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Abstract

Autonomous driving on highways and freeways, as a feature, is already available in quite
a few high-end commercial vehicles being sold today. Autonomous driving in urban
environments, on the other hand, is still an active area of academic and industrial research [6],
because of its relatively complex nature. Urban driving requires the self-driving vehicle
to interact with not just other vehicles, but also other moving agents such as cyclists and
pedestrians. Pedestrian trajectory prediction is challenging because of the relatively higher
number of degrees of freedom in pedestrian movement and absence of uniform rules across
different cities and different scenarios within a city. Furthermore, in scenarios such as
intersections, context, such as pedestrian traffic lights, stop signs and sidewalk geometry,
significantly influences pedestrian movement. The objective of this thesis is to present
a general, context-aware, long term (order of few seconds) trajectory prediction model
for pedestrians in urban intersections. To meet this objective, first, the Augmented Semi
Nonnegative Sparse Coding (ASNSC) [13] framework, for trajectory prediction, is extended
to embed context, and build the Context-aware Augmented Semi Nonnegative Sparse
Coding (CASNSC) algorithm. For prediction in new, unseen intersections with different
curbside geometries (orthogonal versus skewed), CASNSC is further extended to build the
Transferable Augmented Semi Nonnegative Sparse Coding (TASNSC) algorithm. Urban
intersections can at times vary significantly in the type of pedestrian behaviors encountered,
even across intersections with similar geometries. For instance, faster, rule breaking students
near a college campus versus slower pedestrians in a residential area. While TASNSC is
capable of successfully transferring knowledge from one intersection to another, it lacks the
ability to update its prediction model as, and when, new intersections are visited and novel
behaviors are encountered. An online model, based on TASNSC, is also presented in this
thesis to account for this particular limitation.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Recent advances in sensor technologies, computing power and publicly available datasets

have led to a surge in research on autonomous driving, motivated by various reasons, such

as, improving road safety ([24, 3]), reducing traffic congestion ([55, 36]), improving vehicle

utilization and also, reducing pollution [53]. Autonomous driving on highways and freeways,

as a feature, is already available in quite a few high-end commercial vehicles being sold

today. Autonomous driving in urban environments, on the other hand, is still an active area

of academic and industrial research [6]. Urban driving is complex because of the huge

variety of situations and moving objects that a vehicle may encounter. For safe and efficient

autonomous driving in complex urban environments, a self-driving vehicle, in addition

to interacting with other vehicles, must be able to interact with other moving objects like

pedestrians and cyclists.

Trajectory prediction of pedestrians is challenging as compared to that of other cars and

cyclists because of the absence of a regular flow, such as driving within lanes and staying

within road boundaries, that results from a fairly uniform set of predefined "rules of the road"

for cars (and to some extent cyclists). The complexity is increased further when the urban

environment includes pedestrian traffic lights or tightly packed sidewalks with numerous

pedestrian interactions. Context, such as pedestrian traffic lights, location of sidewalks and

crosswalks, curbside geometry etc., significantly influences pedestrian movement. Fig. 1-1

shows an urban intersection scenario in which pedestrian choice between two crosswalks, at

17



Figure 1-1: Example intersection scenario. Dotted green line denotes a rectangular approximation to
the curbside in view. Orange arrows denote relative distance of a pedestrian from the two curbsides,
which can indicate pedestrian intention. Pedestrian traffic light status is highlighted in orange, which
also influences pedestrian movement.

an intersection corner, is influenced by the status of pedestrian traffic lights for each of those

crosswalks. Similarly, a comparison of the relative distance of the pedestrian to each curb-

side, can also be indicative of future direction of motion. A context-aware prediction model,

that can capture such features, would be able to better infer pedestrian intent, and hence,

have improved trajectory prediction accuracies as compared to a context-unaware predic-

tion model, that is based on spatial features alone, such as pedestrian position and orientation.

Prior work on trajectory prediction of moving agents has focused on two main ap-

proaches [39]: prototype trajectories-based and maneuver intention estimation-based. Chen

et al. [13] combined the two approaches, to inherit the benefits of both, in developing the

Augmented Semi Nonnegative Sparse Coding (ASNSC) algorithm. Trajectory prediction

using ASNSC comprises of learning a set of motion primitives and the pair-wise transition

between them, as opposed to learning full trajectory prototypes. Such an approach addresses

the issue of partial observability of trajectories caused by occlusions or a limited field of

view of on-board perception sensors. ASNSC showed significant improvement in pedestrian

trajectory prediction over state-of-art clustering based approach using Dirichlet Process

mixture of Gaussian Process (DPGP). However, ASNSC learns from spatial features alone

18



and fails to incorporate available context. The accuracy of predictions using ASNSC can be

improved by utilizing semantic features from the environment in the learning process.

Most of the previous work on context-based pedestrian trajectory prediction aims to

identify stopping versus crossing intent ([49, 37, 58]), as opposed to long term trajectory

prediction. The latter can can provide additional, useful information to the self-driving

vehicle for planning its future course of action. Such as how much time would it take for

someone to cross the road, which crosswalk/path would be used, etc. In addition to this

limitation, some prior works also assume that only one context feature can be active at a

time [28], which works for short-term, immediate prediction only. More recently, Schulz et

al. [50] utilized head pose to predict future pedestrian trajectories for upto one second. Kara-

sev et al. [34] successfully embedded semantic features such as traffic lights and crosswalks

into their long-term pedestrian trajectory prediction model. However, the output of their

model is an occupancy map of feasible trajectory predictions, as opposed to actual future

trajectories, which can provide additional, useful information to the vehicle planner.

The first contribution of this thesis to lay down the framework for the Context-aware

Augmented Semi Nonnegative Sparse Coding (CASNSC) algorithm. CASNSC is a novel,

context-aware trajectory prediction model, applicable to pedestrians in intersection corners.

It can predict for a long-term horizon of about 5 seconds and outputs a set of future tra-

jectories along with the likelihood of each. Such an output is desired and can be easily

incorporated by state-of-art probabilistic planners ([35, 17, 10, 11]).

As the name suggests, CASNSC is built on the ASNSC framework. First, a dictionary of

motion primitives is learned using ASNSC, from spatial features such as pedestrian position

and orientation in the car frame. Context affects the probability of transition between learned

motion primitives. For instance, in Fig. 1-1, pedestrian traffic lights influence the probability

of transition between motion primitives at the shown intersection corner. For the pedestrian

in focus, the pedestrian traffic light for the crosswalk in front of him is red. He can either

wait for the light to turn green or turn left and use the other crosswalk. In this situation,
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transitioning from the pedestrian's current motion primitive, to one that represents moving

straight ahead, would have a lower probability than transitioning to another motion primitive,

which represents turning left. This aspect was not captured in ASNSC as the transition

between motion primitives was modeled using the same set of spatial features (pedestrian

position and orientation in the car frame) as that used for learning the motion primitives

themselves. Any context, that may influence a pedestrian's intent and hence, transitions

between motion primitives, was ignored. CASNSC addresses this shortcoming by using

a combination of context features and spatial features to model the pair-wise transition

between motion primitives.

Incorporating context, in addition to improving trajectory prediction accuracies, can

also provide flexibility of application of the learned model to prediction in new, but similar

environments, unexplored earlier. Data collection in the real world is expensive and time

consuming. A model that can learn solely from context features, would be far superior to

one that requires learning from spatial features, and hence, needs to be trained on every

intersection.

The selection of right context features is also important to avoid training in every in-

tersection. For instance, the use of context features like orthogonal distance to curbside

makes the intent prediction models in prior works ([59, 37, 58]) dependent on the specific

training intersection geometry. This prevents generalization of such models to prediction in

new intersections with varying curbside and/or sidewalk geometries. There is a need for a

general, transferable trajectory prediction algorithm, which when trained on one intersection,

can be used for prediction in new, unseen intersections, with similar context but varying

curbside and sidewalk geometries.

Ballan et al. [4] and Sadeghian et al. [48] demonstrate the ability to "transfer knowledge"

by predicting in unseen locations with similar semantic elements. However, both approaches

require a prior bird's eye view of the scene, in the form of high-definition prior maps, to

compute semantic similarities between the test and train environment. Such priors are

20



Curbside Coordinate Frame

P' (4'yRj)

Y'

Figure 1-2: An illustration to show how points PA (xA, yA) on the red trajectory in intersection
I1 and PB (XB,YB) on the purple trajectory in intersection 12, under the transformation 7, map
to points P'(xiyi) and P (x's, y') in the "curbside coordinate frame". In this work, 7 is
defined such that it is an affine transformation. Pedestrian trajectories in urban intersections
are significantly constrained by curbsides. Transforming trajectories into the curbside
coordinate frame, using an affine transformation, intuitively would map trajectories with
similar pedestrian intent approximately on top of each other. This insight helps in developing
a general, transferable pedestrian trajectory prediction model.

expensive to create and maintain.

The second contribution of this thesis is the Transferable Augmented Semi Nonnegative

Sparse Coding (TASNSC) algorithm. TASNSC encodes situational context and provides a

transferable prediction model, which can be generalized to predict in corners of new, unseen

intersections, without needing a high-definition prior map. The key idea that enables this

generalization is the use of a simple prior on curbside geometry (i.e. angle made by inter-

secting curbs at the corner point of interest and the coordinates of the corner) to construct a

common "curbside coordinate frame", such that trajectories with similar intent are spatially

similar in this common frame.
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For instance, in Fig. 1-2, the pedestrian trajectories shown in intersections I1 and 12

represent the same underlying intent of a pedestrian approaching an intersection corner and

choosing the left crosswalk to cross the road. These trajectories are spatially dissimilar

in the original car frames. However, when mapped into the common frame, they become

spatially similar. Each trajectory can also be seen as a sequence of motion primitives, also

referred to as "short-term intents" in this work. For example, moving straight and turning

left are two different short-term intents. Similar short-term intents can also be spatially

dissimilar in the car frame of different intersections, but when mapped into the common

frame, they become spatially similar. Building on this important insight, a model comprising

of motion primitives and their transition learned in the proposed common frame, instead of

the original car frames, can be used to predict in corners of new, unseen intersections with

similar semantic cues and different curbside geometries.

