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ABSTRACT

According to the World Health Organization, falls are the second leading cause of accidental or
unintentional injury deaths worldwide. In order to address this issue from a fall prevention
perspective, I began developing a footwear device to give feedback to the user on their walking.
In this iteration, I've identified characteristics to distinguish between shuffling and walking
strides for implementation in a threshold-based algorithm and the device created was effective in
making this distinction with a 74.65% accuracy and 73.17% sensitivity. The errors identified are
those common to threshold-based algorithms and can be corrected in future iterations with a
more sensitive threshold and stride detection method. Moving forward, the device can be
improved in order to be integrated into a feedback device for the intended user.

Thesis Supervisor: Leia Stirling

Tile: Charles Stark Draper Professor of Aeronautics and Astronautics
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1. Introduction
Walking, though commonplace, involves coordination and balance from different parts of the
body. When walking, people utilize several senses in order to correct themselves, adjusting stride,
pace, gait, and other characteristics to avoid obstacles, climb slopes, or simply keep moving
forward[1-3]. It is then no surprise that as humans get older, they have can have difficulties
walking whether that be through physical limitations or a reduced perception[4].

Around 28-35% of individuals aged 65 and over fall every year growing to around 32-42% for
those aged 70 and over [5]. According to the World Health Organization, falls are the second
leading cause of accidental or unintentional injury deaths worldwide [5], and more than one third
of elderly people fall once or more each year [6]. Fall detection allows for rapid response to such
events but the falls themselves can be fatal [7]. What constitutes a fall and its impact is well
documented; however, falls can be caused by a myriad of reasons from several different factors,
including but not limited to physical restrictions while walking, unnoticed obstacles, and a shift in
elevation on a flat or sloped surface.

Elderly adults typically have reduced control or significant risk factors, like muscle weakness or a
gait deficit, that contribute to difficulty lifting their feet when walking[8,9]. They may, for
example, shuffle, or drag, their feet across the floor when walking. In this scenario, thresholds,
rugs, or even an uneven slope in the floor can cause them to fall. In order to prevent these types of
falls, this project sought to design and analyze a shuffling detection device in order to give
feedback to users. With this feedback, elderly adults would be more aware of a walking habit that
puts them at risk of a fall and adjust appropriately.

In the process of creating and testing this device, questions regarding what it means to shuffle
one's feet as well as the most efficient way to give feedback to users were considered. A shuffle
was considered an incomplete walking stride or a stride forward that did not lift the feet fully off
of the ground. In some cases, shuffling is the manifestation of physical restrictions. However, this
device is seeking to address awareness in order to address shuffling that is the manifestation of
perception, like impaired eyesight or balance deficits, or confidence change.

The success of this device will be determined in how well it can distinguish between walking and
shuffling as well as how quickly and clearly it can display this information in a way that can be
easily understood.

2. Background
Modeling a similar project used to alert astronauts [10] who have limited vision and sensory
perception in their suits, I began developing a device to distinguish between shuffling and walking.
The aforementioned project utilized varying sensors to detect an obstacle and provide vibrotactile
and visual cues to the user. Two separate devices, augmented reality glasses and vibrotactile boots,
were used to provide feedback. Additionally, the boots held built-in sensors to detect objects,
including an inertial measurement unit to determine the orientation of the boot and neglect the
floor as an obstacle. This project provided a starting point for using an inertial measurement unit
to identify patterns present in measurable aspects of walking and receptive methods of feedback.
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When approaching the design of this device, background included motivation, fall detection, fall
analysis, and feedback of the analysis system.

2.1 Accidental Falls: Demographics and Causes
Among persons aged 65 years or older, falls are the leading cause of death from injury [7]. Figure
2.1.1 shows fatal falls by 5-year age group and sex. Fatal fall rates increase with age for both sexes.
Falls pose an economic and physical risk to elderly adults. In the elderly, falls are the leading
contributor to the economic burden of injuries with respect to lifetime costs in the USA and
Australia [6]. Each year,
unintentional falls kill over a Women N Men
10,000 adults age 65 and 180
older in the United States 160 153.2
[11]. These falls are usually
the manifestation of 2
physical restrictions and
other physical injuries.
Muscle weakness, impaired 3 60
balance, gait deficits, and 34

visual impairment all create 20 5410.6 95 16 19
additional difficulty and put 0 -- u
affected individuals at risk 65-69 70-74 75-79 80-84 85+
[8]. The risk of these Age Group
physical restrictions escalate
the danger of smaller Figure 2.1.1: Fatal falls rate by age and sex group The fatal falls rates of
household dangers like an those 65 and older in the USA in 2001 (Source: WHO Global Report on Falls
unevenly sloped floor or the Prevention in Older Age [5])
threshold of a door.

