) =

0 Q(f) > Qs(fo; a)

(ft - )(ft) )- , Qu(f) < Qs(fl; a + 6a)
et(ft ; a + 6a) =

0 , Qu(fl) > QS(fl; a + 6a)

Therefore, et(f,; a + 6a) first-order stochastically dominates et (ft; a). m

The intuition of the result is as follows: as the skill of managers increase, because

smart investors provide more capital to managers with higher skill, it becomes less

likely that naive money dominates those funds. Hence, marginal fee profits from

naive investors decreases as managers' skill increases. On the other hand, marginal

fee profits from smart investors increases as managers' skill increases. Therefore,

managers face less incentive to increase fees when their skill is high. Managers also find

it optimal to increase their effort because their effort is more likely to be compensated

by smart investors when their skill is high.

The following proposition characterizes how the optimal choices are affected by

the amount of invested naive money:

Proposition 2.3 Suppose that there exists a unique ft that satisfies the first-order

condition (2.8). As j4 (capturing the amount of invested naive money) increases,

the optimal fee ft increases. The optimal effort et becomes first-order stochastically

dominant as gi decreases.

Proof. First note that Qs(ft) is unaffected by changes of A. On the other hand,

P Q(ft; q) = (ft - #) f1 - q
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is proportional to A'. Denote the optimal fee choice before an increase of it by f?.

At f1?,
d Q

(1- q(ft; A d pt(ft; At)t/ft)
+ a(ft; q)-dQs(ft) = 0,

tdft

which implies that the marginal fee profit is zero at f = f0 . Now consider an in-

finitesimal increase of Aj by 6/Aq. At ff,

(1 - o(f?; A, + ) _ (t ; + ) + a(fto; Aq + 6Aq) dQ(ft) > 0
dft Q dft

since

aO(fl; /4 + Sjq) < C(ft ; Aq) > 0 .

Denote the optimal fee choice after the increase of a by ft. From the above analysis,

fl > fO. Since fS < f < ff < f u, the optimal choice of et when naive money does

not dominate satisfies

et(f11) = (ft - #)(f1)- < (ft - #)(ft) = et(ff')

because

de
dtet(ft) =

a (
- (fi)1 -a

a -1 ft < 0 Vft > f8 =
1
-# .

As a result,

Qs (fo) - ~a [(feo

In addition,

p?(f ; At) < , (f ; At + 3jq),
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since

= (fo -) - At < (f, - #) ( - f

<ft - # - (A + _Aq) = pQ(ft; Aq+ Aq)

Because the variance of Q(ft; 4) is unaffected

first-order stochastically dominates Qt(f?; 1).

by the fee choice ft, Q"(ft; 4 + 6Aq)

The optimal choice of et is given by

et(ftl; j4)t

et(ft'; t1 + jt)

= t (f -#)(ft)n
0

= { - 1)(f)-

0

,U Q(fto; Aq) < Q5~,0

,U Q(fto; Aq) > QS (fto)

,u Q(ftl; Aq" + Jbq) < Qs (ft)

,Q,"(ft,; Aq + 6Aq) > Qs (ftl)

Therefore, et(f?; 14) first-order stochastically dominates et(fj; 14 + 6*).

The intuition of this result is quite similar to the intuition of Proposition 2.2. As

the amount of invested naive money increases, it is more likely that naive money

dominates those funds. Marginal fee profits from naive investors increases as the

amount of invested naive money increases. On the other hand, marginal fee profits

from smart investors decreases as the amount of invested naive money increases.

Therefore, managers have more incentive to increase fees when they expect more

naive money invested in their funds. Managers also find it optimal to decrease their

effort because their effort is less likely to be compensated by smart investors due to

the dominance of naive money.

2.3.5 Numerical examples

For the baseline numerical computation, I make the following parameter choices:

= 0.5 , # = 0.003 , K=0.027 , rf = 0.03 , -, = 0.1 ,

ja=1.2 , je=16 , a = 0.00015 , fiq = 100 , F =O0. (2.9)

67

pQ(ftO; Aq)



Figure 1 plots variables of interest in the baseline model:

[See figure 11

Comparative statics with respect to changes of a is plotted in Figure 2:

[See figure 2]

Similarly, Comparative statics with respect to changes of A' is plotted in Figure 3:

[See figure 31

2.4 Extensions

I consider three extended versions of the baseline model by incorporating choices of

i) idiosyncratic risk, ii) marketing and iii) private benefit.

2.4.1 Idiosyncratic risk

In this version of the model, managers are allowed to choose the variance o2 of the

idiosyncratic risk c, of the fund return in each period. Denote the variance in time t

bya ,. There are costs associated with the choice of idiosyncratic risk:

The objective of a manager is to maximize

max _1Et [(fs - -)q- F - (e(es) - (
{f1,es,a,,} St (1 + rj)

Changes in o do not affect capital allocation decisions of smart investors since smart

investors can diversify idiosyncratic risk by themselves. Therefore, the optimal choice

of et is the same as in the baseline model. On the other hand, changes in a 2 affect

the distribution of invested naive money in time t + 1. Therefore, a manager chooses
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oQt that maximizes

-y(o-) Et [(ft+i - O)qt+1 - F - 4'e(et+1)]

which leads to the following first-order condition:

1
O (1 a r Et [max {Ql(ft+1), Q' +1(ft+1; JE,t)}] = 0 , (2.10)_ aot +(I1+ rf) a (0,2t) t

where the first term is the marginal cost of increasing o , and the second term is the

marginal benefit.

The following proposition characterizes the optimal choice of o-,,t:

Proposition 2.4 Suppose that there exists a unique solution to the first-order con-

dition (2.10). The optimal choice of o,, is the largest when the expected profits from

naive investors are of the same magnitude of profits from smart investors, i.e.,

QS~fQ
Q'(ft+1) = lit+1(ft+1)-

As Qs(ft+i) deviates from pt+1 (ft+1), the optimal o-E,t decreases.

Proof. Given ft+i, the marginal benefit of increasing o can be written as

1 d [f Q(ft+l)

(I+ rf)dO + _co;

+JQ0.

QS, ) x - IQ 1 (ft+1) dx
Q1(ft+1)+

x - /I+1(ift+1) dx

(ft+I) UQ,t 0~Q,t

where

2 1 + '2 2
U 'Y . 7f~Ot
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Substituting y = x+ (fti) leads to
O-Q't

[bPLQ (ft+,) +(1 2+rf) ut+(I+ rf ) do F,

f C t
(Q(f+) - t +1(ft+1

x p (y) dy + o-Q,t _s ,t+i) ?+(t+) yp (y) dy

Therefore, the marginal benefit of increasing o is

1 1 dQt I0 Q yp (y) dy
(1 + rf) 2O-,,t du S (ft+)-+(ft+1

where
do-Q,t _ ' 0_(j______ ___

d o -o,,2 t 2 
-2 E d__+ Y 2 2 UQ,_

Then, the FOC (2.10) reads

1 ^2 0y
(1+ rj) 2 uQt ]S(f-t+1)Q +(ft+) yp(y)dy=0.

OQ,t

Note that there exists a solution to this FOC. At -,cr = 0, the marginal benefit of

increasing o net of cost is

1 2 [ 0 C

(1 + r7) 2 uQot J 4(f-t+i-)+i(ft+i)
'Q't

y~p (y) dy > 0.-

On the other hand, as or,, - oc, the marginal benefit of increasing a2t net of cost

becomes

lim 2 +
1 ^~2

(1 + rf) 2o-Q,t JQS(f-+)PIQ(ft+i)
'Q'

Therefore, there exists o,, that satisfies the FOC (2.10).
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Define A'-' QS(ft+1 ) - i+,1 (ft+1). Also define

(Os- )
h K t )

First note that h(z) is maximized at z = 0:

h'(z) = d 100 y~p(y)dy = -zp(z) =

and h(z) decreases as IzI increases. Denote the optimal om,, at A-I by c-e(At4;).

For A'-' 74 0, consider a transformation A'-' -+ 0, the marginal benefit of increasing

of, net of cost at o-,,t(AS4') is

1 )2
-'Orf t(Ats+-") + (I+,_)2Qt(a , h (0) > 0,

(1 rf) 2-Qt(-E,t(AS+1))

for an arbitrary A'-u # 0. Therefore,

o-Et(0) > o0,t(At4-1") , VAi'+- 7 0.

Now consider the following transformation for A'-' $ 0:

At- -+ AS-U(1 + 6) ,

which is an infinitesimal expansion of A'-u in the direction of A'-u.

marginal benefit of increasing o t net of cost at o-,t (A "U) is

Then, the

1 h
, + (1 + rf) 2aQ,t(aE,,t(As-U)) AS-(_ + 6)t+1 < 0.

-Q't (O'et (A U-))

Therefore, as A'-u deviates further from zero, the optimal choice of ott decreases

more. m
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The intuition of this result is as follows: the expected fee profits

I 1Et [max {Qs(ft+1), Q,"+(ft+1; a,,t )

has a call option-like payoff structure as a function of the realization of Q i"(ft+1; 0,,t),

which can be interpreted as fee profits from naive investors. When the realized value

of Q+l(ft+1; o,,t) is lower than Q8(ft+1), i.e., when naive money does not dominate,

fee profits are determined by smart investors at Q8 (ft+1). On the other hand, when

the realized value of Qu+1(ft+i; oe,t) is higher than QS(ft+1), i.e., when naive money

dominates, fee profits are determined by naive investors at Q+i(ft+1; ort). Therefore,

Q5(ft+1), which can be interpreted as fee profits from smart investors, serves as the

strike price of the call option. Since a call option vega (the sensitivity of an option's

price to changes in the volatility of its underlying) is maximized at the strike price,

the marginal benefit of increasing o-,, is maximized at

QS(f+)

The marginal benefit decreases as Qs(ft+i) deviates from /i+ 1 (ft+1). Since the marginal

cost of increasing ot is increasing in a,,t, the optimal choice of or,, is maximized when

the marginal benefit is maximized.

Denote the optimal choice of a,, given fee ft+1 by o,,t(ft+1). The optimal fee ft+

solves
a
aj Et [max {QS(ft+1), QY+1(ft+i; 0o,t(f +1))}] 0aft+1 t

The range of the optimal ft+1 is between fs and fu as in the baseline model:

Corollary 2.1 The optimal ft+i satisfies fS < ft+1 < fu.

Proof. Since Proposition 2.1 holds regardless of the value of o, the optimal choice

of ft+1 lies between fs and fu regardless of the choice oc,t(ft+i). n

The following proposition characterizes how the optimal choice of o,, is affected

by changes of a and /t+:
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Proposition 2.5 Suppose that there exists a unique solution to the first-order condi-

tion (2.10). As a and A'+1 changes, the optimal choice of o-,t is the largest when the

expected profits from naive investors are of the same magnitude of profits from smart

investors, i.e.,

Q(ft+1(a, i4+1);a ) =( , A'+); 1)

As Qs(ft+1(a, iZ+1); a) deviates from p, 1 (ft+1(a, f{,1); f{,1), the optimal o,,t de-

creases.

Proof. The marginal benefit of increasing utis

1C '~ 00
(I + rf) 2oQ,t Jt(+1( t1h)+1(f+1( ?+ 1); t+1)y ()y,

OQ,t

which is maximized at, given oUQt,

Q(ft+(a, jZ+);a) = pt2 1(ft+l(a,/1);/4 +) , (2.11)

and decreases as Qs(ft+i(af+,1);a) deviates from p1 ti(ft+1(a, ti);/ t4+). There-

fore, following the same logic as in the proof of Proposition 2.4, the optimal choice of

o,,t is maximized when (2.11) holds. In addition, the optimal choice of o-,, decreases

as Qs(ft+l(a, 4'1); a) deviates from ptl (ft+i(a, iZ+i); P1+1). *

The intuition of this result is the same as that of Proposition 2.4.

2.4.2 Marketing

In this version of the model, managers can choose the level of marketing mt. In the

context of the model, I define marketing as activities that attract capital from naive

investors by spending costs3 . By choosing mt, a manager can increase the mean of

jiq+1 by mt:

t+1 I+ + mt,
3In this context, marketing may be interpreted as deceiving and alluring unsophisticated investors.

Another interpretation is that marketing reduces search costs for unsophisticated investors. Since
sophisticated investors in this model do not face any frictions (including search frictions), such
reduction of search costs only affects capital allocation decisions of naive investors.
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by incurring marketing costs

1 2
mkm,(t)=2..M

The objective of a manager is to maximize

max (1 1 _t t [(f - )q F -4fe(es) - 4Im(mt)]
{/S+1,es,mns}I,.t'+ ... ~ (1 + r )s

Changes in mt do not affect capital allocation decisions of smart investors. Therefore,

the optimal choice of et is the same as in the baseline model. On the other hand,

changes in mt shift the mean of invested naive money in time t + 1. A manager

chooses mt that maximizes

1
-xIm(mt) + Et [(ft+1 - O)qt+l - F - 'e(et+i)]

(t+ r)

which leads to the following first-order condition:

1 D
-1mmt Et [max { QS(ft+i), Q'+1(ft+1; mt)}] =0

-,nt +(I+ rf) amt t (2.12)

where the first term is the marginal cost of increasing m, and the second term is the

marginal benefit.

The following proposition characterizes the optimal choice of mt:

Proposition 2.6 Suppose that there exists a unique solution to the first-order con-

dition (2.12). Given ft+1, the optimal choice of marketing mt decreases in a and

increases in Pf.

Proof. First note that for m1

/I+,(ft+1; Mt) = (ft+i - 0) 1 + (iZ+1 + i).
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Given ft+1, the marginal benefit of increasing mt can be written as

1 d
(1 + rf) dmt

[f9(ft+ i)

LI-00
- I +1(ft+I; mit) dx

OQ cQ

+ JQS(fti+)

Substituting y = 1(ft+i;mt) leads to
UQ

1 d
(1 + 77) dmt

E ,i+,(ftmi;Mt) + (Qsf+ 1) - 4++(ft+iIMt))100 
'

xp (y) dy + cQ (ft+i mt) y(p (y) dy

which can be simplified as

1

(1+ r) ( ( 

Db QS(Ut

+1) - I-It (ft+i; mit)

acQ

d Q
dmt '

Hence, the FOC (2.12) reads

SQS(ft+) - -t+1(ft+1; mit)

07Q
-mmt + 1 1

(1 + rf) (
d

d I-+1(ft+1; mit) = 0

Note that there exists a solution to this FOC. Since the mean Pt+1(ft+i; mit) of the

profits Q"+1(ft+1; mit) from naive investors is increasing in mt, at mt = 0 the marginal

benefit of increasing mt net of cost is

1

(1 + r)
Q (t+1) - PL+(ft+1; mt = 0))

- <b ) dQdP Q+1(ft+1; mt = 0) > 0.
dmt t

On the other hand, as mt - 00, the marginal benefit of increasing mt net of cost

75

X-pQ (ft+I;m) dx

GQ (7Q



rn 1lim - [ mmt + I I

d
x p;-t~ 1(ft+,; mnt)

= lim
mt -400

1

- .mmt + (1+ (ft+1 - )

Q(ft+1 ) - I-4I+(ft+,; mrt)
- <bQ

Therefore, there exists mt that satisfies the FOC (2.12).

Given ft+,, the optimal choice of mt decreases in a. Denote the optimal choice of

mt at a by m(a). Since

1 1 2
Q(ft+1; a) = a [(ft+i - #)(ft+1) -

changes in a affect Qs(ft+,; a), but does not affect Q+i(ft+,). Consider an increase

in a: a - a + 3a.

/ I-) --

-(m1 ((a) + 1- ( Q'(ft+1; a + 6a) - pt+1(ft+; mt(a))
(1I + rf) QJ

dQ

X dmt Pt+ 1(ft+,; mt (a)) < 0.

Therefore, mt(a + 6a) < m(a), i.e., mt decreases in a given ft+,.

Given ft+,, the optimal choice of mt increases in A'+1. Denote the optimal choice of

mt at /i+1 by me(f4+ 1). Changes in Lq+1 do not affect Qs(ft+,) but Qu"1(ft+i; q1 1) by

increasing the mean pt+l(ft+1; Aq+1). Consider an increase in Aq+1: A+1 _+ g 1 +6Aq.

At mt(Aq41),

pi~(ft+; Aq+1, mt(Aq+ 1)) < 1 (ft+ 1 + , mt(+

and

d Q

dmt 1 ft P7 1
dQ

dmt I~t 1(t 4+~ mt 1 )
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As a result,

1 Q"(Ita) - 1 (ft+; ill + t;m qM )
-Emmt(+1) + (1+) - (t+<tt+ (1 + rf) O-Q

dQ
x -- Q 1 (ft+1; Aq+I + 6iq, Mt(Aq)>

dmt t +t+)

Therefore, mt (AI + 6Aq) > mt(A, 1), i.e., mt increases in iq 1 given ft+1- U

The intuition of this result is as follows: the marginal benefit of increasing mar-

keting mt is proportional to the probability that naive money dominates. This is

because mt simply shifts the expected amount A+1 of naive money. Given fee ft+1,

an increase in a leads to a lower probability that naive money dominates. On the

other hand, an increase in My raises the probability that naive money dominates

funds. Therefore, the marginal benefit of increasing mt becomes lower as a increases,

and becomes higher as A increases. Since the marginal cost of marketing is an in-

creasing function of mt, the optimal mt, given ft+1, is decreasing in a and increasing

in 11j .

Denote the optimal choice of mt given fee ft+1 by mt(fi+i). The optimal fee ft+1

solves
a

Et [max {Q'(ft+1; mt (ft+1)), Qt' 1(ft+1)}= 0 . (2.13)
'9ft+i t

The range of the optimal ft+1 is between fS and f" as in the baseline model:

Corollary 2.2 The optimal ft+1 satisfies fS < ft,+ < fu.

Proof. Choosing mt is equivalent to shifting g4:

k1+ - q 1 + Mt.

Since Proposition 2.1 holds regardless of the value of f{q, the optimal choice of ft+1

lies between f- and f". m

The following proposition characterizes the optimal choice of ft:

Proposition 2.7 Suppose that there exists a unique solution to the first-order con-

dition (2.13). The optimal ft+1 decreases in a and increases in kt+i
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Proof. The FOC (2.13) can be written as

d Q,5(ft+1) - pf.(ft+ 1; M't(ft+ 1))
d +1(ft+1; mt(ft+)) + (-

dft+t 0)

d I
x d Q(ft+1) - mt+ 1 (ft+1; mt(ft+1))) 0.

dft+i +

Consider an increase in a: a -+ a+6a. Denote the optimal ft+i at a by ft+i(a). From

Proposition 2.6, mt(ft+1; a) decreases in a. Note that given ft+1

Q(ft,; a+6a) > Q(ft+1; a), A' 1(ft+)+mt(ft+1; a+6a) < A'+1 (ft+i)+mt(ft+1; a),

and

d d
df Q (ft+; a + a) < d Q (ft+1; a) < 0,

dft +1 dft+ 1

0 < dpAdI 1 (ft+1; mt(ft+1; a + 6a)) <
dft+i d f A Q1(ft+1; m(ft+1; a)).

dft+1 t

d
d1+ +1(ft+1 (a); m(ft+1 (a); a + 6a))

dft + 1

Qs (ft+1(a); a + 6a) - p+1 (ft+1(a); m(ft+1(a); a + 6a))

O Q

x (Q(ft+1(a); a + 6a) - pt+1(ft+1(a); m(ft+1(a); a + 6a)) <0.

