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Abstract

The concept of positional information was introduced to qualitatively explain how
individual cells are involved in forming patterns. Recent experimental and theoret-
ical developments have made studying specific biological systems in a quantitative
manner possible using the framework of positional information. Much previous work
has focused on using the full gene expression profiles when calculating the available
positional information. In an attempt to simplify the model a discretized version,
where the gene expression profiles are simplified to a binary system, was proposed.
Binarizing, however, results in a significant loss of information over using the full
profiles. The question remains how coarsely can we discretize the full model without
losing essential positional information.

Recent work has shown the importance of concentration gradients in impacting
the folding of proteins during embryonic development. Based on this work we posit
that the gradients of gene profiles might be an important addition to the discretized
model. Using data provided by the Gregor lab at Princeton University we test this
hypothesis on the gap gene network of Drosophilia embryos. In order to implement the
addition of gradients to the positional information requires producing an algorithm
that can efficiently take meaningful derivatives of noisy data, which is done using
Chebyshev interpolation. An adaptation of Monte Carlo methods to find maxima of
multidimensional functions is also implemented.

We find that the derivatives can account for over one bit of the information lost
by the discretization process. Allowing the cells to locate themselves with an average
precision close to one internuclear spacing. This suggests that a binary model using
gradients may be almost as efficient as the model that uses the full gene profiles. We
propose that a discrete model of positional information that includes gradients does
not lose significant information over a model that uses full profiles.

Thesis Supervisor: Professor J6rn Dunkel
Title: Assistant Professor, Department of Mathematics
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Chapter 1

Introduction

The study of how embryos gain their patterns and shapes has been a topic of interest

in developmental biology for many years. D'Arcy Thomson, reacting to the increasing

rise in the popularity of Darwin's theory of natural selection, in 1917, was one of the

first people to use fundamental principles to prove physical limits on possible biolog-

ical shapes [2]. Thomson showed how simple physical and mathematical techniques

could answer questions that would otherwise have required knowledge of complex bio-

logical systems [24]. Since then many physicists and mathematicians have tried to use

physical reasoning to explain complex biological systems. Erwin Schrddinger [21] fa-

mously lay out another framework for considering biological systems in his short book

What is Life? published in 1944. Schr6dinger used concepts from quantum physics

and statistical physics to try and understand a broad range of biological systems from

consciousness to the hereditary process.

Inspired by Thomson's work, Alan Turing set the theoretical foundation for the

field in 1952 when he showed that reaction diffusion equations of the general form,

= DV 2c + R(c), (1.1)at

where D is the diffusion matrix and R(c) is a vector function of the local concentra-

tions, could form patterned solutions [27]. As discussed in Green and Sharpe, Thring's

results are counter intuitive since diffusion is normally associated with the destruc-
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tion of peaks, which should lead to spatially homogeneous profiles [8]. The power of

Turing's work was that it showed, only assuming basic properties of chemical reac-

tions, that a spatially symmetric profile could evolve into an asymmetric one . Turing

introduced the word morphogen to describe a chemical substance that mediates the

production of a pattern. Turing's paper had little impact, however, until advances

in experimental and computational techniques made detailed studies of gene profiles

and the chemical reactions that govern them during embryonic development possible

[7, 151

Over a decade later, with Turing's work on pattern formation still not largely

utilized, a new way of approaching pattern formation was proposed: positional in-

formation. First introduced in 1969 by Lewis Wolpert the framework of positional

information does not aim to produce patterns from spatially homogeneous profiles.

Instead the framework asks how simpler patterns can be used to build more complex

ones [28]. The concept of positional information is to take previously existing inhomo-

geneities, for example a gene concentration profile along the length of an embryo and

use these to encode information for producing a new pattern. A major difference be-

tween Turing's reaction diffusion systems and Wolpert's positional information is the

introduction of an interpretation step in positional information, which in Wolpert's

own words leads to "positional information in general preced[ing] and [being] indepen-

dent of molecular differentiation" [281. This is not the case in Turing's work where the

pattern produced closely follows the pattern of the morphogens [291. The interpre-

tation step allows for the same positional information profile to ultimately generate

different patterns. It is important to note that the concept of positional information

does not attempt to answer how many parts of the development process happen, for

example how the gradient profiles that positional information relies on are produced

and maintained or how the interpretation step is implemented, instead accepting them

as given and leaving understanding them to different theories. [29, 30, 3].

While positional information provides a distinct new frame work to interpret pat-

tern formation, it was only used qualitatively for many years and it was not until

the last decade that a quantitative definition has been given [25]. With the advent
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of more advanced experimental techniques that allow for individual gene expression

levels to be measured over time, this new mathematical framework can be applied to

specific model organisms to test further the idea of positional information [6, 9, 5, 181.

Indeed Dubuis et al. found that, using the full gene expression profiles, the amount

of positional information available is consistent with cells being able to self locate

with a high degree of precision along the anterior/posterior length of the embryo [6].

They have also extended this work by proposing models that describe how the cells

can actually decode this positional information [18, 25J.

Another major consideration when considering patterns in biological systems is

the reproducibility of the pattern from embryo to embryo and also fluctuations within

the embryos themselves. There has been significant theoretical and experimental

work on understanding the role of noise and variability in biological systems in recent

years [26]. Lestas et al. [13], using an information theoretic framework, proved

fundamental bounds on the ability of a biological system to suppress variation that

changes as the quartic root of the number of signaling events in the control chain.

