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Abstract

The study of gravitational micro-lensing at high optical depth has only rarely involved

the close examination of the individual actual micro-images that arise as a result of

the phenomenon. We discuss methods that refine on previous work done in the search

for micro-images, which have been largely ignored in favor of other methods to study

micro-lensing. With the help of magnification maps generated by Herr Prof. Dr.

Joachim Wambsganss, we ran simulations that track positions and magnifications

of micro-minima as functions of source position. We discuss the breakdown of a

commonly used approximation for magnifications near fold caustics. Our results show

that the approximation is noticeably broken at a caustic strength-scaled distance

of 0.1. The relevance of this breakdown to work done by other authors is briefly

examined. We then then discuss a few new results for the statistics of micro-images,
deriving a formula for the mean micro-minimum magnification. We present a method

for exactly calculating the caustic networks of micro-lensed systems, and calculate

probability distributions for the caustic strength for two sets of parameters of interest.
We present the creation of videos of the micro-lensing affect for pedagogical purposes.
Finally, we briefly examine micro-lensing near macro-caustics and study the motion
of micro-images as a point source crosses a macro-caustic.

Thesis Supervisor: Paul L. Schechter
Title: William A. M. Burden Professor of Astrophysics, Emeritus
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Chapter 1

Introduction

1.1 Gravitational lensing

When you look out at the stars at night, even when it is as clear as can be, there

is a distinct twinkling that fails to ever really go away. This is in large part due to

the Earth's atmosphere causing minuscule fluctuations that disturb the waves of light

your eye receives.

The phenomenon of intervening matter disturbing the light from a distant source

is not limited to light passing through the atmosphere. On a larger scale, light from a

very distant background source that passes through an intermediate galaxy on its way

to us also appears to twinkle and fluctuate over time. Even more remarkably, there

can sometimes appear multiple images of the same object in the sky. Confirmation

comes through both spectral analysis and the presence of general large scale features

over time that appear in the lightcurves of all the images (albeit shifted in time).

Einstein's theory of relativity provides the explanation for this. In essence, the

presence of an intervening mass distribution (in this case, a galaxy) between an ob-

server and a properly aligned background source acts as a lens, magnifying the light

received from the source. In addition, the curvature of spacetime by massive objects

can provide multiple geodesics for light to reach us, as Fermat's principle states that

light travels along paths which are local stationary points of the travel time.

Gravitational lensing provides a way to study objects located behind a galaxy

13



which we may otherwise be unable to see, and lends itself to studying not only the

makeup of the lensing galaxy but also the source itself as well through the variations

in the light we receive.

The most interesting features in the lightcurve of a source are periods of highly

increased magnification, which typically occur during events known as caustic cross-

ings. During such events, the number of images increases or decreases by two, leading

to a large change in flux received.1 There exist approximations for the temporal vari-

ations in flux of an ideal point source near such an event, but these approximations

are known to break down outside a certain regime. Additionally, parameters that

characterize the approximation cannot be observed. In general, these events can only

be analyzed statistically for micro-lensing with current observational abilities.

For an extended source, the observed temporal variation is the convolution of the

source profile with the temporal variation of a point source. A better understanding

of the behavior of point sources near caustic crossings will help in the analysis of ex-

tended sources, as the high magnifications near caustic crossings are easier to observe

and thus are most valuable for learning about source profiles.

We therefore set out with the main goal of examining the behavior of micro-images

near caustic crossing events. From there we will branch out slightly to other areas

which either aid or supplement our analysis and understanding of micro-images, as

well as extend our methods to further regions of interest.

1.2 Outline for the thesis

In Chapter 2, we provide a background to lensing and present the relevant mathe-

matics needed while building up some important concepts.

In Chapter 3, we discuss the development and refinement of methods to search for

the locations of all the micro-images of a point source produced by a random star field.

The behavior of micro-images near caustic crossings is examined, with an analysis

For the majority of our study, this means the number of micro-images changes by two. However,
Chapter 7 will briefly discuss when the number of macro-images changes by two and how the number
of micro-images is affected as well.
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of the approximations commonly used. The breakdown of such approximations is

discussed, along with how the regime wherein the breakdown happens affects analyses

of previous work.

In Chapter 4, we discuss some statistical results for mean micro-minima magnifi-

cations using extensions of previous work. We raise the question of the possibility of

deriving probability densities for caustic strengths. We provide the steps necessary

for such a derivation, which relies upon an integral that we were unable to easily

evaluate, approximate, or simplify.

In Chapter 5 we present a method to calculate the caustic network of a field of

stars. We perform simulations and determine the probability distributions for caustic

strengths for two sets of parameters of interest.

In Chapter 6 we discuss the animation of the creation and annihilation of pairs of

micro-images, and the creation of a video for pedagogical purposes.

In Chapter 7, we briefly begin to look at how our work can be extended to the

regions around macro-caustics. We examine the motion of micro-images as a point

source crosses the micro-caustic network of a macro-caustic.

In Chapter 8, we provide a brief summary of our work and some ending remarks.

15
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Chapter 2

Basics of Gravitational Lensing

2.1 A difference in scale

2.1.1 Macro-lensing

On a macro-scale, a galaxy as a whole (or a cluster of galaxies) provides a smoothed

out matter distribution that acts as a lens, with an effective index of refraction that

can vary in locations throughout the galaxy depending on how the matter is dis-

tributed. These variations produce the multiple macro-images of a background source

that are spatially resolved in the sky. The light received from these images fluctu-

ates over cosmic time scales due to movement between the source, lens, and observer.

Fluctuations visible in all the macro-images must be due to intrinsic source variability.

However, additional small scale fluctuations appear which differ from macro-image to

macro-image that are not explainable as such.

2.1.2 Micro-lensing

The matter in a galaxy is in actuality not all smoothly distributed. In addition to

dark matter (which is assumed to be a smoothly varying component with particles of

mc2 ~-1GeV), the baryonic matter in a galaxy is discretely packeted into components

such as stars and planets. These components act as micro-lenses in their own right,

creating thousands of unresolvable micro-images that together make up the macro-
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image. The movement and changes in the flux from these micro-images in total

produces the flux variations we can actually observe in the macro-images.

Due to the fact that these micro-images are not directly observable, their proper-

ties must be studied through simulations, in order to be able to statistically analyze

observed events.

2.2 Relevant equations and variables

The grittier details of lensing have been explored elsewhere, e.g. [2], [10], and [12].

We will take as given the following facts in examining the local affects of micro-lensing

at the location of one particular macro-image.

1. The function r() oc - )- g4s) gives the time delay at a point Y in the

image plane for light from a source at position ' in the source plane. This

delay is due to a geometrical offset, and the Shapiro time delay due to the

gravitational potential # caused by a mass distribution in the image plane. The

coordinate systems for X and ' are taken to be concentric, and with similarly

oriented axes. r here is taken to be dimensionless, as the proportionality factor

depends only on physical constants and distances between source, lens, and

observer. The size of the intervening mass distribution is taken to be much

less than the distances between source, lens, and observer, so that the thin

lens approximation can used. # is then an integral of the three dimensional

gravitational potential along the line of sight.

2. Fermat's principle tells us that images are located at positions X which are local

stationary points of the travel time, i.e. where Vy[T(i)] = 0. Note that for no

intervening mass distributions, this gives Y = y, as expected - we only see one

image located precisely at the position of the source, as any deviation would

only increase the light travel time.

3. 1 and 2 together give the lens equation, Y = F -

18



4. The lens equation in the vicinity of a macro-image can be taken to have the

form

I1- -Y 0

0 1 - r, + -

The convergence r. c V2 o is (through Poisson's equation in two dimensions) a

dimensionless surface mass density in the area of interest. The shear y > 0 is

a tidal distortion due to the global presence of the rest of the galaxy that has

a constant value locally. Depending on the values of K and -/, small changes

in source position can induce large changes in image location. However, equal

variations in source location Ay will produce equal deflections Ax.

5. The coordinate system has been oriented such that the inverse magnification

matrix

(9 1 - K- 0
A-

a Y 0 1 - r,+7

is diagonal (which is always possible to achieve). This dictates two principal

directions, along which the image of a circular source will be stretched or com-

pressed to produce an ellipse.1 The magnification p of an image is a ratio of
1

the size of the image to the size of the source, and is equal to p = . For
det A

the macro-image, the mean magnification is

1
((macro) 1- ) 2  

2

Magnifications may be positive or negative, depending on the signs of the eigen-

values of A (or equivalently the shape of T at the location of an image). A

saddle point of T corresponds to a negative magnification, which is interpreted

as a parity flip of the image. A minimum or maximum of T will be of positive

magnification.

6. The presence of micro-lenses, such as stars, in a matter distribution breaks the

'It is the shear which causes such an effect. Convergence alone only alters the size, and so
equivalently the magnification, of the image of a source.
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smoothness of the gravitational potential on some scale. For micro-lensing, the

lens equation can be taken to have the form

_, 1dsark - 'Y 0 ~i 2 N X

0dr~ 0dr Y)i1 X X

where Idark is now the surface mass density in smoothly distributed dark matter,

and -y is unchanged. The stars are taken to be point masses located at the

xi in the source plane, and the mi are the masses of the stars in terms of

a unit mass. This unit mass determines OE, a distance scale known as the

Einstein radius which depends on the unit mass used, physical constants, and

distances between source, lens, and observer. The covering factor of the stars,
N

n Z7r . 02 - mi where n is the number density of stars, provides an

effective convergence. Together, I,* + rdark provide the total r, present in the

lensing equation for a macro-image.

7. For a given source position y, there are now multiple image positions i which

solve the lens equation, thus producing the multiple micro-images. The mag-
1

nification p of an individual micro-image is again still equal to , where
det A

A is evaluated at the image location. However, as our coordinate system

is oriented along the principal axes of the global shear, A is no longer necessarily

diagonal at the location of each micro-image. The individual stars provide their

own shear which does not necessarily align with the global shear, thus producing

off-diagonal terms in A (though of course A can still be diagonalized at the yet

more local position of a particular micro-image, producing a coordinate system

where the global shear would have off-diagonal terms).