In TASNSC, first an affine transformation is used to map training trajectories from the

original, car frame of the training intersection into the proposed common frame, such that

underlying intent is preserved. Motion primitives and their transition are then learned in

this common frame. For prediction in a new, unseen intersection, an observed trajectory is

mapped into the common frame using a prior on curbside geometry of the test intersection.

A set of future trajectories is predicted in the common frame using the learned motion

primitives and their transitions. The predicted trajectories are then mapped back into the car

frame of the test intersection using the inverse transformation. While high-definition prior

maps are not a limiting constraint for the application of TASNSC, if available, the TASNSC

framework is general enough to incorporate context information embedded in such maps.

TASNSC, along with other prior works that demonstrate the ability to transfer knowledge

([4, 48, 52]), assumes that the training and test data consists of similar pedestrian behaviors

in scenes with similar semantic cues. In general, the vast majority of current learning

techniques, in both supervised and unsupervised settings, make the same assumption of the

training and test data having similar feature spaces/distributions. However, in practicality,
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models are typically learned for a specific domain and data type and, in most cases, cannot

be generalized to new, related domains.

For instance, urban intersections can vary significantly in the type of pedestrian be-

haviors encountered, regardless of having similar semantic elements such as crosswalks,

traffic lights, sidewalks, etc. These pedestrian behaviors can range from faster, rule breaking

students near a college campus to slower, conservative pedestrians in a residential area.

A trajectory prediction model trained on college campuses would not generalize well to

residential areas and vice-versa, inspite of having similar semantic cues. A key challenge is

to generalize the trained model to a variety of domains. This requires continually learning

from data collected in new domains with as few data points as possible. A prediction

model that can transfer knowledge from one intersection to another, while also updating its

knowledge base with novel behaviors as, and when, new intersections are visited, is needed.

The third contribution of this thesis is an online, general model for predicting pedestrian

trajectories in corners of urban intersections, that can transfer knowledge from one inter-

section to another, and also augment previously learned knowledge, using data collected

from different intersections. This ensures that the model improves over time, as more data

becomes available. Similar to TASNSC, a simple prior on curbside geometry (i.e. angle

made by intersecting curbs at the corner point of interest and the coordinates of the corner)

is sufficient to build this online model.

In the proposed online model, first, a set of motion primitives and their pair-wise

transitions are learned in the common frame, using the initially available training data.

Whenever more data is collected at the already visited intersections or at an entirely new

intersection, a new set of motion primitives is learned. A newly learned motion primitive

is added to the model if it is not similar to any of the existing motion primitives, to

accommodate any novel primitives representing novel pedestrian behaviors. Relevant

transitions between motion primitives are also simultaneously updated. The updated set of

motion primitives and their transitions are consistently used for prediction in new, unseen

23



intersections. Thus, the prediction model improves as more intersections are visited and new

data is collected.

1.1 Summary

The main contributions of this thesis are: (i) Context-aware Augmented Semi Nonnegative

Sparse Coding (CASNSC) algorithm for long term (~~ 5 seconds), context-aware pedes-

trian trajectory prediction in urban intersection corners; (ii) Transferable Augmented Semi

Nonnegative Sparse Coding (TASNSC) algorithm for long term, context-aware pedestrian

trajectory prediction in corners of new, unseen intersections with varying curbside geome-

tries. TASNSC works for both skewed and orthogonal intersection geometries. A simple

prior on curbside geometry is sufficient for its application. High-definition prior maps

are not a prerequisite, but when available, they can be utilized for embedding additional

context information into the TASNSC framework for improved prediction accuracies; (iii)

An online, general, context-aware pedestrian trajectory prediction model, that extends the

TASNSC framework to improve the prediction model over time, as more data is collected,

by incorporating novel behaviors; (iv) Real world datasets of pedestrian trajectories in two

intersections around the MIT campus, collected using 2D LiDARs and cameras mounted

on-board a Polaris GEM electric golfcart [44].

Chapter 2 provides a brief review of the ASNSC algorithm, used for learning motion

primitives in this thesis. The trajectory prediction approach of [13] is also described for

completeness and for a better understanding of the proposed prediction models. This is

followed by an overview of the use of Gaussian Processes (GPs) to model motion patterns

as flow fields in the two-dimensional space ([33, 2]). All throughout this thesis, transitions

between motion primitives are modeled using these GP motion patterns. Chapter 2 also

discusses the online sparse GP algorithm [16] that is used to build all GP models.

Chapter 3 provides details about the data collection process. It also includes a description

of the real world datasets used in this thesis, consisting of pedestrian trajectories in two
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different intersections around the MIT campus.

Chapter 4 lays down the framework of CASNSC. Since CASNSC is based on ASNSC,

its prediction model also comprises of a set of motion primitives and the transitions between

them. Context is incorporated into the two-dimensional GP flow field based modeling of

transitions between motion primitives. While the presented CASNSC framework is general

enough to incorporate any context feature, the ones used to demonstrate improvement in

prediction accuracies over ASNSC are - pedestrian traffic light, curbside orientation and

relative distance to curbside. Different combinations of these context features are tested

for an in-depth analysis of the algorithm. A squared exponential (SE) kernel function with

automatic relevance determination (ARD) [47] is used to learn the relevance of each of the

individual features from the available training data. A quantitative comparison of CASNSC

with ASNSC shows a 12.5% increase in prediction accuracy, when tested on one of the two

real world datasets described in Chapter 3.

Chapter 5 presents TASNSC, which builds upon CASNSC to provide a transferable

prediction model. TASNSC can be used to predict pedestrian trajectories in new inter-

sections, with varying curbside geometries, but similar semantic cues as the ones that it

was trained on. Real pedestrian trajectories, collected at two intersections with different

curbside geometries, are used to conduct the experiments discussed in this chapter. TASNSC

achieves 7.2% improvement in prediction accuracy over ASNSC, when trained and tested

on the same intersection. This improvement can be attributed to the implicit embedding

of context in TASNSC, because of learning motion primitives and their transition in the

curbside coordinate frame.

The prediction performance of TASNSC, when trained and tested on different intersec-

tions, is comparable to the baseline performance. Additionally, since TASNSC builds upon

CASNSC, additional context features can be easily incorporated in learning the transition

between motion primitives. Chapter 5 demonstrates this feature, in one of the experiments,

by incorporating pedestrian traffic light in predictions using TASNSC. As expected, predic-
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tion accuracies improve on incorporating additional context.

Chapter 6 presents the online, general trajectory prediction algorithm that builds upon

TASNSC, to incorporate novel behaviors in the prediction model, as more intersections are

visited and more data is collected. A detailed overview of the model update algorithm is

provided, which includes updating both the motion primitives as well as their transitions,

whenever novel/similar motion primitives are learned from new data. For updating motion

primitives, a novel distance metric is defined to compute similarities between motion primi-

tives. The online sparse GP algorithm, as in [16], is used for updating the relevant transitions

between motion primitives. Preliminary results of improvement in prediction performance

with the proposed online model, as more training data is collected, are discussed in this

chapter.

Chapter 7 concludes the thesis by providing a detailed discussion on the limitations of

the proposed prediction models and scope for future work.

1.2 Related Work

Several papers have been written on short-term prediction of human motion [37, 7, 28, 27],

but understanding goals or intent is needed to plan for longer timescales [34, 1]. For in-

stance, [31] demonstrates the ability to accurately predict the final destination of pedestrians

using a probabilistic pedestrian modeling approach. The aim of this work, however, is to

not just predict the final destination, but also the trajectory that leads to it. Previous work

has focused on two main approaches for trajectory prediction [39]: prototype trajectories-

based and maneuver intention estimation-based. In general, prototype trajectories-based

approaches are more robust to measurement noise when compared to maneuver intention

estimation-based approaches, which are mostly Markovian [42, 56, 50] and therefore, rely on

the current state only for prediction. However, the prototype trajectories-based approaches

can be computationally quite expensive [46, 25] and hence slow in detecting changes in

pedestrian intent. They are also susceptible to issues like partial trajectories in the training
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dataset being grouped together into a cluster and learned as a trajectory prototype.

As mentioned earlier, Chen et al. [13] combined these two approaches, to inherit the

benefits of both, in developing a dictionary learning algorithm, called Augmented Semi

Nonnegative Sparse Coding (ASNSC). They achieved significant improvement over state-of-

art clustering based approach using Dirichlet Process mixture of Gaussian Process (DPGP).

However, since the approach of [13] learns both the motion primitives and their transition

using solely the spatial features of the training dataset (x and y position and orientation of

pedestrians in the car frame), an important limitation of their work is that available context

is not utilized for trajectory prediction.

Most of the previous work on context-based pedestrian trajectory prediction aims to

identify stopping versus crossing intent [51, 28, 49, 37, 58, 59], as opposed to long term

trajectory prediction which is the objective of this work. In addition, some are also based on

the limiting assumption of only one context feature being active at a time, which works for

short-term, immediate prediction only [28]. The CASNSC framework is more general and

can incorporate multiple context features in the same model, as demonstrated in Chapter 4.