Experimentally, Gregor et al. have shown that there is reproducibility in the profiles

across Drosophila embryos [9]. It has also been shown, however, that around 20%

of variability between gap gene expression levels in Drosophila embryos cannot be

accounted for by experimental error [5]. This means that biological systems while

reproducible also contain inherent noise and any mathematical model must be robust

to noise or even exploit it. Indeed many systems have been shown to use noise to

their advantage, for example in stochastic resonance [10, 17]. The new mathematical

model for positional information explicitly take into account the role of variability in

determining positional information.

As mentioned, previous work on positional information has utilized the full gene

expression levels. There has been some suggestion, however, that cells might not use

the full profiles but instead use a thresholding mechanism [6]. With this mechanism

a region is considered only to be on or off based on the expression level. This is

supported by experimental work in C. elegans [23] and by the large role of allosteric

induction in biological signaling networks [19]. While potentially simpler to model, as

15



expected binary models have decreased information available and it has been shown

that using a binary threshold on the gap gene expression levels of Drosophila embryos

cannot account for the required amount of positional information for cells to locate

themselves [6]. The question remains what the most discretized model that still

maintains a significant amount of the positional information is.

Today the way that people see the relationship between Turing's reaction diffusion

systems and Wolpert's positional information is shifting. While once thought of as

opposing ideas that could not work in harmony, new work has proposed that the two

mechanisms may be able to work in conjunction [8]. The idea has many appealing

attributes: reaction diffusion can describe the generation of an asymmetrical system,

which has always been a challenge for positional information and positional infor-

mation brings flexibility and transferability, which reaction diffusion systems lack.

Turing's reaction diffusion model, described by equation (1.1), suggests that both

local interactions described through the R term and non-local interactions character-

ized by the derivative term are both important for the production of patterns. This

indicates that perhaps gradients should also be taken into account when considering

positional information.

In fact recent joint experimental and theoretical work between the groups of Adam

Martin and Jdrn Dunkel has shown the importance of gradients for the creation of

ventral furrows in Drosophila embryos [111. Based on this work the importance of

gradients has also been noted in recent continuum model simulations of embryogenisis

[12]. Inspired by these findings and equation (1.1) we posit that gradients might be

able to account for some of the information that is lost by binarizing the gene profiles.

Using data provided by Thomas Gregor's lab at Princeton university we can test

this hypothesis on the gap genes of Drosophila embryos using the recently developed

mathematical framework of positional information.
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Chapter 2

Mathematical preliminaries

2.1 Positional information: from a qualitative to a

quantitative description

A simple example of how positional information works is the French flag problem first

introduced by Wolpert [28]. The problem can be formulated as follows: consider a

one dimensional system which we want to divide into three equal sections each having

a different fate. Here the fates are the colors of the French flag (red, white and blue).

We assume that we have a monotonically decreasing concentration gradient caused

by some unspecified mechanism in the problem. We can define a co-ordinate system

based on this gradient using the left edge as the reference point and using the slope

of the line to tell us the polarity (direction from the reference point). A negative

slope means that we are moving left to right and a positive slope means that we are

moving right to left. In the French flag problem we need the coordinate system to

specify three distinct regions. Therefore we choose two thresholds say T and T2 such

that we can define the coordinate system as,

b ifc>T1

xpos 1w if T 1 < c < T 2 *

r if c < T2

17



A<

Clearly this will reproduce the French flag. The role of interpretation is clear to see

here as well. By using the redefinition b -+ g and r -+ o we can get the Irish flag or

with b -+ g the Italian flag. We demonstrate this whole process graphically in Figure

2-1. Clearly the same profile can be used to generate different patterns that require

the same amount of information as each other.

or

or

Figure 2-1: Graphical representation of how we can use an asymmetrical profile to
divide a line into three sections using the ideas of positional information. The asym-
metrical profile allows for the definition of thresholds that can be used to determine
position. The power of the interpretation step is that based on how we interpret the
profile we can get multiple "flags".

In computer science and statistical physics information is normally measured in

terms of entropy introduced by Shannon in 1948 [22]. For every binary decision ('on'

or 'off') we are able to make we associate one bit of information. If we had only

chosen one threshold then we would have split the domain in half which corresponds

to one bit of information; if, however, we were able to distinguish four total regions

then we would have a total of two binary decisions or 2 bits of information - we

can think of each of the four regions as being represented by a two bit string 00,

01, 10 or 11. In general if we have I bits of information then the are able to make

out 2' distinct regions. As will be helpful later we can also reformulate this in the

following way, given that we want to make N decisions then we need I = log 2(N)

bits of information.

18



In reality, however, as discussed in the introduction, there is variation in the

distribution that can limit the total amount of information available. For example

two states that differ by less than the variation would be indistinguishable. There

may also be more than one concentration profile that contributes to the total amount

of information. In this case we also have to consider the correlations between the

profiles. Perfectly correlated profiles would provide no new information making the

second profile redundant. As is discussed by Tkaeik et al. combining all of these

factors into a single number that can be defined as the positional information leads

to a formulation using mutual information [25].

2.1.1 Why mutual information?

The aim is to transform the qualitative description above into a mathematical one.

We can do this by defining the problem probabilistically. We consider a system where

N genes are of interest with gene expressions gi(x) that are functions of position. Then

due to the variability in expression we can think of the profiles as being drawn from

a probability distribution for g at a given value of x, P(gx), where P(AIB) repre-

sents the conditional probability of A given B defined as, P(AIB) = P(A, B)/P(B).

