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Abstract

In this work, we studied the chiral charge density wave (CDW) phase in titanium
diselenide (TiSe 2) with the circular photogalvanic effect (CPGE). Mechanically exfo-
liated bulk TiSe 2 flakes were obtained and implemented into nanoscale devices using
standard fabrication techniques. Four samples' photocurrent response to a 120 meV
laser was subsequently measured as a function of temperature and laser power. The
onset of the CPGE at approximately 174 K confirms the emergence of chiral order
below the regular CDW transition at 197 K. Furthermore, we were able to train the
chirality of the system by cooling it while shining circularly polarized light. With this
study, we have confirmed that TiSe2 is a novel kind of material that spontaneously
breaks inversion, all mirror, and roto-inversion symmetries and attains gyrotropic
order, paving the way for future experimental work on similar condensed matter sys-
tems.
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Title: Associate Professor of Physics
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Chapter 1

Introduction

In 2004, Drs. Andre Geim and Konstantin Novoselov successfully isolated graphene

and measured its electrical properties [13]. The discovery opened the exciting new

field of 2D physics. Since then, the number of known 2D materials has increased

tremendously, and scientists are constantly unveiling novel behavior in new systems.

Transition metal dichalcogenides (TMDs) are of particular interest due to the many

phases they can assume despite their similar composition [1]. Some TMDs' band

gap makes them a promising platform for innovations in semiconductor technology,

while others have allowed physicists to study exotic states of matter such as super-

conductors and topological insulators. In this work, we focus on titanium diselenide

(TiSe2 ). Previous studies have suggested that, at low temperatures, TiSe2 exhibits

a chiral charge density wave (CDW) phase, a rare case of spontaneous chiral order-

ing [71 [9]. We seek to probe the chiral transition in the system by using the circular

photogalvanic effect (CPGE), a technique sensitive to the symmetries of the system.

Chapter 2 presents a short overview of TMDs and their many properties. In Chap-

ter 3, the basic physics of how a CDW forms and conducts electricity are explained.

TiSe2 and its CDW phase, along with the preliminary evidence for chiral ordering,

are the subject of Chapter 4. Chapter 5 treats the CPGE and the information it

can provide about any general system. The device fabrication is detailed in Chapter

6. In Chapter 7, we present and discuss our photocurrent data. Finally, Chapter 7

summarizes and concludes this work, in addition to suggesting future directions based

17



on our results.
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Chapter 2

Overview of TMDs

2.1 Crystal Structure

A TMD monolayer consists of transition metal atoms sandwiched between two layers

of chalcogen atoms (S, Se, or Te) as shown in Figure 2-la. The bulk crystal consists

of successive monolayers stacked on each other, bound together by the van der Waals

force. The weak interlayer coupling means TMDs can be mechanically exfoliated

with tape down to the monolayer limit. The sticky tape technique has proven to be

a reliable method for obtaining high-quality samples that can be implemented into

nanoscale heterostructures [14]. The two most common crystallographic orientations

for TMDs are the trigonal prismatic (2H) phase and octahedral (IT) structures [1].
Another important phase is the orthorhombic (lTd) structure, currently only observed

in tungsten ditelluride (WTe2).

2.2 Electronic Structure

The electronic properties of TMDs depend sensitively on the material thickness. Of-

ten, ultrathin flakes have a completely different electronic structure than the bulk.

The difference often arises from symmetries broken due to reduced dimensionality,

and as a consequence of confining the electrons to an increasingly 2D volume. For ex-

ample, the semiconductor molybdenum disulfide (MoS 2) has a direct band gap in its

19



a) b)

A c

M ! Transitionmetal 0 Chalcogen

Figure 2-1: (a) TMDs consist of transition metal M atoms sandwiched between
chalcogen X atoms. (b) The most common crystallographic phases observed in
TMDs. Figures adapted from [1] [2].

monolayer form, while thicker flakes have an indirect gap [15] [16]. The effect can be

explained by the hybridization of the sulfur p-orbitals with the molybdenum d-states.

The thickness-dependent behavior can also be opposite for different materials. In

niobium diselenide (NbSe 2), superconductivity weakens with decreasing layer thick-

ness [17], while in tantalum disulfide (TaS 2) superconductivity is enhanced [18] [19].

As already alluded to above, TMDs exhibit a wide variety of phases despite their

similar composition. Superconductors, CDW conductors, topological insulators, and

other novel states are all represented in this family of van der Waals crystals. Figure

2-2 summarizes the many phases so far identified, with recent results even suggest-

ing that different phases can be achieved by tuning the electron density with gate

voltages 1201.

IV V

_ VI X

LJ ~b L VII Pd

Hf Ta . W jnL ... Pt

Figure 2-2: A table summarizing TMD crystal structure and observed electronic
phases based on the transition metal. Figure adapted from [1].

20
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2.3 Optical Properties

In gapped TMDs, photons can excite valence band electrons into the conduction band.

As excess carriers recombine, photons are emitted with an energy corresponding to

the band gap 121]. Therefore, photoluminescence (PL) is a powerful tool for studying

TMDs. As an example, thanks to the direct band gap in monolayer MoS 2, the PL

quantum efficiency is 104 times stronger than in the bulk [16]. Additionally, when

electrons are excited into the conduction band, they leave behind a hole in the valence

band. Due to the Coulomb interaction, the electron and hole feel an electrostatic

attraction and can form a quasiparticle state called an exciton [21]. Trions, an exciton

plus an extra hole or electron, can also form. Exciton and trion recombination leads

to photoemission that can be captured in PL spectra. Currently, excitons in 2D

systems are an active area of research. Since the quasiparticles are bosons, theorists

have postulated that they could form a Bose-Einstein condensate [22]. However, this

has yet to be realized, in part due to the short lifetime of an electron-hole pair.

Efforts are underway to achieve excitonic condensation in bilayer TMD systems such

as MoSe2-WSe 2 heterostructures [23].
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Chapter 3

Charge Density Wave Physics

Charge density waves (CDWs) were first predicted in 1929 by Rudolph Peierls when he

noted that a ID atomic lattice was thermodynamically unstable at T = 0 K [241. Since

the 1970s, there has been an explosion in the discovery of low-dimensional materials

that have been found to host CDWs, such as NbSe3 , KO.3 MoO 3 and KCP [4] [3], in

addition to TMDs such as TaS 2 and TiSe2 . This chapter is dedicated to explaining

the basic physics behind CDW formation and the resulting electrical properties.

3.1 The Peierls Transition

Consider a one-dimensional atomic chain with lattice constant a and corresponding

constant electronic density p(r) = po, such as that shown in Figure 3-la. In k-space,

the Brillouin zone has edges at 7r/a, and only the electronic energy levels up until

the Fermi level EF are occupied.

If electron-phonon interactions are introduced, the underlying lattice is no longer

stable. A periodic real-space lattice distortion of the form 6r = 6ro cos( r + q)

for A = 2a becomes favorable and leads to the opening of a gap 2A at the Fermi

wavevector kF = r/2a as shown in Figure 3-1b. All the electronic states collapse

to the lower band, and the overall energy is lowered. The new electronic density is

given by pr = po + pi cos(2kFr + q), which leads to periodic charge ordering; in other

words, a charge density wave. The emergence of a superlattice further causes the
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insulator

Figure 3-1: The Peierls transition in a ID metal. (a) A ID atomic lattice with
constant a. p(r) is the electron density; in this case it is constant. The Brillouin zone
is shown below it, and only the energy levels up the Fermi level EF are filled (EF in
the figure). (b) Because the metal is unstable at T = 0 K, a gap opens at the Fermi
level and a superlattice with spacing 2a forms. The Brillouin zone reduces to half of
its original size and leads to band folding at kF. Figures adapted from [3].

bands to fold at kF, so the CDW-state Brillouin zone is reduced in half. In reality,

the ratio A/a is not necessarily a rational number and will depend on the material's

Fermi energy.

