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Abstract

Early and accurate anomaly detection plays a key role in reducing costs and improving benefits,
especially for complicated and time-consuming manufacturing such as semiconductor production.
A case study of detecting anomalies from several monitored parameters during one plasma etching
process is presented in this thesis. The thesis focuses on optimized ways to build reference cycles,
or centroids of univariate parameters, a critical component to determine clustering accuracy and
to facilitate process engineers' offline anomaly detections and diagnoses.

Three time series centroid building methods are discussed and evaluated in the thesis,
arithmetic, the Dynamic Time Warping Barycenter Averaging (DBA), and the soft-DTW-based
centroid. As a result, DBA is chosen considering its comprehensive performance of accuracy and
calculation time. Optimizations on DBA is further discussed to reduce calculation time. The
window constraint, as well as the recalculation method of combining the previous centroid and
new datasets, substantially reduce calculation time with slight accuracy loss.

Based upon one centroid building method, shape extraction, a novel clustering method, k-shape,
is implemented and applied to the plasma etching process. It is found that it achieves great accuracy
with substantially shorter calculation time than one mainstream clustering method, k-means.
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Title: Clarence J. LeBel Professor, Electrical Engineering and Computer Science

Thesis Reader: David E. Hardt

Title: Ralph E. and Eloise F. Cross Professor, Mechanical Engineering
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1. Introduction

This introduction describes the value and the objective of the Machine Health Project from the

level of ADI and the research team, then introduces individual tasks, and finally outlines the

organization of the thesis.

1.1 Project Overview

Analog Devices Inc. (ADI) is an American international semiconductor company, specializing

in the design, manufacture, and marketing of high performance analog, mixed-signal, and digital

signal processing integrated circuits. The company's products play a fundamental role in

converting, conditioning, and processing real-world phenomena such as temperature, pressure,

sound, light, speed, and motion into electrical signals to be used in a wide array of electronic

devices (Inc., 2015)[1]. Its products have been widely used in instrumentation, automation,

communications, healthcare, automotive and numerous other industries [2].

In view of the fabrication cost, ADI faces the cost pressure to optimize manufacturing systems

and processes, and is therefore exploring new approaches including machine learning to improve

manufacturing. Before chips are finally diced, packaged and shipped, each wafer has to go through

multiple process cycles such as plasma etching and implantation. Overall the process is long and

suffers from low yield. Commonly when one certain cycle goes wrong, it is hardly possible to

detect the anomaly in time and hence the entire process continues until the entire process is finished,

at which point wafers may be found defective at the end. Such process failures during the

production cause losses in both production costs and time, which are significant for the capital-

intensive semiconductor industry. If anomalies could be detected in earlier and accurately, the
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plant could either scrap the work-in-progress part or adjust the following processes accordingly to

compensate for the loss. Therefore it is meaningful to explore expanded monitoring of the process

parameters, and accurately alarm and notify operators in time so that they can respond to anomalies

at an early stage. ADI is thus interested in such in-time anomaly detections and gets involved in a

series of innovative projects.

One such project is the Machine Health Project. The project intends to improve the way ADI

collects and analyzes the data from the process. Its objective is to monitor process parameters,

provide timely alerts on anomalies and thus enable efficient and effective response in time. It seeks

improvements on machine reliability, productivity, quality and cost. In addition to the traditional

methods such as traditional Statistical Process Control (SPC), ADI is seeking the feasibility of

applying advanced methods such as machine learning to their production systems for further

improvements.

1.2 Project Scope

Our project is to optimize the health monitoring model for machines and processes in ADI's

Wilmington Fabrication Plant. Our team consists of three MIT students engaged in thesis research

as part of the Master of Engineering in Advanced Manufacturing and Design Program. The

objective is to evaluate the appropriate analytic techniques for timely anomaly detection.

The project requires us to implement analytics using R within the SQL server, which needs

careful and efficient data preprocessing. ADI expects some "real-time" analytic tools and best

practices, which could be either integrated into the online analytic platform or be provided to

process engineers for their daily and off-line work.
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The objective of the project includes:

" Evaluate key parameters and methods for anomaly classification

" Evaluate methodologies and algorithms for timely anomaly detections

* Find solutions to anomaly detection methodologies and algorithms

* Determine best practices for implementing "real-time" analysis

" Provide efficient and useful assistance tools for process engineer's daily analysis

According to the objective, the framework of the Machine Health Project is summarized in

Figure 1. The data received from the machine's sensors is first preprocessed in the pre-processing

section. The preprocessed data can be presented in plots by the visualization section. Then the pre-

processed data goes through the data analytics section. The data be captured as reference cycles,

or can go through the anomaly detection part. The built reference cycles in turn facilitate anomaly

detection. Results of both reference cycle and anomaly detection can be shown in plots by the

visualization section. After the data analytics section, the result goes through the interface section.

The anomaly is alerted to the process engineers and all results and records are sent back to the

database. Through the improvement of anomaly detection, the plant gains multidimensionally in

terms of cost, yield and machine life. The algorithms themselves are not process, recipe and

machine dependent, so that they could be extensively applied conveniently.
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Reference Anomaly
Cycle Detection

Visualization -

- Interface

Figure 1. Machine Health Project Framework

1.3 Problem Statement

The problem statement explains the part of the project this thesis focuses on. The major case

the team has worked on is first presented, and then the specific individual task to be solved in this

thesis is described.

1.3.1 Case Overview

The major case studied in the project is related to unconfined plasma excursions happening

during the plasma etching process. Plasma etching is one major process of semiconductor

production. It involves plasma of an appropriate gas mixture generated and exposed to a sample.

The plasma consists of etch species, which are either charged or neutral. The charged species are

composed of ions and the neutral consist of atoms and radicals. During the process, the reactive

species produced by the plasma react with the materials to be etched and produce volatile etch
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products at room temperature. Finally, the charged species are accelerated vertically to the wafer

substrate by the applied electric field and embed themselves at or just below the target surface. In

this way the target's physical properties are modified [5]. The mechanism is shown in Figure 2.

PLASMA

ions neutrals electric field

photomask

substrate

Figure 2. Schematic of Plasma Etching Process [6]

The unconfined plasma excursion causes unplanned etching on the wafer. Currently for the

machine 'OXLR7_LAMALl' three major related parameters are monitored and analyzed:

'BOTRFRevPwrIn', 'ProcChmBotElecTempMon' and 'ProcChmEndPtChanCIn'.

These parameters come with respectively definitions and meanings:

BOTRFRevPwrIn: The amount of the reflected Radio Frequency (RF) power reflected back to

the supply. Radio Frequency (RF) power is used in plasma etching to ionize the gas generating a

plasma. The RF power is a programmable parameter that is part of a recipe for the particular etch.

Forward power is the power delivered to the load and reflected power is the power that is reflected

back to the supply. Ideally reflected power is 0 W. However, due to inefficiencies of the RF match
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network or the physics of the chamber, there are losses. Reflected power is an indicator of how

efficiently the power is being delivered to the chamber or the load.

ProcChmBotElecTempMon: An indicator of the temperature of the wafer during processing.

The work-in-progress wafer sits on a chunk during processing with temperature monitored and

recorded.

ProcChm_EndPtChanC_In: A parameter used to determine whether the etch is complete. It

provides a signal, expressed in counts, of the plasma intensity at a specific wavelength. As the

target material being etched is completed, the next layer is exposed, which results in a change in

the spectrum along with a change in amplitude of the endpoint signal. A parameter value of zero

indicates the completion of the etching.

Plots for each parameter are shown in Figure 3 for Recipe 920, with good-behaved cycles and

mix-behaved cycles listed separately. A total of 341 cycles' data is shown in the figures.
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Figure 3. Plots for Parameter Behaviors for the Recipe 920, with Left the Good Cycles and
Right the Bad Cycles

As can be seen, parameters behave normally in a cycle within ranges of amplitude and phase.

For the parameter 'BOTRFRevPwr_In', it can be seen that the major anomaly is a step increase

in the power in the first 80% section of the cycle. For the parameter

'ProcChmBotElecTempMon', major anomalies are sudden and drastic increases and

decreases in the temperature at turning points rather than smooth changes. For the parameter

'ProcChmEndPtChanCIn', the major anomaly is the much higher saturation point. Normally

the value should be below 8000. In anomaly cases, the value reaches over 30,000 and stays at such

high level until the end.

1.3.2 Individual Task

Individually, the initial objective in this thesis is to provide an accurate and efficient tool to

assist engineers in building reference cycles, or centroids for their daily data comparison and

analysis. Then, related and extensive applications of the centroids for anomaly detection and

classification are explored, mainly around the k-shape clustering method.
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When meeting with process engineers in ADI, we found that they preferred to manually track

back anomalies using Excel. Normally, they plotted each process parameter and reasoned which

parameter went wrong according to their experience, or rules of thumb. This method mainly caused

two problems. Initially, without a standard centroid for each parameter quantitatively and

geometrically in mind, engineers could easily incorrect false judgements and they tend not to make

consistent judgements about the same cycle. This issue could be worse for engineers unfamiliar

with the process.

In addition, without a mutually agreed-upon standard cycle, different engineers apply their

individual rules of thumb and form diverse centroids in their minds. As a result, they sometimes

cannot reach agreement on the anomaly detection for the same cycle. In short, currently process

engineers cannot make consistent judgements on anomaly detection personally and interpersonally.

One of the examples is the analysis of the parameter 'ProcChmEndPtChanC_In', with the data

shown in Figure 4. Among the 11 cycles, the three low-amplitude cycles are correct. However, it

is hard for engineers to describe the amplitude and shape of such a good cycle accurately and thus

they tend to make mistakes in later anomaly detections and analysis. It is necessary to help

engineers build accurate centroids from normal cycles. These cycles improve their anomaly

detection accuracy and analysis quality when they work offline. With a mutually agreed-on

centroid, it is also smoother and more efficient for engineers to reach agreement on anomaly

detection results.

Furthermore, an accurate centroid also improves the quality of semi-/automatic anomaly

classification and detection methods, such as clustering. In addition to providing practical and

accurate centroid building tools for process engineers, extensive applications of the centroid in

anomaly detection and classification are also explored in the thesis.

19



ProcChm_EndPt_
35000 ChanCIn

30000

25000

U 20000
C

U 15000

10000

5000

0 queL

Figure 4. Mixture of Normal and Bad Time Series Data of Parameter
'ProcChm_EndPt_ChanC_In'

1.4 Thesis Outline

After the project's objectives and the problem statement are presented in Chapter 1,

introductions to theory and algorithms are summarized in Chapter 2. These include the methods to

measure the similarity between time series, centroid building methods, and one novel clustering

method, the k-shape. Additional and necessary theories are introduced, such as the resampling for

data pre-process, and the confusion matrix for clustering performance evaluation.