Experimentally we can produce from simultaneous measurements an N dimensional

histogram that gives us the probability of the total gene expression g at a given x.

From this probability distribution we can associate with each gene a mean value gi(x),

a variance ac(x) and between genes we can calculate a covariance matrix. These are

defined mathematically as,

= giP(glx)d'g (2.1)

or(x) = (gi - gi) 2 P(g x) dNg (2.2)

Ces(x) = (gigj - gg) 2 P(glx) dNg. (2.3)

It is worth noting that these are all functions of position. Thus P(glx) contains all of

the information that was discussed in the previous section. Since we are interested in
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the information content of this probability distribution a natural number to calculate

is the information entropy, the average amount of uncertainty we expect to have

given a measurement from the distribution, measured in bits. It is well known that a

uniform distribution, P(x) = 1/L - the distribution that intuitively should carry the

least amount of information - maximizes entropy to log2 (L). Mathematically entropy

was defined in Shannon's paper as [22],

S[p(x)] = - J dxp(x) log2(p(x)). (2.4)

Returning to our intuitive picture, positional information tells us how much our knowl-

edge increases, or entropy decreases, when we take into account the gene profiles.

When we know nothing about the genes the best guess we can make about the posi-

tion comes from the original distribution of cells Px(x), which we will often take to be

uniform. After taking into account the genes the probability becomes, P(x~g). The

gain in knowledge from the gene profiles at a given gene expression level is then,

S[Px(x)] - S[P(xjg)] (2.5)

which we can average over g to find the average total gain in information,

I(g -+ x) J dNgJ%(g)(S[PX(X)] - S[P(Xlg)]). (2.6)

Using the definition of entropy and conditional probability, we can rewrite this as,

I({gk} -+ x) = dgP(g)(S[Px(x)] - S[P(xg)])

= dx [-P(x) log2(P(x)) f dNgpg(g)P(xlg) 10 2 (P(Xlg))]

- dNg d P(x, g) log 2  (g) - P(x, g) log2 (Px(X))

= dNg dx P(x, g)1g 2  (X'g) (2.7)
J J P ( g) PX(X ) )
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which is symmetric in x and g and, therefore, we will label the positional information

as I(x, g) since the direction of the arrow does not matter. This is an excellent

property since in a cell we want to go from gene profiles to position but in experiments

we go from position to gene profiles. It does not matter with this definition, however,

which way we go when we calculate the positional information. Shannon also proved

that this quantity, commonly called mutual information, is the sole quantity that

completely quantifies the dependency of probability distributions on each other and

satisfies certain properties such as additivity [22, 251. Mutual information, therefore,

makes sense both on information theoretic grounds and intuitively as a mathematical

description of positional information.

2.2 Smoothing noisy data using polynomial interpo-

lation

In order to apply the concepts of positional information to experimental data it is

important to ensure that as much noise as possible has been removed from the gene

expression profiles. This will be especially important when we take derivatives where

noise adds arbitrary spikes to the profile. We are not trying to remove the embryo

to embryo variability here just identify a smooth underlying profile for each embryo.

One way to do this, which then provides simple ways to manipulate the profiles, is

with polynomial interpolation.

2.2.1 Polynomial interpolation

We assume that a gene profile can be described by some function f(x), which we as-

sume to be continuous on a region [a, b]. The goal is to find an analytic approximation

to this function. Experimental data provide us with a list of function values f(xi) at

a discrete number of points xi for i = 0, 1,..., N. Lagrange interpolation guarantees

that there exists a polynomial of degree less than or equal to N that goes through all

of the f(xi) and that this polynomial is unique. High order polynomial interpolation,
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however, suffers from Runge's phenomenon, which results in large oscillations around

the final few interpolation points [20]. Approximations to experimental data that pro-

vide on the order of 1000 interpolation points, like the data analyzed in this thesis, are

particularly prone to these effects, which leads to highly inaccurate approximations.

There are several ways to avoid this phenomenon. For continuous, twice differen-

tiable, 27r periodic functions, the Fourier series of the form,

N N

f(x) ce = + 1 [a, cos(nx) + b, sin(nx)] (2.8)
n=-N n=1

can be proven to converge to g(x) in the limit as N -+ 00. We can approximate

the coefficients cn from a discrete number of equally spaced function values using the

discrete Fourier transform [1, 16]. We do not, however, expect that the gene profiles

will be periodic and, therefore, cannot naYvely use Fourier transforms on the data.

2.2.2 Chebyshev polynomials

A simple approach can be used to make a function defined on the interval [-1, 1]

periodic; we consider instead the function g(O) = f(cos(O)). If a function is defined

on [a, b] then we can use a transformation to convert its domain to [-1.1]. The

function g(O) returns f(x) on the interval 0 E [7r, 0] and is periodic on the interval

[0,27r] due to the periodicity of cosine. We note that g(0) is an even function and,

therefore, the bn coefficients vanish, so that

g(O) = + an cos(nO) (2.9)
n=1

where we can write the formula for the coefficients a, as,

an j = g(0) cos(nO) dO = j g(0) cos(nO) dO. (2.10)
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The convergence of Fourier transforms then guarantees that the series will converge

to g(O). Making the transformation x = cos(9) in equations (2.9) and (2.10) yields,

(2.11)g(arccos(x)) f (x) -- a + a?.an cos(n arccos(x))
n=1

where, using dx = - sin(9) dO = -V1 - x2 dO,

an=-
7r 1

-1f (x) cos(n arccos(x)) dx =
#1-x2

2
-7 f-1

f (x) cos(n arccos(x))