Fall prevention is critical in preventing these unintentional injuries. As a manifestation of these
other physical impairments, falls are the result of a modified walking profile. Ageing influences
gait patterns which in turn affects the control mechanism of human locomotor balance[4]. This
effect on control can present itself in several ways like reduced control to minimize tripping on
sloped surfaces [9] or reduced minimum toe clearance while walking [2].

Though certain risk factors require specialized care, like a hip fracture, other physical restrictions
simply change the perception of the individual, like vision impairment. These factors can be
mitigated with attention and caution as well as focused improvement[ 11]. Targeted attention and
caution is effective in reducing the likelihood of a fall which in turn reduces fall-related injuries
and the likelihood of a fatal fall.

2.2 Fall Detection

Within fall detection, there is extensive literature on sensing and analyzing falls and their impacts.
Though literature on fall prevention was limited, literature on human gait, stride, and posture were
more abundant. Fall detection utilizes varying sensors and analysis methods to understand the
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impact and severity of falls. These fall detection techniques include, but are not limited to,
accelerometry-sense acceleration, a fusion of accelerometry and posture sensors, and event sensing
using vibrational data. These detection techniques then determine the data processing technique
used to best analyze and understand the information collected [12].

The majority of existing pre-impact fall detection systems are wearable sensor-based since
wearable micro-electro-mechanical systems, such as accelerometers and gyroscopes, are small,
light-weight and low-cost. However, inertial measurement units (IMUs) are preferred since
singular signals have difficulty differentiating between a fall and fall-like perturbations, like
balance recovery, shifting weight, or jumping [13,14]. Camera, or vision based, approaches and
ambient based approaches make use of cameras, microphones, sonar, or other environmental
sensors. However, these approaches are typically more focused on addressing environmental
factors.

The sensor choice influences, or is influenced by, the fall indicators that the researchers intend to
measure. It is also significant to consider the intention to identify an accurate and rapid detection
method to integrate into a technology that is capable of reducing the impact of a fall, thus reducing
fatal falls. The data collection and data processing must then be almost immediate in order to allow
the reaction of an on-demand injury prevention system.

Pre-impact fall detection indicators are typically defined by body kinematics [13]. Some examples
include head acceleration, upper arm velocity, angular rate of the waist, and angular rate of the
sternum. Some would monitor more than one indicator in order to ensure accuracy when using
predefined thresholds as the criteria for detecting a fall. The most common body sites for sensors
were the waist and chest area. This is likely the case in order to be close to the center of mass.

Since rapid detection was vital, the algorithms used needed to have rapid analysis times. The two
common algorithms were threshold-based algorithms and machine learning algorithms[13]. For
threshold-based algorithms, a fall is considered detected if the selected indicators are beyond some
pre-defined threshold. Machine learning algorithms vary depending on the selected indicators and
a training period is typically required to ensure the accuracy of the algorithm.

2.3 Detection Methods

Threshold-based algorithms, though computationally efficient, can be difficult to implement
because an appropriate threshold can vary depending on its use and the user. A higher threshold
would result in more missed detections of falls but fewer false alarms, or detections of falls when
none occur.. A lower threshold would result in more false alarms but less misdetection.
Researchers tend to set these thresholds based on maximum readings of non-fall activities and
minimum readings of fall events but the experimental settings cannot be inclusive of all non-fall
activities and all possible fall events.

Machine learning algorithms are also common and include support vector machines, hidden
Markov models, artificial neural networks, and wavelet based analysis among others[ 12,13]. These
algorithms were computationally intensive compared to threshold-based algorithms and typically
had longer detection times resulting in a delay in feedback. The training period is also significant

8



when considering a machine learning algorithm since the non-fall and fall events will facilitate
how accurate it will perform in real-time instances.

