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Abstract Measurements of inclusive isolated-photon and
photon+jet production in proton–proton collisions at

√
s =

13 TeV are presented. The analysis uses data collected by
the CMS experiment in 2015, corresponding to an integrated
luminosity of 2.26 fb−1. The cross section for inclusive iso-
lated photon production is measured as a function of the
photon transverse energy in a fiducial region. The cross sec-
tion for photon+jet production is measured as a function of
the photon transverse energy in the same fiducial region with
identical photon requirements and with the highest transverse
momentum jet. All measurements are in agreement with pre-
dictions from next-to-leading-order perturbative QCD.

1 Introduction

The measurement of inclusive isolated-photon and pho-
ton+jet production cross sections can directly probe quan-
tum chromodynamics (QCD). The dominant production pro-
cesses in proton–proton (pp) collisions at the energies of the
CERN LHC are quark–gluon Compton scattering qg → qγ ,
together with contributions from quark-antiquark annihila-
tion qq → gγ , and parton fragmentation qq(gg) → X + γ .
Both the CMS and ATLAS Collaborations have reported
measurements of the differential cross sections for isolated
prompt photon production [1–7] and for the production of a
photon in association with jets [8–10] using data with center-
of-mass energies of 2.76, 7, and 8 TeV. The ATLAS Collab-
oration has also reported the same measurements at a center-
of-mass energy of 13 TeV [11,12].

The published measurements show agreement with the
results of next-to-leading-order (NLO) perturbative QCD
calculations [13,14].

These LHC measurements are sensitive to the gluon den-
sity function g(x, Q2) over a wide range of parton momen-
tum fraction x and energy scale Q2 [15–17]. These mea-
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surements were not included in the global parton distribu-
tion function (PDF) fits [18–20] until very recently [21]. An
improved understanding of all PDFs is key to reducing the
associated theoretical uncertainties in the calculation of many
relevant cross sections, including Higgs boson production
and new physics searches.

In this paper, measurements are reported for the inclu-
sive isolated-photon cross section in a fiducial region using
data collected by the CMS Collaboration in proton-proton
collisions at

√
s = 13 TeV, corresponding to an integrated

luminosity of 2.26 fb−1 [22]. The specific fiducial region is
defined at generator level as: (1) photon transverse momen-
tum ET > 190 GeV, (2) rapidity |y| < 2.5, and (3) an iso-
lated photon where the sum of the pT of all particles inside
a cone of radius ΔR =

√
(Δφ)2 + (Δη)2 = 0.4 around

the photon is less than 5 GeV. The photon+jet cross section
is also measured in this fiducial region with the same pho-
ton requirements and with pjet

T > 30 GeV and |yjet| < 2.4.
The significant increase in center-of-mass energy compared
with the previous CMS papers [1,2] opens a large additional
region of phase space.

The dominant background for the photon+jet process is
QCD multijet production with an isolated electromagnetic
(EM) deposit from decays of neutral hadrons, mostly from
π0 mesons. A multivariate analysis method is used to iden-
tify prompt photons using a boosted decision tree (BDT)
algorithm, implemented using the TMVA v4.1.2 toolkit [23].
Photon yields are extracted using the shape of the BDT dis-
tributions, and the measured cross sections are compared to
the results of NLO QCD calculations.

2 The CMS detector

CMS is a general-purpose detector built to explore physics
at the TeV scale. The central feature of the CMS apparatus
is a superconducting solenoid of 6 m internal diameter, pro-
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viding a magnetic field of 3.8 T. Within the solenoid volume
are a silicon pixel and a strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintil-
lator hadron calorimeter (HCAL), each composed of a barrel
and two endcap sections. Forward calorimeters extend the
pseudorapidity η coverage provided by the barrel and endcap
detectors. Muons are measured in gas-ionization detectors
embedded in the steel flux return yoke outside the solenoid.
A more detailed description of the CMS detector, together
with the definition of the coordinate system and the relevant
kinematic variables, is given in Ref. [24].

The ECAL consists of 75 848 lead tungstate crystals,
which provide coverage up to |η| = 1.479 in the barrel region
(EB) and 1.479 < |η| < 3.0 in two endcap regions (EE). A
preshower detector consisting of two planes of silicon sen-
sors interleaved with a total of 3 radiation lengths of lead is
located in front of the EE.

The silicon tracker measures charged particles within the
range |η| < 2.5. For nonisolated particles of transverse
momenta 1 < pT < 10 GeV and |η| < 1.4, the track reso-
lutions are typically 1.5% in pT and 25–90 (45–150)µm in
the transverse (longitudinal) impact parameter [25].

The global event reconstruction (also called particle-flow
event reconstruction) [26] reconstructs and identifies each
particle candidate with an optimized combination of all sub-
detector information.

In CMS, both converted and unconverted photons are
reconstructed using ECAL clusters and are included in the
analysis. The clustering algorithm results in an almost com-
plete collection of the energy of the photons, unconverted
ones and those converting in the material upstream of the
calorimeter. First, cluster “seeds” are identified as local
energy maxima above a given threshold. Second, clusters
are grown from the seeds by aggregating crystals with at
least one side in common with a clustered crystal and with
an energy in excess of a given threshold. This threshold rep-
resents about two standard deviations of the electronic noise,
which depends on |η|. The energy in an individual crystal can
be shared between clusters under the assumption that each
seed corresponds to a single EM particle. Finally, clusters are
merged into “superclusters”, to allow good energy contain-
ment, accounting for geometrical variations of the detector
along η, and increasing robustness against additional pp col-
lisions in the same or adjacent bunch crossings (pileup). The
clustering excludes 1.44 < |η| < 1.56, which corresponds
to the transition region between the EB and EE. The fiducial
region terminates at |η| = 2.5 where the tracker coverage
ends.