1-2

equations (2.11) and (2.12) define the Chebyshev expansion of a function f(x). We

define the nth Chebyshev polynomial as,

Tn(x) = cos(n arccos(x)). (2.13)

These polynomials have several nice properties similar to sine and cosine that make

them particularly useful to work with. Since cosine is bounded so are the Cheby-

shev polynomials, jT,(x) I < 1. The Chebyshev polynomials satisfy an orthogonality

condition,

Tn (X)Tmn(X) dx
dX2=

j cos(n arccos(x)) cos(m arccos(x))
V--X 2

-= j cos(ny) cos(my) dy

7r for m= n

- ! for m = n

0 form # n

-0

740 (2.14)

In fact this relationship can be written in a discrete form. Replacing the integral with

a summation over the Chebyshev points, x, = cos(17r/N) for I 0,... , N, we find the

23
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discrete version of the Chebyshev orthogonality condition,

N

"Tn(X1)Tm(Xi)
1=0

N

E " cosQN)
1=0

1 + (-1)n+m

2

cos

I N-1

2 (
+ cos(n +r )lir

N

= N

0

for n = m = 0, kN

for n= m+2kN = 2kN - n# kN (2.15)

for n m

where we use E " to denote a summation where the first and last terms are halved

and the summation result,

cos (
N-1

exp ) 1

Re 1 - exp(inr)
1 - exp(Pf)

-1
l~N

=Reicot(g) = 0

N - 1

1

for n even

for n odd

for n = 0,2N, 4N,...

If our function is sampled at a finite number of points then we can use the discrete

orthogonality relation, equation (2.15), to find an approximation to the Chebyshev

coefficients, an.

2.2.3 Chebyshev interpolation

The Chebyshev interpolant of f(x) is the Chebyshev polynomial g(x) that equals

f(xi) at every Chebyshev point xi. We can therefore write the N + 1 conditions on
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the interpolating function as,

00

g(X) f(xj) = 'aTm(xi) (2.16)
n=0

where a single prime represents a sum with the first term halved. Given a function

evaluated at N + 1 Chebyshev points we will construct the Nth degree Chebyshev

interpolation function in the following way,

N

9'(X Z"nT.(X) (2.17)
n=0

where

2N
Ctn = "T (X1) f(X1). (2.18)

l=0

We can relate an to the an's using equation (2.16). Writing f (x) in terms of its

Chebyshev expansion we find,

N

an= NE"Tn(xi)f(x1)
1=0

2 00 N

San "Tn(Xi)Tm(Xi)
m=0 1=0

= cn(an + a2N-n a2N+n + a4N-n + a4N+n + (2.19)

where we have used the orthoganality condition to go from the second line to the

third line and as a short hand introduced the notation en 1 when n 74 0, N and

En = 2 when n = 0, N. From these we can see that [1],

-a= 2N + 4N + - (2.20a)
2

an- an= a2N-n a4Nn + -. ( -2.2Gb)

aN
2-y-aN =a3N &a5N +. .. (2.20C)
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We can use these relationships to find an expression for the error from using interpo-

lation through finitely many points to approximate a function . We define the error

in approximating the true function f(x) using interpolation as,

EN(x) If(x) - gN(x)

00 N

- Z'anTn - E"anTn(X)
n=0 n=0

N-1 00

2 + E (an - an)Tn(x) + aN - )anT
n-1 n=N+i

N-1 0N
a0< 0  an i + I aN ~ 1 E +1

2= n- =N+l

00

2 [ lan|. (2.21)
n=N+1

where we have used the triangle inequality and the fact that ITn(x) I 1 to get from

the third line to the fourth line and the triangle inequality applied to equations (2.20)

to get the last line.

The important consequence of equation (2.21) is that for very simple assumptions

on f(x) we can prove that gN(x) converges uniformly to f(x) so we do not have

to worry about Runge phenomena at the end points. Returning to equation (2.10)

and making the assumption that we are dealing with a function f(x) that is k times

differentiable we can integrate by parts to show that,

an = 2 g() cos(nO) dO ~ 0

where we have used the fact that the nth derivative of g(9) is periodic in 27r and

assumed that the final integral over the nth derivative is finite. This equation justifies

why a, is a good approximation to a, for suitably smooth functions. Substituting

this into equation (2.21) we get that,

E N ~ 2 n = + a1 = 
( +1 k) (2
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for large N. The importance of this equation is that by assuming the underlying

gene expression profile is suitably smooth we can approximate the function with a

high degree of accuracy using Chebyshev interpolation since the coefficients will decay

suitably fast. These interpolation functions can be created quickly using the Chebfun

package in MATLAB [4].

