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ABSTRACT

A new modeling method for two-dimensional distributed transducers with
arbitrary spatial distribution is presented. The spatial weighting of a two-
dimensional distributed transducer is defined using multidimensional
distributions with composite functions as arguments. A distributional
calculus is developed to determine the spatial differential operator describing
the spatial dynamics of induced-strain transducers. The methodology, valid
for both uniaxial and biaxial transducers, is applied to several model
problems and the results are compared with previous research and limiting
cases.

Two-dimensional transducer shading and its implications for the active
control of thin plates are then discussed. Two-dimensional transducer
shaping is presented as a design tool for the control problem. A method is
described for approximating continuously shaded transducer distributions
with a combination of transducer shaping and gain-weighting. A least-
squares optimization method is used to fit the approximation to a
continuous transducer distribution over a specified number of modal
coefficients. The analysis is applied to two examples. The first utilizes two-
dimensional transducer shaping alone to establish controllability and
observability over the acoustically significant modes in a simply-supporied
plate. Even-even modes, which would not couple into the acoustic radiation
field, are filtered out by this distribution. The second distribution is a
superposition of gain-weighted, shaped transducer sections, which provides
a close approximation to a continuous two-dimensional shaded transducer
distribution. This distribution provides “all-mode” controllability and
observability over a large bandwidth and is therefore useful for global
vibration suppression.

A closed-loop vibration control experiment is described in which the “all-
mode” transducer distribution is used to actively damp vibrations i1 an
aluminum plate. The boundary conditions of the plate are apprc .imately
simply-supported with a rotational edge constraint. The transaucers are
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constructed from distributed piezopolymer film. Velocity feedback of the
colocated actuator/sensor transducer distributions yields a reduction in
settling time of more than fifty percent compared to the open-loop system
when subjected to an wide-band transient input disturbance.
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Chapter 1:

Introduction

1.1 Historical Background

The need for active structural control arises in many applications. Recent
research has examined its utility for sound transmission/radiation
suppression.l.2 Structures can transmit sound or they can radiate sound
when excited by a mechanical or acoustic disturbance. The resulting sound
field is undesirable in many applications, including duct noise, aircraft cabin
noise, industrial machinery noise, car interior noise, and marine hull noise.3
Previous research has studied the use of multiple sound sources for noise
cancellation in the far-field, but direct vibration inputs to plates and shells
have been shown to be more effective and practical.# Microphones placed in
the far-field have been used for sensor input, but distributed sensors applied
directly to the structure have also been shown to be more feasible.2

One of the more challenging classes of structural control problems can
occur with precision space structures. Many space structures have stringent
performance requirements for shape control and vibration suppression.
These structures have a large number of lightly-damped vibrational modes
within their performance bandwidth.5 This means that a commanded
maneuver, such as a slew, could excite vibrational modes with long decay
times, degrading performance and possibly destabilizing the system. Space
structures are also subjected to mechanical and environmental disturbances
from thermal gradients, thrusters, momentum wheels, and machinery
vibration. Active structural control, in the form of global vibration
suppression, may be required to maintain a specific shape and to damp
vibrations in the presence of both deterministic and stochastic disturbances.

Another application which may require global vibration suppression
involves panel flutter for supersonic vehicles, including airplanes and
launch vehicles. Bisplinghoff and Ashley® discussed the problem of fatigue as
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the principal mode of structural failure in panel flutter problems. Both flat
panels and buckled or slightly curved panels have been studied in this area.6

Generally, active structural control techniques seek to cancel known plant
dynamics and replace them with a set of desired dynamics. Unfortunately, a
large amount of model uncertainty is present in structural systems.”.85 There
may be parametric uncertainty in the mass and stiffness properties of the
structure, and this will manifest itself as uncertainty in the natural
frequencies of the structure.”8 In addition, structures theoretically have an
infinite number of modes and in practice have large number of modes
present within their performance bandwidth. This can lead to non-
parametric uncertainty in the model order if a controller requires truncation
of modes.> The disturbance environment is also often poorly known. The
disturbances may be transient or continuous, either stochastic or

deterministic.

A structural component common in all of these applications is the panel.
In this thesis, flat panels in the form of thin plates will be considered.
However, in the future, the work can be expanded to curved panels and
shells. Much of the previous research in structural control has focused on
beams,?15 but plates are more complex and therefore have not received as
much attention in the literature.

1.2 Previous Research

Much of the original research in the active control of plates made use of
discrete sensors and actuators.l.16 The distribution of these transducers across
the surface of the plate was determined in an ad hoc manner. Centralized,
multivariable control techniques were used for closed-loop control.

Meirovitch and Thangjitham,! in a theoretical study, considered the use of
discrete sensors and actuators collocated on opposite sides of a simply-
supported plate to provide open-loop and closed-loop control for
minimization of the radiated sound field. Because they used LQR (Linear
Quadratic Regulator) for the closed-loop control and full-state feedback of the
modal states, one sensor-actuator pair was needed for each mode of the plate
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to be controlled. This made it quite difficult to implement closed-loop control
for a large number of modes. In addition, because the LQR controlier was
based upon perfect knowledge of the modal states, the closed-loop
compensator was very sensitive to model uncertainty. Figure 1.1 shows the
actuator distribution that was considered, with an identical sensor
distribution located on the opposite side of the plate. There are 13 discrete
actuators, with the locations chosen such that they are spaced evenly across
the plate. Controllability and observability for a given mode will be lost,
however, when nodal lines run through the transducers.

B —— To————_89
I e i
1 , le i %
S N Y S
12&_______ R l".&

Fig. 1.1 Actuator/sensor locations for LQR/modal feedback of simply-
supported plate (after Meirovitch and Thangjitham?).

Greeley et al.16 described a plate control experiment using a limited
number of discrete sensors and actuators. Using the Maximum
Entropy/Optimal Projection control method, they designed a reduced-order
compensator which required fewer sensors and actuators than the number of
modes to be controlled. Fig. 1.2 shows the sensor and actuator distribution for
this experiment. Note that some sensors were not collocated with actuators.
They were able to suppress vibrations in a vertically suspended square plate
with a disturbance bandwidth which included one hundred modes. Slots
were cut in the corners of the plate to increase the modal density. Their
compensator, however, was dependent upon a detailed modal identification
test and therefore was sensitive to both parametric and non-parametric

uncertainties.
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A accel.
location

® control
actuator and
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® disturbance
actuator and
accel. location

Fig. 1.2 Actuator/sensor locations for ME/OP control of a vertically
suspended square plate (after Greeley et al.16).

Several researchers have considered using distributed transducers for the
active control of plates.17-21 Lee and Moon!7 studied the use of piezoelectric
transducers for plate sensing and control. As shown in Fig. 1.3, they varied
the skew angle of the material axes of piezopolymer film (PVDF) with respect
to the geometrical axes of the plate laminate, a layered composite, and showed
how this affected the loading/sensing parameters of the film. The boundary
of the transducer, however, was assumed to be rectangular with axes

coincident with those of the plate.

—

piezoelectric transducer

N— transducer material axes

X

Fig. 1.3 Piezoelectric transducer distribution with finite skew angle
between material axes and boundary/plate axes.

Clark and Fuller,218 Clark et al.19 and Clark and Burke20 investigated one-
dimensionally shaped PVDF sensors for sensing acoustically significant
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modes in plates. Although these shaped transducers were applied to plates,
their width is small in comparison to the smallest transverse wavelength
present in the plate’s dynamic response. However, errors in the placement of
these sensors can lead to coupling with undesired modes in experimental
implementations.20

These sensors were combined with rectangular piezoceramic patches in
the closed-loop control experiment for a simply-supported plate!® as shown
in Fig. 1.4. In this case, the sensors were rectangular strips of film. They have
the capability of sensing the odd-odd modes of the plate and, to a lesser extent,
the odd-even and even-odd modes. These sensors cannot sense the even-
even modes. These sensors, therefore, can sense only those modes which
have a significant contribution to the sound field. Non-collocated control
was provided with a feedforward LMS (least-mean-squares) algorithm. The
algorithm assumes a harmonic disturbance with location and frequency that
is known a priori. This method of compensation is quite sensitive to both
model and disturbance uncertainty.2!

Fig. 1.4 Distributed actuator/sensor locations for feedforward LMS
control of a simply-supported plate (after Clark and Fuller!8).

Burke and Hubbard22 conducted a theoretical study on the effects of
applying a distributed transducer with a continuously varying gain over the
entire surface of a plate. An example of this is shown in Fig. 1.5. The
transducer is assumed to cover the entire plate. This would allow all-mode
sensing and control from one sensor/actuator pair for a simply-supported
plate when combined with velocity feedback. Although such a transducer is
difficult to realize in practice, the concept of spatial gain weighting, referred to
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as shading,222324 is very important for the design of transducers for plate
control and will be reviewed and built upon in this thesis.

Fig. 1.5 Transducer distribution with continuously varying gain.

Many active structural control methods have recently focused on using
multivariable state or output feedback along with discrete actuators and
sensors. Hyland et al5> surveyed various control algorithms for space
structures. They include LQG (Linear Quadratic Gaussian), LQG/LTR (Linear
Quadratic Gaussian with Loop Transfer Recovery), H., mixed Hp/H.., SSV
(Structured Singular Values), and ME (Maximum Entropy). These
centralized design methods produce compensators with dimensions equal to
or greater than the number of plant modes within the control system
bandwidth. This often leads to controllers which are practically unrealizable.

The control methods mentioned above also assume the plant can be
described by a linear, time-invariant model. These control methods,
however, produce conservative compensators when high model uncertainty
is present.5 In structural applications, this model is frequently developed
using modal analysis. Usually, experimental modal tests of the structure are
conducted and compared to high-order finite element models used to predict
the mode shapes and frequencies. These methods often do not reliably
describe the modal structure of a system in use.?> Research into real-time
system identification has attempted to ameliorate this problem,26 but this too
can lead to a substantial computer processing burden. The spatial design part
of the problem is treated separately from the temporal control design in these -
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methodologies. Also, since these techniques often rely on discrete
transducers, the only spatial design variables considered are the number and
location of transducers.

07(6.4)5)
u(x,t) Gx.d) nx.,1)
K |

Fig. 1.6 Idealization of distributed parameter control system.

The active structural control problem involves control of distributed
parameter systems, i.e. systems which involve both space and time variables.
Fig. 1.6 shows an idealized block diagram of such a control system where the
blocks involve spatial and temporal operators. Because of the distributed
nature of the system, the compensator, K(x,t), depends upon both space and
time. Much of the previous research mentioned in this section focused on
the temporal portion of the compensator, while the research which involved
distributed transducers considered the spatial part of the design problem.

1.3 Objective

The objective of this thesis is to develop a general methodology which can
be used to actively dampen vibrations in multidimensional elastic structures
with imprecise or poorly known models and disturbance environments. The
proposed means for achieving this objective is to incorporate distributed
transducers. Distributed transducers offer additional spatial degrees of
freedom that may be used as design variables in the control problem. One can
exploit the spatial design and synthesis of distributed transducers to help
accomplish the closed-loop control objectives. The technique will allow the
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use of a dissipative feedback control law, such as velocity feedback, which is
robust to changes in plant parameters and the disturbance environment.

1.4 Approach

A comprehensive approach for modeling two-dimensional transducers of
arbitrary spatial distribution is developed. The technique is based upon the
theory of multivariable distributions. This allows distributed transducer
shape to be incorporated into the control design process for multi-
dimensional structures as an additional design parameter. Also, by providing
a compact, analytical representation of two-dimensional transducers, the
method can be used to design new devices requiring such transducers for a
variety of applications. The method itself is general and is thus applicable to
many types of transducers, including piezoelectric, electrostrictive, and
magnetostrictive devices.

Spatial synthesis is critical to the goal of effective structural control
design.23 For example, a discrete actuator located along a nodal line of a plate
will not have any input into the corresponding mode. The primary
advantage of distributed transducers is that they allow flexibility in the spatial
design and synthesis for the control problem. Distributed transducers may be
shaded by varying their gain over their spatial extent. Through the
application of shaded transducers, the transducer-augmented forward-loop
transfer function can be altered so as to achieve desired temporal and spatial
performance goals. This work describes methods for achieving two-
dimensional transducer shading using two-dimensionally shaped transducers
and then discusses how these can be utilized for the control of plates.

