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Abstract

Electrons in strongly-correlated systems move in a neatly coordinated manner, in
many ways resembling the movement of viscous fluids and leading to surprising collec-
tive behaviors. Here we explore how the hydrodynamic behavior manifests itself in the
electron transport through nanoscale constrictions. Free electron flows through con-
strictions in metals are often regarded as an ultimate high-conduction charge transfer
mechanism. However, as shown in this thesis, interactions can facilitate transport
and give rise to superballistic conduction, allowing conductance to exceed the ballis-
tic limit value. In other words, interactions and viscous effects, rather than presenting
a hindrance for conduction, help increase carrier mobility and suppress dissipation.
This interesting behavior represents a clear signature of the electron hydrodynamic
regime, and provides a way to determine electron viscosity. These results show that
interactions and viscous effects can facilitate high-mobility transport, granting a new
route for designing low-power nanoscale devices.
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Chapter 1

Introduction

Hydrodynamics, broadly defined, is an approach that uses symmetries and conserva-

tion laws to describe systems of many strongly-interacting particles [8, 36]. It starts

with a microscopic picture on microscales and connects it to the hydrodynamic fields

on macroscales. These fields are defined as the densities associated with the glob-

ally conserved quantities such as particle densitiy, total momentum density, and the

energy density. The micro/macro connection, provided by the kinetic theory, serves

as a natural framework to understand how an orderly collective behavior at large

lengthscales arises from chaotic dynamics at microscopic lengthscales.

The idea that the macroscopic behavior of fluids can be explained by microscopic

collisions between atoms goes back to the age of Maxwell and Boltzmann. It links

the hydrodynamic variables to the fundamental conservation laws and symmetries of

space-time, and helps to tackle the hard questions about the arrow of time, entropy,

and the relation between chaos and determinism. But the kinetic theory and hydro-

dynamics are not merely deep and powerful, they are also tremendously useful, as

they provide solid foundations to fluid mechanics and gas dynamics.

Recently there has been a lot of interest in extending the ideas of hydrodynamics

beyond the traditional domain of classical fluids. In the last decade they were suc-

cessfully applied to explore the collective behaviors of strongly-interacting particles in

different areas of physics. Diverse systems of current interest fall into that framework,

ranging from ultracold atomic gases (T - 10-6K) to ultrahot quark-gluon plasmas

15



generated in heavy-ion colliders (T ~ 10"K). Other examples include strongly-

interacting matter described by string theory, as well as electron fluids in strange

metals-a condensed matter system which is believed to hold key to understanding

the high-temperature superconductivity. Quite remarkably, due to the conservation

laws originating from fundamental symmetries of space-time, all these systems share

the common long-wavelength behavior resembling viscous fluids.

Here we discuss recent progress in applying the ideas of hydrodynamics to electron

systems in solids. Usually electrons in solids move as ball bearings in a pinball ma-

chine, losing their energy and momentum due to collisions with disorder and phonons.

A different situation arises when strong electron-electron (ee) interactions lead to

rapid elastic collisions [7, 9, 8, 101. While electrons lose their identity nearly instantly

in such collisions, the net energy and momentum remain conserved. Rather than

being dissipated, the momenta and energies of the particles are quickly passed from

one particle to another, taking on a new role of collective variables. As a result, the

system is truly chaotic on a microscale but at larger lengthscales obeys conservation

laws resembling those in classical hydrodynamics.

The notion of an electron system behaving as a viscous fluid may seem paradoxical.

And yet, as discussed below, it proved to be quite useful for understanding electronic

properties of high-mobility electron systems, in particular graphene 124, 25, 26, 271.

An atomically thin carbon monolayer discovered a decade ago, graphene has become a

benchmark system for modern nanoscience. One attractive aspect of graphene is that

it provides many sought-after qualities of an electron fluid. This is so because electrons

in this material behave as relativistic particles coupled by long-range forces that are

pretty strong, whereas the effects due to disorder and electron-phonon scattering

are relatively weak. With a possible exception of exotic fluids such as quark-gluon

plasmas, graphene may be closer to the notion of a perfect strongly interacting fluid

than any other system we know.

But while that's true in theory, the question is, even if we have this fluid-like

behavior, how do we detect it? Unlike ordinary fluids, where you can directly track

the flow by putting some beads in it, for example, here we don't have a way to view
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it directly. This is the question that will be addressed in this thesis.

As we will show, there are distinct signatures of hydrodynamic behavior of an

electron system directly accessible by routine transport measurements. In a nutshell,

viscous electron fluids can flow more easily than electron gases, with lower resistance

and smaller dissipation. The tendency of electron collisions to suppress electric re-

sistance and create low-loss viscous flows is not just surprising, it seemingly goes

against traditional theory. However, even though it may seem counterintuitive, very

soon after the effect was predicted [34] it was verified in transport measurements [35].

So now we have a very distinctive behavior that can serve as a litmus test of electron

hydrodynamics.

This thesis is based on a previous publication by the author [34].

1.1 Summary of the main results

The reason why electron-electron (ee) interactions enhance conduction can be under-

stood intuitively for transport through a slit (or, constriction) pictured in Fig. 1-1.

In both the ballistic and the hydrodynamic regimes, the dissipation of momentum

only happens at the boundary of the system. However, in the ballistic case the phase

space for electron transmission is more restricted than in the hydrodynamic case.

Indeed, as shown in Fig. 1-1, a ballistic electron can only passes through the slit if its

initial velocity points in the directions towards the slit. Crucially, this phase space

constraint is lifted in the hydrodynamic regime. In this case, because of frequent ee

collisions, electrons travel over zig-zag paths with a relatively short step. Because of

frequent ee scattering, the trajectory of a electron is not mandated by its initial ve-

locity, and consequently electrons all over the phase space have non-zero probability

to go through the slit.

This argument, which suggests that conduction in the hydrodynamic regime is

enhanced compared to the ballistic regime, can be restated in terms of dissipation.

The travel time from a given point inside the system to the boundary, where mo-

mentum is eventually dissipated, is longer for zig-zag paths than for straight paths.
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Consequently the probability for a given electron in the bulk to hit the boundary and

dissipate momentum is lower than that in the ballistic regime. This probability de-

creases as the ee scattering rate increases. Low dissipation rate translates into lower

resistance and higher conductance.

drain

a)

W

I'

/ '
I '

I

M

drain

b)

source source

Figure 1-1: The difference between ballistic transport and hydrodynamic transport. (a) In the
ballistic regime, electrons travel in straight trajectories and only few can pass through the slit. (b)
In the hydrodynamic regime, electrons travel in zig-zag paths and most of them can pass through
the slit.

The intuitive picture described above indicates that hydrodynamic flows use the

phase space more efficiently than ballistic flows do, and this difference must be re-

flected in the conductance of the system. On a quantitative level, the difference

between the two regimes can be understood by considering the extreme hydrody-

namic regime 1ee < w, where 1ee is the electron mean free path in the bulk and w

is the slit width. In this case, as we will show below, conductance can be expressed

through the electron viscosity

7rn2 e2w 2

Gis(w) = ,21 > lee, (1.1)

where n and e are the carrier density and charge. The viscosity 77 Oc lee goes inversely
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1with the strength of ee interaction

In the opposite limit, lee > w, the ballistic free-fermion model [2, 6] predicts the

conductance value (see below)

2e 2

Gball(W) = N, N = 2w/AF, (1.2)
h

where N ~ 2w/AF is the number of open transmission channels. The conductance Gvis

grows with width faster than Gball. Therefore, for large enough w, viscous transport

yields conductance values in excess the ballistic values. Quantitatively, at w > 1ee,

the viscous conductance value behaves as G, oc GbalI - (see below). The factor w/lee

describes the effect of conductance enhancement due to ee collisions.

Luckily, the unique properties of graphene allow to simultaneously explore dif-

ferent transport regimes, the collisionless ballistic regime, the ee-collision dominated

hydrodynamic regime and the ohmic regime. Indeed, in the low-temperature limit

the ee scattering is suppressed by fermion exclusion whereas phonons are not ther-

mally excited. As a result the system is found in the ballistic regime. At elevated

temperature T, the ee scattering rate grows as T2 while the electron-phonon scatter-

ing rate grows as T [37], so the ee scattering is dominant and the system enters the

hydrodynamic regime. At even higher temperatures the electron-phonon scattering

wins over the ee scattering, giving rise to a conventional ohmic behavior. Therefore

these different regimes can be made experimentally accessible in a single graphene

device, in which by adjusting temperature and electron density one can move freely

between different regimes.