2.2.4 Using Chebyshev polynomials to smooth noisy data

Experimental data inherently have noise associated with them. The data points that

we use will not be for the profile we are interested in, f(x), but the profile and the

noise together, F(x),

F(x) = f(x) + 77(x) (2.23)

where 77(x) is the noise added to the signal. For the following analysis to make practi-

cal sense we must assume ji(x)I < if(x) 1, otherwise determining the signal would be

untenable. When we work with normalized signals, as we will here, this condition can

be expressed as If(x)I ~ 0(1) and l(x)I < 1. Considering the Chebyshev expansion

of equation (2.23) we can write,

00 00

1 bnTn(x) = 1 (an + $)Tn(x) (2.24)
n=O n=O

where the bn, an and $n are defined through equation (2.12) with the suitable function

F(x), f(x) or R(x) used respectively. We can use equation (2.10) along with the

triangle inequality to find a bound on the size of the Chebyshev coefficients n,

n j r(cos(O)) cos(nO) dO - j j(cos(O))| dO 2M < 1

where M = max_1<x< 1 7(x) < 1. We do not expect that the noise term will satisfy

the same smoothness conditions as the main signal and will not, therefore, have

high order continuous derivatives. As a result the coefficients will not decay as n is

increased but just be uniformly small. In contrast we expect the first few coefficients

an to be large and to decay as 0(1/nk) based on the smoothness of f(x).
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This splits the relation bn = an + , into three distinct regions. For small n

we expect a> and therefore that bn ~~ an. For large n we expect that the

an will have decayed suitably so that n > an meaning bn ~ n. There is also the

intermediate region where tan - Jnj where we have to use bn= a + n. From these

relationships we can see that the small n coefficients are dominated by the behavior

of the underlying signal and that the large n coefficients are dominated by the noise.

In order to recreate the original base signal then we want to keep enough terms

in the expansion that the shape and key features of the data are maintained but few

enough that the noise dominated terms are ignored, which means the noise signal from

the data is suppressed, similar to using a bandpass filter. This gives an expression

for the final Chebyshev approximation of the smoothed signal,

N,

A~X) ~*. fs(X) = ':,anTn(X) (2.25)
n=0

where the an's are calculated as in equation (2.18) and N, is the chosen cut-off

above which the coefficients in the expansion are ignored by setting them to 0. A

suitable cut-off for a given Chebyshev interpolation can be determined by studying

the magnitudes of the coefficients and how they decay .

2.2.5 Finding derivatives using Chebyshev polynomials

The power of approximating data using Chebyshev approximations is that given the

approximation of a function as in equation (2.25) the derivative can be calculated

from the coefficients analytically without the need for further numerical techniques

and expressed as another Chebyshev series. This series is given by [161,

dfs -N 11nn()
dx I T(x),

n=O

where the , are calculated from the an through the relationship,

3_1 - 3r+1 = 2ra,
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which can be written explicitly as,

n+1

=3r S 2kak
k=r 1dk-r odd

2.3 Markov chain Monte Carlo maximization

As part of the analysis we need to maximize the positional information over all possible

thresholding values. This is a high dimensional function calculated numerically. In

order to find an approximate maximum to such a function Monte Carlo methods

are used. In this section we briefly review the theory of Markov Chain Monte Carlo

(MCMC) and the implementation of the maximization algorithm.

Given a sequence of random variables, X1, X2, . . . , Xn, a Markov chain is defined

by,

P(Xn+lX, .. . , Xn) = P(Xn+l =Xn = j) (2.26)

which means that the probability of the next random variable depends only on the

previous random variable and not the entire history.

The main idea behind Monte Carlo optimization methods is to randomly sample

the function and retain the maximal value that is found. If the function is nayvely

sampled randomly from a uniform distribution over the domain then the algorithm

will not converge towards a maximum. The solution is to use a different probability

distribution that will converge to the maximum as the algorithm iterates. We choose

the probability distribution,

P(mn+1 = illn = j) in (1,) (2.27)

so that if i > j we always accept the change and if j < i we accept the change

sometimes with a probability that depends on how much smaller the value is. This

clearly satisfies the condition to be a Markov chain. The reason that we sometimes

decrease the value is so that the algorithm does not get stuck in a local maximum since

it can escape by coming back down. The new trial threshold values are determined
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from the old ones using a Gaussian distribution centered on the old threshold value

with variance a2 . The process is outlined below:

1. Set maximal mutual information, Imax = 0

2. Randomly choose a vector of threshold values for the profiles to

3. Threshold the profiles using t, and calculate the mutual information, I,

4. If , > Imax then set Imax =n, store tmax = t, and accept the new threshold

vector to, as the starting point for the next step

5. If In < Imax then calculate a =- < 1 and accept the new threshold vector

t, as the starting point for the next step with probability a

6. Create Gaussian profiles with mean at each of the values in t, and variance 02

and calculate t,+1 by drawing from these distributions

7. Repeat steps 3 to 6

8. Output Imax and tmax

Figure 2-2 shows how the algorithm jumps around randomly with an overall increase

to find a global maximum using the positional information of the four gene concen-

trations and their derivatives.

The convergence of the algorithm is dependent on the value of a. If the value is

too high the algorithm jumps around too erratically and never climbs to a maximum.

If, however, a is too small then the algorithm converges too slowly. The maximization

algorithm can be run multiple times with different values of a for optimal efficiency.

Initially a large value of a is chosen so that the entire parameter space is sampled.

Using the maxima found in the previous round as a new starting point a can be

decreased progressively so that the algorithm converges to the maximum value.
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Figure 2-2: MCMC results using the absolute value of the derivative profiles. Left:
zoomed in plot of the initial 5000 runs. Center: Full MCMC run. Right: zoomed in
plot around the maximum value obtained. The maximum point is indicated with a
red triangle. It can be seen that the algorithm frequently decreases before increasing
to a larger maximum. This illustrates the importance of allowing the algorithm to
occasionally accept a smaller value to escape a local maximum. Eventually it can be
seen that the algorithm converges, oscillating between two maxima a local one and
the global one.
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Chapter 3

Application to fruit fly embryos

3.1 The model organism and experimental results

It was believed early on that the Bicoid (bed) gene in Drosophila embryos is one

of the best candidates for a morphogen that encodes positional information [29].