Following the discussion of theoretical background, methodologies for developing

experiments evaluating diverse centroid building methods are discussed in Chapter 3. This chapter

details the structure of experiments and important factors considered in designing experiments.

Results and discussions are presented in Chapter 4. The discussion is not only on the type of

the centroid building method preferred, but also on optimization methods for further improvements.

In addition, a brief evaluation of the k-shape clustering is presented. Finally, Chapter 5 makes

conclusions on experiment results, value to ADI and recommendations on further tests and

improvements.
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2. Theoretical Backgrounds

Chapter 2 focuses on theoretical backgrounds the thesis is based on. Section.2.1 introduces

metrics of judging time series similarities and types of centroid building methods. Section 2.2

introduces clustering theories and then the k-shape clustering method. Section 2.3 describes

resampling, one necessary signal pre-process step. Finally, Section 2.4 introduces an important

clustering evaluation method, the confusion matrix.

2.1 Time Series Similarity Measurement and Centroid Building Methods

This section first introduces a fast but inaccurate way to calculate centroids, the arithmetic

method. In view of the arithmetic method's inaccuracy, metrics to evaluate time series similarities

and build centroids are then introduced. One quantitative metric measuring the distance, Dynamic

Time Warping (DTW) distance, is introduced in Section 2.1.2. The centroid building method based

upon DTW distance, DTW Barycenter Averaging (DBA), along with a variant of DTW, soft-

DTW, and the centroid building method based upon soft-DTW, are each presented in Sections

2.1.3 through 2.1.5. Another metric comparing shape similarity, Shape-based Distance (SBD), is

then described in Section 2.1.6. In the end, the centroid building method derived from SBD, shape

extraction, is presented in Section 2.1.7.

2.1.1 Arithmetic

The arithmetic method calculates the centroid based upon the mean/median of the time series

data. Similar to the calculation of mean and median for arrays, the mean takes the average/median

of each time-point i across all variables of the considered time-series [7]. Then for a cluster C of

21



size N, the time-series mean p is calculated by Equation 1, where x i is the i-th element of the v-

th variable from the c-th time series which belongs to cluster C.

1 = x i VC E C

The median takes the median value rather than the mean value across series in the C. It is more

robust to outliers across time series. Alternatively, winsorization could be used to obtain more

robust series means, as shown in Figure 5. Unlike simply removing outliers in the trimmed mean

method, the winsorization limits effects of outliers by replacing the smallest k values with the

(k+])-th smallest and the largest k values with the (k+1)-th largest [8]. The tightness of the

winsorization can be adjusted by changing the upper and lower percentile of the boundary.

Although it still brings bias to the result, the bias is better than simply removing all outliers and

calculating the trimmed mean.
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Figure 5. Original vs. Winsorized Data [8]

Overall, the arithmetic method is the simplest and the fastest. However, it is quite sensitive to

phase-shift values and outliers. It is also restricted to applications on time series data with the same

length and number of variables. From the perspective of these two concerns, dynamic time warping

and shape-based distance methods are introduced to create more accurate and descriptive centroids.

2.1.2 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a times series alignment algorithm calculating and

comparing the dissimilarity between two time series based upon a distance measure. The shorter

the DTW distance is, the more similar the two series are. It aims at warping two time series

iteratively until optimally minimizing the DTW distance between the two time series and mapping
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one (query) onto the other (reference). For two time series, A = (al, a2, ... , a,) and B = (bl, b2 , ... ,

b.), with lengths of n and m respectively, it initially creates an n-by-m distance matrix. The time

series A and B could be either univariate or multivariate time series, but the two should have the

same number of parameters. Each element in the matrix is a cumulative distance of a minimum of

the three surrounding neighbors. The (ij) element Yi, in the matrix is defined as:

Yi = |ai - b;IP + min{ Yj-q j-, Yi-4,j Yij-i} (1<i<n, ]J:frm, Yoo=O, Y,o=Yo,=oo) (2)

Here Yi is the summation of the distances between the i-th point in the A series and the j-th

point in the B series, |ai - bjr, and the minimum of the three minimum distances around the (i,j)

element. Variable p is the dimension of the Jai - bul-norms. Normallyp is chosen to be 2 so that the

Euclidean distance is used to measure the distance between two points. The cumulative distance

between the two series are finally determined by Yi. An example of the mapping is shown in

Figure 6, where the query series, A = {2, 3, 8, 2, 3, 1,3} is aligned to the reference series, B = {3,

1, 2, 3, 8, 3,2}.

B

I I I I

1 2 3 4 5 6 7

Figure 6. Mapping between the Two Time Series [9]

DTW can find an optimal global alignment between series and thus is probably the most

popular measure to quantify the dissimilarity between sequences [10-14]. It has been shown to be
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one of the most effective distance measurement methods for time series [15]. Besides, unlike the

arithmetic method, the two time series do not need to be of equal lengths. Therefore it is introduced

in this thesis to generate centroids from a cluster of time series, which will be discussed in detail

in the next section. However, since an n-by-m distance matrix needs to be created for the DTW

and the computational complexity is O(mn), calculation becomes expensive and time-consuming.

As a result, possible optimized methods will be discussed in Chapter 4. A variant of the DTW,

soft-DTW, uses a differentiable measurement algorithm to calculate the distance between the two

series and is more robust to shifts or dilatations across the time dimension [15], which will also be

discussed along with the centroid building methods derived from the soft-DTW.

2.1.3 DTW Barycenter Averaging (DBA)

A warping path between the query and the reference time series is generated during the warping.

The original query time series is warped with each point corresponding to a specific point in the

reference time series. Multiple query points can refer to the same reference point. The DTW

Barycenter Averaging (DBA) is introduced to generate a centroid from a cluster of time series

based upon the DTW. This is an iterative and global method. The latter word means that the order

the series get input into the function is not related to the result. During DBA, a centroid is initially

selected for the cluster. Normally this begins by randomly selecting a time series from the cluster.

On each iteration, the DTW alignment between each time series in the cluster and the centroid is

recalculated and updated. All points in the cluster corresponding to the same point in the centroid

are grouped and then are averaged to get the new value of that centroid point. Iterations continue

until either the upper limit of the iteration time is reached or the centroid is converged.
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2.1.4 Soft-DTW

As introduced in Section 2.1.2, soft-DTW uses a differentiable distance measurement

algorithm, where both the value and gradient can be computed with quadratic time/space

complexity. In contrast, the traditional DTW has quadratic time but only linear space complexity.

As a result, soft-DTW builds smoother and more detailed centroids.

The difference between the DTW and the soft-DTW will be explained in detail. Equation 3

shows the algorithm for the DTW. It only involves (min, +) operations and thus holds linear

complexity only. Given the distance matrix A(xy) = [(xi,y;)]i ER"x"n and the inner product

<A, A(xy)>, where A is the alignment matrix in A,,,,, the distance formulas below are used to

generalize the total distance for two time series via the DTW and the soft-DTW methods,

respectively. The distance between the two time series given the alignment is <A, A(x,y)>.

Equation 4 refers to the original DTW discrepancy [16] and Equation 5 refers to the Global

Alignment kernel (GAK) [17]. The GAK is for the soft-DTW method.

DTW(x,y) min < A,A(x,y) >
AEAn,m (3)

k' (X Y) AIE~m e- <A,A(x,y) >/
kGA(X,y) = AEAnme4)

Compared with the traditional DTW algorithm, the GAK replaces all inner products with their

neg-exponentials and uses ( , x) operations. The GAK integrates over all alignments. Consider a

list of n aligned distances <A, A(x,y)>, {ai, a2, ... , an}, a unified minimum operator can be

generalized as:

min a (y = 0)
isn

minIyga, az,.an}= _ ai (5)
1-ylog E-1 eY (y > 0)
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We define a unified distance algorithm:

dtwy(x,y) = miny {<A, A(xy)>, A E Anml (6)

The result is controlled by the smoothness factor, y. It can be seen that when y approaches

infinity, the dtwr converges to the sum of all aligned distances. When the distances <A, A(xy)>

are concave, dtwr (xy) also turns concave gradually as the y grows. Therefore the soft-DTW

algorithm with y >0 smooths out local minima and provides a better optimization landscape.

2.1.5 Averaging with the soft-DTW geometry

The centroid time series based on the soft-DTW geometry directly applies Frdchet means [18]

to the dtwY algorithm. Given a cluster of N time series, {yl, y2, ... , yN} with fixed p parameters and

lengths {MI, ... , mN}, the goal is to find a barycenter time series x E RP'" with length of n for all p

parameters. With normalized weights for each time series, {1, b....}and sum of the weights

of 1, the centroid x is built in such a way:

mn _dtwy (x, yi) (

2.1.6 Shape-based Distance (SBD)

The shape-based distance (SBD) is a faster alternative to the DTW algorithm. Compared to the

DTW, it compares the shape similarity rather than the quantitative distance. It is based upon the

cross-correlation with coefficient normalizations (NCCc) between the two time series. In short, a

global shift is made onto the query series x to maximize the cross-correlation between the query

series (x) and the reference (y). Equation 8 considers the cross-correlation between the query series
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(x) and the reference (y), both with lengths of m, and maximizes cross-correlation value when the

query shifts by k. For simplicity, we consider the alignment for two series with the same length

though the alignment also works for series with different lengths.

Rk(x,y) = fm x1+kYi (0 k m - 1) k e Z
R XY) R-k (Y, X) (-m :5 k < 0) (8)

Then the shifted x series x(k) is:

kXoX ... x1, x2, ... , m-k (S ;> 0)
x(k) = Xm = tx1-k, Xm-i, Xm, 0, ... ,0 (s < 0) (9)

Cross-correlation is sensitive to the scales. Normally the series are z-normalized and the NCCc

is defined as:

NCC(x, y) Rk(X,y)
0R0 (x,x) R0 (y,y) (10)

The SBD is then defined as:

SBD(x, y) = 1 - max(NCC(x, y)) (11

The SBD value is between 0 and 2. A value of 0 means that the two series are perfectly identical

in shape. In comparison with the DTW algorithm, the SBD algorithm is much faster. With the

application of fast Fourier-transformation in the SBD, the complexity is O(mlog(m)) instead of 0-

(mn) and hence the speed is substantially improved, especially for long time series. However, since

the time series in comparison have to be normalized, the SBD can describe shape

similarity/dissimilarity but cannot indicate differences in amplitudes.
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2.1.7 Time-series Shape Extraction

The DBA method is used to capture representative and shared characteristics of a cluster of

time series and to build up centroids based upon the DTW distance measurement. Similarly, the

shape extraction method is used to build a centroid for a cluster of normalized time series based

upon the SBD measurement. Unlike the way the DBA builds centroids based upon average of the

points grouped to the same centroid point according to the DTW alignment, the shape extraction

uses numerical optimization [7]. Given a series of N normalized and shifted time series vectors

after the SBD alignment with a 1-by-m centroid C, {x'1, x'2, ... , x'N} E Rlx", the process of finding

the centroid is given in Equation 12 [19]:

S = X'TXI
QI 1IQ= I--O

M Q TSQ (12)
C'= Eig (M, 1)

In detail, the X' is an N-by-m matrix with {x'1, x'2, ... , x'N} spanning each row. The symbol'

means transpose. The I is the m-by-m identity matrix and the 0 is the m-by-m matrix with all ones.