Bonnin et al. [8] developed a more generic, context-based, multi-model system for pre-

dicting crossing behavior in inner-city situations and zebra crossings. However, the output

of their prediction model is a crossing probability as opposed to a future trajectory. More

recently, [50] use a combination of an Interacting Multiple Model (IMM) filter for tracking

and Latent-dynamic Conditional Random Field (LDCRF) model for intention prediction.

Their approach implicitly utilizes situational awareness by embedding human head pose into

the LDCRF model and the prediction horizon is limited to 1 second. CASNSC, in contrast,

predicts on explicit inclusion of context, for a long-term prediction horizon of 5 seconds.

Furthermore, [34] used jump-Markov process for long term prediction of pedestrian motion

by incorporating traffic light and crosswalks as semantic features. The output of their

prediction model is an occupancy map of feasible trajectory predictions. CASNSC instead

outputs a set of likely trajectories with increased accuracy by incorporating context in the

ASNSC based prediction model [13].
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Coscia et al. [15] forecast long-term behavior of pedestrians by making use of past ob-

served patterns and semantic segmentation of a bird's eye view of the scene. Their approach,

when applied in the real world, on board a self-driving vehicle, would require accurate high

definition semantic priors/maps of each scene. High definition maps are expensive to create

and maintain. It is also unclear if their prediction model can be generalized to predict in

new, unseen scenes. Ballan et al. [4] and Sadeghian et al. [48] follow a similar approach to

path prediction while also demonstrating the ability to "transfer knowledge". Their models

can predict in unseen locations with similar semantic elements. However, a prior bird's eye

view of the scene is needed for both these approaches as well.
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Chapter 2

Preliminaries

In this chapter, first, a few important facts and notations are listed for brevity. As mentioned

in Chapter 1, motion primitives form an integral component of this work. There exist several

prior works on learning motion primitives for trajectory prediction [14, 54, 38, 57, 13]. Of

these, the Augmented Semi Nonnegative Sparse Coding (ASNSC) [13] algorithm is used

in this work, since it addresses the limitations of prior works. Therefore, a brief review

of ASNSC is provided here for completeness. This is followed by a review of Gaussian

Processes [47] (GPs) and two-dimensional GP flow fields [33, 2]. An overview of the online

sparse GP algorithm [16] used to model all GPs in this work is also provided.

1 2 .. .. .. .. .. 8
9

..... 57.......................F

(a) (b) (c)

Figure 2-1: (a) Each color represents a single motion primitive mi for real pedestrian trajectories;
(b) Segmentation of training trajectories (in gray) into clusters, where each cluster is best explained
by the motion primitive of the same color in (a); (c) Illustration of two motion primitives mi and mj
in a grid-based world consisting of L = 64 cells, indexed as shown. The shaded gray region denotes
Ai i.e. the active cells of mi
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2.1 Facts and Notations

The proposed pedestrian trajectory prediction model M can be applied to pedestrians in any

intersection corner. In all chapters, M is defined as a set of motion primitives and motion

patterns representing the transition between motion primitives s.t. M {B, U, W}. Here, B

is the set of motion primitives i.e. B A {mi}, U is the set of unitary motion patterns [12]

modeled as two-dimensional GP flow fields i.e. U - {GPi""J} and W is the set of transition

motion patterns [12], again modeled as two dimensional GP flow fields i.e. W A {GPrans

Each motion primitive mi, when learned using ASNSC, is mathematically represented by

a set of indices of active cells (Ai) and a set of cell-wise velocity in the grid-based world

i.e. Vi A {v }. Here, v is the velocity of mi in the k-th grid cell. T, R denote the transition

matrices for motion primitives. T(i, j) gives the number of trajectories transitioning from

mi to mj for off-diagonal elements, and the number of trajectories ending in mi for diagonal

elements [12]. Similarly, R(i, j) is the set of trajectories transitioning from mi to mj for off-

diagonal elements, and set of trajectories ending in mi for diagonal elements. M is trained

and tested on a vectorized representation of trajectories in a grid-based world, denoted as

ti for the i-th trajectory [13]. Datasets from real world intersections (I1,12) around the

MIT campus, consisting of pedestrian trajectories, were collected using a golfcart parked at

intersection corners, equipped with 2D LiDARs and cameras [43, 44]. A prior on curbside

geometry (i.e. angle made by curbsides meeting at a corner) is used for mapping trajectories

into the common curbside coordinate frame V, using an affine projection function 3, as

defined in Chapter 5. Additionally, in Chapter 6, a prior on sidewalk width is used for

normalizing trajectories before projecting them into the common frame 'W. 9 denotes the

set of training trajectories. For both ASNSC and Context-aware ASNSC (CASNSC) in

Chapter 4, it is the set of trajectories in the original car frame. For Transferable ASNSC

(TASNSC) in Chapter 5, 9 is the set of training trajectories mapped in W. In Chapter 6,

9 denotes the set of training trajectories normalized with respect to sidewalk width and

then mapped in W. B, U, W, without an overhead bar, represent the current prediction model.

When denoted with an overhead bar i.e. P {ii},O {GP" '},W A {GPtrans} they

represent knowledge gained from a new intersection that is used for updating M.
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2.2 Augmented Semi Nonnegative Sparse Coding [13]

Let the training dataset consist of n trajectories, where each trajectory is a sequence of

two-dimensional position measurements taken at a fixed time interval. In a grid-based world,

with K cells, the i-th trajectory can be represented as a column vector ti E RK such that the

k-th element of ti is the average velocity of the i-th trajectory in the k-th grid cell. Given this

vectorized representation of training trajectories, ASNSC learns a set of L motion primitives,

given by B = {mi, . .. , mL}. Each color in Fig. 2-1(a) represents a single motion primitive

mi, learned from the trajectories shown in gray in Fig. 2-1(b). mi can be mathematically

represented using two features: (1) Ai, defined as the set of indices of 'active cells' (see

shaded region in Fig. 2-1(c)); and (2) Vi A {v'} i.e. the set of cell-wise velocity. Here, vk is

the velocity of mi in the k-th grid cell (out of L = 64 grid cells in Fig. 2-1(c)).

As shown in Fig. 2-1(b), B is used to segment the original training trajectories, shown in

gray, into clusters. Each color in Fig. 2-1(b) is one such cluster i.e. a group of trajectory

segments, best explained by the motion primitive in Fig. 2-1(a) in the same color. These

clusters are used to create the transition matrices, T E ZLXL and R, as described in Sec-

tion 2.1. Each transition, i.e. a concatenation of two dictionary atoms {mi, mj T(i, j) > 0},

is modeled as a two-dimensional GP flow field [33, 2]. Two independent GPs, (GP,, GP),

called GP motion patterns, are used to learn a mapping from the two-dimensional position

features to the x and y velocities respectively, for each transition [12].

2.3 Motion Patterns as Gaussian Process Flow Fields

The definition of motion patterns as flow fields of trajectory derivatives in the x - y space

was introduced in [33]. Mathematically, a motion pattern thus defined is a mapping from two

dimensional positions (x,y) to a distribution over trajectory derivatives (, Y), or simply

velocities (vt, v,). Joseph et al. [33] show that modeling motion patterns as flow fields,

rather than single representative trajectories, not only allows for grouping of trajectories

with similar key characteristics, but also ensures that the representation is agnostic to
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different lengths and discretization across trajectories. Therefore, following [33], this work

also defines motion patterns as flow fields. GPs are used to model the mapping from

pedestrian positions to velocities. To elaborate, each transition between motion primitives,

{mi, m1 T(i, j) > 01, is modeled using two independent GP motion patterns (GP and GPy),

such that

GPx : (x, y) --- vx GP, : (x, y) vy (2.1)

These independent GPs are fitted to the set of training trajectories in R(i, j). GP motion

patterns fitted to the non-empty, diagonal elements in R, together constitute U, i.e. the set of

unitary motion patterns. Similarly, GP motion patterns fitted to the non-empty, off diagonal

elements in R, together constitute W, i.e. the set of transition motion patterns. Note that

representing motion patterns as GP flow fields provides a distribution over velocities for

every pedestrian position. This fact can be used to predict future pedestrian trajectories

corresponding to a specific motion pattern. Given the position of a pedestrian at time t (Xt I Yt)

and the GP motion pattern of interest (GPx and GPy), the expected velocity of the pedestrian

at the given location (vx,, vy,), for the given motion pattern, can be obtained using (2.1).

Future pedestrian position for the given motion pattern can thus be obtained as

(Xt+ I yt+-1) = (xt ,Yt) + (vx vY)At (2.2)

2.4 Sparse Online Gaussian Processes

GP inference has a computation time complexity of 6(n3 ), where n is the total number

of training data points [47]. For large datasets, a cubic growth in the time complexity of

prediction is computationally prohibitive. Sparse representations of GPs aim to reduce

this computational burden by performing the most time-consuming matrix operations in

inference, such as inversions, on a smaller, representative subset of the training data. This

helps bring down the computational time complexity of inference to 7(nm2 ), where m is the

number of data points in the chosen representative subset [47, 16]. Therefore, all GP models
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used in this work are sparse and hence, ensure that the computational time complexity of

prediction grows linearly in the size of the training dataset.

An important contribution of this work is to build a general prediction model that can

update knowledge as, and when, new training data is received. Recall that the proposed

prediction model is a set of motion primitives and GP motion patterns. Two key challenges

in updating the unitary and transition GP motion patterns and using them for trajectory

prediction are: (1) online GP update and; (2) performing prediction using the updated GPs

without having to store previous data. To address these challenges, the online sparse GP

algorithm of [16] is used to model motion patterns in this work.