At finite temperatures, thermal excitations entail a gap reduction, until at TCDW

the system undergoes a second-order transition into a normal state. The mean-

field order parameter V) = Aeo characterizes the phase transition. The variable A

measures the size of the gap and is proportional to the atomic displacement amplitude

6ro. The phase # sets the relative shift between the charge modulation and the

normal-state lattice. In real materials, CDWs tend to form in systems composed of

weakly coupled chains, such that electron motion is easier along the chains than in

the perpendicular directions. This feature lends the system a quasi-ID character that

allows the formation of charge order at low temperatures.
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Figure 3-2: Typical current versus electric field behavior for CDW conductors. There
is no conductance below ET, after which charge order slides relative to the lattice and
generates a current. In this particular graph, the data is for NbSe3 at 120 K. Figure
adapted from [4].

3.2 Electrical Properties of CDWs

Importantly, the emergence of a gap means that the transport properties of the system

change. In theory, the phase # can take on any value without changing the ground

state energy, so all configurations of the charge order relative to the lattice are equal,

which would imply that dissipationless currents can flow in the CDW phase, and so

the material should also be a superconductor. However, this is not the case due to the

presence of defects and impurities. When A/a is commensurate, the CDW will align

with the underlying lattice and the application of an external field will translate the

CDW relative to its preferred orientation, leading to energy oscillations with period

A. In the incommensurate case, the presence of impurity and disorder creates local

minima, and the CDW becomes "pinned" into a particular configuration. Thus, it is

necessary to apply a sufficiently large threshold electric field ET before the material

becomes conducting, as shown in Figure 3-2.

Once ET is overcome, the material conducts thanks to the CDW sliding, shown in

Figure 3-3. As the atoms oscillate back and forth, the charge potential slides relative

to the underlying lattice. The conduction electrons can ride the CDW and generate

an electrical response.
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Figure 3-3: When ET is overcome, the CDW slides. The lattice atoms oscillate, as
traced by the yellow path that follows the position of the red particle. The effect
allows the potential to move towards the right, illustrated by the traveling black
arrow. Figure adapted from [4].
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Chapter 4

The Charge Density Wave in

1T-TiSe 2

In this chapter, we will discuss 1T-TiSe 2 (TiSe2 hereinafter), our material of interest.

Its crystal structure and Brillouin zone are shown in Figure 6-4. TiSe2 exhibits a

CDW phase below TCDW. Previous experimental work has further suggested that

below another transition temperature Tchiral, the system spontaneously attains chiral

order. Here, we highlight some of the previous work done on the regular CDW phase

in TiSe 2, and motivate our experiment to probe the chiral CDW structure with the

CPGE.

a b c

IT -

aa

Figure 4-1: Crystal structure of 1T-TiSe2 . The purple atoms are Ti, and the green
are Se. (a) Top view of a monolayer. (b) Crystal sideview. (c) Brillouin zone.
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4.1 The CDW Transition

Angle-resolved photoemission spectroscopy (ARPES) on monolayer TiSe 2 reveals a

commensurate 2 x 2 x 2 CDW transition at TCDW= 232 5 K [5]. Figure 4-2b shows

the band structure obtained from ARPES at room temperature and at 10 K, well

below the CDW transition. At room temperature, there are two convex bands near

a b F0.0

-0.5 N0.5

0-1.0K ~~

-i1.5 w -1.5

-2.0 -2.04

-0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5

k,(A-') ky(A-')

Figure 4-2: ARPES data for monolayer TiSe 2. (a) In solid black: the normal-state
Brillouin zone of TiSe 2. In dashed red: the reduced Brillouin zone in the CDW phase.
(b) On the left: the normal state ARPES data taken at room temperature. On the
right: the CDW state ARPES data taken at 10 K. Note the appearance of a new
band at R/F due to band folding. Figures adapted from [5].

the Fermi level at the F point, arising from the Se 4p states. Additionally, there is a

top band at the Brillouin zone boundary M originating from the Ti 3d orbitals. Both

features give rise to an experimentally measured indirect band gap of 98 meV.

At 10 K, the monolayer is in the CDW state, which leads to a superlattice structure

with double the periodicity of the natural crystal lattice. In turn, the Brillouin zone

shrinks to half the original size and leads to band folding, as shown in Figure 4-2a.

The new k-space zone boundary is demarcated by M*, and R becomes the central

M/* point of an adjacent zone. The effect can be seen in the low temperature band

structure data from Figure 4-2b. At r, the Se 4p bands retain their shape, although

they are pushed down in energy. Thanks to band folding, a duplicate of the convex

bands appears at M/*. The new bands have a weaker intensity since the CDW

distortion is inherently weak. The band gap at 10 K is measured to be 153 meV,
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Figure 4-3: Temperature dependence of the band gap as measured from the ARPES

spectra for monolayer TiSe2 . The solid blue line is a BCS-type fit. The dashed red

line is a linear approximation. The BCS-type fit gives TcDw = 232 + 5 K. Figure

adapted from [5].

larger than in the normal state value of 98 meV. A full temperature dependence of

the gap is shown in Figure 4-3. The gap remains constant above TCDW, but widens

below it. The results are well described by mean-field theory.

The thickness dependence of the band gap and TCDW is shown in Figure 4-4

[6]. Increased dimensionality rapidly suppresses charge ordering, and TCDW already

converges to the bulk value of 205 K in a trilayer. This suggests that the CDWs in

adjacent layers interact strongly, the overall effect leading to a weakening of the charge

ordered phase. The bilayer data is an interesting case that highlights the transition

from a 3D crystal to a 2D system. It exhibits two transitions with TCDw,1 = 236 5

K and Tc,2 = 195 3 K. The interpretation is that at TCDw,1, which is close to the

monolayer TCDW, the individual layers develop noninteracting CDWs independently

of each other. Subsequently, at TCDW,2, similar to the bulk TCDW, the layers begin

to interact and the CDWs lock into an antiphase arrangement. Surprisingly, even the

bilayer exhibits bulk-like behavior.

The formation of the CDW phase in TiSe2 is still poorly understood and hotly
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Figure 4-4: Thickness dependence of TCDW for TiSe2 . The individual plots show the
band gap evolution from ARPES data versus temperature. The transition tempera-
tures were computed with a BCS-type fit. (a) Monolayer data with TCDW = 232 5 K.
(b) Bilayer data. Note that there are two transition temperatures at TCDW,1= 236 5
K and TCDW,2 = 195 3 K. (c) Trilayer data with TCDW= 203 3 K. (d) 6-layer
data with TCDW = 205 3 K. Figure adapted from [6].

debated [10]. There are currently three main theoretical proposals, all of which are

supported by experimental results [25] [26] [271. One model argues that charge order

arises thanks to strong electron-phonon coupling in what is known as the Jahn-Teller

(JT) effect. In this scenario, the in-plane Ti-Se bonds shorten, leading to an overall

reduction of the local bond energy and a kinetic energy gain. This manifests itself as

a lowering of both the top and bottom bands, which is observed to become amplified

below TCDW, suggesting the JT effect is the driving force towards charge order. A

second perspective is that TiSe2 becomes an excitonic insulator (EI) primarily due to

electron-electron interactions. Below TCDW, it becomes favorable for an electron to

hop from an Se pocket to a Ti atom, leaving behind a hole. Thanks to poor Coulomb

screening, the electron and hole feel a mutual attraction and form an exciton. The

electrostatic attraction will cause a lattice distortion, leading to a CDW. The final

proposed mechanism is a combination of both the JT effect and El formation. A lat-
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tice distortion from the JT mechanism will lead to a shortening of the bond length,

facilitating the hopping of an electron and thus the formation of an exciton. Likewise,

the electron-hole attraction will shorten the Ti-Se length and amplify the JT effect.

To first order in perturbation theory, electrons can only hop between neighboring

in-plane Ti-Se atoms, forming a series of ID chains that lead to a CDW. Theoret-

ical work has found that just the JT or El effects are insufficient to quantitatively

describe experimental results, which lends support to the cooperation between both

mechanisms as the driving force for charge order in the material.