The output C' is the first eigenvector of the matrix M and the new centroid for the cluster.

Commonly the shape extraction operation begins with randomly selecting one time series from

the cluster as the initial centroid. Then all series in the cluster are shifted and aligned to it before

shape extraction. As can be seen from Equation 13, the centroid is not calculated iteratively and

therefore the derived centroid may not get as good results as the DBA, since the latter includes

iterations in the algorithm. Unlike the arithmetic method for centroid building, the SBD operation

is not constrained to equal-length time series. However, currently the SBD is applicable to

univariate time series analysis only. In addition, since each time series is normalized locally, shape-

extracted centroids cannot be denormalized and restored with actual amplitudes.
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2.2 Clustering

In extension to the centroid building, clustering theory is first summarized and then the k-

shape clustering method is introduced in this section.

2.2.1 Introduction to Clustering

Clustering is the task of dividing a set of objects into several clusters, in such a way that each

cluster is characterized with homogeneity and separation. The former refers to the similarity of

observations within the same cluster, and the latter refers to the dissimilarity across different

clusters [20]. Two mainstream types of clustering are hierarchical and partitional methods. Both

methods rely on distance/dissimilarity measurement algorithms to optimize the similarity and

dissimilarity iteratively, and form homogeneous and well-separated clusters eventually. The

difference lies in whether clusters are nested or not. As for the hierarchical method, clusters are

nested, while for the partitional method, time series are divided into non-overlapping clusters. Each

method has respective advantages and disadvantages. The hierarchical method calculates

iteratively and eventually forms an optimized number of clusters without requirement of presetting

the quantity of clusters, which is good for taxonomy. However, since the distance/dissimilarity has

to be calculated pairwise for every two time series, the calculation is particularly complex and

expensive for a large set of data. The partitional method requires a preset quantity of clusters but

has lower calculation complexity and cost.
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2.2.2 K-shape Clustering Method

The k-shape clustering method uses the SBD to compare time series' similarities and calculate

their distances, and then update the assignment of time series to clusters as well as the cluster

centroids [19]. It is processed through two cycling steps: (1) assign each time series to the closest

centroid with the shortest SBD; (2) use the shape extraction to update cluster centroids. Once the

reassignment of time series is stopped or the iteration limit is reached, the k-shape clustering is

completed. Through this iterative procedure, the k-shape minimizes the sum of the squared

distances between time series and their centroids. The k-shape clustering's advantage is that it

scales linearly with the number of time series [19]. Howcvcr, sincc the SBD only works on

univariate time series, the k-shape clustering does not support multivariate clustering.

2.3 Resample

Resampling is used to convert time series to uniform lengths for convenience of comparison.

The time series is marked with either time or the consecutive indices. An index multiplier should

be defined to decide the new quantity of indices for the data. Interpolation is used to update index

spacings, as well as a list of relative index compared to the old one. Then the data value is

interpolated according to the relative index value. One example of resampling data to the new

relative indices is shown in Figure 7. Time lengths remain the same for resampled series but

sampling frequencies vary.
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Time idx relidx Y
235 1 1.000 4
1500 2 1.577 2
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Figure 7. Resampling the Time Series According to Relative Indices

Since time sampling rates and time lengths vary within and among time series, sampling

frequencies can vary from time series to time series. However, sampling rates mainly result from

round-up errors during the measurement and time lengths of series for the same process and recipe

mostly vary within 5-percent range in the cases we studied. Therefore we assume that the

resampling has insignificant loss on the time series data.

2.4 Confusion Matrix

The parameter to judge clustering quality is the accuracy, considering the percentage of making

type-I error (false negative) and type-II error (false negative). The confusion matrix is used here

to measure the clustering accuracy, as shown in Figure 8.
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Actual
Anomaly Non-Anomal

Anomal True Positives False Positives
Non-Anomaly False Negatives True Negatives

Figure 8. Confusion Matrix

The result is divided into four parts: true positives (TP), false positives (FP), false negatives

(FN) and true negatives (TN), where the FN counts Type-I errors and the FP counts Type-II errors.

Additional parameters can be calculated based upon the confusion matrix, and measure the

clustering accuracy regardless of scale:

Precision = TP+FP (13)

Recall TP+FN (14)

F+ 1(15)
Precision Recall

The precision considers the possibility of Type-I error and omittance of anomalies. The recall

considers the accuracy of detecting normal cycles. The Fi value is the harmonic weighted mean of

the two parameters. For all three parameters, the higher they are, the better performance of the

clustering is. The parameter precision is particularly important since the omittance of anomalies

causes more issues and extra costs rather than the false alarm.
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3. Centroid Building Test Methodology

A series of experiments and comparisons are set up to determine appropriate applications of

centroid building methods and parameter settings for the parameter analysis of the plasma etching

the thesis works on, which could also be extensively applied to a wide variety of other recipes and

processes. This chapter describes factors, parameters and metrics that the experiment design takes

into account. The experiment scheme is described in the end.

3.1 Parameters

Multiple factors should be taken into account when constructing experiment processes and

structures. Initially key parameters should be chosen for the centroid building. Among tens of

process parameters in one set of time series data, the most representative parameter evaluating the

process behavior should be primarily considered. In addition, parameters which are hard to

describe and standardize quantitatively and qualitatively should be taken into consideration. Even

when behaving normally, time series of such parameters vary greatly in terms of amplitude and

phase.

3.2 Resampling

As discussed in Section 2.3, the influence of resampling is negligible on the datasets we are

concerned with, and hence resampling is used to extend every set of time series to the same length,

in order to cancel out the influence of data length differences on the distance measurement.
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3.3 Sample Size

Centroid building methods should be measured under different sample sizes. A well-behaved

method should deliver desirable results over variable sample sizes.

3.4 Randomness

Samples should be chosen randomly for each test so that the behavior of the centroid building

methods is not influenced by the order and the subset of the selected series chosen for the test.

3.5 Performance Rating

The primary metric evaluating a centroid building method is that whether it can extract a

representative time series optimizing the similarity from the samples it is based upon. The distance

between the centroid and the time series is a good way to judge, since distance is a linear variable

describing the similarities directly.

Minkowski and DTW distances are considered for measuring the similarity from the

perspective of distance. The former measures the distance between two equal-length and equal-

dimension time series {xI, X2,..., xN} and {Y, Y2,..., yN} with Equation 16 [21]:

d(x,y) = (T 1[xi - yi1]P) P (16)

The case where p = 1 is equivalent to the Manhattan distance and the case where p = 2 is

equivalent to the Euclidean distance. Normally the Euclidean distance is more widely accepted.

The Minkowski distance is a fast way to calculate the distance, or the dissimilarity, between the
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two time series. However, it is not robust to off-phase time series and tends to result in large

distances even when the two time series have minor offsets in phase. The DTW distance, as

described in Equation 3, is used instead, since it warps the query time series locally and is less

sensitive to off-phase time series. Since the SBD measures the shape similarity between the two

time series, it is used as the secondary metric evaluating the similarity/dissimilarity between the

centroid and the time series. It is used to evaluate from the perspective of shape rather than the

quantitative distance. In addition to the similarity/distance measurement, calculation time is also

an essential metric. It is critically important when operators need to extract centroids of dozens of

parameters from thousands of sample datasets.

3.6 Centroid Building Method

Arithmetic, DBA and soft-DTW-based centroid are the three methods to be discussed and

compared. The shape extraction method is not considered since each time series is z-normalized

locally and thus the centroid cannot be denormalized. As discussed earlier, DBA and soft-DTW-

based centroid methods are more advantageous since they mitigate the influence of off-phase time

series. The soft-DTW-based centroid is an advanced method based upon the soft-DTW. It is logical

to compare and choose one of the three methods first and then discuss the possibility of further

improving the chosen method.

3.7 Centroid Building Scheme

Two parameters are chosen from the case reviewed in Section 1.3, the 5th parameter

'BotRFRevPwr' and the 19 th parameter 'ProChmEndPtChanC'. Good cycles of

'Bot RFRevPwr' are shown in Figure 9. This parameter is chosen considering its complicated

36



variances in amplitude and phase and thus the necessity of building a uniform centroid. Good

cycles of 'ProChmEndPtChanC' are shown in Figure 10. This parameter is chosen since it is

one of the key parameters typically used by engineers to determine whether the process behaves

normally.
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Figure 9. Good Cycles of 'BotRFRevPwr'
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Figure 10. Good Cycles of 'ProChmEndPtChanC'
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Sample sizes of 20 and 50 are chosen for each of the two parameters. For each sample size

for each parameter, 5 packages of random-picked data are analyzed. In terms of the centroid's

accuracy, the DTW distance and the SBD are applied. The former prefers to quantitatively compare

the distance between the centroid and the time series, and the latter prefers to indicate how similar

the centroid's shape is to the time series'. Calculation time of each method is also listed and

compared. Initially the methods in comparison will be arithmetic (winsorized mean with

winsorization level of 0.05 on each side, untrimmed mean, and median), DBA (without any

constraints), and soft-DTW-based centroid (smoothing parameter set at 0.001, 0.01, 0.1 and 1).

The smoothing parameter has a large influence on the soft-DTW-based centroid method so that

the range of the smoothing parameter is expanded widely to comprehensively show the method's

performance. After comparing the DTW distance and calculation time from the level of each

centroid method, the well-behaved method will be chosen and ways to further improve its

performance will be discussed later.
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4. Results and Discussion

This chapter summarizes the result of the centroid comparison experiment discussed in Chapter

3 first, and chooses the most appropriate method for the plasma etching process discussed in this

thesis. Extensive optimization approaches to further improve this method are then explored.

Finally, application of the k-shape clustering method is introduced, along with its result compared

with the mainstream k-means method.