The theoretical development is experimentally demonstrated on a thin-
plate with boundary conditions that are intermediate between simply-
supported and clamped. This demonstration provides insight for many
classes of panel vibration problems.2’” Closed-loop active vibration control is
achieved in the presence of both transient and continuous disturbances.
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1.5 Organization of Thesis

A modeling approach for two-dimensional distributed transducers is
developed in Chapter 2. The mathematical theory needed to describe the
spatial dynamics of the transducer is developed and applied to several
example problems. The results are compared with previous research and
limiting cases. Guidelines for applying the technique are deduced from the
various examples.

Chapter 3 uses the analytical modelling technique described in Chapter 2
to study the implications of two-dimensional transducer shape and shading
for the active control of plates. Transducer shaping is shown to be an
effective design tool for the control problem. The utility of continuous, two-
dimensional transducer shading for establishing controllability and
observability over a broad control bandwidth is also discussed. Transducer
shaping can be combined with gain-weighting to provide a close
approximation of a continuously shaded transducer distribution.

Chapter 4 discusses the stability of velocity feedback when combined with
the spatial design work presented in Chapter 3. Plant and transducer
characteristics are discussed. With collocated velocity feedback chosen as the
control strategy, the marginal and asymptotic stability of the system are
guaranteed.

The experimental demonstration on a thin plate is described in Chapter 5.
The experimental hardware and setup is discussed. Modal tests are presented
along with open-loop tests which show how the sensor and actuator
distributions couple into the plate modes. Closed-loop tests are presented
which demonstrate both transient and stochastic disturbance rejection.

Conclusions and recommendations for further work are presented in
Chapter 6.
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Chapter 2:

Modeling Approach for Two-dimensional
Distributed Transducers of Arbitrary Spatial
Distribution

2.1 Introduction

The benefits of using shaped, distributed transducers for the active control
and sensing of beams have been explored by a number of researchers.17 By
varying the shape of the transducer, it is possible to weight the gain of the
transducer along the length of the beam. This is an approximation, however,
which breaks down when a transverse mode of vibration is present in the beam's
response.

In this case, the transducer must be modeled as a two-dimensional device.
Two-dimensional transducers have been considered for the active control and
sensing of plates,%? but only rectangular shapes or sums of rectangular shapes
were considered. Lee and Moon® modeled rectangular pieces of piezoelectric
transducers adhered to a plate with a skew angle between the piezo material axes
and the boundary axes of the transducer. The boundary axes of the transducer,
however, were assumed to be coincident with those of the plate. Their work
showed how a finite skew angle can affect the loading/sensing parameters of the
transducer.

Burke and Hubbard® examined the use of two-dimensional transducers for
vibration control of plates with arbitrary boundary conditions. They assumed
that the spatial gain of the transducer could be continuously varied, or shaded,
over its surface area. In this work, the transducer shape was also assumed to be
rectangular with boundary axes coincident with the plate axes.

In Lee and Moon® and Burke and Hubbard9, products of generalized
functions in orthogonal coordinates were used to model the spatial distribution



of the transducer. This procedure, however, can only accomodate transducers of
rectangular shape.

This chapter describes the development and application of a method for
modeling two-dimensional distributed transducers with arbitrary spatial
distribution. This approach allows distributed transducer shape to be
incorporated into the control design process for multi-dimensional structures as
an additional design parameter. Also, by providing a compact representation of
two-dimensional transducers, the method can be used to design new devices
requiring such transducers for a wide variety of applications. The method itself
is general and is thus applicable to many types of transducers, including
piezoelectric, electrostrictive, and magnetostrictive devices.

The technique is based upon the theory of multivariable distributions.10 After
presenting an example of a one-dimensional shaded transducer 1-311 and the use
of one-dimensional distributions in modeling such a device,12the spatial
deposition of a two-dimensional transducer is defined using multidimensional
distributions with composite functions as arguments. A distributional calculus is
developed to determine the differential operator describing the two-dimensional
transducer's spatial dynamics. The resulting modeling method is applied to
several example problems and the results are compared with previous research
and limiting cases. Guidelines for applying the technique are deduced from the
various examples.

2.2 Theoretical Development

Many types of distributed transducers, including piezoelectric,
magnetostrictive, electrostrictive, and fiber optic, are classified as separable
transducers because their temporal dynamics do not vary over their spatial
aperture.ll Separable transducers can be represented by a product of spatial and
temporal functions:

u(x,t) = A(x) u(t), (2.1)

where A(x) describes the transducer's spatial distribution (or spatial kernel) and
u(t) describes the transducer's temporal dynamics. Previous research by Burke

-24-



and Hubbard1.11.12 has dealt with choosing a compact mathematical
representation for the spatial kernel. Generalized functions, described by the
theory of distributions, were used to describe both discrete and distributed
transducers. The Macauley notation!3 was used to represent the generalized
functions. For example, (x - a)° represents a step function h(x-2), which begins
at x = a. The derivative with respect to x of this function is given by (x-a) .
This is the delta function &(x-a), at x =a. The derivative of this delta function

yields (x—a)'z, a doublet function 5'(x—a), at x =a. An example from this
research is presented for review.11

The spatial distribution of a one-dimensional distributed transducer can be
weighted over the aperture [0,4] such that

A@) =b(x)° - B(x)1 + B(x-a)?, 2.2)

by linearly varying the transducer's spatial input/output characteristics to
decrease from some maximum, b, to zero. Note that, due to the distributed
nature of the transducer, more than one generalized function is needed for the

description given by (2.2).

A(x)

0

0 a x

Fig. 2.1 One-dimensional shaded transducer distribution.

If the transducer described above is an induced strain device, then its spatial
input/output characteristics are determined by the Laplacian of the distribution
defined in (2.2),

Age() =b(x) 2= Blay 4 Bix gy, 2.3)
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The result, consisting of a doublet function and a delta function at x = 0 and one
delta function at x = g, is shown in Fig. 2.2. Note that the doublet function occurs
at the discontinuity in amplitude and the delta functions occur at the
discontinuities in slope. If the transducer is used as an actuator, these functions
would correspond to a moment and two forces, and therefore force and moment
equilibrium would be satisfied. Conversely, if the transducer is used as a sensor,
these functions would correspond to angular and transverse displacement
respectively.

b/a

«V

b/a

Fig. 2.2 Laplacian of one-dimensional transducer distribution.

The type of distribution shown in Fig. 2.1 has been used in the design of
actuators and sensors for beams!-3 and a variant has also been used in a center of
pressure sensor!4 and a sonar sensor.1516 The one-dimensional shading was
implemented by varying the shape of the transducer along the length of the
aperture, as shown in Fig. 2.3. The shading is thus achieved by allowing the
width of the transducer to linearly decrease from a maximum, Amax, at one end to
a minimum, zero, at the other. Several other researchers4’ have used this
transducer shaping technique to achieve a desired shading along the length of
beams.

Fig. 2.3 Shaped transducer approximation of 1D shading.
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This method for achieving one-dimensional shading is actually an
approximation for the continuous variation of the conversion properties of the
transducer over the aperture as shown in Fig. 2.4. This approximation, however,
becomes invalid if the beam behaves like a plate. For example, if there are any
modes of vibration along the transverse direction of the beam, then the problem
is no longer one-dimensional and the shaped transducer approximation to one-
dimensional shading will not be valid. In this case, the distributed transducer is
two-dimensional and can no longer be modeled using one-dimensional
generalized functions.

a >

Fig. 2.4 One-dimensionally shaded transducer distribution.

It is possible to model a two-dimensional transducer using two-dimensional
generalized functions. Much work has been accomplished using generalized
functions for the modeling of distributed transducers in one dimension.1-3.12
Research conducted by Lee and Moon,8 Burke and Hubbard,? and Dimitriadis et.
al.17 has also utilized generalized functions for modeling two-dimensional
transducers. This work, however, was restricted to generalized functions defined
in orthogonal coordinates, and thus only rectangular shaped transducers could
be examined. In the following subsection, theory is presented which enables one
to use multidimensional distributions to model arbitrary transducer spatial
weightings.

2.2.1 Multidimensional distributions with composite arguzments

Generalized functions (distributions) defined over muiti-dimensional spaces
in orthogonal coordinates are discussed in Zemanian!® and Sirang.!® For
example, the delta function, d(x,y), can be defined in two dimensions, using the
inner product notation defined in Zemanian,10 as
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(6(x,y), 0(x,y)) =(6(x)8(y), $(x,y)) = ¢(0,0). (2.4)

This two-dimensional delta function, which is the product of a delta function
in x and a delta function in y, is zero everywhere except at the origin. When
operating on an ordinary function, ¢(x,v) , this distribution returns the value of
#(x,y), at the origin. It is also possible to have distributions which act on
ordinary functions in n-dimensional real space. It is not possible, however, to
multiply two distributions which are solely dependent upon the same variable. 20
For instance, neither of the two products,

o(x)6(x-a),

hx-a)8(x), @9
have a real meaning,.
Now, consider the region of two-dimensional space shown in Fig. 2.5,
Fig. 2.5 Arbitrary closed curve in cartesian coordinates.
This region can be described by the following functions,
y=fi(x) fory>0 over x € [xy,xq],
(2.6)

y=£(x) fory<O0 over x e [xp,%,],

where x; and x; are the x extrema of the boundary. In this example, the bounding
functions are known for y. The situation can be reversed, i.e. knowing
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x=g,y) forx>0 over ye [y, ]

x=g,(y) forx<0 over ye [yy,], 27)

where y, and y,. are the y extrema of the boundary. The bounding functions in
(2.6) and (2.7) have been assumed to be single-valued. If they are doubled-
valued, then the region can be decomposed into subregions which admit either

(2.6) or (2.7).

Using the functions defined in (2.6), the shape can be described by

AGY) =((x-x)° = (x~2,)) ((y - L) - (- £,(x)°). 2.8)

Within the boundary, the distribution has unit amplitude, A = 1, and outside of
the boundary the distribution has zero amplitude, A = 0. Unlike either of the
products in (2.5), this expression has physical meaning because the distribution is
represented by products of distributions in non-parallel coordinates. The
expression can be used to describe a two-dimensional distributed transducer of
arbitrary shape. If the shape is complex, then it can be separated into subregions
which can be described by (2.8) and the overall representation can be derived

through superposition.

If, in addition to an irregular shape, the gain of the transducer is varied over
space, then the generalized functions in (2.8) may be multiplied by ordinary
functions to reflect this weighting. For example, for the rectangular shape shown
in Fig. 2.6,

y=£H&x)

Fig. 2.6 Rectangular distribution.
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equation (2.8) simplifies to

A@x,y) =((x +a)°-(x-a)°) ((y + b)° - (y - b)°). (29)

This expression is a product of distributions in orthogonal coordinates and has
been used by Lee and Moon® and Burke and Hubbard? to describe a rectangular
electrode distribution on piezoelectric film, and by Dimitriadis et. al.17 to describe
piezoceramic transducers of rectangular shape. Burke and Hubbard,® in
designing a shaded piezoelectric film transducer, also added linear weighting in
each direction,

Ay =3[(1-F)(x+a)°~(x-a))|[(1-F ) +8)°- -8 (2.10)

FN

by multiplying each term by an ordinary function. This distribution could have
been rewritten using only generalized functions as,

A(x,y) =((x+a)o--%(x+a)l +%(x—a)l )x
(0 +8)° - F(x+b)! + Ly~ ) (2.11)
The mathematical representation defined in (2.8) can accomodate two-
dimensional transducers of both arbitrary shape and gain weighting because it
permits products of distributions with composite function arguments. The
method is useful for directly modeling non-induced strain transducers such as
piezoelectric film used in the thickness mode.19

In order to determine the effects of using induced strain transducers
described by (2.8) in physical systems, it is necessary to derive a differentiation
theorem for distributions with composite function arguments and then extend
the results to multidimensions through the use of partial derivatives.



2.2.2 Differentiation of a distribution with a compeosite function argument: the
chain rule

Given a distribution, f{t), consider the meaning of that same distribution with
a composite function as its argument, f{g(t)), where g is an ordinary function with
the following properties:10

The function g has an inverse h defined by x = g(t) and ¢ = h(x). Both t and x
are one-dimensional variables. The function g and its inverse h are infinitely
smooth. The first derivative of g, and hence h, is always positive or always
negative (but never zero) over the corresponding interval: a <t <bandc<x <
d. Therefore, within the given interval, the functions are not double-valued;
they are either monotonically increasing or decreasing.