In [16], the GP parameters, as specified by a and C, can be updated iteratively, in a

single pass through the entire training set, for a given maximal size of the 2f set. The

Yf set is the set of inducing inputs and outputs, or more simply, the representative subset

of the full training data. This ensures that as, and when, new trajectories are observed,

the GP parameters (a and C) and the J21 set can be updated by iterating through the

new set of trajectories, as long as the set of sufficient statistics i.e. {, C, -'%} are retained.

Furthermore, Csato et al. [16] also provide an approximate posterior kernel of the process,

which can be used to represent predictive variance for a new set of inputs for a given set of

updated GP parameters a and C.
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Chapter 3

Data Collection

An increase in the number of publicly available, annotated datasets has been a significant

driver of recent advances in machine learning techniques, alongside better computation

power and more efficient algorithms. For instance, the success of Computer Vision closely

followed the internet explosion. With millions of people, all over the world, posting images

and videos over the Internet, it was much easier for Computer Vision scientists to create

huge, organized datasets like Pascal VOC [23], COCO [40] and ImageNet [18]. These

datasets enabled researchers to achieve human-like accuracies in visual object detection

tasks using state-of-art deep learning techniques.

Recognizing the need for creating similar datasets for advancing research in the field

of autonomous driving, the past few years saw the release of datasets collected by vehicles

driving around in the real world, equipped with sensors such as LiDARs, GPS and cameras.

The KITTI Vision Benchmark Suite [26], the Berkeley Deep Drive (BDD) 100K [60] and

the Ford vision and LiDAR dataset [45] are some examples of such datasets. Given the

relatively fewer number of scenarios with pedestrians in these more general datasets, and

the challenging nature of the pedestrian detection and motion prediction tasks, pedestrian

specific datasets have also been released. The Caltech pedestrian dataset ([19, 20]), the ETH

BIWI pedestrian dataset [22] and the Daimle pedestrian dataset [22] are some examples.

All these datasets consist of annotated videos with pedestrians, taken from a vehicle driving

through regular traffic in urban environments. However, since the trajectory prediction
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model proposed in this thesis is applicable to pedestrians specifically in intersections, a good

number of training trajectories cannot be extracted from these datasets. Also, a prior on

curbside geometry is difficult to extract from videos.

To fill the gap in the amount of available, relevant training data, two real world datasets

of pedestrians in intersections were collected. The data collection platform and software

architecture used to extract pedestrian trajectories from raw sensor data follows [30]. The

data collection process involves parking the data collection platform on the sidewalk of an

intersection corner, for long durations (~ 1-2 hours), such that pedestrian movement is not

disturbed. Pedestrians are then detected and tracked using on-board sensors to extract their

trajectories.

3.1 Data Collection Platform

3.1.1 Golfcart-based

It consists of a Polaris GEM electric golfcarti equipped with three Logitech C920 cameras

and two SICK LMS 151 LiDARs, as described in detail in [30]. The cameras provide a

270 degree field-of-view (FOV) in the front of the vehicle. The upper LiDAR is used

for localization of the vehicle in a prior map and the lower LiDAR is used for pedestrian

detection and tracking.

3.1.2 Tripod-based

Given the small size and nature of the golfcart, it is easy to park it on sidewalks at intersec-

tion corners for long durations. However, this was possible in intersections in and around the

MIT campus only, since they have relatively wider sidewalks to account for high pedestrian

density. To collect data in more interesting intersections, away from the MIT campus, a

tripod setup, with the same sensors and software stack as that on the Golfcart, was built.
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Figure 3-1: The tripod setup for data collection, consisting of 6 cameras and a Velodyne. It
can be easily placed on the curbside of a busy intersection corner, with minimal disturbance
to pedestrian movement around it.

Figure 3-2: An overhead snapshot of intersection I1 with orthogonal curbsides (left) and
intersection 12 with skewed curbsides (right). Pedestrian trajectories, shown in blue, were
collected using a 2D LiDAR and cameras, on-board a Polaris GEM vehicle parked at the
intersection corners.
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As shown in Fig. 3-1, the tripod setup consists of six Logitech C920 cameras. The two

LiDARs in the Golfcart are replaced by a single HDL-32E Velodyne. It is easy to extract

two different laserscans from its pointcloud, which can serve the purpose of the upper and

lower LiDAR in the Golfcart setup. However, this setup is still in the testing phase and all

the data mentioned in this thesis was collected using the Golfcart.

3.2 Software Architecture

The Very Fast pedestrian detection package [5] is applied to camera images to produce

bounding boxes indicating pedestrian locations. A prior map is used to filter the LiDAR

scan, followed by clustering using Dynamic Means [9]. The output of the vision and LiDAR

modules is provided to a fusion module that outputs pedestrian trajectories. More details on

the individual vision and LiDAR modules and the fusion module can be found in [5].

3.3 Dataset Description

Data was collected at two intersections in the MIT campus, with different curbside geome-

tries and high footfall during the day. Fig. 3-2 shows an overhead screenshot from Google

Maps of the chosen intersections. 11 has more or less orthogonal curbsides while 12 has

skewed curbsides. A subset of the entire training data, consisting of pedestrian trajectories,

is shown in blue and overlayed on the Google Maps screenshot for better visualization. 997

pedestrian trajectories were collected in I1 and 575 trajectories were collected in 12-
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Chapter 4

Context-aware motion prediction

Chen et al. [13] showed significant improvement in pedestrian trajectory prediction, us-

ing Augmented Semi Nonnegative Sparse Coding (ASNSC), as compared to that using

state-of-art clustering based approach, using Dirichlet Process mixture of Gaussian Process

(DPGP) [25]. However, ASNSC uses spatial features (pedestrian position and orientation in

the car frame) only for trajectory prediction. Any context that may influence a pedestrian's

intent is ignored. As already motivated in Chapter 1, context plays an important role in

urban environments, such as intersections with pedestrian traffic lights and/or tightly packed

sidewalks with numerous pedestrian interactions. In such environments, a context-aware

prediction model would better infer pedestrian intent, and thus, have better trajectory predic-

tion accuracies than that of ASNSC.

This chapter presents Context-aware Augmented Semi Nonnegative Sparse Coding

(CASNSC), as an extension of ASNSC. In CASNSC, first a dictionary of motion primitives

is learned using ASNSC. Context features, such as curbside orientation, relative distance

to curbside and pedestrian traffic light status, are then incorporated into the Gaussian Pro-

cess (GP) flow fields based modeling of pair-wise transitions between the learned motion

primitives. This helps improve prediction accuracies as context influences the probability

of transition between two motion primitives. For instance, consider the pedestrian motion

primitives at an intersection corner, as shown in Fig. 4-1. The transition between motion

primitives shown in magenta and blue, has a higher probability, than that between motion
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Figure 4-1: Motion primitives learned using the ASNSC framework (left) and clustering of
training trajectories on the basis of the learned motion primitives (right). Each dictionary
atom is shown in a different color. TI and T2 denote two different traffic lights, the status
of which influences transition between dictionary atoms. For e.g., the transition between
dictionary atoms shown in magenta and blue has a higher probability than that between
dictionary atoms shown in magenta and green for TI = 1 (crosswalk clear for pedestrians to
cross), T2 = 0

primitives shown in magenta and green, for the scenario in which TI = 1 (left crosswalk is

clear for pedestrians to cross) and T2 = 0. Here, TI and T2 together denote the pedestrian

traffic light context feature.

The main contributions of this chapter are: (i) Utilization of context to map pedestrian

trajectories in the car's x - y coordinate frame, into a rotated x' - y' coordinate frame, in

which the two coordinates are independent of each other (see Fig. 4-2). As discussed in

Chapter 2, ASNSC assumes x - y independence in modeling the transition between motion

primitives. Therefore, such a mapping improves prediction accuracies by improving the GP

modeling accuracy; (ii) Use of context features, such as traffic lights, relative distance to

curbside and curbside orientation, that are independent of the training intersection geometry

(for orthogonal intersections). This lays the foundations for building a transferable prediction

model, that can be generalized to predict in intersections other than the one it has been

trained on; (iii) CASNSC framework for embedding context such as traffic lights, relative

distance to curbside and curbside orientation in [13] in ASNSC; (iv) Comparison of three

different variations of CASNSC with ASNSC to show improvement in prediction accuracy.
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Figure 4-2: A typical four-way intersection (left) is used to explain the curbside orientation
and relative distance to curbside context features. The zoomed portion (right) shows a
pedestrian location as a black dot. (c, cr)T denotes the vector of distance to the two curbsides
of interest and is used as the relative distance to curbside context feature. The signs of vector
elements cl and cr are determined using the curbside coordinate frame xe - yc. Pedestrian
position in the rotated coordinate frame x' - y', which has the same orientation as that of the
curbside in the global coordinate frame x - y, is used as the curbside orientation context
feature.

4.1 Algorithm

The proposed approach uses two sets of features: 1) dictionary features, Xd, which are

used for'learning the dictionary (B) i.e. the set of motion primitives (Algorithm 1, lines

1-4); and 2) transition features, Xt, which are used for learning the sets of unitary and

transition GPs, U and W respectively (Algorithm 1, lines 5-10). ASNSC uses the same

set of two-dimensional position feature, (x,y)T, as both Xd and Xt. CASNSC, in contrast,

uses (x,y)T as Xd, but a combination of position and context features as Xt. Three different

combinations are used as Xt in the experiments included in this chapter, for an in-depth

analysis of the algorithm.

4.1.1 Context features

Pedestrian traffic light

A pedestrian's decision to go left or right is influenced by the status of two pedestrian traffic

lights (TI, T2) in a four-way intersection scenario. A single-dimensional feature vector, (tr),

is sufficient to capture the environment context with respect to both the traffic lights as the
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change in status of (TI, T2) captures redundant information.