4.1 Method Selection

Representative centroids built from the three models discussed above are shown in Figures 11

through 19 for the case of 20 time series of the parameter 'BotRFRevPwr', with black lines

indicating the original datasets and the red dashed lines the centroid.
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Figure 11. Time Series for Parameter 'BotRFRevPwr', with Sample Size of 20
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Time Series Data for 20 'Bot_RFRevPwr' Sets, with
DBA Centroid
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Figure 12. Time Series and Centroid for Parameter 'BotRFRevPwr', with
20 and DBA Centroid Building Method
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Figure 14. Time Series and Centroid for Parameter 'BotRFRevPwr', with
20 and soft-DTW Centroid Building Method with y of 0.01
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Figure 15. Time Series and Centroid for Parameter 'Bot_RF_RevPwr', with Sample Size of
20 and soft-DTW Centroid Building Method with y of 0.1
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Time Series Data for 20 'Bot_RFRevPwr' Sets, with soft-
DTW and Y of 1.0
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Figure 16. Time Series and Centroid for Parameter 'BotRFRevPwr', with
20 and soft-DTW Centroid Building Method with y of 1.0
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Figure 17. Time Series and Centroid for Parameter 'Bot_RF_RevPwr', with Sample Size of
20 and Arithmetic Winsorization Method
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Time Series Data for 20 'BotRFRevPwr' Sets, with
Arithmetic Untrimmed Mean Method
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Figure 18. Time Series and Centroid for Parameter 'BotRFRevPwr', with
20 and Arithmetic Untrimmed Mean Method
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Figure 19. Time Series and Centroid for Parameter 'BotRFRevPwr', with Sample Size of
20 and Arithmetic Median Method
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The performance for each method is summarized in Tables 1 and 2 for each parameter. The

mean DTW distance is the average DTW distance between the centroid and the time series it is

built upon, indicating the quantitative similarity in terms of the distance. The mean SBD is the

average SBD between the centroid and the time series it is built upon, indicating the shape

similarity. Calculation time is the average time each method spends on each sample size. Both

absolute and relative values are listed, with relative percentage value compared to the value for the

case where sample size is 20 and the centroid building method is the DBA. Detailed results are

listed in Table A. 1 and A.2 in the Appendix.

Table 1. Average Performance of Centroid Methods for the Parameter
'ProChmEndPtChanC'

Method

20 Absolute
Relative(%)

so Absolute
Relative(%)

20 Absolute
Relative(%)

50 Absolute
Relative(%)

20 Absolute
Relative(%)
Absolute
Relative(%)

Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic
DBA (y=0.001) (y=0.01) (y=0.1) (y=1) (Win. Mean) Men)

35475.53'
100.00

45444.34
128.10,

7.501E-037
100.00

1.292E-02'
172.25

7

r

2.60'
100.00

6.25'
240.28

63388.19'
178.68

69314.53
195.39

7.632E-03'
101.75

7.099E-03
94.63.

16.52'
634.90
39.21'

1507.07

51485.33'
145.13

60151.36'
169.56

7.804E-03'
104.04

9.642E-03
128.55

17.01'
653.57
41.20'

1583.40"

Mean DTW Distance
46610.46 89177.18

131.39 251.38
64401.14 60729.21'

181.54 171.19
Mean SBD

6.564E-03 7.182E-03
87.51 95.75.

8.091E-031 1.123E-02:
107.86 149.68

Calcualtion Time(s)
17.92 18.05

688.85 693.85
41.671 41.95'

1601.46 1612.38

75229.10'
212.06

76358.67'
215.24

3.789E-03'
50.51

4.240E-03:
56.53

74963.80'
211.31

73359.75'
206.79

3.793E-03'
50.57

4.241E-03'
56.54

Arithmetic

(Median)

68661.57
193.55

71756.93
202.27

4.252E-03
56.69

4.771E-03
63.61

0.18
6.76
0.19
7.23
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Table 2. Average Performance of Centroid Methods for the Parameter 'BotRFRevPwr'

Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic
(y=0.001) (y=0.01) (y=0.1) (y=1) (Win. Mean) Men) (Median)

Mean)
Index Mean DTW Distance

20 Abosulte 155.81 231.01 260.38 228.18 217.88. 327.47 336.60 253.77

Size Relative(%) 100.00 148.27 167.12 146.45 139.84 210.17 216.04 162.88

50 Abosulte 170.86 226.68 198.65 225.09 211.50 331.72 344.49 280.89
Relative(%) 109.66 145.49 127.49 144.47 135.74 212.91 221.10 180.28

Index SBD
Abosulte 0.11 0.12 0.12 0.127 0.12r 0.09' 0.09 0.11

2ieRelative(%) 100.00 103.11 103.66 103.82 106.25 79.88 80.45 94.98
Abosulte 0.23' 0.16 0.16 0.16 0.16 0.13 0.13 0.14

so Relative(%) 198.91 140.87 140.04 140.14 142.70 109.56 110.81 126.48
Index Calcualtion Time(s)

Abosulte 2.07 22.15 23.06 23.09 24.19 0.17
Relative(%) 100.00 1068.92 1112.74 1114.48 1167.28 8.01

Size Abosulte 6.48 67.09 69.45: 70.20 71.28 0.20
50 Relative(%) 312.84 3238.03 3351.93 3388.13 3440.35 9.46

It can be seen clearly that the DBA method outperforms both the soft-DTW centroid and

arithmetic methods in terms of the mean DTW distance. Although literature suggests that the soft-

DTW could deliver smoother centroids [15], especially when the smooth parameter y is large

enough, the result from the experiment points out that the mean DTW distance is not improved by

the soft-DTW method and the mean DTW distance does not seem to be related to the value of y.

The soft-DTW seldomly outperforms the DBA on the centroid accuracy in view of the mean DTW

distance. It still outperforms the arithmetic centroid methods in terms of the mean DTW distance.

When judging the accuracy in terms of shape similarity by the mean SBD, all the three types

of methods perform well and extract most features of the time series data. The soft-DTW slightly

outperforms the DBA especially when the sample size has a higher value of 50, but the smoothing

norm y is not related to the mean SBD in all cases. It is interesting that the arithmetic methods

have the best SBD performance among the three even though they are poor in terms of the mean

DTW distance.
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On top of that, it is interesting to see that among the three arithmetic centroid methods

(winsorized mean, untrimmed mean and median), the median method always delivers the most

accurate centroid, considering its lower mean DTW distance. Although it may not extract the most

representative shape feature considering its higher SBD relative to the other two arithmetic

methods, the median method overall is still the most accurate among the three arithmetic methods

since it has substantial advantage in the mean DTW distance, which matters strongly for clustering

and other machine anomaly detection methods. The arithmetic methods overall provides the best

SBD, which is not quite meaningful since all centroids have extracted the shape accurately with

SBD below 0.16, regardless of the building method.

In terms of the calculation time, even when summing all three arithmetic centroid methods'

time together, the combined time is still much lower than those of the DBA and the soft-DTW-

based centroid methods in all cases. In each case, the time that all the three arithmetic methods

take up is about 15% of the time that the DBA method spends. The soft-DTW-based centroid

method, in contrast, always requires much longer calculation time. In the worst case, on average

it takes 12x the time that the DBA method spends, in the case dealing with 20 samples of the

parameter 'BotRFRevPwer'. Similarly, the larger the group size is, the longer time each method

spends and the larger the time differences among methods are.

The soft-DTW-based centroid behaves inaccurately in the experiment, in contrast to the results

of Cuturi et al. [15]. Several factors contribute to the observed results. The method randomly

selects one of the time series it is based upon as the initial centroid and updates the centroid only

once later without iteration. Therefore the method cannot obtain centroids as optimized and

converged as those derived from the DBA. Since the result has shown that the soft-DTW

calculation is the most time consuming, iterations are not suggested since it could make the
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calculation time worse. An alternative to the iteration is to preset one centroid as the initial centroid

rather than randomly choose one time series.

Two types of centroids are used and discussed for initial centroids, the arithmetic median and

the DBA method. The arithmetic median method is used since it is fast to compute and it behaves

the best among the three discussed arithmetic centroid methods. The DBA method is introduced

since currently it is the most accurate method in terms of the mean DTW distance in the experiment.

The soft-DTW-based centroid method will be evaluated to determine whether it outperforms the

DBA method when the DBA centroid is preset as the initial centroid.

Results are listed in Table 3 through Table 6, with those preset with the arithmetic median

methods presented first. Results are also listed in Table A.3 through A.6 in the Appendix for more

details. The green texts show where the method outperforms the DBA method for the same

parameter and the same sample size.

Table 3. Average Performance of Centroid Methods on the Parameter
'ProChmEndPtChanC', with Arithmetic Median Centroid as Preset Centroid

Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic
DBA (y=0.001) (y=0.01) (y=0.1) (y=0.1) (Win. Mean) (Median)

Mean)
Index Mean DTW Distance

20 Abosulte 34394.85 48489.84 44266.94 46893.02 44948.09 75229.10 74963.80 68661.57
Relative(%) 100.00 140.98 128.70 136.34 130.68 218.72 217.95 199.631Size Reatve% 471.0 I p - -50 Abosulte 47017.30 55424.00. 54920.19 54318.26 54372.64 76358.67 73359.75 71756.93
Relative(%) 136.70 161.14 159.68 157.93 158.08 222.01 213.29 208.63

Index Mean SBD
20 Abosulte 0.01. 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Relative(%) 100.00 86.93 88.08 92.15 92.42 69.97 70.06 78.54Size p. r r V . .. r .
Abosulte 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
Relative(%) 108.40 100.33 105.25 102.82 103.67 76.25 76.22 85.67

Index Mean Calcuaftion Time(s)

20 Abosulte 2.44 15.83 16.60 17.05 17.53 0.17
Size Relative(%) 100.00 650.00 681.36 700.08 719.46 7.14

Abosulte 6.42 41.37 43.70' 42.90 45.01 0.20
Relative(%) 263.46 1698.36 1794.09 1760.92 1847.62 8.05
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Table 4. Average Performance of Centroid Methods on the Parameter 'BotRFRevPwr',
with Arithmetic Median Centroid as Preset Centroid

Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic
DBA (y=0.001) (y=0.01) (y=0.1) (y=0.1) (Win. Mean) (Median)

Mean)
Index Mean DTW Distance

20 Abosulte 161.74 194.53 194.73 198.77 206.78' 327.47' 336.60' 253.77
Relative(%) 100.00 120.28 120.40 122.90 127.85 202.47 208.12 156.91Size Abosulte 169.39 213.74 216.96 213.20 203.35 331.72 344.49 280.89
Relative(%) 104.73 132.16 134.15 131.82 125.73 205.10 212.99 173.67

Index Mean SBD

20 Abosulte 0.11 0.12 0.12r 0.12 0.12 0.09 0.09 0.11
Relative(%) 100.00 103.11 103.66 103.82 106.25 79.88 80.45 94.98Size Abosulte 0.23 0.16 0. 16 0.16 0.16 0.13 0.13 0.14
Relative(%) 198.91 140.87 140.04 140.14 142.70 109.56 110.81 126.48