Therefore, the optimal ft+i (a) is decreasing in a.

Similarly, consider an increase in t4+1: Z1 A-+1 + 6Aq. Denote the optimal

ft+1 at Aq+1 by ft+i(Aq+1). From Proposition 2.6, mt(ft+i;i4+1) increases in A+

Note that given ft+1

Q41 (ft+1; Aq+1 + 6Aq, Mt(ft+1; Aq+1 + 6Aq)) > IQ 1(ft+1; 1+1,mt(ft+1;/4 +))
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and

d
I +(ft+1; I + , mt(ft+1; fZ+1 + 6k')) dft+1 t +t

d ~ ~
> Q 1 (ft+j; g +1, mn(ft+1; Aq+1)) > 0-> dft + 1 A +

In contrast, given ft+1, Qs(ft+i) is unaffected by changes in ji+1. Then,

d Q + + (A q+1); g+1 + 6 q', mt(ft+ ( +1 ); f4q1 + 6k'))dft+l 1 U + t +

, 

Q1(ft+1(i)) -11(ft.1(g4 1);i4Z11+ 5k', mt(ft+i4+1); Aq+

xq Qq"(Mt+((tZ+ ( 0rQJ

dft+1
-P 1 (ft+ 1 ( +1 ); Aq+I + 6A, M (ft+1(Aq +1); jZ1+o") > 0.Q tq + 6k')))

Therefore, the optimal ft+1 (A+1) is increasing in f4+1. .

The intuition of this result is as follows: for fixed ft+,, marketing mt decreases as

a increases, and increases as Pt+1 increases as shown in Proposition 2.6. This implies

that the choice of mt reinforces the effect of changes in a and j4+1. As a increases,

naive money becomes less likely to dominate funds, and the corresponding decrease

of mt makes naive money even less likely to dominate. A similar argument applies to

changes in fL+ 1 -

Therefore, as a increases, marginal fee profits from naive investors decrease, and

marginal fee profits from smart investors increase. Hence, managers have incentive to

lower fees as a increases. In contrast, as Lq+1 increases, marginal fee profits from naive

investors increase, and marginal fee profits from smart investors decrease. Hence,

managers would want to raise fees as ft+1 increases.

The following corollary confirms that the result of Proposition 2.6 holds without

fixing fees ft+,, i.e., ft+, optimally responds to changes in a and 4q 1:

Corollary 2.3 Suppose that there exist unique solutions to the first-order conditions

(2.12) and (2.13). The optimal choice of marketing mt decreases in a and increases
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.q

Proof. Following the logic of Proposition 2.6, and using the result of Proposition

2.7,

1
-Emmt(a) + r)

(I + rf)

(Qs(ft+1(a + 6a); a + a) - p (ft+1(a + 6a); m (a))

d
X d +1(ft+1(a + 6a); mt(a)) < 0 .

dmt

Therefore, mt(a) is decreasing in a. Similarly,

1 dQ
Emmnt(4+ 1 ) + (1 ) yd [t+1(ft+1(/+1 + 6j5); Aq+ 1 + 6ji,mj(f4 1)) x (it+ (I+ rf) dmt t1 t t +)

Q( t.1A4+SA) - p1(t+1A+ t+") I 
4+ JAq; Mt(i t+))f

> 0 .

Therefore, mt((A+ 1) is increasing in A+1. *

2.4.3 Private benefit

In this version of the model, managers can choose to gain private benefit by sacrificing

dollar value that they generate for investors 4 . To be more specific, in time t, managers

gain

8(bt) ,

where bt captures the amount of value that managers sacrifice. Choosing bt [0, 1]

decreases the value of a as follows:

a -- a(1 - bt)

'Soft dollars may be thought of as an example. Conrad, Johnson, and Wahal (2002) documents
that soft-dollar trades incur higher costs.
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bt is determined in the previous period t - 1. The marginal gain E'(bt) of private

benefit decreases in bt, i.e., 6(b,) is convex in bt. For analytic simplicity, I choose the

following form of 0(b,):

E)(bt)= bt - b .

The object of a manager is to maximize

max 1 _t Et [(f, - #)q, - F - Qe(e,) + Eb(bt)]
{fs+1,esbs+I}stt+... (1+ rS)t r

Since the optimal choice of et does not explicitly depend on a, the optimal et is the

same as in the baseline model. Hence, QS(ft; bt) can be written as

1 1 2_
Q(ft;bt) =-a(1 - be)(f-#)f)-- .

2

On the other hand, Q"(ft) is unaffected by changes in bt. A manager chooses bt that

maximizes

e(bt) + Et_ 1 [(ft - #)qt - F - Te(et)]

which leads to the following first-order condition:

a
b(1 - bt) + Et- 1 [max {QS(ft ; bt), Q;"(ft)}] = 0 , (2.14)

where the first term is the marginal private benefit of increasing bt, and the second

term is the marginal cost. Note that the existence of a solution to the FOC (2.14) is

guaranteed if b is sufficiently large:

b > -a(I - 0')2 - ,(2.15)
2 a-

because

b Qs(ft bt = 0) > Et_ 1 [max {Qs(ft; bt), Q'"(ft)}]
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and

0 < b Et-1 [max {Q8 (ft; bt), Q(ft )}]
bt=1

The following proposition characterizes the optimal choice of bt:

Proposition 2.8 Suppose that there exists a unique solution to the first-order con-

dition (2.14). Given ft, the optimal choice of bt decreases in a and increases in A.

Proof. Given ft, the marginal cost of increasing bt can be written as

(x - dx
I +

c Y-Q

Substituting y - 4(ft) leads to

A (f ) +
Q S (ft;bt) M (ft)

1 00
O

7

Q (Qs(ft; bt) - pQ(ft)) W (y) dy

which can be simplified as

Q8 (ft; bt) - pQ(ft)

- ) Qs(ft; bt) - p (ft) (f;b)
= -b Q (f; b)

Hence, the FOC (2.14) reads

Q (fbt) -t (ft)

O-Q
Q8(ft; bt) = 0 -

Given ft, the optimal choice of bt decreases in a. Denote the optimal choice of bt at

a by bt(a). Changes in a affect Qs(ft; a, bt), but does not affect QI(ft). Consider aii

increase in a: a -> a + 6a.

b(1 - bt(a)) - (D - f)) Q(ft; a + 6a, bt (a)) < 0 -Qs(ft; a + a, bt (a))
\ 3UQ
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Therefore, bt(a + 6a) < bt(a), i.e., bt decreases in a given ft.

Given ft, the optimal choice of bt increases in pq. Denote the optimal choice of

bt at /j by b,(/4). Changes in /4 do not affect QS(ft; bt) but Q'"(ft; /4) by increasing

the mean ptQ (ft; /4). Consider an increase in /4: Al4 Al + 6[L. Since

Q (ft; /4) < PQ (ft; /4 + 6/i)

at b (/4),

(b(1 - bt(/4)) - (f; bt(g)) - [Q?(ft; [Lt + 6i Q(f; b(/4)) > 0.
9TQ/

Therefore, bt(/4 + 6/i) > bt(g4), i.e., bt increases in A given ft. *

The intuition of this result is as follows: the marginal cost of increasing bt is

proportional to the probability that naive money does not dominate. This is because

bt simply shifts the skill a of managers. Given fee ft+1, an increase in a leads to a

lower probability that naive money dominates. On the other hand, an increase in /t+1
raises the probability that naive money dominates funds. Therefore, the marginal cost

of increasing bt becomes higher as a increases, and becomes lower as Aq+1 increases.

Since the marginal private benefit is a decreasing function of bt, the optimal bt, given

ft+i, is decreasing in a and increasing in /4+1-

Denote the optimal choice of bt given fee ft by bt(ft). The optimal fee ft solves

Et_1 [max {Q(ft; bt(ft)), Q"(ft)}] 0. (2.16)a ft

The range of the optimal ft is between fs and f u as in the baseline model:

Corollary 2.4 The optimal f t satisfies f S < ft < fu.

Proof. Choosing bt is equivalent to shifting a:

a -+ a(1 - bt)

Since Proposition 2.1 holds regardless of the value of a, the optimal choice of ft lies
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between fS and fu. m

The following proposition characterizes the optimal choice of ft:

Proposition 2.9 Suppose that there exists a unique solution to the first-order con-

dition (2.16). The optimal ft decreases in a and increases in f4.

Proof. The FOC (2.16) can be written as

d Q (QS(ft; bt(ft)) - p'?(ft) d (Q(ft; bt(ft)) - pa(ft)) 0.
df+ tQ dft t

Consider an increase in a: a -+ a + 6a. Denote the optimal ft at a by ft(a). From

Proposition 2.8, bt(ft; a) decreases in a. Note that given ft

QS(ft; a + 6a, bt(ft; a + 6a)) > QS(ft; a, bt(ft; a))

and
d ddQ(ft; a + 6a, bt(ft; a + 6a)) < Qs(ft; a, bt (ft; a)) < 0

dft dft

Then, at ft(a)

d Q8 (ft(a); a + 6a, bt(ft; a + 6a)) - pQ (ft(a))
pAt(ft(a)) + <b

dft O-Q

x d Qs(ft (a); a + 6a, bt (ft; a + 6a)) - pQ (ft (a))) < 0 .

Therefore, the optimal ft(a) is decreasing in a.

Similarly, consider an increase in f': Al + A + 6fAq Denote the optimal ft at P

by ft(A'). From Proposition 2.8, bt(ft; /41) increases in N. Note that given ft

Q(ft; bt(ft; A + 617)) < Qs(ft; bt(ft; A)) , pQ(ft; A + (Sq) > pt?(ft; AN)
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and

d d
0 > - Q(ft; bt(ft; i4 + 5fq)) > -Qs(ft; bt(ft; 4))

dft tdft
d ddp (ft; + 6 A) > d (ft; g) > 0.

dft dft

Then, at ft(pq)

d
d yft(g1); + 6/a)dft t

QS(ft(g); b(ft(g4);/4 + 6i'q)) - p?( ft(64);/4+6/L)

Therefore, the optimal ft(/4) is increasing in /4.

The intuition of this result is as follows: for fixed ft+i, be decreases as a increases,

and increases as 41+ increases as shown in Proposition 2.8. This implies that the

choice of be reinforces the effect of changes in a and /4*+. As a increases, naive money

becomes less likely to dominate funds, and the corresponding decrease of be makes

naive money even less likely to dominate. A similar argument applies to changes in

Therefore, as a increases, marginal fee profits from naive investors decrease, and

marginal fee profits from smart investors increase. Hence, managers have incentive to

lower fees as a increases. In contrast, as j4+ increases, marginal fee profits from naive

investors increase, arid marginal fee profits from smart investors decrease. Hence,

managers would want to raise fees as A/+1 increases.

The following corollary confirms that the result of Proposition 2.8 holds without

fixing fees ft, i.e., f optimally responds to changes in a and (f:

Corollary 2.5 Suppose that there exist unique solutions to the first-order conditions

(2.12) and (2.13). The optimal choice of marketing mt decreases in a and increases

in A .
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Proof. Following the logic of Proposition 2.8, and using the result of Proposition

2.9,

Q8(ft (a + 6a); a + 6a, bt(a)) - p? (ft(a + 6a))
46(1 - bt(a)) - D<Ib

x Q5 (ft(a + 6a); a + 6a, bt(a)) < 0 .

Therefore, bt(a) is decreasing in a. Similarly,

SQs(fM +j ~); bt(j4)) -
Qb(fI - bt)(A')) - D 0.

xs (ftfq + 6Aq); bt(Aq)) > 0.

(ft(f4 + 6jp); 4M + 65q)

Therefore, bt(/a+ 1) is increasing in 4+ 1. *

2.4.4 Numerical examples

In addition to the parameter choices (2.9) of the baseline model, I make the following

parameter choices:

S= 0.2 , m = 0.0002 , 'b= 0.5. (2.17)

An extension of the baseline model with the endogenous choice of cr,t_ is plotted

in Figure 4, 5 and 6. Figure 4 plots the optimal oE as a function of ft:

[See figure 41

Figure 5 plots the optimal a, as a function of a:

[See figure 51

Figure 6 plots the optimal o, as a function of A4:

[See figure 6]

An extension of the baseline model with the endogenous choice of marketing mt_1

is plotted in Figure 7 and 8. Figure 7 plots comparative statics with respect to changes

of a:
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[See figure 7J

Figure 8 plots comparative statics with respect to changes of jq:

[See figure 81

An extension of the baseline model with the endogenous choice of bt, which reflects

private benefit that managers gain by sacrificing returns to investors, is plotted in

Figure 9 and 10. Figure 9 plots comparative statics with respect to changes of a:

[See figure 91

Figure 10 plots comparative statics with respect to changes of g4:

[See figure 101

2.5 Discussions and Conclusions

For analytic simplicity, this chapter makes several assumptions. However, relaxing

some of them may provide interesting perspectives on how unsophisticated investors

affect decisions of mutual fund managers. One crucial assumption is that there is

no information asymmetry between managers and investors. If managers know more

about their skill than investors, managers may want to make decisions, particularly

those which are easily observable by investors (e.g., fees), in order to signal their skill.

The signaling channel is not investigated in this chapter, and remains to be explored.

In addition, this chapter concerns only the short-term effect of managerial choices.

The infinite-horizon model in this chapter can be reduced to a two-period model

since managerial choices do not affect the future dynamics of invested naive money.

If managers' decisions influence the accumulation of naive money invested in funds,

the managers have incentives to adjust their decisions in order to receive more naive

money in the future. How the long-term effect influences managerial decisions remains

a topic for future research.

In conclusion, this chapter builds a model on how naive money affects the decisions

of active mutual fund managers, particularly fees, effort, idiosyncratic risk, marketing
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and private benefit. The model shows that more naive money is associated with higher

fees, lower managerial effort, more marketing and seeking greater private benefit. In

addition, the model proves that managers choose to take higher idiosyncratic risk

when expected fee profits from naive investors are close to those from smart investors.
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Figures

Figure 1: Baseline model

The following figures plot (a) the value of QS(ft) and a4(ft) as functions of fee ft,

(b) the expected fee profits Et_, [max{Q9(ft), Qu(ft)}] - F net of costs as a function

of fee ft, (c) the maximum effort et as a function of fee ft, and (d) the optimal choice

of effort et as a function of the realization of Qu" for two different fees ft = 1% and

ft = 1.2%. Parameter choices are given in (2.9).
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Figure 2: Baseline model - changes of a

The following figures plot (a) the value of QS(ft) and pi'(ft), (b) the optimal fee

choice ft, and (c) the maximum effort et as functions of a. Parameter choices are

given in (2.9).
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Figure 3: Baseline model - changes of ^q

The following figures plot (a) the value of QS(ft ) and i'?(ft), (b) the optimal fee

choice ft, and (c) the maximum effort et as functions of /4. Parameter choices are

given in (2.9).
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Figure 4: Extensions - Endogenous choice of a,

The following figures plot (a) the value of QS(ft) - pt(ft) and

of o-,t_1 as functions of fee ft. Parameter choices are given in

(b) the optimal choice

(2.9) and (2.17).
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Figure 5: Endogenous choice of o-, - changes of a

The following figures plot (a) the value of Qs(ft(a); a) - pt(ft(a))

choice of o-e,t-1 as functions of a. Parameter choices are given in
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Figure 6: Endogenous choice of or - changes of j

The following figures plot (a) the value of QS(ft(,4)) - p4(fi(14); j) and (b) the

optimal choice of u-,t_1 as functions of A'. Parameter choices are given in (2.9) and

(2.17).
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Figure 7: Endogenous choice of mti - changes of a

The following figures plot (a) the optimal choice of marketing mt_ 1, (b) the optimal

fee choice ft, and (c) the maximum effort et as functions of a. Parameter choices are

given in (2.9) and (2.17).
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Figure 8: Endogenous choice of mt-i - changes of j4

The following figures plot (a) the optimal choice of marketing m"-1, (b) the optimal

fee choice ft, and (c) the maximum effort et as functions of C4. Parameter choices are

given in (2.9) and (2.17).
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Figure 9: Endogenous choice of bt - changes of a

The following figures plot (a) the optimal choice of bt, (b) the optimal fee choice ft,
and (c) the maximum effort et as functions of a. Parameter choices are given in (2.9)

and (2.17).
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Figure 10: Endogenous choice of bt - changes of Pt

The following figures plot (a) the optimal choice of bt, (b) the optimal fee choice ft,

and (c) the maximum effort et as functions of )4. Parameter choices are given in (2.9)

and (2.17).
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Appendix

On the FOC approach

Most of the proofs (including comparative statics) in this chapter use the FOC ap-

proach. Since the objective function (expected fee profits) is smooth, the FOC ap-

proach is legitimate as long as there is a unique local and global maximum. However,

that condition is not guaranteed for all possible range of parameter values. In this

section, I show that all the proofs of this chapter still hold when the uniqueness of

the local maximum is not satisfied.

Since the logic is the same across all the proofs, I choose Proposition 2.2 as a

representative example. In this example, there may exist multiple solutions to the

FOC (2.8), i.e., there are multiple extrema of

h(ft; a) = Et- 1 [max {Qs(ft; a), Q"(ft)}]

Denote ft at the global maximum of h(ft; a) by f*. Even if there exist multiple

extrema, Proposition 2.2 holds locally. This means that as long as other local maxima

are smaller than the current global maximum, the global maximum shifts towards

smallcr ft < ft* as a increases. In order for Proposition 2.2 to be violated, two

conditions must be satisfied: i) another local maximum becomes larger than the

current global maximum as a increases, ii) the new global maximum is located at

ft > ft*. I show that these two conditions cannot hold at the same time.

Suppose that at a certain a, there are two local maxima at the same value, i.e.,

there exist fj* and f2*, where f* < f2*, satisfying

h(f*- a) .= h(f2*; a) = max h(f; a) .
fE[fs',f u]

Suppose that

h(f*; a - 6a) = max h(f; a - 6a) > h(f2*; a - 6a),
fGVf lIs,"
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and

h(f*; a + 6a) < h(f2*;a+a) = max h(f;a+6a).
fE [fBu]

The slope of h(f; a) can be written as

dh(f; a) (Qs(f; a) - p(f) d
df -UQ j f

(QS(f; a) - P (f) Q(f;a)
UQ }df

Note that
dh(f;a+6) dh(f;a)VfC VfSfu]

df df

Define
dAh(f;a) dh(f;a+ 6) dh(f; a) <0 Vf E [fS Jul

df df df

Then,

h(f2*; a + 6a) - h(f*; a + 6a) = h(f2*; a) - h(f*; a) + dAh(f; a) df
if df

< h(f2*; a) - It(f*; a) = 0 ,

which is a contradiction. Although this proof considers two maxima at the same

value, it can be easily generalized to cases with more than two maxima at the same

value.