Below we present a detailed theory of the crossover between these regimes, focus-

ing on transport through a slit in the geometry of Fig. 1-1. In chapter 2 we review the

basics of ballistic transport theory and introduce the hydrodynamic description of the

electron system. In chapter 3, which is the central part of this thesis, we introduce a

Boltzmannesque approach that allows to tackle the problem of the crossover between

'We note that the proportionality relation q oc 1ee is somewhat counterintuitive and often leads
to confusion. Indeed, stronger ee interactions imply a shorter mean free path and hence a smaller
viscosity, so a more viscous fluid has smaller viscosity than a less viscous fluid!
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these regimes. Starting from the Boltzmann equation for particles moving in the slit

geometry, we formulate an approach that transforms the integral-differential Boltz-

mann equation in a four-dimensional phase space (r, p) into a simple one-dimensional

integral equation on the slit line. By solving this equation we determine the potential

distribution induced by a current flowing through the slit and use it to evaluate con-

ductance. The conductance at the crossover is found to be given by a simple addition

rule

G = Gball + Ghydro, (1.3)

where the two terms, Gball and Ghydro, are the ballistic and hydrodynamic contri-

butions to conductance introduced above (Eqs.(1.1),(1.2)). Added together, they

describe conductance across the ballistic-to-viscous crossover.

20



Chapter 2

Ballistic and Hydrodynamic

Transport Through a Slit.

2.1 Free-Fermion Transport

In a degenerate Fermi gas particle collisions are blocked by fermion exclusion. As a

result, at low temperatures electrons exhibit ballistic free-particle behavior, moving

along straight trajectories and occasionally changing direction due to disorder or

phonon scattering [2, 3, 4, 5, 6]. In this regime, the free electron system achieves

its highest conduction capability known as the Landauer ballistic limit. Theory of

ballistic conductance was first developed for transport in three-dimensional metals by

Landauer and, independently, by Sharvin who also performed some experiments [1, 2].

Theory of ballistic conduction was thoroughly tested in two-dimensional electron

gases after constrictions with gate-tunable width have become available in split-gate

devices. By transport measurements, van Wees et al [3] and Wharam et al [4] have

shown that conductance of these constrictions increases in e 2/h-quantized steps as

a function of the constriction width. The observation of conductance quantization

came as a surprise and it took some effort to understand its relation to Landauer's and

Sharvin's work. In this chapter, we summarize the key aspects of ballistic transport

and derive the ballistic conductance for a 2D slit geometry pictured in Fig. 2-1. This

will set the stage for the next section where we consider the effects of ee collisions.
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As a disclaimer, in this thesis we will not be concerned with the effects of conduc-

tance quantization, adopting the quasiclassical approach of Ref.[2] which treats the

transport problem as classical dynamics of degenerate fermions. Such an approach

is valid when the constriction width and other relevant system dimensions are much

greater than the electron wavelength, w > AF. The interplay between the quantized

ballistic transport and electron collisions is a fascinating topic that will be a subject

of future work.

Conductance in the ballistic limit can be linked to the flux of particles through

the constriction induced by a voltage bias. We model the constriction as a slit of

width w as shown in Fig.2-1. Electrons pass freely through the slit and are backre-

flected outside the opening. To derive the conductance, we assume that the reservoirs

above and below the slit supply equilibrium particle distributions with the chemical

potentials pS = p + eV/2 (source) and PD = P - eV/2 (drain) respectively, where

e is electron charge and V < p/e is the voltage bias across the slit. We first carry

out the analysis treating electrons as free fermions, and then discuss the validity of

this approximation and improve on it by introducing a simple approach that helps to

understand the role of interactions.

Now, let us consider electrons that pass through the slit. Since there is no scat-

tering at all, the occupation numbers of the corresponding electronic states are de-

termined by the chemical potentials in reservoirs, as shown in Fig.2-1. In particular,

at any point within the slit, -w/2 < x < w/2, y = 0, the momentum distribution is

an equal mixture of the distributions supplied by the source and drain:

n - f (k-/[s), k , US(D) = p eV/2, (2.1)
f (Ek - PD) , ky <0

where f(Ek - p) = 1/(e / + 1) is the equilibrium Fermi distribution. Below

we assume, for simplicity, a parabolic dispersion relation E = h2 k2 /2m. Transport

of particles with nonparabolic dispersion can be handled using the effective mass

approximation. At y = 0, there is no current outside the slit, whereas inside the slit
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drain drain potential a.u. 
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0.4 

0 .3 
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-0.3 

-0.4 

source source 

Figure 2-1: Ballistic free-fermion transport through a slit of width w positioned at y = 0, which 
connects two reservoirs extending indefinitely up and down. a) The reservoirs emit free-fermion 

distributions IPI < p<;>, IPI < pCj?l. The Fermi momenta are unequal, pC;l =f pCj?), when a potential 
bias is applied between the reservoirs, eV = µ 8 - µD, The distributions mix due to particles moving 
through the slit, giving rise to structured position-dependent momentum distributions looking like a 
sliced pie. This is shown schematically with two colors representing particles from the two reservoirs. 
The p / - p asymmetry of the distributions translates into a nonzero current density. b) The potential 
distribution due to current through the slit. Potential is calculated from the total particle density 
in the momentum distributions pictured in panel (a) by accounting for charge neutrality (see text). 
The resulting potential at a given point is proportional to the angle at which the slit is seen from 
that point, which is equal to the angular size of the pie slices in (a). The contours of constant 
potential therefore represent the arcs of circles that share the slit as a common chord. 

the x~independent distribution in Eq.(2.1) gives a uniform current density: 

(2.2) 

where h = 2n1i is Planck's constant, AF = ✓2:iµ, 1s the Fermi wavelength, N = 

2w/>..F is the effective number of transmission channels, Eq.(1.2), and the integer 

factor g accounts for spin and valley degeneracy. The value g depends on the system 

bandstructure ( e.g. g = 2 for GaAs and g = 4 for graphene). Taking the ratio of the 

current and the voltage bias we obtain the conductance value 

(2.3) 

23 



Eq. (2.3) is the seminal Landauer-Sharvin result for ballistic conductance. The dimen-

sional factor e2/h is the conductance quantum, and the dimensionless factor 2w/AF

counts the effective number of conducting channels in the slit. The latter quantity,

which is nothing but the number of Fermi half-wavelengths that fit in the slit, scales

linearly with the slit width w. As a result, Gball also scales linearly with w.

It is interesting that, although electron motion through the slit is completely

unimpeded, so that no dissipation of their energy and momentum occurs within the

slit, it gives rise to a finite resistance. This may seem paradoxical and begs a few

questions. One is about dissipation which, by virtue of Ohm's law, is an inevitable

attribute of finite resistance. Sure enough, ballistic transport also leads to dissipation.

However, while potential induced by current drops near the slit (see Fig.2-1 and

discussion below), the dissipation takes place far away from the slit in the reservoirs.

The potential drop across the slit therefore does not reflect the locality of dissipation

(which does not take place within the slit). Instead, the potential drop originates

from space charge buildup due to the particles that undergo backscattering, as shown

in Fig.1-1. The backscattered particles which do not make it through the constriction

can also be viewed as the main cause of finite resistance. This is seen most easily by

considering the situation when nearly all incident particles pass, described by the limit

of a wide constriction 2w/AF - o. In this case, indeed, the conductance diverges

and resistance vanishes.

We also note that in the quantum problem, in which transmission through the

slit is treated as quantum-mechanical scattering, the number of conducting modes

2w/AF is an integer. One can therefore expect that the dependence of conductance

on w will exhibit quantum oscillations with period Aw = AF/2. Such oscillations are

indeed observed as a correction to the linear dependence in Eq.(2.3) of the form of

periodic staircase with e2/h-quantized step height[3, 4j.

Next we discuss the effect of interactions and derive the potential distribution

induced by current flowing through the slit. This is done most easily by employing the

condition of quasineutrality, i.e. an apparent overall neutrality arising due to long-

range interactions suppressing density fluctuations at large lengthscales. Classical
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dynamics of momentum distribution n(p, r, t) can be written as Liouville evolution

2

tn + {n, H} = 0, H = + eU(r), (2.4)
2m

where U(r) is the potential of current-induced space charge and {...} are Poisson

brackets. Explicit calculation gives collisionless Liouville-Boltzmann equation

atn + vVrn + eEVpn = 0, E = -VU, (2.5)

which must be solved together with the boundary conditions posed at the y = 0

boundary outside the slit.