Index Mean Calcualtion Time(s)
Abosulte 2.43 25.02 27.55 28.70 28.62 0.1720
Relative(%) 100.00 1028.87 1132.73 1180.02 1176.81 6.83Size 7 7p 0250 Abosulte 6.13 62.23 66.60 68.28 69.06 0.20
Relative(%) 251.89 2558.96 2738.57, 2807.57 2839.64 8.06

Table 5. Average Performance of Centroid Methods on the Parameter
'ProChmEndPtChanC', with the DBA as Preset Centroid

Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic
(y=0.001) (y=0.01) (y=0.1) (y=0.1) (Win. Mean) Men) (Median)

Mean)
Index Mean DTW Distance

20 Abosulte 34095.20 34538.57 34530.38 34575.07 34812.51 75229.10' 74963.80' 68661.57

Size 20 Relative(%) 100.00 101.30 101.28 101.41 102.10 220.64 219.87 201.38
so Abosulte 48194.69 47219.99 47617.98 47616.13- 47345.40 76358.67 73359.75 71756.93

Relative(%) 141.35 138.49 139.66' 139.66 138.86 223.96 215.16 210.46
Index Mean SBD

20 Abosulte 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

Size Relative(%) 100.00 102.88 103.00 102.90 102.87 43.67 43.73 49.01
Abosulte 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.0050 1. 1 -, 7
Relative(%) 100.72 106.35 106.99 106.35 106.25 47.59 47.57 53.47

Index Calcualtion Time(s)

20 Abosulte 2.44' 15.99' 16.62 17.10! 18.18 0.18
Relative(%) 100.00 654.17 679.95 699.84 743.70 7.28

50 Abosulte 6.25 39.99 41.43 41.88 44.17 0.18
Relative(%) 255.73 1636.33 1695.34 1713.42 1807.20 7.53
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Table 6. Average Performance of Centroid Methods on the Parameter 'BotRFRevPwr',
with Arithmetic the DBA as Preset Centroid

Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic
(y=0.001) (y=0.01) (y=0.1) (y=0.1) (Win. Mean) Men) (Median)

Mean)
Index Mean DTW Distance

20 Abosulte 156.04 163.11 165.76' 171.11' 167.95' 327.47 336.60 253.77
Relative(%) 100.00' 104.54 106.23 109.66 107.63 209.86 215.72 162.64Size A bosulte 170.08 178.60 181.21 188.05 191.96 331.72 344.49 280.8950
Relative(%) 109.00 114.46 116.13 120.52 123.02 212.59 220.77 180.01

index Mean SBD

20 Abosulte 0.12 0.12 0.12' 0.12 0.13' 0.09' 0.09' 0.11
Relative(%) 100.00 101.01 101.83 102.59 104.73 75.47 76.00 89.73
Abosulte 0.16 0.15 0.15 0.16' 0.16 0.13 0.131 0.1450 Relative(%) 128.56 127.35 127.861 128.51 129.73 103.50 104.68 119.49

Index Calcualtion Time(s)

20 Abosulte 2.41 25.06 27.24' 27.78o 27.97 0.17
Relative(%) 100.00 1038.11 1128.33 1150.87 1158.66 6.88Size '''''02

50 Abosulte 6.07 62.40 66.26 67.07 67.98 0.20
Relative(%) 251.37 2584.76 2744.99 2778.38 2816.24 8.12

Initially improvements with the use of preset centroid is checked. Figure 20 and 21 indicate

the improvement of mean DTW distance and calculation time. In the abbreviated form, the legend

in each figure shows the following information: 'P5' and 'P 19' indicates the parameter name, with

the 'P5' for the 'BotRFRevPwr' and the 'P19' for the 'ProChmEndPtChanC'; '20/50'

indicates the sample size; 'Median' indicates the preset centroid is built on arithmetic median

method, and 'DBA' indicates it is built on the DBA.
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Improvement on the DTW Distance with Preset Centroids
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Figure 20. Improvement on the DTW Distance with Preset Centroids for Soft-DTW
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Improvement on the Time with Preset Centroids
Soft-dtw Soft-dtw Soft-dtw Soft-dtw
(y=0.001) (y=0.01) (y=0.1) (y=1)
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* P5,20,Median 0 P5,50,Median 0 P5,20,DBA m P5,50,DBA

Figure 21. Improvement on the Time with Preset Centroids for Soft-DTW

In most cases, the introduction of a preset centroid helps improve the soft-DTW-based centroid

method's quality, in terms of both the mean DTW distance and the calculation time. Overall the

DBA preset centroid delivers shorter DTW distances than the preset arithmetic median centroid,

thus making the soft-DTW-based centroid more accurate. It makes the soft-DTW method

outperform the DBA method in terms of the mean DTW distance for sample size of 50 in both

parameters, except for the parameter 'BotRFRevPwr' with y of 1, as shown in Table 5 and 6.

While the preset centroid generally shortens soft-DTW-based centroid mehtod's calculation time

by around 5%, the total calculation time is still quite long compared to that of the DBA. The

extreme time elongation for the case of P5 and sample size of 20 are related to the overloaded

computer used at that time and hints at the performance instability of the preset method for small
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sample sizes. Overall, the mean DTW improvement is within 5%, which is quite limited and

expensive considering the much longer calculation time that the soft-DTW method needs.

Improvement on the Mean SBD with Preset Centroids
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* P19,20,Median E P19,50,Median N P19,20,DBA * P19,50,DBA
* P5,20,Median N P5,50,Median _ P5,20,DBA E P5,50,DBA

Figure 22. Improvement on the Mean SBD with Preset Centroids for Soft-DTW

In addition, whether the preset centroid helps improve the mean SBD for the soft-DTW-based

centroid is tested, with results shown in Figure 22. It shows no strong relation between the

improvement in the SBD and the preset method used.

As a result, the soft-DTW-based centroid does not outperform other centroid building methods

for the plasma etching process considered in the thesis in a meaningful way. In view of the

advantageous mean DTW distance using the DBA, ways to further upgrade the DBA performance

and reduce its calculation time are further discussed in the following section.
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4.2 Improvements on the DBA Method

In Section 4.1 the DBA method is found to be the best behaved centroid building method after

comprehensive evaluations. Further improvements are introduced in this section to further

improve it. Section 4.2.1 discusses the possibility of applying preset arithmetic median method to

optimize its accuracy and calculation time. Section 4.2.2 discusses whether the window constraint

reduces calculation time substantially with acceptable losses on accuracy. Finally, Section 4.2.3

considers the situation where new time series are added into the sample and discusses whether the

innovative recalculation method by combining previous centroids and new series can reduce

recalculation time without great losses on accuracy.

4.2.1 Preset Arithmetic Median Centroid

The preset arithmetic median centroid can be one of the possible solutions to improve the DBA

method. Since the arithmetic median method uses much less calculation time than the DBA method,

it could be a meaningful improvement if the preset centroid effectively reduces the DBA centroid's

mean DTW distance from the time series it builds upon, while requiring negligible extra

calculation time. Therefore related tests are made similar to what has been done on the soft-DTW-

based methods, and the results are shown in Figures 23 and 24.
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Improvement on the mean DTW Distance with Preset Centroids for DBA
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Figure 23. Improvement on the DTW Distance with Preset Centroids for the DBA Method
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Results point out that there is no strong correlation between improvement on the mean DTW

distance and a preset arithmetic median centroid. Overall, the preset median centroid reduces the

total calculation time that the DBA method spends slightly (less than 5%). The two negative

improvement data points in Figure 24 are not caused by the preset centroid. Similar to the longer

time of soft-DTW calculation shown in Figure 22, the longer calculation time is related to the DBA

calculation delays because of the overloaded computer. With limited improvement in calculation

time and uncertain influence on the mean DTW distance, a preset arithmetic median centroid does

not bring significant improvement on the DBA performance.

4.2.2 Window Constraint

As discussed in Section 2.1, the DTW creates a warping path between the query and inference

time series to minimize the distance. Without any constraint, an m-by-n distance matrix is created

for the two time series with lengths of m and n respectively and then an optimized path is created

considering all the possibilities of matching the two time series. However, this creates high

computational complexity. However, in most cases, not all elements in the distance matrix need to

be used. In this way a global DTW warping constraint, the window constraint, is introduced that

constrains the warping path to be considered for a DTW. Figure 25 is an example of the window-

constraint DTW. The warping path does not consider red elements and the entire warping path is

within [(i, j-w), (i, j+w)] for all (ij) points along the diagonal. Here w is the window size, normally

set as 10% of the series length. Sometimes a smaller window size even produces a better

result [22].

55



0

4*4

2 4 6 610

Qiry aSMN".10

Figure 25. The Window-Constrained Warping Path, with Red Elements not Considered in the
DTW [7]

A test of the effect of the window size on the DBA centroid's mean DTW distance and

calculation time is made on time series of the parameter 'BotRFRevPwr', with sample sizes of

20 and 50 and window sizes of 5%, 10%, 20% and 30% of the series lengths. The results are

compared with those from the unconstrained DBA, as shown in Figure 26 and 27. The original

data is listed in Appendix Table A.7, and the average performance is shown in Table 7. Again,

the green texts indicate that the method outperforms the unconstrained DBA method.

It is seen that overall with a 20% window size of the series length, calculation time is reduced

by over 15%, and the increase in the mean DTW distance is within 5%. The reduction on the

centroid accuracy is small compared with the significant benefit of calculation time savings.

Therefore a choice of 20% window size is the suggested setting for calculation time saving.
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DTW Distance Increase for the Window-Constrained DBA
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Figure 26. Mean DTW Distance Increase for the Window-Constrained DBA
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Figure 27. Time Reduction for the Window-constrained DBA
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Table 7. Average Performance of Window-constrained DBA on the Parameter
'BotRF RevPwr'

Method DBA- DBA- DBA- DBA- Arithmetic
DBA Window Window Window Window AinhMean) (Untr. AMeic

(5%) (10%) (20%) (30%) Mean)
Index Mean DTW Distance

20 Abosulte 152.97 171.31 157.36 159.46 156.39 327.47 336.60 253.77

Size Relative(%) 100.00 111.99 102.87 104.24 102.23 214.07 220.04 165.89

Abosulte 169.72 190.23 189.82 174.52 171.41 331.72 344.49 280.89
Relative(%) 110.95 124.35 124.08 114.08 112.05 216.85 225.19 183.62

Index Calcualtion Time(s)

20 Abosulte 2.45 1.91 1.9 3  1.96' 2.04 0.17
Relative(%) 100.00 78.12 78.78' 80.08 83.27 6.78

SieAbosulte 6.10 4.96 4.99 5.10' 5.29 0.20
Relative(%) 248.90 202.29 203.59 208.16 216.00 8.00

4.2.3 Recalculation with New Data

During an ongoing manufacturing process, it is normal to add new time series data and seek

to update centroids. Since the centroid building method is computationally expensive, it is worth

checking the feasibility of updating the centroid by combining the previous centroid and the new

time series data.