The energy of photons is computed from the sum of the
energies of the clustered crystals, calibrated and corrected
for degradation in the crystal response over time [27]. The

preshower energy is added to that of the superclusters in the
region covered by this detector. To optimize the resolution,
the photon energy is corrected using a multivariate regression
technique that estimates the containment of the electromag-
netic shower in the superclusters, the shower losses for pho-
tons that convert in the material upstream of the calorimeter,
and the effects of pileup [28]. The regression training is per-
formed on simulated events using shower shape and position
variables of the photon as inputs. The regression provides a
per-photon estimate of the function parameters that quantify
the containment, the shower losses, and pileup and therefore
a prediction of the distribution of the ratio of true energy to
the uncorrected supercluster energy. The most probable value
of this distribution is taken as the photon energy correction.
The regression output is used to correct the reconstucted pho-
ton energy in data to agree with simulated events. An addi-
tional smearing is applied to the photon energy in simulation
to reproduce the resolution observed in data. The scale cor-
rection and smearing procedure uses a multistep procedure
exploiting electrons from Z → e+e− decays. In the EB, an
energy resolution of about 1% is achieved for unconverted
photons in the tens of GeV energy range. The remaining EB
photons have a resolution of about 1.3% up to |η| = 1.0,
rising to about 2.5% at |η| = 1.4. In the EE, the resolution of
unconverted or late-converting photons is about 2.5%, while
the remaining EE photons have a resolution between 3 and
4%.

Electrons are identified as a primary charged track con-
sistent with potentially multiple ECAL energy clusters from
both the electron and from potential bremsstrahlung photons
produced in the tracker material. Muons are identified as a
track in the central tracker consistent with either a track or
several hits in the muon system, associated with a minimum
ionization signature in the calorimeters. Charged hadrons are
charged-particle tracks not identified as electrons or muons.
Finally, neutral hadrons are identified as HCAL energy clus-
ters not linked to any charged-hadron track, or as ECAL and
HCAL energy excesses with respect to the expected charged-
hadron energy deposit.

Jets are clustered from all particle candidates recon-
structed by the global event reconstruction with the infrared-
and collinear- safe anti-kT algorithm [29,30] using a distance
parameter R of 0.4. The momenta of jets reconstructed using
particle-flow candidates in the simulation are within 5 to 10%
of particle-level jet momenta over the whole jet pT spectrum
and detector acceptance, and corrected on average accord-
ingly. In situ measurements of the momentum balance in
dijet, photon+jet, Z+jet, and multijet events are used to cor-
rect for any residual differences in jet energy scale in data and
simulation [31]. The jet energy resolution amounts typically
to 15 (8)% at 10 (100) GeV.
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3 Simulation samples

Simulated event samples for photon+jet and multijet final
states are generated at leading order (LO) with pythia 8
(v8.212) [32]. The photon+jet sample contains direct photon
production originating from quark–gluon Compton scatter-
ing and quark-antiquark annihilation.

The multijet sample, which is dominated by final states
with quark and gluon jets, is used in the estimate of sys-
tematic uncertainties, and to estimate the small bias in the
extracted photon yield from the BDT fit, as described in
Sect. 5. For these studies, events containing a photon, pro-
duced via the fragmentation process and passing the fiducial
requirements, are removed, leaving only events with nonfidu-
cial photons. The removed events are considered part of the
signal, although they are not included in the signal sample
in the training of the BDT due to associated large statistical
uncertainties. The distributions of the variables used in the
BDT training were examined and are consistent with those
of the direct photons, within the statistical uncertainty.

The MadGraph (v5.2.2.2) [33,34] LO generator, inter-
faced with pythia 8, is used to generate an additional
sample of photon+jet events containing up to 4 jets that
are used to estimate systematic uncertainties. Samples
of Z/γ ∗+jets events are generated at NLO with Mad-
Graph5_amc@nlo (v5.2.2.2) [33,35] and are used for cali-
bration and validation studies described later. The
CUETP8M1 tune [36] is used in pythia 8. The NNPDF2.3
LO PDF [37] and the NNPDF3.0 NLO PDF [18] are used to
generate simulation samples, where the former is used with
pythia 8.

The simulated processes include the effect of the pileup.
The pileup contribution is simulated with additional min-
imum bias events superimposed on the primary event
using the measured distribution of the number of recon-
structed interaction vertices, an average of 14 vertices per
bunch crossing. A detailed detector simulation based on the
Geant4 (v9.4p03) [38] package is applied to all the gener-
ated signal and background samples.

4 Data samples and event selection criteria

Events containing high energy photon candidates are selected
using the two-level CMS trigger system [39]. At the first
level, events are accepted if they have an ECAL trigger
tower, which has a segmentation corresponding to 5 × 5
ECAL crystals, with total transverse energy ET, defined as
the magnitude of the photon transverse momentum, greater
than 40 GeV. The second level of the trigger system uses the
same reconstruction algorithm as the offline photon recon-
struction [28]. An event is accepted online if it contains at
least one ECAL cluster with ET greater than 175 GeV, and

if the “H/E”, defined as the ratio of energy deposited in the
HCAL to that in the ECAL, is less than 0.15 (0.10) in the EB
(EE) region.