For our analysis, we will assume that all masses are equal to IMG and use E as

our unit distance (in the image plane, and an appropriately source-image-distance

scaled OE in the source plane). In addition, Paczynski has shown that the presence

of rdark simply amounts to a scaling of -y, ,K, and [ [12]. Thus we can set Kdark = 0

without loss of generality.

20



2.3 Building up a macro-image from micro-images

Examining the lens equation without any perturbing stars for a moment, we see that

there is a unique image location for every source position, whose position is simply

scaled from the source position by factors involving -y. The time delay for sample

configurations are shown in figure 2-1, corresponding to a macro-saddlepoint and a

macro-minimum.

Adding a single star to the smoothed out matter distribution perturbs the smoothed

out time delay function and adds additional solutions to the lens equation. This typ-

ically results in an additional saddle point close to the star, as can be seen in the

zoomed regions in figure 2-1. Continuing the procedure with stars appropriately far

away from the location of the macro-image produces many micro-images (namely sad-

dle points) which are "associated" with a star in the field. As one adds more stars,

particularly close together and near to the original location of the macro-image, de-

pending on the configuration of stars there may appear micro-minima in addition to

micro-saddles.

2.4 Critical curves and caustics

The inverse magnification matrix A = - varies smoothly as a function of j? over the

image plane. The locus of points where det A = 0 form what are known as the critical

curves. The mapping of this set to the source plane forms a locus of points known as

the caustics. Caustics form the boundaries between regions with varying numbers of

micro-images.

The case of a single perturbing star in a field with external shear has been ex-

tensively studied already, starting with Chang and Refsdal in [3] and [4], and more

recently by An and Evans [1], and is known as the Chang-Refsdal lens. The critical

curves and caustics for such a system corresponding to a macro-saddle (taken to be

similar, but slightly different than that of figure 2-1) are shown in figure 2-2.2 For a

source located outside the caustics, there are two micro-images: that corresponding
2A macro-saddle requires a shear -y > 1, and a minimum requires y < 1.
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Figure 2-1: Sample time delays for a macro-saddle and a macro-minimum

Top: Sample time delays of a macro-saddle. From left to right: time delay of the

smoothed-out matter distribution, time delay with the presence of one perturbing

star, zoom of the boxed area. Bottom: Sample time delays of a macro-minimum.

From left to right: time delay of the smoothed-out matter distribution, time delay

with the presence of one perturbing star, zoom of the boxed area. In both cases the

position of the source is taken to be (3,1) in the source plane, which is concentric with

the image plane and aligned with the same axes. The location of the macro-image

has been ever-so-slightly perturbed after the addition of the star in both cases. Note

that the introduction of a star technically adds another root (a micro-maximum) to

the lens equation in addition to the saddle point, which can be found at precisely the

location of the star. However, the travel time there is formally infinite and the image

is infinitely de-magnified.
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Figure 2-2: Sample lightcurve for a Chang-Refsdal Lens
Counterclockwise from top right: Critical curves in the image plane for a star at
the origin, caustics in the source plane, and magnification as a function of source y-
position for a source moving along a track in a straight line from (0,-0.3) to (0,3). The
system examined here is one with external shear corresponding to a macro-saddle.
The colored squares and circles in the image plane correspond to the micro-minima
and micro-saddles (respectively) of like colored sources. Note the formation of an
extra pair of images for the blue source which has just crossed a caustic.
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to the original unperturbed image of the source, and the associated saddle point for

the perturbing star. As a source moves inside one of the diamond shaped caustics,

a pair of micro-images is created somewhere along the critical curves. The pair of

images which are created (or annihilated) always consists of a micro-minimum and

a micro-saddle. At their point of creation, each micro-image has formally infinite

magnification (as det A = 0 on the critical curve) that quickly decreases as the source

moves away from the caustic. The lightcurve for a source moving along a track up

the y-axis is shown as well in figure 2-2, and the net magnification as a function of

source position is shown in figure 3-1.

For many stars that are far apart, the caustics are separated. However, increasing

r, "grows" the caustics into a network such as that seen in figure 3-1. A visualization

of the process can be found in figure 2 of [14] with appropriate discussion. 3

3There are a couple of ways to think of this "growing", both of which are valuable in their own
right. The macro-saddle is first created by an appropriate combination of -Y and K = Kdark. Adding
one star in the ideally infinite area contributes no ,, as the number density is zero. But, as more
stars of equal mass are added and the number density increases, one can take away from Kdark such
that the sum *+ dark stays constant (thus keeping the mean macro-magnification that of a saddle).
The addition of each star produces new micro-images, as well as new caustics which stack on top of
each other. Thus, a source at a particular position may go from having 0 micro-minima to multiple
micro-minima if the caustics stack up enough. Alternatively, one could keep the number density of
the stars constant from the start (with infinitesimally small mass), and slowly increase their mass
until the appropriate n, desired is reached. This would produce many thousands of caustics centered
on the positions of the stars that slowly grow into a network as mentioned.
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Chapter 3

Caustic Crossings and Behavior of

Micro-Images

3.1 Magnification maps

One of the most common computational methods of studying gravitational micro-

lensing is through the use of magnification maps. These maps provide net source

magnification as a function of position in the source plane for various parameters.

There are two commonly used methods for creating such maps.

One method, the inverse ray shooting method (IRS), traces rays of light backwards

through a large field of stars from the image plane to the source plane, collecting the

rays in pixels and assigning a magnification proportional to the number of rays that

land on each pixel. Another method, inverse polygon mapping (IPM), calculates the

distortion of shapes through the mapping of the lens equation from image to source

plane, assigning magnifications based on area ratios [9].

Both methods provide information on the total magnification as a function of

source position, as well as visualizations of the caustic networks as in figure 3-1.

However, neither provides information as to how individual micro-images and their

various properties change. In order to do so, one must locate each individual micro-

image produced for a given source position, and track their positions, magnifications,

and other properties of interest as the source moves.
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Figure 3-1: Sample magnification patterns

Left: Total magnification as a function of source position for the Chang-Refsdal

lens shown in 2-2. Total magnification is grey-scaled, with black corresponding to

de-magnification from average and white corresponding to higher magnification than

average. Note the sharp borders (which line up with the locations of the caustics), and

areas of high magnification around (yet outside) the cusps. A source located directly

behind the position of the star is highly demagnified, but approaches the average

magnification as it moves far away. Right: Total magnification as a function of

source position for a random field of stars. Blue corresponds to de-magnification, and

red to magnification, from average. The network of caustics allows for the production

of many more micro-minima. Image courtesy of Dr. Wambsganss.

3.2 The search for micro-images

3.2.1 Background and Previous Work

Finding all the micro-images within a random star field of a given point source can

be computationally intensive, as it involves finding all roots of the lens equation. For

the lens equation as we have first presented it (as a function of vector variables ' and

we would agree with Paczynski's [12] statement that within some circular region

of radius rimage, "We are not aware of any theoretical criterion that would tell us that

all micro-images within rimage have been found." However, Witt [21] and others have

developed a lensing formalism in terms of complex variables. Such a shift has benefits

(which we will put off until Chapter 5), and detriments, which we mention here.
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Defining w = yi + i - Y2 and z = x1 + i X 2 , the lens equation can be written as

n 
1

i=1

where again we have taken all the stars located at the zi to be of one unit mass that

determines our unit distance, and as usual the overbar denotes conjugation. The

lens equation in this form is not analytic, and so does not lend itself to some of the

techniques of complex analysis for finding roots.1 However, Witt has shown that the

equation can be manipulated and a polynomial in - can be obtained, which is of order

n 2 -+1 for -y = 0 or (n +1)2 for 7 = 0.2 All roots of the lens equation are roots of this

polynomial, but the converse is not true.

The fact that many stars in a field have a saddle point "associated" with their

position allows one to use the locations of the stars plus a small perturbation as start-

ing points in the search for micro-images, easily finding anywhere between n and 2n

roots (the locations of the stars are technically roots of the lens equation, formally

producing infinitely demagnified micro-maxima) of the lens equation. However, in re-

gions sufficiently "close" to the location of the macro-image, the presence of stars can

result in multiple extra image pairs of micro-minima and saddles. 3 Determining the

locations of these micro-images is more difficult, as there is no approximate starting

location to begin. Paczynski initially did so with a brute force grid search [12]. This

is not guaranteed to find all images though, and for many images you may need a

sufficiently dense grid to do so.4

Witt's polynomial in 2 theoretically allows one to obtain all roots of the lens equa-

tion without missing any. After such straightforward searches as just mentioned have

been done (providing n to a 2n roots), we are still left with ~ n2 roots to find in

Witt's polynomial. In a field consisting of thousands of stars the computational work

required can still be very great and the time to find all these roots is prohibitively

'We will discuss such methods in Chapter 5 for finding the locations of critical curves and caustics.
2We do not present this polynomial here, as it is unnecessarily lengthy and is not used by us. The

interested reader can find it in [21]. Simply knowing the number of roots suffices for our discussion.
3A more precise idea of just how close is "close" is provided later.
4As the author avoided using this method, exactly how dense a grid is sufficient is unclear.
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large. Additionally, as Witt points out, not all of the solutions to his modified poly-

nomial roots correspond to solutions of the lens equation [21]. The manipulations

done to achieve a polynomial in z introduce extraneous solutions for z that are not

necessarily solutions of the lens equation as well. For a system with n point masses

and external shear, the maximum number of micro-images possible is much less -

specifically, 5n - 1 [1]. This means that to be sure you have found all micro-images,

you are likely to waste as much (or more!) time finding extraneous roots which are

then ignored.