A solution of this problem that matches the asymptotic values in reservoirs can

be found by solving first-order differential equation in Eq.(2.5) by the method of

characteristics. The result is a structured distribution of the form resembling a sliced

pie, of the form illustrated in Fig.2-1 (a):

n(p, r) = ts(p, r)f(E - ps + eU(r)) + tD(p, r)f(Ek - PD + eU(r)). (2.6)

The probabilities ts(D)(p, r) describe accessibility of a particular point of phase space

from a given reservoir:

ts(p, r)= , 1) (r) < Op< 2 (r) , tD(p, r) = 1- ts(p, r). (2.7)

0, else

Here O, is the electron momentum azimuthal angle and the condition 01(r) < Op <

02 (r) specifies momenta of particles arriving at a point r from the first reservoir. The

values 01,2 (r) are

w y
01(r) = arg X - + y = arctan ,2 X - -

2 / 2 (2.8)
2 (r)=arg x + - + iy = arctan ,02r =a. 2 +
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where we use the branch of arctan that does not have 7r-jumps, giving an expression

without discontinuities at x = w/2. This corresponds to the angles that the dotted

lines in Fig.2-1 (a) make with the x axis.

The solution in Eq.(2.6) is obtained assuming that particles move freely along

straight paths, ignoring the deflection of particle velocities due to the field E. This is

correct to first order in the potential difference between reservoirs and sufficient for

analyzing the linear response regime. To determine potential we consider the devia-

tion of particle density from its equlibrium value. Expanding the result in Eq.(2.6)

in V and U, and neglecting second-order corrections, gives

6n(r) = VI -- 02 (r) eV - veU(r), (2.9)

where v is the two-dimensional compressibility (which, for noninteracting fermions

equals their density of states). The quasineutrality condition requires that the de-

pendence U(r) is such that 6n(r) vanishes, giving

U (r) = r -2r V. (2.10)

The potential U(r), shown in Fig.2-1 (b), rises gradually across the slit, forming a

smooth step with the asymptotic values eV/2 matching the values in reservoirs.

Under what conditions is the result in Eq. (2.10) valid? As the conventional wisdom

has it, quasineutrality is obeyed at the lengthscales greater than the Thomas-Fermi

(TF) screening radius. In our case this translates into the condition WrTF 1

with rTF = 2we 2v the two-dimensional TF screening parameter. The TF screening is

enhanced in the presence of a proximal gate, in which case the distance to the gate acts

as an effective TF radius. However, while this condition is necessary and sufficient in

three dimensions, things may become more complicated in two dimensions. Indeed,

imperfect screening of the long-range three-dimensional Coulomb potential by charges

in a two-dimensional system generates power-law tails in the potential extending to

the distances much greater than the TF radius. Poor screening may lead to deviation

from charge neutrality. We will ignore these effects for the time being.
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2.2 Viscous Electron Flow: Superballistic Transport

In this section we analyze hydrodynamic electron flow through the slit with the help of

the Navier-Stokes equation. We will determine the flow and express the conductance

through electron viscosity, deriving the result in Eq. (1.1). However, prior to diving

into this analysis, it is useful to start with a general discussion of the conditions under

which the hydrodynamic description of electron flows is valid.

The validity of hydrodynamics relies on the existence of locally conserved quan-

tities. In our problem, particle number is conserved in all collisions. However, mo-

mentum conservation is approximate because translational symmetry is broken by

lattice structure and by disorders and phonons. Momentum conservation is a good

approximation so long as:

1. Disorder scattering and phonon scattering rates are much smaller than the ee

scattering rate y,ee >> 'ph, Yisorder.

2. Umklapp scattering (that can change momentum by a reciprocal lattice vector)

is weak.

3. In a realistic device there is momentum loss at the boundary, with a effective

scattering rate 'Yboundary r VF/W, and hence we require Yee y/boundry.

The first condition can be fairly easily met in high-mobility electron systems such

as graphene or two-dimensional electron gas in in GaAs. The second condition is

fulfilled due to crystal lattice symmetry (in GaAs the carrier band is a small pocket

positioned at the F point, in graphene it consists of two pockets at the points K

and K' which are separated by a third of a reciprocal lattice vector). The validity of

the third condition depends on temperature and it is that condition that determines

the regime of the electron system. This condition can be rewritten as a competition

between electron-electron mean free path 1ee and the slit width w, and hydrodynamic

regime requires l. < w. Here we will not consider energy transport because in a

degenerate Fermi system, T < EF, it is a subleading effect to momentum and charge

transport.
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In this section, we will derive viscous conductance formula Eq.(1.1). In the hy-

drodynamic regime, the fluid should be described by the Navier-Stokes equation

1(at + v - V - vV 2 ) v = -- VP. (2.11)
P

Taken at face value this equation represents a formidable mathematical problem.

Luckily, however, in our case there are some simplifications which make the problem

tractable. Namely,

" We will only consider DC transport, so all time derivatives can be dropped.

" Due to the strong Coulomb repulsion, the electron fluid is effectively incom-

pressible V - v = 0.

* The electron fluid is highly viscous and thus the flow is laminar. Microscopic

calculation of the kinematic viscosity yields v = iv21- .~ 0.1m2/s, where

VF - 106 m/s is the Fermi velocity and Yee ~ 1013s1 (at 100K) is the electron-

electron scattering rate 119]. This value of viscosity is comparable to that of

honey. The Reynolds number is defined as Re = vFL/v, where L - 1pam is

the typical geometrical size of the device. For electron fluid Re values are at

most 1 - 10 or smaller, showing that the electron fluid moves as a laminar flow

without generating turbulence. Intuitively, this is because electrons are light

and hence inertia is not important. Therefore, nonlinear terms can be dropped.

Under these conditions the system can be described by the Stokes equation (a

linearized Navier-Stokes equation) 132]

77V 2 v(r) = neV#(r). (2.12)

Here v(r) is the velocity field, which is related to current density by j = nev, #(r) is

the electric potential, 71 is the viscosity and we have ignored ohmic resistivity due to

impurity or phonon scattering.
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Figure 2-2: Current streamlines (black) and potential colormap for viscous flow through a slit.
Velocity magnitude is proportional to the density of streamlines. Current forms a narrow stream,
avoiding the boundaries where dissipation occurs and allowing the resistance, Eq.(1.1), to drop below
the ballistic-limit value.

A general solution of the two-dimensional Stokes problem, Eq. (2.12), can be con-

structed by introducing the stream function through the relations v, = ayO(r),

VY = -a,'Q(r) in order to resolve the incompressibility condition V -v = 0. Plugging

it in Eq.(2.12) and taking curl of both sides eliminates the pressure term and gives a

biharmonic equation for the unknown function 0:

(p2 +a 2 42(r) = 0, (2.13)

which must be solved with suitably chosen boundary conditions. A general complex-

valued solution of this equation can be constructed as a sum fi (z) + ff2(z), where

fl,2 are analytic functions of a complex variable z = x + iy. The stream function is

then obtained as V = Re (fi(z) + .f 2 (z)).

Applying this prescription to the slit geometry -g < x < i, y = 0, we seek a

function that has an asymptotic behavior Re (i log z) at large z (free flow at infinity)
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and satisfies the no-slip conditions at the slit boundary IxI > w/2, y = 0, i.e. has

vanishing tangential and normal derivatives for y -+ 0 . A closed-form expression for

the stream function satisfying these conditions is

(x, y) = A Re -ilog(z+ z2 _ _ +i z2-- -z 4 . (2.14)
F 4 )4 )W

The relation with the velocity field vx = &yV)(r), v, = -&x4(r) means that the

contours of 0 represent current streamlines. This property of the stream function

helps to visualize the flow. For the flow through the slit this is illustrated in Fig.2-2.

Taking the stream function on the slit line y = 0 gives

0(-w/2 < x < w/2) = A arccos - - x - x2 , (2.15)

and a constant at lxi > w. The relations vx = &.,(r), v, = -axo(r) then give a

semicircle distribution for current density inside the slit:

16 2 _x
jy (jx < w/2) = neA -x2, jY(jxj > w/2) = 0. (2.16)

The flow is fast in the middle and slows down near the slit edges. This is distinct

from current distribution for ballistic flow, which is flat inside the slit. Total current

flowing through the slit, obtained by integrating the semicircle distribution for jy or

directly from the difference 4(x = w/2) - )(x = -w/2) is expressed as I = 7rneA.