All events are required to have at least one well-
reconstructed primary vertex [25]. The reconstructed vertex
with the largest value of summed physics-object p2

T is the
primary pp interaction vertex. The physics objects are the
jets, clustered using the jet finding algorithm [29,30] with
the tracks assigned to the vertex as inputs, and the associ-
ated missing transverse momentum pmiss

T [40], taken as the
negative vector sum of the pT of those jets. In addition, pho-
ton+jet events are required to be balanced in pT, and hence
the magnitude of missing transverse momentum, defined as
the magnitude of the negative vector sum of the momenta
of all reconstructed particle-flow objects projected onto the
plane perpendicular to the beam axis in an event, is required
to be less than 70% of the highest photon ET.

Photon candidates are selected as described in the follow-
ing procedure. An electron veto is imposed by requiring the
absence of hits in the innermost layer of the silicon pixel
detector that could be ascribed to an electron track consis-
tent with the energy and position of the photon ECAL cluster.
Criteria on the energy measured in HCAL (H ), isolation, and
shower shape variables are applied to reject photons arising
from electromagnetic decays of particles in hadronic show-
ers. Hence, H/E is required to be less than 0.08 (0.05) for
photon candidates in the EB (EE), respectively. The sum of
the ET of other photons in a cone (photon isolation) of size
ΔR = 0.3 around the photon candidate is required to be less
than 15 GeV, and the sum of pT of charged hadrons in the
same cone (hadron isolation) is required to be less than 2.0
(1.5) GeV for photon candidates in the EB (EE).

To further suppress photons from decays of neutral mesons
(π0, η, etc.) that survive the isolation and HCAL energy leak-
age criteria, a selection on the EM shower shape is imposed
by requiring that its second moment σηη [28], which is a mea-
sure of the lateral extension of the shower along the η direc-
tion, be <0.015 (0.045) for photon candidates in the EB (EE).
The photon candidate with the highest ET that satisfies the
above selection criteria in each event is referred to as the lead-
ing photon. The data consist of 212 134 events after applying
inclusive isolated-photon selections and 207 120 events after
applying the photon+jet requirements. The estimated elec-
tron contribution is typically at 10−3 level as a result of the
electron veto algorithm. This contribution is small compared
to statistical uncertainties of the photon yield and other sys-
tematic uncertainties.

The photon reconstruction and selection efficiencies are
estimated using simulated events that pass the fiducial region
requirements at the generator level. The efficiency is about
90–92% (83–85%) for EB (EE) photons, depending on the
ET of the photon candidate. The loss of efficiency comes
primarily from the hadron isolation requirement. Multiplica-
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tive scale factors (SF) are applied to correct potential differ-
ences in efficiencies between data and simulation. The SFs
are obtained from the ratio of the efficiency in data to that
in simulated control samples. The photon SF is derived from
Drell–Yan Z → e+e− events, where one of the electrons is
reconstructed as a photon. The events are selected by requir-
ing the invariant mass of the electron pair to be between 60
and 120 GeV. The electron veto SF is determined using final-
state radiation photons in Z → μ+μ−γ events. All SFs are
within 1% of unity, and their uncertainties are included in
the total systematic uncertainty. All efficiencies and SF are
measured as functions of photon ET and rapidity y using the
same binning as the cross section measurement.

The absolute photon trigger efficiency, as a function of
photon ET, is measured using events collected with a jet
trigger that contains a photon candidate, which satisfies the
signal selection criteria and is spatially separated from the
jet that triggered the event by ΔR(γ, jet) > 0.7. The trig-
ger efficiency is above 99% for EB (EE) photons above
200 (220) GeV. The ET-dependent trigger efficiency is used
to compute the cross section, and the associated uncertainties
are incorporated into the uncertainty calculation for the cross
section.

For the cross section measurement as a function of jet y,
the jets are required to: (1) satisfy a set of selection criteria
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Table 1 Impact on cross sections, in percent, for each systematic uncertainty source in the four photon rapidity regions, |yγ | < 0.8, 0.8 < |yγ | <

1.44, 1.57 < |yγ | < 2.1, and 2.1 < |yγ | < 2.5. The ranges, when quoted, indicate the variation over photon ET between 190 and 1000 GeV

Source |yγ | < 0.8 0.8 < |yγ | < 1.44 1.57 < |yγ | < 2.1 2.1 < |yγ | < 2.5

Trigger efficiency 0.7–8.5 0.2–13.4 0.6–20.5 0.3–7.8

Selection efficiency 0.1–1.3 0.1–1.3 0.1–5.3 0.1–1.1

Data-to-MC scale factor 3.7 3.7 7.1 7.1

Template shape 0.6–5.0 0.1–10.2 0.5–4.9 0.6–16.2

Event migration 3.8–5.5 1.2–4.1 2.0–8.5 2.3–10.3

Total w/o luminosity 5.4–12.0 5.9–18.2 8.2–26.9 8.6–21.7

Integrated luminosity 2.3

that remove detector noise [41], (2) have a separation from
the leading photon of ΔR > 0.4, and (3) have pT greater
than 30 GeV. The pT requirement for jets is fully efficient for
simulation events with both photon and jet in their fiducial
regions. The jet candidate with the highest pT satisfying the
above requirements is selected.