The computational time and difficulty initially associated with finding micro-

image locations has left the search for micro-images behind that of the development

of IRS and IPM methods. Given that IRS and IPM methods allow one to more easily

make statistical statements about the distributions of total magnifications (which is

what we actually observe), the focus on their usage makes sense. However, as stated

in the introduction, regions of interest occur when a pair of micro-images is created

and the net flux is dominated by their contribution.

Improvements in both hardware and computational methods have now made de-

termining the locations of micro-images less time intensive than it previously was

however. The analysis of observed micro-lensing events can benefit greatly from un-

derstanding the properties of individual micro-images. Knowledge of the strengths of

caustic crossings and how individual micro-images behave leading up to, during, and

after an annihilation or creation can be illuminating.

3.2.2 Improvements made

Witt [22] and Lewis et. al. [8] present equivalent methods for calculating lightcurves

of microlensed sources that move along a track in the source plane. Their method may

be extended to finding the positions of the micro-images for a stationary point-source.

In essence, Witt and Lewis's lightcurve calculations rely on the fact that the image

of an (ideally infinite) line in the source plane is comprised of a distorted line in the

image plane with additional closed loops passing through every star, as seen in figure

3-2. A proof of this fact is outlined in both [8] and [13].
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Figure 3-2: Images of a 1-dimensional linear source
As noted in [8], the images of an ideal infinite linear source are comprised of a distorted
line in the image plane with additional closed loops (both represented here in red)
that pass through at least one star (represented here by black dots). The stars on the

edges of the field have loops passing through them as well which are much smaller,
invisible at the scaling shown here.

Lewis's method for finding all the loops starts by following the image of the line

far away from the field of stars, where it is near the expected location of the image

of a line unperturbed by stars, and numerically following it towards, through, and

back out of the field of stars. 5 Then, the loops around each stars are found using the

location of the stars plus a small perturbation. This method effectively amounts to

oWhile an ideal starfield is taken to cover infinite area, simulations must obviously deal in a finite
number of stars (and in reality, stars in a galaxy are finite as well). A large enough field is usually
sufficient to derive important statistical properties, so long as it is big enough that edge effects can
be ignored (for discussion on how many stars are enough, see [15]). This allows one to take advantage
of the fact that you can place a source (be it a point or a line) far away from the caustics of a field of
stars such that its macro-image is only slightly perturbed, and there are n micro-saddles associated
with the n stars. As one moves the source towards the caustics, each caustic crossing will change
the number of micro-images by two.
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creating a contour plot for which x1 - (VO)1 - Y, = 0, where the lens equation is

taken to be Y = F - VO and the coordinate system is such that the track is parallel

to the y2 axis.

Modern computer algebra systems can now do this in a fraction of the time,

though they may not find loops which are sufficiently small (as mentioned in figure

3-2). However, the images corresponding to these loops are micro-saddles which are

not highly magnified, and so they contribute little to the lightcurve. If desired, a

combination of contour plotting and a direct perturbative search near distant stars is

effective.

A point source can be expressed as the intersection of two tracks, one with a

constant yi value and the other with a constant Y2 value. The images of these two

tracks will each consist of a perturbed line and loops in the image plane, which look

different for each track. By taking the intersection of the set of images for each

track, the locations of the micro-images are found for the point source located at

the intersection of the tracks. The stars are automatically intersections of the set of

images, for they are roots of the lens equation and must be contained in the loops for

each track.

This process is mentioned in [15], although only for the case of modeling the

locations of macro-images. Improvements in the ability to plot thousands of contours

due to a large field of stars allows for the extension to micro-lensing.

Using Mathematica, the method essentially goes as follows, taking the lens equa-

tion to be of the form Y = - V:

1. Create a contour plot for which x1 - (VO)1 - yi = 0. This plot will consist

of loops around stars far away from the macro-image, and more complicated

shapes as you get closer to the smoothed-out location of the macro-image.

2. Capture the list of all points used to make the contour plot. This will actually

be a list of lists, where the outermost level is a list of the shapes/loops seen in

the contour plot, and the inner level is the list of points used to create each of

the shapes.

30



3. Calculate the sign of x 2 - (VO)2 - Y2 for every point X in the lists.

4. Wherever the sign of consecutive points changes from + to -, or vice versa,

a root of the lens equation is located. The points corresponding to the sign

changes can be used as initial starting positions for further refinement using

any numerical root-finding method.

As stated, this method is not guaranteed to find every micro-image as it is limited

by the resolution of the contour plot you create. Mathematica (and presumably other

computer algebra systems) have options to increase the number of initial points used

to create contours, and adapt accordingly to create better plots. There are checks

you can do to gain an idea of how correct this method is, and the author has been

found it to be very reasonable.

One must pick a region to perform the search for micro-images in. The region

must be large enough to include all micro-images of substantial magnification without

missing any. For stars far away from the location of the macro-image, the associated

micro-saddle points are highly de-magnified and vary as p oc r-4 [12]. Without re-

quiring a high resolution, the contour plot method is likely to miss out on finding

them. However, as previously noted, these saddle points are only slightly perturbed

from the location of the stars, and so can be easily found using alternative methods.

Micro-images that lie closer to the position of the macro-image will be substantially

brighter, and it is finding the size of the region in which they lie that is more impor-

tant.

The probability distribution for the deflection angle of a light ray passing through

a field of stars has been calculated by Katz, Balbus, and Paczynski. For small val-

ues of the deflection angle a, [6] and [15] show that the probability distribution is

approximately Gaussian with

p(a) = -a 2/A

7rA

where A = 2 - r, - ln(Bv\/K), B = 2e'-1  ~ 3.052 (here -y ~ 0.577 is the Euler-

Mascheroni constant, not the global shear), and N is the number of stars in the
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field.' In the absence of global shear, the probability distribution is isotropic and

depends only on the magnitude of the angle. However, "if the shear does not vanish,

the observed positions of the microimages will not be isotropically distributed around

the position of the macroimage" [6]. In this case, they are distributed in orthogonal

directions (where one direction aligns with the external shear) with

(A ty) 2

where t, is the total surface mass density and -y is the global shear [6].' The standard

deviation of the Gaussian is equal to VA/2 and is typically larger than 1, thus on

the border of the regime wherein the approximation is valid. To be safe, we perform

our searches in areas that lie within three standard deviations of the deflection angle

around the location of the macro-image.

For regions near the location of the macro-image, a combination of our method

with a magnification map proves extremely valuable. For a source located far away

from the field of n stars, there will be n saddle points, plus one more additional saddle

point or minimum depending on the macro-image. As the source moves closer to

the field of stars, additional images are created/annihilated in saddlepoint/minimum

pairs. From the magnification maps, one can determine how many images to expect

based on the source location and the number of caustics separating it from a region

of low magnification (no extra micro-minima present), and compare this with the

number of images found using the contour plot. If there appear to be missing images,

you can increase the sensitivity of the contours used to start and see how things

change, or increase the size of the search region.

One of the biggest difficulties this method has is in separating micro-minima from

micro-saddles at locations near the caustic after they emerge or shortly before they

annihilate, when both micro-images are near each other. However, it is easy to start

away from the caustic and trace backwards the locations of each image instead, as

6 As discussed in [15], the presence of N in the distribution leads to interesting divergent results
for an ideal infinite star field. Thankfully, in practice and reality all star fields are finite.

'As a reminder, we are using Kdark = 0, so that r. here happens to be equal to Kr.
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Figure 3-3: Source and micro-image positions
Left: Position of a point source (center, black dot) within a larger caustic network of
a macro-saddle. While the magnification difference is not as obvious in gray-scale as a
colored representation like figure 3-1 would show, it is still relatively easy to see that
the source has three caustic crossings separating it from the de-magnified background,
suggesting that there are 3 micro-minima present within its micro-images. Right:
Positions of the micro-images that appear in a random star field due to a background
point source located in the caustic network on the left. Micro-minima are represented
as squares, and micro-saddles are circles. For dynamic range, the area of the micro-
images scale logarithmically as the magnification, with A(O) = 0, A(1) = 1 in the
units indicated.

Witt did in creating his lightcurves.

A visualization of the locations of the micro-images can be made after a search

has been performed, as shown in figure 3-3. The point source is nearing a caustic,

and is inside a region within which the caustics suggest there are 3 micro-minima.

Simulations confirmed this, finding the presence of 3 micro-minima that are repre-

sented as squares in the right of figure 3-3. Saddlepoints are indicated by circles, and

the areas of all the images scale logarithmically with their magnifications to provide

a dynamic range showing many images. The search found approximately 83% of

the expected number of micro-saddles, and the presence of them in the visualization

suggests that the majority are of minimal magnification and any additional saddles

would contribute little to the total magnification.8

8 To be more precise, the saddles that were found range in magnification from ; 2 to ; 10-6,
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The uppermost micro-minima is nearly concentric with a saddle point. This is the

pair of images that will be annihilated as the source nears and crosses the caustic.

They currently lie between magnification 1 and 10, but would greatly increase in

magnification as the source moves closer to the caustic.

While not immediately apparent in the visualization, the micro-images tend to

form a "train" that extends along the y-direction. This is due to the external shear

working to stretch the images such that they would extend along that direction in the

absence of micro-lensing stars (and hence producing the asymmetry in the distribution

of the deflection angle for the two directions). For the particular system examined,

we have that the standard deviations of the deflection angle for the x and y directions

are 2.091 and 4.601 respectively. We can see that the majority of bright images lie

within one standard deviation of the center of the visualization (which is centered

on the position of the macro-image), and most certainly are contained within three

standard deviations.

We come back once more to Paczynski's [12] note that "We are not aware of any

theoretical criterion that would tell us that all microimages within rimage have been

found." Lewis et. al. and Witt's method almost provides the way to do so. The

limiting factor in being able to locate every micro-image is the resolution with which

the closed loops of an ideal infinite linear source are created. With infinite resolution,

one could check for sign changes as noted in item 4 of our method presented above,

and thus know exactly where every image of a point source is located. However,

with finite resolution one runs the risk of "jumping over" two consecutive roots which

change the sign from + to -, and then from - to + over a very small segment of a

loop.