If f{x) is a distribution defined over the interval ¢ < x < d, then f{g(¢)) is defined
over the interval a <t < b as!0

(f®), ¢))=(f(x),|F () |pr(x))), 2.12)

where the function ¢(t) is a continuously differentiable test function with
bounded support. The concept of a suitable test function is discussed further in
Appendix A. This definition is derived as follows. The inner product notation is
first expanded to integral notation to show the finite limits of integration,

(FEON9®)= [ G0 9t dt 213)

Using a change of variable under integration, where x = g(#), yields

t=h(x),

dt = I (x) dx. (214)

When h “(x) > 0, the integration limits change from [a,b] to [c,d]. When & “(x) <0,
the limits change from [a,b] to [d,c]. Substituting in for both cases yields the same
result,

(f(g®), () =(f(),|F(x)] p(h(x))). (2.15)
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The above result gives physical meaning to a distribution with a composite
argument. To differentiate such a distribution with respect to the scalar variable,
t, it is necessary to find a similar result for,

(£ £(g0). o)), 2.16)

where ¢() has support contained within 2 < ¢ < b and g{t) is an ordinary function
defined as before. Using integration by parts,

(£ £(s0), 0) = Fls®), - Lotr). (217)

The change of variable under integration described in (2.14) will be used so the
right-hand side of (2.17) is now expressed in integral form to show the limits of
integration,

(fle@n-Lo®)=- flah o 218)

When h “(x) > 0, the limits change from [4,b] to [c,d] and the direction of
integration is unchanged. However, when k “(x) <0, the limits change from [a,b]
to [d,c] and the direction of integration is changed. Substituting in for both cases
yields

- f bf (g(t))%[¢(t)]dt=- f d f(x) f—x[sﬁ(h(x))]dx forh(x)>0, (2.19)

- [ reerdioont= [ o Lot forhw <o, 220

Integrating by parts again and combining equations (2.19) and (2.20),

[ £ Lot =+ LLf okt forh w2
| fe5le x =% Il )] forh “(x)20. (2.21)

Performing another change of variable back to the ¢ domain where
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x =g(t),
dx = g/(t)dt, (2.22)

and subsituting in for both cases, & “(x) > 0 and k “(x) < 0, yields

b
o Srenenne = [ (Fo)dfgomoron. o
Using the relationship,
g'(t)dt = d(g(t)). (2.24)
equation (2.23) can be written as

b
L\ reeong @it = [ LED yiomar
70 FI0)

) (2.25)
= [0 raopo.

Therefore,

( % f(g(®) ¢(®) ) =(g’(t) f(3(®), o(t) ).

(2.26)

The two distributions in (2.26) satisfy the definition of equality for distributions
so that

4 £(3() =g (5(8). 227)
The result is a chain rule for distributions with general substitution which
works the same way as the chain rule for ordinary functions. For example, when

g(t) = at + b, equation (2.27) reduces to

Hdi flat +b)=af’(at +b) for a 0. (2.28)
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This is a chain rule for distributions with linear substitution, and is given without
a proof in Lighthill. 20 The derivative with respect to t of (at +b)° is then

%(at +b)? = a(at + b)! for a 0. (2.29)

The preceeding proof for the distributional chain rule (2.27) was derived
independently. A similar result was obtained by Hoskins,2! although the proof
did not include the use of test functions. The proof was derived for the delta

function as

L) _ MO i _ 1oy HE)

5( )= dx = dt (2.30)

such that
%h(g(t)) = g'(£) &(g(t)). (2.31)

The same method was used to determine the derivative of a delta function with a
composite argument.

The input/output characteristics of induced strain transducers are described
by a spatial differential operator. When such a transducer is two-dimensional
and can be described by (2.8), the distributional chain rule (2.27) can be used to
help calculate the result of the spatial differential operator. To accomodate two-
dimensional induced strain transducers, however, the chain rule result must first
be extended to partial differentiation in multi-dimensions. This procedure is
outlined in the following subsection.

2.2.3 Extension of distributional chain rule to multi-dimensions

The spatial distribution defined in (2.8) is the product of two terms, one solely
dependent upon x and the other dependent on both x and y,

A(xy) = Ay(x) Ay(x,y). (2.32)



When taking the partial derivative of this distribution with respect to x, it is
possible to use the product rule for differentiation as long as y is assumed to be a
constant,

QD) - ,0) At + A o) m ) (239)

The partial derivative with respect to y is

: dA,(x,y)
aA;;y) = 4,)— y- (2:34)

When taking higher-order spatial derivatives, one can apply the product rule
successively:

PAEy) _ - 04xy) Faxxy)
-—éx—ay— = Al(x)—a-y—— + Al(x)—ale (2.35)
T - K e + 240 5L 4 4@ D a3
ayzy = A0 — 2 (2.37)

Using the distributicnal chain rule defined in (2.27), where y is again assumed to

be a constant, the partial derivative of A(x,y) defined in (2.8) with respect to x can
be written as,

Y _ ((x-x0) (2 -2V (- O~ (¥- @)
+(x-22)" (2= ) (- Ny - @ + Xy - £y @D

The partial derivative of A(x,y) with respect to y is simply,

a—/‘:%'l) =((x-x2)°(x-2))(y- L@~ (y- £,0)Y). (2.39)



Of course, the spatial distributions of distributed transducers may be more
complicated than defined in equation (2.8). If the transducer is shaded, the
spatial distribution may include ordinary functions or higher order generalized
functions. However, one can simply use the distributional chain rule and the
product rule for differentiation as needed when taking partial derivatives.

2.3 Application to Two-Dimensional Problems

The theory presented in the preceeding section can be used to calculate the
spatial differential operator of an induced strain transducer. In this section,
spatial distributions of piezoelectric material will be examined to allow
comparisons of the modeling technique to previous research in the field. The
differential operator describing the spatial dynamics of piezopolymer film
(PVDF), with the possibility of skew angle, 8, between the transducer and
structure axes, is given by Lee and Moon8

0 32A(x,y) L 0. 32AY) 0 2A@y)

L[A(xy)] = e3 32, e Py +e 3, 3y (2.40)
&1 cos?0 sin20  —2cosfsind
egz = sin’@ cos?0 2cos6sin@
egs cosfsin@ - cos@sin® cos20-sinZ6
0
Y,/(1-¥)) vY,/(1-V2) 0 dgy D
0 .
x| VY, /(1-V2) Y,/(1- V) 0 dgy|,
0 0 Y,/2(1+v,) ([ O

where e, e3,, eg6 represent the piezoelectric stress/charge constants with respect

to the structure axes; dy,, d5, are the piezoelectric strain/ charge constants with
respect to the PVDF material axes; and Y, v, are the Young's modulus and

Poisson'’s ratio respectively of PVDF. The examples of two-dimensional shaped
transducers presented in the following subsections are based upon PVDF film.
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2.3.1 Application to triangular shaped transducer distribution

Consider the triangular shaped piezoelectric distribution shown in Fig. 2.7
where the magnitude of the slope of the taper, m, is equal to b/a.

Fig. 2.7 Triangular shaped distribution.

This shape can be represented using equation (2.8), where f;(x) = -mx + band f,(x)
=+mx-b;

AKX) = A@y) = ((£)°-(x-a)) ((y - mx =)’ ~(y - ~mx + ))Y).  (2.42)

Equation (2.42) describes a distribution that is “on” with unit intensity only when
x is within the range 0 < x < 4 and y is within the range (mx - b) < y < (-mx + b).
The location of the origin is arbitrary but has been chosen as shown for
convenience. This distribution can be rewritten as

A@xy) = (x) °~(x-a) ) {(y - mx + b)°~ (y + mx-1b)9). (2.43)

Assume that this distribution is either a triangular shaped piezoelectric
transducer or electrode distribution on a piezoelectric transducer where the
material axes of the transducer are coincident with the x and y axes shown in Fig,
2.7 (skew angle is zero). The result of the piezoelectric operator (2.40) acting on
this distribution may be found through the use of equations (2.33) - (2.39) and the
distributional chain rule for linear substitution (2.27),
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L[AGy) = el(x) 2~ (x-a) Iy - mx + )°- (y + mx—1)?)
-Zmegl((x) To(x- -a) 'l) ((1/ -mx+b) 4 (y +mx- b)'l) (2.44)
+(me5y + e3) ((0) O - (x-a) Y (y - mx + 8 2~ @y + mx—1)D),

The magnitudes of the last two terms in equation (2.44) depend on the slope of
the lines and not on the x or y intercepts. Thus, the location of the origin of the
coordinate system does not affect the result. The physical interpretation of this
result is shown in Fig 2.8.

Fig. 2.8 Result of piezoelectric operator acting on triangular distribution.

The first term in equation (2.44) contributes distributed doublet functions of
magnitude egl on the lines x = 0 and x = 4, but only within the lines y = mx - b
and y = -mx + b. Because the sloped lines intersect at the point (2, 0), no doublet
functions exist on the right hand boundary of the triangle. The third term

contributes distributed doublet functions of magnitude m?ef; + €3, along the
lines y = mx - b and y = -mx + b, but only within the lines x = 0 and x = 4. The
second term in equation (2.44) gives downward delta functions of magnitude
2me}; at the points (0, b) and (0, -b) and an upward delta function of 4meg; atthe
point (a, 0). Doublet functions line the boundary, where there is a discontinuity
in amplitude of the distribution, and delta functions occur at discontinuities in
boundary slope.

Burke and Hubbard! and Miller and Hubbard? cut PVDF in this shape to
approximate the linear shading in one dimension, as described by equation (2.2).
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The resulting one-dimensional Laplacian was given in (2.3) and shown in Fig.
2.2. The approximation made is seen to be correct by comparing the results with
those given in equation (2.44) and shown in Fig. 2.8. The two-dimensional
description approaches the one-dimensional Laplacian as the two-dimensional
structure the transducer is attached to or embedded within approaches a one-
dimensional system. The structure will become very “stiff” in the y-direction as
this limit is approached. Thus, the two delta functions on the left vertices in Fig.
2.8 sum to one which is equal in magnitude but opposite in direction from the
delta function at the right vertex. Due to stiffness in the y-direction, the bending
effect of the doublet functions along the sloped lines becomes negligible in
comparison to that of the distributed moment along the left boundary. The
distributed doublet functions along the left boundary can be summed to give one
resultant doublet function acting in opposition to the delta function at the right
vertex.

The differential operator result for this distribution also reduces to a known
result when looking at the limit as the slope of the taper, m, approaches zero.
When this occurs, the distribution itself approaches a rectangular distribution,

Axy) = ((x) °=(x-a) Y(y + b)°- (y- 1)), (2.45)

and the differential operator result approaches

L{AGY) = &{(x) *~(x-a) Iy +1)°-(y-1))
+ () °-(-a) Yy +1)?- -p) ). @49

The result agrees with that reported by Lee and Moon,® Burke and Hubbard,?
and Dimitriadis et. al.17 The magnitude of the distributed doublet functions

along the lines y = mx - b and y = -mx + b approaches egz and the magnitudes of

the delta functions at the vertices approach zero as m approaches zero.
Therefore, as the slope of the taper, m, approaches zero, the differential operator
result approaches that of a uniform rectangular distribution with distributed
moments along the boundaries and no delta functions at any of the corners.

One can see from this exercise that, because the transducer shape is
symmetric about the x-axis, it is best to define the distribution as in equation
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(2.43). For any given x within [0,4], there are two possible values of y. Therefore,
the shape cannot be defined in terms of unique functions of y as in equation (2.7).
One could, however, break up the shape into two parts along the x-axis, examine
the differential operator result of each, and sum the results. The top shape could
be defined as,

A@xy) = () = (x + y/m-a) Y ((y) - (y - b)), 2.47)

and the bottom shape could be defined in a similar manner. However, the limit
of this distribution as m approaches zero does not approach a rectangular
distribution because (1/m) approaches infinity. Therefore, one can deduce that
equation (2.47) is not a suitable representation of the upper part of the shape
shown in Fig. 2.7. A general guideline for defining distributions of irregular
shape is that the limit, as a parameter describing the shape approaches some
nominal value, exist and conform to the distribution describing the nominal

shape.

Up to this point, the type of piezoelectric material, uniaxial or biaxial, used to
create the tapered distribution has not been specified. The difference between

these two materials lies in the values of the strain/ charge constants, d:,?l,, d392,.