Curbside orientation

Pedestrian motion in sidewalks is constrained by curbside location and orientation. Thus,

the x, y position coordinates of trajectories in an arbitrarily chosen x - y frame (car frame)

would be dependent on each other (see Fig. 4-2). This violates the assumption of x - y

independence in the squared exponential (SE) kernel function used by the GP transition

models in U and W. As shown in Fig. 4-2, rotating the x - y frame into the x' - y' frame,

which has the same orientation as that of the curbsides, can reduce this dependence. Such a

transformation improves GP modelling, and consequently, trajectory prediction accuracy.

Furthermore, the described transformation is equivalent to embedding curbside orientation

as a context feature in the prediction model.

Relative distance to curbside

In addition to curbside orientation, the relative distance of a pedestrian (treated as a point

mass), to the two curbsides intersecting at a corner, also provides useful contextual infor-

mation. This distance can be computed using either a prior map of the environment or by

online curb identification. As, shown in Fig. 4-2, a two-dimensional vector, (cl, Cr)T is used

as the relative distance to curbside feature, which is equivalent to transforming the arbitrarily

chosen x - y coordinate frame into the x, - yc coordinate frame, that is exactly aligned with

the curbsides of interest.

4.1.2 Feature sets used as transition features (Xt)

Position and pedestrian traffic light

The first feature set is a combination of the two-dimensional pedestrian position feature and

the pedestrian traffic light context feature, i.e., Xt = (x,y, tr)T. Application of the CASNSC

framework with this particular feature set will be referred to as CASNSC- 1.
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Curbside orientation and pedestrian traffic light

As described earlier, an inherent limitation of the first feature set is the fact that x,y are

dependent on each other because of trajectories being constrained by curbside geometry

(see Fig. 4-2). This violates the x - y independence assumption made in the GP transition

models in sets U and W. To address this issue, curbside orientation is combined with

pedestrian traffic light to create another feature set Xt = (x',y', tr)T. The specific application

of CASNSC with this feature set will be referred to as CASNSC-2.

Relative distance to curbside and pedestrian traffic light

Another important piece of contextual information missing in the second feature set is the

actual location of the intersection corner and curbsides, which can also be an important indi-

cator of pedestrian intent. This missing piece of information is incorporated by combining

the relative distance to curbside context feature with the pedestrian traffic light context

feature to create the third feature set Xt = (c, cr, tr)T . The CASNSC framework with this

feature set will be referred to as CASNSC-3.

4.1.3 Kernel function

A squared exponential (SE) kernel function with automatic relevance determination (ARD) is

used for modeling GP motion patterns, as it allows for combination of features with different

characteristics and scales each feature in accordance with its relevance [47]. Mathematically,

it is given by the following form:

k(X, X') = cr exp( 2 A I2) (4.1)
i-I 21i

where, X = {xi} s.t. i = {, ... , m}. Here, xi is the i-th feature, out of a total of m features and

li is the characteristic length of this feature. The characteristic lengths along with the pre-

multiplication factor af constitute the set of hyper-parameters, which needs to be either tuned

or learned. For instance, for predictions using CASNSC-1 where X = Xt = (x, y, tr)T, m = 3

and the set of hyper-parameters would be given by the column vector h = (4, ly, tr, 0 f)T.
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4.2 Results

CASNSC is tested on real pedestrian data collected by a Polaris GEM vehicle equipped

with cameras and LiDARs, as described in Chapter 3. The dataset used in this chapter is a

subset of the data collected in intersection I1, with approximately orthogonal curbsides. The

training data consists of 218 training trajectories, randomly sampled from the whole dataset.

Out of the leftover trajectories, 32 were selected as test trajectories.

Algorithm 1: Context-aware Augmented Semi Nonnegative Sparse Coding
(CASNSC)

input :set of training trajectories in car frame (V), dictionary features (Xd),
transition features (Xt), observed trajectory in car frame (t,)

output: set of predicted trajectories in car frame (tp)
/* Dictionary Learning Phase *7

1 B<-0,S<-0; // S is the set of sparse coefficients

2 while not converged do

3 L {B,S}= ASNSC(9IXd,A); // A is regularization parameter

4 T, R <- transitionMatrix (B, S, _)
/* Transition Learning Phase *7

5 U <-0,W <-0
6 for V (ij) s.t. {T(ij) > 0} do
7 if i == j then
8 U -{U,Gpni(Xt,R(i,i))}; /7 fit unitary GP to trajectories

in R(i,i) using features specified by Xt

9 else
10 W <- {W,GP!jans(XtR(ij))}; /7 fit transition GP to

trajectories in R(i,j) using features specified by Xt

/* Prediction Phase */
11 k = argmax P(tIG""); /7/ pick most likely unitary GP

12 for V is.t. T(k i) > 0: k ido
13 t- {tp, predict(to,GP ans)}; / predict a trajectory for each

valid transition from the most likely unitary motion

pattern

A prior map of the environment is used to extract curbside boundaries. Pedestrian traffic

light status is manually annotated. An observation history of 2.5 seconds prior to the pedes-

trian entering the intersection is used to predict 5 seconds ahead in time. Fig. 4-3 provides
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Figure 4-3: Comparison of prediction results of ASNSC (first column) with those of
CASNSC-1: Xt = (x,y, tr)T (second column), CASNSC-2: Xt = (x',y',tr)T (third column)
and CASNSC-3: Xt = (cl, cr,tr)T (fourth column). Each row represents a different test
trajectory. The curbside is shown in green, training trajectories in gray, observed trajectory
in pink, actual future trajectory in dotted blue and predicted trajectories in red.

a qualitative comparison of CASNSC with ASNSC using all 3 feature sets described in

the previous section. While ASNSC provides the set of all feasible trajectories given the

intersection geometry, CASNSC picks those that are closest to the actual trajectory, in the

correct direction, taking context into account.

In the first scenario (trajectory 11), pedestrian traffic lights' status is given by TI = 0,

T2 = 1. The pedestrian enters the intersection and is faced with a choice between continuing

to move straight or turning left. While ASNSC predicts a set of all feasible trajectories,

completely ignoring the context, CASNSC- 1 predicts the correct future direction of motion

as it can incorporate context (T2 = 1) into account. CASNSC-2 provides an even better
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Figure 4-4: (Left) Incorrect and correct predictions at an intersection scenario. (Right) Use
of AUC as a metric for measuring variance in prediction.

prediction owing to the more accurate GP models created by incorporating curbside orien-

tation. CASNSC-3 outperforms all and its prediction is not just most correct in terms of

the predicted future direction of motion, but also in terms of following the actual trajectory

almost exactly. In the second scenario (trajectory 27), traffic light status is the same and

while all four predictions are in the right direction, CASNSC-3 is again the most accurate.

In the third scenario (trajectory 31), traffic light status is given by T1 = 1, T2 = 0. Again,

while all four predictions are in the right direction, CASNSC-3 is most accurate and follows

the actual traject.ory almost exactly.

Fig. 4-4 illustrates the metrics used for performance evaluation and Table 4.1 provides

a quantitative comparison of ASNSC with CASNSC-1, CASNSC-2 and CASNSC-3. As

illustrated in Fig. 4-4, Area Under the Curve (AUC) [29] is used as a metric for measuring the

correctness of predicted future direction of motion, such that a larger AUC corresponds to a

better prediction. Table 4.1 indicates that AUC for predictions using CASNSC-3 is the lowest,

confirming that embedding context provides better predictions of future direction of motion.

Classification accuracy is also measured, which represents the fraction of correct predictions,

weighted by their likelihood for a more realistic estimate of the metric. Mathematically, if

a set of n trajectories is predicted as {t1 ,..., tn}, with their likelihood of prediction given

by {l,. .. , ln}, and the correct predictions are identified as {ti} V i E C C {1,...,n}, the
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Algorithm Classification MHD(m) AUC(m2) Computation
accuracy(%) time(s)

ASNSC 83.71 2.09 131.13 0.03
CASNSC-1 85.25 2.33 105.50 0.51
CASNSC-2 90.00 2.05 85.23 0.48
CASNSC-3 94.20 1.77 49.44 0.04

Table 4.1: Performance evaluation comparison of CASNSC with ASNSC

classification accuracy is given by:

Classification accuracy % - LieC 4 X 100%. (4.2)

As seen in Fig. 4-4, correct predictions are defined as those in which the angular deviation

from the observed trajectory i.e. 0 is less than 40 degrees. In addition to the illustrated met-

rics, the Modified Hausdorff distance (MHD) [21] is used to compare predicted pedestrian

trajectories with the ground truth. We again use the likelihood of predicted trajectories to

compute the weighted average of MHD for a more accurate quantification of the metric.

Table 4.1 shows an improvement in all the chosen metrics, with only a slight increase in

computation time. All computations were performed on an Intel Core i7-7700HQ processor

in Matlab R2016b. CASNSC-3, which uses a combination of relative distance to curbside

and pedestrian traffic light as transition features, shows a 12.5% improvement in classifica-

tion accuracy, 15.3% improvement in MHD and reduces AUC, by a factor of 2.65. There is

scope for further improvement on incorporation of other features like crosswalks, location

of subway stations etc.