4.2 Experimental Evidence for a Chiral CDW

From the thickness dependence of the CDW transition, we can already see that the

interlayer CDW interaction is nontrivial. In a scanning tunneling microscopy (STM)

experiment, Ishioka et al. observed evidence for a chiral CDW structure in bulk

TiSe2 [7]. Figure 4-5a shows their STM data for a sample at 84 K. The bright spots

(b)

IV~

0 "11 1 0 1
8 21aj ' position (nm)

(c) (d) ,

0 1 0 1 0

S211 la*l 2ai ai laI 13*1
wave number (/nm)

Figure 4-5: STM data for a bulk TiSe2 sample at 84 K. (a) Real space STM data
where the CDW is apparent. The ai vectors designate the three crystallographic di-
rections, and the qi indicate the directions of charge modulation. (b) Line intensities
along the three distinct qi in real space. (c) Fourier transform of (a). Note how the
intensity increases CCW from q3 to q1 . (d) Line intensities along the different qi in
Fourier space. Figure adapted from [7].
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correspond to regions of high tunneling current; these are the positions of the Se atoms

in the lattice. The spots are arranged in a triangular configuration with constant ao,

as expected for the material. However, note the varying intensities of the spots. Upon

closer inspection, it is possible to define three vectors qj along which the intensity

varies with a period of 2aO. This modulation is due to the CDW superlattice (at

84 K, the sample is well below TCDW= 205 K). What is surprising is the presence

of three distinct directions with different peak intensities, evident in Figure 4-5b.

The variation becomes more apparent in the Fourier transform of the data, shown in

Figure 4-5c. The intensity increases counterclockwise (CCW) starting from q3 and

rotating towards qi, as presented in Figure 4-5d.

STM data from a second sample at 6.3 K is shown in Figure 4-6. The sample

400

Figure 4-6: (a) A real space 12 nm x 12 nm STM image of a sample at 6.3 K. The
blue lines denote the domain wall between the CW and CCW chiral phases. (b) and
(c): the Fourier transform of the data enclosed by the squares in the CW and CCW
regions, respectively. Figure adapted from [7].

exhibits a clockwise (CW) (Figure 4-6b) and a CCW phase (Figure 4-6c) coexisting

in the same lattice, separated by a domain wall. The surprising result led Ishioka

et al. to postulate that the CDW in TiSe2 points along a different direction in each

successive layer. The direction of qj rotates either CW or CCW in successive layers,

forming a chiral structure whose handedness is defined by hCDW= q(q 2 x q3). They

argue that in their data, they can resolve the top three layers and that the varying
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Figure 4-7: Data take n at 4.6 K. (a) A 20 mrn x 10 un STM image of a step between
two successive TiSe 2 layers. The inset shows the height difference between the layers
of 6 A, corresponding to the size of one Se-Ti-Se sandwich. (b), (c) An enlargement
of the white squares in (a) corresponding to defects in the bottom and top layers,
respectively. The circles highlight the charge maxima, and the arrows indicate the
direction of atomic displacements. (d), (e) 2.8 nm x 2.8 nm STM images of the
bottom and top layers, respectively, showing that the orientation of the qj is the
same for both.(f), (g) Fast FT of (d), (e) where the blue circles highlight extra
features owing to the CDW. Figure adapted from t81

intensity along each qi is because tunneling from the inner layers is exponentially

suppressed given that the probe is further away. This point is one reason why the

experiment is not conclusive in identifying chiral ordering: STM cannot probe long

range order in the bulk. Additionally, all the measurements were carried out well

below TCDW, so the paper provides no information about a phase transition from a

normal CDW to a chiral ordered phase.

Another STM experiment by Hildebrand et al. further disputed the claims by

Ishioka et al. [8]. They showed that STM is actually only sensitive to the topmost Se
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layer in a Se-Ti-Se sandwich, so the technique cannot provide any information about

the long range order in the material. In fact, their results indicate that the CDW

is non-chiral. In Figure 4-7, they show the STM data for a step between two TiSe2

layers at 4.6 K. They find that the orientation of the qi is the same for both, showing

there is no relative rotation and thus no handedness.

However, Castellan et al. provided further evidence for the chiral phase [9]. Using

x-ray diffraction, which is sensitive to the lattice periodicity, they probed the phase

transition. Their data is shown in Figure 4-8a. As a function of temperature, they

(a). (b) (c )
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Figure 4-8: Evidence for a phase transition at 183 K. (a) X-ray diffraction peak
intensities as a function of temperature. The red points follow a peak sensitive to the
formation of the regular CDW superlattice. The blue data is for another peak that
turns on around 183 K. (b) Specific heat as a function of temperature. (c) Resistivity
anisotropy as a function of temperature. Figures adapted from [9].

tracked the intensity of the [1, j, 1] reflection, sensitive to the formation of a super-

lattice corresponding to the onset of a CDW. The peak turns on at TCDW =190 K

(slightly below the TCDW = 205 K due to stoichiometric imperfections in the crystal

growth). However they also tracked a peak from the [j, 1, 0] reflection. Although not

forbidden in a non-chiral ordered phase, the authors observed that the peak suddenly

turns on at T, = 183 K. This is indicative of a second phase transition, which the

researchers take to be the onset of helical CDW ordering.

Castellan et al. further supported their claim with specific heat measurements,

shown in Figure 4-8b. The specific heat peaks around TCDW, briefly saturating before

suddenly decreasing at Tc. Additionally, Figure 4-8c shows the resistivity anisotropy

Pc/Pab, a quantity that measures the difference in electron transport in the out-of-

plane versus in-plane directions. They also identified a peak in the data around Tc.
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Figure 4-9: Illustration of the Brillouin zone and the three inequivalent directions for

orbital and charge ordering. Figure adapted from [101.

The three different kinds of measurements by Castellan et al. are sufficient to show

that there are two distinct transitions at TCDW and T. Although the transition at

TCDW can be safely attributed to the onset of CDW order given the x-ray diffraction

data, T, cannot be confidently accounted for by chiral ordering. None of the measure-

ments performed in the paper were sensitive to chirality, so although there is clearly

a phase transition at 183 K, it is not necessarily due to the emergence of chiral charge

ordering.

4.3 A Model for a Chiral CDW

Chirality is not uncommon in systems where the order parameter is a vectorial quan-

tity, such as in magnetic materials [10]. However, electron density is a scalar quantity

so it is not immediately clear how chiral order can form. The transition can be un-

derstood as the formation of both charge and orbital order. Although the mechanism

behind the formation of the normal CDW phase is still poorly understood, the transi-

tion from non-chiral to chiral order can be effectively described with Ginzburg-Landau

theory [10].

Figure 4-9 shows the Brillouin zone for TiSe2 . In the CDW phase, electron density

is shifted from the central 1r pocket to one of the edge Ti pockets. Because there

are three independent Ti pockets, there are three distinct directions Qj along which

orbital and charge order can polarize. Thus, the total lattice distortion from the
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CDW is a superposition of the atomic displacements along the three inequivalent

directions. We also need to consider relative phase shifts arising from Coulomb and

phonon interactions. Therefore, the total atomic distortion 6x will be given by

3

6x Oc E cos(Qj -x + 0j)

Now, consider the charge density modulation a = R{2 )j} for order parameters

' 
= 00eig x++2.The associated Landau free energy is

F = dxi a(x)a 2 + b(x)a3 + c(x)a4 + d(x)(liV)1 2 12 + 1P2031 2 + I V3Vl$lI 2)

for some coefficients a(x), b(x), c(x), and d(x) that encode the lattice periodicity and

unit cell structure. To account for this, we choose their form as follows

a(x) = ao + a1  jeiG-x + E eiGj -(x+Rk) +

j,k

where G are the reciprocal lattice vectors, Rk measures the distance between neigh-

boring Ti and Se sites, and -y depends on the electron-phonon coupling.

The free energy becomes

3 2133F = 3ao 02+a1'2(1 -y) cos(2#j) + 3(15co+8do)04+3 C2 -- +
2 2

(4.1)

We obtain two ground states by minimizing (4.1) with respect to 5j. The first

corresponds to a regular non-chiral phase with q1 = q2 = #3 = !. The second

solution has #1 = , # 2 = -03, and 03 = 1/2cos-[(3c 2#02 - 2a 1 (1 - -))/(6C2#0)].