The stress/charge constants, calculated from equation (2.41) for zero skew angle,
are related to the strain/charge constants by the following relation,

0 0 0
€31 qdzy + Vdyy

€| = | vadsy +qdgy |,
0
€3 0
(2.48)
where
4=Y,/(1-V). (2.49)

For uniaxial, piezoelectric "KYNAR" film 22, d39 =24 %1071 m/V (orC/N) and

dyy=3%10"2m/V (or C/N) so that the stress/ charge constants are20
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egl 240x 1071

eg| = [1.07x 10714 (2.50)
€9 0

For biaxial, piezoelectric "SOLEF" film?3, 4. = 42, = (6-10) x 102 m/V (or C/N)
so the maximum stress/charge constants are2!

en| [1.33x10™

egz = 1.33)(10-11 q. (2.51)
€2 e

Using these values, the ratio of the magnitudes of the doublet functions,

egm” +e3y , along the sloped lines of the taper is

uniaxial mag _ 24m*+11 _ 12(2m’+1)
biaxialmag 133 (m*+1) 133 (m%+1)

(2.52)

This ratio varies between 0.83 and 1.3 for m between 0 and 1 respectively. With
uniaxial film it is therefore possible to obtain the same magnitude of distributed
doublet functions along the sloped edges of the taper as with biaxial film. Thus,
it is possible to achieve a two-dimensional loading/sensing effect with uniaxial
film by cutting the film or shaping the electrodes in a direction which is
nonorthogonal to the rolling axis of the film. Uniaxial film is simpler to
manufacture than biaxial film and is therefore more readily available and cost-
effective as a transducer. This agrees with research by Lee 8 where varying the
skew axis of the film with respect to a rectangular boundary produced two
dimensional loading/sensing effects.

2.3.2 Application to rectangular transducer distribution with finite skew angle
of material axes

The modeling method can be applied to the distribution shown in Fig. 2.9 to
provide a comparison with results obtained by Lee and Moon.8 Their research
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showed, based upon piezoelectric laminate theory, that the €3 stress/charge
constant in the piezoelectric differential operator (2.40) could be generated by
skewing the material axes of the transducer with respect to the laminate by an
angle 0. This stress/charge constant weights the cross term in (2.40) and causes
the equivalent of delta functions to be produced at the corners of a rectangular
distribution. In addition, varying the skew angle causes all of the stress/charge
constants to vary in a sinusoidal manner with increasing skew angle. The
distribution shown in Fig. 2.9 has material axes which are coincident with the x
and y axes shown in the figure, but the geometric axes of the rectangle, x, and y,,
are skewed with respect to the x and y axes.

This is analogous to the distribution shown in Fig. 2.10 where the material
axes are skewed with respect to the x and y axes but the geometric axes of the
rectangle are coincident those axes. The distribution in Fig. 2.10 has
stress/charge constants given by equation (2.41) where the skew angle is a finite
0, and the distribution in Fig. 2.9 has stress charge constants given by (2.41)
where the skew angle is equal to zero as shown in equations (2.48) and (2.49).
Since the boundary itself in Fig. 2.9 is skewed, multi-dimensional distributions,
with cos6 and sin@ included in the arguments, are needed to describe the shape.
Differentiation of these composite distributions will produce the cross-terms,
resulting in delta functions at the corners. and will correctly weight the doublet
functions acting along the boundary. Analyzing the piezoelectric operator
results for both distributions will provide an effective correlation of this work
with that of Lee and Moon8.

Fig. 2.9 Rectangular distribution with skewed boundary.



Fig. 2.10 Rectangular distribution with skewed material axes.

Define the distribution shown in Fig. 2.9 using the geometric axes with the
following coordinate transformation to the material axes,

x, = xcosf-ysin6,

Y, = ycos@ + xsinf. (253)

The distribution is defined in terms of these coordinates as

Ax,y,) = ((x, +a/2) - (x,-a/2) o) ((y, +b/2) o_ (v,-b/2) 0). (2.54)
Since the choice of coordinates does not affect the amplitude of the distribution,

A(x,y,) = A(x,y). (2.55)

Defining the distribution in terms of x and y with the coordinate transformation
(2.53) yields

A@xy) = ((xcos8-ysing+a/2)° - (xcos8-ysin6-a/2)?)

x ((ycos 6+ xsin6 + b/2) ° - (ycos 6 + xsin6-b/ 2) 0), (2.56)

This definition is valid since the limit of A(x,y) as 6 approaches zero reduces to
A(xy) = ((x+a/2)°-(x-a/2)°) (v + b/2)°- (y-b/2)9), 2.57)
and the limit as @ approaches /2 reduces to
Awy) = g+ a2 ~-a/) ) +6/2°-x-8/2)).  (@258)
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The distribution involves two terms which are both dependent on x and v,
A(x,y) = Ay (x,y)Ay(x,y). (2.59)

Because of the added y dependence in A,, the second derivative with respect to x
is now

2 3%A(x, 9A,(x,y) dA,(x,
P’Ary) _ S AxY) Ary) + 2 1(x,y) 0A(x,y)
ax? ox? 2 ox ox
A )azAz(xry) (260)
+ A(x) ———,
! ox?
and the second derivative with respect to y is,
PAry) Ay A (x,y) \(3A(x,y)
> = 3 Ax(x, 2
dy dy dy dy
92 Ay (x,Y) (2.61)
+A1(x,y)-—-—2—-.

The piezoelectric operator for the distribution in Fig. 2.9 (zero skew angle of
material axes) is

0 BZA(x,y) +ed azA(x,y)

L{A(xy)] = e5 22y 2 g, (2.62)

where

2
? I;(J;'y") = c0s20((xcos 8- ysin6 + a/2) 2~ (xcos 0~ ysinf-a/2)2)
29

x ((ycos@+ xsin8+ b/2) °~ (ycos 6+ xsinf- b/2)9)
+2c0s0sinB((xcos - ysin6 + a/2) ™ - (xcos 8- ysinf-a/2)")
x ((ycos 8+ xsin@+ b/2) ™ - (ycos @+ xsin8- b/2)~Y) (2.63)
+ 5in20((xcos 8- ysin8 + a/2)° - (xcos 8- ysin@- a/2)°)
x ((ycos 8+ xsin@+ b/2) 2 (ycos @+ xsin6-b/2)?),



and

azgl(lzl'y—) = 5in’6((xcos - ysind + a/2) 2 - (xcosf- ysin6-a/2) Y

x ((ycos @+ xsinf+ b/2)° ~ (ycos 6+ xsind- b/2)9)
—2c0505sin0((xcos8- ysin®+a/2) ! - (xcos§-ysin—a/ 2)77)
x ((ycos@+ xsind + b/2)™" - (ycos 6+ xsind— b/2)"Y) (2.64)
+c0s20((xcos 8- ysin@+ a/2)° - (xcos8- ysind-a/ 2)9)
x ((ycos@+ xsin6 + b/2) % - (ycos 6+ xsinf- b/ 2)73.

The stress/charge constants are given by equation (2.41) with 6= 0:

0 0 0
€31 qdzy + VAdzy
0 0 0
e | = | vAdyy +9dzy |,

0
€3 0 (2.65)

where
=Y,/ (1-v,). (2.66)

The results of this operation on the distribution are shown in Fig. 2.11. The result
of the piezoelectric operator acting on the distribution shown in Fig. 2.10 is given

by

L[A(xy)] = q[cosze (dg.ll + vpdg'z,) +sin20 (vpd_,?.l. + dgle)]
x((x +a/2)2 - (x-a/2)?)((y + b/2)°- (y-/2) )
—2c0s@sinf q(dgll' + v,;ig'z, - v,,d;’.l. - d;’,,)
x((x+a/2) ~(x-a/2)")(y + b/2) - (y-b/2)7) 267
+ q[sinze (dgll, + v,;ig-z,) +cos’0 (vpdg.l: + dg,z')]
x((x +a/2)° - (x-a/2)%) ((y + b/2) 2~ (y - b/2)D),
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and is shown in Fig. 2.12. The cos@ and sin6 terms multiplying the generalized
functions in (2.67) were obtained from the nonzero skew angle assumption in
equation (2.41). The cos@and sin@ terms in equations (2.63) and (2.64) were
obtained when taking distributional derivatives of generalized functions with
composite arguments involving cos@ and sinf. Yet, the magnitudes and
orientation of the doublet functions along the boundary and the delta functions
at the corners match for both distributions. Thus, the modeling method
developed herein agrees with results obtained by Lee and Moon.8

Fig. 2.11 Piezoelectric operator acting on rectangular distribution with
skewed boundary.

glcos?6(d3y. + v,d3) + sin>6(v,d3,. +

q[sin®6(d3- + v,d3y) + cos26(v,d3y + d3,)]

Fig. 2.12 Piezoelectric operator acting on rectangular distribution with
skewed material axes.
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2.4 Summary and application to structural control

A new modeling technique for two-dimensional distributed transducers was
presented. This approach allows distributed transducer shape to be incorporated
into the control design process for multi-dimensional structures as an additional
design parameter. The method is applicable to many types of strain-inducing
transducers, such as piezoelectric, electrostrictive, and magnetostrictive
materials. The derivation was based upon the theory of multivariable
distributions and was extended to distributions with composite functions as
arguments. In this manner, arbitrary spatial weightings of transducers could be
described. A differentiation theorem for such distributions was developed and
used to calculate the spatial differential operator for a strain-inducing transducer.
Several applications were presented to show the utility of this technique and
compare the results to previous research in the field.

This modeling method was used to verify shaping techniques developed
previously to approximate one-dimensional transducer shading. It was also
shown that two-dimensional delta and doublet function distributions could be
obtained even when using a uniaxial transducer if the boundaries of the
transducer (or electrode) were shaped to be nonorthogonal to the material axes.
The approach is in exact agreement with previous work by Lee and Moon where
they demonstrated that when the material axes of a transducer are skewed with
respect to the rectangular boundary axes of an PVDF electrode distribution, both
delta and doublet function distributions are obtained. Guidelines for defining
spatial transducer distributions using generalized functions with composite
arguments were also established.

In the next chapter, this modeling technique will be used to help determine
the effects of using shaped transducers to control and sense Bernoulli-Euler
plates. Because this technique is analytical, it is quite useful in calculating the
modal coefficients of various transducer distributions for plates with known
boundary conditions. These modal coefficients can then be used to determine the
cortrollability /observability characteristics of the transducer distribution.
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Chapter 3:

Distributed Transducer Design for Plates: Spatial
Shape and Shading as Design Parameters

3.1 Introduction

Several researchers have examined the use of distributed transducers for the
active control of two-dimensional structures.l3 The possible applications include
both vibration suppression and acoustic radiation attenuation. The primary
advantage of distributed transducers is that they can be shaded by varying their
gain over their spatial extent. Through the application of shaded transducers, the
transducer-augmented forward-loop transfer function can be altered so as to
achieve desired temporal and spatial performance goals.4 This chapter describes
methods for achieving two-dimensional transducer shading using two-
dimensionally shaped transducers.

The previous chapter included the development of an analytical method for
modelling two-dimensionally shaped transducers. The method will be used in
this chapter to aid in the design of two-dimensional transducer distributions for
the active control of plates. Because the method is analytical, much insight is
obtained into the physics of the interaction between the shaped transducer and
mode shapes in a plate.

Shaped sensors and actuators have previously been utilized for mode
targeting, loop shaping, and for all-mode sensing and control for beams.5-11
Because these transducers were applied to beams, no transverse modes of
vibration were present, and the shapes were good approximations of continuous,
one-dimensional shading. Burke and Hubbard> and Miller and Hubbard6
developed a design methodology for shaded transducers to accomplish all-mode
sensing and control for beams with arbitrary combinations of boundary
conditions. They verified these techniques using shaped PVDF actuators and
sensorsé’. Lee and Moon® and Lee et 4l%10 demonstrated modal damping in
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beams using shaped PVDF transducers. Miller et al!! reviewed the use of shaped
PVDF sensors used to create desired spatial filtering properties for beams.