Given a set of randomly picked 200 time series datasets for the parameter 'BotRFRevPwr',

150 datasets randomly picked and classified as the "previous datasets" and others as the "new

datasets." A centroid is initially calculated based upon all 200 individual sets of data. The method

is defined as the "complete recalculation." Then the centroid of these 200 datasets is calculated by

a combination of centroid and individual datasets, where the centroid is calculated based upon the

previous datasets and individual datasets are those 50 new datasets. Each individual dataset is

given a weight of 1 and the centroid is given a weight equal to the quantity of datasets it is built

up with. This method is defined as the "reconstructed calculation."
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Table 8. Comparison between Recalculation Methods

Method Complete Recalculation Reconstructed Calculation

Mean
253.57 240.59

DTW
Time 19.83 11.97

(s)

The average result is shown in Table 8 with comparisons of mean DTW distance between the

centroid and the individual time series, as well as the calculation time. On average, the calculation

time is reduced by 39.62% and the mean DTW distance is also reduced by 5.12%. The result points

out that the reconstructed calculation method not only reduces calculation time substantially, but

also improves accuracy and representativeness of the centroid. Therefore, when adding new time

series data, the reconstructed calculation method that uses weighted previous centroid is preferred.

4.3 Conclusion on Centroid Building

Based upon complete comparisons among the arithmetic, DBA, and soft-DTW-based centroid

building methods, the DBA method is believed to be the most appropriate for the plasma etching

case in the thesis. It keeps the mean DTW distance much lower than the arithmetic methods,

beneficial to clustering and other operations. It has appropriate and acceptable calculation time

compared with the soft-DTW-based centroid building method. Although the soft-DTW centroid is

claimed to be smoother with better shape quality, the mean SBD result indicates that it is not

obviously better than the DBA. Preset centroids cannot help it improve effectively, either. With

the help of window size (preferably 20% of the series length) and efficient recalculation method
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combining the latest centroid and new datasets, the DBA's efficiency is further improved, and thus

the DBA method is suggested for use in building centroids for both online and offline references.

4.4 k-shape Clustering

k-shape clustering is applied to the plasma etching case and compared with the currently

mainstream partitional clustering method, k-means. They have similar algorithms: both iteratively

calculate the distance, assign the time series to the closet centroid and then recalculate the centroid

based upon the time series it is assigned to. The difference is that the k-shape uses the SBD and

the shape extraction to calculate distances and build centroids, while the k-means uses the DTW

distance and the arithmetic mean method instead. The data is a mixture of 341

'ProChmEndPtChanC' time series data, as shown in Figure 28. The good series are listed in

Figure 3 in Chapter 1. The k-shape clustering is tested whether it can extract all of the 60 good

series effectively and efficiently.
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Figure 28. Mixture of 341 'ProChm_ EndPt_ChanC'
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Too few or too many clusters cannot distinguish the time series homogenously and

well- separated. Since a preset number of clusters is required for the partitional method, an

equation is added into the code to automatically optimize the quantity of the cluster and make the

entire clustering algorithm more automatic. Within the clustering method, the summed square SBD

between the time series and their centroids keeps dropping with the increased quantity of clusters.

At some time the summed square SBD will be stable within a limited range. When first

approaching this range, the second derivative of the summed square SBD with respect to the

quantity of clusters turns positive and this "elbow point" is chosen as the optimized cluster quantity.

The elbow point is marked in Figure 29 and the optimized quantity of clusters should be 4 for this

case. The derivatives are also shown in Table 9.

Summed Square SBD vs. Num. of Clusters for the k-shape
Method
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Figure 29. Summed Square SBD vs. Quantity of Clusters for the k-shape Clustering
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Table 9. Derivatives of the Summed Square SBD
Clustering

vs. Quantity of Clusters for the k-shape

Num. of Clusters 2 3 4 5 6
Summed Square 0.375 0.321 0.093 0.091 0.089

SBD
1st Derivative -0.054 -0.141 -0.115 -0.002 N/A

2nd Derivative N/A -0.031 0.070 N/A N/A

The operation is performed from 2 to 6 clusters to identity the elbow point, with a total

calculation time of 523.63s. The result is shown in Figure 30, where the vertical axis unit is the

normalized unit since the datasets need to be z-normalized before clustering. Black dashed and red

thinned lines are the centroids for each cluster. The cluster sizes are 60, 100, 173 and 8,

respectively.
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Figure 30. Result of the 4-cluster k-shape Clustering on the 341 'ProChmEndPtChanC'
Time Series
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The normal shape is shown in Figure 3 in Chapter 1. It is seen that clearly all 60 normal

cycles are clustered into the first cluster, and others are filtered into three other clusters. In

comparison, the k-means clustering is applied. However, due to the extremely long process time,

the test is terminated with only the results of 2 and 3 clusters. The 2-cluster clustering requires

143.97s and 3-cluster clustering requires as long as 7065.41s. The 3-cluster works better, with 59

normal cycles distinguished, and results are shown in Figure 31. Quantitative comparisons are

shown in Tables 10 through 12.
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Figure 31. Result of the 3-cluster k-means Clustering on the 341 'ProChmEndPtChanC'
Time Series
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Table 10. Confusion Matrix of k-shape on the 341 'ProChm_EndPtChanC' Time Series

Actual
Anomaly Non-anomaly

Predicted Anomaly 60 0
Non-anomaly 0 281

Table 11. Confusion Matrix of 3-Cluster k-means on the 341 'ProChmEndPt ChanC' Time
Series

Actual
Anomal Non-anomaly

Predicted Anomaly 59 0
Non-anomaly 1 281

Table 12. Comparison of k-shape and k-means Performance on the 341
'ProChmEndPt_ChanC' Time Series

Method k-shape k-means
Precision 1 1

Recall 1 0.983
F1  1 0.992

Calculation Time(s) 523.63 >7209.38

Results show that the k-shape clustering method gets more accurate results with substantially

shorter calculation time in the plasma etching case. The shorter time should be related to the time

savings from using the SBD calculation rather than the DTW distance. However, since time series

are locally z-normalized before clustering for the k-shape method, the method is effective for data

not volatile in scales, and further tests should be made to test the applicability of the k-shape

method for other semiconductor production monitoring cases.
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5. Conclusion

Comprehensive conclusions are made in this chapter from the perspective of the centroid

building method and the clustering methods themselves, the value brought to ADI, and finally

recommendations for future experiments and improvements.

5.1 Suggested Centroid Building Method

The three centroid building methods, arithmetic, DBA, and soft-DTW, are compared in terms

of accuracy and calculation time. The accuracy is evaluated through two indices, the mean DTW

distance between the centroid and the time series it is built on, as well as the mean SBD. The

former is a quantitative distance-measurement parameter and the latter indicates the average

similarity between the centroid and the time series it is built upon. Overall, the DBA outperforms

the arithmetic method with a much better mean DTW distance, and outperforms the soft-DTW

with a much shorter calculation time and a shorter mean DTW distance. The arithmetic method

outperforms the other two methods on the mean SBD, and all three methods perform well in terms

of the shape similarity. Considering the overall performance, the DBA method is chosen as the

recommended centroid building method.

Further optimizations are made on the DBA method. With the window size set to 20% of the

time series length, fewer warped paths are considered so that calculation time is substantially

shortened, with a modest mean DTW distance loss within 5%. Considering the case when new

datasets are added, two recalculation methods are compared, the complete recalculation and the

reconstructed recalculation. The former updates the centroid based upon all datasets individually,

while the latter reconstructs the centroid by combining the previous centroid and new datasets. The
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result prefers the reconstructed method, since it reduces calculation time by 39.62% with a mean

DTW distance improvement of 5.12% relative to the "complete recalculation" method.

5.2 K-shape Clustering

A novel clustering method, k-shape clustering, is explored in this thesis. It is a partitional

method based upon the SBD and the shape extraction to iteratively reassign datasets and rebuild

centroids. Datasets are z-normalized locally first before clustering. The clustering of the mixture

of 341 'ProChmEndPtChanC' datasets are performed with the k-shape clustering method and

compared with the k-means method. The result indicates that a number of 4 clusters create the

optimal result for the k-shape clustering method. On top of that, the k-shape clustering method

outperforms the k-means method, particularly with respect to the calculation time.

5.3 Value to ADI

An accurate and representative centroid plays an important role in ADI's online and offline

anomaly detections. For online detections where anomalies are detected automatically, the centroid

is the basis of clustering that determines clustering accuracy. With more accurate centroids, both

possibilities of false alarms and missed anomalies are reduced. With an assumption that the

majority of datasets are normal, centroid buildings and following anomaly detections can be

operated automatically.

For the offline detection where process engineers extract the data and make related analysis

individually or collaboratively, currently centroids are mainly made by rules of thumb. It is hard

to build a centroid considering the phase dislocations between time series. Such manually built
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centroids reduce not only judgment accuracy and consistency, but also efficiency, particularly for

the case where engineers discuss issues with diverse centroids in their minds. A quantitively and

qualitatively accurate centroid built by the optimized DBA method introduced in this thesis

facilitates engineers making accurate and consistent judgements efficiently. The improvements on

the DBA centroid building with the help of window size and reconstructed recalculation further

improves the anomaly detection efficiency both offline and online.

The k-shape clustering method is an accurate and efficient method which could be practical

in anomaly detection and classifications for scale-stable univariate single-recipe process analysis.

With time series data updated and primary parameters to consider reselected, the centroid

building and clustering methods discussed in this thesis could be applied to other recipes and

processes flexibly.

5.4 Recommendations

Further tests and extensions can be made to further improve the method quality. Tests can be

made on larger sample sizes, and on different parameters, recipes and processes, in order to make

related adjustments and optimizations. The current demonstration is mainly based on the univariate

analysis. Since the DBA supports multivariate analysis, further evaluations can be made on

multiple process parameters of the time series to consider take interdependent influence of

parameters into account. The k-shape clustering method can be further tested and evaluated on

univariate analysis, especially for the case where scales differ volatilely. On top of that, the

influence of optimized centroids on the clustering and neural network models that T. Chen and 0.