We, therefore, use the Drosophila embryo as a model system for understanding the

role of positional information. In Drosophila embryos the body plan is determined

during the first 3 hours of development using a sequence of interacting genes [25].

Experimental work by Gregor et al. showed the reproducibility of expression profiles

between embryos [9]. We are concerned with the expression profiles of four gap genes

hunchback (hb), kriippel (kr), giant (gt) and knirps (kni) which can be used to define

a chemical co-ordinate system containing positional information. We use time series

data from Thomas Gregor's lab at Princeton University that simultaneously measured

the expression levels of these four gap genes. The system, full experimental set up and

initial data interpretation are described in detail in Dubuis et al. [5]. They showed

that during the 14th nuclear cycle the patterns generated were reproducible to within

one internuclear distance, which is why we predominantly study the system during

this time frame. The images recorded experimentally are clearest in the middle 80%

of the length of the embryo so we will often consider the data in this region and then

scale back to the full length.
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3.2 Initial data processing

The profiles for the four genes, kni, kr, hb and gt, are taken between 38 and 48

minutes into the embryonic development of wild type embryos so that we are in the

14th nuclear cycle. In total 25 different embryos are used. Each gene is represented by

a vector of values consisting of 1000 evenly spaced spatial points along the normalized

length from 0 to 1. As part of the imaging process there are small misalignments in the

different embryos. In order to account for alignment errors between different embryos

when they are imaged the profiles are shifted using a scalar product optimization.

We can interpret the scalar product between two vectors as a projection of one of the

vectors onto the other. From this we can see that the closer two vectors are to each

other the larger the scalar product between them. A buffer of zeros is added to the

start and end of each vector to allow for shifting the vector to the right and the left.

Starting with the first sample the following method is used,

1. Shift c%+1 to the left by 50 values to give ce

2. Take the scalar product with ci and c'+

3. If the scalar product is greater than previously keep the new vector

4. Decrease the shift by one place and repeat the process until you have shifted 50

to the right

5. Choose the shift value that maximizes the scalar product

6. Repeat the process with the next sample

The shift values are determined from one gene and then used for all genes since the

misalignment should be the same across all of the profiles because of the simultaneous

imaging. The results of this process are shown in Figure 3-1. After the realignment

the concentration profiles are normalized so that the mean profile for each gene ranges

from 0 to 1.
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Figure 3-1: Scalar product realignment on the kr gap gene profiles for 25 samples all

taken in the same time window, 38 to 48 minutes into development. Comparing the

figure on the left before optimization with the figure on the right after optimization

shows the power of the scalar product to align the respective peaks and produce
sharper edges in the data.

3.3 Smoothing the data

The data at this point contain noise, see the first image in Figure 3-3. Performing

numerical differentiation on the profile at this stage results in very jerky profiles that

cannot reliably be used in calculating positional information. The data need to be

smoothed before derivatives are taken in order for meaningful results to be obtained.

We, therefore, smooth the data using the Chebyshev technique outlined earlier. First

the edge values were discarded, since they contained values that were too low to be

detected reliably and, therefore, were recorded as Not A Number (NaN) in the vector.

A Chebyshev interpolant through the data for each sample and gene was then found

using the chebfun package in MATLAB [4].

In order to determine the exact value of the cut-off N, to use in the smoothed

Chebyshev approximation, as in equation (2.25), the mutual information between

the profiles was calculated for different values of the cut-off and the lowest value for

which the curve started to flatten off was used. The cut-offs were determined using a

threshold fraction. The cut-off is the smallest coefficient whose magnitude is greater

than the threshold fraction of the maximum coefficient magnitude. This curve can

be seen in Figure 3-2. How the mutual information was calculated will be discussed
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in the next section. From the results in Figure 3-2 we choose the threshold at a 55th

3.05
C T .

E *
4-

SE 2.95
E
E

R2.90.

2.85 V
10 20 30 40 50 60 70 80 90 100

threshold fraction

Figure 3-2: Plot of the maximum value of the information found using MCMC tech-
niques as a function of the threshold fraction that determines the cut-off N, for the
Chebyshev expansion. We can see that the curve begins to flatten off after a thresh-
old fraction of 55. This suggests that at this threshold fraction all the features that
are important in the calculation of positional information are retained. We, there-
fore, use a threshold fraction of 55 to determine the cut-off values for the Chebyshev
interpolations when smoothing the data.

of the maximum value of the coefficients. The smoothing process is demonstrated in

Figure 3-3. The key features are maintained in the resulting profiles used for further

analysis but the noise is reduced.

After the data have been smoothed using the Chebyshev polynomials the deriva-

tives of the data are then calculated directly. To illustrate the importance of smooth-

ing the data we also show the derivative of the unsmoothed profile and smoothed

profile in Figure 3-4. It can be seen that using the smoothed data for the derivatives

helps to remove unnecessary fluctuations due to noise.

The final aligned, smoothed and normalized profiles used for calculating the posi-

tional information are shown in Figure 3-5 along with the thresholds that are chosen

later to binarize the profiles with maximal information and the resulting binary string.
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Figure 3-3: Demonstration of the smoothing process using truncated Chebyshev ap-
proximations. It can be seen that the final smoothed profile in the middle maintains
most of the key features of the original profile on the left but that the noise has been
significantly reduced. The figure on the right shows how the cut-off for the Chebyshev
interpolation was calculated from the threshold fraction. The blue arrow points to
the coefficient with the greatest magnitude and the horizontal red dashed lines shows
one 55th of this value. All coefficients not in the upper left corner are ignored in the
Chebyshev expansion in all further calculations.