Clark & Fuller!?, Clark et 41314, and Clark & Burke!5 investigated shaped
sensors for sensing acoustically significant modes in plates. However, these
were also shapes which were designed to be good approximations to continuous
one-dimensional shading. Even though these shaped transducers were applied
to plates, their width was small in comparison with the smallest transverse
wavelength present in the plate's dynamic response. However, errors in the
placement of these sensors can lead to coupling with undesired modes in
experimental implementations.15

The location and size of unshaded rectangular actuators have been studied by
Dimitriadis et al'6 for structural acoustic control of plates. Shaping a distributed
transducer into a nonrectangular shape is actually a form of two-dimensional
shading: the gain is varied discontinuously over two-dimensions. Transducer
shaping alone can provide useful modal coupling for plates. Burke and
Hubbard? have extended the concept of continuous shading for beams to plates.
Their work theoretically demonstrated that all-mode sensing and control could
be achieved for plates through the use of continuous, two-dimensionally shaded
transducers. While one-dimensional shading for beams and structural beam
components can be easily approximated using shaped distributed transducers,
the practical realization of two-dimensional shading in distributed transducers
for plates is more difficult. A potential method outlined in this paper uses a
superposition of gain-weighted, shaped transducers.

In this chapter, two-dimensional transducer shading and its implications for
the active control of thin plates are discussed. Candidate methods of producing
shaded transducers are also reviewed. Two-dimensional transducer shaping is
presented as a useful design tool for the control problem. A method is described
for approximating continuously shaded transducer distributions with a
combination of transducer shaping and spatial gain-weighting. Wavenumber
transforms are also used to evaluate controllability and observability. An
optimization method used to fit the shaped transducer approximations to a
continuous transducer distribution over a specified number of modal coefficients
is then detailed. The analysis is applied to two specific examples. One utilizes
two-dimensional transducer shaping and mode targeting alone to establish
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controllability and observability over all but the even-even modes in a simply-
supported plate. This transducer distribution is a very practical solution for the
acoustic radiation attenuation problem. The second distribution is a
superposition of gain-weighted, shaped transducer sections, which provide a
good approximation to a continuous two-dimensionally shaded transducer
distribution. This distribution provides "all-mode" controllability and
observability over a large bandwidth and is therefore useful for global vibration

suppression.

3.2 Analysis

3.2.1 Motivation for shading

To understand the utility of two-dimensional shaded transducers for plates,
one must first examine the limits that uniformly-weighted distributed
transducers place on controllability and observability for plates. The following
discussion is a review of the plate control study by Burke and Hubbard.2
Consider the transducer distribution, A(x,y), laminated to a rectangular, simply-
supported plate shown in Fig. 3.1. The transducer is assumed to be an induced-
strain type such as piezopolymer film (PVDF) or a piezoceramic crystal (PZT).
This distribution is even-symmetric about both centerlines, x =2/2 and y = b/2.
If the material axes of this transducer are coincident with the axes of the plate,
then the resultant control input/sensed output for the plate is shown in Fig. 3.2.
Distributed doublet functions are obtained along the entire boundary. If the
transducer were used as an actuator, these would correspond to uniform
distributed bending moments. If the transducer were used as a sensor, it would
be able to sense uniform angular displacement along the boundary.
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Fig. 3.2 Resultant control input/ sensed output for uniform transducer
distribution.

The inherent even-even symmetry of the unshaded distribution limits the
efficacy of this transducer when used as either a sensor or an actuator. Consider,
the 2-1 mode and 2-2 modes of a simply-supported plate as shown in Fig. 3.3 and
Fig. 3.4, respectively. Whenever the angular velocity distributions along
opposing sides of the plate are equal, the unshaded transducer cannot do work
or sense any motion in the direction normal to those sides. This occurs along
sides x = 0 and x = a in Fig. 3.3. Whenever the integrated angular velocity
distributions along opposing sides of the plate are zero, the same result will hold.
This is true for sides y = 0 and y = b in Fig. 3.3 and for all sides in Fig. 3.4. Thus,
this unshaded rectangular distribution will not be able to control or sense modes
with odd-even, even-odd, or even-even symmetry. If this transducer were
reduced in size but remained centered on the plate, it would still lack both
controllability and observability for these modes.



Fig. 3.4 2-2 mode of simply-supported plate.

By spatially varying the input/output characteristics of the transducer, i.e. by
shading it, this symmetry problem can be resolved.2 Shading the transducer in
two dimensions gives it the different types of symmetry required to sense and
control all modes of the simply supported plate. An example of a shaded
transducer distribution is shown in Fig. 3.5. Note that the amplitude of the
transducer distribution varies continuously over the surface of the plate. The
transducer is shaded over two dimensions such that the gain is at a maximum,
Amax, at one corner, (x,y) = (0,0), but decreases linearly to zero in both the x and y
directions. Thus, this transducer distribution has both even and odd symmetry
about each of the center lines, x =a/2 and y = b/2.
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Fig. 3.5 Continuously shaded transducer distribution.

Fig. 3.6 Resultant control input/sensed output for continuously shaded
transducer distribution.

The resultant control input/sensed output for the simply-supported plate is
shown in Fig. 3.6. In contrast to the uniform transducer distribution, the induced
moments/sensed angular velocity distributions are now only present on two
adjacent sides of the plate, x =0 and y = 0, and are weighted to decrease linearly
from a maximum at the point (0,0) to zero at the points (2,0) and (0,b). This
distribution can control and sense the modes that the uniform distributior: could
not. Because the moments occur only along x = 0 and y =0, the cancellation due .
to equal angular velocity distributions along opposing sides of the plate is
avoided. In addition, due to the weighting of the moments along each side, it is
possible to sense modes where the integrated angular velocity along a side of the
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plate is zero. Thus, all of the modes which could be present in a simply-
supported plate can be controlled and sensed using the shaded distribution.

The above discussion used a simply-supported plate and a specific two-
dimensional transducer shading as an example. However, two-dimensional
shaded transducer distributions can be designed so as to exhibit all-mode sensing
and control in plates with arbitrary boundary conditions.2 When combined with
a feedback controller such as velocity feedback, this is very beneficial for the
problem of global vibration suppression in plates. To enhance stability
robustness and increase performance, the shading can also be tailored so as to
couple evenly into modes within a certain bandwidth and then roll-off for higher
frequency modes. Thus, the system can be compensated spatially, through
tailoring of the modal coefficients, to more effectively deal with temporal phase
lag problems associated with real hardware such as analog filters and power
supplies. That is the real benefit of shading: to be able to change the spatial
filtering characteristics of an elastic system to improve both stability and
performance.4

Another benefit of two-dimensional shading is in the design of transducers to
control and sense only acoustically significant modes in panels. Sensing of
acoustically significant modes in simply-supported plates has been studied
previously using one-dimensionally shaded sensors,1215 but with two-
dimensional shadings, the work can be expanded to develop both actuator and
sersor distributions for plates with other boundary conditions. In these cases,
the spatial filtering properties of plates can be changed so as to move energy
from acoustically significant modes into those modes which are inefficient sound

radiators.

3.2.2 Methods for shading two-dimensional piezoelectric transducers

The previous section reviewed the definition of two-dimensional shading and
considered the benefits of shading from a physical standpoint. In the following
discussion, the concepts will be formalized by examining the means for
implementing shading using piezopolymer film (PVDF). This material is quite
useful for producing two-dimensional shaded transducer distributions. It is
tough and flexible, and can be laminated over large surface areas. The electrode
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plating of the material can be manufactured with unique shapes, or the material
can be cut to the desired shape.

The differential operator describing the spatial dynamics of piezopolymer
film (PVDF), with the possibility of a skew angle, 8, between the transducer and
structure axes, is given by Lee and Moon!

A(xy) o PAxy) o 2A(xy)

_ 0
L[A(xy)] = e5 2 T 2, T aray ¢ (3.1)
egl cos?6 sin’0  —2cosfsiné
egz = sin6 cos?9 2cos@sind
egs cosfsind —cos@sind cos20-sin@
: 0
Y, /1-v;) vY,/(1-v)) 0 d3v 52)
0 .
x| vY,/(1-v;) Y,/(1-V)) 0 ady|,
0 0 Y,/2(1+v,) || 0

where €};, €3, 3 represent the piezoelectric stress/charge constants with respect
to the structure axes; dyy.dy» are the piezoelectric strain/charge constants with
respect to the PVDF material axes; and ¥, v, are the Young's modulus and
Poisson's ratio respectively of PVDF.

Both the actuator and sensor equations for PVDF laminated to a thin plate are
based upon this differential operator. The skew angle, 6, can be varied to change
the values of the stress/charge constants. These constants weight each partial
differential term in the operator but cannot change the characteristics of the
resultant terms of the operator. The characteristics of the resultant terms of the
operator are affected only by the distribution function, A(x,y), that is included
under partial differentiation.

The spatial distribution of the transducer, A(x,y), can be separated into two
functions:



A(x:y) = F(x,y) Po(x,y): (3.3)

where F(x,y) describes the shape of the PVDF and is defined as being equal to
one within the transducer boundary and zero otherwise. Py(x,y) is the
polarization profile of the PVDF and is assumed to be unity for film which has
not been repolarized after manufacture.

One may vary the piezopolymer gain over two-dimensions by spatially
varying either A(x,y) or the electric field applied to the PVDF. It is possible to
spatially weight the electric field used to pole the material during manufacture.
This would affect the piezoelectric properties of the material, represented in the
operator equation by the strain/charge constants. It is also possible to affect the
polarization after manufacture by repoling (or depoling) the material with
another strong electric field. Lee and Moon have accounted for this process with
the Po(x,y) function which represents the polarization profile of the film. Hence,
the material would arrive from the factory with certain values for the
strain/charge constants which were constant over the extent of the film. The
Py(x,y) would be equal to one for all (x,y). By applying a strong electric field to
change the polarization profile, the overall effect in the operator would be to
scale the piezoelectric properties of the film with respect to the factory values of
the strain/charge constants.

Thickness variations in either the plate or the film can also cause shading.
Thickness variation in film will change the applied electric field because the
electric field is equal to the voltage applied to the film electrodes divided by the
film thickness. Thickness variation in the bonding layer or in an added shim,
will change the moment arm of the transducer relative to the center plane of the

plate.

Another way to change the spatial distribution of the film, would be to
change its electrode shape, F(x,y). Nonrectangular shapes can be used to achieve
desired shading effects in much the same way that shaped electrodes have been
used for beam problems. However, shaping the film does not continuously
change its gain over space. The film will have unit magnitude gain within the
shape boundary and zero magnitude outside of the boundary.
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During actual use, one can vary the electric field applied to the PVDF. One
way to do this is to vary the voltage applied to the electrodes over space by gain-
weighting transducer subsections. This technique combined with allowing
transducer electrode shape to vary can be used to approximate a two-
dimensional shading. Of the various techniques described in this section,
transducer shaping and gain-weighting are the most practical for implementing
two-dimensional shading. These techniques will be described in more detail in
the next section and sample distributions will be presented which possess useful
spatial filtering properties.

3.2.3 Mathematical modeling: calculation of modal coefficients for plates

To evaluate possible methods of shading the distribution of PVDF film, one
can study the resultant effects of shading on modes of vibration in plates.
Consider the free response of a Bernoulli-Euler plate. The response can be
expressed as a sum of orthogonal modes separable in space and time:

w(tX) = 2 0, 0) 9,0 34

where wp(t) is a harmonic function of time with natural frequency, w, and @, is
the modal shape.

The nth actuator modal expansion coefficient for the transducer, b,, shows
how the transducer, when used as an actuator, couples into individual modes of
vibration. Conversely, the sensor modal coefficient, c,, shows how well the
transducer, when used as a sensor, senses individual modes. The modal
coefficients characterize the impact of shading on plates and can serve as a
measure for shading approximations. Burke and Hubbard? used Lyapunov
functionals to assess the impact of shading on controllability and observability
for plates, but similar results can be derived by examination of the modal
coefficients. The use of modal coefficients is better suited for the study of
complex two-dimensional transducer distributions because information about
the plate modal symmetry is taken into account in their calculation. The nth
modal coefficient for a two-dimensional transducer applied to a plate of domain,
D, is given by2.17



b, =c, = fD @, (%) L[A()] dx. (3.5)

Note that the value of this modal coefficient depends upon the plate mode shape
¢n(x), the transducer spatial distribution A(x,y), and the differential operator
describing the transducer's spatial dynamics, L[.]. For illustrative purposes,
assume that the plate under consideration is simply-supported along all sides.
This allows the mode shapes to be separated into one-dimensional sinusoids in x

and y,
Pn(x) = @,(x) @, (y) = Ay sin(rzx/a) sin(qzy/b). (3.6)

These mode shapes will be used in the following analysis to calculate modal
coefficients for a variety of transducer spatial distributions.