Makhlouk work on [3, 4] can be further tested and discussed.
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Appendix

Table A. 1. Centroid Performance of the 'ProChmEndPtChanC', without Preset Centroids

Parameter ProChmEndPtChanC
Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic

DBA (y=0.001) (y=0.01) (y=0.1) (y=0.1) (Win. Mean) (Untr. Mean) (Median)

Index Mean DTW Distance

1 58615.56 131328.48 80674.87 80068.23 100106.48, 95697.09 86107.37 94395.96
2 31014.48 39811.14 35560.97 36687.23 37833.05 65952.12 76312.55 63519.5

SampleSae Group 3 48820.57 87318.62 83713.12 75510.86 268807.56 145882.78 142461.7 134257.02
4 24097.12 43312.76 41302.31 25759.39 24193.1 48528.2 48177.83 33726.34
5 14829.94 15169.96 16175.38 15026.58 14945.7 20085.32 21759.56 17409.04
1 67769.09 100827.69 85359.46 80977.33 79741.82 111995.32 107064.83 97626.38
2 42666.46 55801.82 56687.34 87691.77 75042.69 68549.84 68617.38 72983.55

Sae Group 3 21388.78 24143.01 27675.07 23387.52 27547.74 37306.84 37249.46 33578.82
4 73021.7 133222.69 99570.32 101899.76 89534.97 123816 115157.89 116080.94
5 22375.65 32577.46 31464.61 28049.31 31778.82 40125.34 38709.19 38514.97

Index Mean SBD

1 5.353E-03 5.829E-03 5.728E-03 4.197E-03 4.081E-03 3.062E-03 3.061E-03 3.357E-03
2 8.911E-03 6.447E-03 9.209E-03 6.686E-03 7.093E-03 4.720E-03 4.741E-03 5.610E-03

Sae Group 3 9.790E-03 6.351E-03 5.456E-03 7.722E-03 4.478E-03 2.421E-03 2.442E-03 2.568E-03
4 6.312E-03 1.513E-02 1.136E-02 6.944E-03 1.067E-02 5.136E-03 5.132E-03 5.639E-03
5 7.139E-03 4.407E-03 7.262E-03 7.272E-03 9.590E-03 3.605E-03 3.591E-03 4.087E-03
1 1.419E-02 8.493E-03 6.308E-03 7.410E-03 1.276E-02 4.500E-03 4.505E-03 5.108E-03
2 1.273E-02 7.106E-03 1.379E-02 1.329E-02 7.339E-03 4.571E-03 4.568E-03 5.139E-03

Sae Group 3 4.778E-03 5.966E-03 6.938E-03 5.431E-03 5.799E-03 3.842E-03 3.832E-03 4.398E-03
4 1.511E-02 7.730E-03 1.360E-02 7.991E-03 6.023E-03 3.764E-03 3.762E-03 4.021E-03
5 6.506E-03 6.267E-03 9.010E-03 7.860E-03 1.053E-02 3.966E-03 3.968E-03 4.526E-03

Index Calcualtion Time(s)

1 2.53 15.89 16.1 17.12 17.45 0.17

Sample 2 2.56 15.89 16.2 17.77 18.34 0.17

Size(10) Group 3 2.53 16.56 17.72 17.68 17.42 0.17
4 2.6 17.4 17.6 18.13 18.87 0.18
5 2.79 16.86 17.41 18.92 18.19; 0.19
1 6.31 39.2 41.08 41.16 42.01 0.19
2 6.31 39.86 41.46 44.53; 42.25 0.19

Sae Group 3 6.3 39.37 41.25 41.75 42.94 0.19
4 6.17 39.28 40.43 40.75 41.97 0.18
5 6.52 45.08 43.92! 44.09 45.77 0.18
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Table A.2. Centroid Performance of the 'BotRFRevPwr', without Preset Centroids

Parameter Bot_RF_RevPwr
Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic

DBA (y=0.001) (y=0.01) (y=O.1) (y=O.1) (Win. Mean) (Untr. Mean) (Median)

Index Mean DTW Distance

1 167.99 316.76 359.79 336.12 318.45 386.44 389.95 311.81
2 120.51 130.66 130.82 188.81 125.97 262.75 276.59 199.75

Se Group 3 221.06 366.21 452.66 319.28 351.90 472.74 483.28 362.61Size(20) Gru
4 147.52 201.32 223.40 166.74 169.56 321.65 327.46 250.95

5 121.95 140.12 135.23 129.95 123.51 193.76 205.73 143.75

1 181.79 270.35 219.35 278.55 278.69 363.86 376.48 296.87

Sample 2 181.36 220.56 200.87 246.44 227.52 360.01 374.89 319.15
Se Group 3 170.90 262.31 207.40 192.29 162.24 329.53 354.88 265.19
Size(50) Gru

4 158.69 188.49 161.97 192.25. 187.62 270.65 267.62 241.86

5 161.55 191.69 203.64 215.94 201.43 334.56 348.55 281.38

Index SBD

1 0.122 0.139 0.138 0.139 0.137 0.075 0.075 0.088

2 0.117 0.131 0.132 0.131 0.145 0.093 0.095 0.108

Size(20) Group 3 0.140 0.137 0.137 0.137 0.142 0.107 0.106 0.146
4 0.126 0.116 0.117 0.117 0.111 0.117 0.118 0.137

5 0.066 0.066 0.068 0.068 0.072 0.064 0.065 0.064

1 0.148 0.205 0.207 0.211 0.219 0.121 0.122 0.134

Sample 2 0.164 0.155 0.152 0.151 0.155 0.126 0.127 0.146

Size(50) Group 3 0.593 0.211 0.208 0.207 0.209 0.172 0.175 0.209
4 0.081 0.082 0.083 0.082 0.082 0.077 0.078 0.082
5 0.149 0.151 0.151 0.149 0.150 0.130 0.132 0.153

Index Calcualtion Time(s)

1 1.4 15.38 14.28 14.33 14.72 0.15
2 1.14 12.81 13.11 13.25 14.72 0.17

Sae Group 3 2.47 25.35 27.76 27.36 28.03 0.19

4 2.69 30.03 30.41 30.37 30.55 0.17

5 2.66 27.17 29.72 30.15 32.91 0.15

1 6.41 64.64 68.44 68.08 69.79 0.2

2 6.69 69.89 69.79 71.91 72.81 0.18
Sample Group 3 6.4 71.07 70.28 74.75 71.22 0.21

4 6.52 65 71.22 68.18 70.61 0.2

5 6.39 64.86 67.53 68.09 71.99 0.19
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Table A.3. Centroid Performance of the 'ProChmEndPtChanC', with the Arithmetic
Median as the Preset Centroid

Parameter ProChmEndPtChanC
Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic

DBA (y=0.001) (y=0.01) (y=0.1) (y=0.1) (Win. Mean) (Untr. Mean) (Median)

Index Mean DTW Distance

1 64929.66 78368.31 71707.35 86256.39 84085.95 95697.09 86107.37 94395.96
2 30910.87 39148.87 39551.56 41903.54 37277.87 65952.12 76312.55 63519.5

Se Group 3 42646.49 84792.87 73022.8 68538.12 65240.5 145882.78 142461.7 134257.02
Size(20) Gru

4 19271.59 25235.83. 22178.2 22972.06 23081.35 48528.2 48177.83 33726.34
5 14215.63 14903.3 14874.81 14795 15054.76 20085.32 21759.56 17409.04

1 65909.54 80881.56 73344.89 72323.351 70788.57 111995.32 107064.83 97626.38

Sample 2 53224.23 59924.12 59321.99 59295.12 58523.28 68549.84 68617.38 72983.55

Size(50) Group 3 21472.35 23324.89 23566.05 23486.34 23248.87 37306.84 37249.46 33578.82
4 72864.8 86848.14 91161.15 88077.85 92620.12 123816 115157.89 116080.94
5 21615.57 26141.3 27206.87 28408.64 26682.37 40125.34 38709.19 38514.97

Index Mean SBD

1 4.055E-03 3.554E-03 3.450E-03 4.318E-03 3.974E-03 3.062E-03 3.061E-03 3.357E-03
2 6.760E-03 6.202E-03 6.341E-03 6.421E-03 6.396E-03 4.720E-03 4.741E-03 5.610E-03

Se Group 3 5.875E-03 3.902E-03 4.179E-03 4.311E-03 4.760E-03 2.421E-03 2.442E-03 2.568E-03
Size(20) Gru

4 6.163E-03 5.743E-03 5.740E-03 5.767E-03 5.770E-03 5.136E-03 5.132E-03 5.639E-03
5 4.219E-03 4.131E-03 4.135E-03. 4.130E-03 4.118E-03 3.605E-03 3.591E-03 4.087E-03
1 8.574E-03 7.274E-03 8.089E-03 7.925E-03: 7.610E-03 4.500E-03 4.505E-03 5.108E-03
2 5.356E-03 5.426E-03 5.348E-03 5.372E-03 5.355E-03 4.571E-03 4.568E-03 5.139E-03

Se Group 3 4.630E-03 4.673E-03 4.669E-03 4.676E-03 4.663E-03 3.842E-03 3.832E-03 4.398E-03
4 5.932E-03 5.219E-03 5.839E-03 5.280E-03 5.914E-03 3.764E-03 3.762E-03 4.021E-03
5 4.856E-03 4.568E-03 4.549E-03. 4.581E-03 4.524E-03 3.966E-03 3.968E-03 4.526E-03

Index Calcualtion Time(s)

1 2.49 15.78 16.11 16.52 17.34 0.17

Sample 2 2.32 15.35 15.98 16.66 17.36 0.18

Size(20) Group 3 2.38 15.59 16.38 17 17.2 0.17
4 2.54 16.63 18.29 18.04 18.09 0.18

5 2.45 15.82 16.23 17.05 17.64 0.17
1 6.26 40.9 42.79 42.79 44.25 0.19

2 6.57 42.68 44.66 42.47 43.59 0.2

Size(50) Group 3 6.54 41.39 45.15 44.11 44.85 0.19
4 6.47 41.65 44.19 43.5 44.83 0.19
5 6.25 40.24 41.73 41.61, 47.52 0.21
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Table A.4. Centroid Performance of the 'BotRFRevPwr', with the Arithmetic Median as
the Preset Centroid

BotRFRevPwr
Soft-dtw Soft-dtw Soft-dtw Soft-dtw

DBA (y=0.001) (y=0.01) (y=0.1) (y=0.1)

Mean DTW Distance

Arithmetic Arithmetic Arithmetic
(Win. Mean) (Untr. Mean) (Median)

240.4125 252.67
144.0133 154.7286

245.582 274.4279
173.0567 167.7131
190.7695 184.3533

239.017 245.2013
239.7266 218.4103

219.066 181.5471
181.8727 187.5194
186.2927 184.0695

Mean SBD

0.139
0.131
0.137
0.117'
0.068
0.211
0.151
0.207
0.082
0.149'

0.137
0.145
0.142
0.111
0.072
0.219
0.155
0.209
0.082
0.150

Calcualtion Time(s)

31.16
27.51

27.53
29.08
28.22
67.34
68.11
71.05!
68.79'
66.11,

28.78
27.47

28.5
29.13
29.22
67.68
72.06
68.15"
70.67
66.74,

Parameter
Method

Index

Group
Sample
Size(20)

Sample
Size(50)

168.1317
130.288

202.9497
145.9281
161.3786_
188.8292
177.7011
167.5353
153.9625
158.8994

Group

225.5783
142.8848
259.4248

158.223
186.557

240.3366
238.4747
207.3496
175.1082
207.4555

231.2395
146.4394
261.9103
156.2988
177.7784
235.3826
245.4393
213.8141
179.0958
211.0785

Index

389.9541
276.5872
483.2808
327.4646
205.7322
376.4825
374.8913
354.8758

267.623
348.5527

311.8083
199.7517
362.6097
250.9507
143.7536
296.8668
319.1509
265.1896
241.8604
281.3806

Sample
Size(20)

Sample
Size(50)

Group

Group

386.4423
262.7486
472.7362
321.6545
193.7552
363.8622
360.0056
329.5268'
270.6501
334.5623

0.075
0.093
0.107
0.117
0.064
0.121
0.126
0.172
0.077
0.130

Index

0.122
0.117
0.140
0.126
0.066
0.148
0.164.
0.593
0.081
0.149

2.42
2.38
2.39.