Context features, like curbside orientation, provide spatial information that is inde-

pendent of intersection geometries. A trajectory prediction model, based on such context

features alone, will therefore also be independent of the specific intersection geometry

it is trained on. This insight is used in the following chapter to develop a context-aware

pedestrian trajectory prediction model, for urban intersections, that can transfer knowledge

from one intersection to another.
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Chapter 5

Transferable motion prediction model

As shown in the previous chapter, CASNSC incorporates available context into the ASNSC

framework, to significantly improve pedestrian trajectory prediction accuracies in urban

intersections. CASNSC demonstrated the ability of modeling pair-wise transition between

motion primitives using context features alone (refer CASNSC-3 in Chapter 4). However, it

still uses spatial features (pedestrian position and orientation in car frame) in learning the

motion primitives themselves. This makes the prediction model of CASNSC dependent on

the specific training intersection geometry, and prevents its generalization to prediction in

new intersections.

Going one step further, a model trained on solely context features, such as distance to

curbside, pedestrian traffic lights etc., would be independent of the specific training inter-

section geometry. Such a model can be generalized to predict in new, unseen intersections

with similar semantic cues. Data collection in the real world is both expensive and time

consuming. A model trained on context features alone, can be used to transfer knowledge

from one intersection to another. Such a model would be superior to one that uses both

context and spatial features, such as CASNSC, and hence needs to be trained on every

intersection.

The main contributions of this chapter are: (i) Introduction of the "curbside coordinate

frame" as a common frame in which spatially dissimilar trajectories from different intersec-
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Figure 5-1: An illustration to show how points PA (xA, yA) on the red trajectory in intersection
I1 and PB(XB,YB) on the purple trajectory in intersection 12, under the transformation '7,
map to points P (x'Iy ) and PB(xB',y') in the curbside coordinate frame. We show that '7
is in general an affine transformation. Since pedestrian trajectories in urban intersections
are significantly constrained by the curbsides, transforming them into the curbside coordi-
nate frame using an affine transformation, intuitively would map trajectories with similar
pedestrian intent approximately on top of each other in the curbside coordinate frame. This
insight helps in developing a general, transferable pedestrian trajectory prediction model.
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tions, representing the same underlying pedestrian intent, are spatially similar (see Fig. 5-1);

(ii) Introduction of a novel representation of distance to curbside as the contravariant compo-

nents of pedestrian positions in the curbside coordinate frame (can be orthogonal or skewed).

This representation ensures that distance to curbside, as a context feature, is independent

of intersection geometry (as opposed to other representations such as orthogonal distance

to curbside in CASNSC and other prior works [59, 37, 58]); (iii) Proof of the fact that the

transformation of pedestrian trajectories from the car frame, into the curbside coordinate

frame, is affine. Such a transformation, therefore, preserves properties such as collinearity,

parallelism etc. across intersections while encoding context (see Fig. 5-1); (iv) Transferable

Augmented Semi Nonnegative Sparse Coding (TASNSC), as a solely context-based pedes-

trian trajectory prediction model for accurate, long term (~ 5 seconds) trajectory prediction

in new, unseen intersections with similar semantic cues as the ones that the model is trained

on.

5.1 Skewed coordinate systems & covariant versus con-

travariant components of two-dimensional vectors

As shown in Fig. 5-2(a) and Fig. 5-2(b), a coordinate system can be either orthogonal

(represented by unit vectors I, j) or skewed (represented by unit vectors e , e'). in an

orthogonal coordinate system, covariant and contravariant components of a position vector

are perfectly align. A position vector in such a system has only one representation i.e. r

xii +y1 j(see Fig. 5-2(a)). In a skewed coordinate system, the covariant components (xi ,yi)

and contravariant components (xl,y1) of a position vector do not align. The same position

vector, in such a system, can be represented using both its covariant and contravariant

components. Representing it using the contravariant components is more standard since

this representation is compatible with the rule of vector sums, i.e. -= x ej + ye 2 (see

Fig. 5-2(b)). Since (el -e') ) 0 in a skewed coordinate system, r2  (X' )2 _ (yt )2 in general.

As shown in Fig. 5-2(c), basic trigonometric identities can be used for computing the
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Figure 5-3: Original (left) and transformed trajectories in the curbside coordinate frame
(right) under the transformation 7, when the curbs are orthogonal to each other. Trajectories
are shown in blue and shaded gray area denotes the sidewalk.

contravariant components of a position vector in a skewed coordinate system.

x1 = rsin (a - 0)/sin a (5.1)

yI = rsin 6/sin a (5.2)

To meet the objective of pedestrian trajectory prediction in urban intersections, where

curbside geometry significantly constraints pedestrian motion, learning motion primitives

and their transition in the curbside coordinate frame X'Y', as shown in Fig. 5-1 (instead

of an arbitrarily placed, car frame XY, as in [13]), can help improve prediction accuracies

because of the addition of context. Furthermore, it can be shown that pedestrian trajectories,

when represented using contravariant components of position coordinates in the curbside

coordinate frame, undergo an affine transformation across intersections with varying curbside

geometries. This aids in developing a context-aware prediction model that can be generalized

to any intersection.

5.2 Algorithm

Designing a general, transferable prediction model needs features that are independent

of the specific training intersection geometry. In this section, it is shown that any point
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Figure 5-4: Original (left) and transformed trajectories in the curbside coordinate frame
(right) under the transformation 5, when the curbs are skewed. Trajectories are shown in
blue and shaded gray area denotes the sidewalk.

on a pedestrian trajectory, when mapped from the arbitrarily placed car frame, into the

common curbside coordinate frame, using its contravariant components, undergoes an

affine transformation. The choice of the curbside coordinate frame as the frame in which

trajectories are mapped can be justified by the fact that pedestrian trajectories are significantly

constrained by curbsides in intersection scenarios. Since an affine transformation preserves

properties like collinearity, ratios of distances, parallelism etc., the situational context of

pedestrian trajectories i.e. shape and relative distance with respect to curbside, is preserved

under this transformation (see Fig. 5-3 and Fig. 5-4).

Definition 1 A coordinate frame with its origin at the intersection corner of interest, and its

axes along the two curbsides intersecting at the chosen corner; is defined as the "curbside

coordinate frame" (see Fig. 5-1).

Definition 2 Given a point P(x, y) on an observed trajectory to in the arbitrarily placed car

frame of an intersection (i.e. XYframe in 1, and 12 in Fig. 5-1), let us define a transformation

t5' :t to', s.t. P(x,y) -+ P'(x',y'), where x',y' are the contravariant components of P' in

the curbside coordinate frame.

Lemma 1 37 is an affine transformation

Proof: Given the original, orthogonal, local coordinate system 0 and an intermediate,

helper coordinate system H (also orthogonal but with its origin at the intersection corner and
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its x-axis parallel to the x-axis of the curbside coordinate frame C), if TOH and THC represent

the coordinate transformation from 0 to H and H to C respectively, then 9 THCTOH.

x ==THCTOH (5.3)

Since, TOH is simply a combination of rotation and translation, it is an affine transforma-

tion. Let us now assume that the original point P(x, y) in 0 maps to P* (x*, y*) in H, such

that (x (Y*  )2 = r2 . Note that, by definition, the origin and x-axis of H overlap with the

origin and x-axis of C. From Fig. 5-2(c), if 0 is the angle made by the position vector with

the x-axes,

x* = rcos&,y* rsinO (5.4)

Therefore, from (5.1), (5.2) and (5.4), if a is the angle between the intersecting curbsides,

P'(x', y') can be written as

x (rcos 0 sin a - rsin 0 cos a)/sin a (5.5)

-#> x'I = x* -y */ tan a (5.6)

y' = rsinO/sina = y*/sina (5.7)

Note that (5.6), (5.7) can be combined and written in matrix form as

x) x* -1/tana x* (5.8)

Y' / Y* 0 1/sina ) Y*)

For intersections with orthogonal curbsides and therefore an orthogonal curbside coor-

dinate frame C, a = 7w/2 and THC is the identity matrix. Since, THC linearly maps (x*, y*)

to (x',y'), it is an affine transformation. Furthermore, since TOH and THC are both affine

transformations, 7 is also an affine transformation by (5.3).

Since 7 is affine, all general properties of an affine transformation hold under 7, i.e. (i)

collinearity is preserved; (ii) parallel lines remain parallel; (iii) convexity of sets is preserved;
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(iv) ratios of distances are preserved i.e. the midpoint of a line segment remains the midpoint

of the transformed line segment. Since the objective of this thesis is pedestrian trajectory

prediction in urban intersections, which is highly constrained by curbside geometry, trans-

forming pedestrian trajectories into the curbside coordinate frame helps in representing

trajectories from different intersection geometries in a common frame. This aids in building

a context-aware, general prediction model.

Algorithm 3 describes TASNSC as a transferable version of the ASNSC algorithm that

can accurately predict trajectories in unseen intersections with similar semantics as those

that it learned on. Given the curbside coordinate vectors (, ') of the training intersection,

Y is used to map training trajectories from the local, arbitrary placed car frame into the

curbside coordinate frame. Motion primitives are then learned in the curbside coordinate

frame using ASNSC (line 5). For trajectory prediction in an unseen intersection, first the

observed trajectory is transformed into the curbside coordinate frame of the test intersection

using "/ (line 6). Motion primitives and their transition learned in the common curbside

coordinate frame are then used for prediction, followed by a transformation of the predicted

trajectory into the original, car frame of the test intersection using 9- 1 (line 8). Algorithm 2

describes the procedure for transformation of pedestrian trajectories under 7. Fig. 5-3 and

Fig. 5-4 show the transformation of trajectories into the curbside coordinate frame under 9

for an orthogonal and skewed coordinate system respectively.