From this proof, if there is a transition of the global maximum from one local

maximum to another, the transition must be towards lower ft. Therefore, Proposition

2.2 holds even if there are multiple solutions to the FOC (2.8).
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Chapter 3

IO of the Active AM Industry:

Entries and Exits

3.1 Introduction

This chapter addresses the structure of the active AM industry: in particular, entries

and survivorship. Given that funds have access to the same technology for attracting

naive money, only those whose perceived skill is higher than a certain threshold

enter AM markets. Existing managers choose to exit if their track records are poor

and/or the amount of invested naive money is small. While fund entry and exit

decisions affect the degree of competition in the AM industry, competition also, in

turn, influences the entry and exit decisions of managers. Therefore, competition

among managers and their entry and exit decisions jointly characterize an equilibrium

of the model, which I refer to as an "industry equilibrium." In the long run, the

economy converges to the stationary equilibrium.

Entries of and the long-run survivorship of unskilled managers are of particular

interest, and the model characterizes what components are associated with them, and

how. Among newly entering managers, the portion of unskilled managers is higher if

there are 1) more aggregate investment opportunities, 2) more aggregate naive capital

flows, 3) less supply of skilled managers to the AM industry, and 4) lower entry costs.

These changes induce likely unskilled managers to enter AM markets who would not
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have, absent the changes. Among those changes, only more aggregate naive capital

flows and less supply of skilled managers are associated with a higher probability

of the long-run survivorship of unskilled managers. Only these changes increase the

average flow of naive capital to an individual fund.

When AM markets are heterogeneous in investor sophistication, AM markets with

more sophisticated investors (say, hedge fund markets) naturally differentiate from

AM markets with less sophisticated investors (say, mutual fund markets). In equi-

librium, skilled managers generate more value in hedge fund markets than they do

in mutual fund markets. As a result, relatively high-skilled new managers tend to

enter hedge fund markets. Since the supply of skilled managers to mutual fund mar-

kets decreases, the probability of the long-term survivorship of unskilled managers

increases in mutual fund markets. Therefore, roughly speaking, mutual fund mar-

kets are characterized as markets for naive money with a relatively high portion of

unskilled managers, and hedge fund markets are characterized as markets for smart

money with a relatively high portion of skilled managers.

A certain type of regulations for the AM industry may be detrimental to the wealth

of unsophisticated investors. In the model, unsophisticated investors lose wealth

by investing in underperforming active funds compared with investing in a passive

benchmark (e.g., index funds) with similar risk characteristics. Regulations that

restrict value-generating activities of active funds reduce entries of unskilled managers,

but raise the probability of the long-term survivorship of unskilled managers. Since

funds run by unskilled managers underperform the most, regulations of these types

may harm the wealth of unsophisticated investors. On the other hand, regulations

that discourage activities that induce retail investors to invest in underperforming

funds decrease both entries and the long-run survivorship of unskilled managers.

Therefore, regulations of these types are beneficial to the wealth of unsophisticated

investors. Furthermore, regulations that apply to one type of AM markets may have

unintended long-term effects on the other types. One crucial caveat is that this

chapter does not provide a rationale for retail investor protection, and, therefore, the

regulatory implications of this chapter must not be over-interpreted.
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In the remainder of the paper, section 2 presents the model. Section 3 discusses

the industry equilibrium implications of the model for the structure of the active AM

industry. In particular, section 4 investigates the structure of the AM industry when

AM markets are heterogeneous in investor sophistication. Section 5 examines the im-

plications of the model for retail investor protection. Section 6 discusses the limitation

of the model and future directions for research, and summarizes the conclusions.

3.2 The Model

There are two types of managers who are different in skill as described in subsection

1.2.1. The information structure and the learning process are the same as in chapter

1, and are described in subsection 1.2.2.

3.2.1 Naive capital

This chapter views unsophisticated investors as irrational: they invest in underper-

forming active funds although those investors have all the information that is available

to sophisticated investors, including the track record of funds. Those unsophisticated

investors can improve returns by investing in passive benchmarks (e.g., index funds)

with similar risk characteristics, but they do not choose to invest in the passive bench-

marks. This is different from the concept of uninformed investors in Grossman and

Stiglitz (1976, 1980): uninformed investors do not have private information, but may

trade for reasons such as hedging or liquidity needs. Here, unsophisticated investors

have all the information, and there are liquid passive alternatives that provide similar

systematic risk as active funds.

I model capital from unsophisticated investors (naive money) in a reduced form,

and abstract from detailed capital allocation decisions of unsophisticated investors.

naive capital flows to fund (manager) i are as follows:

d~ilt = (b - r/)4,t)dt + /j, (-dWi,t +,7-d~i , (3.1)
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where qi,t is the amount of naive capital invested in the fund, b is the average naive

capital inflow, y is the rate of average naive capital outflow, Wi,t is a standard Brow-

nian motion that captures the component of naive capital flows irrelevant to the fund

performance, o is a parameter that determines the volatility of naive capital flows

that are irrelevant to the fund performance, and a_ is a parameter that determines

the volatility of naive capital flows that respond to the fund performance. Note that

a, may be either positive or negative1 , and

dWi,t - d zi,t = dWi,t - d Zj't = dWi,t - dW,t = 0 ,V j i,

i.e., Wi,t captures the idiosyncratic component of naive money flows, and is orthogonal

to the fund performance.

The process (3.1) is the Cox-Ingersoll-Ross (CIR) process (Cox, Ingersoll and Ross

(1985)), since the process can be rewritten as

dit= (b - 71i~tdt + aT/q ~t'~~

where

aT V/0ga 2 +a , ord~~ d~
9T aT

and Wi,t is a standard Brownian motion as well. The CIR process as the model of

naive capital flows has several attractive properties: the amount of naive capital is

always non-negative, and possesses a stationary distribution.

I would like to emphasize that insights from the model do not significantly depend

on the process of naive money. The only essential property of naive money that the

model needs is that naive capital invested in a fund is persistent, i.e., unsophisticated

investors reallocate their capital slowly. In fact, in a continuous-time setup without

any jump process, this property is automatically assured. As long as the property is

satisfied, the detail of the process of naive capital does not affect the main qualitative

results of the chapter.

'Empirical studies (e.g., Gruber (1996)) suggest that fund flows positively respond to good per-
formance.

104



3.2.2 Fees and operating costs

A fund manager charges a fixed percentage fee f per time, i.e., between time t and

t + dt, investors in the fund pay

fdt

per dollar invested in the fund at time t. For modeling simplicity, I assume that

f is constant and uniform across funds. Each fund pays a fixed operating cost Odt

between t and t + dt as long as the fund exists.

3.2.3 Discount rate and utility

The risk-free rate r is constant and does not change over time. The only relevant

discount rate in the model is the risk-free rate because all the shocks are idiosyn-

cratic. I assume that managers are risk-neutral. Therefore, managers' objective is to

maximize the discounted expected fee profits.

The risk neutrality can be justified if the market is sufficiently complete. In this

case, managers can hedge risk associated with fee profits, and the form of their utility

functions does not matter. Market completeness allows managers to perfectly smooth

out their consumption over time, and the value of the consumption stream needs to

equal the entry value of fee profits net of the entry cost.

3.2.4 Entries and exits

At each point of time, prospective managers are born. The expected skill of a newly

born manager is summarized by the probability p of the manager being H-type. The

prior cumulative distribution of the expected skill of managers born between t and

I + dt is given by

F(p)dt .
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One crucial assumption is that the distribution does not change over time. This

assumption implies that the supply of skilled managers is inelastic. Define

G(1 - p) = F'(p)dp' (3.2)

which is the cumulative distribution measured from p to 1, i.e., G(1 -p) is the reverse-

order cumulative distribution of the prior skill. Another assumption that I make is

that

lim G(1 - p) -+ oo, (3.3)

i.e., skilled managers are scarce, but surely unskilled managers are abundant. This

assumption is needed for the existence of an equilibrium, but is not necessary as long

as lim,+0+ G(1 - p) is sufficiently large.

A new fund needs to pay a lump-sum entry cost <b at entry, and the cost becomes

sunk once the fund starts its operation. A prospective manager enters an AM market

if the value of fee profits net of the entry cost is positive. When a new manager enters

an AM market, she starts with zero amount of naive capital at entry.

Existing managers may exit AM markets. There are two types of exits in the

model: exogenous exits and endogenous exits. I model the exogenous exits as a

Poisson process: between t and t + dt, existing managers independently exit with

probability Adt. On the other hand, at each point of time, existing managers may

endogenously choose to exit if the value of fee profits is not positive. There are no

costs associated with exits.

3.2.5 Competition

There are two types of competition among managers: one is competition for positive

NPV investment opportunities, and the other is competition for naive capital inflows.

These types of competition lead to decreasing returns to scale at the industry level.

One crucial assumption is that high competition drives down both A, the average

value per time that a skilled manager generates, and b, the average naive money
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inflows to a fund. Mathematically, this assumption translates into

A = AhA(N) , b = bhb(N) , (3.4)

where N is the total number of existing managers in the AM industry, A and b are

constants, and hA(N) and hb(N) are smooth monotone (strictly) decreasing functions

in N. Here, I take the total number of managers as the equilibrium variable that

captures the degree of competition in the industry. Taking another sensible variable

(e.g., aggregate capital in the industry) instead as the measure for competition does

not change qualitative results.

3.3 Structure of the AM industry: Entries and Sur-

vivorship

The full characterization of the equilibrium of the model involves the determination

of equilibrium variables A and b. These variables are determined by the number

(measure) of managers by (3.4), which I repeat:

A = AhA(N), b = bhb(N),

where A and b are constants, and hA(N) and hb(N) are arbitrary decreasing functions.

In order to guarantee an interior solution, additional assumptions are made:

lim hA(N) -+ oo , lim h(N) - oo , lim hA(N) -+ 0 , lim hb(N) - 0 ,
N* N- N-oo N-oo

(3.5)

i.e., active funds become extremely profitable if there are no competitors, and become

extremely unprofitable if there are too many competitors.

Since there is no aggregate shock, the model focuses on the stationary equilibrium.

In the stationary equilibrium, the equilibrium variables A and b are constants over

time.
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3.3.1 Fee revenues

A and b are endogenously determined in equilibrium through competition among

funds. In this subsection, I focus on characterizing fee revenues of active funds by

taking the value of A and b as given. For notational simplicity, I omit indices for

individual managers (funds) unless necessary.

From the analysis in subsection 1.3.2, the net excess return on a fund between t

and t + dt is

drex d~exfdtA(lHdt +dZt)drt = d R - fdt = qt - j dt .

In equilibrium, the net expected excess return (net alpha) is either zero or negative:

Et [dr'x] =p - f) dt = 0 , 4t < qt

qt / 0 , 4t= qt

where qt is the AUM of the fund at t, and qt is the amount of naive capital invested

in the fund at t. From Proposition 1.1, the AUM of the fund is

SptA
qt max f 4 i,

and fee revenues between t and t + dt are given by

fqtdt = max {ptA, f } dt .

3.3.2 Stationary equilibrium

The state variables for an individual fund manager are p and 4. The aggregate state

of the economy is the distribution of agents across states. In order to define the

aggregate state variables formally, define the state space for an individual manager.

The state space of a manager is the Cartesian product S : [0, 1] x [0, oo) with Borel

o algebra B. For any set S E B, p(S) is the measure of managers in the set S. A

stationary equilibrium is defined as follows:

Definition 1 A stationary equilibrium is the value function V : S -+ I >O; the surplus
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rate A that a skilled manager generates per time and the average naive capital inflow

rate b; and the stationary measure p* such that

* Given A and b, V(p, 4) is the value function of fee profits.

" Given p*, N = f f p*(p, 4)dpd4 is consistent with the values of A and b by (3.4).

" Prospective managers arrive with prior skill distribution F(p), and chooses to

enter the AM industry if their V(p, 0) is greater than the entry cost (b.

" Managers choose to exit if V(p, 4) = 0. In addition, managers exogenously exit

under the Poisson process with probability Adt between t and t + dt.

* p* is invariant under entries, exits and the transition of states of existing man-

agers, given by

dp = sp(1 - p)dZ, d4 = (b - Q)dt + q/ (odW + azdZ)

3.3.3 Value of fee profits, exits and entries

The following analysis assumes a stationary equilibrium, and takes A and b as given.

Recall that an existing fund bears the operating cost of #dt between t and t + dt.

Value of fee profits

Fee profits between t and t + dt are

(max{pt A, f'i} - 4) dt ,

by Proposition 1.1. The value of fee profits at t can be written as

TD

V = Et [I .- '(u--) (max~pu A, f 4u} - 0) du ,

where TD is the point of time when the manager exits. Under the given information

set at t, the joint distribution of pu and 4u for u > t solely depends on pt and 4t. As
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a result, the state variables for the value of fee profits at t are pt and 4t. Hence, the

value of fee profits can be rewritten as V = V(pt, qt).

TD is determined either by an exogenous exit, with probability Adt between t and

t + dt independently, or by an endogenous exit, where the manager chooses to exit. A

manager chooses to exit if the value of staying is less than (or equal to) the value of

exiting, which is zero. These statements can be translated into dynamic programming

language as follows:

V(pt, 4t) = max {(max{pA , f't} - # ) dt + (1 - rdt - Adt)Et [V(pt+dt, 4t+dt)], 0},

where

dpt = spt(1-p)dZ t,

dQt, = (b-rqtdt + \/1 (-dWt + zdz)

When the value is greater than zero, the value function V(p, 4) is smooth, and solves

the following partial differential equation (PDE):

(r+A)V(pj) =V(max)pA, I a} - ) 2 P2(1 _ P)2 + (b - /)
2 apq

+Ia2v(p) 2 2 
2V(p, )

2 + o2 (a a 0 sp(1-p) a

There is no analytic solution to the PDE. The following lemmas characterize several

properties of V(p, 4) that can be derived without directly solving for V(p, 4).

Lemma 3.1 V(p, 4) is increasing in p and 4.

Proof. See Appendix. n

Lemma 3.2 V(p, j) is convex in the direction of the diffusion dZ in p and 4, which

is proportional to the vector (sp(1 - p), o ~), i.e.,

a2Vyq a2V(P'4)

sp(1 - p) azV' ] a[2 q SP2() 1 P )l 0-_______q .92V(p,q)
[Dp~ a42 07[U
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Proof. See Appendix. m

Exits

Since the value of fee profits changes over time only through p and 4, endogenous exit

decisions by managers solely depend on p and 4 as well. If V(p, j) > 0 for all (p, q),

the manager never chooses to exit. If V(p, 4) = 0 for some (p, 4), the manager exits.

The following theorem characterizes the set of (p, 4) where a fund manager chooses

to exit, i.e.,

E = {(p, 4)|V(p, 4) =_ 0}. (3.6)

Proposition 3.1 Suppose that E is not empty. E is characterized by a downward

sloping curve 4 = h(p) that crosses the 4-axis (p=O) and the p-axis (4 = 0):

E = {(p, 4)14 < h(p)}

Proof. See Appendix. m

The set E defined by (3.6) may or may not be empty. If E is nonempty, managers

choose to exit immediately after they reach the curve q = h(p) in continuous time.

Hence, the curve j = h(p) is the exit threshold. The downward-sloping exit threshold

shows that there are two reasons why managers may choose to exit: managers are

perceived as low-skilled and/or there is insufficient naive capital invested in their

funds.

Entries

The prior cumulative distribution of the skill of managers newly born between t and

t + dt is given by F(p)dt. A prospective manager with probability p of being H-type

chooses to enter the AM industry if the participation constraint

V(p, 0) - D ;> 0 (3.7)
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holds, since a prospective manager enters with zero naive capital. Therefore, in order

to study entry decisions of prospective managers, it is useful to characterize properties

of V(p, 0) further. Define

Pex = sup{pIV(p, 0) 0}. (3.8)

By Proposition 3.1, pex exists if E defined by (3.6) is nonempty, but does not exist if

E is empty. The following corollary elucidates further properties of V(p, 0):

Corollary 3.1 V(p, 0) is convex in p. V(p, 0) is strictly increasing if Pex does not

exist, and strictly increasing for p Pex if pex exists.

Proof. See Appendix. m

Now define p* that satisfies

V(p*, 0) = 4< (3.9)

p* is greater than pex (if pex exists). Based on the participation constraint (3.7), the

following proposition characterizes the set of prospective managers who enter the AM

industry in a stationary equilibrium:

Proposition 3.2 In a stationary equilibrium, p* c (0, 1) exists and is unique. Prospec-

tive managers enter the AM industry if their prior skill (the prior probability of being

H-type) is higher than p*, i.e., prospective managers with p G [p*, 1] choose to enter.

Proof. See Appendix. *

The intuition of Proposition 3.2 is as follows: the prior skill of a prospective man-

ager matters for her decision to start an active fund, given that funds are homogeneous

in their ability to attract naive money. While the supply of skilled prospective man-

agers is limited, there are plenty of low-skilled managers 2, and competition among

funds does not allow surely unskilled managers to enter the AM industry. Therefore,

only prospective managers whose prior skill is above a certain threshold (p*) choose

to enter AM markets.

2This is captured by assumption (3.3).
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3.3.4 Long-run survivorship and entries of unskilled managers

While this chapter accounts for exit and entry decisions of both skilled and unskilled

managers, those of unskilled managers are of particular interest. Once a manager

survives for a sufficiently long time, her true skill is eventually revealed 3 . The following

corollary shows that old funds run by skilled managers never choose to exit in a

stationary equilibrium.

Corollary 3.2 Denote the survival time of fund i by ti, and the probability of the

manager being H-type by pi,t. If the manager of fund i is H-type, as tj -* oo, the fund

never chooses to exit.

Proof. See Appendix. n

Therefore, the long-term survivorship of skilled managers is relatively trivial com-

pared with that of unskilled managers.

Long-term survivorship of unskilled managers

As the survival time becomes sufficiently long, the true (lack of) skill of unskilled

managers is revealed, i.e., pt converges to 0 almost surely as t -+ oo. Since the fair

size of funds run by those managers is zero, these funds are always overpriced. The

value of fee profits to unskilled managers (with their type being revealed) is

T TD

Vt = V(0, 4) = Et [t e--- ( 4u - ) duj

where

d~t = (b - 7 qt)dt + ,/q-e (-dWt + o-,zdZt)

Therefore, the value to surely unskilled managers is determined by how much naive

money they currently have, and how much naive money they can attract in the future.

The following lemma is helpful for the rest of the analysis:

3Formally, as t -+ oc, pt for a skilled manager converges to 1 almost surely, and pt for an unskilled

manager converges to 0 almost surely.
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Lemma 3.3 The set E defined by (3.6) diminishes as A and b increase. Precisely,

E(A A',b') C E( A,b) ,VA' > A), b' > b .

Proof. See Appendix. m

Before making formal statements, it is useful to define the precise meaning of the

long-run survivorship. Here, I define the long-run survivorship of unskilled managers

as the expected survival time once the type of those managers is revealed, given

the current naive money 4t fixed. A more general definition is the probability of

an unskilled manager's survival for sufficiently long time after entry. These two

definitions are closely related, and the relation is examined in the following analysis.