3.4 Calculating the thresholded mutual information

The threshold for each concentration is chosen in a way that maximizes the overall

information stored in the gene profiles. This technique was applied in Dubuis et

al. [6]. We recreate the result of 2.9 bits being available here and then repeat the

calculation including gradients as well.

The thresholding process changes the calculations of the entropies to a discrete

process. The profile for a single gene can now only be 0 or 1. As a result the entropy

of the gene profile described by equation (2.4) becomes,

S[P(g)] = -[P(9 = 0) log2(P(g = 0)) + P(9 = 1) log2(P(g = 1))] (3.1a)

S[P(glx)] = -[P(9 0x)log2(P(g = OIx)) + P(9 = 1x)log2(P(g = Ix))]. (3.1b)

When we consider the combined gene profiles there are now 16 possible values for

the gi's, of the form '0010' etc. In order to calculate the information stored in the

thresholded values we perform a transformation that maps the four bit string to a
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Figure 3-4: Comparing the numerical derivative of the raw data, calculated using a
second order finite difference scheme, on the left with the derivative calculated directly
from the truncated Chebyshev approximation on the right shows the importance of
removing noise from the data before taking derivatives. The noise adds jerky spikes
to the derivative that result in a derivative profile that is not smooth, which means
it is not useful in calculating the positional information.

number between 0 to 15 as follows,

String Number = 20 * (Kr Bit) + 21 * (Kni Bit) + 22 * (Kni Bit) + 23 * (Kni Bit)

this turns the four binary thresholded matrices for each gene into a single matrix

with values from 0 to 15. From this matrix we can produce a histogram and find the

probability of each string occurring. This allows us to calculate the new joint mutual

information contained in all 4 gene profiles, with the new entropies,

15

S[Pg(g)] = - E P(g = n) log2 (P(g = n)) (3.2a)
n=O

15

S[P(gx)] = - P(g= nix) log2(P(g = nix)). (3.2b)
n=0

From experimental data the symmetry of mutual information allows us to calculate

the positional information using,

I(x, g) = Jdx P(x)(S[P(g)] - S[P(glx)]) (3.3)

where the integral over x is approximated using the trapezoidal rule. We assume that
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the cells are evenly distributed along the length of the embryo so that Px(x) = 1/L.

Applying this technique on the smoothed expression profiles we find that there

are 2.90 bits of information available to the cells. This is consistent with the value

found, using other techniques, in Dubuis et al. of 2.92 bits of information [6]. This

corresponds to being able to differentiate 22.9 - 7.5 unique states in the embryo. The

resulting binary profiles that were found are shown in Figure 3-7.

3.4.1 Including derivatives in the calculation of positional in-

formation

As mentioned previously, the derivatives are calculated directly from the Chebyshev

expansion and are then normalized to lie between [-1, 1]. Because the derivatives can

go in either direction (positive or negative) it is suggested that if the cells only care

about whether they are in a region of high and low change then the absolute value

of the derivatives should be used to calculate the information content. It was found

that squaring the derivatives instead of taking the absolute value overly suppresses

key features in the derivative profiles leading to lower information content. These

profiles are the bottom row of Figure 3-5. Including gradients in the calculation of

the information means that we now have 8 threshold values used to binarize the data

and we have to modify the string number and equations 3.2a and 3.2b to,

String Number = 20 * (Kr Bit) + 21 * (Kni Bit) + 22 * (Kni Bit) + 23 * (Kni Bit)

+ 24 * (Kr Div Bit) + 25 * (Kni Div Bit) + 26 * (Kni Div Bit)

+ 27 * (Kni Div Bit)
255

S[Pg(g)] = - E P(g = n) log2 (P(g = n)) (3.4a)
n=O

255

S[P(glx)] = - P(g = njx) log2 (P(g = nix)). (3.4b)
n=0

The same MCMC algorithm is run to find the maximum possible value for the infor-

mation and the results are shown in Figure 3-8. We find a maximum of 4.02 bits of
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information significantly higher than the value we find using only the gene profiles.

3.5 Interpreting the amount of information available

Throughout the analysis so far we have modeled the embryo as a continuum system.

To interpret the available information however it is important to remember that cells

are actually discrete. There are on average 59 cells in the middle 80% of the embryo

during the 14th nuclear cycle, which are approximately evenly distributed [25, 6].

To be able to make out each of these individually would require log92(59) = 5.9

bits of information. This is not, however, the level of detail that cells appear to

have. Experimental evidence instead suggests that the precision with which cells can

determine their position is a-2/L - 1% [14, 6]. Using the assumption that Px(x) = 1/L

is uniform and that the uncertainty in the position is constant along the length of the

embryo we can write [6, 25],

I(g, X) ~~. 10g2 L(3.5)

which we can rearrange to find,

L
2-'. (3.6)

From this we can see that a precision of 1.0% corresponds to the cells having access to

4.27 bits of information available and corresponds to a probability of an error greater

that the internuclear distance of P = 0.08 assuming that the distribution is Gaussian

[6]. The 4.02 bits of information calculated from the binarized data with gradients

corresponds to a precision of 1.7% and the 2.90 bits from the binarized data without

gradients corresponds to a precision of 3.6%. The internuclear distance can be calcu-

lated from 0.8/N = 0.014, which means that one internuclear spacing corresponds to

a precision of 1.75%. We, therefore, see that using a binarized model with derivatives

provides enough information to specify precision to around one internuclear distance,

with the probability of an error greater than one internuclear distance P = 0.30 down
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considerably from the probability without gradients of P = 0.62. This shows the

importance of gradients in retaining information when binary profiles are used.