This is the chiral phase in which there is a relative phase between the Qj. The free

energies associated with both configurations are

F3onchiral = ao + 3(15co + 8do)44 2 ai,/0(1 - _Y) + 9 o4

3 3 a 2(1 -- _)2 9
Fehiral =-ao + -(15co +8do)(4 1 - ' 4

2 0 80 62 8 6c2 0
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Because the chiral phase requires a nonzero 4'o, the system must first transition

into the non-chiral phase before acquiring chiral order at a lower temperature Tchiral.

Assuming ao = (T - TCDW) + a,(1 - -y) encodes all the temperature dependence of

the system, and minimizing F with respect to o, the chiral state becomes more en-

ergetically favorable when V= 2 a(l-) . Therefore, the chiral transition temperature

will be

Thiral =TCDW - a,- )(15co + 8do + 6c 2 )
9ac2

d2 F2

The second derivative of the free energy dT2 is discontinuous across Tchiral, so the

transition from normal charge order to a chiral state is of the second order. The chiral

transition temperature of 183 K observed by Castellan et al. is in agreement with this

model.

4.4 The CPGE as a Probe for Chirality

The two experiments probing the chiral CDW in TiSe 2 were insufficient to prove

its existence. The STM experiment by Ishioka et al. was only sensitive to surface

features, did not observe a phase transition, and was contradicted by another STM

study. The experiments by Castellan et al. provided evidence for a phase transition in

addition to the well-studied CDW one, but they failed to probe the resulting state's

chirality. We propose to show the emergence of a chiral phase by using the CPGE.

Because the CPGE is sensitive to broken symmetries, it should be able to detect

the lack of inversion, all mirror, and roto-inversion symmetries that is characteristic

of chiral systems. Additionally, it can be easily performed at various temperatures,

which would allow us to probe the transition and identify Tchiral. In the next chapter,

we describe in more detail the CPGE and its capabilities.

4.5 Degradation

TiSe2 has been shown to oxidize under ambient conditions, manifesting as a suppres-

sion of the CDW [11]. Sun et al. found that as-exfoliated flakes between 5-8 nm thick
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were fully degraded by the time they measured them as they did not show any CDW

transition. In flakes of thicknesses between 8-20 nm, they found that the resistivity

increased in time until the samples became fully insulating after about 15 days, as

shown in Figure 4-10 for an 11 nm flake. Thicker flakes were much more robust and

their CDW properties persisted for months.
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Figure 4-10: Room temperature resistivity as a function of time (in days) for an 11
nm TiSe2 thick flake. The resistivity shows a clear increase around 12 days, and a
large spike after 15 days. Figure adapted from [11].

Figure 4-11a,b shows the transmission electron microscopy (TEM) image of a

TiSe2 flake. After one month, the effect of the degradation is apparent given the

visible change in the contrast of the TEM images. This is further suggested by

Figure 4-11c,d, which shows the atomically resolved high-angle annular dark-field

scanning TEM (HAADF-STEM) images for the same flake. Right after exfoliation,

the TEM can clearly capture the individual Ti and Se atoms present in the lattice.

After a month, however, the pattern is no longer visible and the image resembles the

white noise pattern, indicating the previous order was lost and that the structure has

become amorphous.

The suggested mechanism is an oxidation-selenium intercalation. The 02 in the

atmosphere reacts with the surface layers to form TiOSe 2 ,. Eventually, the unstable

Ti-0-Se bonds break naturally, and the Ti atoms become TiO 2 as the Se atoms are

pushed in between the layers. The accumulation of Se widens the gap between layers,

allowing 02 to creep in and further oxidize the sample. The process continues until

the TiSe 2 has fully degraded into amorphous TiO 2 and pure Se. Thus, for bulk flakes,
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Figure 4-11: Degradation in TiSe2. (a),(b) TEM images of TiSe2 mounted on Si3 N 4
shortly after exfoliation and after a month of exposure to air, respectively. The insets
are selected area diffraction patterns taken inside the white circles. (c),(d) HAADF-
STEM images in a smaller area after exfoliation and after a month of exposure. The
inset of (c) is a color view of the STEM image. Figure adapted from [22].

the process begins on the surface and slowly spreads inwards.
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Chapter 5

The Circular Photogalvanic Effect

The circular photogalvanic effect (CPGE) will serve as the probe for studying the

chiral CDW transition in TiSe2 . Here, we describe what the CPGE is, highlight an

experiment where it was used to measure particle chirality, and describe specifically

how it is should be sensitive to chiral ordering in TiSe 2.

5.1 Phenomenology

The CPGE is characterized by the emergence of photocurrents in response to circu-

larly polarized (CP) light. It can be phenomenologically described by

Ja = qa3y(W)EO(W)E* (W) (5.1)

where the indices run through the crystal axes {a, b, c}, J, is the photocurrent in

the a direction, E is the electric field from the laser light, w is the light frequency,

and 7,3y is a rank-3 tensor called the second-order optical susceptibility [121 [28].

The imaginary part of %0p, gives rise to the CPGE. Importantly, ',py is intrinsic

to the system and encodes its symmetries. Thus, the CPGE can be understood

by considering broken or absent symmetries regardless of the specific microscopic

phenomena at play. For example, 71, must vanish if the crystal is centrosymmetric,

so no CPGE would be observable. The presence of any mirror symmetry Mi requires
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that %, be zero if it contains an odd number of the i index.

The tensor 77,, can be expressed as

ire3  ~ Am~~m~m h-~m,70 '_Y a yl ri 6(h ym~ (5.2)

where V is the system volume, E,,mn = Ey,m - E7,n is the difference between the

band energies, fn^[m = f f is the difference between the Fermi-Dirac distributions,

r-y,nm = i (nj0, im) is the Berry connection across the gap, Za\m = Oy Ey,nm/h, and

h is the reduced Planck constant [291. Equation 5.2 captures part of the microscopic

picture behind the CPGE, as it explicitly depends on band energies, carrier distri-

butions and the Berry curvature, meaning the CPGE can also provide information

about these quantities and not just about broken symmetries.

5.2 CPGE in Weyl Semimetals

The power of the CPGE can be best illustrated by briefly highlighting experiment

in which it was used. Ma and Xu et al. used the CPGE to measure the chirality of

Weyl fermions in tantalum arsenide (TaAs) [12]. In condensed matter systems, Weyl

fermions are quasiparticles that act as sources or drains of Berry curvature. Because

of their chirality, right/left circularly polarized (RCP/LCP) light can only excite

RCP/LCP Weyl fermions. Figure 5-1 shows the photocurrent data for this system

along two different crystal axes. In Fig 5-1a, the CPGE is allowed by symmetry,

and we see that the photocurrent oscillates as the light polarization switches between

RCP and LCP. Figure 5-1b shows the lack of a CPGE along a different crystal axis.

TaAs has a mirror symmetry that forbids the CPGE along this direction. The different

curves with different offsets in both (a) and (b) arise from the thermal currents excited

by shining the laser on different sample spots. Using this data and knowledge of the

crystal symmetries, Ma and Xu et al. were able to extract the exact contribution from

each Weyl fermion and independently determine their chirality.
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Figure 5-1: The CPGE in the Weyl semimetal TaAs. (a) The CPGE along the -b
direction, allowed from symmetry considerations. (b) No CPGE is observed along
the c direction since it is forbidden by symmetry. Figure adapted from [121.

5.3 The CPGE and Chiral Charge Ordering

The CPGE in any direction is forbidden in bulk TiSe2 because the crystal is cen-

trosymmetric, both in its normal and non-chiral CDW phases. However, the chi-

ral phase spontaneously breaks inversion, all mirror and roto-inversion symmetries.

Therefore, chiral-ordered TiSe 2 should exhibit a polarization-tunable photocurrent

along the the out-of-plane c axis. Additionally, the CPGE measurements can be

readily performed at different temperatures in a cryostat, so we can determine the

chiral transition temperature by looking for the onset of the CPGE as a function of

temperature.