The measurement of the differential cross section for
inclusive isolated photons uses four ranges of photon rapid-
ity, |yγ | < 0.8, 0.8 < |yγ | < 1.44, 1.57 < |yγ | < 2.1,
and 2.1 < |yγ | < 2.5. The photon+jet differential cross
section measurement uses two ranges of photon rapidity,
|yγ | < 1.44 and 1.57 < |yγ | < 2.5, and two ranges
of jet rapidity, |yjet| < 1.5 and 1.5 < |yjet| < 2.4. For
all cases, the results are presented in nine bins in photon
ET between 190 and 1000 GeV, except for two cases: the
2.1 < |yγ | < 2.5 region for the isolated-photon measure-
ment and the 1.57 < |yγ | < 2.5 and 1.5 < |yjet| < 2.4
regions for the photon+jet measurement, where eight bins in
photon ET between 190 and 750 GeV are used.

5 Cross section measurement

To further suppress remaining backgrounds originating from
jets faking photons, a BDT is constructed utilizing the fol-
lowing discriminating variables:

1. Photon η, φ, and energy;
2. Several shower shape variables:

(a) The energy sum of the 3 × 3 crystals centered on the
most energetic crystal in the photon divided by the
energy of the photon;

(b) The ratio of E2×2, the maximum energy sum col-
lected in a 2×2 crystal matrix that includes the largest
energy crystal in the photon, and E5×5, the energy
collected in a 5 × 5 crystal matrix centered around
the same crystal (E2×2/E5×5);

(c) The second moment of the EM cluster shape along
the η direction (σηη);
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Fig. 3 Differential cross sections for isolated-photon production in
photon rapidity bins, |yγ | < 0.8, 0.8 < |yγ | < 1.44, 1.57 < |yγ | <

2.1, and 2.1 < |yγ | < 2.5. The points show the measured values and
their total uncertainties; the lines show the NLO jetphox predictions
with the NNPDF3.0 PDF set

(d) The diagonal component of the covariance matrix that
is constructed from the energy-weighted crystal posi-
tions within the 5 × 5 crystal array (qηφ);

(e) The energy-weighted spreads along η (ση) and φ (σφ),
calculated using all crystals in the photon cluster,
which provide further measures of the lateral spread
of the shower.

3. For photon candidates in the EE, the preshower shower
width, σRR =

√
σ 2
xx + σ 2

yy , where σxx and σyy measure
the lateral spread in the two orthogonal sensor planes of
the detector, and the fraction of energy deposits in the
preshower.

4. The median energy density per unit area in the event
ρ [30] to minimize the effect of the pileup.
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Fig. 4 The ratios of theoretical NLO predictions to data for the dif-
ferential cross sections for isolated-photon production in four photon
rapidity bins, |yγ | < 0.8, 0.8 < |yγ | < 1.44, 1.57 < |yγ | < 2.1, and
2.1 < |yγ | < 2.5, are shown. The error bars on data points represent

the statistical uncertainty, while the hatched area shows the total experi-
mental uncertainty. The errors on the ratio represent scale uncertainties,
and the shaded regions represent the total theoretical uncertainties

The distributions of the BDT values are used in a two-
template binned likelihood fit to estimate the photon yield.
A separate BDT is constructed for each bin of photon y and
ET. The signal BDT template is obtained from the sample of
simulated photon+jet events generated using pythia 8. This
template is validated using Z → μ+μ−γ data samples and
also a data sample of Z → e+e− candidates where each can-
didate contains an electron reconstructed as a photon. The
signal templates have a systematic uncertainty due to dif-
ferences in the distributions of the BDT input variables in
data and simulation. To evaluate this uncertainty, the distri-
bution of each variable obtained from a sample of simulated
Z → e+e− events is modified until agreement is obtained
with the data. Signal templates are made using the same pro-
cedure. The difference in the templates is treated as a nuisance
parameter in the fit procedure.

The background BDT template is derived from the data,
using a sideband region defined using the same signal selec-
tion, but relaxing the hadron isolation criterion. The hadron
isolation for the sideband region is required to be between 7
and 13 (6 and 12) GeV for EB (EE) photons, where the cho-
sen ranges ensure negligible signal contamination. Possible

biases in the photon yields due to differences between the
background BDT templates in the control and signal regions
are estimated using simulated events and are found to be less
than 5%. Photon yields extracted from the fits are corrected
for these biases. The statistical uncertainties in each bin of
the background template constructed from the data sideband
events are also included as nuisance parameters in the fitting
procedure. Figure 1 shows the BDT templates obtained for a
particular photon ET and y bin for the data sideband and for
the signal and sideband regions from simulated QCD multi-
jet events. The distributions of BDT outputs for EB and EE
photons in data are shown in Fig. 2 for photon ET between
200 and 220 GeV and jet |y| < 1.5. The fitted results for
the signal, background, and combined distributions are also
shown in Fig. 2. The ratio of experimental data to the simu-
lation results demonstrates agreement as indicated by the χ2

per degree of freedom.
The corrected signal yield is unfolded using the itera-

tive D’Agostini method [42], as implemented in the RooUn-
fold software package [43], to take into account migrations
between different bins due to the photon energy scale and
resolution, and into and out of the fiducial ET region. The
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Table 2 Measured and predicted differential cross section for isolated-
photon production, along with the statistical and systematical uncer-
tainties in the various ET and y bins. Predictions use jetphox at NLO

with the NNPDF3.0 PDF set. The ratio of the jetphox predictions to
data are listed in the last column, with the total uncertainty estimated
assuming uncorrelated experimental and theoretical uncertainties