3.6 Time series and mutant data

In this section we look at some early work on possible extensions of the binary analysis

done here. Up until this point we have only considered wild type gene concentration

profiles between 38 and 48 minutes. One question is what happens to the positional

information when an embryo has a mutation? Another is how do the gene profiles

and the information they contain change with time? Figure 3-9 shows how the bi-

nary strings for each gene evolve in time and how the distinct regions they specify

change. We notice new activity around 38 minutes into the development which also

corresponds to when the gene profiles are most uniform and the available positional in-

formation appears to peak. As can be seen in the figures using binary profiles provides

a simplified view of the time evolution of gap genes during embryonic development,

which could potentially lead to a model for the time evolution.

The same thresholding and maximization process is also run on 10 different mu-

tants. The wild type, 2 bcd dosage mutants and 7 maternal mutants. Again con-

sidering gene concentration profiles in the 14th nuclear cycle we can run the same

algorithms as above to find maximal thresholds for each mutation. We can then use

this threshold to determine the information content between the profiles as a function

of time. The results for all mutants and time series data are shown in Figure 3-10.

We can see that as we might expect the more mutations that an embryo undergoes

the fewer bits of information they have access to. We can also see that the informa-

tion contained in the profiles generally increases as the embryo ages. The inclusion of

gradients in the calculation of the positional information changes which of the muta-

tions have the most significant impact on the positional information. This suggests

that a binary model of positional information could be useful in understanding the

consequences of mutations.
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Figure 3-5: The four Gap gene concentration profiles for WT Drosophila embryos.
The top row shows the smoothed profiles using Chebyshev interpolation, the middle
row shows the derivative profiles calculated directly from the Chebyshev expansion
and the bottom row shows the absolute value of the derivative profiles. The dark
curve shows the mean value and the lighter curves show the profiles from individual
embryos. The lighter curves highlight the embryo to embryo variability that exists
between embryos and that can be used to define the probability distribution for the
profiles. The bars at the bottom of the figures show the final binary profiles after
maximization using the thresholds shown with the dashed lines. It can be seen that
the threshold acts to pick out the key peaks in each of the profiles effectively splitting
the profiles into high and low regions.
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Figure 3-7: Resulting binary profiles after maximization using the four gene
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Tka-ik, Eric F Wieschaus, Thomas Gregor, and William Bialek. Positional informa-
tion, in bits. Proceedings of the National Academy of Sciences USA, 110(41): 16301-
16308, 2013. The information contained in each individual gene's bit string is shown
on the left. The total information found using the the new method presented here
is 2.90 bits which is consistent with the 2.92 bits found in the previous work using a
different technique.
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Figure 3-8: Resulting binary profiles after maximization using the four gene profiles
and the absolute value of the gradients. The bars represent the region where the
binary string equals 1. The information contained in the individual strings is shown
on the left. Profiles are shown in the background for reference. The total information
found is 4.02 bits which is enough to specify the precision along the length of the
embryo to around one internuclear spacing. The result is close to the 4.27 bits that
there is evidence for experimentally. This provides a significant improvement over
the amount contained in the gene profiles alone seen in Figure 3-7
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Figure 3-9: The figure shows how the binary strings evolve in time for each gene,
colored coded as in Figure 3-6. The top row is concentrations and the second row the
absolute value of the derivatives. The far right shows the number of distinct regions
specified by the profiles at each time, the upper figure only using the 4 concentrations
and bottom figure including derivatives. We can see new behavior emerges around
38 minutes into embryonic development, especially in kni and hb, which could be the
cause of the information stabilizing and often peaking during the 14th nuclear cycle.
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Figure 3-10: Histograms show the maximum information contained in the profiles
between 38 and 48 minutes for each of the mutations considered. The far left bar is
the WT data. Bcd dosage mutants are represented by 0.5 and 2 for half and double
concentration respectively. Maternal mutants are represented by three numbers, 1
indicates presence and 0 represents removal. The corresponding time series infor-
mation is next to the histogram. The red dashed horizontal lines indicate the 38
to 48 minute time window used to determine the thresholds. We can see that the
information mostly peaks in the 38 to 48 minute period and generally decreases as
more mutations are implemented. We also see that including the derivative adds
information to all of the mutations.
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Chapter 4

Conclusions

We have shown that by including gradients in the calculation of positional information

we can account for 1.12 bits of the information that is lost by using binary profiles.

This extra gain in information is enough for cells within the embryo to be able to

localize along the length of the embryo with a precision that is close the internuclear

distance. This suggests that a discrete model of positional information that includes

gradients does not lose significant amounts of information over a model that uses

the full profiles. The power of gradients to provide this missing information provides

further evidence of the importance of gradients during pattern formation in embryonic

development.

There are many possible future extensions of this work. A study on the effects of

mutations on the binary positional information and the impact that gradients have

on it was briefly touched on here but leaves open a more detailed analysis. We also

touched on using binary profiles to simplify studying the time evolution of the gene

profiles and positional information during embryonic development.

We posit as a result of this study that a discrete model of positional information

that includes gradients does not lose significant information over a model that uses

full profiles and provides a significant improvement over a discrete model that uses

only concentrations.
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