Proposition 3.3 The long-run survivorship of unskilled managers increases in b,

i.e., the expected survival time of surely unskilled managers increases in b, given qt

fixed.

Proof. See Appendix. *

Given the amount 4t of currently invested naive capital fixed, higher b allows surely

unskilled funds to attract more naive capital in the future. Hence, those managers

are expected to survive longer than they are for lower b. The result of Proposition

3.3 is valid regardless of the value of A, since fee profits of surely unskilled managers

do not depend on the value of A.

On the other hand, the following corollary requires a certain condition on A.

Corollary 3.3 Suppose that A 1 > A 2 and b1 > b2 . The probability of an unskilled

manager's survival is higher for (A 1, b1 ) than it is for (A 2 , b2 ) at any point of time,

given the prior skill po at entry fixed.

Proof. See Appendix. *

Therefore, as long as A does not decrease, an increase in b raises the probability of

an unskilled manager's survival at any point of time, given her prior skill fixed. This

is equivalent to the statement that the distribution of unskilled managers' survival

time becomes (first-order stochastically) dominant as b increases, which implies an
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increase in the expected survival time of those managers. Therefore, in this case, for

unskilled managers, the probability of survival and the expected survival time move

in the same direction as b changes.

However, if A decreases, the result of Corollary 3.3 does not hold. For A1 < A 2

and b, > b2 , the probability of survival for (A 1 , bi) does not necessarily dominate that

for (A 2 , b 2 ). Hence, the expected survival time for (A 1 , bi) may not be longer than

that for (A 2 , b2). Therefore, the short-run survivorship of unskilled managers depends

both on the value of A and b, and does not monotonically increase in the value of b.

In the long run, the true (lack of) skill of unskilled managers is revealed regardless

of the prior. Therefore, after sufficiently long time, the survivorship of unskilled

managers is solely determined by their current AUM (from unsophisticated investors),

and the value of b, which represents their ability to attract naive capital in the future.

The long-run survivorship of unskilled managers, defined by their expected survival

time for fixed 4 once their true skill is revealed, increases in b by Proposition 3.3.

In the limit of sufficiently long time after entry, the survival probability of unskilled

managers increases in b as well4 . The following proposition proves that the long-term

survival probability is greater for higher b regardless of A:

Proposition 3.4 Suppose that b 1 > b2 . There exists T such that for all s > T, the

survival probability of unskilled managers for b1 is greater than that for b 2 -

Proof. See Appendix. n

Therefore, in the remainder of the chapter, the long-run survivorship of unskilled

managers indicates both the expected survival time for surely unskilled managers and

the survival probability of unskilled managers in the long run.

In an extreme case that b is sufficiently large compared with #, unskilled managers

never choose to exit and, hence, no managers choose to exit.

'Simply put, the long-run survival probability of unskilled managers is dominantly determined
by the value of b. A simple analogy is as follows. Compare two processes where one decays with rate
A, until T and with rate A' afterwards, and the other decays with rate A2 until T2 and with rate
A' afterwards. Suppose A1 > A2 and A' < A'. In the limit of infinite time, the survival probability
of the former process is always greater than that of the latter.
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Corollary 3.4 If

b > (r (3.10)
f

no managers choose to exit.

Proof. See Appendix *

Entries of unskilled managers

Skilled managers and unskilled managers are not distinguishable at entry. New man-

agers enter the AM industry with a certain prior about their skill, and this prior

is correct: among a group of managers with the same prior probability p of being

H-type, p portion of managers in the group are skilled, and (1 - p) portion of man-

agers in the group are unskilled. Therefore, given the prior skill distribution fixed,

the entry threshold p* defined by (3.9) determines the number (measure) of newly

entering unskilled managers.

When p* is lower, more unskilled managers enter the AM industry, while more

skilled managers enter as well. The following proposition characterizes when p* is

lower, and the implications of lower p*.

Proposition 3.5 Suppose that A1 > A 2 and b1 > b2 . P* is lower for (A1, b1 ) than

that for (A 2 , b 2 ). Given the prior skill distribution fixed, the number (measure) of

entries of both skilled and unskilled managers is greater for (A1, b1 ) than those for

(A 2 , b2 ). Also, the portion of unskilled managers among newly entering managers is

higher for (A 1 ,b 1 ) than it is for (A 2 ,b 2 ).

Proof. See Appendix. m

The entry threshold p* decreases in A and b. When p* is lower, there are more

entries of skilled and unskilled managers, but disproportionately more entries of un-

skilled managers.
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3.3.5 Determinants of the stationary equilibrium

The previous analysis shows that the long-term survivorship of unskilled managers

crucially depends on b, and the entry threshold p* determines the entries of unskilled

managers as well as those of skilled managers. Based on these analyses, I investigate

how exogenous components of the model influences the equilibrium variables and,

consequently, the long-run survivorship and entries of unskilled managers, by changing

the stationary equilibrium.

In this subsection, I assume that a stationary equilibrium exists and it is unique.

The existence and the uniqueness are shown in the next subsection.

Aggregate invest opportunities (A) and aggregate naive capital (b)

The following proposition characterizes how an increase in A, the parameter that

governs the aggregate invest opportunities, affects the stationary equilibrium.

Proposition 3.6 Ceteris paribus, an increase in A increases A, decreases b, and

increases the number N of active managers in the AM industry.

Proof. See Appendix. m

In general cases, an increase in A induces more entries of prospective managers.

In particular, when hA(N) and hb(N) are not steep, p* decreases in A, i.e., there are

more entries of prospective managers when there are more investment opportunities.

This is proved in the following proposition:

Proposition 3.7 Suppose that in the stationary equilibrium the exit set E defined by

(3.6) is nonempty. Denote the equilibrium measure of active funds by N*. There exist

CA > 0 and Cb > 0 such that if |h' (N*) 5 CA and |h'(N*)| Cb, a small increase in

A leads to a decrease in p*.

Proof. See Appendix. n

As long as hA(N) and hb(N) are sufficiently flat, i.e., returns to scale at the indus-

try level are not steeply decreasing, there are more entries of prospective managers

to the AM industry as there are more aggregate investment opportunities available.
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When the exit set E is empty, it is straightforward to show that the entry threshold

p* decreases in A:

Corollary 3.5 Suppose that in the stationary equilibrium the exit set defined by (3.6)

is empty, a small increase in A leads to a decrease in p*.

Proof. See Appendix. *

The following proposition characterizes how an increase in b, the parameter that

governs the aggregate amount of naive money, affects the stationary equilibrium.

Proposition 3.8 Ceteris paribus, an increase in b decreases A, increases b, and

increases the number N of active managers in the AM industry.

Proof. The proof is quite similar to that of Proposition 3.6. See Appendix. *

In general cases, an increase in b induces more entries of prospective managers.

In particular, when hA(N) and hb(N) are not steep, p* decreases in b, i.e., there

are more entries of prospective managers when there are more capital inflows from

unsophisticated investors. This is proved in the following proposition:

Proposition 3.9 Suppose that in the stationary equilibrium the exit set E defined by

(3.6) is nonempty. Denote the equilibrium measure of active funds by N*. There exist

cA > 0 and cb > 0 such that if Ih' (N*)| cA and |h'(N*)I cb, a small increase in

b leads to a decrease in p*.

Proof. The proof is quite similar to that of Proposition 3.7. See Appendix. *

As long as hA(N) and hb(N) are sufficiently flat, i.e., returns to scale at the indus-

try level are not steeply decreasing, there are more entries of prospective managers

to the AM industry as there are more aggregate naive money available.

When the exit set E is empty, it is straightforward to show that the entry threshold

p* decreases in 6:

Corollary 3.6 Suppose that in the stationary equilibrium the exit set defined by (3.6)

is empty, a small increase in b leads to a decrease in p*.

Proof. The proof is quite similar to that of Corollary 3.5. See Appendix. m
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Entry costs (<D) and distribution (G(1 - p)) of the prior skill

So far, I have investigated exogenous parameters that directly affect the value of A,

the average value creation per time by a skilled manager, and b, the average naive

money inflow rate. Here, I consider two other exogenous components of the model:

the entry cost and the distribution of the prior skill of prospective managers.

The following proposition shows how an increase in the entry cost <D influences

the stationary equilibrium:

Proposition 3.10 Ceteris paribus, an increase in 4D increases A, increases b, in-

creases p*, and decreases the number N of active managers in the AM industry.

Proof. See Appendix. m

Lastly, I study how the distribution of the prior skill of prospective managers

affects the stationary equilibrium. I consider G(1 - p) f F'(p')dp' instead of F(p)

because of the condition (3.3) that is imposed in order to guarantee the existence of

a stationary equilibrium5 . I define that G,(x) dominates G2 (x) if

G2 () < G1(x) , VO < x < 1 .

G1(1 - p) dominating G2 (1 - p) implies that the former distribution has more skilled

prospective managers than the latter does, at any point p.

Proposition 3.11 Suppose that G1(1 - p) dominates G2 (1 - p). Ceteris paribus,

A1 < A 2, b1 < b2 , P* > p*, and N1 > N2 .

Proof. See Appendix. n

3.3.6 Existence and uniqueness of a stationary equilibrium

The following proposition proves the existence and uniqueness of a stationary equi-

librium.

5 1f F(p) is used as the cumulative distribution, the condition (3.3) implies limp_4o+ F(p) = Oc.
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Proposition 3.12 A stationary equilibrium defined by Definition 1 exists and is

unique.

Proof. See Appendix. m

3.3.7 Numerical Examples

For the baseline numerical computation, I make the following parameter choices:

A= 1, b=3.5 ,
(3.11)

s = 0.3 , A = 0.05 , 71 = 0.05, r 0= , -=O, o= 2,

and decreasing returns to scale

hA(N) hb(N) N-1,

and the distribution density

F'(p) =0. 4(1 -P)3

The value of fee profits is plotted as follows:

[See figure 11

Entries among all prospective managers are characterized as

[See figure 21

The exit threshold is plotted in the following:

[See figure 31

Lastly, the stationary equilibrium distribution of managers in (p, q) is

[See figure 41
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3.4 Heterogeneity in Investor Sophistication

In this section, I consider two different types of AM markets that are heterogeneous

in investor sophistication. I refer to markets with more sophisticated investors as

hedge fund markets, and markets with less sophisticated investors as mutual fund

markets. In order to contrast these two types of markets, I model the heterogeneity

in investor sophistication in an extreme form: unsophisticated investors only exist in

mutual fund markets.

Since no unsophisticated investors exist in hedge fund markets, further analysis

on those markets is needed in order to characterize the stationary equilibrium. On

the other hand, the analyses of the previous section, especially the partial equilibrium

results, apply to mutual fund markets.

3.4.1 The model of hedge funds

When a skilled (H-type) manager runs a hedge fund, she can generate

A dt + -dZ )

dollars between t and t + dt. Similar to the baseline setup, Zt is a physical Brownian

motion and idiosyncratic. The hedge fund sector is also subject to the decreasing

returns to scale at the industry level, which is modeled in a reduced-form as follows:

Ah A hhh(Nh) , (3.12)

where Nh is the number (measure) of active hedge fund managers, and hh(-) is a

smooth monotone (strictly) decreasing function in Nh. A condition similar to (3.5)

is imposed on h(Nh):

lim hh(Nh) -+ oc , lim hh (Nh) -+ 0 . (3.13)
Nh -+0 Nh -oo

A hedge fund manager can offer any short-term per-invested-dollar fee contracts
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between time t and t + dt to the investors, i.e., at time t managers can offer a contract

that pays off

ftlt+dt

to the manager at t + dt as a function of verifiable variables at time t + dt, including

excess returns between t and t + dt, per invested dollar at time t.

When an unskilled (L-type) manager runs a hedge fund, she generates no value on

average, but the volatility of the value is the same as that of a skilled manager. Hedge

fund managers are risk-neutral as mutual fund managers are. Hedge fund managers

bear the same operating costs <dt between t and t + dt as mutual fund managers do.

At entry, hedge fund managers pay the same entry cost <b as mutual fund managers

do.

The following analysis assumes a stationary equilibrium, and takes Ah as given.

3.4.2 Fee revenues

The gross excess return on a hedge fund between t and t + dt is

Ah (IHdt + !dZt)
dRit = qt

where 1 H is 1 if the manager of the fund is H-type and 0 otherwise. Given that

the short-term compensation contract offers ft,t+dt per invested dollar, the net excess

return on the fund between t and t + dt is

Ah ( H dt + !dZt)
dr ex = dR e - ft,t+dt = A - ft,tdt-

Since investors can diversify away idiosyncratic risks by themselves, they accept the

compensation contract only if the net expected excess return (net alpha) is non-

negative. On the other hand, if the net alpha on a hedge fund is strictly negative,

sophisticated investors do not invest any dollars in the fund. Since there are no

unsophisticated investors in hedge fund markets (by assumption), strictly negative

net alpha cannot constitute an equilibrium. Therefore, the net alpha must be zero in
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equilibrium. This condition reads

_t A__d pt Ahdt
Et [dre ptAhdt Et[ftt+dt] = 0 < Et [ft,t+dt] = -

ht qt qt

The intuition for this result that the net alpha is zero in equilibrium is the same as

that of Berk and Green (2004). Fee revenues at t + dt expected at t are

Et [qft,t+dt] = ptAhdt = Et Ah IHdt + -dZt)
I s

Thus, regardless of the form of the short-term compensation contract ft,t+dt, the

skill of the hedge fund manager is correctly priced and compensated. The following

proposition summarizes the analysis.

Proposition 3.13 If all the investors are rational, and can freely move capital, the

skill of active managers is fairly compensated, i.e., the expected fee revenue is equiv-

alent to the amount of dollar value that the manager is expected to generate. The fee

structure does not matter for fee revenues and, consequently, fee profits.

Proof. Proof provided in the above analysis. m

When there are no unsophisticated investors in AM markets, AM markets are

indeed markets for active managers' skill. Since skill is scarce, managers take all the

rents from surplus that they are expected to generate no matter what compensation

contracts are.

3.4.3 The value of fee profits and exits of hedge funds

Expected fee profits that a hedge fund receives between t and t + dt are

(ptAh - O)dt

The value of fee profits at t can be written as

Vht = Et e r(ut) (puAh -,[l T~ d
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where TD is the point in time when the hedge fund manager exits. TD is determined

by either an exogenous exit or an endogenous exit, similar to the case of mutual funds.

Since the conditional distribution p,, for u > t at time t depends entirely on pt, the

state variable for the value of fee profits at t is pt. Hence, the value of fee profits can

be rewritten as Vh,t = Vh(pt).

In dynamic programming language, the value of fee profits reads

Vh(pt) = max (ptAh - #) dt + (1 - rdt - Adt)Et [V(pt+dt)], 0}

where

dpt = SPt (1 - pt) d~t .

When the value is greater than zero, the value function Vh(p) is smooth, and solves

the following ordinary differential equation (ODE):

1
(r + A)Vh(p) = (pAh - #) + V_(p)s2p2(1 _ p)2

There exist analytic solutions to the ODE. One can decompose Vh(p) into

Vh(p) = V(p) V'(p),

where Vhb(p) is the particular solution, and V(p) is the homogeneous solution. The

particular solution is
1

Vh (p) =(pAh -q!),

and the homogeneous solution takes the following form:

Vho(P) = C1 Vfl -P1+'1 + C2 VP' 1 -PI ,

where

p= 1+(2 >1, (3.14)

and the coefficients ci and c 2 are determined by boundary conditions.
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The following lemma characterizes some properties of Vh(p):

Lemma 3.4 Vh(p) is increasing and convex.

Proof. See Appendix. m

Since the state variable for a hedge fund is p, endogenous exit decisions by hedge

fund managers depend only on p. Define the set of p where hedge fund managers

choose to exit:

Eh {pVh(p) = O}

Since Vh(O) = 0, the exit set Eh of hedge funds is always nonempty, unlike the exit set

Em of mutual funds which may (or not) be empty. The set Eh is fully characterized

by ph as follows:

Eh - {plp < ph} , (3.15)

since Vh(p) is increasing in p. In continuous time, hedge fund managers choose to exit

immediately after p reaches ph and, hence, h is the exit threshold for hedge fund

managers. Therefore, hedge fund managers choose to exit if their skill is perceived as

low.

At p = 0 and p = 1, the manager's type is fully revealed, and there is no additional

learning about her skill. As a result,

Vh(0) = max{-#dt + (1 - rdt - Adt)Vh(0), 0} = 0,

Vh(1) max{(Ah - #)dt + (1 - rdt - Adt)Vh(1), 0} = max { , 0 .}

If Vh(1) = 0, p h = 1 and Vh(p) is uniformly zero. If Vh(1) > 0, i.e., Ah > 0, ph < 1

and c2 = 0. The smooth pasting condition at p = pi, further pins down ci and p as

follows:

C ( = 0)jl l 1- 7 (3.16)
(r + A)ap + id

and

Pex = 24 (3.17)
p+ q-h
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where p is defined in (3.14). ph is increasing in + and p. Therefore, the exit set Eh

of hedge funds diminishes as Ah increases:

Proposition 3.14 For Ah,1 > Ah,2, Eh(Ah,1) C Eh(Ah,2).

Proof. It is straightforward from (3.15) and (3.17). n

3.4.4 Stationary equilibrium

Since there are two types of AM markets, the a stationary equilibrium must be re-

defined. The state variables for an individual mutual fund manager are p and 4, and

the state variable for an individual hedge fund manager is p. The aggregate state of

the economy is the distribution of agents across states in mutual fund markets and

hedge fund markets.

In order to define the aggregate state variables formally, define the state space for

an individual manager. The state space of a mutual fund manager is the Cartesian

product Sm : [0, 1] x [0, oo) with Borel u algebra 3m, and that of a hedge fund is

Sh : [0, 1] with Borel o- algebra Bt . For any set Sm C L3m, pm(Sm) is the measure of

mutual fund managers in the set Sm. Similarly, for any set Sh E Bh, ph(Sh) is the

measure of hedge fund managers in the set Sh.

Definition 2 A stationary equilibrium is value functions Vm : Sm - R>0 and Vh

Sh R>O; the base surplus A, the additional surplus for hedge funds and the average

naive capital inflow rate b; and stationary measures p* and p* such that

" Given (Am, Ah, b), Vm(p, 4) and Vh(p) are value functions of mutual fund man-

agers and hedge fund managers, respectively.

* Given p* and p*, Nm = f f p* (p, 4)dpd4 and Nh f p* (p)dp are consistent

with the values of (A,,, Ah, b) by (3.4) and (3.12).

" Prospective managers arrive with the prior skill distribution F(p), and chooses

to enter mutual fund markets if Vm(p, 0) > Vh(p) and V,,(p, 0) > 1D, and enter

hedge fund markets if V,(p, 0) < Vh(p) and Vh(p) D.
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" Mutual fund managers choose to exit if V,(p, 4) = 0, and hedge fund managers

choose to exit if Vh(p) = 0. In addition, existing managers exogenously exit

under the Poisson process with probability Adt between t and t + dt.