ET (GeV) Measured cross section within the bin (pb) jetphox NNPDF3.0 (pb) jetphox/Data

|yγ | < 0.8

190–200 (3.64 ± 0.04 (stat) ± 0.23 (syst)) × 10−1 (3.1 ± 0.3) × 10−1 0.85 ± 0.10

200–220 (2.49 ± 0.02 (stat) ± 0.15 (syst)) × 10−1 (2.2 ± 0.2) × 10−1 0.88 ± 0.09

220–250 (1.46 ± 0.01 (stat) ± 0.09 (syst)) × 10−1 (1.3 ± 0.1) × 10−1 0.90 ± 0.10

250–300 (7.09 ± 0.08 (stat) ± 0.45 (syst)) × 10−2 (6.4 ± 0.5) × 10−2 0.91 ± 0.10

300–350 (2.91 ± 0.05 (stat) ± 0.19 (syst)) × 10−2 (2.7 ± 0.3) × 10−2 0.92 ± 0.12

350–400 (1.24 ± 0.03 (stat) ± 0.10 (syst)) × 10−2 (1.4 ± 0.2) × 10−2 1.11 ± 0.15

400–500 (5.1 ± 0.1 (stat) ± 0.4 (syst)) × 10−3 (5.0 ± 0.6) × 10−3 0.98 ± 0.14

500–750 (1.11 ± 0.04 (stat) ± 0.08 (syst)) × 10−3 (9.0 ± 1.0) × 10−4 0.79 ± 0.14

750–1000 (1.0 ± 0.1 (stat) ± 0.1 (syst)) × 10−4 (1.4 ± 0.4) × 10−4 1.33 ± 0.44

0.8 < |yγ | < 1.44

190–200 (3.44 ± 0.04 (stat) ± 0.25 (syst)) × 10−1 (3.0 ± 0.3) × 10−1 0.88 ± 0.10

200–220 (2.26 ± 0.03 (stat) ± 0.18 (syst)) × 10−1 (2.1 ± 0.2) × 10−1 0.95 ± 0.12

220–250 (1.37 ± 0.02 (stat) ± 0.09 (syst)) × 10−1 (1.3 ± 0.1) × 10−1 0.94 ± 0.10

250–300 (5.87 ± 0.08 (stat) ± 0.40 (syst)) × 10−2 (6.2 ± 0.6) × 10−2 1.06 ± 0.12

300–350 (2.60 ± 0.05 (stat) ± 0.17 (syst)) × 10−2 (2.7 ± 0.2) × 10−2 1.04 ± 0.12

350–400 (1.15 ± 0.04 (stat) ± 0.09 (syst)) × 10−2 (1.3 ± 0.1) × 10−2 1.15 ± 0.13

400–500 (4.6 ± 0.2 (stat) ± 0.3 (syst)) × 10−3 (4.7 ± 0.5) × 10−3 1.04 ± 0.13

500–750 (7.4 ± 0.4 (stat) ± 0.6 (syst)) × 10−4 (8.2 ± 0.8) × 10−4 1.11 ± 0.15

750–1000 (8.0 ± 1.0 (stat) ± 1.0 (syst)) × 10−5 (1.1 ± 0.2) × 10−4 1.40 ± 0.39

1.57 < |yγ | < 2.1

190–200 (3.16 ± 0.05 (stat) ± 0.31 (syst)) × 10−1 (2.8 ± 0.3) × 10−1 0.88 ± 0.13

200–220 (2.19 ± 0.03 (stat) ± 0.19 (syst)) × 10−1 (2.0 ± 0.2) × 10−1 0.91 ± 0.12

220–250 (1.19 ± 0.02 (stat) ± 0.12 (syst)) × 10−1 (1.1 ± 0.1) × 10−1 0.96 ± 0.13

250–300 (5.80 ± 0.09 (stat) ± 0.54 (syst)) × 10−2 (5.4 ± 0.5) × 10−2 0.92 ± 0.12

300–350 (2.37 ± 0.06 (stat) ± 0.22 (syst)) × 10−2 (2.2 ± 0.3) × 10−2 0.93 ± 0.14

350–400 (1.02 ± 0.04 (stat) ± 0.12 (syst)) × 10−2 (9.5 ± 0.9) × 10−3 0.93 ± 0.15

400–500 (4.0 ± 0.2 (stat) ± 0.5 (syst)) × 10−3 (3.1 ± 0.3) × 10−3 0.77 ± 0.13

500–750 (6.1 ± 0.4 (stat) ± 0.9 (syst)) × 10−4 (4.6 ± 0.5) × 10−4 0.76 ± 0.14

750–1000 (3.9 ± 1.0 (stat) ± 1.1 (syst)) × 10−5 (3.0 ± 0.9) × 10−5 0.78 ± 0.37

2.1 < |yγ | < 2.5

190–200 (2.52 ± 0.07 (stat) ± 0.35 (syst)) × 10−1 (2.3 ± 0.3) × 10−1 0.92 ± 0.17

200–220 (1.55 ± 0.04 (stat) ± 0.14 (syst)) × 10−1 (1.6 ± 0.2) × 10−1 1.04 ± 0.14

220–250 (8.8 ± 0.2 (stat) ± 0.8 (syst)) × 10−2 (9.0 ± 1.0) × 10−2 1.02 ± 0.15

250–300 (3.7 ± 0.1 (stat) ± 0.4 (syst)) × 10−2 (3.8 ± 0.4) × 10−2 1.01 ± 0.14

300–350 (1.32 ± 0.07 (stat) ± 0.15 (syst)) × 10−2 (1.4 ± 0.1) × 10−2 1.06 ± 0.17

350–400 (5.9 ± 0.4 (stat) ± 0.7 (syst)) × 10−3 (5.0 ± 0.5) × 10−3 0.85 ± 0.14

400–500 (1.7 ± 0.1 (stat) ± 0.3 (syst)) × 10−3 (1.2 ± 0.1) × 10−3 0.72 ± 0.16

500–750 (1.8 ± 0.2 (stat) ± 0.4 (syst)) × 10−4 (1.4 ± 0.3) × 10−4 0.77 ± 0.25
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unfolding response matrix is obtained from the pythia 8
photon+jet sample. The unfolding corrections are small, of
the order of 1%. The size of the corrections is also veri-
fied using an independent photon+jet sample generated with
MadGraph.

The inclusive isolated-photon differential production cross
section is calculated as

d2σ

dyγ dEγ
T

= U(N γ )

Δyγ ΔEγ
T

1

ε SF L
, (1)

and the photon+jet as

d3σ

dyγ dEγ
T dyjet

= U(N γ )

Δyγ ΔEγ
T Δyjet

1

ε SF L
, (2)

where U(N γ ) denotes the unfolded photon yields in bins of
width ΔEγ

T and Δy, and y is the rapidity of either the photon
or the jet. In these equations, ε denotes the product of trigger,
reconstruction, and selection efficiencies; SF the product of
the selection and electron veto scale factors; and L is the
integrated luminosity.

6 Systematic uncertainties

The uncertainty in the efficiency of the event selection is typ-
ically small except in the high-ET region, where statistical
uncertainties in both data and simulated events dominate. A