Potential can now be found by plugging velocity v, expressed through the stream

function, into the Stokes equation. The first term in Eq. (2.14) is a harmonic function,

and thus vanishes under Laplacian. We therefore obtain

Ar/V x (OX + 02)Reis 2 =neV(r). (2.17)

Expressing Laplacian through the a, and a2 derivatives as X+ = (ax + iay)(ax -
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iay) = 40o9,, moving it under Re and evaluating the derivatives gives the relation

16A 7V x (Rei = 
) neV#(r). (2.18)

Finally, since derivatives of analytic functions obey Oyf =ief, we can replace curl

by a gradient and simultaneously drop an i. This gives the potential

#(r) = - Re Z , (2.19)
wr(ne) 2w2  2

4

where we plugged in the expression of A through the net current.

Now we can link the resistance of the slit with viscosity. Identifying the asymptotic

values of potential #(r) in the reservoirs above and below the slit with V/2 gives a

linear I - V dependence

V = I. (2.20)
7r(ne) 2W 2

The I/V ratio then gives the conductance, Eq.(1.1). It is interesting to compare this

result to the ballistic conductance Gball = f w. Writing the dynamic viscosity as

a product of kinematic viscosity and mass density, 71 = vmn, and using the relation

4 =VF 1ee, derived below, we estimate

72
Gvis Gball . (2.21)

16 lee

Here 1ee is the mean free path for electron-electron collisions. In the hydrodynamic

regime, lee < w, this relation predicts conductance value above the ballistic value.

The enhancement of conductance compared to the Landauer-Sharvin free-fermion

conductance ("superballistic conduction") can be understood from the phase space

argument discussed above. Alternatively it can be interpreted in terms of momentum

relaxation slowing down in the hydrodynamic regime owning to a change in the typical

particle trajectory length (namely, the zigzag paths terminating at the boundary being

longer than the straight paths). The quadratic scaling Gvis Oc w 2 is distinct from the
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linear scaling Gball oc w found in the ballistic regime. This scaling, as well as the

higher-than-ballistic G values, can serve as a signature of a viscous flow.

drain potential a.u.

a)10 b) potential a.u. 15

8

- 26 10
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4+V/2
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-4 - 2

-6 -10
1 -1
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-10source

Figure 2-3: Potential for viscous flow through the slit. Potential spatial dependence is nonmonotonic,
exhibiting peaks near the slit edges. Potential in the peaks is higher than potential of the source
and lower than potential of the drain.

Another interesting aspect of viscous flow is the nonmonotonic character of the

potential spatial dependence near the slit. Potential calculated from Eq.(2.19) is

shown in Fig. 2-3 as a contour plot (a) and a surface plot (b). This dependence is quite

different from that predicted for ballistic flow, where potentoial drops monotonically

along the current path. Here, in contrast, potential generates a field that, near the

edge of the slit, is pointing opposite to current. The origin of this counterintuitive

field direction can be understood in terms of a competition between drag due to flow

in the bulk and the force due to momentum dissipation at the boundary which acts

to stop the flow and thus generates an internal pressure gradient against the flow.

As illustrated in Fig.2-3, this leads to spikes near the slit edges, with the potential

magnitude in the spikes exceeding that in the reservoirs. This interesting behavior,

representing an up-converting DC-current transformer, arises due to the electric field

pointing against the current near the viscous fluid edge [321. A nonmonotonic poten-

tial inside the systems with values that exceed the source and the drain potential is

another signature of hydrodynamic flows.

There are several validity conditions for these results. One is that the system
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is in the hydrodynamic regime i.e. the ee collisions dominate over other scattering

processes. Furthermore, we assume that the constriction width w is much greater

than the ee scattering mean free path lee and smaller than the mean free path for

momentum-nonconserving scattering by disorder, phonons, etc. Another requirement

is quasineutrality, incorporated in our solution of Stokes equation through the incom-

pressibility condition V -v = 0. As discussed at the end of Sec.2.1, quasineutrality

holds, in general, at the lengthscales greater than the Thomas-Fermi screening length

(with additional caveats arising in two-dimensional systems due to the poor screening

of 1/r interactions). In practical terms, this means that the spikes in the potential in

Fig.2-3, rather than being perfectly sharp, will be smeared out. The spike width will

be set by the screening length or the mean free path 1ee, whichever is greater.
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Chapter 3

Theory of Electron Flow at the

Ballistic-to-Hydrodynamic Crossover

3.1 The Boltzmann Equation Model

Here we present a theory of the ballistic-to-viscous crossover for a flow through the

slit geometry. Since we are interested in the linear response, we use the kinetic

equation linearized in deviations of particle distribution from the equilibrium Fermi

step (assuming kBT < EF),

(8 + vV.) f (0, X, t) = Iee(f) + Ibd(f), (3.1)

where 0 is the angle parameterizing particle momentum at the 2D Fermi surface. By

assuming that Fermi-liquid theory applies, all relevant momenta are on the fermi-level

and we can neglect energy dependence of f. Here Iee and 'bd describe momentum-

conserving carrier collisions and momentum-nonconserving scattering at the bound-

ary, respectively.

In the presence of momentum-conserving collisions transport is succinctly de-

scribed by quasi-hydrodynamic variables defined as deviations in the average particle

density and momentum from local equilibrium [30]. These quantities can be expressed
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as angular harmonics of the distribution f(0, x, t):

fo = (f (0))o, f i1 (e T 0 f ()), , (3.2)

where we introduced notation (...)= f ... d. The quantities fo, f i, conserved in

the ee collisions, represent the zero modes of Ie. For suitably chosen Ie, the task of

solving the kinetic equation in a relatively complicated slit geometry is reduced to

analyzing a selfconsistency equation for the variables fo, f i. We will derive a linear

integral equation for these quantities, and solve it to obtain the current density, the

potential and the conductance.

To facilitate the analysis, we model Ie by choosing a single relaxation rate for all

non-conserved harmonics:

Iee(f) = -(f - Pf), P = in) (ml, (3.3)
m=O, l

where y represents the ee collision rate, with 1ee = v/-y, and P is a projector in

the space of angular harmonics of f(9) that selects the harmonics conserved in ee

collisions. Here we introduced Dirac notation for f (0) with the inner product (fh f2) =

2-r Ii(0)f2(0). Namely,

(O|m) = eimo, Pf (0) = f eim(O-o') f (0').
m=O,i 2

As in quantum theory, the Dirac notation proves to be a useful bookkeeping tool

to account on equal footing for the distribution function position and wavenumber

dependence, as well as the angle dependence.

To simplify our analysis we replace the slit geometry by that of a full plane, with

a part of the line y = 0 made impenetrable through a suitable choice of Ibd(f).

Scattering by disorder at the actual boundary conserves fo but not f i. We can
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therefore model momentum loss due to collisions at the boundary using

0, |x < W
Ibd(f) = -- Z(x)P'f, a(x) = '2 ,(3.4)

b6 (y), xz ;> w

where P' is a projector defined in a manner similar to P, projecting f on the harmonics

m = 1. The term a(x) describes momentum relaxation on the line y = 0, equal zero

within the slit and b outside. The parameter b > 0 with the dimension of velocity,

introduced for mathematical convenience, describes partially transparent boundary.

An impenetrable no-slip boundary, which corresponds to the situation of interest, can

be modeled by taking the limit b -+ oc.

We will analyze the flow induced by a current applied along the y direction,

described by a distribution

f (0, x) = f(0)(0) + 6f (9x)I f(0)(9) ~ sin 0. (3.5)

Here f(O) and 6f, which we will also write as If(O)) and 16f), represent a uniform

current-carrying state and its distortion due to scattering at the y = 0 boundary.

Once found, the spatial distribution f(0, x) will allow us to determine the resulting

potential and resistance. The kinetic equation, Eq.(3.1), reads

(a + K + z(x)P')If) = 0, K = vV + 1 - -yP, (3.6)

From now on we suppress the coordinate and angle dependence of f and use the Dirac

notation. Plugging f = f(0) + 6f, we rewrite Eq.(3.6) as (K + d) 16f) = -a &f(0)),

where, for conciseness, we absorbed the projector P' into 6 and set &f = 0 for a

steady state. We write a formal operator solution as

16f) = -(1 + Gd)- 1 Gd If(0)), (3.7)

where G = K- 1 is the Green's function. Performing analysis in momentum represen-
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tation, we treat the scattering term in Eq.(3.4) as an operator

kw
(kl&lk') = P'Okl-kl, ak = 27rb6(k) - bw sinc -, (3.8)

where sinc x = S. The two terms in ak describe scattering at the y = 0 line lessX

the slit contribution.