From our simulations, this seems most likely to happen due to source locations

close to caustics, where the created micro-image pairs have nearly identical positions.

If the expected distance between micro-images is greater than the resolution used to

create the loops, we can expect most images to be found.
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3.3 Deviations of micro-image magnifications from

the inverse square root approximation

3.3.1 Motivation

The magnification matrix can always be diagonalized and written in the form

0

1 + Y+S)

where S is the internal shear

image can be written as

due to the stars. The magnification p of each micro-

1

1-( + S)2'

For a micro-minimum, we know that

I- Y-S>0

which, when combined with -y > 0, allows one to find that 0 < 1 - (_y + S) 2 < 1.

Therefore, the magnification of a micro-minimum always satisfies 1 < 1. For source

distances appropriately close to the caustic, a Taylor expansion of the magnification

of each image in the created micro-image pair shows that K ~ , where we designate

by K the strength of the caustic for a single image, and d is the source distance normal

from the caustic crossing [15].' K2 gives a sense of how far the source must travel

for the created micro-minimum and saddle point to reach unit magnification. Clearly

this approximation fails at some distance dbreakdown > K 2, as the micro-minimum

must always stay above magnification 1.

9This approximation is for a fold caustic, i.e. one which can be approximated at some scale by
a straight line. There are higher-order caustic events which are not discussed here. See [13], [15].
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The coefficient K is equal to

1
K =1

2. (T 1 )2 . 7222

in the coordinate system of the image plane, which is centered on the creation point

of the micro-image pair, oriented such that T 12 = T2 2 = 0, and evaluated at the image

creation location [15]. More easily (in some cases) perhaps, Kayser and Witt have

shown that this is equivalent to

1
K=

2|T|

where
0 det A

T = A a y
a det A

A is again the inverse magnification matrix, and all evaluations are made at the

location on the critical curve where the images appear [7]. We would like to note that

the expressions here for K differ from what may be found elsewhere in the literature

by a factor of two, as we are interested in the strength for a single micro-image

whereas most references provide the strength for the net magnification, which takes

into account both the minimum and saddlepoint of the created micro-image pair.

3.3.2 Caustic crossing for a Chang-Refsdal lens

For the single mass lens shown in figure 2-2, our source track moving along the y-

axis crosses normal to the caustic at approximately y = 1.039. The strength at

the corresponding image-pair creation position is found to be K = 0.667. We can

then compare the approximation p = 0667 against the actual micro-minimum

magnification, although to be slightly more revealing we have instead examined log A

vs. log - as shown in figure 3-4.

The solid line in the figure is that of the actual micro-minimum magnification, and

the dashed line is that of the approximation. It is clear from the plot that, even for

just a single perturbing star, the approximation is already broken at a strength-scaled
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Figure 3-4: Log-log plot of magnification against distance from the caustic (scaled by
caustic strength)
Magnification versus strength-scaled distance from the caustic for the micro-minimum
of the lightcurve in figure 2-2. The solid line shows the magnification of the micro-
minimum as a function of source position, and the dashed line shows the approxima-
tion yI = .

distance from the caustic of 0.1, differing by a factor of approximately log pladual -

log p~app,-x = -0.083, or Pactual = 0.826 - 1app,,o at pappox = 100'5 = 3.162. It

is interesting to note that in this case the actual magnification is lower than the

approximation. In general, as will be seen, simulations suggest that magnifications

tend to be higher than the approximation.

3.3.3 New results

Dr. Wambsganss provided star fields and magnification maps for the two cases of

K = 0.73, y = 0.72 and n = 0.62 = 7, which correspond to the saddle point macro-

images of QSO 2237+0305 (Huchra's Lens). I was able to analyze the behavior of

multiple micro-minima from their creation to their annihilation, as well the behavior of
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their associated saddle points. Two randomly oriented tracks in the source plane were

selected for each set of r and -y. Using the magnification maps, positions along the

tracks near caustics (on the side where extra micro-minima appeared) were identified.

Given the source position close to the caustic, I was able to find the locations of micro-

images and select the newly-created micro-minima and their companion saddle point.

I was then able to iteratively track the position and magnification of these images as

the source moved, from their creation to their annihilation (or in the case of many of

the saddle points, until they were significantly de-magnified).

While Dr. Wambsganss's magnification maps don't provide exact locations of the

caustics, by using the approximate source position, newly-created image pair position,

and constraint that the source lie on the selected track, the exact caustic location can

be numerically found along with the corresponding location on the critical curve.

From these points the exact caustic strength can be calculated, as well as the angle

between the source track and the normal to the caustic (which is needed to find the

the distance normal from the caustic).

The two source tracks in each case provided ~ 25 micro-minima in total for me

to follow from creation to annihilation, thus providing ~ 50 caustic crossing events

to analyze. Log-log plots of magnification versus strength-scaled distance normal

from the caustic are seen in figure 3-5. Note that each minima appears twice in the

graph, not necessarily in the same color (a minimum that was the first present at its

creation, but the third present at its annihilation, is seen in both red and green on

the plot, as the annihilation is a creation in reverse). Additionally, the minimum has

a different lifetime along the x-axis in each case as the caustics at either end have

different strengths.

The plots in figure 3-5 reinforce the conclusion from examining the Chang-Refsdal

lens that deviations from the approximation start to occur at small distances from the

caustic (or equivalently at higher than unit magnifications). For the micro-minima

that manage to make it a unit distance away from the caustic, the graphs show that

their magnification is higher than unit by roughly 100.20.2.
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Figure 3-5: Magnification as a function of source distance (normalized by caustic
strength) from the caustic for many micro-minima
Plots of log A vs. log . Top: , = 0.73, y = 0.72. Bottom: , = 0.62= y. The colors
denote whether the minimum was the first, second, third, or fourth present at its time
of creation after the source crossed the caustic. The solid black line is = , and
the dotted black line is an alteration to the approximation discussed in Chapter 4.
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Future alterations to the method

If the exact locations of the caustics are known, one can pick a point along a caustic

and find the normal direction, thus allowing for the tracking of a micro-minimum

from creation to annihilation along the proper track. At the annihilation end, the

intersection of the track with the caustic is almost certainly not normal. However, the

normal at the intersection point could be found and a new track could be started from

there. This would allow one to "ping pong" or "bounce" along from caustic crossing

to caustic crossing. However, this may not provide as random a sampling of minima

creation numbers, or caustic regions, to explore as might be desired. Alternatively

then, it may be best to randomly identify points that lie on the caustic, calculate the

normal directions, and proceed from there to compile micro-minimum magnification

information.

3.4 Distribution of caustic strengths

3.4.1 Two cases: K = 0.73, 7 = 0.72, and n = 0.62 =

Normalizing the distances from the caustic required calculations of caustic strengths.

The distributions for the strengths in the two cases analyzed can be seen in figure

3-6. The 50 strengths were binned into intervals of size 0.1.

3.4.2 Results

For , = 0.73, -y = 0.72 the mean and standard deviation are 0.376 and 0.208 re-

spectively. For , = 0.62 = 'y, the mean and standard deviation are 0.332 and 0.123

respectively.

Further simulations for many values of r, and 'y would be necessary to gain a true

understanding of how their variations change the distributions.

Witt has calculated statistics of caustic lengths and strengths for the case of

no external shear, examining surface mass densities corresponding to macro-minima

and maxima [21]. The cases studied here are for two macro-saddles, for which the
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Figure 3-6: Histograms of caustic strengths
Distributions of the caustic strengths for the two cases examined of n = 0.73, y = 0.72
and r = 0.62 = -y.

author is unaware of any calculations of similar parameters with which to compare.

We present our own calculations later, and compare the samples here to the more

precisely calculated probability distribution of caustic strengths in Chapter 5.

3.5 Relevance to observed events

In many analyses of caustic crossing events, the approximation that the magnification

goes like the inverse of the square root of the source-caustic distance is used. Clearly

this is not in actuality an ideal model for events.

As an example of the issue, Shalyapin et. al. [17] perform an analysis on the

nature and size of the optical continuum source in QSO 2237+0305. In section 2.2,

they derive expressions for the optical flux during a caustic crossing following the

procedure of [16] and others. This procedure starts by multiplying the emission

profile I,(x, y) of the source with an approximation of the magnification factor near

a caustic as pa,, (x, y) = pL + (x) 10 The multiplication is then integrated

over the source profile to give the net observed flux,

F =1 = p(x, y) - I.(x, y) dxdy.

10The strength here is equal to twice what I have been considering in strength calculations, as
mentioned due to the fact that there are two created micro-images which dominate the flux. H(x)
is the Heaviside function.
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Figure 3-7: Sample lightcurve shape profiles for two different source profiles

A uniform disk and a Gaussian profile (as in [16]) produce the shape profiles seen

here. Distances are from source center to caustic, in units of the caustic strength.

Each has R = 1 for equations B3 and B8 of [16].

The integral splits into two parts. The first is equal to the net flux from the

source F, multiplied by the approximately constant magnification factor Po due to all

micro-images other than the created pair, and the second is that which varies with

distance from the caustic. This second integral is the one of interest. As we have

shown, the approximation appearing inside the integral due to p is only valid for a

small region near the caustic. If the emission profile of the source extends beyond this

region, then we expect deviations between what the approximation gives and what

the actual value should be.

The expression can be written as F,,b(d) = po -F, +F -J(d) where F, is a constant

which is proportional to the caustic strength, and J(d) determines the shape of the

profile as a function of distance from the center o the source to the caustic. For two

sample sources of a uniform disk and a Gaussian, [16] and [17] show what the shapes

of J would look like as a function of source position. Such profiles are shown in figure

3-7.
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Figure 3-8: Modified lightcurve shape profiles
circular disk. Right: Gaussian. Bold lines indicate the modified
dotted and dashed lines indicate the ones used in [16] and [17], as
3-7.