2.5
2.47
6.04.
6.26
6.17

6.1
6.06,

0.075
0.095
0.106
0.118
0.065
0.122
0.127
0.175
0.078
0.132

Group

0.139
0.131
0.137
0.116
0.066
0.205
0.155
0.211
0.082
0.151

24.43
24.69
25.67
26.24
24.08
61.01
61.24
63.08
61.96
63.88

0.088
0.108
0.146
0.137
0.064
0.134
0.146
0.209
0.082
0.153

0.138,
0.132
0.137'
0.117
0.068
0.207
0.152
0.208
0.083
0.151

28.04
27.19'
27.31

29
26.2

66.72
67.17
67.67

65.4:

66.05

Sample
Size(20)

Sample
Size(50)

1
2
3
4
5
1
2
3
4
5

Group

0.15
0.17
0.19
0.17
0.15
0.2

0.18
0.21
0.2

0.19
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Table A.5. Centroid Performance of the 'ProChmEndPtChanC', with the DBA as the
Preset Centroid

Parameter ProChmEndPtChanC
Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic

DBA (y=0.001) (y=0.01) (y=O.1) (y=0.1) (Win. Mean) (Untr. Mean) (Median)

Index Mean DTW Distance

1 58615.56 58980.13 58694.75 58697.93 59031.31 95697.09 86107.37 94395.96

Sample 2 32582.24 34243.79 34800.71 34958.19 35208.78 65952.12 76312.55 63519.5

Size(20) Group 3 39733.92 40724.39 40420.47 40469.6 40558.68 145882.78 142461.7 134257.02
4 24854.68 24291.07 24253.59 24106.42 24716.93 48528.2 48177.83 33726.34
5 14689.61 14453.48 14482.37 14643.23 14546.87 20085.32 21759.56 17409.04
1 73121.68 70231.38 70277.62 70369.59 69803.42 111995.32 107064.83 97626.38
2 53702.89 53637.27 54151.67 53745.79 53703.04 68549.84 68617.38 72983.55

Se Group 3 22685.54 20844.06 20902.44 20764.96 20872.06 37306.84 37249.46 33578.82Size(50) Gru
4 70314.47 70089.61 71594.45 71609.73 70975.63 123816 115157.89 116080.94
5 21148.86 21297.62 21163.72 21590.56 21372.85 40125.34 38709.19 38514.97

Index Mean SBD

1 0.012 0.012 0.012 0.012 0.012 0.003 0.003 0.003

Sample 2 0.008 0.009 0.009 0.009 0.009 0.005 0.005 0.006

Size(20) Group 3 0.008 0.009 0.009 0.009 0.009 0.002 0.002 0.003
4 0.009 0.009 0.009 0.009 0.009 0.005 0.005 0.006
5 0.007 0.007 0.007 0.007 0.007 0.004 0.004 0.004
1 0.011 0.011 0.011 0.011 0.011 0.005 0.005 0.005
2 0.008 0.008 0.009 0.008 0.009 0.005 0.005 0.005

Se Group 3 0.006 0.006 0.006 0.006 0.006 0.004 0.004 0.004Size(50) Gru
4 0.012 0.014 0.014 0.014 0.014 0.004 0.004 0.004
5 0.007 0.007 0.007, 0.0071 0.007 0.004 0.004 0.005

Index Calcualtion Time(s)

1 2.45 16.31 16.28 16.52 18.26 0.19

Sample 2 2.34 15.38 16.48 16.89 17.3 0.18

Size(20) Group 3 24S 15.91 16.34 17.08 18.08 0.17
4 2.5 16.25 16.91 17.7 19.05 0.18
5 2.48 16.09 17.08 17.33, 18.19 0.17
1 6.25 40.64 41.42 41.86 43.81 0.19
2 6.35 40.64 41.419 42.14 45.99 0.18

Group 3 6.32 39.67 41.58 42.06 43.84 0.17
4 6.21 40.24 42.01 41.57 43.2 0.19
5 6.12 38.77 40.741 41.75 44 0.19
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Table A.6. Centroid Performance of the 'BotRF RevPwr', with the DBA as the Preset
Centroid

Parameter BotRF RevPwr
Method Soft-dtw Soft-dtw Soft-dtw Soft-dtw Arithmetic Arithmetic Arithmetic

DBA (y=0.001) (y=0.01) (y=0.1) (y=0.1) (Win. Mean) (Untr. Mean) (Median)

Index Mean DTW Distance

1 175.8923 178.0444 182.0747 194.264 201.3757 386.4423 389.9541 311.8083

Sample 2 128.3601 142.319 143.4397 148.6287 129.3902 262.7486 276.5872 199.7517

Size(20) Group 3 207.1175 205.893 210.5131 218.8455 220.4146 472.7362 483.2808 362.6097
4 154.3825 159.0656 165.4264 168.1156 164.1243 321.6545 327.4646 250.9507
5 114.4398 130.2523 127.3323 125.6956 124.4242 193.7552 205.7322 143.7536
1 167.8156 171.1952 177.5469 189.2493 202.2118 363.8622 376.4825 296.8668

Sample 2 202.0836 227.5745 218.2022 221.5763 212.333 360.0056 374.8913 319.1509
Size(50) Group 3 155.8517 159.5098 164.4968 169.5233 173.173 329.5268 354.8758 265.1896

4 152.6304 150.9018 155.2226 163.9295 175.9866 270.6501 267.623 241.8604
5 172.0321 183.8324 190.5995 195.9717 196.1019 334.5623 348.5527 281.3806

Index Mean SBD

1 0.12944657 0.12940956 0.12916514 0.12891086 0.13134067 0.074803 0.07467951 0.08762304
Sample 2 0.11702149 0.11564387 0.11609416 0.12009114 0.1313216 0.09291928 0.09547493 0.10831085
Size(20) Group 3 0.1686562 0.1619796 0.1634693 0.1614284 0.162182 0.1070259 0.106196 0.1461103

4 0.1184045 0.1309864 0.1355217 0.137243 0.1339568 0.1170676 0.1184105 0.1366777
5 0.07092605 0.07256962 0.07124534 0.07243803 0.07423446 0.06434794 0.06463911 0.06367104
1 0.1673809 0.1687019 0.1701285 0.1732039; 0.1764448 0.1205555 0.1221447 0.1335347

Sample 2 0.182465 0.1808778 0.1807327 0.1823362 0.1799542 0.1260516 0.1266255 0.1455341
Se Group 3 0.1926049 0.1897609 0.1908518 0.1900552 0.1926849 0.172049 0.1745466 0.2090131Size(50) Gru

4 0.07569581 0.07828798 0.07883781 0.07892478 0.07927705 0.07715668 0.07766332 0.08163696
5 0.1589673 0.152168 0.1522886 0.1522715 0.1557775 0.1298136 0.1317777 0.1525269

Index Calcualtion Time(s)

1 2.43 25.47 26.19 27.97 27.96 0.15
2 2.33 24.52 28 27.22 27.22 0.17

Sae Group 3. 2.38 25.19 26.78 27.36 27.54 0.19
4 2.46 25.73 28.16 28.72 28.87 0.17
5 2.47 24.39 27.06 27.64 28.26 0.15
1 6.06 62.69 65.7 66.83 67.58 0.2

Sample 2 6.17 62.84 67.06 68.56 69.17 0.18
Size(50) Group 3 6.11 62.34 67.05 67.63 67.85 0.21

4 6.03 61.72 65.85 65.7 67.85 0.2
5 5.97 62.39 65.66 66.63 67.47 0.19
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Table A.7. Centroid Performance of the 'BotRFRevPwr' for the Window-constrained
DBA Method

Bot_RFRevPwr

DBA-Window DBA-Window' DBA-Window DBA-Window Arithmetic Arithmetic Arithmetic
(5%) (10%) (20%) (30%) (Win. Mean) (Untr. Mean) (Median)

1 171.7428 201.0366
2 117.448 122.6109
3 207.2201 223.7718
4 148.1163 190.7557
5 120.3466 118.3772
1 196.3931 193.1199
2 169.0995 217.4585
3 153.8999 179.4992
4 156.3512 175.9906
5 172.8659 185.0846

2.53
2.43
2.37
2.48
2.44
6.04
6.29

6.1
6.05
6.01

1.97
1.89
1.88
1.94
1.89
4.98
5.02
4.96
4.93
4.89

Mean DTW Distance

189.448 182.0486 179.4103 386.4423
122.8082 115.5379 120.957 262.7486
187.4081 210.2734 197.982 472.7362
168.6705 174.6653 159.1926 321.6545
118.4575 114.758 124.3999 193.7552
209.9785 201.2656 183.2252 363.8622
198.1307 176.6663 187.1398 360.0056
189.5013 142.0013 165.3133 329.5268
164.9037 164.3046 159.6728 270.6501

186.569 188.3683 161.6852 334.5623

Calcualtion Time(s)

2
1.89

1.9
1.95
1.91
5.02
5.05
4.98
4.97
4.92'

1.96
2

1.91.
2

1.94
5.04

5.18
5.13
5.09
5.06

2.06
2

1.98
2.12
2.04
5.28
5.39
5.29
5.27
5.23

389.9541 311.8083
276.5872 199.7517
483.2808 362.6097
327.4646 250.9507
205.7322 143.7536
376.4825 296.8668
374.8913 319.1509
354.8758 265.1896

267.623 241.8604
348.5527 281.3806

0.15
0.17
0.19
0.17
0.15
0.2

0.18
0.21
0.2

0.19
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Index
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Size(20)

Sample
Size(50)

Group

Index

Group
Sample
Size(20)

Sample
Size(50)

Group

E

I