Next we derive a closed-form integral equation for quasi-hydrodynamic variables.

This is done by projecting the quantities in Eq.(3.7) on the m = 0, 1 harmonics,

Eq.(3.2). Acting on Eq.(3.7) with P gives JP6f) = -(1 + 6)- 105 If(0)) where

C =PGP is a 3 x 3 matrix in the m = 0, 1 space (here we used the identity

& = P&P which follows from PP' P'P = P'). The integral equation is obtained

by acting on both sides with the operator 1 + 06, giving

(I + d) f = if (0)) . (3.9)

Here we defined f = f(0) + P6f, the full distribution function projected on the

m = 0, 1 harmonics.

The quantity f represents an unknown function which can be found, in principle,

by inverting the integral operator 1I+-a in Eq.(3.9). However, rather than attempting

to invert 1 + Oa directly in 2D, it is more convenient to proceed in two steps: first

analyze Eq.(3.9) in ID, on the line y = 0, and then extend the solution into 2D.

3.2 Green's Function

We start with finding G, the Green's function of the system. As a first step, we

evaluate the 3 x 3 matrix S = -yPGoP where Go = 1/(ikv + -y). The quantity Go is

an auxiliary Green's function describing transport in which all harmonics, including

m = 0, 1, relax at a rate -y. Direct calculation gives matrix elements (here m, m'

0, 1, Am = M' - M):

Smm, tanh # eOkM, (3.10)
-n+h kv ( A0
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where we denote sinh 3 = -I- and 0 k = arg(ki + ik2).

The matrix C can now be expressed through the matrix S by expanding the actual

Green's function as G = I/(G-1 - yP) = Go + Go'yPGo + ... , which gives

G = Go + GOTGO, T = (3.11)-yP

1 - -yPGOP*

Here we re-summed the series, expressing the result in terms of a 3 x 3 matrix T

in a manner analogous to the derivation of the Lippmann-Schwinger T-matrix for

quantum scattering with a finite number of 'active' channels. We note that -YPGoP

is nothing but the matrix S in Eq.(3.10). Plugging Eq.(3.11) into C PGP and

performing a tedious but straightforward matrix inversion we obtain

G= =

-iZk

sinh (
-iZk

-e,3z2

ZZk (3.12)

where Zk = ezOk and the basis vectors are ordered as 1+1), 10), 1-1).

In what follows it will be convenient to transform 1 1) to the

Ic) = 1)-1 , Is) = 1-I+ . In this basis O reads

Goo

GCS

Goc

Cc

GC

Oos
C

GSS

even/odd basis

-YtK
4

(3.13)

where the basis vectors are ordered as 10), 1c), Is) and we defined R (i) = v/k 2 + 1

and siii,2 = k1 ,2 , K = / + 2. The quantities G and a represent, through their de-

pendence on k, translationally invariant integral operators in position representation

and diagonal operators in momentum representation.
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3.3 Hydrodynamic Modes, Calculation of Viscosity

As a sanity check of the above formalism, we demonstrate the hydrodynamic modes,

and relate the collision rate -y to the kinematic viscosity v.

We reinstall the time dependence into the free space Boltzmann equation as the

following:

(k - yP)f = 0, K = &t + vVx + y1. (3.14)

Since fo and f i are zero modes of the collision operator Iee, they dominate at low

frequencies and long wavelengths. Accordingly, we can obtain hydrodynamic modes

from plane-wave solutions, f(0, x, t) ~ f(0)e-iwt+ikx.

Using the same techniques as the previous section, we can calculate the Green's

function of Eq.(3.14) to be

=G. (3.15)

Here the 3 by 3 matrix g = -yPK-P has matrix elements

gmm' = (m| 'yPk-P im') = K7 )= tanh 3 -eiOkM (3.16)
7+ ikv )0 -YW (ZeO)P "

which differs from Eq. (3.10) in that -y in the denominator is replaced by -yw = 7 - iw.

Low energy excitations of the system are given by poles of the Green's function

G, which only occurs if the denominator 1 - g vanishes. In other words, the matrix

g must have eigenvalue 1:
1

fm = gmm'fm'. (3.17)

As we now show, Eq.(3.17) generates an acoustic and a viscous mode. Since

the acoustic and the viscous modes are longitudinal and transverse, respectively, it

is convenient to do the analysis by performing an orthogonal transformation to the

even/odd basis

SIlk) + - 1k) =lk) - ) - 1k)
0), c)= , s)= , (3.18)
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where we use notation imk) = e-imok in).

normalized angular harmonics f,(0) = x_ cos O and f,(0) = V'_ sin 0, where = -0-.

This transformation brings the 3 x 3 matrix 9mm, to a block-diagonal form

goo goc 0

gco 9cc 0

0 0 gaS

(3.19)

For the odd-mode 1 x 1 block we find gss = -2- tanh 0(1 + e-20). Writing the disper-

sion relation 1 = gs and Taylor-expanding in small w and k yields a viscous mode

dispersing as

( = -ivk 2, V = v 2 /47. (3.20)

Here v is the viscosity defined so that the dispersion in Eq.(3.20) agrees with that

obtained from the linearized Navier-Stokes equation (at - vV 2)V = _pP.

The acoustic mode can be obtained from the even-mode 2 x 2 block

( goo

geo

90c

9cc J
_ytanhi#

7W ( /2e- 1 - Je-2 (3.21)

The dispersion relation det (1 - g) = 0 gives

7t - 1 +e
Stanh 13

20 ) + 2e-2) = 0.

Plugging sinh - -, simplifying and Taylor-expanding in w and k, yields a damped

acoustic mode
12

W= k - -vk
S2J'

(3.23)

where we expressed damping through viscosity v, evaluated in Eq.(3.20).

3.4 Projecting to a 1D Problem

We now continue the analysis of Eq.(3.9), by projecting it down to the line y = 0.
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First, we evaluate the matrix that represents the operator G restricted to the line

y = 0,

D(ki) = j 2 (ki, k 2 ). (3.24)
_-00 27r

The matrix elements Oo, and O0, are odd in k2 and therefore give zero upon integra-

tion in Eq.(3.24). This gives a block-diagonal matrix

Doo(ki) Doc(ki) 0

D(ki) = Dco(ki) Dec(ki) 0 1 (3.25)

0 0 D8s(ki)

The quantity D8s(ki) will play a central role in our analysis. Indeed, since the flow of

interest is symmetric under y - -y and x -+ -x, the fo and fc components vanish

on the y = 0 line. As a result, the distribution function at y = 0 is of a pure IS) form

i.e. f(0, x) = g(x)V 2 sin 0.

Evaluating the integral over k2 in Eq.(3.24) we obtain

D sgn n + K + (K 2 + 1) cot- 1  (
Dss (k) = -2 ITV )Ct1K(3.26)7r&ie

where ,'= kv/-y. This expression defines an even function of k with the asymptotics

Ds (Ik v < y) = 17 Dss(k lv > -y) = 2 (3.27)
|kIV2 7TV

Since the matrix element Dss is an eigenvalue of D for the eigenvector is), the 0

dependence can be factored out of Eq.(3.9), giving (1 + Da) g) = jg(O)). Finally,

multiplying by D 1 , we obtain the "central equation"

dk'
D-(k)gk + 2 ak-k'gk' = 27ry 6(k), (3.28)

where p is an unspecified number, akin to a Lagrange multiplier, which fixes the total

current value. Here, we wrote the relation (D-- + a) g) = y k = 0) as an integral

equation, replacing ki with k for clarity.
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The origin of the p-term in (3.28), and its relation with the properties of the

operator D, is simplest to understand using a discretized momentum representation.

Letting k, = n and replacing

dkL... -+ ... , 27r6(k) -+ L&k,o, (3.29)
n

i.e. putting the problem on a cylinder of circumference L, we see that the values

G,,(ki, k2) vanish for k, = 0 and any k2. This means that D,,(ki) also vanishes for

ki = 0 and thus the operator D does not have an inverse '. In this case caution must

be exercised when multiplying by D-. Namely, the quantities D-1 f) are defined

modulo a null vector of D, which is the k, = 0 mode with an unspecified coefficient,

represented by the p-term. We note parenthetically that discretization has no impact

on the values D,,(ki / 0) given in Eqs.(3.26),(3.27).