The CPGE measurements would conclusively show the existence of the chiral

CDW phase and is not hindered by the issues in the experiments performed by Ishioka

et al. and Castellan et al. [71 [9]. An out-of-plane CPGE in the absence of an in-plane

response is unique to the chiral CDW order that has been proposed. Furthermore,
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laser light can penetrate through the whole sample and excite the bulk electronic

states, meaning that the CPGE is a result of chiral order persisting throughout TiSe 2

and not a surface effect.
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Chapter 6

Device Fabrication

6.1 Bottom Contacts

Because the TiSe 2 samples are nanometer-sized and sensitive, it is impossible to

directly contact them with wires to measure their electrical properties. Instead, we

create bottom contacts on the size scale of the flake, which extend out into large pads

that can in turn be bonded with wires. First, the pattern has to be etched on the

substrate in order to subsequently evaporate the metal and create the electrodes [30].

6.1.1 Electron Beam Lithography

To etch the desired pattern, first we cover a SiO 2 substrate with a layer of poly(methyl

methacrylate) (PMMA), as shown in Figure 6-la. PMMA is sensitive to high-energy

electrons, so a desired pattern is created by selectively shining an electron beam on

those areas, as depicted in Figure 6-1b, in a process referred to as electron beam

lithography (EBL). The electron beam etches away the irradiated PMMA, and leaves

behind the contact outline.

6.1.2 Metal Deposition

Next, the sample is held under high vacuum over a PdAu alloy. The metal is heated

with an electron beam until it sublimates and deposits on to the substrate, as illus-
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Figure 6-1: (a) SiO 2 substrate covered in PMMA. (b) A specific region of PMMA
is etched away with an electron beam. (c) Sublimated PdAu alloy (in yellow) is
evaporated on to the surface of the SiO 2 and PMMA. (d) The PMMA is dissolved
with acetone, leaving behind the metal that was in contact with the substrate.

trated in Figure 6-1c. The process can be carefully controlled to evaporate precise

thicknesses.

Once the whole sample is evenly covered with around 20 nm of the alloy, the

substrate is submerged in acetone to dissolve and wash away the PMMA. Thus, only

the PdAu that was in direct contact with the SiO 2 remains on the chip, as shown in

Figure 6-1d, and the contact geometry is successfully attained.

6.2 Exfoliation

Mechanical exfoliation is the process by which sticky tape is used to peel off layers of

bulk crystals and generate suitable flakes for experimental studies. Below we describe

the procedure and considerations for the three 2D materials needed for our fabrication:

TiSe2 , graphene and hexagonal boron nitride (hBN).

6.2.1 TiSe 2

To obtain suitable TiSe2 flakes, we mechanically exfoliated bulk crystals with sticky

tape. Although generally used to obtain ultrathin flakes in the few nanometer thick-

ness range, it readily works for attaining bulk flakes in the 100 nm range, appropriate
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Figure 6-2: Photograph of the Jarillo-Herrero group's glovebox. The atmosphere
inside is pure argon, and the H20 and 02 levels are kept below 0.1 ppm. (a) The
vacuum chambers used to take materials in and out of the glovebox. (b) The platform
and microscope used for exfoliation and flake hunting. (c) The transfer set up used for
pick ups and transfers. Both the microscope and the transfer set up can be remotely
controlled with computers (not shown here).

for this specific experiment. The sticky tape technique is preferred over other exfo-

liation and growth methods because it typically produces high quality samples with

minimal contamination.

As explained in Section 4.5, TiSe 2 readily degrades under atmospheric conditions.

For this reason, TiSe2 is handled inside a glovebox with an argon atmosphere, shown

in Figure 6-2. Pumps and filters keep the 02 and H 20 levels well below 0.1 ppm,

ensuring samples are well protected from degradation. In the event of a leak, the

application of a negative pressure gradient will push out the argon and prevent (or

slow down in case of serious leaks) the intrusion of air until the issue is resolved (this

is also what causes the gloves to stick out).

Figure 6-3 shows the exfoliation process as performed outside the glovebox and

with graphene for clarity, although the process is identical when done inside the

glovebox and with TiSe2. Figure 6-3a shows the bulk crystal source used for the

illustrative exfoliation. We start by placing a small piece of the bulk crystal on a
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Figure 6-3: A typical exfoliation. (a) A bulk graphene crystal used for the exfoliation.

(b) A small piece of the bulk crystal placed on tape. (c) The tape and exfoliated

graphene after folding the tape on itself several times; the SiO 2 substrate that will

be used is also shown. (d) The tape pressed down on the substrate with fingers and

teflon tweezers (shown at the top). (e) Peeling off the tape in order to deposit the

exfoliated flakes on the chip. (f) An optical microscope image of the exfoliated chip.

The inset shows a camera photo of the exfoliated chip.

piece of tape, as shown in Figure 6-3b. Next, in Figure 6-3c, the tape is folded on

itself several times in order to peel off the top layers of the bulk crystal and spread

the flakes evenly throughout the surface. Generally, denser exfoliations are better

for increasing the yield of desirable flakes. Next, the tape is placed on a silicon chip

and pressed on with fingers and teflon tweezers, as in Figure 6-3d. Afterwards, we

slowly peel off the tape as depicted Figure 6-3e. During the final step, some of the

top layers of the exfoliated source will be deposited on the SiO 2 . Figure 6-3f shows

the exfoliated chip under a microscope, where flakes of varying thicknesses can be

seen. The inset of 6-3f shows the chip, and, looking closely, it is possible to see very

thick flakes that were left behind by the tape.

Using an optical microscope, we can scan the surface of the silicon chip and search

for suitable flakes. Different thicknesses will interact with light differently, thus ex-

hibiting different colors. Therefore, flake thickness can be reliably determined via op-

tical contrast. In most TMDs, thinner flakes will look somewhat purple, and thicker

flakes will appear yellow. Optical contrast is best suited for determining the thick-
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Figure 6-4: (a) Bulk TiSe 2 source, courtesy of the Gedik group. (b) The TiSe2 flake
used for Device 3.

ness of few-layer crystals since the change in color is significant in this regime. For

thicker ones, it is more difficult to determine the specific number of layers, although

this is generally not an issue since bulk properties will not depend sensitively on layer

number.

For our experiment, we are interested in bulk flakes around 100 nm thick (light-

yellow color, see Fig. 6-4b) because the objective is to measure the out-of-plane

current from the bottom to the top of the sample. Furthermore, large-area flakes

are preferred over smaller ones so local regions can be probed with the laser. Lastly,

we aim for flat surfaces in order to avoid surface defects and to facilitate the other

fabrication steps. Figure 6-4 shows the bulk TiSe2 source used for exfoliation, and

the flake used for one of the devices.

6.2.2 Graphene and hBN

Next, we need graphene and hBN flakes. Although graphene has many exciting

properties and is the subject of much ongoing research, its use here is simple: as the

top metal contact. As explained in Section 6.1, we make our bottom contacts by

etching a pattern and evaporating PdAu on to the SiO 2 chip. Afterwards, the TiSe 2

is transferred on to the substrate (detailed in the Section 6.3). Direct etching and

metal deposition on to the sample could damage it. Therefore, it is best to transfer

the graphene flake on to the TiSe2 and connect it to the already deposited metal
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contacts. Because graphene is an excellent conductor and a layered 2D material, it

will both have a clean interface and will make good contact with the sample.

To obtain high quality crystals, graphene is exfoliated as in Secton 6.2.1. However,

now few-layer flakes that can cover all or most of the TiSe 2 sample's surface area are

preferred. Furthermore, graphene is not air-sensitive so it can be handled outside of

the glovebox.

In addition to graphene, hBN is used for sample encapsulation. This 2D material

is insulating, and a large-area flake with a thickness of around 20 to 30 nm is used to

cover the whole sample (or, at least, the area contacted by the graphene) to protect

it from the outside environment. This step allows us to take the finished device

outside the glovebox and load it into the cryostat without worrying about short-term

degradation.