summary of the systematic uncertainties in the cross section
measurement, due to the uncertain in trigger and event selec-
tion efficiencies, Data-to-MC scale factors, signal and back-
ground template shapes, bin migrations from the unfolding
procedure, and uncertainties in the photon energy scale and
resolution, is given in Table 1. All of the above are treated as
uncorrelated.

The systematic uncertainties in the trigger efficiency are
dominated by the statistical uncertainty in jet trigger data
where the trigger efficiencies are measured. The uncertainties
of the selection efficiency are dominated by the statistical
uncertainties of the simulation sample. The uncertainties of
the Data-to-MC scale factor are based on the available Z →
e+e− events, and a pT extrapolation is employed.

The systematic uncertainties in the signal and background
templates are incorporated into the fit as nuisance parame-
ters. For the signal template uncertainty, the nuisance param-
eter is assigned a Gaussian prior, while log-normal priors are
assigned to the background template nuisances. A descrip-
tion of the general methodology can be found in Ref. [44].
The bias correction, applied to the photon yields, due to the
selection of the sideband range is also considered as a sys-
tematic uncertainty.

The impact on photon yields due to the event migration
between photon pT bins from the unfolding uncertainties,
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Fig. 5 Differential cross sections for photon+jet production in two
photon rapidity bins, |yγ | < 1.44 and 1.57 < |yγ | < 2.5, and two
jet rapidity bins, |yjet| < 1.5 and 1.5 < |yjet| < 2.4. The points show
the measured values with their total uncertainties, and the lines show
the NLO jetphox predictions with the NNPDF3.0 PDF set

which include photon energy scale and resolution uncertain-
ties, is roughly 5%. The uncertainties of the event selection
efficiency due to the jet selection, jet energy scale and reso-
lution, and jet rapidity migration are negligible.

The total uncertainty, not considering luminosity uncer-
tainty, in the yield per bin, excluding the highest photon ET

bin in each y range, is about 5–8% for EB and 9–17% for EE
photons. The highest photon ET bins in all y region have lim-
ited events in data and simulated samples for the evaluation
of systematics.

The uncertainty in the measurement of the CMS integrated
luminosity is 2.3% [22] and it is added in quadrature with
other systematic uncertainties.

7 Results and comparison with theory

The measured inclusive isolated-photon cross sections as a
function of photon ET are shown in Fig. 3 and the ratio
compared with theory in Fig. 4 for photon ET greater than
190 GeV and |yγ | < 2.5 in 4 rapidity bins. The results are
listed in Table 2. The measurements for photon+jet cross sec-
tions as a function of photon ET are shown in Fig. 5 and the
ratio compared with theory in Fig. 6 with additional require-
ments of pjet

T > 30 GeV and |yjet| < 2.4. The results are
binned in two photon rapidity and two jet rapidity bins and are
listed in Table 3. The predictions require an isolated photon
at generator level as described previously, with a transverse
isolation energy less than 5 GeV.
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Fig. 6 The ratios of theoretical NLO prediction to data for the differ-
ential cross sections for photon+jet production in two photon rapidity
(|yγ | < 1.44 and 1.57 < |yγ | < 2.5) and two jet rapidity (|yjet| < 1.5
and 1.5 < |yjet| < 2.4) bins , are shown. The error bars on the data points

represent their statistical uncertainty, while the hatched area shows the
total experimental uncertainty. The error bars on the ratios show the
scale uncertainties, and the shaded area shows the total theoretical uncer-
tainties

The measured cross sections in the overlapping photon
ET regions are increased by approximately a factor of 3 to 5
compared to previous CMS measurements at 7 TeV [1,2,8].
This 13 TeV analysis also extends the photon ET range from
400 (300) GeV in the 7 TeV inclusive photon (photon+jet)
results to 1 TeV.