In gait analysis, machine learning algorithms are typically used since several indicators and events
are considered[ 1,15,16]. In these experiments, detection times are not critical in conducting
analysis and providing feedback. In the case of a portable system for fall detection, the researchers
use a threshold-based system[17]. The portable system is tested in different placements for
sensitivity and specificity in varying non-fall and fall events.

2.4 Summary and Approach

After reviewing the literature that informed this project, I sought to create a wearable device that
was capable of providing feedback to the user when their strides were shuffling equivalent. Ideally,
this device would be capable of distinguishing between disruptive walking events, like the user
shifting weight, and the user's shuffling or walking strides.

The choice in sensor was critical in determining placement as well as analysis. An IMU was
determined to be the best fit for the intended device since it addressed the need for more than one
type of sensor, was light-weight, and was compatible with the intended focus of distinguishing
between two physical states (walking and shuffling) with reduced concern about external and
environmental influences.

Using an IMU, both accelerometer and gyroscope data from the placement of choice will be
available. A threshold-based algorithm will be capable of making use of both in order to distinguish
between walking and shuffling stride without a computationally intensive method in order to
provide timely feedback.
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3. System Design
3.1 Identifying Characteristics
Before building the apparatus, it was
critical to determine key characteristics
by which to measure and analyze the
walking profile of the user. The
determination of these characteristics was
essential before creating prototypes since
the needed location of the IMU would
determine the design, attachment, and
user interaction of the apparatus.

From the literature, I decided to record
from the foot near the toe, from the shin,
and from the lumbar. The APDM Opal
IMU was strapped to these areas using an ' t

elastic Velcro band. Data were collected -
from a pilot set of two subjects to obtain
data for developing algorithms. Protocols
were approved by MIT Committee on the
Use of Humans as Experimental Subjects Figure 3.1.1: Test Sensor Placement Diagram The
and informed written consent was placement of the sensors used in identifying characteristics in
provided. The subjects (one male, one order to determine the ideal placement for device purpose
female) were then instructed to walk
normally for a period of time, shift their weight, and shuffle their feet. From these trials, I focused
on the accelerometer and gyroscope data in order to find patterns that existed in both of these states
and key distinctions or differences that could be used to distinguish them.
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Figure 3.1.2: (a) Lumbar Accelerometer Pattern The accelerometer magnitude data from the lumbar
positon in the transition from shuffling to walking (b) Shin Gyroscope Pattern The gyroscope data
from the shin position in the transition from shuffling to walking
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Figure 3.1.3: (a) Toe Accelerometer Pattern The accelerometer magnitude data from the toe positon
in the transition from shuffling to walking (b) Toe Gyroscope Pattern The gyroscope data from the
toe position in the transition from shuffling to walking

These patterns existed in several different measurements from every recorded area shown in
figures 3.1.2 and 3.1.3. For the lumbar, the accelerometer showed a pattern of peaks that were
indicative the swaying movement in that area while walking. Though distinguishing between
walking and shuffling was clear because of the dampened movement, reliably distinguishing
strides from weight shifts was not as clear. For the shin, the gyroscope demonstrated patterns that
were consistent with the stepping movements. And though, again, the dampened gyroscope
movement distinguished between walking and shuffling, reliably distinguishing strides was not
clear.

The lumbar and shin supported the idea of strides following a recognizable pattern that could be
simplified for threshold-based analysis but did not provide data that would reliably predict the
difference with a singular location. For the toe, there were patterns for both the accelerometer and
the gyroscope that were not only consistent with individual strides but also had a clear distinction
between shuffling, walking, and weight shifting.

As shown in Figure 3.1.3.a, the toe accelerometer magnitude pattern has a clear threshold for
distinguishing between walking and shuffling profiles. This threshold paired with the gyroscope
pattern shown in Figure 3.1.3.b gives a complete picture. This pattern is consistent with both
walking and shuffling and is absent when the subjects were shifting their weight.