We obtain current distribution by solving numerically Eq.(3.28), discretized as in

Eq.(3.29), and subsequently Fourier-transforming 9k to position space. The details of

the numerical analysis will be discussed later. The resulting distribution, shown in

Fig.3-1, features interesting evolution under varying -y: flat at small -y, the distribu-

tion gradually bulges out as -y increases, peaking at x = 0 and dropping to zero near

x = i. In the limit y > v/w it evolves into a semicircle coinciding with the hy-

drodynamic result, Eq. (2.16). Current suppression near the slit edges is in agreement

with the streaming picture discussed above.

The solution on the line y = 0 can now be used to determine the solution in

the bulk. E.g. to obtain the density fo(x) we project the relation (3.9) on m = 0

harmonic, taking into account that both f(O) and af are of an Is) form. This allows to

express the 2D density as fo(x) = - f dx'Oo(x, x')a(x')g(x'), with x a 2D coordinate

and -oc < x' < oc. To avoid handling the b -+ oc limit in a, we write this relation

using Eq.(3.28) as

fo(x) = - dx'Gos(x, x') (p - (D-g) (x')) . (3.30)

'However, according to Eq.(3.26), D,,(O) seems to be infinity. This puzzle can be solved by
adding an infinitesimal momentum relaxation rate to the system, see Section 3.7.
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Figure 3-1: Current distribution in the slit for different carrier collision mean-free-path values. The
total current is normalized to 1. The distribution evolves from a constant in the ballistic regime to
a semicircle in the viscous regime, Eq.(2.16), illustrating the interaction-induced streaming effect.
Parameters used: L = 3w, b =10v. A Fourier-space filter was used to smooth out the Gibbs
phenomenon.

Plugging 00,(k) = -i, '2)' Fourier-transforming, and carrying out the k2 integral by

the residue method, f dk2eiY k -2 -we k2Isgny, we obtain

fo(x) = dki eikjx-IkjyI (D-1(k)g9k - 27rtL(ki))fO %,2v J( 27r S

The resulting distributions, shown in Fig.3-2, are step-like. At large y

dominates, giving fo(IxI > w) ~ -- sgn y. Therefore, the step height

regardless of the parameter values used.

the p-term

equals i/t

This relation provides a route to evaluate resistance. Namely, because of charge

neutrality, the density fo obtained from a noninteracting model translates directly into

potential distribution <O(x) = -fo(x), where vo is the density of states. Dividing the

potential difference V =-2 by the total current I f dxg(x) (ev sin 0Is) = ggl=O,
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Figure 3-2: Potential distribution induced by current through a slit (a) at the crossover, ee~ w,
and (b) in the viscous regime, lee > w. The spikes at the slit edges in b) is a signature of a
hydrodynamic behavior, see Eq.(2.19) and accompanying text. Plotted is particle density deviation
from equilibrium, fo(x), which is proportional to potential (see text). Parameters used: (a) -y = v/w,
(b) 7 = 15v/w; other parameter values are the same as in Fig.3-1.

yields a simple expression for resistance

R =P* , A, = 22 , (3.32)
vgko= e vV 0

where g= = f g(x)dx and p, is a constant of dimension Ohm - cm. Since g Xc p, the

resulting R values are p-independent. Fig.3-3a shows R plotted vs. -y. As expected,

R decreases as -y increases, i.e. carrier collisions enhance conduction.

3.5 Analytic Solution of the Central Equation

In this section, we discuss the ballistic and the hydrodynamic limits of the central

equation Eq.(3.28), which turn out to be analytically solvable.

The integral equation (3.28), which describes the current distribution in the slit,

is defined on a line -oo < x < oc in position representation. It reads

a(x)g(x) + dx'D, 1 (x - x')g(x')dx' = p, (3.33)

x d k eik(x-x') (3 fb, |x|
D- 1(x - x (x) 2SS 27r Doss(k) '0, 1XI < W
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Figure 3-3: a) The resistance R, Eq.(3.32), plotted vs. -y. Upon rescaling R -+ Rw, -y -÷ yw all the
curves collapse on one curve, confirming that the only relevant parameter is the ratio w/lee = wy/v.
b) Scaled conductance G = 1/(Rw) vs. yw. All curves collapse onto a single straight line, which
can be fitted with (0.694+ 0.378-yw)p;-'. Parameters used: b = 106v, the number of sampling points
within the slit ~ 160, the length unit wo = 1L.
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The ballistic and the hydrodynamic regimes are described by the large-k and small-k

limits of D,,(k) respectively, given in Eq.(3.27).

3.5.1 Ballistic Limit

We consider the near-collisionless limit -y < v/w. In this case Des(k) ~ 2/-rv and the

integral equation (3.28) turns into an algebraic equation which is solved by a step-like

distribution

g(jxj > w/2) = ~_ ,
7v + 2b

2pt
7V (3.34)

In the limit b -+ oc the total current is I = 2 ,g . Taking the 2D density of states72 irv

10 = N (here N is spin-valley degeneracy, e.g. N =4 for graphene), we find

V 1 h X 2
R - I - ' AF =I N e2 2w' kF (3.35)

This is precisely the collisionless Landauer value. Spatial dependence can be obtained

by plugging g(x) in Eq.(3.31). Integrating and taking the limit b -- oc gives

fo(x)- - sgn y (I110(x))
(3.36)

where O(x) = tan-' W is the angle at which the interval [-W, !] is seen fromwhre0()=ar 1 2 Y2_1w2 is th2nlse

the point x = (x,y). This agrees with Fig.2-1 and confirms the result " for thev/_2v

step height.

3.5.2 Hydrodynamic Limit

In the hydrodynamic limit, -y > v/w and D,,(k) = we fourier transform Da8

back to position representation:

D-(x - x') =
0 dk IkIV 2eik(x-x')

00 27r -y

V2
27r-y (X - X' + i0)2

+(X - ' - ZO)2
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This coincides with the kernel that relates potential in the plane and current on the

slit line, derived in Ref. [34] from a hydrodynamic approach (Stokes equation combined

with the incompressibility condition). We will now show that the integral equation

(3.33), in the limit b -+ 00, is satisfied by a semicircle solution identical to that found

by an electrostatic method. The analysis is facilitated by representing the semicircle

solution, with a yet-undetermined normalization factor, as

4x 2  2x
g(x) = a 1 - 2 = Imf+(z) - Imf_(z), z - -, (3.38)

where f (z) are given by 2(v'z2 - 1-z) continued from large z to -1 < z < 1 through

the upper or lower complex z halfplane, respectively. Using this representation and

the expression in Eq. (3.37), we can carry out the integral in Eq. (3.33) by the method

of residues, closing the integration path through the upper halfplane for f+(z) and the

lower halfplane for f_ (z). The contributions of large z drop out since the functions

f (z) vanish at infinity, giving

J dx'D-(x - x')g(x')dx'
J-00 

00

= Im 2 (fi'(z) - fl'(z))] = 2v2a (3.39)
-00

Here we have taken x to be in the interval [-., ] Inserting this result in Eq. (3.33) we

determine the normalization factor a = Y p. The resistance is obtained by evaluating

9k=o = g(x)dx = -wa,
_W 4

and plugging it in Eq.(3.32). This gives

8vp,_ 16

7ryw 2 -re27W 2 VO
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Writing the 2D density of states as vo = N = 2 and expressing i through viscosity
27rh

2  mV2 anexrsig-thogviciy

1 = nmv 2 /47 [see Eq.(3.20)] we find

8mv2 _329
R -

2  2 17 (3.40)
7re2 W2n 7re2n2w2'

This is precisely the hydrodynamic result given in Eq.(1.1).

Now we proceed to solve for the 2D potential distribution and current flow in the

hydrodynamic regime y > v/w. We transform the semicircle solution Eq.(3.38) to

Fourier domain:

g(k) J g(x)e-ikx dx = ,wa (3.41)
2 2 |kw/2|

where J is the Bessel Function. The solution of the ID problem can be used to

obtain the 2D flow by using the same procedure as the one employed to obtain the

density distribution, Eq.(3.31). Using the values Gcs and G,, given in Eq.(3.13), and

approximating D- 1 -~kx Iv2/-Y, the fc) and Is) components of the flow are given by

47a -
f (kX ky) =v2 Ji(Ikxw/2) , (3.42)

where the two entries represent the x and y momentum components, respectively.