In the previous chapter, arbitrary two-dimensional transducer distributions
were modeled using two-dimensional generalized functions with composite
functions included in the arguments. The theory needed to calculate the PVDF
differential operator acting on these distributions was also developed. The
arbitrary transducer shape shown in Fig. 3.7 can be represented concisely by

AGxy) =((x-x)° ~(x-x1)°) ((y - L)~ (¥ - £@))°). 3.7)

y=£0) S

Fig. 3.7 Arbitrary transducer shape in rectangular coordinates.

The partial differentials needed to calculate the PVDF differential operator acting
on the distribution are given by,
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dA(xy) _
Y =

(x-x2) = (2257 ((y- @) ~(y - @)Y
+(x-x2)"~ (-2 ) (S Ny - @+ £ Xy - fiy ), BB

dA(xy) _

5y =(x=212)°~(x-2 ) (¥ - N - (y- @)Y, (39)

Equations (3.7) - (3.9) allow for concise modeling of the transducer
distribution and the piezoelectric differential operator. The second derivatives
are given in Chapter 2, equations (2.35) - (2.37). The use of generalized functions
for the mathematical representation of the distribution and the operator allows
the modal coefficients to be calculated analytically. These tools will be used in
the following section to examine the effects of transducer shading.

3.3 Two-Dimensional Transducer Design

3.3.1 Continuous, linearly-weighted distribution

Using the mathematics developed in the preceeding section, it is possible to
analytically represent transducer distributions and to calculate their modal
coefficients when applied to thin plates. Referring to the two-dimensional
shaded distribution described in section 3.2.1 and pictured in Fig. 3.5, the spatial
distribution for this continuous, linearly-weighted shading can be represented by

AGy) = (0"~ 30 + e-a) (-2 + 2y-0)")  @ag)
The linear weighting in two dimensions is described by the "ramp"
generalized functions. The differential operator result for this distribution is

given by,

LAGY] =)~ 30+ Jx-a)7) ()~ 2oy + Ly -1y
0_1,.1,1 N2 1701, 1 a) 311
Bl)°- 300" + Fx-a) ()2~ 2y + Ly - by
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This result includes weighted delta functions along the boundaries. For a
simply-supported plate, these will vanish due to the pinned boundary
conditions. Thus, the result given in equation (3.11) can be simplified by
dropping these terms and pulling out the linear weighting from the generalized
functions to yield,

LAGy)]=eh(1- L) ()"~ -5 + 1 -2) 5y A@°-(x-2)°). 3.12)

This equation includes the linearly-weighted doublet functions along the
sides x = 0 and y = 0, shown in Fig. 3.6. The nth modal coefficient is calculated by
substituting equations (3.6) and (3.12) into (3.5) and integrating in x and y to give

b, = ei(r/q)(b/a) + e%(q/r)(a/b). (3.13)

The integration of the transducer distribution with the modal shape results in
the weighted slope of the modal shape being sifted out along the two sides and
then integrated over the length of the sides. As can be seen from equation (3.13),
the modal coefficient derived for this shaded transducer will be nonzero for all r
and q. Thus, both controllability and observability are guaranteed whether the
transducer is used as an actuator or a sensor.

This shading would prove useful for controlling vibrations in simply-
supported plates because of its all-mode actuation and sensing properties.
Unfortunately, it is difficult to effect this shading directly. The methods
described in section 3.2.2 are very difficult to manufacture. One method,
however, that can be implemented is an approximation of the shading using a
sum of gain-weighted transducer sections. Trying to approximate a two-
dimensional shading such as that shown in Fig. 3.5 using a two-dimensional
array of rectangular sections would be difficult because of the large number that
would needed. The number of transducer sections needed to provide a good
approximation could be reduced if the transducer shape was used to aid in the
approximation.



3.3.2 Transducer shaping: triangular distribution

Triangular-shaped transducers can be used to capture part of the linear ramp
function present in the continuous shading. As a first step at approximating the
continuous, linearly-weighted transducer distribution shown in Fig. 3.5, consider
the triangular distribution shown in Fig. 3.8.

Fig. 3.9 Resultant control input/sensed output for triangular transducer
distribution.

This distribution, like the linearly-weighted shading, is at a maximum at the
origin and decreases to zero along both x and y through the decrease of surface

area covered by the transducer. Using two-dimensional distributions with
composite functions in the arguments, the transducer distribution is represented

by
0
Ay =((0° = x-2)°) ()0~ (y + Lx-1)°). (3.14)
The differential operator result is given by
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e = 80692~ A~y b))
2
+{(x) = (x=a) 0)[ enly) 2~ (55 9+ egz)(y + %x - b) ’2]

—Z'Z'egl«x ) =(x-a) ) ((y +Bx_p) '1), (3-15)

and is shown in Fig. 3.9. Because the weighting is uniform within the shape
boundary, the operator results in uniform doublet functions along the transducer
boundary. Delta functions were also obtained at the vertices, but these were
eliminated due to the simply-supported boundary conditions for the plate under
consideration. The modal coefficients that arise from this distribution will be the
sum of line integrals of the modal slope along boundaries x =0, y = 0 and along
the hypotenuse of the triangle. The modal coefficients that result from the
application of this distribution to a simply-supported plate are given by,

b, = e31(r/q)(b/a)[(-1)7- 1]+ edy(q/7)(a/b)(-1) - 1]

+ %(Z_:egl + 332)(-1)" J; : sin(rntx/a) cos(qnx/a) dx.

(3.16)

The first two terms show the result of the doublet functions acting along sides
x=0andy =0. Along x = 0, whenever g is even, the line integral along this side
is zero. Alongy = 0, whenever r is even, the line integral along this side is zero.
The result of the doublet functions acting along the hypotenuse is shown in the
last term of equation (16). The calculation of this integral depends upon whether

r=gq:

J; sin(rnx/a) cos(qmx/a)dx = 0, (r=q); (3.17)

J; ’ sin(rrx/a) cos(qnx/a) dx =
it (GURES RN (SUAERY W)} (3.18)

Whenever r = g, the line integral along the hypotenuse will be zero. When r =
q = even, as in Fig. 3.10, the line integrals along x = 0 and y = 0 are also zero so the
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modal coefficient sums to zero. However, when r = g = odd, as shown in Fig.
3.11, the line integrals along x =0 and y =0 are both nonzero so the modal
coefficient for this case is nonzero. The reason for the zero line integral along the
hypotenuse, however, can be seen by examining both Figs. 3.10 and 3.11 and
noting that each + or - rectangular section acts like a smaller plate in the 1-1
mode. Whenever the transducer hypotenuse extends from one corner of the + or
- section to another, the line integral along this section will be zero. The
distribution sifts out the slope of the mode shape along the hypotenuse and legs
of the triangle. The contribution of the hypotenuse to the modal coefficient will
be zero whenever the slope along the hypotenuse integrates to zero over the
length of the plate.

Fig. 3.11 Triangular distribution shown with 3-3 mode.

For r and q not equal and both odd, the line integrals along all sides wil be
nonzero. For r and 4 not equal and either r or g is even, as shown in Fig. 3.12, the
line integral along one of the sides of the plate will be zero but the integral along
the hypotenuse will be nonzero. For r and g not equal, but both even, all of the
line integrals, and hence the modal coefficient, will be zero. This can be seen in
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Fig 3.13. The reason for the zero line integral along the hypotenuse in this case is
due to the way the hypotenuse cuts through the sections between the nodal lines.
The line integrals from the two - sections intersected by the hypotenuse sum to
zero as do the line integrals from the two + sections that are intersected.

a X

Fig. 3.12 Triangular distribution shown with 2-1 mode.

Fig. 3.13 Triangular distribution shown with 4-2 mode.

This shaped transducer distribution can control or sense the odd-odd, odd-
even, and even-odd modes of a simply supported plate. It cannot, however,
control or sense any of the even-even modes of a simply-supported plate. This
makes the distribution very useful for the acoustic radiation attenuation problem
because the odd-odd modes are the most efficient acoustic radiators while the
odd-even and even-odd modes radiate sound to a lesser extent, and the even-
even modes do not contribute significantly to the radiated sound field.12 This
transducer can be used to form a colocated sensor/actuator pair which will only
sense and do work on those modes which have a significant contribution to the
radiated sound field.
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3.3.3 Gain-weighted approximation to linearly-weighted shading

If global vibration suppression of a simply supported plate is desired, the
triangular distribution will not suffice. The above analysis shows that using
shape to approximate shading in two-dimensions is more difficult than using it
to approximate shading for beams. The two-dimensional linear shading is
necessary to provide global controllability and observability. It is possible to
approximate this shading for a large number of modes using an array of gain-
weighted, shaped transducers as shown in Fig. 3.14. This distribution is a sum of
smaller distributions which are each gain-weighted. The distribution linearly
decreases in the x-direction due to the triangular shaping and decreases by steps
in the y-direction because of the gain-weighting.

The differential operator result of this distribution is shown in Fig. 3.15.
Doublet functions are obtained along the boundaries of the transducer sections
but their magnitudes vary from section to section depending upon the gain that
is given to each section. In the figure, for clarity, the doublet functions along the
sides are represented by a resultant doublet function acting on the middle of the
side.

Fig. 3.14 Approximation to 2D linear shading.



Fig. 3.15 Resultant control input/sensed output of linear 2D shading
approximation.

The modal coefficients for the linearly-weighted shading are given by
equation (3.13). To determine the best approximation, the modal coefficients of
the gain-weighted array of transducer sections can be calculated and compared
to those of the linearly-weighted shading.

The transducer distribution, A(x), of a gain weighted array is a sum of the
individual transducer distributions of the sections (with gains of the sections
included in each distribution):

A = £ A0, @.19)

where § is the total number of sections used in the approximation. The nth
modal coefficient for the transducer distribution is given by the sum of the nth
modal coefficients calculated for each section,

b, = s; J; P (x) L[As(x)] dx = 521 b (3-20)

The geometry of a triangular sectior to be used in the array is shown in Fig.
3.16.
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Fig. 3.16 Triangular transducer section geometry.

Each section is an isosceles triangle with a length equal to the total length of
the plate, 2. The section'’s spatial distribution is given by,
A5(xy) = & () - (x-a))((y-mex o) ~(y + mx-ot)°), 35,

where g(s) is the gain assigned to the section,

vl+ol)(A
g = -y (Am) 62)

This section gain is chosen such that the midpoint of the transducer section
intersects a line defining the ideal gain over the plate width as shown in Fig. 3.17.

A(y) A
A
max ideal distribution in y
8s
o o b "y

Fig. 3.17 Transducer section gain weighting.
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Again, the differential operator acting on this distribution will produce
doublet functions lining the boundary,

LIAGY)] = e3(x)? - (x-a)?) ((y - mox— o) - (y + mox o))
+(mZegy + ) (0)° - (- 0)%) ((y - mox — od) 2~ (y + myr ~ 2"

2m, ey ((x) T = (x—ay ) ((y - myx -2l + (y + myx —op YY), G2

Their magnitude is uniform along each side because the gain of the section is
constant over its spatial extent. Delta functions are also obtained at the vertices,
but these disappear due to the pinned boundary conditions.

The modal coefficient for this section is

bn,s =& [COS(W;;Ugl )— cos(q’;vsl)]x
{egl(r/q)(b/a) + %(mgegl + egz)(ibf)[(%c_ + qzzms)-l . (m _ g_zynﬁ)— ]} (3:29)

a

As can be seen from the above expression and from Fig. 3.18, cancellation occurs
when a nodal line in x bisects the triangle. So, when different transducer sections
of equal widths are added together, even with different gains, as shown in Fig.
3.19, cancellation occurs when g = 2S for all . Because of this cancellation, one
must employ unequal segment widths to change the inherent symmetry.

As an aside, the last term in equation (3.24) appears to go to infinity when mg
=b/25a and g = 2Sr. The slope condition occurs whenever the sections have
equal widths or whenever there is only one section. This can be seen from Fig
3.18. In this case, ms = b/2a and this term appears to go to infinity. However,
using L'Hospital's Rule, it can be shown that, when g = 2Sr and the slope
aproaches b/25a, this term is well-be.xaved and goes to zero.
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Fig. 3.18 Transducer section shown with 1-2 mode.