From these observations, I began to design an apparatus that allowed for the IMU to be near the
toe and a method by which to communicate real time feedback to the user.
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3.2 Apparatus
The apparatus consisted of two parts, a
data collecting attachment and a display.
The data collecting attachment was a 3D
printed shoe attachment. Its purpose was
to hold the electronics, provide easy
access for adjustment, and send data as
quickly as possible to the display. It
consisted of three parts, a base, a cover,
and a clip. The clip attached to the
shoelace area as close to the toe as
possible. The clip was designed for ease
of use and simplicity. The base was
crafted to hold an Arduino Uno
comfortably with pins that acted as
anchors for the cover. The cover snapped
onto the base and has a protected but open
alcove for the use of a small breadboard
with the expected attachments.

Due to time constraints, the disply was Figure 3.2.1: Apparatus Placement Diagram Placement of
Dumie to imcoraintsdt ip ay apparatus items on subject during testinglimited to a macro enabled workbook.
The workbook was openly displayed on a computer that was wired to the apparatus. The workbook
determined if the data indicated whether or not a stride was being made and if that stride was of a
walking profile or a shuffling profile. For every stride, the workbook would also make note how
long the threshold-based analysis method was taking to determine if a stride was made and
categorize the stride.

The electronics of the apparatus consisted of an Arduino Uno and a LSM9DSO Inertial
Measurement Unit. These components were connected and held within the data collecting
attachment of the apparatus and connected directly to the display.

3.3 Methods
In order to test the device, several trials were run with the female subject. Its accuracy in
distinguishing between shuffling and walking strides and providing true alarms to the user were
measured.

The subject attached the apparatus as shown in Figure 3.2.1. The subject executed the profile
displayed in Table 3.3.1 while wearing the device. The subject walked uninterrupted and with no
obstacles. While the subject walked, they paced their strides within the workbook separated from
the analysis of the strides. Each stride made, the subject tapped enter. The macro-enabled
workbook received information from the data collection aspect of the apparatus to determine
whether or not a stride was made and categorize that stride.
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Table 3.3.1: Test Profile

Quantity Stride Type
25 Walking
20 Shuffling

5 sec Shifting Weight
10 Shuffling ...... 1
20 Walking

Each stride was given a designation after the trial depending on how accurate it was compared to
the actual strides of the subject: true positive, false negative, true negative, and false positive. A
breakdown of these designations is shown in Table 3.3.2.

Table 3.3.2: Designation Description

Designation Description
True Positive Walkingprofiles correctly identified as walking
False Positive _Shuffden ed as ng
True Negative Shuffling correctly identified as shuffling
False Negative Walking in correctly identified as shuffling

Once these designations are assigned, the effectiveness of the device will be determined by it
accuracy, specificity, sensitivity, and FI score. Accuracy would be the measure of trueness, or how
well the device is able to determine the actual stride profile of the user. It is determined by the
number of true designations out of all designated strides. Sensitivity is the true positive rate, or the
proportion of positives that are correctly identified. In this case, it is the proportion of correctly
identified walking profiles. Specificity is the true negative rate; it is the proportion of correctly
identified shuffling profiles. The Fi score is the harmonic average of precision and sensitivity. In
this case, it is a measure of the holistic accuracy of the device that includes consideration of false
negatives.

During the trials, the workbook kept track of the processing time for each data point. Once each
point was received, it would be compared to previous points to determine if it was an identifying
characteristic in the pattern used to identify whether or not a stride was made. Once a point is
identified as the final characteristic in the pattern, the entire time period of that pattern is analyzed
and categorized as walking or shuffling. The processing time includes the moment from receiving
the data point until its possible categorization.

4. Results and Discussion
The device made was effective in distinguishing between walking and shuffling profiles. It was
also effective in making this distinction quickly. Neither the device nor the feedback method has
been optimized for use with the intended target audience. This device serves as a starting point for
a more developed prototype.
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Over three trials, 225 strides were made by the subject. Of those, 213 were detected. The
designation of these 213 strides are displayed in Table 4.1.1. Most of both the walking and
shuffling strides were detected accurately. Most errors in the categorization of strides occurred
immediately following the transition from one profile to the other. However, the error of
identifying strides occurred both during transitioning and when the foot was dragged before
completing a shuffling stride.

Overall, the device was correct in identifying the stride and giving the correct categorization over
74.6% of the strides. For the device, the accuracy, specificity, sensitivity, and F1 score are shown
in Table 4.1.2. The average processing time (and standard deviation) for each trial is shown in
Table 4.1.3.