Each shares roughly the same qualitative features. However, the important fact

to note is stated in [16]: "Note the assymmetry of J(d)...a turning point at d ~ 1

and then it approaches the asymptotic d-/ 2 behavior." As our simulations show,

by the time d = 1 has come around, the approximation used for the magnification

has already been broken at a tenth of the distance. Thus the shape profiles must be

incorrect.

As a toy examination of how alterations to the approximation change the shape

of the profile, for the micro-minimum one could take the approximation to instead

have the form L = +1. While not deeply motivated, this form has the property

that it goes to 1 as d -+ oo, as desired. Additionally, at d = 1, log I = 0.150, which

is approximately the average value at which most micro-minima that make it past

d = 1 cross the log p axis in figure 3-5. The saddlepoint can be left unmodified, as it

is allowed to be infinitely demagnified. This leads to the change

Paprx(X Y /todK -H(x) + 1
p~app,--(x, y) po +KX( 1+ 1+VP-.2 ( C' VX

The modified shape profiles due to this change can be seen in figure 3-8. The

modification preserves the same general shape of the profile. However, the shape

tends to have a higher peak, is slightly more extended, and levels out to a higher value

(as is expected, since the micro-minimum must stay at magnification 1 or greater).
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Shalyapin et. al. use the shapes of figure 3-7, along with a few other source profiles,

to match the observed lightcurves of QSO 2237+0305 and determine parameters of

the system [17]. The brief examination above suggests that the change in the shape

profile J has the effect of decreasing the fitted value of F, appearing in [17] in order

to produce the same net F0,p(t) -- F0 sb. The conclusion that a standard source model

is the best fit may then no longer be the case. Additionally, the change to J may

suggest a decrease in the caustic crossing time At that was fit to the data, possibly

affecting the estimated velocity or the size of the emitting region.

In brief then, models used to analyze caustic crossing events do not properly take

into account the difference in behavior between the micro-minimum and micro-saddle

that form the created image pair. Deviations from the magnification approximation

suggest the need for some form of alteration. A model that fits caustic crossings

better than the 1 approximation would allow for more correct analyses of caustic

crossing events.
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Chapter 4

Statistics for Micro-Minimum

Magnifications

4.1 Mean micro-minima magnification

4.1.1 From mean number of micro-minima to mean micro-

magnification

The alteration p(x) = + 1 for a micro-minimum has the magnification of the

minimum decay down to its smallest possible value of 1. However, one might expect

that there is an average value a micro-minimum may tend to which is not necessarily

equal to 1.

Granot, Schechter, and Wambsganss have performed calculations regarding the

mean number of micro-minima present in a macro-image [5], based upon earlier work

done by Wambsganss, Witt, and Schneider [19]. Their calculation can be extended

to find the mean magnification of each of these micro-minima.

The magnification of an image can be expressed as an area ratio between the

image and source. Suppose the macro-image of a lensed source is comprised of micro-

images, of which the micro-minima take up an area Ad. A small area dAd for which

the magnification p is approximately constant over the extent of the area gets mapped

to an area dA, in the source plane with the relation dA, = dAd/p.
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As discussed in [5], the magnification at a point can be written as

-1 = _ 1 -( + S1)2 _

where the coordinate system is aligned with the external shear, and Si and S2 are

then the shear contributions due to the micro-lensing stars. We have again taken

Ndark = 0, and as noted in [5] the convergence due to the stars disappears everywhere

except at the locations of the stars.

Following the analysis of [5], the area dAd = Ad - p(r,, S1, S2) - dSidS2 in the

image plane is mapped to an area dA, = dAd/P(, Si, S2) in the source plane. Here,

p(r., S1, S2) is the probability distribution of the shear (the actual underlying variable

that changes with position, as it determines the magnification), which was calculated

by Nityananda and Ostriker and is found from [11] or [15] to be equal to

1 K*
S1, 27r ( 2 + S+ S2)3/2-

The mean micro-minimum magnification (pmm) is then found by

(11mM - J11dAd _ Jj, dAd

dA 8  
dA

Ii>op , S1, S2 ) dS d )2

(1mm p(r, S1, S2) dS1 dS2

ft>0 p(7,i S1, S2)

The denominator is an expression calculated in [5], namely the mean number of

positive-parity micro-images divided by the mean macro-magnification.

In light of that, the expression for (pmm) can be rewritten as

(pmm) = (Am ) ' p((K*, S1, S2) > 0),
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where p(p(ni, S1 , S2 ) > 0) denotes the probability that random shear from the star

field produces a micro-minimum at a point as opposed to a micro-saddle.

The value of (pmm) can be viewed as taking the macro-magnification, which con-

sists of both micro-minima AND micro-saddles, multiplying by the probability that

random shear produces a minimum instead of a saddle point, and dividing by the

mean number of micro-minima.

There exist expressions for the integrals in the numerator and denominator (as

partially shown in [5]), which can be numerically evaluated over the range of Si

and S2 which produce micro-minima. However, a somewhat easier one dimensional

expression can be found using p(p) from equations 11.63a, 11.63b, and 11.63c of [15],

producing

p(p) dpl

dpa

4.1.2 Values for mean micro-minima magnifications

The values of (pmm) for a range of r, and y values are listed in table 4.1.

As noted by Granot, Schechter, and Wambsganss, when -, = 0, there are no extra

micro-images [5]. For the range of 7 values displayed, there is only one image which
1

is a minimum. The magnification of this must be equal to 2.

It is also worth pointing out that in the top row where -y 0, (Pmacro) + 00

as r, -+ 1. However, the mean number of micro-minima and the shear probability

combine in such a way that the average magnification of a single micro-minimum is

finite.

The values of (pmm) as found in table 4.1 can be used to alter the approximation

for the magnification of a micro-minimum near a caustic. Instead of adjusting such

that (x) = 1+1, which decays down to 1, we can take pi(x) = X + (pmm)2.

For the values of r, and -y used in our simulations, we find that (pimm) = 1.880 for

K* = 0.73, -y = 0.72 and (pmm) = 1.803 for i, = 0.62 = -y. These approximations have

been included as the dotted lines in figure 3-5. In general, the estimate lies on the high
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(Amm) (m -p(shear produces a micro-minimum)

y t, = 0 0.001 0.003 0.01 0.03 0.1 0.3 0.5 0.7 0.9 0.97 0.99 0.997 0.999 1

0 1.000 1.001 1.003 1.010 1.030 1.100 1.287 1.447 1.573 1.669 1.696 1.704 1.706 1.707

0.001 1.000 1.001 1.003 1.010 1.030 1.100 1.287 1.447 1.573 1.669 1.696 1.704 1.706 1.707

0.003 1.000 1.001 1.003 1.010 1.030 1.100 1.287 1.447 1.573 1.669 1.696 1.704 1.706 1.707 1.707

0.01 1.000 1.001 1.003 1.010 1.030 1.100 1.287 1.447 1.574 1.669 1.696 1.706 1.707 1.707

0.03 1.001 1.002 1.004 1.011 1.031 1.100 1.288 1.448 1.574 1.669 1.704 1.706 1.707 1.707

0.1 1.010 1.011 1.013 1.020 1.040 1.110 1.298 1.456 1.580 1.700 1.707 1.710 1.711 1.711

0.3 1.099 1.100 1.102 1.110 1.131 1.203 1.384 1.526 1.709 1.732 1.738 1.740 1.740 1.741

0.5 1.333 1.335 1.337 1.345 1.367 1.439 1.584 1.671 1.731 1.777 1.791 1.795 1.796 1.796 1.796

0.7 1.961 1.962 1.963 1.969 1.983 2.003 1.889 1.868 1.866 1.868 1.869 1.869 1.869 1.869

0.9 5.263 5.245 5.207 5.074 4.683 2.437 2.130 2.011 1.959 1.950 1.947 1.946 1.946 1.946

0.97 16.921 16.480 15.637 13.076 4.318 2.574 2.200 2.055 1.989 1.976 1.973 1.972 1.971 1.971

0.99 50.251 44.870 36.374 20.676 9.591 4.408 2.604 2.217 2.066 1.997 1.983 1.980 1.979 1.978 1.978

0.997 166.917 106.235 56 8 21.821 9.530 4.418 2.613 2.223 2.070 2.000 1.986 1.982 1.981 1.981 1.980

0.999 500.250 57.397 21.238 9.460 4.419 2.615 2.225 2.072 2.001 1.986 1.983 1.982 1.981 1.981

1 130.770 53.099 20.774 9.416 4.419 2.616 2.225 2.072 2.001 1.987 1.983 1.982 1.982 1.981

Table 4.1: Mean micro-minimum magnifications for varying convergence and shear

Values of (pmm) for a range of convergence and shear. For ,, = 0, there is only one image whose magnification is equal to that

of the macro-image (as the range of shear values only produce minima). For -y = 0, as K, -+ 1, (Pmacro) -+ oo. However, the

mean number of micro-minima and the shear probability combine such that (/pmm) is finite. The gray boxes along the diagonal

mark the values of K, and y which correspond to (Pmacro) = 00. Macro-minima lie above the diagonal, while macro-saddles lie

below.
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end for the micro-minima which manage to make it to -= 1, and continues to be an

increasingly worse over-estimate as + increases. However, the fact that the function

levels out means the difference between approximation and actual value is still better

than the original un-adjusted approximation at increasingly larger distances.

Table 4.2 presents values of (pmm) for a range of K, and (pmacro). Table 4.3

provides the mean number of micro-minima (N) for the same parameters. Together,

(N) and (1mm) give a sense of what proportion of (pmacro) is due to micro-minima,

and can indirectly also provide an idea of what proportion may be due to micro-

saddles. For example, examining (pImacro) = 30 and , = 0.3, we see that (pmm) =

1.890 and (N) = 9.444. This suggests that in total the micro-minima provide a

magnification of 17.849. The remaining magnification comes from the micro-saddles,

which can be placed into two categories: those which would exist anyways due to the

presence of micro-lenses (the associated saddle points), and those due to the creation

of extra micro-minima (as the "ground state" would contain only the minimum which

is associated with the macro-minimum). On average, for this case there are 8.444

micro-saddles which come from the extra image pairs (one less than the mean number

of micro-minima, as our macro-image is a minimum and thus starts out with one

micro-minimum).