In the equation above, the p term does not contribute. The next step is to perform

Fourier transform to obtain the real-space flow distribution

(X Y) = dk f (kx, ky)eikxx+ikyy. (3.43)
27r 27(

After the ky integral is calculated by the residue method, we have

f - ~dk7raeikxIkx|y ( -iy
f X1Y) 27 V2 1+|kxy|

k.1 (3.44)

= Re j dk Ja(|kew/2) ( ,
O V2 1+lkxy|

|kx|j
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The k_ integral can be evaluated using the identity

00 CXJ (OX) - "3i( 2 + 2 - )

0 Va2 4 2
(3.45)

This gives the flow velocity components:

2a
WV

- 2a
wvf= Re

(yZ - ix

(Z - |y| Z '
(3.46)

Z = (w/2)2 + (lyj - iX) 2 .

The resulting flow is shown in Fig.2-2. Using Eq.(3.31) we can compute the density

distribution:
sgn y 2av 2

fo(x, y) = Re
x/iv yW

jy|- ix
(3.47)- A} .

The value of p can be alternatively determined by fo being continuous at the slit,

giving tu = 2v2a/-yw, which agrees with the previous result.

3.6 Numerical Analysis

In this section, we describe the details of numerical analysis to the central equation

Eq.(3.28).

3.6.1 Discretization

To facilitate numerical analysis, we put our 2D problem on a cylinder, choosing a

large enough cylinder circumference L to provide a good approximation to the 2D

problem. Closing the x axis into a circle does not impact in any way the 2D -+ ID
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reduction, which yields an integral equation defined in the domain [-'L, jL]:

ca()g(x) + dx'b-'1 (x - x')g(x')dx' = p, (3.48)
J-L/2

00

b-1(x - x') =D-lt(x - x' -TmL),
m=-oo

with periodic boundary conditions, g(x L) = g(x). It may seem that the problem

defined by Eq. (3.48) is identical to that in Eq. (3.33), since any function g(x) satisfying

Eq.(3.48), after being continued periodically outside the domain [-!L, IL], satisfies

also Eq.(3.33). We note, however, that such a procedure generates functions which

are nonzero not only in the slit interval [-E, !] (w < L) but also in the intervals

[Lm - !, Lm +] where the solution of the original problem, Eq.(3.33), must vanish

in the limit b - oc. Physically, this is equivalent to replacing one slit with an infinite

array of slits of width w each, and periodicity L. The behavior near one slit will not

be affected by other slits so long as L > w. In our numerical study, taking L equal

few times w was found sufficient to provide a reasonably good approximation.

To handle the L-periodic boundary conditions, we write Eq.(3.48) in momentum

space, with momentum taking discrete values

k = 27rn (3.49)kL,

where n is an integer. We transform Eq.(3.48) by inserting a resolution of identity

L' Ik)(kI = 1, and using (xIk) = exp(ikx), DI k) Dss (k) Ik,), and (k g(x))

gk, where

Ak = L dxe-'kx g xW (3.50)
L/2

J-L/2

Finally, we obtain:

Sek-ki gk + D-1 (k)gk = pLk,o, (3.51)
ki

where ak = b(6k,o - !sinc(kw/2)). In numerical calculation, the values n in Eq. (3.49)

are limited by -- N < n < -N, where N is a suitably chosen large number. This
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corresponds to discretizing functions f(x) in position space by using an N-point mesh

Xi = iL i = - N, -N + 1 . - 1 in the interval [-!L, 1L].
N'2 2 ' ' 2

3.6.2 Numerical Results

We solve Eq.(3.51) numerically to obtain current distributions pictured in Fig.3-1.

This was done by first finding the distribution fk in momentum space, and then

Fourier-transforming to position space. We used L = 3w, and a large value b = 10 5v

to ensure that current vanishes outside the interval IxI < 1. When transforming back2

to position representation, a Fourier space filter

kL
k -4 9k sinc

2N

was used to smooth out the Gibbs phenomenon near the points x = tw where current

distribution drops abruptly to zero.

In the plots the value p was chosen such that the net current is normalized to unity.

The resulting current distribution evolves in an interesting way upon -y increasing:

the distribution is a flat step at small y, as expected in the ballistic case, and then

gradually bulges forming a peak at x = 0 and gradually dropping to zero near x = .2

In the extreme hydrodynamic limit y > v/w, it evolves into a semicircle, which

coincides with the previous analytic results.

Using the solution g, resistance R can be calculated from Eq.(3.32), giving the

conductance G = 1/R shown in Fig.3-3 and Fig.3-4.

The dependence R vs. -y shows several interesting features, some expected and

some unexpected.

First, on general grounds, we expect that the dependence on y is controlled solely

by the ratio w/lee. For large b = 106v, the conductance plots G vs. -y, obtained for

different slit widths w, collapse on one curve when rescaled to G/w vs. -yw. This

'universality' confirms that the only relevant parameter in the problem is the ratio

w/lee. This scaling stops working already for not very large b, as illustrated in Fig.3-

4. The breakdown of scaling is not alarming, since physically meaningful results are

52



3.5

3.0

2.5

2.0
w=1/ w o

1.5 W=I O
w=v2wo

Ci w=2wo
1.0

0.5

0.0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

yw/v

Figure 3-4: Conductance per width vs. yw. Plots are obtained at wo = -L, b = 50v, with the
number of sampling points within the slit of about 160. Unlike Fig.3-3, here different curves do not
collapse on one curve, indicating that the universality fails for small b.

expected only in the limit b -+ oo. Interestingly, however, the dependence G/w vs.

-yw is well fitted by a perfectly straight line both for b large and not-too-large. The

linear dependence G vs. 7, along with the scaling, indicate that the conductance at

the crossover is described by the addition formula

Second, quite remarkably, inverting this quantity and plotting 1/(Rw) vs. 7w we

find a nearly perfect straight line with a positive offset at y = 0, see Fig.3-3b. The

straight line, which is identical for all w values, is described by p"/(Rw) = a1 + a2 Yw.

This dependence translates into a simple addition rule for conductance,

G = Gball + Gvis. (3.52)

The term Gball describes a -- independent ballistic contribution that scales linearly

with w, whereas Gvj, describes a viscous contribution proportional to y that scales

as w 2 . By comparing to the two analytic limits, the two terms yield values ai = 2/7r
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and a 2 = 7r/8, respectively. This is in good agreement with the values a, = 0.694,

a 2 = 0.378 obtained from a best fit to the data in Fig.3-3b.

The additive behavior of conductance at the ballistic-to-viscous crossover comes

as a surprise and, to the best of our knowledge, is not anticipated on simple grounds.

This is in a stark departure from the Matthiessen's rule that mandates an additive

behavior for resistivity in the presence of different scattering mechanisms, as observed

in many solids[33]. This rule is of course not valid if the factors affecting transport

depend on each other, because individual scattering probabilities cannot be summed

unless they are mutually independent. This is precisely the case for momentum-

conserving ee collisions that do not by themselves result in momentum loss, but

can impact momentum relaxation due to other scattering mechanisms. Furthermore,

the addition rule for conductance, Eq.(3.52), describes a striking "anti-Matthiessen"

behavior: rather than being suppressed by collisions, conductance exceeds the colli-

sionless value.
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3.7 Including Ohmic Effects

In this section, we will extend our formalism to incorporate ohmic effects, i.e. momentum-

nonconserving scattering due to disorder, phonons, etc. This will help us to under-

stand the impact of ohmic effects on the ballistic regime, the hydrodynamic regime,

and on the crossover between them.

In contrast to electron-electron scattering where both particle number and mo-

mentum are conserved (the angular harmonics m = 0, 1), ohmic scattering only

conserves particle number (the m = 0 harmonics). We therefore modify the bulk

collision term Eq.(3.3) as follows:

hce(f) = -7Pviscous( 0  - P )f - 7Yohmic(1 - PO)f. (3.53)

Here yviscous and -Yohmic denote the rates of the two scattering mechanisms respectively.

For convenience, we define y = Yviscous + ohmic to be the total scattering rate, and

P = 'Yohmic/-y to be the fraction of ohmic scattering.

To solve this problem, we return to Eq.(3.9):

(1 + G6) =i f(O)), (3.54)

where again f f(0) + P6f, and f(O) describes the flow in free space in absence of the

slit. In presence of momentum scattering, f(0) = Is) - V/27Yohmicy/V 0) is a uniform

flow in the y direction together with a potential gradient.