6.3 Transfer

After finding appropriate flakes, they are picked up and transferred on to the pre-

made gold contacts. Meanwhile, we have to ensure the process does not damage or

contaminate the sample. Luckily, clean and efficient transferring is possible thanks

to polycarbonate (PC) slides [311.

6.3.1 PC Slide Fabrication

To fabricate a PC slide, we begin with a clean glass slide and deposit a few drops of a

6% solution of PC on the surface using a pipette. Then, another glass slide is placed

on top, which helps the PC to spread evenly along the slide. Once it has spread

thoroughly, we quickly slide the top one off, leaving behind an uniform surface of PC

that quickly dries and solidifies.

Next, we cut a small square of polydimethsylsiloxane (PDMS), a transparent,

flexible organic compound, and place it on another clean glass slide. The PDMS

serves as an elevated surface to facilitate the pick up and transfer of flakes.

Afterwards, we puncture a hole just slightly larger than the PDMS into a piece of
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tape. We place the tape on the PC-covered glass slide, ensuring the hole is aligned

with a smooth and clean area, and gently peel it off along with the PC.

Finally, we align the hole in the tape with the PDMS on the other glass slide,

and place it down ensuring a smooth interface between the PDMS and PC to avoid

wrinkles. Thanks to the elevated PDMS, there is now a PC "bubble" around it that

can be used to pick up and transfer nanoscale flakes.

We find that the PC becomes stiffer as time passes, making them harder to use.

Thus, it is best to use slides that are no more than 2 to 4 weeks old. Furthermore, the

stiffness and stickiness of the PC is heavily dependent on the atmospheric moisture

at the moment of fabrication. Generally, the more moisture in the air, the better the

quality. The problem can be ameliorated on drier days by allowing the PC to dry on

top of a damp wipe for 10 minutes while covered with a Petri dish.

6.3.2 Transfer Set Up

First, we describe in detail how pick ups and transfers are performed for a general

flake, and then we elaborate on the nuances of our specific device. To perform a

pick up and/or transfer, the PC slide and exfoliated substrate are mounted on to a

transfer set up as shown in Figure 6-5. The apparatus allows for precise control over

the position of both components. With a built-in optical microscope, the surfaces

of the PC slide and substrate can be visualized, making it possible to carefully align

flakes in the case of multi-step pick ups. The substrate stage also has a built in heater

to control the temperature during the process.

6.3.3 Pick up

Once the PC slide and target flake are aligned as desired, we lower the PC slide tilted

at a 2' to 4' angle until it makes makes initial contact with the substrate. The tilt

is necessary to ensure the PC does not suddenly touch at an unexpected spot, as the

slight angle guarantees the edge will touch first.

Figure 6-6a-c show a pick up as seen from the microscope in the transfer set up.
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Figure 6-5: (a) The Jarillo-Herrero High-Precision Transfer Set Up (b) Close up of
the microscope, substrate and PC slide. (c) The temperature control box.

After the initial contact, we bring the PC wavefront close to the flake by lowering the

slide. Once it is close enough, the sample is heated for two purposes. First, the heat

will cause the the PC and PDMS to expand and pass over the flake in a more controlled

manner than might be otherwise achievable with the mechanical motor. Secondly,

the stickiness of the PC increases as a function of temperature, so it is necessary to

heat up to between 95'C and 105'C in order for the PC to become adhesive enough

to actually pick up the flake. It is possible to go to higher temperatures for more

difficult pick ups, but that includes the risk that the PC will stick to the substrate.

We allow the system to heat at the target temperature for around 3 minutes to

ensure good contact and thermalization. To disengage, we turn the heat off and let

the PC smoothly contract on its own over the desired flake. After it disengages,

we use the motor to pull the rest of the PC slide up until it is longer touching the

substrate. It is best to disengage between 60'C and 900 C; below that range, the PC

becomes too stiff and could either fail to pick up the flake or rip. Ideally, the flake

will stick to the PC and the pick up is successful. If it fails, it is possible to try
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Figure 6-6: A graphene pick up and transfer on to a new subtrate. (a) The PC
wavefront is brought close to the target graphene flakes in the center. (b) The
substrate is heated, causing the PC to expand and envelop the graphene. (c) The
chip is allowed to cool, which causes the PC to retract over the target flakes. Note
how the color contrast of the top flake has changed, indicating it was successfully
picked up, while the bottom flake was not. (d) The PC slide used to pick up the
graphene is heated to 165'C on a new substrate. (e) After thermalizing, the PC is
lifted up until it separates from the PDMS. (f) The PC slide is further lifted up until
the PC rips from the PDMS and sticks to the substrate, successfully completing the
transfer.

again with the same slide but by heating to a higher temperature and/or letting it

thermalize for a longer time. If that does not work, a different PC slide should be

used. In some cases, degradation will cause the flakes to stick very strongly to the

substrate and make them impossible to pick up, so it is best to use freshly-exfoliated

flakes whenever possible.

Lastly, only if the transfer set up is precise enough, it is possible to perform the

pick up by first heating the substrate to the target temperature and then using the

mechanical motor to slowly engage the flake. In our specific case, this latter method

seems to work better for pick ups performed in atmospheric conditions, while the

heat-engage procedure above works better inside the glove box. Whether this is due

to some difference in the transfer set ups or due to the different environmental factors,

we do not know.

Multiple pick ups can be performed with the same PC slide to make stacks in cases

where different materials are required for the final device. Naturally, the topmost

flake in the stack is picked up first, and the bottommost is done last. In fact, this
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method is preferred over pick ups and transfers with different PC slides, as it shortens

fabrication and minimizes the risk of contaminating the sample.

6.3.4 Transfer

Once all the pick ups are completed and the stack has been prepared, we mount the

target substrate on the transfer set up. We align the stack with the bottom contacts,

and lower the tilted PC slide until the edge makes contact with the chip. Again, the

SiO 2 is heated so the wavefront smoothly engages the stack. However, for a transfer,

it is necessary to heat up to at least 160'C in order for the PC to stick well to the

substrate. Figure 6-6d-f show a transfer as seen from the microscope in the transfer

set up

Once at 160'C, we slowly pull the PC slide up with the mechanical motor until

the PC detaches fully from the PDMS. Now, the PC needs to fully rip from the slide

and stay on the substrate. To achieve this, we move the slide in the x-y directions,

stretching and ripping the PC. Care must be taken because too much pulling will lift

the PC off the substrate and carry the stack away with it. If the PC does not rip, the

slide can be slightly lowered so that the stretched PC folds on to the heated substrate

and becomes easier to tear. Additionally, higher temperatures will make the process

easier, but the higher heat can damage sensitive materials. After the sample has

cooled back down to room temperature, we submerge it in chloroform for 30 minutes

to 2 hours in order to dissolve the PC.

6.3.5 TiSe 2 , Graphene and hBN

For the fabricated devices, the TiSe2 was picked up and transferred independently,

even though it is at the bottom of the stack, because bulk flakes are generally harder

to pick up and could crack the thinner flakes that make up the top part of the stack.

The PC was dissolved normally.

Next, we made a graphene/hBN heterostructure by first picking up the top hBN

and then the graphene. Subsequently, the stack was transferred on to the TiSe2 and
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Figure 6-7: The four devices that were fabricated and measured. Yellow: TiSe 2, pink:
top graphene, blue: top hBN, green: bottom hBN, black: outlines of bottom contacts.

the sample was again submerged in chloroform. Generally, more than one dissolution

can pose a problem, but bulk TiSe 2 is robust and more resistant to contamination.

6.4 Devices

Below we present the four devices we fabricated and measured. They all consist of a

TiSe2/graphene/hBN stack on top of 20 nm PdAu contacts.

6.4.1 Devices 1 and 2

Devices 1 and 2 consist of a large gold pad separated from a gold contact. The TiSe 2

flake rests on the large pad near its edge, and is connected to the other contact with

graphene. Thus, we can measure the current that flows from the bottom pad, across

the sample and out through the graphene (or vice versa), which corresponds to the

out-of-plane current.