Algorithm 2: Transformation 5
input :curbside unit vectors ((e1, e2), trajectory in car frame (ti)
output: transformed trajectory in common curbside frame (ti')

1 a - cos-'(e.e2) ; // angle of skewed coordinate system

2 for V Pj (xj, yj) E ti do
3 x/'+-sin(a-0)/sina; // refer Fig. 5-2(c), 0<0<27r

4 y}' -sinO/sina

s return ti' = {(xj',yj')}
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Algorithm 3: Transferable ASNSC (TASNSC)
input :curbside unit vectors of training intersection (ei, e2), set of training

trajectories in car frame (-V), curbside unit vectors of test intersection (el , e2)
output set of predicted trajectories in car frame (tp)
/* Training Phase

1 9={}
2 forVtic ,do:3L t =3(f,,t); // map training trajectories into curbside

frame

4 _6 <-{f 6.,1tl}

5 {B,S}= ASNSC(9); // learn motion primitives in curbside frame
/* Prediction Phase

6 t = 07(e, e2,t0 ); // map observed trajectory into curbside frame
7 t 1,=predict(B,t ); // set of predicted trajectories in curbside

frame

8 tp (t)
9 return tp
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Figure 5-5: Prediction results in I of ASNSC (left), TASNSC trained on I1 (center) and
TASNSC trained on 12 (right). Ground truth is in dotted blue, observed trajectory in pink
& predicted trajectory in red. In the first scenario (first row), a pedestrian approaches the
intersection corner, is faced with a choice between two crosswalks and decides to continue
moving straight. In the second scenario (second row), another pedestrian approaches the
intersection corner and is faced with the same choice, but decides to turn left.
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Figure 5-6: Prediction results in 12 of ASNSC (left), TASNSC trained on 12 (center) and
TASNSC trained on I1 (right). Ground truth is in dotted blue, observed trajectory in pink &
predicted trajectory in red. In the first scenario (first row), a pedestrian exits the curbside and
starts walking along the left crosswalk. In the second scenario (second row), a pedestrian
approaches the intersection corner, from inside of the sidewalk and continues walking
straight to cross the street on the left.

5.3 Results

5.3.1 Dataset description

TASNSC is tested on real pedestrian data collected by a Polaris GEM vehicle equipped with

cameras and 2D LiDARs, as described in Chapter 3. A prior occupancy grip map of the

environment, created using the on-board LiDARs, is used to extract curbsides. However, as

long as the intersection corner is not crowded by obstructions such as trees, it is possible

to detect the curbside online. To test the transferable feature of TASNSC, real pedestrian

trajectories collected in two intersections, with different curbside geometries (see Fig. 3-2),

were used for the experiments included in this chapter. A small subset of the entire dataset

from intersection I1 (with nearly orthogonal curbsides), consisting of 186 training and 32

test trajectories was used. Similarly, a small subset of data collected in intersection 12

(with skewed curbsides), consisting of 114 training and 22 test trajectories was used. An

observation history of 2.5 seconds prior to the pedestrian entering the intersection is used to
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predict 5 seconds ahead in time.

5.3.2 Experiment details

Two experiments were conducted for evaluating the prediction performance of TASNSC. In

the first experiment, the training and test intersections are the same. While in the second

experiment, the training and test intersections are different. The prediction performance of

TASNSC in both these experiments is compared with ASNSC, which is used as a baseline.

Fig. 5-5 and Fig. 5-6 show a qualitative comparison of prediction performance of TASNSC

with ASNSC for both the experiments in intersections 11 and 12 respectively. As is clear from

the trajectory prediction plots, TASNSC improves prediction performance over ASNSC

in all scenarios when trained and tested on the same intersection. Furthermore, TASNSC

shows comparable prediction performance with the baseline when trained and tested in

different intersections.

5.3.3 Quantitative performance evaluation

Table 5.1 provides a quantitative comparison of TASNSC with ASNSC using two different

metrics. The first metric, classification accuracy represents the percentage of correct

predictions (see Fig. 4-4) weighted by their likelihood of prediction. Mathematically, if

a set of n trajectories is predicted as {ti, ... , tn }, with their likelihood of prediction given

by {li,... , l,}, and the correct predictions are identified as {ti} V i C C C { 1..., n}, the

classification accuracy is given by:

Classification accuracy % = LiC i X 100%. (5.9)
YZ=k I k

The second metric, Modified Hausdorff Distance (MHD) [21] is used to compare predicted

trajectories with ground truth. As is clear from the comparison in Table 5.1, TASNSC

significantly outperforms ASNSC in classification accuracy, while MHD of TASNSC is

either similar to or better than ASNSC when trained and tested on the same intersection.

TASNSC also performs well in the case of different training and test intersections. In those
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Algorithm Classification MHD (m) Train In Test In tr
Accuracy (%)

ASNSC 84.39 2.267 A A N
TASNSC 90.47 2.031 A A N
TASNSC 79.43 2.557 B A N
TASNSC 81.73 2.284 B A Y
ASNSC 76.94 2.506 B B N
TASNSC 82.79 2.637 B B N
TASNSC 75.92 2.95 A B N
TASNSC 79.51 2.859 A B Y

Table 5.1: Quantitative performance comparison of TASNSC with ASNSC

experiments, adding pedestrian traffic light (shown as 'tr' in the table) as an additional

context feature in the GP based transition models [32], boosts prediction performance.

Furthermore, the best prediction performance, in terms of both MHD and classification

accuracy is achieved by TASNSC when trained and tested in intersection I1. This makes

sense as the data collected in I1 is richer in terms of the number of trajectories and variety

in maneuvers/behaviors, which leads to better prediction performance, in general, when

trained in I1.
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Chapter 6

General Model

As shown in the previous chapter, TASNSC can transfer knowledge from one intersection to

another, regardless of the difference in curbside geometries, by learning motion primitives

and their transition in the common, curbside coordinate frame. However, urban intersections,

at times, can differ significantly in the type of pedestrian behaviors encountered. For instance,

TASNSC trained on an intersection with orthogonal curbsides in a college campus would

only recognize and predict faster, rule breaking college student-like behaviors. When applied

to predict in another intersection, also with orthogonal curbsides, but in a residential area,

it will fail to predict novel behaviors such as slower, conservative pedestrians. To account

for this limitation, an online prediction model is presented in this chapter, that updates its

knowledge base with novel behaviors, as new intersections are presented. Experimental

results for the model update step are presented. However, prediction results will be part

of future work as setting up the right experiments for demonstrating improvement in

prediction performance on the addition of novel behaviors requires data collection in

residential/commercial intersections, other than I1 and 12, which are both college campus

intersections.

6.1 Common Frame for Learning Motion Primitives (W)

A skewed coordinate system with its origin at the intersection corner of interest and axes

along the intersecting curbsides, was introduced as the "curbside coordinate frame" in
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Chapter 5. Representing trajectories in the curbside coordinate frame, using an affine

projection function 5, encodes situational context and provides a common frame r in which

spatially dissimilar trajectories from different intersections, with the same intent, would

be spatially similar (see Fig. 5-1). However, this holds true for intersections with similar

sidewalk width only. To solve this issue, the radial distance from the intersection corner

to the point where intersecting sidewalks meet, is used for normalizing trajectories, before

mapping them into the common frame W. Such a metric helps account for intersections with

different sidewalk widths.

6.2 Algorithm

The objective of this chapter is to build an online model in which motion primitives are

continually learned from new data and used to improve the prediction model M. There are

two main folds to this approach: (1) learning motion primitives from new training data in

the common frame W, and; (2) updating the prediction model M(l - 1) - M(l), as new

knowledge is gained in the /-th round of training. To this end, the proposed algorithm has

three main steps: (1) Trajectories received in round 1 are normalized with respect to sidewalk

width, as described in Section 6.1, and then mapped into W, using Y. 7 is mathematically

defined as - : t, - t,' s.t. any point on trajectory to, denoted by P(x,y) -+ P(x' y),

where (x',y') are the contravariant components of normalized pedestrian positions in W.

(2) Normalized and transformed trajectories _V(l) are used to learn a new set of motion

primitives in W using ASNSC. (3) Model update: previously learned prediction model is

updated using the knowledge obtained from new data.

The remaining section explains the model update step, which consists of updating the

existing set of motion primitives B and the set of corresponding GP flow fields U, W. This is

followed by an overview of pedestrian trajectory prediction using the proposed model M.

6.2.1 Knowledge/Model Update

As described in Chapter 2, the pedestrian trajectory prediction model M has two components:

(1) set of motion primitives B learned using a dictionary learning algorithm, and; (2) sets
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of GPs U, W that represent the transition between motion primitives. Updating M requires

updating B, U and W.

Updating Motion Primitives

First, pairwise similarity between motion primitives of the existing set B and those of the

new set B is computed. If a newly learned motion primitive iij is similar to another, existing

motion primitive mi; the model is updated by replacing mi with the fused motion primitive

mij (see Fig. 6-2(a)). Any novel motion primitives, such as ink in Fig. 6-2(a) are simply

added to the model. Similarity between two motion primitives is mathematically defined as

the inverse of distance between them, since, constructing a distance metric is usually easier

and more intuitive, for instance Euclidean distance, Manhattan distance, etc.

Distance between motion primitives (D) is defined as the weighted sum of 'overlap-

ping distance' (do) and 'heading distance' (dh). Here, do, represents the fraction of non-

overlapping 'active cells' between two motion primitives and dh, represents the cell-wise

difference in heading of motion primitives. If D(mi, m) is below a pre-defined threshold

(y), mi and mj are considered similar and fused. Fig. 6-1 shows pairs of similar motion

primitives from I1 and 12 for.