If we assume that the extra-image pairs lie within an ellipse whose semi-major

and semi-minor axes are given by .A /2 as discussed in Chapter 3, we can place

rough bounds on the average magnification of the extra saddle points.

An upper bound on their average magnification would be to take the remaining

magnification of 30 - 17.849 = 12.151 distributed evenly between all 8.444 saddles,

for an average magnification of 1.794 for each of the extra saddles.

AA very rough lower bound can be found as follows. We expect , - - stars to lie
7r

within the ellipse, each of which is assumed to have an associated saddle point. The

number of saddles then reduces to

N = +/ = . .- 2 (Pmacro)| = ,I* -(pmacro)- ln(B vN).
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(pmm) = maro p(shear produces a micro-minimum)

Amacro I Ki = 0 0.001 0.003 0.01 0.03 0.1 0.3 0.5 0.7 0.9 0.97 0.99 0.997 0.999 1
3 3 2.981 2.943 2.820 2.533 1.961 1.463 - - - - - - - -
10 10 9.693 9.136 7.633 5.326 2.951 1.786 1.579 - - - - - - -

30 30 26.817 22.147 13.969 7.308 3.357 1.890 1.640 1.610 - - - - - -
100 100 67.627 41.302 18.522 8.193 3.509 1.927 1.662 1.625 - - - - - -

300 300 112.668 51.845 19.993 8.449 3.553 1.938 1.668 1.629 1.672 - - - - -

1000 1000 138.382 55.560 20.478 8.537 3.569 1.942 1.670 1.631 1.673 - - - - -
3000 3000 144.854 56.469 20.611 8.562 3.573 1.943 1.671 1.631 1.673 1.696 - - - -

-3000 - 148.706 57.255 20.740 8.587 3.578 1.944 1.671 1.631 1.674 1.697 1.704 1.706 1.707 1.707
-1000 - 147.342 57.878 20.865 8.612 3.582 1.945 1.672 1.632 1.674 1.697 1.704 1.706 1.707 1.707
-300 - 94.846 58.080 21.268 8.698 3.598 1.949 1.674 1.633 1.675 1.698 1.705 1.707 1.708 1.708
-100 - 33.265 39.729 21.931 8.935 3.642 1.960 1.680 1.638 1.678 1.701 1.707 1.710 1.711 1.711
-30 - 12.928 13.975 16.304 9.532 3.796 1.998 1.702 1.652 1.689 1.710 1.716 1.719 1.719 1.720
-10 - 6.508 6.651 7.159 7.853 4.188 2.107 1.763 1.694 1.718 1.736 1.742 1.744 1.744 1.744
-3 - 3.693 3.710 3.769 3.931 4.029 2.453 1.967 1.832 1.814 1.820 1.822 1.823 1.823 1.823

Table 4.2: Mean micro-minimum magnifications for varying convergence and macro-magnification
Values of (p1mm) for a range of convergence and macro-magnification. Not all values of r, shown can produce the (Pmacro)

indicated, thus the absence of values in the upper right corner. For r, = 0, there are no extra micro-images. Therefore, the
value for (pmm) is equal to that of the macro-minimum, or non-existant for a macro-saddle.
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(N)

tmacro K, = 0 0.001 0.003 0.01 0.03 0.1 0.3 0.5 0.7 0.9 0.97 0.99 0.997 0.999 1
3 1 1.004 1.012 1.040 1.110 1.283 1.396 - - - - - - - -
10 1 1.025 1.073 1.233 1.628 2.555 3.458 3.284 - - - - - - -
30 1 1.098 1.286 1.885 3.267 6.342 9.444 9.186 7.742 - - - - - -
100 1 1.399 2.138 4.339 9.155 19.68 30.43 29.87 25.29 - - - - - -
300 1 2.356 4.715 11.47 26.04 57.81 90.41 88.97 75.42 59.21 - - - - -

1000 1 5.865 13.88 36.51 85.19 191.3 300.3 295.8 250.9 197.0 - - - - -
3000 1 16.01 40.11 108.1 254.2 572.6 900.1 886.8 752.2 590.8 534.0 - - - -

-3000 0 14.52 38.63 106.6 252.8 571.4 899.3 886.2 751.8 590.5 536.7 521.9 516.8 515.3 514.6
-1000 0 4.385 12.39 35.06 83.80 190.1 299.5 295.2 250.5 196.7 178.8 173.9 172.2 171.7 171.5
-300 0 0.985 3.249 10.02 24.66 56.59 89.53 88.33 74.98 58.92 53.56 52.08 51.57 51.43 51.36
-100 0 0.231 0.778 2.901 7.77 18.46 29.55 29.23 24.85 19.54 17.77 17.28 17.11 17.07 17.04
-30 0 0.045 0.142 0.555 1.899 5.129 8.563 8.552 7.303 5.763 5.246 5.103 5.054 5.039 5.032
-10 0 0.009 0.028 0.099 0.364 1.354 2.578 2.650 2.295 1.829 1.670 1.626 1.610 1.606 1.604
-3 0 0.001 0.004 0.013 0.042 0.181 0.529 0.611 0.559 0.462 0.427 0.417 0.413 0.412 0.412

Values of (N) for
thus the absence

Table 4.3: Mean number of micro-minima for varying convergence and macro-magnification
a range of convergence and macro-magnification. Not all values of r, shown can produce the (pmaero) indicated,
of values in the upper right corner. For z, = 0, there are no extra micro-images. Therefore, the value for (N)

is equal to 1 for a macro-minimum, and 0 for a macro-saddle.
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For (pmacro) = 30 and r, = 0.3, we have that

N, = 2.71n 3.052 VN.

For N = 10 3, 104, and 10' (approximately the orders of magnitude for star fields

used in micro-lensing ray tracing simulations), we have that N, = 12.34, 15.45, and

18.56 respectively. Combined with the saddle points of the extra image pairs, this

produces average magnifications of 0.585, 0.509, and 0.450 respectively. These values

are not very strict for two reasons. We have ignored the magnifications of the associ-

ated saddle points outside of our ellipse, although we expect their contribution to be

a small portion of the total magnification. Additionally, we assume that the magni-

fication not due to micro-minima is evenly distributed among the saddles within the

ellipse. It is more likely that saddles closer to the location of the macro-image are

brighter, and saddles closer to our elliptical boundary are slightly dimmer. However,

we can see at least from the upper bound that the micro-saddles are on average less

magnified than the minima (which is expected).

4.2 Extension to distributions for caustic strengths

For a micro-lensing system with no external shear, the magnification matrix can be

put in the form

A= 1-s, S2

(S2 1+ S1

where 1 -S = I+ Si = and S2 = are the contributions to the

shear due to the field of stars. The coordinate system can always be rotated such

that S2 = 0.

For a point on a critical curve, one of the eigenvalues 1 + S, or 1 - Si must vanish

(the choice is arbitrary and simply defines a coordinate system at the particular

critical point). Taking 1 + S1 = -22= 0 as in [15], the formula for the caustic strength
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becomes

1 1K
2. (Trn) 2 - 7222 8 -7222

in the coordinate system of the image plane, which is centered on the creation point of

the micro-image pair, and where all evaluations happen at the image creation location

[15].

Schneider, Ehlers, and Falco provide calculations for the probability distributions

of the deflection angles, as well as for the shear [15]. As the deflection angle is

proportional to the first derivatives of the potential, and the shear is proportional to

second derivatives, it is reasonable to question whether such distributions can also be

found for third derivatives of the potential.

The steps to do so will be outlined here, although we were unable to approximate

or simplify the expressions derived.

Following the procedure outline in [11] and [15] for calculating the probability

distributions for the shear, the probability density for the third derivative of the

potential of interest to us is given by

p(Z) = I QN(t)' e i-Zdt

where Z denotes our variable of interest, QN (t) (q(t))N, and

q(t)= 7rR2 
1 R 2, ei't'(rO)rd~dr.

R is the size of the star field, N is the number of stars in the field (both of which

are eventually taken to oc while keeping K, constant), and

g r,) -2cos0 - (cos2 - 3 sin2 0)
r3

is the contribution to the third derivative of the potential due to a single star located

at (r, 0).

The first difficulty encountered is evaluating the integral over 0 for q(t). In the

calculation of the probability distribution p(S) for the shear, the integral takes a
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slightly different form that is able to be expressed in terms of Bessel functions, which

can be further integrated and approximated to ultimately solve for p(S). We had no

quick luck in doing so for p(Z), but future work may make the evaluation possible.

Until then, strength distributions must be calculated empirically as done by Witt

[21].
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Chapter 5

Determining the locations of

critical curves and caustics

5.1 Background

Witt and others developed a lensing formalism in terms of complex variables, as

opposed to vector variables ' and F [21]. Such a change allows for a parametric

representation of the critical curves of a field of stars, which can then be mapped

through the lens equation to get the caustic network. Such a process allows for

calculations of the probability distributions of the strength of caustics. Witt did so

for a range of convergence values, while ignoring external shear. We have been unable

to find similar work examining distributions for systems with external shear. As we

do not have access to Witt's code for the work that he did, we present our own method

of finding the locations of the critical curves and caustics and hence the distributions

of caustic strength.