— — — nodal lines

Fig. 3.19 Equal width transducer sections shown with 1-4 mode.

The benefit of using unequal widths in the approximation becomes apparent
when the spatial Fourier transform is applied to the problem. It is possible to
separate the problem into x and ¥ components because of the plate’s simply-
supported boundary conditions. Examination of the y component will help
determine the controllability /observability characteristics of the transducer
distribution because the step approximation occurs along this direction. Imagine
taking a slice of the transducer distribution along the line x = 0. The transducer
distribution will look like a staircase function in this case. We will be comparing
this function to that shown as the ideal function, the gain of the linear 2D
distribution, shown in Fig. 3.17. Using this transform method involves less
snalysis than calculating the modal coefficients for each transducer distribution



as a whole. Thus, it provides a useful tool for evaluation of the
controllability /observability properties of candidate distributions. The Fourier
transform of the PVDF operator acting on the y component of a transducer
distribution, L[A(y)] is given by,

h(k) =7%—; ﬁ L{A(y)]e dy (3.25)

where the limits of integration are reduced from (-e, +) to [0, b ] because the
transducer distribution is bounded by the width of the plate, b.. The spatial
variable k is the wavenumber component in the y direction.

The magnitude of the imaginary part of the transform is given by,
b
Rimag®) =| || ttawsinteyyay | (3.26)

This is equivalent to the expression for the y component of the nth modal
coefficient when k = gm/b. Examination of this part of the transform is relevant to
assessing the impact of the distribution on the plate mode shapes. Simply
looking at the entire Fourier transform would not be useful because plate modal
information would not be taken into account. Since the imaginary part of the
transform is a continuous version over k of the y-component of the modal
coefficient equation, the information obtained can be used to determine
controllability and observability characteristics of the transducer acting on the
simply-supported plate.

First, consider the ideal distribution in y shown in Fig. 3.17. This distribution
can be represented by,

AW =w)° - Ho' - o -5 (3.27)
The PVDF operator acting on this distribution is given by,

L{A@W)]=(y)™2 (3.28)

The point forces have been eliminated due to the boundary conditions leaving
only a positive moment at y = 0. The Fourier transform for this case is,
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h(k) = -ik. (3.29)

Since the transform is purely imaginzry, the magnitude of the imaginary
component is simply k and is thus nonzero for all k. Thus, this ideal distribution
has all-mode controllability and observability.

Now consider the case of an individual transducer section used in an
approximation of the ideal distribution. The y component of the transducer
distribution given in equation (3.21) along the line x = 0 is given by,

Agy) = g ((y-o1)° - (y - o})°). (3.30)

The PVDF operator acting on this individual section distribution is,

L[A; )] = gy - o) 2 - (y - o) ). (3.31)

This result shows doublet functions (or moments) acting in opposition at the
ends of the section. The Fourier transform of (3.31) is,

h(k) = —ikg (kv - eiker), (3.32)
The magnitude of the imaginary component is,

himag(k) = |kggcos(kv])- cos(kvF)]|. (3.33)

From this equation, it is evident that whenever a nodal point occurs at the
midpoint of the transducer section, no matter how large or small the section, a
zero result will be obtained for the imaginary component of the Fourier
transform. The opposing doublet moments produced by the transducer
distribution will not be able to do any work or sense any angular displacement
because of the symmetry involved. Thus, the particular mode for which this
occurs will not be controllable or observable.

The following plots illustrate this point and also demonstrate the benefit of
using sections with unequal widths. The first two plots, shown in Fig. 3.20, show
an approximation to the ideal distribution using only two sections of equal width
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and the imaginary part of the Fourier transform of such a distribution. The even
modes, occuring at k = 2x/b, 4n/b, 67/b, ..., are marked with an x on the
wavenumber transform plot. The transform of the ideal distribution is shown
with a dotted line while the transform of the approximation is shown with a a
solid line. The zeros of the approximation occur at every other even mode
beginning with k = 4n/b. Thus, this approximation to the ideal distribution can
control/observe the first three modes of the plate, k = #/b, 2n/b, and 37/b before
reaching a zero for the fourth mode. The mode shapes of the second and fourth
mode are shown in the top plot. Since the transducer sections have different
gains, the second mode is controllable. However, the fourth mode is not
controllable because its has nodal points which occur in the middle of each

transducer section.
Boxcar Approximation
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Fig. 3.20 Equal width section approximation and wavenumber sine
transform.
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The next two plots, pictured in Fig. 3.21, show that the same results are
obtained when the width of the sections is reduced, but the midpoints are kept at
the same location. In this case, the widths were reduced by the same amount,
but the result would be the same even if they were of unequal width. Since the
midpoints of each section are the same, they will still lack the asymmetry needed
to control or observe the fourth mode.

Boxcar Approximation

3
2
£

-1 : : : : : : : : :

0 01 02 03 04 05 06 07 08 09 1
Position in x
50 Wavenumber Transform of Ramp and Boxcar Approximation

.......................................................................................

Magnitude (db)
=)

_50 . N . . M : : . . . M
100 101 102
Nondimensional wavenumber k*L

Fig. 3.21 Section approximation, with reduced widths, and wavenumber
sine transform.

The final plots in Fig. 3.22 demonstrate improved controllability
/observability characteristice using transducer sections with different widths and
midpoints located in different points. The result is that the first five modes are
now controllable/observable using only two transducer sections. On the
transducer section plot, the solid line shows the mode shape of the fourth mode
and the dashed line shows the mode shape of the sixth mode. It is not until the
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sixth mode, k = 6x/b, that nodal points will occur at the midpoints of the
transducer sections.

Boxcar Approximation
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Fig. 3.22 Section approximation, with unequal widths, and wavenumber
sine transform.

The wavenumber transform analysis demonstrates that one can allow the
section widths to be degrees of freedom in an optimization problem that seeks to
minimize the difference between the ideal distribution and the approximation.
The analytical method is also a useful tool for understanding the physics of the
transducer distribution’s interaction with the plate mode shapes.

The design process can be reduced to a minimization problem with the
following quadratic objective function:



T = 3 (b, it~ b k@) = [Bieat b gprad (339

where the bjgeg] vector corresponds to the continuous, linearly-weighted shading
and the bapprox vector corresponds to the gain-weighted approximation. The
vector o is composed of the section widths a5 of the first S - 1 sections. These are
the independent variables in the minimization problem. The width of the last
section is a dependent variable because it is equivalent to the difference between
the width of the plate, b, and the sum of the first S - 1 sections. The number of
sections, S, and the number of modes, N, used in the optimization problem are
both parameters to be determined prior to minimization.

The number of sections is dependent upon the width of the plate, b, because
too large a number for a given plate width would yield section widths too small
to be easily fabricated or positioned on the plate. The number of modes, N, used
in the optimization problem should be large enough to include all modes within
the control bandwidth. As N becomes very large, however, it will become more
difficult to obtain a good approximation because more degrees of freedom are
needed for the optimization. An important consideration becomes the values of
the modal coefficients outside the desired bandwidth. This is because, in a real
system, noise and phase lags can cause instability in high frequency modes with
strong modal coupling. When a global controller such as velocity feedback is
used, these modes can be destabilized. Thus, it is important to perform the
optimization over a certain number of modes N and then check the values of the
modal coefficients for the higher order modes.

All of the constraints for the problem relate to the geometry. The sections are
chosen to be isosceles triangles with length equal to the length of the plate. Each
width must be larger than a certain minimum width, O, , and this width must
be greater than zero. All sections must touch on the x = 0 side of the plate. Also,
the total width of the sections cannot exceed the width of the plate.

The objective function was written as a MATLAB function to be minimized
by the "fmins" function included in the MATLAB toolbox. This function uses an
unconstrained nonlinear optimization scheme to find the minimum of a function
of several variables. Most of the geometric constraints for this problem were
written into the definition of the objective function. Two constraints could not be
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included in this way: the minimum width constraint and the total width
maximum. They were included by heavily penalizing the objective function
when they were violated.

This research was concerned with matching an implementable distribution
with an ideal distribution that had known controllability and observability
properties. However, the analysis and optimization techniques can be applied to
a more general case. One may define a modal coefficient profile that has a
desired shape in the wavenumber domain. For example, if one is using a global
controller such as velocity feedback, a desired profile would include roll-off after
a defined bandwidth. In this manner, the transducer would not couple strongly
into those modes for which the phase lags in the system summed to greater than
90 degrees, thus facilitating a higher velocity feedback gain. This would allow
spatial compensation using distributed transducers to compensate for temporal
phase lags in a hardware implementation.

The ideal distribution would then be defined by the desired modal coefficient
profile, bjdesl , and the optimization process would attempt to match some
unknown transducer distribution to this profile. Since the geometry of the ideal
distribution would be unknown, the geometry of the approximation could be
changed to allow more degrees of freedom. For example, the plate could be
divided up into a grid with a rectangular transducer section assumed to be
covering each grid section. The gain of each transducer section would be
allowed to vary between a minimum and maximum value. The gains of each
section would then become the degrees of freedom used in the optimization
problem. The optimization process would then be exercised and the results
examined to see if an inherent geometry and symmetry exists. Then, suitable
transducer shapes and gain-weighting could be applied to the problem so that
the number of transducer sections could be reduced. The optimization process
could take place again using a reduced number of degrees of freedom. In this
manner, it would be possible to achieve a desired modal coefficient profile using
a finite number of shaped, gain-weighted transducers.
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3.4 Design example

The design process for the approximation outlined in section 3.3.3 was
applied to a sample plate with length a = 0.671 m, b = 0.469 m. Uniaxial PVDF
film was used, with 43, = 23x1012C/N and 4, = 3x1012C/N, Yp = 2x10° N/m2,
and vp = 1/3. The number of modes chosen to optimize over was 10 and the
number of sections chosen was 5. The initial estimate for o was chosen such that
all of the section widths were equal. The minimum width was 5cm.

The minimization routine converged and the result was checked by starting
from several different initial estimates for the width vector. This was done to see
if the minimum obtained was local or “global” for the allowable range of widths.
The resulting widths are a = [8.2 6.4 11.0 10.4] cm. The resulting modal
coefficients are compared to the linearly-weighted ideal shading ir. Fig. 3.23. The
modal coefficients have been normalized such that the largest has unit
amplitude. The modal coefficients obtained for N < 10 were in excellent
agreement with those obtained for the linearly-weighted shading. The
percentage error is less than 1% for those modes with n < 10. However, even for
those modes just outside of the control bandwidth, the percentage error is less
than 10%. It is interesting to note that the error was greatest for modes 13 and 15.
For the given plate, these mode numbers correspond to the 1-4 and 2-4 modes.
These are the only two modes shown for which g = 4. The errors associated with
these modes are large because they are the most difficult to match due to the
discrete gain-weighting approximation in the y direction.
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Fig. 3.23. Normalized modal coefficients of ideal (linear) shading and
approximation.

The optimization results show that it is possible to obtain a close
approximation to a desired continuous two-dimensional shading using gain-
weighted, shaped transducers. This procedure can be extended to problems
where it is desired to have the modal coefficients fit a pre-determined profile
over mode number. One can envision such a profile as having relatively equal
mcdal coefficients within a certain bandwidth with those coefficients outside of
the bandwidth decreasing with increasing mode number. In this manner, the
gain of a feedback controller could be increased to control modes within the
bandwidth without destabilizing the modes outside of the bandwidth. This
would allow spatial compensation using distributed transducers to compensate
for temporal phase lags in a hardware implementation. Or, one might wish to
target a small group of modes within a certain frequency range.

3.5 Summary

The motivation for two-dimensional transducer shading was presented and
various methods for achieving shading were considered for the active control of
thin plates. Two-dimensional transducer shaping was shown to be a useful
design tool for the control problem. It was also shown that transducer shaping
can be combined with gain-weighting to provide close approximation of
continuously shaded transducer distributions. The analysis was applied to two
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specific examples. One utilizes two-dimensional transducer shaping alone to
establish controllability and observability over all but the even-even modes in a
simply-supported plate. This transducer distribution is a very practical solution
for the acoustic radiation attenuation problem. The second distribution is a
superposition of gain-weighted, shaped transducer sections providing a good
approximation to a continuous two-dimensional shaded transducer distribution.
This distribution provides "all-mode” controllability and observability over a
large bandwidth and is therefore useful for global vibration suppression in
plates. An optimization method used to fit the approximation to the continuous
transducer distribution over a specified number of modal coefficients was
described. The following chapter will discuss an active control system for a plate
based upon the design example given in this chapter.
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Chapter‘4:

Control System Analysis

4.1 Introduction

For a given structural control problem, one may construct an objective
function based upon modal states which defines the performance metric. The
modal states of the structure can be weighted such that penalties are assigned
only to those modes which degrade performance. In the acoustic radiation
problem, this function would penalize only those modes which had a significant
contribution to the radiated sound field. In a global vibration problem, this
function would attempt to damp all modes within an achievable control
bandwidth.