* p* and p* are invariant under entries, exits and the transition of states of

existing managers, given by

dp = sp(1 - p)dZ, d = (b - q) dt + y' o-dW +or- d2)

3.4.5 Entries

A prospective manager with probability p of being H-type compares Vm(p, 0) and

Vh(p), and chooses to enter an AM market with a higher value of fee profits, as long

as the participation constraint

max{Vm(p, 0), Vh(p)} - <) > 0 (3.18)

holds. Define p* and p* such that

(3.19)

A stationary equilibrium imposes the following conditions:

Lemma 3.5 In a stationary equilibrium, both p* and p* exist, and are unique, re-

spectively. Vm(p, 0) or Vh(p) cannot dominate the other, i.e.,

Vm(P, 0) > Vh(P), Vp > pl ,

or

V(P,0) < Vh(P), Vp > p,

is inconsistent with a stationary equilibrium.

Proof. See Appendix. n
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From this lemma, one can prove the following proposition straightforwardly:

Proposition 3.15 In a stationary equilibrium, Ah > Am,.

Proof. See Appendix. m

This proposition implies that in a stationary equilibrium, hedge fund managers

generate more value than mutual fund managers do. Mutual fund managers enjoy

additional fee profits when they succeed attracting sufficient capital from unsophisti-

cated investors, but hedge fund managers are always fairly compensated. Therefore,

for prospective managers to be motivated to enter hedge fund markets, they must be

able to generate greater value in hedge fund markets than they are in mutual fund

markets.

This result implies that the sensitivity of the entry value to the perceived skill of

the manager is generally lower for mutual funds than for hedge funds. The following

lemma justifies this statement.

Lemma 3.6 The sensitivity of the hedge fund entry value to the perceived skill of the

manager satisfies

V '(p) < Ah
h r +A'

where the equality holds for p = 1. On the other hand, the sensitivity of the mutual

fund entry value to the perceived skill of the manager- satisfies

DVm (p,0) Am< Ah

ap r+A r+A

for all p.

Proof. See Appendix. U

This lemma shows that the maximum sensitivity of the entry value to the perceived

skill is strictly higher for hedge funds than for mutual funds. However, Vh(p) cannot be

strictly higher than &vm( ,O) for all p > ph , because otherwise Vh(p) strictly dominatesap e

Vm(p, 0). Still, the sensitivity of hedge fund entry value to skill (p) is strictly higher

than that of mutual fund entry value for high p.
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A high-skilled (high p) manager generates more value by managing a hedge fund,

and the value of her fee profits is more sensitive to her skill when she manages a

hedge fund, compared to the case where she runs a mutual fund. This implies that

better-skilled (with higher prior p of being skilled) prospective managers tend to enter

hedge fund markets. Although this sounds intuitive, it is hard to formally prove that

in general cases, mainly because V(p, q) does not have an analytic form.

In order to formally prove that high-skilled prospective managers choose to enter

hedge fund markets, I make an additional assumption: the signal-to-noise ratio s of

managers' skill is sufficiently small. This is a reasonable assumption considering how

noisy the actual track records of asset managers are. The following Lemma defines

what sufficiently small s means.

Lemma 3.7 There exists signal-to-noise ratio s = s such that for all s < 9

r A

where p* is defined in (3.19).

Proof. See Appendix. n

Given that the signal-to-noise ratio s being sufficiently low, prospective managers

sort themselves based on the investor sophistication: high-skilled managers enter

hedge fund markets, and low-skilled mangers enter mutual fund markets. This is

proved in the following proposition:

Proposition 3.16 Suppose that s is smaller than - as defined in Lemma 3.7. There

exists 0 < p < 1 such that prospective managers with p C (p*,, P) enter mutual fund

markets, and prospective managers with p C (7,1] enter hedge fund markets.

Proof. See Appendix. m

The intuition is, when s is low, the value of the exit option for hedge fund managers

becomes small. This implies that the sensitivity of the value of hedge fund fee profits

to skill (p) is close to the maximum slope Ah as long as the perceived skill p isr+A

sufficiently far from the exit threshold p h. Therefore, the slope of the hedge fund fee
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value with respect to p is strictly greater than the slope of the mutual fund fee value

for most values of p. Since hedge fund markets compensate managers' skill better

than mutual fund markets do, high-skilled managers enter hedge fund markets.

When the mutual fund exit set Em is empty, it is also possible to prove that

prospective managers strictly sort themselves based on the investor sophistication,

regardless of the value of s. This is proved in the following proposition:

Proposition 3.17 Suppose that the mutual fund exit set E, is empty. There exists

0 < P < 1 such that prospective managers with p E (p*,,, P) enter mutual fund markets,

and prospective managers with p E (p, 1] enter hedge fund markets.

Proof. See Appendix. m

Since the value of hedge fund fee profits tends to be more sensitive to skill com-

pared with the value of mutual fund fee profits, prospective managers with higher

skill tend to enter hedge fund markets.

While unskilled hedge fund managers eventually choose to exit as they reveal their

(lack of) skill, unskilled mutual fund managers may survive as long as they attract

sufficient naive capital. In the limit of zero operating costs, the attrition rate of hedge

fund managers is strictly higher than that of mutual fund managers.

Corollary 3.7 In the limit of 0 -> 0, the hedge fund attrition rate is strictly greater

than the mutual fund attrition rate.

Proof. See Appendix. m

In summary, hedge fund markets are characterized by relatively high-skilled man-

agers attracting smart money. On the other hand, mutual fund markets are charac-

terized by relatively low-skilled managers attracting naive money.

3.4.6 Existence and uniqueness of a stationary equilibrium

When there are two types of markets, formally proving the existence and/or the

uniqueness of a stationary equilibrium is quite difficult. The primary reason is that

prospective managers choose between those two types when they enter. The binary
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choice does not guarantee continuous changes of entry decisions as equilibrium pa-

rameters change infinitesimally. The proof of the existence and/or the uniqueness of

a stationary equilibrium relies on such continuity (see the proof of Proposition 3.12).

For example, consider an extreme case where Vm(p, 0) = V(p) - 6 where 6 is

infinitesimal. In this case, all entries of prospective managers are into mutual fund

markets. Now suppose that Ah increases slightly. In this case, prospective managers

choose to enter hedge fund markets only. This example highlights why small changes

in equilibrium parameters may not translate into small changes in entries. While

that example is quite extreme, without knowing properties of Vm(p, 0) sufficiently, it

is hard to exclude discontinuities in entry decisions.

Therefore, when there are two types of markets heterogeneous in investor sophis-

tication, I provide a limited set of results regarding the existence and uniqueness of

a stationary equilibrium. For example, Proposition 3.16 shows that, for s lower than

9 defined in Lemma 3.7, there exists a cutoff of the prior skill such that prospective

managers with skill higher than the cutoff enter hedge fund markets, and prospective

managers with skill lower than the cutoff enter mutual fund markets. Such sorting of

prospective managers is helpful for proving the existence and uniqueness of a station-

ary equilibrium, because the structure (sorting) guarantees the continuity of entry

decisions. However, since s depends on the values of Am and Ah, it is possible that

there is no finite - that guarantees the sorting of prospective managers for the entire

space of Am and Ah. In an extreme case where s -> 0, the result of Proposition

3.16 always holds. Therefore, I prove the existence and uniqueness of a stationary

equilibrium in this extreme case:

Proposition 3.18 In the limit of s -4 0, there exists a stationary equilibrium and it

is unique.

Proof. See Appendix. n

Similar to Proposition 3.18, I consider an extreme case where the assumption of

Proposition 3.17 always holds. The mutual fund exit set Em may be either empty or

nonempty depending on the value of b. The only case where the mutual fund exit set
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is always nonempty regardless of b is the limit case of zero operating cost: # -- 0. I

prove the existence and uniqueness of a stationary equilibrium in this extreme case:

Proposition 3.19 In the limit of 0 -+ 0, there exists a stationary equilibrium and it

is unique.

Proof. See Appendix m

Note that these results are in limited cases, as opposed to the general proof of

the existence and uniqueness of a stationary equilibrium in Proposition 3.12 when

markets are homogeneous in investor sophistication.

3.4.7 Numerical Examples

I use the baseline parameter choices given in (3.11) for the mutual fund industry. In

addition, I make the following parameter choices for the hedge fund industry:

Ah = 0.6 , hh(Nh) = N1. (3.20)

Vm(p, 0) and Vh(p) are plotted as follows:

[See figure 51

Entries to mutual fund markets and hedge fund markets among all prospective man-

agers are characterized as

[See figure 6]

The stationary equilibrium distribution of mutual fund managers in (p, ) is

[See figure 71

The stationary equilibrium distribution of hedge fund managers in p is

[See figure 81
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3.5 Regulatory Implications for Retail Investor Pro-

tection

This discussion has implications (although limited) for regulations regarding retail in-

vestor protection. One crucial caveat is that this chapter does not provide a rationale

for retail investor protection, since financial transactions are merely the redistribu-

tion of wealth and do not necessarily improve the aggregate welfare. In addition, this

chapter does not address how the structure of AM markets affects the efficiency (or

price discovery) of asset markets. Therefore, no regulatory implications are offered

regarding welfare, and the regulatory focus is limited to identifying and elucidat-

ing effective measures for retail investor protection. Such are the limitations of the

regulatory implications of the chapter.

3.5.1 Protection of unsophisticated investors

In this chapter, sophisticated investors always break even since they only invest in

fairly priced active funds or passive benchmarks. In contrast, unsophisticated in-

vestors lose wealth when they invest their capital (naive capital) in underperforming

(overpriced) funds. While those investors can improve the outcome by investing in

passive benchmarks with similar risk characteristics, why they do not switch is not

the focus of this chapter. On the other hand, unsophisticated investors can break

even by investing in fairly priced funds. Therefore, the aggregate wealth transfer

from unsophisticated investors to active funds depends on how much naive money is

allocated to overpriced funds.

Whether a fund is overpriced, or not, depends on the skill of the manager and

the amount of invested naive money. By Proposition 1.1, a fund is less likely to be

overpriced when the (perceived) skill of the manager is high, and when the amount

of invested naive money is small. Translating this statement into the language of

the model, a fund is less likely to be overpriced when A, the amount of value per

time that a skilled manager generates, is high, and b, the average naive capital inflow
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rate to a fund, is low. In addition, low b reduces naive money allocations to the

fund. At the individual fund level, the protection of unsophisticated investors seems

straightforward: encourage active funds to generate more value, and prevent them

from attracting unsophisticated investors.

However, regulations that affect the incentive structure of active funds may also

affect those funds' entry and exit decisions. Specifically, entries of unskilled managers

and their survivorship are of particular concern. While unskilled managers enter AM

markets with a certain expectation of having skill, their true skill is revealed as their

track records accumulate. Therefore, funds run by unskilled managers are more likely

to become overpriced, and eventually are overpriced when their (lack of) skill is fully

revealed. If those managers survive in the long run, they negatively influence the

wealth of their (unsophisticated) investors for long periods.

Therefore, regulations that aim to protect retail investors must take into account

both the intensive margin (individual funds being overpriced and receiving more naive

capital) and the extensive margin (more entries of unskilled managers and their long-

term survivorship). In particular, high A decreases the probability of individual

funds being overpriced, but increases entries of unskilled managers. In contrast, low

b decreases the probability of individual funds being overpriced, discourages entries

of unskilled managers, and reduces the long-run surviviorship of unskilled managers.

Regulations that intend to influence one of them (e.g., raise or lower A) may also

affect the equilibrium value of the other (the value of b) through competition among

funds.

Regulations affect the industry-wide parameters (e.g., A, a parameter governing

the aggregate amount of value creation, and b, a parameter influencing the aggregate

naive money inflow), and may change the industry equilibrium. For example, regula-

tions that restrict the value-generating activities of active funds (e.g., strict disclosure

rules) can be thought of as decreasing A, and may discourage entries of unskilled man-

agers by raising the entry threshold p*. However, such regulations can increase the

long-term survivorship of unskilled managers by increasing b. This type of regulation

may be detrimental to the wealth of unsophisticated investors. On the other hand,
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regulations that discourage active funds from attracting capital from unsophisticated

investors (e.g., fiduciary rules for brokers and advisors) can be regarded as lowering b.

Such regulations may reduce entries of unskilled managers, and decrease the long-run

survivorship of unskilled managers (lower p* and lower b). This type of regulation is

likely to be beneficial to the wealth of unsophisticated investors.

Another regulatory implication of this chapter is that regulations for one type of

AM market (e.g., the hedge fund industry) may affect other types of AM markets (e.g.,

the mutual fund industry) in the long run. For example, imposing strict regulations on

the hedge fund industry may decrease the profitability of individual hedge funds, and,

as a result, induce better skilled prospective managers to enter mutual fund markets.

In the long run, this may increase the competition in the mutual fund industry, and,

hence, lower the long-term survivorship of unskilled managers. Regulations for the

AM industry must take into account the long-run interactions among different types

of AM markets.

3.5.2 Fee structure

The model does not address how funds make fee choices, mainly because endogeniz-

ing fee choices involves modeling how unsophisticated investors respond to fees. Such

modeling requires additional specific assumptions about the behavior of unsophisti-

cated investors, and these assumptions are not easy to justify, particularly because

this chapter studies industry equilibria. Different industry equilibria correspond to

different degrees of competition, and it is hard to imagine that the way in which

unsophisticated investors react to fees stays unchanged when competition in the AM

industry becomes more (or less) fierce.

While there is a clear reason why this chapter does not model fee choices, its

framework can address a certain aspect of mutual fund fee choices. The Investment

Company Amendments Act of 1970 in the US prohibited mutual funds from charging

asymmetrical performance fees. As a consequence, in the US, mutual funds face a

restricted set of fee choices: flat fees, which are overwhelmingly used in the mutual

fund industry, or fulcrum (symmetrical) fees, which are employed by only a handful
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of mutual funds. Since only a tiny portion of US mutual funds adopt fulcrum fees,

researchers find it difficult to conduct meaningful empirical investigations on the fund

choice of fee structure, not merely the level of fees.

Under an additional assumption, this chapter can show that mutual funds prefer

flat fees to fulcrum fees. Between t and t + dt, a fund may charge a proportional fee

of

ft,twdt = f dt + V)(drx),

where drex is the net return of the fund between t and t + dt excess the benchmark.

O(x) is an arbitrary increasing function' satisfying 4'(x) = -0(-x), since mutual

funds in the US are restricted from charging asymmetrical performance fees. One

crucial assumption that I make is that unsophisticated investors only pay attention

to f, i.e., the fixed component, and their capital flows to a fund only depend on f.
Note that this is a fairly strong assumption.

Suppose that a fund may choose its fee schedule once at entry, and cannot change

it afterwards7 . The following proposition proves that the fund (strictly) prefers flat

fees to fulcrum fees.

Proposition 3.20 Suppose that flows of naive capital only depend on f (the fixed

component of fees). At entry, managers choose flat fees over symmetrical fees, i.e.,

0(drVx) = 0

is the optimal fee choice for managers.

Proof. See Appendix. *

The intuition of Proposition 3.20 is as follows: symmetrical fees hurt funds when

the funds are expected to underperform, while fee structure does not matter (for fee

revenues) when the funds are expected to perform the same as the market. Therefore,

6I only consider fees that monotonically increase in performance. Fees that do not belong to this
class (e.g., fees that locally decrease in performance) may cause serious moral hazard problems (e.g.,
managers intentionally lowering their performance in order to receive higher fees).

7This assumption is not needed, but adopted for illustrative purpose. The conclusion does not
change even if funds may change the fee schedule continuously.
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symmetrical fees reduce the value of fee profits, by lowering fee profits when the

managerial skill is overpriced. When funds are restricted to charging symmetrical

fees, those funds find it optimal to choose flat fee structures, since that maximizes the

amount of fees that those funds can extract from unsophisticated investors. Although

the result of Proposition 3.20 relies on the strong assumption that naive capital only

depends on f, the result still holds if the behavior of unsophisticated investors is

sufficiently insensitive to the choice of 0(_) 8 .

This discussion points to the possibility that active funds choose their fee struc-

ture in order to exploit unsophisticated investors. Therefore, regulations for the AM

industry, particularly those restricting fee choices, must take this aspect into account.

Other possible explanations for fee structure choice

There are other valid explanations, from the perspective of investor rationality, for

why US mutual funds overwhelmingly choose flat fees over fulcrum fees. If investors

are rational and can freely move capital, as discussed in Proposition 3.13, fee structure

does not matter for fee profits. Yet, if managers are risk-averse and are not able to

hedge risk associated with fee profits, they may prefer flat fees to fulcrum fees in

order to receive less volatile streams of fee profits. Another explanation comes from a

view that fee contracts are means of aligning the incentives of the principal (investors)

and the agent (managers). If symmetrical performance fees discourage managers from

taking actions that are beneficial to the investors, and/or encourage managers to take

actions that are detrimental to the investors, the optimal fee contract can take the

form of flat fees.

There is a study by Drago, Lazzari and Navone (2010) that challenges these ex-

planations. The authors examine the fee structure choice of funds in Italian mutual

fund markets, where no (significantly) restrictive regulations for fee structure existed

until 2006. Their study documents that, in the Italian equity mutual fund industry

before 2006, the "bonus plan", i.e., fixed fees plus rewards for outperforming (but no

8 Under a cheap assumption that unsophisticated investors "hate" nontrivial 0(.), the result holds
as well.
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penalties for underperforming), is the standard fee structure and no funds employ

fulcrum fees. Those explanations based on investor rationality need to account for

both why funds (strictly) prefer flat fees to symmetrical fees, and prefer asymmetrical

fees (the bonus plan) to flat fees.

There may be other explanations for such fee structure choices. One possibility is

that those fee choices are path-dependent: once the industry standard is set up, new

funds cannot easily adopt other fee structures. Another explanation is that the differ-

ence in fee choices comes from, for example, heterogeneity in investor characteristics

between the US and Italian mutual fund industry. While these types of explanations

are valid, those hypotheses are not easily verifiable (or falsifiable), and violate the

expected universality of economic perspectives.

3.6 Discussions and Conclusions

This chapter concerns only the extensive margin, i.e., entries and exits of funds, but

not the intensive margin, i.e., actions other than entries and exits that individual

funds may take. In contrast, chapter 2 deals only with the intensive margin. It

would be interesting to study the interactions between the extensive margin and the

intensive margin in the context of the industry equilibrium, which remain a topic for

future research.