Table 4.1.1: Designation of Results

ACTUAL

Walking Shuffling

Walking 90 21
True Positive False Positive

Shuffling 33 69
False Negative True Negative

I. Total 123

Table 4.1.2:

Accuracy, Specificity, Sensitivity, and
Fi Score

Specificity 76.67%
Sensitivity 73.17%
F1 Score 76.92%

Table 4.13: Processing Time

Trial Average ProcessingTime
1 0.110 0.014 sec
2 0.121s 0.01O sec
3 _0.106s+0.Ol3 sec__

90
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For threshold-based algorithms with similar materials, processing times hover around 64-200
milliseconds[13]. The processing time for this device then falls into that range as expected.

There were two types of errors present in identifying whether or not a stride was made, false and
missed alarms. False alarms occurred when the feet were dragged during shuffling and one stride
was mistaken for two. The pattern identified was present in a dampened form more than once when
the foot dragged before the incomplete step. There were 6 false alarms present over the 225 strides.
This occurred exclusively during shuffling strides and all 6 false alarms were categorized as
shuffling strides. Missed alarms occurred during walking when transitioning to or from the
shuffling stride or walking from a static state. However, the device detected almost 95% of the
strides made.

The two errors in the categorization of strides comes from the threshold chosen and neglecting
consideration of the initial part of strides. The threshold chosen may need to be adjusted to better
reflect the stride of the user. The accelerometer magnitude was normalized to account for drifting,
however, more adjustment may be needed. Additionally, the current algorithm analyzes the stride
from the first key characteristic identified from the gyroscope data and not necessarily the
beginning of the stride, where the highest values of the threshold typically exist.

In an integrated system, these errors would be more significant. The errors that caused the missed
and false alarms would not affect the detection of strides but would affect the method and
frequency of notification to the user. For example, if the consecutive number of shuffling strides
determined the urgency of notification, consistent false alarms would lead to increased and
unwarranted urgency. Additionally, missed alarms would lead to decreased and unwarranted
leniency in these notifications. The current errors of categorization where walking is misdetected
as shuffling could be disruptive to the user. However, the misdetection of shuffling as walking
would prevent proper notification. The challenge then is to minimize misdetection by identifying
a threshold that does not improperly notify the user of shuffling while walking but can provide
proper notification of consistent shuffling.

5. Conclusions and Future Work
To improve this device in its current iteration, I would suggest refinement of the threshold-
algorithm with special consideration on the causes of the errors. In order to better identify the
strides, additional pattern recognition may be necessary for instances where the foot is dragged
onto the floor before lifting the incomplete step as well as patterns during transitioning periods.
Once these patterns are incorporated, identifying a method to include the entirety of the stride
within analysis will be necessary for a proper adjustment of the threshold.

To move forward, I would suggest modifying the apparatus to be more accessible and intuitive to
the intended users. The apparatus placed on the foot is difficult to access alone with limited
mobility and may not be as accessible or intuitive to the intended users for their preferred footwear.
An additional objective while moving forward would be to consider a feedback method for the
intended audience that is intuitive in communicating the distinguished stride profiles in a way to
encourage correction that is not overwhelming. With these improvements and a feedback method,
user testing will be able to further inform the future work.
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7. Appendices

7.1 Appendix A: Arduino Code

The following is the Arduino code used to pair the Arduino with the marco enable workbook. The
open source and available macro enabled workbook PLX-DAQ served as a starting point for the
display used.

* Arduino code is paired with Macro enabled worksheet PLX-DAQ-v2.11.xlsm

#include <SPI.h>
#include <Wire.h>

#include <Adafruit Sensor.h>
#include <AdafruitLSM9DSO.h>

/* Assign a unique base ID for IMU */
AdafruitLSM9DSO lsm = AdafruitLSM9DSO(1000); // Use 12C, ID #1000

#define LSM9DSOXMCS 10
#define LSM9DSO GYRO CS 9

#define LSM9DSOSCLK 13
#define LSM9DSOMISO 12
#define LSM9DSOMOSI 11

int i = 0;

int ms = 100; //select value for delay
int ledPin = 13; //pin for proper sensor working notification

/ *********************************************************************

/*
Configures the gain and integration time for the TSL2561

/ *********************************************************************

void configureSensor(void)