D(mi, mj) A a, log (d"(mi,mj)) + a2log (dh(mimi)) (6.1)

do(mi,mj) 1- AinAj /jAiUA 1j (6.2)

dh (M, Mj) Iv v (6.3)
|AinAj|Ik~n~

Fusion of motion primitives mi and mj is also a motion primitive mij, which is mathe-

matically represented by the features Aij and Vij (refer Chapter 2). Adequate fusion must

retain unique information from each motion primitive, while simultaneously updating com-

mon information. This insight is used to define Aij and Vij as follows. Fig. 6-1 shows fused
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motion primitives for pairs of similar motion primitives from I1 and 12-
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Figure 6-1: Each subplot shows a pair of similar
and 12 (in magenta). The fused motion primitive

motion primitives from intersection I1 (in green)
(in black), as described in Section 6.2.1, retains

unique information while updating common information. The total number of motion primitives
learned from trajectories in I1 and 12 is respectively. As shown, motion primitives are similar
between the two intersections i.e. they represent similar behaviors or short-term intents.

Updating GPs

Two types of GPs have to be updated as new data comes in: (1) unitary GPs, representing a

single motion primitive, and; (2) transition GPs, representing the transition from one motion

primitive to another (refer Chapter 2).

Updating unitary GPs: There are two ways in which unitary GPs are updated (see

Fig. 6-2(a)): (1) If a newly learned motion primitive iii, is similar to another, existing motion
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(a) (b) (c) (d)

Figure 6-2: (a) An illustration to show how U is updated. Here, current model M has a single
motion primitive mi. Motion primitives fim, Iik are learned from new data. Since mi and fii are
similar, they are fused and GPF""i is updated using new trajectories. Furthermore, since fik is not

similar to any existing motion primitive, GPkn is added to U; (b) An illustration to show how W is
updated. Here, current model M has 2 motion primitives mi, mi. Motion primitives Iip, mq, i r are
learned from new data. Since 1i p, I iq are similar to mi, mj respectively, GPans is updated. However,

since i, similar to mi and it also transitions into in, Gp rfns is added to W; (c) First special case
of model update in which new motion primitives fip, liq are similar to the same existing motion
primitive mi s.t. T(p, q) > 0; (d) Second special case of model update in which new motion primitive
dh, is similar to two existing motion primitives mi, mj s.t. T(i, j) > 0.

primitive mi, GPuni is updated using Algorithm 5. (2) For any novel motion primitives, such
- uni

as fnk, GPn is added to the model.

Updating transition GPs: The transition GPs are updated in the following scenarios (see

Fig. 6-2(b)): (1) If an existing pair of motion primitives, for which a valid transition exists

i.e. T(i, j) > 0, is similar to a newly learned pair of motion primitives with a valid transition

i.e. T(p, q) > 0, GP7rans is updated using Algorithm 5. (2) All other, novel transition GPs,

such as GPrans, are simply added to the model.

Two key challenges in updating the unitary and transition GPs and using them for

trajectory prediction are: (1) online GP update and; (2) perform prediction using the updated

GPs without having to store previous data. To meet these challenges, the online sparse GP

algorithm, as in [16] and described in Chapter 2, is used for modeling GPs in this work. The

GP parameters a and C are updated iteratively, in a single pass through the entire training

set, for a given maximal size of the -2 set i.e. the set of inducing inputs and outputs. This

ensures that as, and when, new trajectories are observed, the GP parameters can be updated

by iterating through the new set of trajectories as long as the sufficient statistics (a, C, M2/)

are retained.
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Algorithm 4: Model Update (Round 1)

input :M(l - 1) {B(l - 1), U(l - 1),W(l - 1)}, 9(l)
output :M(l) {B(l),U(l),W(l)}

1 {=(l),T(l),R(l), (l),W(l)} ASNSC(9(l)); // 1

3 SB= zeros(sizeOf(&(l))), IB= zeros(sizeOf(A(l))) for fiIj
4 for mi E B(l - 1) do
5 if D(mi, ij))<y; // y is the
6 then
7 SB[j] , IB[j= i mij fuse(mi, ihj)

primitives

8 Mi <- mij

9 GPi""i = GP-update(GPi""i, i, i, .6(l), R(1))

earn from new data

// initialization

E A(l) do

distance threshold

/ fuse similar

// Algorithm 5

rnk E P(l) do
if SB[k] ==0;
then

B(l) +- {B(l),Iihk}, U(l)
primitive/unitary

'1p
for

// check if novel primitive

/ / add- U(G),Cp"};
G P

C P(l) do
Iiq E &(l) do
ifp q A T(l)(p,q)>O; // loop through

9(l)
then

ifSB[P] ==1 A SB[q] 1; /
transition GP

then

i IB [p] , j = IB [q] GP/;ans = GP update(G

// Algorithm 5

else if SB[p= 1 A SB[q] 0;

transition GP

then

(~~~~ Wt)-{~)G'rans

else if SBp == 0 A SBkql 0;

transition GP

then
( W l ) - {W(l ) GPtrans

all transitions in

check if I similar

ptrans.ijtr il j, 9(1), R(1)

7/ check if novel

7/ check if novel

{B(l), U(l), W(1)}

for

for

return
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Algorithm 5: GP-update

input : GPcurrent, i, J, (l), f(l)
output: GPupdated

1 S=R(l)(i,j) ; // set of trajectories transitioning from ini to
Iij/ending in ihi

2 ntraj = sizeOf(S) for k = 1 : ntaj do
3 GPupdated = Csato-sparseGP(GPcurrent, S{k}) ; / / from [16]

4 GPcurrent -- GPupdated

5 return GPupdated

6.2.2 Trajectory Prediction using M

First, the observed trajectory is normalized with respect to sidewalk width of the test

intersection and mapped into W using 7. Future trajectory is then predicted using M,

which consists of the following steps: (1) Find GP/""' c U which best explains the observed

trajectory; (2) Find all GP'rans E W s.t. T(i, j) > 0 and use them for predicting a set of future
Ii

trajectories along with the likelihood of each. 7-1, which is the inverse of the projection

function 7, is then used to map the predicted set of trajectories, from the common frame W

into the original, test intersection.
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Chapter 7

Conclusion and Future Work

This thesis presents a general, context-aware, long term (order of few seconds) trajectory

prediction model applicable to pedestrians in urban intersections. The proposed prediction

model is built in three steps and comprises of a set of motion primitives, learned using sparse

coding, and the pair-wise transition between motion primitives, modeled as motion patterns

using two-dimensional GP flow fields. [33, 2]

First, context is embedded into the previously published ASNSC framework [13, 12],

to build the CASNSC algorithm. CASNSC utilizes context features, such as pedestrian

traffic lights, curbside orientation and relative distance to curbside, in modeling the pair-

wise transition between motion primitives. It achieves 12.5% improvement in prediction

accuracy when compared with the prediction performance of the baseline, ASNSC on a

subset of pedestrian trajectories collected at intersection I1, with nearly orthogonal curbsides.

An important limitation of CASNSC that prevents it from transferring knowledge from

one intersection to another, is the use of spatial features, such as pedestrian position and

orientation in the car frame, to learn motion primitives. TASNSC addresses this limitation

by learning motion primitives and their transition in a common, curbside coordinate frame

instead of the intersection specific car frame. This helps build a more superior model that

can transfer knowledge from one intersection to another, regardless of the difference in

curbside geometries (skewed versus orthogonal). TASNSC achieves 7.2% improvement in
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prediction accuracy over ASNSC, when trained and tested on the same intersection because

of the implicit embedding of context due to learning motion primitives and their transition

in the curbside coordinate frame. A comparable prediction performance with the baseline is

achieved when trained and tested on different intersections. Subsets of pedestrian trajectories

from intersections I1 (with nearly orthogonal curbsides) and intersection 12 (with skewed

curbsides) are used for evaluating the prediction performance of TASNSC.

Lastly, while TASNSC can successfully transfer knowledge from one intersection to

another, it cannot account for novel behaviors encountered as more intersections are visited.

An online model, based on TASNSC, is presented to account for these novel behaviors

by updating the prediction model as, and when, new data is collected. A novel similarity

metric is defined and used to compute the pair-wise similarity between existing and new

motion primitives. Any similar motion primitives are fused with the existing ones and

the corresponding unitary and transition GPs are updated. All novel primitives and their

corresponding transition GPs are added to the model. While the algorithm is explained in

detail in this thesis, including results of the model update steps, prediction performance

improvement results, on real data, will be part of future work.

One might argue that the best prediction accuracies (~zz 91%) obtained by model(s)

proposed in this thesis are not good enough in an absolute sense, as compared to state-of-art

deep learning based techniques, which are capable of achieving higher absolute predic-

tion accuracies. However, note that the objective of the prediction models proposed in

this thesis is to output a set of all possible future trajectories, along with the likelihood

of each, instead of a single future trajectory as provided by other prior works with better

accuracy numbers. Such a prediction output is desired to account for uncertainty in pre-

diction and can be easily incorporated by state-of-art probabilistic planners ([35, 17, 10, 11]).

Two important limitations of the prediction model(s) presented in this thesis is their

inability to recognize stopping intent and learn full trajectories as motion primitives, if the

training data predominantly consists of a single pedestrian behavior. The former limitation
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affects prediction accuracies in cases where the pedestrian stops to wait at an intersection

corner for a change in pedestrian traffic light status or for the crosswalk to clear out in the

absence of lights. The latter limitations affects the online model the most, since bad motion

primitives to start off with only make the model worse over time, as more data is collected.

An online sparse coding based technique [41] for learning motion primitives might be better

to deal with such scenarios.

Other limitations include the failure to incorporate crosswalk location in developing

the common curbside frame. Along with curbside geometries, there can be intersection

scenarios across which difference in crosswalk location and angle with respect to curbsides

also plays a significant role in building a cohesive, common frame.
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