The measured cross sections are compared with NLO per-
turbative QCD calculations from the jetphox 1.3.1 genera-
tor [13,45,46], using the NNPDF3.0 NLO [18] PDFs and the
Bourhis–Fontannaz–Guillet (BFG) set II parton fragmenta-
tion functions [47]. The renormalization, factorization, and
fragmentation scales are all set to be equal to the photon
ET. To estimate the effect of the choice of theoretical scales
on the predictions, the three scales are varied independently
from ET/2 to 2ET, while keeping their ratio between one-
half and two. The impact of jetphox cross section predic-
tions due to the uncertainties in the PDF and in the strong
coupling αS = 0.118 at the mass of Z boson is calculated
using the 68% confidence level NNPDF3.0 NLO replica. The
uncertainty of parton-to-particle level transformation of the
NLO pQCD prediction due to the underlying event and parton

shower is studied by comparing with dedicated pythia sam-
ples where the choice and tuning of the generator has been
modified. The differences between the dedicated pythia and
the nominal sample are between 0.5 and 2.0%, depending
on the photon ET and y, and they are assigned as the sys-
tematic uncertainty. The total theoretical uncertainties of the
cross section predictions are evaluated as the quadratic sum
of the scale, PDF,αS , and underlying event and parton shower
uncertainties.

The ratio of the theoretical predictions to data, together
with the experimental and theoretical uncertainties, are
shown in Figs. 4 and 6 for the isolated-photon and photon+jet
cross section measurements respectively. The uncertainties in
the theoretical predictions and ratios to data are symmetrized
in the tables; the largest value between the positive and neg-
ative uncertainties is listed. Measured cross sections are in
agreement with theoretical expectations within statistical and
systematic uncertainties.

The ratio of the theoretical predictions to data based
on jetphox at NLO with different PDF sets, including
MMHT14 [19], CT14 [20], and HERAPDF2.0 [48] together
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Table 3 Measured and predicted differential cross section for pho-
ton+jet production, along with statistical and systematical uncertainties
in the various ET and y bins. Predictions are based on jetphox at NLO

with the NNPDF3.0 PDF set. The ratio of the jetphox predictions to
the data are listed in the last column, with the total uncertainty estimated
assuming uncorrelated experimental and theoretical uncertainties

ET (GeV) Measured cross section within the bin (pb) jetphox NNPDF3.0 (pb) jetphox/Data