I would like to note that labor market dynamics are not dealt with, since one of

the underlying assumptions of the model entails the fixed distribution of the prior skill

of prospective managers regardless of how competitive AM markets are. However, in

reality, it is hard to imagine that the supply of prospective managers is unaltered by

the degree of competition in the AM industry. For instance, when skilled managers

are relatively highly compensated due to comparatively low competition, those who

are sufficiently competent outside AM markets are prone to enter the labor market,

expanding the supply of skilled prospective managers. Numerous questions on the

interactions between the AM markets and the labor market for prospective managers

remain to be explored, both theoretically and empirically.
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In conclusion, this chapter proposes a model that associates naive money with

entry and exit decisions of active funds. Under a small set of modest assumptions,

this chapter offers insights into the structure of the AM industry by examining the

industry equilibrium. These insights may be useful for evaluating the impact of

regulations that are designed to protect retail investors.
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Figures

Figure 1: Value of fee profits

The following figure plots the value of fee profits as a function of the probability p

of being H-type and the amount of invested naive money q. Parameter choices are

given in (3.11).
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Figure 2: Entry threshold

The following figures plot the density distribution of the prior skill of prospective

managers. The left figure plots the density distribution for all prospective managers,

and the right figure plots the density distribution for managers who choose to enter

the AM industry. Parameter choices are given in (3.11).
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Figure 3: Exit threshold

The following figures plot the exit threshold as a function of the probability p of being

H-type. Parameter choices are given in (3.11).
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Figure 4: Distribution of managers

The following figure plots the stationary equilibrium density distribution of managers

in p and q. Parameter choices are given in (3.11).
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Figure 5: Heterogeneous AM markets - Value of fee profits

The following figure plots Vm(p, 4), Vh(p) and the entry threshold. Parameter choices

are given in (3.11) and (3.20).
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Figure 6: Heterogeneous AM markets - Entry decisions

The following figures plot the density distribution of the prior skill of prospective

managers. The left figure plots the density distribution for all prospective managers,

and the right figure plots the density distribution for managers who choose to enter

the mutual fund industry and hedge fund industry. Parameter choices are given in

(3.11) and (3.20).
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Figure 7: Distribution of mutual fund managers - Heterogenous

AM markets

The following figure plots the stationary equilibrium density distribution of mutual

fund managers in p and q. Parameter choices are given in (3.11) and (3.20).
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Figure 8: Distribution of hedge fund managers - Heterogenous

AM markets

The following figure plots the stationary equilibrium density distribution of hedge

fund managers in p. Parameter choices are given in (3.11) and (3.20).
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Appendix

Proofs

Proof of Lemma 3.1

V(p, 4) is the fixed point of the following map:

Tf(p, 4) =max {(max{pA, fci} - o) dt + (1 - rdt - Adt)E [f(p', '')Ip, c] ,} , (3.21)

where

P/|p

4'| 1

= p + sp(1 - p)dZ ,

= + (b -rq)dt + yvl~ (o-dW + orzdZ)

where Z is a standard Brownian motion. The contraction mapping theorem guaran-

tees that

V(p, 4) = lim) T )

for an arbitrary function f(p, 4).

Suppose that f(p, 4) is an (weakly) increasing function in p and 4. For p, < P2,

E [f(p', 4') Ipl, 4] 5 E [f(p', 4')1p2, 4] ,

since p'lp2 first-order stochastically dominates p'lpi asymptotically as dt -+ 0, and

the distribution of 4' is unaffected. As a result,

Tf(pi, 4) = max {(max{p1 A, f 4} - #) dt + (1 - rdt - Adt)E [f(p', 4') p], 0}

Tff(p2, 4) = max {(max{p 2A, f 4} - #) dt + (1 - rdt - Adt)E [f(P', 4') P21, 0}

since max{p1 A, fci} max{p 2 A, f 4}. Hence, T maps an increasing function in p to
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an increasing function in p. Similarly, for 41 < 42,

E [f(p', 4') 1p, 41] :! E [f (p', 4') p, 421

since 4'142 first-order stochastically dominates 4'141 asymptotically as dt -+ 0, and

the distribution of p' is unaffected. As a result, together with max{pA, f'1}

max{pA, f 21,

Tf (p, 41) < Tf (p, 42) .

Hence, T maps an increasing function in 4 to an increasing function in 4. Since f(p, 4)

is increasing in p and 4,

V(p, 4) = lim Tkf( )
k-*oo

is increasing in p and 4 as well.

Proof of Lemma 3.2

Given the same map T as in (3.21), suppose that f(p, 4) is (weakly) convex in the

direction of (sp(l - p), -79) at each (p, 4). For an arbitrary point (p, 4), define

(P1, 41) =(pA 4) - (6P, 6e4) ,(P2, q2) =(pA 4) (6P, 64)

where 6p and 64 are infinitesimal and

(6p, 6 4) c (sp(1 - P), -z V') .

The order of magnitude of 6p and 64 is set to be the same as or smaller than that

of dt. This assumption on the magnitude of 6 p and SJ guarantees that first- and

second-order derivatives of V(p, 4) are constants in an infinitesimal region within 6p

and 64.

I first show that the following holds:

E [f(p', q')1p, :5 E [f(p', q')Ipi, 41] + IE [f(p', 4') 1p2, 4212 2
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i.e., E [f(p', 4')|p, 4] is locally convex in the direction of (sp(1 - p), uv7). Expanding

the LHS yields

= E [f (p + sp(1 - p)dZ, 4+ (b - q4)dt + V ( udW + )d]

f (p, 4) (b -q4) + 1s 2 2

2 p2

1 2 f(p) 2 + 2 )4+
a2fs(p ( )O p09l - P)azv-] dt

1 1
2 21 fp '|1 1 [f(pd)p2 2

= (f(P1, 41) + f(p2, 42)) + I )(b - 74)
2 ( +)

1___ aD p )0 2+a24 
2f (p, ) sp-

+ a 2f(p,) 2 2
22sp(1 _ p) 2

)uz v] dt + O(v/t)}.

If f(p, 4) is strictly convex at (p, 4) in the direction of diffusion dZ in p and 4, i.e.,

.92f (pd)

[sp(1 - p) [-299 a2f (p4)
L pN

.92f(p'4)a4

the following is (strictly) positive:

Ef(p', 1)Ipj, i1] + [f(P, 4)IP2, q2] - E
2 2

1 ma2f{(p, 4) 62 +a2 f (Pt) +
2 ap2 +2 g C0

+ max{ 0(jp2dt), 0(642dt)} .

If f(p, 4) is flat at (p, 4) in the direction of the diffusion dZ in p and 4, i.e.,

[sp(1 -p)

[a2f(p,4)

Op 2a I a2f (p4)
L90
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Similarly,

[Sp(l ~ P)

cxz V'q J > 0 ,

[f(p', Cj') p,

02 f(p,4) 62
a42 I

a2 f(p, 4) P -)

a42 Oz r

= 0

E [ f ( p', 4')|1p, 4]

= f (P, 4) + I



then

1 1
-E [f(p' q')pi, 1] + -E [f(P', 4')P2, 421 - E [f(p', ')p, 4]
2 ' 2

1 af (p, 4)
2 4 ((b - q41) + (b - 94)-2(b - 714)) dt

+ (2f (pj) 2 (1 + ( 2 - 24) dt + max{0(6P2

= max{0(4p2Vgit), O(6(j2Vg23 )

Hence, the second-order derivative of E [f(p', 4') p, 4] in the direction of (sp(1 -

p), ozV') is at the order of V s or smaller. In the continuous-time limit where

terms of the order of dt dominate, the second-order derivative is zero. Therefore,

E [f(p', j')|p, 4] is convex in the direction of (sp(1 - p), a /).

Note that this logic cannot be applied to (6p, 64) that is orthogonal to (sp(1 -

p), ozq)- If f(p, 4) is strictly convex in the direction of (sp(1 - p), a,/=), but flat

in the orthogonal direction, the second-order derivative of E [f(p', 4') p, 4] in the or-

thogonal direction may be negative at the order of dt. Although one starts from

strictly convex f(p, 4) (in all directions) in order to avoid such a situation, the limit

Tkf(p, 4) as k -s oo may be weakly convex, since the set of strictly convex functions

is not closed. Hence, E [Tkf(p', 4') p, 4] may be locally concave in the direction that

is orthogonal to (sp(1 - p), o/d).

Having proven that E [f(p', 4')lp, '] is convex in the direction of (sp(1 - p), ozV 4)

if f(p, 4) is convex in that direction, I next prove that Tf(p, 4) is convex in the same

direction. Since

max{pA, f 4}

is a convex function,

(max{pA, f 4} - #) dt + (1 - rdt - Adt)E [f(p', q-')]

is convex in the direction of (sp(l - p), Ou,/). Since taking the pointwise maximum
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of two functions preserves convexity,

Tf(p, 4) = max { (max{pA, f 4} - #) dt + (1 - rdt - Adt)E [f(p', 4') 1p, 4], 0}

is convex in the direction of (sp(1 - p), o, /q) in the continuous-time limit.

Since the map T preserves the convexity in the direction of the diffusion dZ in p

and 4,

V(p,4) lim Tkf (p 4)
k-+oo

is convex in the direction of (sp(1 - p), a-zy 7).

Proof of Proposition 3.1

Since V(p, 4) is nonnegative and increasing in p and 4, if V(p', 4') = 0, V(p", 4") 0

for all p" < p' and " 4'. Suppose that (pi, 41) is on the curve q = h(p), i.e.,

V(pi, ') > 0 for all 4' > 41 and V(pi, ') = 0 for all 4' < 41. In addition, suppose that

the curve is (strictly) upward sloping at (pi, 41), i.e., there exists (p2, q2) on the curve

4 = h(p), where P2 > pi and 42 > 4i. However, this implies V(pi, 42) = 0, which leads

to a contradiction. Therefore, 4 = h(p) is downward-sloping.

Since lim&,o V(p, 4) -* oo, the continuity of V(p, 4) implies that there exists 4'

such that V(0, 4') > 0. Therefore, 4 = h(p) crosses the 4-axis at some 4 < 4'. If

4 = h(p) does not cross the p-axis, V(p, 0) is uniformly zero. This implies that there

is no entry, which contradicts a stationary equilibrium. Therefore, 4 = h(p) crosses

the p-axis at some 0 < p < 1.

Proof of Corollary 3.1

At 4 = 0, the direction of diffusion dZ is in the direction of p-axis. Therefore, Lemma

3.2 implies that V(p, 0) is convex in p. pex does not exist if and only if the set E is

empty by Proposition 3.1.

If pex does not exist, I first show that V(6p, 0) > V(0, 0) for an arbitrary small 6p.
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In order to show this, note that

TD

V(0, 0) = E [JT re-" (f 4. - #) du do = 0 j

where the right-hand side is strictly greater than zero from the definition of E. Since E

is empty, TD is solely determined by the Poisson (exogenous) exit process. Similarly,

TD

V(6p, 0) = E [ J - C_'u (max{pA, f 4} - 0) du Po = 6P, 40 = 01

Since E is empty, the process that determines TD is the same as that of V(0, 0). Since

the process of qu is independent of po, and the distribution of pu given po = 6p has a

positive probability for pu > 0,

V(6p, 0) > V(0, 0),

for an arbitrary small 6p. Therefore, V(p, 0) is strictly increasing in p at p = 0, if E

is empty. Then, the convexity of V(p, 0) yields

DV(p, 0) 0  Vp>O,
ap

This proves that V(p, 0) is strictly increasing if pe does not exist.

If Pe exists, by the definition of p,,, for p > Pex,

V(p, 0) > V(pex, 0) = 0.

This implies
V(p, 0)>Pex

dp

due to the convexity of V(p, 0). Therefore, V(p, 0) is strictly increasing for p > pex.
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Proof of Proposition 3.2

Suppose p* does not exist, i.e., there is no p satisfying

V(p, 0) = <b .

Since V(p, 0) is (weakly) increasing, this implies that either V(p, 0) < <b for all p E

[0, 1], or V(p, 0) > <b for all p E [0, 1].

If V(p, 0) < <1 for all p, the participation constraint (3.7) does not hold for any

prospective managers. In this case, there is no entry and, as a result, no managers re-

main in the AM industry since existing managers eventually exit. This is inconsistent

with a stationary equilibrium because of assumption (3.5).

If V(p, 0) > <b for all p, the participation constraint (3.7) holds for all prospective

managers. In this case, an infinite number (measure) of prospective managers enter

AM markets because of assumption (3.3). Since V(p, 4) > <D > 0, funds do not choose

to exit and, as a result, the number (measure) of existing managers becomes infinite.

This is inconsistent with a stationary equilibrium because of assumption (3.5).

Given the existence of p*, the uniqueness naturally follows from Corollary 3.1.

Since V(p, 0) is strictly increasing for V(p, 0) > 0, if p* exists, i.e., V(p*, 0) = <D > 0,

it is unique. Since V(p, 0) is increasing, any p E [p*, 1] satisfies the participation

constraint (3.7).

Proof of Corollary 3.2

As t. -+ o0, pi,t converges to 1 almost surely. If pe exists, since pe < p* < 1

by Proposition 3.2 and V(1, 4) > V(p, 4) > V(p, 0) by Lemma 3.1, V(1, 4) > 0 by

Corollary 3.1 and the fund never chooses to exit. If pe does not exist, the set E

defined by (3.6) is empty by Proposition 3.1, and any fund never chooses to exit.
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Proof of Lemma 3.3

Consider A1 > A 2 . Since the process of pt and 4t do not depend on the value of A,

fee profits for A1 at any s > t

max{pA1 , f } - #

first-order stochastically dominate those for A 2 .

fee profits for A 1 is greater than the value of fee

Hence, for any (pt

profits for A 2, i.e.,

, 4t), the value of

(3.22)

Therefore, the set E(A1 , b) defined by (3.6) is a

not the case, i.e., there exists (p', 4') such that

subset of E(A 2, b). Suppose this is

V (p', o'; A& b) > 0 , V (p', 4'; A2, b) = 0,

which violates (3.22), and is a contradiction.

Similarly, consider b1 > b2 . Given 4t,

S(b)=,+ -S b-4)du+ j q (o-dW + oLzdZ) Vs >t .

4,(bi) first-order stochastically dominates 4,(b 2) for all s > t. As a result, fee profits

for b1 at any s > t

max{pA, fjs(bi)} -

first-order stochastically dominates those for b2 . Hence, for any 4t, the value of fee

profits for b1 is greater than the value of fee profits for b2 , i.e.,

(3.23)

Therefore, the set E(A, bi) is a subset of E(A, b 2 ). Suppose this is not the case, i.e.,
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there exists (p', ') such that

V(p', 4'; A, bi) > 0 , V(p', 4'; A, b2) = 0 ,

which violates (3.23), and is a contradiction. Consequently, for all A' > A and b' > b,

E(A', b') C E(A', b) C E(A, b)

Proof of Proposition 3.3

Given 4t9 ,

4,(b) = 4t+ (b - 7 ,Jduj+ u(dWu + arzdZ) , Vs > t.

For b, > b2 , 4,(bi) first-order stochastically dominates 4,(b 2 ) for all s > t. In addition,

by Lemma 3.3, the exit threshold at p = 0 is lower for b1 than for b 2 . Therefore, since

4,(bi) first-order stochastically dominates 4,(b 2), and the exit threshold for 4,(b1 ) is

lower than that for 4,(b2 ), the probability of an unskilled manager's survival is higher

for b, than that is for b2 , at any s > t.

Denote the cumulative probability distribution function of survival time, condi-

tional on the survival at t, by F(ult), where the support is (t, oc). The probability of

an unskilled manager's survival at s > t (conditional on the survival at t) is closely

related to the distribution of the survival time in the following way:

P(survival between t and s) = 1 - F(sft) .

Therefore, the statement that the probability of an unskilled manager's survival is

higher for b1 than that is for b 2 at any s > t is equivalent to

F(sjt; A1 , bi) < F(slt; A 2, b 2) , Vs > t ,

9In this equation, the physical Brownian motion Zt is used instead of the "perceived" Brownian
motion Z, because the physical distribution is determined by Zt, not Zt. At pt = 0, dZt = dZt for
unskilled managers by (1.1).
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i.e., the survival time of surely unskilled managers for b1 first-order stochastically

dominates that for b2 , given 4t.

Proof of Corollary 3.3

Given the prior skill po fixed, the process of pt, conditional on survival, is independent

of A and b. The process of 4t does not depend on A, but does depend on b. Given

40 = 0,

4 (b)= (b - r14)du+ j qu (o-dW u+o-(-spdu+ dZu)) , Vt >0,
JO JO

by (1.1). Hence, 4t(bi) first-order stochastically dominates 4t(b2 ) for all t > 0. In

addition, by Lemma 3.3, E(A1, bi) is a subset of E(A 2 , b2 ). Therefore, the probability

of an unskilled manager's survival for (A 1, bi) is higher than that for (A 2 , b2 ) at any

point of time.

Proof of Proposition 3.4

Since b, > b2 , regardless of the values of A1 and A 2 , there exists p, such that hi(p) <

h2 (p) for all 0 < p < pE, where h(p) is defined by Proposition 3.1. Consider an

arbitrary small p,. The perceived skill p (the probability of being H-type) of unskilled

managers converges to 0 almost surely as their survival time grows to infinity. This

implies that there exists T such that for all s > T after entry, unskilled managers'

ps lies between p = 0 and p = p,, conditional on survival, with probability 1 - E for

an arbitrary small c, both for economy 1 and economy 2.

Now consider the following hypothetical exit rule: from T, unskilled managers exit

if their h, is smaller than h(p) for s = T + kAT for k = 1, 2, - -.. The hypothetical

exit rate is strictly lower than the true exit rate, because the true exit rule imposes

that unskilled managers exit if their j, is smaller than h(p) for all s > T,. Since the

CIR process is an ergodic process, for an arbitrarily small 6, there exists sufficiently
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large AT such that, under the hypothetical rule, for all k,

P(survival between T + (k - 1)AT and T + kAT)

= 1 _) 1 2, h(_ ) + (c) + O( + O(PS) 1 ,

F) (L2 02 h 0I

where -y is the lower incomplete gamma function, and P indicates probability under

the hypothetical exit rule. Therefore, under the hypothetical rule, for sufficiently

small c and p,, as T grows to infinity

P(survival between T, and T) (1 - 17 ( , h(0)) + 0(6) T

Therefore, under the hypothetical exit rule, the survival probability decreases expo-

nentially in time, where the exponent is

T log I 1- y (2b, , h2 (0)) + 0(6))

The actual survival rate is strictly lower than the hypothetical survival rate. Hence,

the actual survival probability asymptotically decreases exponentially or faster than

exponential functions as T becomes large. Since b1 > b2 , hi(0) < h2 (0), and the

asymptotic attrition rate (for large T) is strictly lower for b, than that for b2 . There-

fore, regardless of the survival probability at T, there exists T such that the survival

probability of unskilled managers for b1 is greater than that for b 2 for all s > T.

Proof of Corollary 3.4

V(0, 4) solves the following ODE:

( )V(0 ) 1 a2V(0, 4)(r + A)V(0, 4) = (f 4 - #) + '4 (b -TI4) + ' 4 (or + of)#
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The particular solution is

Vb(O (b 1 fb-
V6(,77 - + A --

and the homogeneous solution is

V Q(O, M r + A 2 b 2q C2 U r + A 2b 2,q
r7 O.2 + Or2 '.2 + Or2 1 0'.2 + Uz2 I .2 + UZ

where M(ai, a2 , x) is the Kummer's function, and U(ai, a2, X) is the Tricomi confluent

hypergeometric function. Note that ci and c2 are nonnegative because the particular

solution Vb(O, 4) is the hypothetical value of fee profits if the manager does not take

any action. The manager can always choose to exit, and V'(0, 4) represents the value

of the exit option.

For large #

and this implies that c1 = 0. For b > ++)k

V(0, 4) > 0 ,V ;> 0

This implies that c2  0, since c 2 > 0 suggests that lim 0o V(0, 7) - oc. Therefore,

for b> f+A i)

V(0, ) Vb(0,Q) f b + -# _0 > 0, V4 >0.