There are a few flaws with the device geometry. First, the gold pad is unnecessarily
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large so it slows down fabrication. Second, it is difficult to perfectly align the TiSe 2

flake with the edge, so we must also use a bottom hBN to prevent the graphene from

shorting with the bottom pad. Lastly, and most importantly, the device geometry is

insensitive to in-plane currents. This is crucial, because a CPGE along the a-b plane is

not allowed by symmetry, so we must show that this is the case in the measurements.

6.4.2 Devices 3 and 4

Devices 3 and 4 correct the flaws from the first two samples. The bottom pad is now

much smaller, and the the addition of a Hall-bar contact geometry will allow us to

measure in-plane currents. Furthermore, no bottom hBN is necessary since there is

no danger of shorting.
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Chapter 7

Results and Analysis

7.1 Measurement Set Up

Figure 7-1 shows a schematic of the measurement system used. A CO 2 laser with

a photon energy of 120 meV reflects off a mirror into a linear polarizer. Next, it

reflects off a two-axis scanning mirror into a series of lenses that focus the laser on

the sample. Before reaching the TiSe 2 , the beam goes through a rotatable quarter

waveplate. When the quarter waveplate rotates relative to the first polarizer, the

light polarization changes from linear, to RCP, to linear, to LCP, back to linear, and

so forth. As the laser strikes the sample, it will generate a photocurrent that can

flow through the bottom contacts and into an external circuit that can capture the

signal. The two-axis scanning mirror can make small adjustments in the position of

the beam, providing the capability to scan the beam over the sample and generate a

photocurrent "map" such as that shown in Figure 7-2b. Additionally, the sample is

mounted inside of a cryostat through which cold helium gas can flow, providing the

capability to perform measurements down to 50 K.

7.2 Large Linear Photogalvanic Effect

We present data from Device 1, whose optical image is shown in Figure 7-2a. Figure

7-2b shows a typical CPGE "map" obtained when the laser spot is scanned across
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Figure 7-1: A schematic of the experimental set up. A CO 2 laser with an energy
of 120 meV goes through a polarizer, shines off of a two-axis scanning mirror and
passes through a quarter waveplate before striking the sample. The polarization of
the light can vary between linear, RCP and LCP as the quarter waveplate rotates
relative to the first polarizer. The two-axis scanning mirror can control the position
of the laser spot. Lastly, the bottom contact and top graphene are connected to an
external circuit to measure the photocurrent. The device is kept under vacuum and
in a cryostat where the temperature can be varied.

the sample and the photocurrent is measured as a function of position. Observe how

there is a nonzero response only where the graphene contacts the TiSe2 since that

is the only area where current can be measured. The photocurrent response along

the dashed black line is shown in Figure 7-2c,d at 250 K and 150 K, respectively. At

250 K, there is a periodic modulation with maxima corresponding to linear polarized

(LP) light, evident in the line-cut data points from the dashed line. The response is

due to the the linear photogalvanic effect (LPGE), the LP analog of the CPGE.

At 150 K, below the expected chiral transition temperature, the LPGE is still

present, and there is no CPGE. However, the lack of a response to CP light can be

explained by the two-fold degeneracy of the chiral ground state [10]. In the absence of

an external excitation, the CW and CCW states have the same energy, so at Tchira1,

where the system is forced to pick a certain orientation, it will presumably choose

one or the other with equal probability. Therefore, it is natural to assume that there

will be an equal number of LCP and RCP domains, whose photocurrent response

would cancel each other out and generate a net zero CPGE. Furthermore, although

the presence of the LPGE is unexpected, its emergence both below Tchiral and above
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Figure 7-2: Photocurrent response of TiSe2. (a) Optical image of the measured device
with outlines provided for the top graphene and bottom hBN flakes. (b) A photocur-
rent "map" showing the response intensity when the laser shines on a specific position
of the sample. There is only a nonzero response where it would be measurable: the
contact between the TiSe 2 and graphene. (c,d) Top: photocurrent along the dashed
line in (b) as a function of polarization at 250 K and 150 K, respectively. Bottom:
Line cut from the dashed line in the top frame.

TCDW suggests that the underlying mechanism is unrelated to charge or chiral order.

Nevertheless, to properly understand the nature of the chiral CDW phase, we must

find a way to both suppress the LPGE and to amplify the CPGE.

7.3 Chiral Training

It is possible to favor the formation of the CW or CCW chiral phases by breaking

the ground state degeneracy. This can be achieved by cooling the sample past Tchiral

while exposed to light of the corresponding chirality, effectively training the system.

Figure 7-3 shows the training data for both LCP and RCP light. After cooling down

the sample to 50 K, the photocurrent is measured as a function of photon polariza-

tion. After training with LCP (Fig. 7-3a-c) or RCP (Fig. 7-3e-g), the system shows
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Figure 7-3: Chiral training of TiSe 2. (a) The system is cooled from 250 K to 50 K
while shining LCP light on it. (b) Photocurrent intensity as a function of position
(vertical axis) and polarization (horizontal axis). (c) Photocurrent line cut along the
dashed line from (b). The CPGE is clearly observable. (d) Temperature dependence
of the CPGE as the sample is warmed after training. (e)-(h) Same as (a)-(d) but with
RCP training.

a CPGE response with maximum signal at the polarization with which it was trained

and no perceivable LPGE. This indicates that when the sample was cooled under

the influence of a chiral beam it preferentially selected the chiral-ordered state cor-

responding to the photon polarization. Further, the observation of the CPGE means

that the material remains in the trained configuration even after the polarization is

varied at a lower temperature, as opposed to changing its handedness.

Figure 7-3d,h shows the temperature dependence of the CPGE as the sample is

cooled under LCP and RCP light, respectively. Above 200 K, there is no CPGE.

Below 170 K, the CPGE is fully turned on and its amplitude does not seem to
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Figure 7-4: In-plane and out-of-plane photocurrents in Device 3. (a) Optical image of
Device 3 with overlayed flake images for clarity. The electrodes are labeled A through
H. (b) All data is taken after the system has been trained with RCP photons from 250
K down to 100 K. (c) In-plane photocurrent measured across C-H. (d) Polarization
dependence of the photocurrent at the blue, red and black points in (c). (e),(f)
Same as (c), (d) but measuring the photocurrent across C-D. (g) Global out-of-plane
photoresponse of the sample. (h) CPGE at the white-outlined circle in (g) (i) Power
dependence of the CPGE.

depend sensitively on temperature. The transition temperature, therefore, must lie

somewhere between 170 K and 200 K, in agreement with the 183 K observed by

Castellan et al. [9]. Note, also, how the CPGE is not sensitive to the regular CDW

transition, as expected, which should occur around 205 K.

All the data shown up to this point has come from Device 1. As explained in

the previous chapter, Devices 1 and 2 have the major flaw that they cannot detect

in-plane currents. So, although the system exhibits and out-of-plane response, the

possibility of an in-plane CPGE cannot be ruled out yet, which would violate the

chiral state symmetries. We now present data from Device 3, which can measure

in-plane responses thanks to the Hall bar geometry of the bottom contacts.
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Figure 7-4a presents an optical image of Device 3. The electrodes are labeled with

a capital letter A through H. The sample is trained with RCP photons and cooled to

100 K. Figure 7-4c shows the current map generated when the laser is scanned across

the sample and the signal from the in-plane C-H probes is measured. The signal is

zero almost everywhere except for a local (blue) minimum and a (red) maximum.

Figure 7-4d shows the polarization dependence of the current at the two extrema and

in between them (black). There is no in-plane CPGE on any of the three areas, as

expected from symmetry considerations. The results are reinforced by similar data

taken between probes C-D, shown in Figure 7-4e,f. The spatial variation of the current

is due to thermally excited carriers from laser heating, and does not intrinsically arise

from a photoresponse.

The out-of-plane CPGE is still present, shown in Figure 7-4g,h, as previously

observed in Device 1. The power dependence of the CPGE, after training, is shown

in Figure 7-4i. The maximum photocurrent increases with power, and an almost

null response at 3.7 mW suggests that is the minimum power needed to activate the

system. Further, the chiral domains could not be flipped by, for example, first training

with RCP photons, switching to LCP (or vice versa), and increasing the power. If

this occurred, then no CPGE would be observed, but a photocurrent modulation

was present up until the maximum power of 120 mW that the CO 2 laser can output.