5.2 A switch to complex variables

The necessary equations for us have been outlined by Witt already, and we will simply

present them here [21]. Let w = Yi +i - Y2 and z = x 1 + i-x 2 . Then the lens equation
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takes the form
1

i=1Z - z

where as usual the overbar denotes conjugation, and again we have taken all stars to

be of one unit mass that determines our unit distance. The locations of the critical

curves are found as usual by setting det A = 0, which Witt shows is equivalent to

aw ow 0
a- - 0O2 z

for some parameter 0 < 0 < 27r [15], [21]. This is then equivalent to a parametric

representation of the critical curves

n

For the simplest case of a single star located at the origin with no external shear

(y 0, n = 1, z1 = 0), the critical curve satisfies -2 e'O, producing two solutions

z = z = e-(+ ). These are easily recognizable as half circles in the complex

plane, which together make the Einstein ring of the star.

Stepping back for a moment, in more physical terms, for our studies the critical

curves are the locus of points where the total shear Ytota (which is a combination of

the global external shear -y and that which is internally due to stars S) is equal to 1,

as at those points p-I = 1-yt2,at = 0. When changing to complex variables, the shear

can be written as 7total = 1+ i 72 , where the subscripts indicate the two independent

components of the shear tensor.' By requiring I-ytotal12 = 1 for the critical curves, we

are left with a free parameter, which we designate as #, which is the argument of the

complex shear. Witt's parametric representation of the critical curves works then by

providing all locations z whose total shear values lie on a unit circle in the complex

plane.

'In terms of previous notation, -y + S1 and -2 = S2.
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We define

F(2, #) = - e+ S
i=l(z - T,)2

and note that F(2, #) = 0 is the parametric representation of the critical curves. As

Witt points out, for any particular value of #, F is of order 2n in Z. Thus we can

discuss the problem of finding the values of z which are roots of F for a particular

value of the parameter q. Once these 2n roots have been found for a particular value

(which we till take to be # = 0), we can vary # by some small amount and iteratively

create a list of solutions for various 0 values, which can be mapped through the lens

equation to determine their corresponding caustic locations. Visualizations of both

can then be made, as well as calculations of values of interest like the caustic strength

and total length of the caustics, as well as distributions and mean values of such.

We could use contour plots to simply capture where F = 0, much like we did to

find the locations of micro-images. However, there are downsides to doing so. We will

never be sure that all critical curves are found, as some could potentially escape any

resolution we use in our plot. The locations found would give a value for 2, which we

would then have to find the corresponding value of #. In order to make sure all roots

are found, we need values of - at the same # value. We may as well make this our

goal from the start and work towards accomplishing it.

Much like originally done for the the lens equation, roots of the parametric rep-

resentation of the critical curves can be found by a grid search. This is a quick and

efficient way to get a large number of roots (roughly n to 1.5n), which makes finding

the rest of the roots much easier. For low surface mass density and in the absence of

external shear, we expect the critical curve of a single star to be the Einstein ring. In

the presence of shear, they would be the "deltoids" or "astroids" of a Chang-Refsdal

lens. From symmetry arguments regarding alignments with the external shear, we

can expect solutions to be found near Tj 1 or Tj i, and so those are additional

locations we perform initial root searches in.

Unlike the lens equation, the parametric representation of the critical curves is

analytic in some variable (namely -), and thus has a complex derivative. Taking an
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initial value of # 0, we now define

f(-) = F(-, 0) =y - 1 +1

and
-2

f'(~)z ( )3

We seek the 2n roots of f(-). The argument principle of complex analysis tells us

that

g ~dz = g(ra) 9(Pa)2i7ri f~ f()

for some region bounded by a curve C with winding number 0 for all I contained

in C, and where ra and Pa are the roots and poles of f(-) respectively that lie within

the region. We will take g(-) = (-)N, so that

' ~ __Z N N
Z) ' N a -Ea

By taking N = 0, we can find the number of roots of f(z) contained in a region,

minus the number of poles in that region. The only poles of f(-) are the stars (each

of which is of order two), thus we directly can find the number of roots. Upon

comparison with the locations of the roots we have already found, we can determine

whether a further search for roots has to be done in some region.

Thankfully, if there are unfound roots in a region we do not have to blindly search

for them. Upon taking successive values of N and performing more integrations, we

obtain algebraic equations for the roots which can be easily solved.

For example, if

1 j '(z =
27ri C f M)

for some region with boundary C, and we find that 2 stars (each a double pole) lie

within this region, we know that there must be 9 roots in the region. Suppose our grid
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search has found 6 of them already, leaving 3 more to find. We can further evaluate

' j - ( )Nd-
27i , f (1)

for N = 1, 2, 3, thus obtaining a set of equations

1 ff()2 6
ri + r 2 + r3 = ()dz+ 2 Es -- r cl

a=1 f=1

+'4 -
2 6

T2 +r2 +r2f(O d 21 1: S2_ 227ri + f(( )C2
~ J JZJa=1 f=1

ri+r2+r .= >)2d+2Zsia- r 2

a=1 f=1

where we have brought together on the right hand side the integral and our known

information (the 2 stars Sa, each of which contributes twice since they are double poles,

and the 6 already found roots rf).

5.3 Simulations for the parameters of Huchra's lens

We perform calculations for the parameters used in our study of the macro-saddles

of Huchra's lens, namely K = 0.73, y = 0.72 and , = 0.62 = -. We use fields of 500

stars, and tesselate our field into square regions to make the integrations around C

simple. We take A# = after our initial points are found. We note that we could

have used the star fields provided by Dr. Wambsganss, but our code was not quite

optimized enough yet to get results in a timely manner. Compared with Witt 1990,

where calculations took one hour for similar parameters as ours, our calculations took

approximately 10 minutes (so not quite as fast as they could be. We expect that we

will be able to speed up the process in future work). Preliminary critical curves and

caustics are shown in 5-1, with a closer view of the caustics shown in 5-2.

Far away from the center of the field of stars, the critical curve and caustic take on

the shape of that for a Chang-Refsdal lens, albeit one with 1000 times the mass used
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Figure 5-1: Critical curves and caustics for K = 0.73, -y=0.72
Critical curves and caustics for n and y corresponding to one of the macro-saddles of

Huchra's Lens. Far away from the center of the field of stars, the critical curve and

caustic take on the shape of a single lens, with mass equal to 1000 of our unit mass,
embedded in an external shear field (Chang-Refsdal lens).
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Zoom of the caustics for figure 5-1.
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Figure 5-3: Probability distributions of the caustic strength for macro-saddles of

Huchra's lens
Probability distribution of the caustic strength for r. = 0.73, y = 0.72 (left) and

K = 0.62 = 'y (right). Bins are of size 0.05, and we show (K) 3 UK.

for the individual stars. These edge affects are consequences of a finite field of stars.

As Witt does, for further calculations we select those critical curves which lie within

a radius 0.9 times that used to create the star field, and likewise only the caustics

which they map to.

Knowledge of the locations of the critical curves and caustics allows us, as Witt

did, to find mean values for the strength of the caustic (K), the square of the strength

(K2 ), and the caustic length produced by a single star (A,).

We calculate the value of K at every critical curve position found. While these

positions are equally spaced over 4, they are not necessarily evenly spaced in the plane

of the caustic. We assume that K varies smoothly and is approximately constant over

some small caustic length dA. For a particular caustic point, we calculate the sum of

half the distance to the preceding point and half the distance to the succeeding point.

We then divide by the total length of the caustic to get a probability with which to

weight the caustic strength K at that point.

We find for r = 0.73, -y = 0.72 that the total length of the caustics is 1217.216.

This corresponds to a value of (A,) = 3.005. We also find (K) = 0.417, (K 2 ) = 0.597,

and UK = f(K 2) - (K)2 = 0.651.

We find for , = 0.62 = y that the total length of the caustics is 1419.476,

corresponding to (A*) = 3.505. We find (K) = 0.445, (K 2 ) = 0.729, and UK =

62

Cauet Sbrwnth Probabit Distrbution, sc.0.62, y-0.62
Cau$Wi Sbtrh Probbity Ditbon, K-0.73, v-0.72



(K2) - (K)2 = 0.729.

The probability distributions p(K) can be seen in figure 5-3 for the two cases. The

values for (K) are in agreement with the values we found in Chapter 3 for a small

sampling of points, though our values for OK are much different. We suspect this is

due to somehow not fairly sampling the caustic network with the two source tracks

we took.
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Chapter 6

Animations of Microlensing

6.1 What does animation add

The individual images produced by micro-lensing are unresolvable in the sky. The

magnification maps and caustic networks commonly used to statistically study micro-

lensing events only show what the combined light from the micro-images actually

does as the source moves. A visualization of the behavior of the micro-images for

pedagogical purposes was made in the form of a video. That video cannot be included

in its entirety here on paper, but a brief explanation of it can be.

6.2 Creating the video

Given the star positions that create the caustic networks in Dr. Wamsbganss' magni-

fication maps, I was able to find the locations of every micro-image for a given source

position. Once known, the magnifications of the micro-images could be determined as

well. A plot of the positions of the stars along with the positions of the micro-images

could then be created, as was shown in figure 3-3.

In order to more aesthetically show what is happening, some modifications were

made to the output in 3-3. The background was changed to black, with white stars

as circles.

Our source is an ideal point source. However, it is known that a circular source
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produces (to first order) elliptical images in the image plane, whose area, semi-major

axes, and orientation depend on the magnification and shear that the image experi-

ences at its location. Therefore, I let the micro-images be ellipses that show up among

the stars. The sizes of the ellipses scale logarithmically with their magnifications, in

order to have a dynamic range that doesn't overwhelm at regions near caustics yet

still allows for the viewing of images with low magnifications. In particular, the scal-

ing goes as A(p) = ln(a - p + b), where A(O) = 0 and A(1) = 1. The micro-minima

are then represented in blue and micro-saddles in orange. The profiles for both the

stars and the micro-images are Gaussian. In regions where the images which are

micro-minima and micro-saddles overlap, the blue and orange are added together to

produce white, demonstrating the flash of light and increase in magnification that

comes from the creation or annihilation of a pair of micro-images. An example frame

is shown in figure 6-1.

The figure created is a single snapshot, but given a track for the source through the

caustic network multiple snapshots can be made and strung together to see how the

micro-images move, are created, and are annihilated as the source changes position.