This implies, since V(p, 4) is increasing in p and 4,

V(p) > 0, Vp > 0 , V4 > 0.

Therefore, the exit set E is empty, and no managers choose to exit.

158



Proof of Proposition 3.5

In the proof of Lemma 3.3,

V(p, 4; A, bi) V(p, 4; A 2, b2) (3.24)

is shown. By the definition (3.9) of p*, the following holds:

p*(A,, bi) p*(A 2 , b2 ) -

Suppose this is not the case, i.e., p, = p*(Ai, bi) > P2 = p*(A 2 , b2). Then

V(pi, 0; A1 , bi) = 'D = V(p 2 , 0; A 2 , b2 ) < V(pi, 0; A 2 , b2) ,

where the inequality comes from Corollary 3.1. This contradicts (3.24).

Therefore, p* is lower for (A 1 , bi) than for (A 2 , b2 ). By Proposition 3.2, prospective

managers with prior skill p C [p* 1] choose to enter the AM industry. The measure

of entries is given by G(1 - p*), where G(1 - p) f' F'(p')dp' and F(p) is the

cumulative distribution of the prior skill of prospective managers. Define g(x) =

G'(x) = F'(1 - x). Then the measure of entries of skilled managers and that of

unskilled managers are, respectively,

n = j p (1 - p)dp , nL = j(I - p)g(1 - p)dp./1 1

Since g(x) > 0 for all x E [0, 1], nH and nL are both decreasing in p*. p*(Ai, bi) <

p*(A 2 , b2) implies that

nH(Al, bi) > nH(A 2, b 2) , nL(Al, bl) nL(A 2 , b2 )

Therefore, the measure of entries, that of skilled managers and that of unskilled

managers all increase in A and b.
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Given p*, the portion of unskilled managers is lower than 1 - p*:

niL nL _ ( f -p)g(l-p)dp P 1 < 1- -*
n nL 'nH fg(1 - p)dp

When p* is lowered by an infinitesimal amount 6 p*, the portion of unskilled managers

among the marginally entering managers is 1 - p*. Therefore, lower p* leads to a

higher portion of unskilled managers among newly entering managers.

Proof of Proposition 3.6

Consider an increase in A: A -+ A'. Suppose that the number N' of active managers

does not change in the new stationary equilibrium. This implies that

A' = A'h(N) > A , b'= bhb(N) =b ,

i.e., A increases and b is unchanged. By Proposition 3.5, the entry threshold p*

decreases, and by Lemma 3.3, the exit set E diminishes. Since changes in A does not

change the process of pt and 4t, there are more entries and less exits compared with

the stationary equilibrium for A. This contradicts the assumption that the number

of active managers does not change.

Now suppose that the number of managers increases such that A' is the same as

A. Denote this number by N". This implies

A' = A'hA(N") = A , b' = bhb(N") < b,

i.e., A is unchanged and b decreases. The entry threshold p* increases, and the exit

set E expands. The process of pt does not change, but the process of 4t(b') is first-

order stochastically dominated by 4t(b). Hence, there are less entries and more exits

compared with the stationary equilibrium for A. This contradicts the assumption

that N increases.

Therefore, in the new stationary equilibrium, N < N' < N" must be satisfied.
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Consequently, A' > A and b' < b in the stationary equilibrium.

Proof of Proposition 3.7

Consider an infinitesimal increase in A: A' = A + 6A where 6A > 0. Let p* be the

initial entry threshold and p' = p* + 6p be the entry threshold after the increase in

A, where the sign of 6p is not determined. Now assume the following hypothetical

entry rule: prospective managers whose perceived skill is above p* choose to enter.

This hypothetical entry rule is different from the actual entry rule under A' where

prospective managers whose perceived skill is above p' choose to enter. The parameter

values A and b at N* is

A = AhA(N*) > AhA(N*) , b = bhb(N*) . (3.25)

Assume the hypothetical exit rule where the exit set E(A, b) defined by (3.6) is charac-

terized by above A and b. Under the hypothetical entry and exit rules, the stationary

measure N of active managers is greater than N*:

N=N*+N, 6N>0,

because the hypothetical entry rule is the same as that for A, and the hypothetical

exit set E is strictly smaller than that for A. The parameter values A and b at N are

A = A(hA(N*) +h' (N*)6N) = AhA(N*) + 6AhA(N*)+ h' (N*)6 ,

b = b(hb(N*) + h'(N*)6N) = bhb(N*)+bh'(N*)6.

Since the entry threshold p*(A, b) is strictly decreasing in both A and b, there exist

CA > 0 and Cb > 0 such that

p*(AhA(N*), bhb(N*)) = p*(AhA(N*) + 6AhA(N*) - ACA6N , bh(N*) -bCO )
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Note that there are infinite numbers of (CA, Cb) that satisfies this condition. Given

Ih' (N*)I < CA and Ih'(N*) cb, p*(A, b), where A and b are determined under the

hypothetical entry and exit rule, is weakly lower than p*(AhA(N*), bhb(N*)).

Now, consider another hypothetical entry and exit rule: prospective managers

whose perceived skill is above p* choose to enter, and the exit rule is the same as the

actual exit rule for A'. Since the actual exit set E for A' is strictly greater than the

hypothetical exit set E(A, b) determined by (3.25), the new hypothetical measure N'

of active managers is strictly less than N. This implies

p*(AhA(N*), bhb(N*)) ;> p*(A hA(N), bhb(N)) > p*(Ah (N '), bhb (N')) .

This implies that the actual p' is strictly lower than p*, i.e., 6p < 0.

Proof of Corollary 3.5

When the exit set E is empty, no managers choose to exit. Therefore, in this case,

the number N of active mangers is determined by

N -G( - p*)
77

where p* is the entry threshold, and G(-) is defined by (3.2). Since the number N of

active managers in the AM industry increases as A increases by Proposition 3.6, the

number of entries must increase as well. Therefore, p* decreases as A increases.

Proof of Proposition 3.8

Consider an increase in b: b --+ _'. Suppose that the number N' of active managers

does not change in the new stationary equilibrium. This implies that

A' = AhA(N) = A , b' = b'hb(N) > b,

i.e., A is unchanged and b increases. By Proposition 3.5, the entry threshold p* de-

creases, and by Lemma 3.3, the exit set E diminishes. Since an increase in b does not
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change the process of pt, but makes the process of 4t first-order stochastically domi-

nant, there are more entries and less exits compared with the stationary equilibrium

for b. This contradicts the assumption that N does not change.

Now suppose that the number of managers increases such that b' is the same as

b. Denote this number by N". This implies

A' AhA(N") < A , b' = b'hb(N") = b,

i.e., A decreases and b is unchanged. The entry threshold p* increases, and the exit

set E expands. The process of pt and t do not change. Hence, there are less entries

and more exits compared with the stationary equilibrium for b. This contradicts the

assumption that N increases.

Therefore, in the new stationary equilibrium, N < N' < N" must be satisfied.

Consequently, A' < A and b' > b in the stationary equilibrium.

Proof of Proposition 3.9

Consider an infinitesimal increase in b: b' = b + b where b > 0. Let p* be the

initial entry threshold and p' = p* + 6p be the entry threshold after the increase in

b, where the sign of 6p is not determined. Now assume the following hypothetical

entry rule: prospective managers whose perceived skill is above p* choose to enter.

This hypothetical entry rule is different from the actual entry rule under b' where

prospective managers whose perceived skill is above p' choose to enter. The parameter

values A and b at N* is

A = AhA(N*) , b = b'hb(N*) > bhb(N*) . (3.26)

Assume the hypothetical exit rule where the exit set E(A, b) defined by (3.6) is charac-

terized by above A and b. Under the hypothetical entry and exit rules, the stationary

measure N of active managers is greater than N*:

N = N* + 6N, c5 > 0,
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because the hypothetical entry rule is the same as that for b, and the hypothetical

exit set E is strictly smaller than that for b. The parameter values A and b at N are

A A(hA(N*) + h' (N*)6N) = AhA(N*) + Ah'(N*)6N,

b = bI(hb(N*) + h' (N*)6N) = bh(N*)+ I~hb(N*) b1'(N*)6N.

Since the entry threshold p*(A, b) is strictly decreasing in both A and b, there exist

cA > 0 and Cb > 0 such that

P= p*(AhA(N*), bhb(N*)) = p*(AhA(N*) - ACA6N, bhb(N*) + 6bhb(N*) - bcb6N).

Note that there are infinite numbers of (CA, Cb) that satisfies this condition. Given

Ih' (N*)I c: 4 and h'(N*)I Cb, p*(A, b), where A and b are determined under the

hypothetical entry and exit rule, is weakly lower than p*(AhA(N*), bhb(N*)).

Now, consider another hypothetical entry and exit rule: prospective managers

whose perceived skill is above p* choose to enter, and the exit rule is the same as the

actual exit rule for I. Since the actual exit set E for I' is strictly greater than the

hypothetical exit set E(A, b) determined by (3.26), the new hypothetical measure N'

of active managers is strictly less than N. This implies

p*(AhA(N*), bhb(N*)) > p*(AhA(N) Iblhb(N)) > p*(Ah (N'), bhb(N'))

This implies that the actual p' is strictly lower than p*, i.e., 6p < 0.

Proof of Corollary 3.6

When the exit set E is empty, no managers choose to exit. Therefore, in this case,

the number N of active mangers is determined by

N- G(1 - p*)
77
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where p* is the entry threshold, and G(-) is defined by (3.2). Since the number N of

active managers in the AM industry increases as b increases by Proposition 3.8, the

number of entries must increase as well. Therefore, p* decreases as b increases.

Proof of Proposition 3.10

By the definition (3.9) of entry threshold p*, p*(D) is a strictly increasing function

of (D from Corollary 3.1, given A and b fixed. Consider an increase in (D: (D -+ 4'.

Suppose that the number N' of active managers does not change in the new stationary

equilibrium. This implies that both A and b are unchanged as the entry cost increases.

However, if this is the case, p*(V) > p*( 4 ): the number of entries is smaller than

that of the stationary equilibrium before the change of 4). On the other hand, the

exit threshold is unchanged, since A and b are not changed. This contradicts the

assumption that the number of active managers does not change.

Now suppose that the number N' of active managers decreases such that the entry

threshold does not change. Denote this number of managers by N", which is smaller

than N. This implies

p*(4'; A', b') = p*( 4 ); A, b) , A' = AhA (N") > A , b' = bhb (N") > b .

Hence, the number of entries is the same as that of the stationary equilibrium for

4 , but the number of exits is smaller: the exit set E defined by (3.6) diminishes by

Lemma 3.3. This contradicts the assumption that N" is smaller than N.

Therefore, the number N' of active managers in the industry satisfies N" < N' <

N. As a result, A and b increases, and p* increases.

Proof of Proposition 3.11

Suppose that N = N2 . This implies that A1 = A 2 and b, = b 2 , which also implies

that p* = p*. By proposition 3.2, the measure G(1 - p*) of new managers enter the

AM industry per time. Since G2(1 - p*) < G1(1 - p*), there are more entries to the

first stationary equilibrium than there are to the second stationary equilibrium. Since
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the exit set E is the same for both equilibria, the exit rate is higher for the second

stationary equilibrium. This contradicts the assumption that N, = N2 .

Therefore, N, > N2 , and

A1 = AhA(N1) <AhA(N 2 ) =A 2 , b1=bhb(N1) <bhb(N2) = b2 -

By proposition 3.5, p* > pg*

Proof of Proposition 3.12

Consider the following map N(N) : R>o -+ R>O: take N as the number of active

managers that determines A and b, and taken those A(N) and b(N) as given, compute

the stationary number N of managers. A fixed point N* of the map N = N(N)

determines a stationary equilibrium.

To be more explicit, for N, A(N) and b(N) are determined by

A(N) = AhA(N) , b(N) = bhb(N) .

Entry decisions of prospective managers for A(N) and b(N) are given by Proposition

3.2. Existing managers exit exogenously with rate A, or endogenously choose to exit

once they reach the exit threshold q = h(p) defined by Proposition 3.1, given A(N)

and b(N). The entry and exit decisions, taken A(N) and b(N) as given, pin down the

stationary number (measure) N of managers. If N = N, N is a stationary equilibrium

number of active managers in the AM industry.

N(N) is a decreasing function in N, since A(N) and b(N) are decreasing in N.

Lemma 3.3 suggests that the exit set E diminishes in A and b, and Proposition 3.5

implies that p* decreases in A and b. Therefore, as N increases, there are more exits

and less entries, and the stationary number N decreases. Note that N is continuous

in N, since an infinitesimal change of N leads to infinitesimal decreases of A and b

and, consequently, N decreases infinitesimally as well. The condition (3.5) implies
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that

lim N (N) -+ oo lim N (N) = 0.
N-O N-+oo

The continuity of N(N) guarantees the existence of a fixed point: N* = N = 9(N).

Therefore, there exists a stationary equilibrium.

The uniqueness of a stationary equilibrium can be shown straightforwardly from

the strict monotonicity of N(N). In order to show that N(N) is strictly decreasing

in N, it suffices to show that p* is strictly increasing in N10. For N, > N2, A, =

A(N1) < A 2 = A(N 2 ) and b1 = b(N1) < b2= b(N2 ). For all p > pe(A,, bi), where

pe is given by (3.8),

T D

V(p, 0; A 2, b2) = E eT u (max{puA 2, fJs(b2)} - #) du PO = p, 4o = 0

T TD

> V(p, 0; A, b,) = E J e-ru (max{puA,, f 4u(bi)} - #) du po = p, 4o = 0 ]

since 4,(b2) first-order stochastically dominates 4t(bi). Since p* is determined by (3.9)

p*(A 2 , b2 ) < p*(A,, bi) .

Hence, p* is strictly increasing in N. The exit set E expands in N, and the process of

4t becomes first-order stochastically dominated as N increases. Therefore, N(N) is

strictly decreasing in N, which proves the uniqueness of the stationary equilibrium.

Proof of Lemma 3.4

The proof is similar to that of Lemma 3.1 and Lemma 3.2. Vh(p) is the fixed point

of the following map:

Tf(p) = max {(pAh - #) dt + (1 - rdt - Adt)E [f (p')Ip], 0}

10The exit set E cannot be strictly expanding for the entire range of N, since the set becomes
empty for a sufficiently small N.
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where

p'p = p+ sp(1 - p)dZ ,

where Z is a standard Brownian motion. The contraction mapping theorem guaran-

tees that

Vh(p) = lim T kf(P)
k-+oo

for an arbitrary function f(p). Suppose that f(p) is an (weakly) increasing function

in p. For p, < p2, E[f(p')p1] E[f(p')p 21, since P'1P2 first-order stochastically

dominates p'Ipi asymptotically as dt -+ 0. As a result, Tff(pl) : Tf(p2). Hence, T

maps an increasing function to an increasing function. Since f(p) is increasing, Vh(p)

is increasing as well.

Now suppose that f(p) is (weakly) convex. For an arbitrary point p, define

P=P- 6 P, P2=P+ 6 P,

where the order of magnitude of 6p is set to be the same as or smaller than that of

dt. If f(p) is (locally) strictly convex at p, i.e., 0
2 fP > 0,

1 1 12f(p
2E [f(p')Ip1] + 21E [f(P')|P21 - E [f(p')|p] = 2 2 +0(6p 2dt) > 0 .

and if f(p) is (locally) flat at p, i.e., a2f(p)= 0,

1 E [f(p')|p1] + E f(P')|P2] - E [f(p')|p] = 0O(6p2V 3 )2 2

In the continuous-time limit, terms of the order dt (or lower) dominate. Hence,

E [f(p') Ip] is convex. As a result,

(pAh - #) dt + (1 - rdt - Adt)E [f(p')| p]

is convex and, consequently, Tf(p) is convex since taking the pointwise maximum

of two functions preserves convexity. Since the map T preserves convexity, Vh(p) =
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limk,, Tkf(p) is convex.

Proof of Lemma 3.5

If p*, does not exist in a stationary equilibrium, this implies

Vm(p, 0) < <b4, Vp ,

in which case there are no entries to mutual fund markets, or

Vm(p, 0) > <D , VP ,

in which case there are infinite entries to mutual fund markets by (3.5).

contradict a stationary equilibrium.

If p* does not exist in a stationary equilibrium, this implies

Vh(p) < ( ,

These

VP ,

which contradict a stationary equilibrium.

If Vm(p, 0) dominates Vh(p), there are no entries to hedge fund markets. If Vh(p)

dominates Vm(p), there are no entries to mutual fund markets. Both of these contra-

dict a stationary equilibrium.

Proof of Proposition 3.15

Suppose that Ah < A,,. Fee profit rates for mutual funds are

max{pt Am, f qt} - ,

and fee profit rates for hedge funds are

ptAh - q5-
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Since the process of pt is the same for hedge funds and mutual funds, given the

same po = p, fee profits for mutual funds strictly dominate those for hedge funds.

Therefore, Vm(p,0) dominates Vh(p), which contradicts a stationary equilibrium by

Lemma 3.5.

Proof of Lemma 3.6

The sensitivity of the hedge fund entry value to p can be easily computed from the

closed form of the value of hedge fund fee profits:

Va~p) I (pA -$)+c -- - 1+
Vh() 1 - + -1-" -- 1+ 1+A

(phA)+h 1  i-p

h(P) - Ah Clf1~- h

and

Ah

Since Vh(p) is convex, Vh(p) increases in p.

The sensitivity of the mutual fund entry value to p is not easy to compute since

Vm1 (p, 0) does not take a closed form. For p > pm, Vm(p, 0) can be decomposed as

follows:

Vm(p, 0) = (pAm + V(p, 0)

where Vm(p, 0) satisfies

(r + A)V.(p, 0) = i 2V )2p, ) 2( _ )2 + V(, 0)b
2 8p2  sp(p)+ .

Therefore,
8Vm(1, 0) Am + 2 V(1, 0)b

ap r + A apad
Now I show that ap94V,,(1, 0) < 0. First note that

ap adVm(p, 0) = 09Pv ( p, 0).
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Since 4, for s > t is independent of pt,

pVm(1, 0) a TDap it'r

= E je-rA)Aml{Am>fs.}ds]

since ps = 1 for s > t given pt = 1. As a result,

a4aPVm(1,0)
= E 00 e-(r+A)sAmI{Am>fqs}ds

(9qtit

Am
-AmE e-(r+A)s a4 qs

>0 , Vs > t ,

and strictly positive for finite s.

result,

Note that 6(-) is the Dirac delta function.