// 1.) Set the accelerometer range
lsm.setupAccel (lsm.LSM9DSOACCELRANGE_2G);
//lsm.setupAccel (lsm.LSM9DSOACCELRANGE_4G);

//lsm.setupAccel(lsm.LSM9DSOACCELRANGE_6G);

//lsm.setupAccel(lsm.LSM9DSOACCELRANGE_8G);

//lsm.setupAccel(lsm.LSM9DSOACCELRANGE_16G);

// 2.) Set the magnetometer sensitivity
lsm.setupMag(lsm.LSM9DSOMAGGAIN_2GAUSS);

//lsm.setupMag(lsm.LSM9DSOMAGGAIN_4GAUSS);

//lsm.setupMag(lsm.LSM9DSOMAGGAIN_8GAUSS);

//lsm.setupMag(lsm.LSM9DSOMAGGAIN_12GAUSS);

// 3.) Setup the gyroscope

lsm.setupGyro(lsm.LSM9DSO GYROSCALE_245DPS);
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//lsm.setupGyro(lsm.LSM9DSOGYROSCALE_500DPS);

//lsm.setupGyro(lsm.LSM9DSOGYROSCALE_2000DPS);

void setup() {
digitalWrite(ledPin,HIGH);

#ifndef ESP8266

while (!Serial);

console opens

#endif

// will pause

// open serial connection
Serial.begin(9600);

if(!lsm.begino)
{
/* There was a problem detecting

connections */
digitalWrite(ledPin,

while(1);

digitalWrite(ledPin, L

Zero, Leonardo,

the LSM9DSO

etc until serial

... check your

HIGH);

OW);

// Setup the sensor gain and integration time
configureSensor();

//Serial. println ("CLEARDATA");
Serial.println ("CLEARSHEET");

// clears sheet starting at row 2

// clears sheet starting at row 1

// define columns

Serial.println("LABEL,Date,Time,Timer,AccX,AccY,AccZ,GyroX,GyroY,GyroZ

// set the names for the 3 checkboxes
Serial.println("CUSTOMBOX1,LABEL,Stop logging at 100?");
Serial.println("CUSTOMBOX2,LABEL,Resume log at 200?");
Serial.println("CUSTOMBOX3,LABEL,Quit at 300?");

// check appropriate checkboxes
Serial.println ("CUSTOMBOX1, SET,
Serial. println ("CUSTOMBOX2,SET,
Serial.println ("CUSTOMBOX3, SET,

0");
0");
0")

void loop() {
// Get a new sensor event
sensors event t accel, mag,

lsm.getEvent(&accel, &mag,

gyro, temp;

&gyro, &temp);
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// simple print out

Serial.print("DATA,DATE,TIME,TIMER,");

Serial.print(accel.acceleration.x);

Serial.print(",");Serial.print(accel.acceleration.y);

Serial.print(",");Serial.print(accel.acceleration.z);

Serial.print(",");

Serial.print(gyro.gyro.x);

Serial.print(",");Serial.print(gyro.gyro.y);

Serial.print(",");Serial.print(gyro.gyro.z);

Serial.print(","); Serial.println("SCROLLDATA_20");

// check value of customboxi on PLX DAQ in Excel and if

// checkbox is checked then send the command to pause logging
if(i==100)

{
Serial.println("CUSTOMBOX1,GET");

int stoplogging = Serial.readStringUntil(10).toInt(;
// this information can be seen in the direct debug window on

PLX DAQ in Excel

Serial.println( (String) "Value of stoplogging/checkbox is: " +
stoplogging);

if (stoplogging)
Serial.println("PAUSELOGGING");

// and now resume logging

if(i==200)

Serial.println("CUSTOMBOX2,GET");

int resumelogging = Serial.readStringUntil(10).toInto;

if(resumelogging)

Serial.println("RESUMELOGGING");

// and for forced quit of Excel with saving the file first
if(i==300)

Serial.println("CUSTOMBOX3,GET");

if-(Serial.readStringUntil(10).toInt()) {
Serial.println("SAVEWORKBOOKAS,300-Lines-File");

Serial.println("FORCEEXCELQUIT");

}
else

Serial.println("No forced Excel quit requested!");

i++;
delay(ms);
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7.2 Appendix B: Apparatus Media
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