A sequence of snapshots is shown in figure 6-2, demonstrating the source position at

three different points and the behavior of the micro-images.

The video combines the snapshots of images and the caustic network by displaying

the movement of the source among the caustics on one side and the movement of

images on the other. Thus, by watching the position of the source on the left one can

anticipate the creation or annihilation of images on the right. A bar along the top of

the screen can show the lightcurve of the source as it moves, as well as the number

of micro-minima as a function of source position.

66



Figure 6-1: Sample frame from the video
Sample frame for the same configuration that produced figure 3-3, though zoomed
in at the center to a quarter of the area. The sizes of the images are exaggerated,
as an ideal point source would technically produce point images. However, a small
circular source would produce elliptical images to first order, and we have chosen to
scale the size of the images logarithmically with their magnification. Note how the
bright, visible images in general extend along the vertical direction (the direction the
global shear would stretch an image in the absence of stars).
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Figure 6-2: Set of inverted color frames from the video

Counter clockwise from top right: 3 source positions within the caustic network,
micro-images corresponding to position 1, micro-images corresponding to position 2,

micro-images corresponding to position 3. The source moves between two regions

with varying numbers of micro-images, and the three frames show the micro-images

for each of the two regions as well as for a position close to the caustic separating

them. The frames are (almost) inverted in color from the actual movie. We keep our

convention that micro-minima are blue and micro-saddles are orange, thus simply

reversing the color of the background and stars. A new pair of images emerges at

position 2. Note how the shear affecting the only micro-minimum present in the upper

left varies as the source moves, changing the micro-image from an elliptical to a more

circular shape.
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Chapter 7

Lensing Near Macro-Caustics

7.1 Motivation

While the individual stars in a galaxy create their own micro-critical curves which

map to micro-caustics, the smoothed out matter distribution of a galaxy or a cluster of

galaxies produces a macro-critical curve and a macro-caustic as well. A source crossing

a macro-caustic causes the creation or annihilation of a pair of macro-images. But as

we know, these macro-images are actually composed of thousands of micro-images.

Prompted by new observations, recent papers have only just begun to examine

some of the properties of micro-lensing near macro-caustics [18]. There is a rich realm

to be explored yet, and we hope to start scratching the surface here.

7.2 Preliminary information

A macro-caustic can be caused by a gradient in the external shear, which we have

taken to be a constant at the location of a macro-image up to this point. Again

starting by ignoring the presence of micro-lenses, a Taylor expansion of the time

delay near the vicinity of a fold macro-caustic gives a lens equation of the form
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Y1 T11 'x1

1 2
Y2 = 2222 -2

in a coordinate system such that T1 2 = T2 2 = 0 (where subscripts denote derivatives

with respect to x1 or x2 , and the derivatives are evaluated at our expansion point)

[2], [15], [20]. Our macro-critical curve is then the x1 axis, and our macro-caustic is

the yi axis.

We again take , = Kdark = 0 initially, and note that Tii + T2 2 (the trace of the

magnification matrix) is always equal to 2 - 2K. We rewrite T22 2 in terms of the single

1
macro-image strength of our caustic, K = to arrive at

2 (-F)2T222

y1 = 2x1

1 1 2
y2 - 2 8K2

Note that K2 has units of distance, the scale for which we specify later. Micro-

lenses with some K, are then added, while simultaneously subtracting an equivalent

Kdark (such that our initial r,=0 does not change) from the smooth potential. Since we

initially chose Sdark = 0, this has the effect of introducing a negative smooth surface

mass density. Gravity has no objections to negative mass, though it may not happen

to exist. This produces

_ (2 + r,,)x1 0 2 X mi-( -Xi
1 EE ~ -4--4

16K2 X2 + *jI

With minor modifications to code, we are able to examine the behavior of micro-

images moving around as the source passes through the micro-caustic network of a

macro-caustic.
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7.3 Simulations

We spread 1000 stars of equal mass (which again sets our unit distance scale QE) in

a circle of radius R such that r, = 0.01 (an approximate value for the intra-cluster

medium where the macro-caustics of galaxy clusters occur). We rewrite our lens
K

equation slightly again by noting the following: while p ~ in terms of distance

from the caustic (where d = Y2 is perpendicular to the caustic in our coordinate
1 1 2 4K 2

system), we can use Y2 = - - - x2 to rewrite this as y where x 2 is2 8K2 2x 2
perpendicular to the critical curve. We justify using this approximation (which we

have shown to be incorrect on a micro-caustic scale!) momentarily. We can then

designate some distance L in the image plane and the magnification AL associated

with that distance to determine K, giving

(2 + n)10 o2 " mi - (X - X;)
y = - E -X -i 2 '

0 4.LA x2 + K* - X2 )i

We take AL = 30 at a distance L = R/V/2, thus stipulating that our star field

only covers a region of length ~~ 0.001 in units of the caustic strength and (hopefully)

avoiding any possible side-affects of the approximation for the magnification. In units

of the Einstein radius of the stars then, this means that we have K2  1677. These

parameters produce the critical curves shown in 7-1.

The magnification matrix at a point is given by

A = (2 + ) + S1 S2

S2 2.L X2 + K* - S1

Given how we selected L, along with our value for K*, if the shear from the stars

is not substantial (i.e. our micro-images are far away from the stars, which is more

likely than not with a low surface mass density) then the inverse magnification matrix

2 0
A ~ .'

(0 0
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Figure 7-1: Critical curves for micro-lenses perturbing a macro-critical curve

The micro-critical curves produced by a field of stars perturbing a smooth macro-

critical curve. Units are in terms of the Einstein ring of a single star. Note that

outside the field of stars, the complicated twists of the micro-critical curves rejoin
the smooth macro-critical curve. This smooth macro-critical curve is offset from

our desired macro-critical curve of the x1 axis inside the field of stars, due to our

subtraction of n. from the smooth potential. Compare "smooth critical curve" vs.

"macro-critical curve" in 2.2 of [18], as well as fig. 4 of [18].
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This is somewhat redundant, given that we set up our system around a macro-

critical curve. But there are a couple things worth pointing out. On a large scale, a

change in distance in the image plane AX 2 becomes a highly suppressed AY2, whereas

any Ay, is approximately equal to 2AZxi.

This is apparent in examining the caustic network, as seen in figure 7-2. Note the

extreme scaling differences in the two directions.

To first order, macro-images of a circular source would be ellipses, with semi-

major axes determined by the magnification matrix. Thus a circular source of radius

r produces elliptical images with semi-major axes r, - r/2 and rx ~ oc. We

expect the micro-images of the source to produce a highly elongated train extending

along the x 2 direction. This is beneficial: it reduces the problem to a (nearly) one

dimensional examination of how micro-images behave.

We can again search for the micro-images created by a given source position in the

caustic network. The results for various source positions are shown in figure 7-3, with

a zoom in 7-4. The motion of the train of images comprising the macro-saddle and

the macro-minimum towards each other is easily seen. They begin to merge together

somewhere around when the source crosses Y2 ~ 0.5, converging and finally completely

annihilating at a point slightly off of the macro-critical curve after the source crosses

Y2 ~ -0.5. New micro-images seem to always appear between the trailing bright

images of each train. This has the effect that micro-minima always move towards

decreasing x 2, whereas micro-saddles always move towards increasing X2 , the same as

the macro-images. A created pair of images can strictly never annihilate themselves

together then if this is the case.

While many more simulations would need to be done to gain a better empirical

idea of how the micro-images behave, this single examination has provided a starting

point for future work that we hope to expand upon.
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Figure 7-2: Micro-caustic network for a macro-caustic

Top: the micro-caustic network for the critical curves of figure 7-1. Bottom: zoom

in of the red boxed region of the top. Units are in terms of the Einstein ring of

a single star. Note the vast difference in scale of the top figure, demonstrating how

changes in distance perpendicular to the critical curve correspond to highly suppressed

distances perpendicular to the caustic. The caustics of the stars are approximately

those of Chang-Refsdal lenses. In the bottom, we see that the caustics are highly

stretched perpendicular to the caustic, making it likely that a source moving through

the network passes through the cusps of many caustics. Compare figure 5 of [181.
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Figure 7-3: Micro-image positions for a source moving through a caustic network
Left: further zoom of the micro-caustic network for a macro-caustic as shown in
figure 7-2. The red markers represent the positions of the source. The source is
moving perpendicular to the caustic along y2, with yi = 0. Middle: the micro-images
that appear due to the source positions on the left. We have rotated our coordinate
system to take advantage of the one-dimensional nature of the locations of the images.
The positive x1 directon points down, and the positive x 2 direction points to the right.
Each strip is centered on (0, 0). We have adapted a combination of plotting methods
shown previously. Minima are presented as blue, and saddles as orange, lines. The
lengths of the line scaless logarithmically with their magnification. Right: the total
magnification of each strip.
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Figure 7-4: Yet more micro-image positions for a source moving through a caustic

network
Left: yet a further zoom of the micro-caustic network. Middle: the micro-images

that appear due to the source positions on the left. We have selected a portion of the

caustic network with the most action. Right: total magnification of each strip.
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Chapter 8

Closing Remarks

We set out to examine the behavior of micro-images near caustic crossing events,

and have showed that at high optical depth an approximation used for the temporal

variations in flux breaks down at a strength-scaled distance from the caustic of ~

0.1. Modifications to the approximation, which can potentially draw from statistics

involving the mean micro-minima magnifications, may provide a somewhat better

analysis for such events. Lensing near macro-caustics disturbed by the micro-caustics

of stars opens a further field to be explored with our methods as well.

As mentioned by Wambsganns, Witt, and Schneider [19], a full analysis of micro-

lensing can benefit greatly from the three combined methods of ray-tracing, image

positin determination, and knowledge of the caustic network location. We are ap-

proaching a point where this is feasible, and look forward to seeing what future work

may hold in store.
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