9Vm(1,0) Am

ap r+A

As a

Since Vm(p, 0) is convex by Corollary 3.1,

avm(p, 0) <aVm(1, 0) Am

ap - ap r + A
Ah

r + A

Therefore, the sensitivity of the mutual fund entry value to p is strictly lower than
Am

Proof of Lemma 3.7

Since p defined by (3.14) is a monotone decreasing function of s, s < 9 is equivalent

to p > ft where

8(r + A)
S= 1 -2
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p* is determined by the following condition:

p *Ah - c
r +A cIP h* Ph

where c1 is defined by (3.16). In the limit y -+ oc, i.e., s -+ 0,

*,00 (r + A)4+#
Ph* -+Ph Ah

p* can be decomposed as follows:

phr = p* + 6P*() W

Then, for sufficiently large ji, 6p* (/) is determined by

0 6ph()+ 2# 1
r+A r+AP+1

(r +A)( +# 0

kj-1i

h-(r + A) -
Ah -

x (1 +
Ah A

which can be approximated as

6P*(Y) 1 20 1 - (
( -t A

x Ah - r+ A)4 --

Ah -#0

Ah (r + A)4) +
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For large p-t, Vh'(p*) reads

Ah ph + _Ph

r+A Ph l-Ph
AhP Phq ~'0 _

Ah~ ~ 2__ _ _ __ _ _

A h 2 # p *"' + P - M - I )
r + A r + A p+ WO*O +1)

A - # #X i 4-
* + A (r + A)p*'O (r + A)<D + #

(/Ah
Ph

Ah -(r + A4 -
Ah - 0

Hence, V,,(p*) is strictly decreasing in pu for large p, and

ur ,(P*t) Ah Am

r+A r A

by Proposition 3.15. Therefore, there exists - such that for p > [t

Am
V'(P*; P) > A

h h r+A

This implies that there exists 9 such that, for all s < S,

Am
V (P*; s) > A

Proof of Proposition 3.16

I first show that p* < p*.

implies

Suppose that this is not the case, i.e., p* > ps. This

Sn = V(P*) is V(P*, 0)

Since V(-) is convex, for p > p*

&Vm(p, 0)
>p

where the second inequality comes from Lemma 3.6. Combining the two relations,

for p > p

Vh(P) > V.(p,0),
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which contradicts the stationary equilibrium by Lemma 3.5. Therefore, p* < p*, and

this implies

<D = Vh (Ph* < m.(P* ,0) -

Now, I show that there exists p* < < 1 such that

Vh() = Vm(, 0).

Suppose there does not exist such P. Since <) = Vh

for all p > pi*)

(p*) < Vm(P*, 0), this implies that,

Vh(p) < Vm(p, 0) ,

which contradicts the stationary equilibrium by

p* <j3 < 1 where

Lemma 3.5. Therefore, there exists

Vh() = Vm(A, 0).

Next I show that P is unique and

Vm(P,0) -Vh (P) { > 0

< 0

, ifp>p

7ifp~

The uniqueness of P is straightforward from

, Am, DVm( p 0)
V '(P) > At> a"(I0

r + A Op

for p > p*. Since the slope of Vh(p) is strictly greater than the slope of Vm(p, 0) for

p > ph , once those two functions cross, they never cross again. The continuity of

Vh(p) and Vm(p, 0) guarantees that Vh(p) < Vm,(p, 0) for p <j3, and Vh(p) > Vm(p, 0)

for p > P. Consequently, prospective managers with p E (p*1, ) enter mutual fund

markets, and prospective managers with p G (P, 1] enter hedge fund markets.
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Proof of Proposition 3.17

Given that Em is empty, no mutual fund managers choose to exit. On the other hand,

the hedge fund exit set Eh defined in (3.15) is always nonempty. These together imply

that there exists 0 < P < 1 such that

Vm(p, 0) > Vh(p), Vp C [0,j3),

and for an arbitrary small 6p > 0

Vm(j+6p,0) < V(P + 6p),

by Lemma 3.5. Next I show that

Vm(P, 0) < Vh(P) Vp E(,1]

Since Vm,(p, 0) and Vh(p) are smooth,

V '(P) > ppVm (P, 0)

In order to proceed, I first need to show that

4 apVm(p, 4) < 0 . (3.27)

Since 4, for s > t is independent of pt,

OpVm(p, 4) = 9 E [JTD ers (max{psAm, f 4s} - #) ds
Jpt e

= E -r ps Amljp Am;,>fq.,ds .

Note that TD is independent of the change in pt"1 , since the mutual fund exit set Em

"1This property is crucial to prove that adDpVm (p, q) is nonpositive.
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is empty. As a result,

aoapVm(p, 4)
S E[ TD -rs Am11ps.lA.>fd s

-qt e ampt m~Ijds

-AmE [JD Crs aPs a~sapt 094e psAtm

f )
ds] <0

where 6(-) is the Dirac delta function. The sign of 49 OpVm(p, e) comes from

> 0 > 0 Vs > t .

Now decompose Vm(p, 0) as follows:

Vm(p, 0) = V (p, 0) + V"(p, 0) ,

where

pA pAV, m
r+ A

and V4 (p, 0) solves

(r + A)V",(p, 0) =
1 m2 V (p,0) S2p2

2 ( 2 2 P)2  +V'(p, 0)b_ ,32+ b

Note that (3.27) implies

9P 4 Vm(p, 0) = 8(94V,(p, 0) ; 0,

i.e., av?(pO) is decreasing in p.

Define

Vm(p, 0) = + Cmo +

where cm,O and cm,1 are chosen such that

Vm(P, 0) = Vm(3, 0), aPVm(P, 0) = 9PVm(P, 0) .
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I first need to show that
b aVm (P,0)

'r+A a q

Suppose that this is not the case, i.e., cm,o > b av (O). For p' = j + 6p with an

arbitrary small 6p,

DpVm(p', 0) - DpVm(P, 0) =

2
s2p2 (1 - p)2

2

s2P2(1 - p) 2

[Vm(P'

[17m (p,

0)

I 2Vm(p,0)dp

p d_ pAm b V (p,0)
r +TA r +A a94 jd

0) pAm -cm, 1O dp
r + A

= ap8m(p' 0) - DpEm(p, 0) ,

because of (3.28).

Vm(p', 0),

Since the first-order derivative of Vm(p', 0) dominates that of

Vm(p', 0) > Vm(p', 0) .

A similar argument shows that

An-+ b aVm(1,0)
r+ A r+ A a4

> Vm(1,0)

which is a contradiction since b av.(1,0) < b aV, (AO) < Cm, 0 .r+A aq~ - rA a

b WVg(3,0)
r+A aq

Therefore, CmO <

Now I can prove that for all p > 3,

Vm(p, 0) > Vm(p,0), &pVm(p, 0) > ePVm(p, 0) .

For p'= 7+ 6p with an arbitrary small 6p,

&pVm(p', 0) - 9pVm( ,0) = I p'2 Vm(p,0)dp

2

S2 p2(1 - p) 2

2

s2p2(1 - p) 2

[Vm(p, 0)

[rm(p, 0)

pAM b -v(p,0) dp
r + A r + A a4

pAm -
r + A CmO dp = am(p', 0) - pfm(p, 0) ,
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Am -$
r+ Cm,Or+ A

(3.29)

=jp

jp'<



where the equality holds if "V4(pO) is constant over p E [jp'). Otherwise, the strict

inequality holds. This implies that Vm(p', 0) < Vm(p', 0). Suppose that (3.29) is

violated. Then, from the continuity of V,,(p, 0) and Vm(p, 0), there must exist p" c

(j, 1) such that

Vm(p", 0) Im(p", 0) , DpVm(p", 0) = Dpm(P" , 0) ,

and for an arbitrary small 6p > 0

DpV(p" +6p,0) > pf(p" +6p,0).

Suppose that there exists such p". Then one can construct

pAM - 0
V' (r +) = + C'm~ 'm0 (P )y-M e 1 -P

such that

Vm(p", 0) =VI(p",0) , pVm(p",0) = apvm(p",o) = pv4'(p", 0).

This implies that c' <,0 c m,o and

shows that

C' = Cm,1. A similar argument to that of Vm(p, 0)

8 pVm(p" + P, 0) ap' (p" +6p, 0) = pm(p" + 6p, 0),

which contradicts the existence of p". Therefore, for all p > 7,

Vm(p, 0) > Vm(p,0)1 DpVm(pO) > DpVm(p, 0).

Finally, I show that

Vm(p,0)<Vh(p), VpE(p, 1.
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Denote

g(p) = V/1 - P < 0.

Note that g'(p) > 0. Suppose that c1 > cm,. Since

Ah Am
V(3) =r + cig( ) > apVm( (, 0) = 9Pm(, 0) Am + cmig()

the following holds for all p > P:

Ah Am
( P) A + A + cmg(p) =apm( p,0).

Now suppose that cl < cm,l. It is straightforward that V,(p) is (strictly) greater than

9p m(p, 0) for all p > P. Therefore, since V(P) = Vm(i, 0),

Vh(p) > Vm(p, 0) > Vm(p, 0),

for all p > 3.

Proof of Corollary 3.7

The mutual fund exit set Em is empty in the limit of # - 0, but the hedge fund

exit set Eh is nonempty. Since p = 0 is always included in Eh, unskilled hedge fund

managers choose to exit once they reach ph, which converges to zero in the limit of

# -9 0. Therefore, hedge funds exit at a higher rate than mutual funds do.

Proof of Proposition 3.18

Consider a map N(Nm, Nh) = (Nm, Nh) : R2 -> Ri. The map takes the numbers

Nm and Nh for the values of Am(Nm), b(Nm) and Ah(Nh), and computes the stationary

numbers Nm and Nh of mutual fund managers and hedge fund managers, respectively.

A fixed point N* = (N,*, N*) of the map (Nm, Nh) = N(Nm, Nh) determines a

stationary equilibrium.

Compared with the proof of Proposition 3.12, it is much more tricky to show the
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existence and the uniqueness of a fixed point of a two-dimensional map than that of

a single-dimensional map. In order to address this issue, the proof consists of two

steps: first, I define a map that reduces the dimensionality of the map N(Nm,, Nh),

and next, I show the existence and the uniqueness of a fixed point of the reduced

map. A fixed point of the reduced map solves for a fixed point of N(Nm, Nh), and

vice versa.

Define a map Nm(Nm; Nh) : R>o - R>o. The map regards Nh as an exogenous

parameter, and uses the value for computing Ah(Nh) and, consequently, Vh(p). For

each Nm, the map takes the value of Nm to compute Am(Nm) and b(Nm). Then,

the map computes the stationary number Nm of mutual fund managers as a func-

tion of Nm. I first show that a fixed point of this map Nm(Nm; Nh) exists and

it is unique, given Nh. Proposition 3.16 proves that, if there exists P such that

Vm(, 0) = Vh(P), Vm(p, 0) > Vh(p) for p < P and Vm(p, 0) < Vh(p) for p > P. Since

P changes continuously as Nm changes, entry decisions are continuous in Nm. Since

Vm(0,0) > Vh(0), P exists as long as Vm(1,0) < V (1). If Nm is sufficiently large,

Vm(P, 0) < <D and there are no entries to mutual fund markets, i.e., Nm is zero. If

Nm is sufficiently small, Vm(p, 0) > Vh(p, 0) for all p, and all entries are into mutual

fund markets. As Nm goes to zero, Nm diverges to infinity from (3.3). Therefore,

from the continuity of m(N,; Nh), there exists a fixed point N,*(N) satisfying

N,*(Nh) = Nm(N**(Nh); Nh). The uniqueness of the fixed point comes from the

strict monotonicity of Nm(Nm; Nh) for Nm > 0.

Now define a map Nh(Nh) : R>o -+ R>o. The map is defined by

Nh(Nh) Nh (N,*(Nh), Nh),

where N,;*(Nh) is the fixed point of Nm = Nm(Nm; Nh). In other words, Nh(Nh)

computes the stationary number of hedge fund managers taking Nh and N*:*(N) as

given. Note that N**(Nh) is continuous in Nh, which can be proven by the continuity

of entry decisions in Nm. If Nh is sufficiently large, there are no entries to hedge

fund markets and N is zero. In contrast, if Nh goes to zero, N,, diverges to infinity.
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The continuity of N**(Nh) implies the continuity of Nh(Nh) and, hence, there exists

a fixed point Nt* = Nh(N*). Then, N**(N**) and N* jointly solve

(N; N*(N** ), N** ) = ( N** ( N** ), N** ).

Therefore, there exists a stationary equilibrium.

The proof of the uniqueness of the stationary equilibrium requires several steps.

Denote the stationary measure of mutual fund managers and hedge funds managers

in a stationary equilibrium by N* = (N*,, Na). Suppose that there exists another

stationary equilibrium, and denote the stationary measure of mutual fund managers

and hedge fund managers by Nt = (Nt, Nt). There are four possible cases:

1.N*>Nt N*N , 2. N* Nt , N, * < N

M h- h m- m - h,

3. N* Nt N* Nt , 4. N*< Nt , N* Nt

where N* # Nt.

In case 1,

Am(N*,) : Am(Nmt) ,b(N*,) b(Nt) Ah(Nh) < h(Nt),

with at least one strict inequality. This implies that there must be more entries to

one type of the AM markets for the stationary equilibrium with Nt than entries to

the same type for the stationary equilibrium with N*. This implication contradicts

N*, > Nt or Nj > Nt. A similar argument excludes case 2.
m h'

In case 3,

Am(N*,) :Am(Nt) , b(N*,) &b(Nt) , Ah(Nh*) ?Ah(N )

with at least one strict inequality. This implies that there must be more entries to

mutual fund markets for the stationary equilibrium with Nt than entries to mutual

fund markets for the stationary equilibrium with N*. This implication contradicts
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N* ;> Nmt. A similar argument excludes case 4.

Therefore, since Nt # N* is not consistent with a stationary equilibrium, the

stationary equilibrium for N* is unique.

Proof of Proposition 3.19

Consider a map N(Nm, Nh) = (Nm, Nh) :RO -+ R 0. The map takes the numbers

Nm and Nh for the values of Am(Nm), b(Nm) and Ah(Nh), and computes the stationary

numbers Nm and Nh of mutual fund managers and hedge fund managers, respectively.

A fixed point N* = (N*, N) of the map (Nm, Nh) = N(Nm, Nh) determines a

stationary equilibrium.

Define a map Nm(Nm; Nh) : R>o -*I RIo. The map regards Nh as an exogenous

parameter, and uses the value for computing Ah(Nh) and, consequently, Vh(p). For

each Nm, the map takes the value of Nm to compute Am(Nm) and b(Nm). Then,

the map computes the stationary number Nm of mutual fund managers as a func-

tion of Nm. I first show that a fixed point of this map Nm(Nm; Nh) exists and

it is unique, given Nh. Proposition 3.17 proves that, if there exists P such that

V.(,0) = V(P), Vm(p,0) > Vh(p) for p < P and Vm(p,0) < Vh(p) for p > P. Since

P changes continuously as Nm changes, entry decisions are continuous in Nm. Since

Vm(0, 0) > Vh(0), P exists as long as Vm(1, 0) < Vh(1). If Nm is sufficiently large,

Vm( 3P, 0) < <b and there are no entries to mutual fund markets, i.e., Nm is zero. If

Nm is sufficiently small, Vm(p, 0) > Vh(p, 0) for all p, and all entries are into mutual

fund markets. As Nm goes to zero, &, diverges to infinity from (3.3). Therefore,

from the continuity of N,(Nm; Nh), there exists a fixed point N**(Nh) satisfying

N,*(Nh) = N(N*:*(Nh); Nh). The uniqueness of the fixed point comes from the

strict monotonicity of m(Nm; Nh) for N, > 0.

Now define a map Nh(Nh) : R>O - R>O. The map is defined by

Nh(Nh) - Nh(N*m*(Nh), Nh),

where N*(Nh) is the fixed point of Nm = Nm(Nm; Nh). In other words, Nh(Nh)
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computes the stationary number of hedge fund managers taking Nh and N**(N) as

given. Note that N;*(Nh) is continuous in Nh, which can be proven by the continuity

of entry decisions in N,. If N is sufficiently large, there are no entries to hedge

fund markets and &h is zero. In contrast, if Nh goes to zero, N diverges to infinity.

The continuity of N,*(Nh) implies the continuity of Nh(Nh) and, hence, there exists

a fixed point N * = R&(N*). Then, N*,(N*) and N** jointly solve

(N;*(N**), N**) = N(N**(N**), N**).

Therefore, there exists a stationary equilibrium.

The proof of the uniqueness of the stationary equilibrium requires several steps.

Denote the stationary measure of mutual fund managers and hedge funds managers

in a stationary equilibrium by N* = (N,, Na). Suppose that there exists another

stationary equilibrium, and denote the stationary measure of mutual fund managers

and hedge fund managers by Nt = (Nt, Nt). There are four possible cases:

1. N* > Nt N* > Nt 2. N*< : Nt N* <Ntm- m h- h m- M h - h 7

3. N*> Nt N*< Nt , 4. N,*, N t N* >Nt

where N* 5 Nt.

In case 1,

Am(N*,) < Ant(Ntt), b(N*,) < b(NtJ A (Nh) :! h (Nt),

with at least one strict inequality. This implies that there must be more entries to

one type of the AM markets for the stationary equilibrium with Nt than entries to

the same type for the stationary equilibrium with N*. This implication contradicts

N >, > Nt or Nh > Nt A similar argument excludes case 2.

In case 3,

Am(N*,) < Am(Nt) ,b(N7*,) < b(Nmt) ,Ah(Na*) > Ah(N t
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with at least one strict inequality. This implies that there must be more entries to

mutual fund markets for the stationary equilibrium with Nt than entries to mutual

fund markets for the stationary equilibrium with N*. This implication contradicts

N* ;> Nt. A similar argument excludes case 4.

Therefore, since Nt h N* is not consistent with a stationary equilibrium, the

stationary equilibrium for N* is unique.

Proof of Proposition 3.20

Given f and nontrivial 0(-), i.e., 0(-) is not uniformly zero, the net alpha is

Et [drex] = JtAdt - fdt - Et [4(drex)]
qt

Rational investors provide capital until the net alpha becomes zero. If the net alpha

becomes negative, rational investors withdraw their capital and do not invest in the

fund. If rational investors invest in the fund,

ptAdt ptA
Et [dr|x] = - - fdt - Et [4(dr X)] = 0 <- i=

because dr'x is symmetric and mean-zero and, as a result, Et [4i(dr x)] = 0. On

the other hand, if the amount 4t of naive money exceeds the size 2, the net alpha

becomes negative, which implies

Et [drex] < 0 <-= Et [4(drex)] < 0,

since the conditional distribution of drex has a negative mean and is symmetric about

the mean.

Then, the expected fee revenues between t and t + dt at time t is

Et max , It (f dt + (drex)) A p Adt

f f4t (f dt + Et [4(drex)]) < 4tf dt ,t > L-t^

Therefore, the conditional expectation of fee revenues at time t is smaller for any
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nontrivial 0(-) than for uniformly zero 0(-). At entry, a manager make choices in

order to maximize the discounted fee profits

f~/4)T D ert ma 1 ptll(ij (f dt + V/4drx)) - O5dt)V = max E e* max ,I 4 t + dr'--d
f,o(-),TD [0f

TD - ~

= max E er Et max{j , 4t (f dt + 0(drex)) - #dt)]
f,,O(-),TD [01 f I

where the second inequality comes from the law of iterated expectations. For any

choice of f and TD, because the dynamics of 4t does not depend on the choice of V(-),

the manager is better off by choosing 0(-) = 0, i.e., flat fees.
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