The Green's function can be worked out using the Lippmann-Schwinger methods,

yielding the counterpart of Eq.(3.12):

~ 1
G = I , Y(3.55)

where V = P0 + (1 - p)P , and S is defined by Eq. (3.10).
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It is convenient to write the above result in the 10), Ic), Is) basis, which gives

2p+R_ -i__ -i/2_

T
2

G -,F ri 2K2 -2r. 2 (3.56)
-

2  
yK

2
(2p+R_) yK2

(2p+R-)

-iN/2K2 -2Klr,2 1n
-yK

2  
-Y

2
(2p+R) -y 2

(2p+R_)

where as before R_ (K) = N/, 2 + 1 - 1, i,2 = ki,2, K = 2+

The next step is to project Eq.(3.54) onto y = 0 line. Making use of the x -

-x, y - -y inversion symmetry, we can write f(0, x) = g(x)v/2 sin 0, and g satisfies

equation

(1 + DeSa) 1g) - |g(0). (3.57)

The operator Dos(ki) = f "-kGss (k1, k 2 ) is

K
4(1 - p)

[(2p - 1) (1 - 1 tan-1  2p-1
'" N/K2+4(1-p)p) 2 cot-' K 2 -Isn

.\K 2 +4(1 - p)p ?F

(3.58)

where i'= kvf/y.

As a sanity check, if we keep , > 0 and take the p -+ 0 limit of Eq. (3.58), we indeed

recover the viscous version Eq.(3.26). However, the , = 0 case is more subtle because

Eq.(3.58) predicts Dos(0) = 0 for any p > 0, whereas Eq.(3.26) says D8s(0) = oc.

This discrepancy is due to the fact that (r, p) = (0, 0) is a branch point of Ds, and

if we expand around p = 0, all terms have poles at K = 0. Therefore even if there are

no ohmic effects, we should still include a infinitesimal p which acts as a regulator

such that Dss(0) = 0.

The above discussion not only required the introduction of the P-term in the

central equation Eq.(3.28), but also required it to be infinite. To circumvent this

problem, we can discard the k = 0 component of the central equation, and replace it
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(0) =1.S ligt ec nr le u toby the current normalization condition gk=O = gYk = 1. Solving the central equation

with such a modification will produce the correct gA that describes the flow within

the slit.

However, because previously we could conveniently interpret p as the potential

drop across the slit, it would be helpful to find the equivalent of such a quantity

here. We note in that regard that when the flow in the bulk was calculated, e.g. in

Eq.(3.31), the quantity p always appeared in the combination D--(k)gk - 27rp6(k),

and it was the k = 0 value of it that determined the total potential drop. Motivated

by this observation, we define the new p' to be the above combination. However, since

it is the difference between two divergent quantities, a prescription for evaluating it

must be specified. Using the central equation Eq.(3.28) we get

fd k'
27p'6(0) = a klgkt, (3.59)

27

where in numerical calculations 276(0) will be replaced by the system size L.

To calculate the potential in the bulk, we write down the modified version of

Eq. (3.31):

6fo(x) = gny Jdki eikjxIkjyl (D'y 1 (ki)g 1 -- 27rp',(k)) (3.60)
/,2v J 27r S

where D agrees with D-- at k # 0 and vanishes at k 0. Here 6 fo captures the

potential drop due to the slit, from which the bulk resistivity effect is subtracted.

Using this approach, we can calculate the flow distribution at the slit and the

potential distribution in the bulk. The results for the crossover between the hydro-

dynamic and ohmic regimes are shown in Fig.3-5 (a). We observe that as Yohmic

increases, the flow distribution evolves from a semicircle to a double-spike distribu-

tion. Interestingly, the transition to the ohmic regime happens when YOhmiCW/V 1,

regardless of the ee collision mean free path value. This crossover value 'Thohmic

corresponds to the ohmic momentum relaxation mean free path being comparable to

the slit width.

The ballistic-to-ohmic crossover, shown in Fig.3-5 (b), features a similar behav-
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ior: the current profile in the slit evolves from a flat distribution to a double-spike

distribution, with the same crossover value for the ohmic rate, 'Tohmic - v/w. The

potential distribution for the ohmic regime, shown in Fig.3-6, has the shape similar

to the ballistic result in Fig.3-2(a).

We used the method described above to calculate potential drop across the slit and

determined resistance dependence on the ohmic rate 'Yohmic and the electron-electron

scattering rate yviscOs. We found that in the not-too-extreme ohmic regime where

Tohmic - v/w, the total resistance R decreases as 7vicou, increases. This means that

the hydrodynamic conduction enhancement survives in the presence of weak phonon

scattering and disorder scattering. Somewhat unexpectedly, the total resistance could

be fitted pretty accurately by a series resistance formula

R = Rohmic + ~( ,3.61
Gballistic + Gviscous

which can be viewed as an "ohmic generalization" of the conductance addition formula

Eq.(1.3). We use tilde to indicate that the quantities are fitting parameters that in

the limit -Yohmic -+ 0 turn into the quantities introduced earlier. Here the parameters

Rohmic and Gballistic are independent of yviscous and Gviscous is proportional to Niscous.

However, all of these quantities depend on Nhmic: As 'Yohmic increases, ohmic increases

whereas Gballistic and G5 iscous decrease, which suggests that the interaction-induced

conduction enhancement is suppressed by strong ohmic scattering, in which case we

recover the conventional ohmic regime.
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Figure 3-5: Current distributions in the slit for different ohmic scattering rates, illustrating the
hydrodynamic-to-ohmic (a) and ballistic-to-ohmic (b) crossovers. The total current is normalized
to 1. When _Yohmic is small, the distributions are in the viscous regime and ballistic regime, respec-
tively. As ohmic increases, they evolve to the ohmic double-spike distribution. Parameters used:
7viscous =(a) 50v/w, (b) 0.5v/w; other parameter values are the same as Fig.3-1
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Figure 3-6: Potential distribution induced by current through the slit in the ohmic regime. The bulk
resistivity contribution, linear in y, has been subtracted. Parameters: YviscoU. = 15v/w, Yohmic
0.5v/w.
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Chapter 4

Conclusion and Outlook

In this thesis, we have studied signatures of hydrodynamic transport in an electron

system. The main finding of this work is that in the hydrodynamic regime strongly

interacting electrons "cooperate": by exchanging momenta through two-body colli-

sions they move more easily than in the absence of collisions. In a sense, they achieve

collectively what they cannot accomplish individualy, overcoming the ballistic con-

duction limit. Starting with this motivation, we went through the following steps to

substantiate this picture:

In chapter 2, we compared ballistic transport and hydrodynamic transport in a slit

geometry. We reviewed the theory of ballistic transport and derived the Landauer-

Sharvin conductance. We used the Navier-Stokes equation to model the hydrody-

namic regime, and calculated the potential distribution, flow distribution and the

conductance. We demonstrated that there are several interesting signatures for hy-

drodynamic transport, such as superballistic conduction and non-monotonic potential

distribution.

In chapter 3, we used Boltzmann equation to establish a theory covering the

crossover from the ballistic regime and hydrodynamic regime. By using a simple

model for electron-electron collisions, the problem was made analytically tractable.

We calculated the Green's function of the system, and along the way we obtained the

collective modes and the viscosity. The problem was further simplified by projecting

the two-dimensional equation onto the slit line. Through numerical analysis of the
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projected equation, we obtained the conductance as a function of the electron-electron

scattering rate. Surprisingly, the result was a simple linear dependence within the

(very high) numerical precision of our method. This linear dependence translates into

the addition formula that the net conductance, which is given by a sum of the ballistic

conductance and the hydrodynamic conductance. We also explored the transition to

ohmic flow by introducing ohmic scattering into the Boltzmann equation.

Thinking about the future, there are several aspects that seem interesting to ex-

plore further. First, our numerical calculation gives a strong evidence for the addition

formula to be exact, so it would be really interesting to understand analytically how

the addition formula arises. This is far from being clear at the moment, however one

could explore approaches that use holographic duality to map the problem to some

gravitational system, in which the addition formula may hopefully become manifest.

Second, our preliminary results suggest that the simple collision integral model used

in this work may be oversimplified. For example, it fails to acknowledge the fact

that in two-dimensions the odd harmonics of the perturbed momentum distribution

near the Fermi surface relax slower than the even harmonics, due to phase space con-

straints. A better understanding of these aspects of the collision operator may add

some interesting features to the hydrodynamic theory, in particular new collective

modes. Third, we have assumed the system to be in the Fermi liquid state. In the

future, it would also be interesting to explore the hydrodynamics in the Dirac fluid

phase, where the system is undoped and the Fermi level is aligned with the Dirac

point. In this case the emergent Lorentz symmetry may play a important role in the

theory.
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