|yγ | < 1.44, |yjet| < 1.5, and pjet
T > 30 GeV

190–200 (9.2 ± 0.1 (stat) ± 0.6 (syst)) × 10−2 (7.7 ± 0.7) × 10−2 0.83 ± 0.10

200–220 (6.26 ± 0.06 (stat) ± 0.41 (syst)) × 10−2 (5.6 ± 0.5) × 10−2 0.89 ± 0.10

220–250 (3.72 ± 0.04 (stat) ± 0.23 (syst)) × 10−2 (3.3 ± 0.3) × 10−2 0.89 ± 0.10

250–300 (1.72 ± 0.02 (stat) ± 0.11 (syst)) × 10−2 (1.6 ± 0.2) × 10−2 0.95 ± 0.12

300–350 (7.50 ± 0.1 (stat) ± 0.5 (syst)) × 10−3 (7.3 ± 0.7) × 10−3 0.97 ± 0.11

350–400 (3.34 ± 0.08 (stat) ± 0.25 (syst)) × 10−3 (3.8 ± 0.4) × 10−3 1.14 ± 0.15

400–500 (1.37 ± 0.03 (stat) ± 0.10 (syst)) × 10−3 (1.4 ± 0.1) × 10−3 1.02 ± 0.12

500–750 (2.82 ± 0.09 (stat) ± 0.22 (syst)) × 10−4 (2.7 ± 0.2) × 10−4 0.97 ± 0.12

750–1000 (3.0 ± 0.3 (stat) ± 0.3 (syst)) × 10−5 (3.8 ± 0.6) × 10−5 1.26 ± 0.26

|yγ | < 1.44, 1.5 < |yjet| < 2.4, and pjet
T > 30 GeV

190–200 (4.08 ± 0.09 (stat) ± 0.27 (syst)) × 10−2 (3.2 ± 0.4) × 10−2 0.78 ± 0.11

200–220 (2.73 ± 0.05 (stat) ± 0.18 (syst)) × 10−2 (2.3 ± 0.2) × 10−2 0.84 ± 0.10

220–250 (1.54 ± 0.03 (stat) ± 0.10 (syst)) × 10−2 (1.3 ± 0.1) × 10−2 0.86 ± 0.10

250–300 (6.9 ± 0.1 (stat) ± 0.5 (syst)) × 10−3 (6.3 ± 0.6) × 10−3 0.91 ± 0.10

300–350 (2.73 ± 0.09 (stat) ± 0.18 (syst)) × 10−3 (2.7 ± 0.3) × 10−3 0.97 ± 0.12

350–400 (1.12 ± 0.05 (stat) ± 0.08 (syst)) × 10−3 (1.2 ± 0.1) × 10−3 1.07 ± 0.13

400–500 (4.4 ± 0.2 (stat) ± 0.3 (syst)) × 10−4 (3.9 ± 0.3) × 10−4 0.89 ± 0.10

500–750 (5.8 ± 0.5 (stat) ± 0.5 (syst)) × 10−5 (6.0 ± 0.6) × 10−5 1.03 ± 0.15

750–1000 (4.3 ± 1.3 (stat) ± 0.4 (syst)) × 10−6 (4.4 ± 0.7) × 10−6 1.02 ± 0.36

1.57 < |yγ | < 2.5, |yjet| < 1.5, and pjet
T > 30 GeV

190–200 (6.0 ± 0.1 (stat) ± 0.6 (syst)) × 10−2 (5.1 ± 0.6) × 10−2 0.85 ± 0.12

200–220 (3.92 ± 0.08 (stat) ± 0.39 (syst)) × 10−2 (3.6 ± 0.4) × 10−2 0.92 ± 0.14

220–250 (2.42 ± 0.04 (stat) ± 0.23 (syst)) × 10−2 (2.1 ± 0.2) × 10−2 0.88 ± 0.13

250–300 (1.08 ± 0.02 (stat) ± 0.12 (syst)) × 10−2 (1.0 ± 0.1) × 10−2 0.93 ± 0.14

300–350 (4.7 ± 0.1 (stat) ± 0.5 (syst)) × 10−3 (4.2 ± 0.4) × 10−3 0.90 ± 0.13

350–400 (2.03 ± 0.09 (stat) ± 0.25 (syst)) × 10−3 (1.8 ± 0.2) × 10−3 0.91 ± 0.15

400–500 (8.1 ± 0.3 (stat) ± 0.9 (syst)) × 10−4 (6.0 ± 0.5) × 10−4 0.74 ± 0.11

500–750 (1.24 ± 0.08 (stat) ± 0.17 (syst)) × 10−4 (8.5 ± 0.9) × 10−5 0.69 ± 0.12

750–1000 (1.0 ± 0.2 (stat) ± 0.3 (syst)) × 10−5 (6.0 ± 2.0) × 10−6 0.64 ± 0.32

1.57 < |yγ | < 2.5, 1.5 < |yjet| < 2.4, and pjet
T > 30 GeV

190–200 (5.0 ± 0.1 (stat) ± 0.5 (syst)) × 10−2 (4.0 ± 1.0) × 10−2 0.85 ± 0.23

200–220 (3.39 ± 0.08 (stat) ± 0.34 (syst)) × 10−2 (3.0 ± 0.8) × 10−2 0.89 ± 0.24

220–250 (1.87 ± 0.05 (stat) ± 0.17 (syst)) × 10−2 (1.7 ± 0.5) × 10−2 0.91 ± 0.26

250–300 (8.1 ± 0.2 (stat) ± 0.9 (syst)) × 10−3 (7.0 ± 2.0) × 10−3 0.92 ± 0.27

300–350 (3.4 ± 0.1 (stat) ± 0.3 (syst)) × 10−3 (2.8 ± 0.8) × 10−3 0.83 ± 0.26

350–400 (1.38 ± 0.02 (stat) ± 0.17 (syst)) × 10−3 (1.0 ± 0.3) × 10−3 0.74 ± 0.25

400–500 (3.4 ± 0.3 (stat) ± 0.4 (syst)) × 10−4 (2.7 ± 0.8) × 10−4 0.79 ± 0.27

500–750 (4.1 ± 0.7 (stat) ± 0.5 (syst)) × 10−5 (3.0 ± 1.0) × 10−5 0.67 ± 0.30
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Fig. 7 Ratios of jetphox NLO predictions to data for various PDF
sets as a function of photon ET for inclusive isolated-photons (top four
panels) and photon+jet (four bottom panels). Data are shown as points,

the error bars represent statistical uncertainties, while the hatched area
represents the total experimental uncertainties. The theoretical uncer-
tainty in the NNPDF3.0 prediction is shown as a shaded area
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with NNPDF3.0, are shown in Fig. 7. The differences
between jetphox predictions using different PDF sets are
small, within the theoretical uncertainties estimated with
NNPDF3.0.

8 Summary

The differential cross sections for inclusive isolated-photon
and photon+jet production in proton-proton collisions at a
center-of-mass energy of 13 TeV are measured with a data
sample collected by the CMS experiment corresponding to
an integrated luminosity of 2.26 fb−1. The measurements of
inclusive isolated-photon production cross sections are pre-
sented as functions of photon transverse energy and rapidity
with Eγ

T > 190 GeV and |yγ | < 2.5. The photon+jet pro-
duction cross sections are presented as functions of photon
transverse energy, and photon and jet rapidities, with require-
ment of an isolated photon and jet where pjet

T > 30 GeV and
|yjet| < 2.4.

The measurements are compared with theoretical predic-
tions produced using the jetphox next-to-leading order cal-
culations using different parton distribution functions. The
theoretical predictions agree with the experimental measure-
ments within the statistical and systematic uncertainties. For
low to middle range in photon ET, where the experimental
uncertainties are smaller or comparable to theoretical uncer-
tainties, these measurements provide the potential to further
constrain the proton PDFs. The agreement between data and
theory, and the new next-to-next-to-leading-order (NNLO)
calculations [49] motivate the use of additional measure-
ments to better estimate the gluon and other PDFs.
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