Thus, the domain wall at low temperatures is stiff, although in principle it should be

possible to flip its chirality if a high enough power is used.

7.4 Chiral Transition

Theoretical models and previous experiments suggest that the transition into a chiral

state occurs below TCDW 191 [101. Therefore, the onset of the CPGE should begin

below the previously observed TCDW = 205 K, while the data from Figure 7-3 indicates

it should occur above 170 K.

The CPGE is not sensitive to the regular CDW transition, so instead we rely

on resistivity measurements to identify it. Figure 7-5a shows the resistivity versus
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Figure 7-5: CDW and chiral transitions. (a) Temperature dependence of the resis-
tivity in Devices 4, where the CDW transition is observed around 197 K. (b) Tem-
perature dependence of the maximum CPGE in Device 3 as the sample is warmed
up after being trained with 30 mW RCP light. (c) Normalized maximum CPGE as
a function of temperature showing the power variation of the chiral phase transition.

temperature for Device 4. The sample exhibits a kink around 197 K, confirming the

CDW phase transition. It is slightly lower than the accepted value of 205 K, likely

owing to stoichiometric variations in the crystal growth or defects introduced during

fabrication.

Next, the sample is trained with RCP light down to 100 K and the maximum

photocurrent is measured as the sample is warmed up. The results are shown in Figure

7-5b. As the temperature increases, the current decreases, indicating a weakening of

the CPGE. At around 174 K, the signal completely vanishes and the system has

transitioned into a non-chiral CDW state. Thus, we find that Thirat ~ 174 K, below

TCDW in agreement with previous experiments and theoretical predictions.

Figure 7-5c shows the normalized power dependence of the chiral transition. The

sample is trained with RCP light at 30 mW, and warmed up with different powers.

Tchiral depends slightly on the applied power; it is around 174 K for 60 mW and

almost 176 K for 3 mW.
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7.5 Discussion

As presented in Chapter 5, the expression for the CPGE is

J" = (7.1)

where the indices run over the crystallographic directions. TiSe2 only exhibits exhibits

an out-of-plane J, while Ja,b are both zero. The specific result can only be explained

by a lack of inversion, all mirror, and roto-inversion symmetries, a scenario unique

to chiral ordering. Therefore, the observed CPGE has to arise because the system

attains a chirality, and not due to some other mechanism.

Furthermore, we were able to train the chirality of the phase by cooling down

under the influence of CP light. After training, the samples showed different CPGE

behavior, dependent on the polarization, analogous to trained magnetic systems in

external magnetic fields. However, tight-binding models predict that the photocurrent

should not depend on the system chirality but only on the electron density, which is

the same regardless of the training. Nevertheless, chiral molecules exhibit chirality-

dependent electron transfer under the influence of CP light [32]. To understand the

phenomenon, consider a transport model where electrons tunnel across a potential

bridge from a donor site to an acceptor site. CP light will excite electrons in adjacent

sites with the same amplitude but different complex phase. Thus, as the electrons

travel across the bridge, they interfere with each other and lead to different final

acceptor amplitudes. Therefore, the photocurrent in TiSe 2 will depend on both the

chirality of the phase and on the handedness of the excitation. Given that both phases

are opposite, the CPGE should be reversed, as observed.

The fact that the chirality cannot be flipped at low temperatures suggests that

the domain wall is soft only near Tchiral. This is further supported by the observed

variation of Tchiral with laser power. Thus, flipping the domain chirality should be

possible within the temperature range of 174 K to 176 K, making it possible, at

least in principle, to observe a hysteresis loop within that range. However, those

measurements are technically challenging and were not undertaken in this study. To
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perform them, the sample would have to be trained with a certain power to low T,

and subsequently kept at 174-176 K while varying the polarization and power. The

experiment is left for the future.

The observation of a phase transition into chiral state is remarkable because

chirality is typically an intrinsic property. This means that TiSe2 spontaneously

breaks all mirror, inversion, and roto-inversion symmetries at Tchiral, and enters

a gyrotropic state. Spontaneous gyrotropic ordering has also been suggested in

cuprates [33] [34] [35]. This further suggests that TiSe 2 breaks time-reversal sym-

metry, and could be further probed by looking for Kerr and Faraday rotations, an

effect that occurs when the linear polarization of incident light is slightly rotated

upon reflection or transmission, respectively.

We have observed gyrotropic ordering in TiSe 2, but the underlying mechanism

remains to be elucidated. One possible model is put forth by van Wezel (see Section

4.3), where the system undergoes simultaneous charge and orbital ordering, and so

the CDW vectors are rotated relative to each other in successive layers in order to

minimize the free energy. A second explanation could be that TiSe 2 becomes an

excitonic insulator (EI) [36] [37]. In an EI, excitons form due to thermal fluctuations

across a small band gap. If their binding energy is larger than the gap, then the

system is unstable and the excitons will condense into a coherent ground state. The

condensate will arrange itself along any of the three inequivalent directions in the

Brillouin zone, and so it is possible that the interlayer Coulomb interaction will cause

them to order in a chiral manner. Finally, another mechanism could be a combination

of spin-orbit coupling and strong electron-electron interactions [381. In such a system,

the CDW along each inequivalent direction will have a different spin polarization

due to the spin-orbit interaction, so chiral order could emerge as a combination of

interlayer Coulomb and spin effects.

Lastly, the origin of the observed LPGE remains unknown. It could arise from

the photon drag effect [39]. The phenomenon occurs when LP light transfers mo-

mentum to excited carriers. Therefore, even in a symmetric band, there will be a net

photocurrent arising from asymmetric momentum transfer. There could also be an
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induced asymmetry owing to the interface of the TiSe 2 with the graphene and PdAu

contacts. Nevertheless, why it emerges in untrained TiSe 2 below and above TCDW,

and why it vanishes after training with CP light, remain open questions.
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Chapter 8

Conclusion

We have fabricated TiSe 2/graphene/hBN devices in order to study the chiral CDW

phase in 1T-TiSe 2 . The symmetry breaking-sensitive CPGE was used to probe a

suggested chiral transition in the material, as chiral ordering implies that inversion, all

mirror, and roto-inversion symmetries are broken. Indeed, TiSe2 exhibits spontaneous

gyrotropic ordering at Thiral ~ 174K, below the well-studied normal CDW transition

around -200 K. Furthermore, the material was successfully trained using chiral light

into a system with like-handedness. No in-plane CPGE was observed below Tchiral,

guaranteeing the uniqueness of the out-of-plane photoresponse as originating from

chiral order along the crystal c-axis. The study is significant because it posits TiSe2

as one of the first systems that spontaneously attains chirality, a typically intrinsic

property. It opens up the door for studying a novel phase in order to elucidate how

electrons interact to form nontrivial phases of matter.

However, our study still leaves some unanswered questions. First, the mechanism

behind the chiral phase transition remains poorly understood. It can be further

elucidated by studying the system with a variety of techniques in order to search for

other signatures, like Kerr and Faraday rotations. Secondly, it would be interesting

to see whether the system exhibits hysteresis, in other words, if the domain walls can

be flipped after they have been trained. Lastly, the mysterious origin of the LPGE

and its strange behavior poses a further problem that needs to be addressed.

Future directions remain to be explored with regards to the chiral phase. This
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study focused solely on bulk TiSe 2, whereas the effects of reduced dimensionality are

yet to be explored. Does the chiral phase exist in the ultrathin limit? How does

the chiral phase transition depend on thickness? Additionally, superconductivity has

been observed in TiSe 2 under pressure and when intercalated with copper [40] [41].

How a chiral structure interacts and competes with the formation of Cooper pairs

is an interesting question. Lastly, other TMDS such as TaS2 have a charge ordered

phase at low temperatures, so similar systems can also be studied to understand

whether the formation of chiral CDWs is more prevalent in 2D systems.
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