Since structures are distributed parameter systems, choosing the control
action which meets this objective function involves both temporal and spatial
design.! Many researchers have studied the temporal aspects of the design
problem in depth,2 but have only considered the spatial part when determining
observability and controllability for configurations of discrete transducers. As a
result, the temporal solution becomes quite complex and, in order to achieve
high-authority control, involves multi-input/multi-output compensators which
depend upon detailed knowledge of the structure’s temporal dynamics. In
addition, unless model and/or controiler order reduction techniques are used,
the dimension of the controller may be equal to or even greater than the number
of modes present in the structural response.

As discussed in the previous chapters, the use of distributed transducer
design allows for more flexibility in the spatial part of the design problem. In
fact, distributed transducer design may be used to directly satisfy the
performance metric for the system. For example, it was shown in the last chapter
that one transducer distribution couid control or sense all of the odd-odd, even-
odd, and odd-even modes in a simply-supported plate. The distribution spatially
filtered out the even-even modes in the same plate. In this manner, the penalties
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for the objective function for the acoustic radiation control problem were defined
through the spatial design of the transducer distribution. The transducer could
only actuate or sense those modes which had a significant contribution to the
sound field. It was also shown in the last chapter that another transducer
distribution, a superposition of gain-weighted, shaped transducer segments,
provided modal coefficients of the same magnitude for a group of modes within
a specified bandwidth. Thus, penalties are assigned evenly to these modes
through the use of this transducer distribution.

If the transducer distribution can directly effect the desired penalties for the
objective function, then the temporal part of the control design problem can be
simplified considerably. A globally dissipative control law, such as velocity
feedback,34 can be combined with a colocated sensor and actuator distribution to
provide a single-input/single-output compensator which is not dependent upon
knowledge of the natural frequencies of the structure. Even though velocity
feedback cannot discriminate between modes, the transducer distribution can be
designed to spatially weight modes in a certain fashion to help accomplish mode-
specific performance requirements.

In this chapter, a control system design is discussed which makes use of the
gain-weighted, multi-section shaded transducer distribution discussed in the
previous chapter. The governing equation of motion for a rectangular, simply-
supported plate is presented with the input due to the controller included as the
forcing term.5 The sensor and actuator distributions are colocated on opposite
sides of the plate.6 Given transducer colocation, marginal stability is proven for
any dissipative temporal control law. A proof of asymptotic stability is
predicated upon an "assumed modes" closed-loop response and is therefore
proven only for the linear viscous damping provided by velocity feedback.
System matrices are then presented which allow for a simulation of the closed-
loop system response.6 Units are provided with each expression to allow for a
dimensional check by the reader.

4.2 Plant and Transducer Characteristics

The plant to be controlled is a rectangular, simply-supported Bernoulli-Euler
metal plate. This type of plate is frequently used as a basis for the study of
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structural sound and vibration problems.” The plate, shown in Fig. 4.1, is
augmented with a PVDF actuator distribution, A4, on one side and a colocated
PVDF sensor distribution, Ag, on the other. The result is a three-layer laminate,
assumed to be mechanically transverse isotropic. Even if the PVDF distribution
is anisotropic, the assumption of isctropy can still be made because the stiffness
of the film is assumed to be small in comparison to that of the plate.

PVDF actuator

metal plate

Fig. 4.1 Plate augmented with PVDF actuator and sensor.

Lee and Moon5 derived the equation of motion for such a laminate with both
PVDF layers used as actuators in a bimorph configuration. Mechanically, the
system is the same. The difference occurs in the control input, which is halved in
magnitude when only one layer is used as an actuator. The equation of motion
for the system is given by

2
Dy Viw+phSE-TViw = uxp),  (N/m?)  (41)
where w = w(x,t) is the transverse displacement of the plate and u(x,t) is the
control input due to the PVDF actuator. Lee and Moon did not include the effect
of in-plane tension, T, but it has been included here for generality.

The left-hand side of equation (4.1) is the same as the conventional Bernoulli-
Euler plate equation except that the constant terms include the laminate
characteristics. The flexural rigidity Dy, is given by

WY, K2 213\[ ¥
D” = SV3 [m] + hp( 2 + hmhp _3_]7) [(-I—p_vp'*’)}’ (Nm) (4-2)
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where h,, is the thickness of the plate, hyp is the thickness of each PVDF layer, Y,
is the Young's modulus of the plate, Y, is the Young's modulus of the PVDF, v, is
Poisson'’s ratio for the plate, and v, is Poisson's ratio for PVDF. The equivalent
density of the laminate, p, is

2p,h, + Py

and the thickness of the laminate, A, is

h = hy+2h, (m) (4.4)

The control input to the right-hand side of equation (4.1) is provided by the
PVDF actuator and is separable in space and time:

u(x,t) = u(t) £,Z,L[A,x)].  (N/m?) (4.5)

The temporal portion of the control input, u(t), is given by
u@® = G@) hp, V) (4.6)

where G(t) is the applied electric field to the PVDF actuator. The product of the
electric field and the thickness, hp, yields an applied voltage across the faces of
the PVDF.

The spatial portion of the control input is determined from the product of the
piezoelectric differential operator acting on the actuator distribution, L[A,(x)]
(N/Vm3), the bonding efficiency of the actuator to the plate, &, and the moment
arm of the PVDF relative to the center of the plate, Zp:

hn+h,

z,="--L  (m) 47)

The bonding efficiency is defined to be a positive number and less than or equal
to 1. The moment arm extends from the center of the PVDF actuator layer to the
center of the plate. A cross-section of the laminate is shown in Fig. 4.2. This
figure shows the geometry in the transverse direction of the laminate.
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PVDF actuator

PVDF sensor I

Fig. 4.2 Cross section of laminate.

The spatial extent of the laminate , Q , extends over 0 <x <aand 0 <y <b.
The laminate is assumed to have simply-supported boundary conditions along
all four edges such that the transverse displacement and moments at the
boundary are zero:

92 _ .
w=0, -5x—'¥=0 at x =0,aq; 4.8)
w=0 2% _0 ay=05 (4.9)
dy?

4.3 Colocated Velocity Feedback: Marginal and Asymptotic
Stability

This section will describe the stability achieved using a dissipative controller
to provide the temporal part of the control input, u(t), for the equation of motion
of the laminate given in equation (4.1). The challenge in proving stability occurs
because, while the system is linear and time-invariant, it is a distributed
parameter system. In addition, because the linear Bournoulli-Euler plate model
is only valid for small displacements from equilibrium, the stability proofs will
hold for local stability only.

It is first important to demonstrate that a dissipative control law used for u(t)
will, at the very least, leave the system described in (4.1) marginally stable. This
can be demonstrated using the direct method of Lyapunov. This method
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involves defining an "energy-like" scalar quantity that is positive definite and
proving that its time history is always at least negative semi-definite. This will
correspond to zero growth in energy when the system is displaced from the
equilibrium state. The following proof has been adapted from a proof for
marginal stability for velocity feedback for distributed transducers by Burke and
Hubbard.é It is presented here to provide a suitable review for the asymptotic
stability proof developed later in this section.

The equilibrium state for the plate described in equation (4.1) is defined by,

w(x,t) = [w(x,t) w(x,t)]T =0 (4.10)

The theorem which formally describes the Lyapunov direct method for the
determination of stability was described by Kalman and Bertram® and is quoted
from Slotine and Li? here as:

Lyapunov Theorem for Local Stability:

If, in a ball Bg, there exists a scalar function V(w) with continuous first
partial derivatives such that

e V(w)is positive definite (locally in B Ro)
« V(W) is negative semi-definite (locally in B Ry

then the equilibrium point w = 0 is stable. If, actually, the derivative V (w) is
locally negative definite in B , then the stability is asymptotic.

Burke and Hubbard® used the total energy of the controlled laminate to
define the scalar function, V(w). The first three terms within the integral
represent the strain energy due to the plate's stiffness. The fourth term
represents the kinetic energy. The last three terms represent the strain energy
due to the in-plane tension term.

2,\2 32, 32 2
V(w) = %fg D“[(Vzw)2+(3—¢-)—2C wy) +%;—‘2‘137‘;J + ph (%’)

{37 BB (e
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This function is positive definite because it is zero when w = 0 and it is positive
whenever w # 0. The next step in the proof for marginal stability involves the
time derivative of this function.

The time derivative of the system energy can be represented as6

V(W) = fau 1) (2) ax. 4.12)

This expression has the familiar form of power since it is the product of stress
and velocity integrated over the surface of the plate.

Taking into account the separability of the control input, equation (4.12) can
be rewritten such that the temporal part of the control input moves out from
under the spatial integration:

V(w)=u()¢e,Z, f QL[Aa(x)]%‘,ng- (4.13)

Now, suppose that a dissipative control law is chosen for u(f). This would
have the opposite sign as the laminate velocity, -aa-z;l . Any control law which did

not have the opposite sign of the plate velocity would add energy to the system
and the energy functional would have to be modified accordingly. For example,
a control law which has any position feedback has the effect of stiffening the
structure and this adds strain energy to the structure. The controller based upon
velocity feedback of the PVDF sensor signal is given by,

w(@®) = -kf@)sgn(v);  AH>0, (4.14)

where k is a positive scalar gain, f{t) is any strictly positive scalar function and v;
is the voltage signal sensed by the PVDF sensor,

Z
v (1) = -escT” fa LA (x)] w(x,t) dx. (4.15)

In the above expression & is the bonding efficiency of the sensor and c; is the
capacitance of the sensor.
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Substitution of the dissipative temporal control into the expression for the
power flow yields,

V(W) = -k f() e, Z, sgn [ fgL [4,)](%2) dx] [ faL [4,0](%) dx]. (4.16)

If the actuator and sensor, both of which are assumed to be made of PVDF, have
the same spatial distribution such that A,(x) = As(x) = A(x), then they are
colocated. The expression for power flow then simplifies to,

V(W) = -kfO)e, 2, faL[A )] (2) ax |

(4.17)

Since all of the terms outside of the absclute value are defined to be positive,
the power flow will always be negative semi-definite. The powet flow is zero

when the velocity, %—zt‘l, is zero, but is negative otherwise. Thus, marginal

stability is guaranteed, but asymptotic stability cannot yet be determined because
the power flow is not negative definite.

When the Lyapunov function, in this case defined by the system energy, is
only negative semi-definite, asymptotic stability can still be determined through
the use of the invariant set theorem.10 The following definition for an invariant
set is quoted from Slotine and Li:?

Definition of an Invariant Set

A set G is an invariant set for a dynamic system if every system trajectory
which starts from a point in G remains in G for all future time.

This definition of an invariant set is used in the following local invariant set
theorem, also quoted from Slotine and Li:

Local Invariant Set Theorem

Consider an autonomous system (where the system dynamics do not explicity
depend upon time) of the form w = f(w) with f continuous, and let V(w) be a
scalar function with continuous first partial derivatives. Assume that

o for some ! > 0, the region Q; defined by V(w) <! is bounded

e V(W)<OforallwinQ
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Let R be the set of all points within Q; where V (w) = 0, and M be the largest

invariant set in R. Then, avery solution w(#) originating in Q; tends to M as ¢
— oo,

This theorem can be used to prove asymptotic stability provided that the only
point ~ontained within the set M is the equilibrium point w = 0. In this manner,
every state trajectory originating within Q; will asymptotically approach the
equilibrium point.

In order to use the invariant set theorem, it is important to ascertain what the
acceleration of the vibrating system will be at any nonzero value of displacement.
To do this, it is assumed that the closed-loop displacement may be represented
by the product of separable functions in space and time:

w(x,t) = Ax)7(t). (4.18)

This assumption has been studied for small values of linear proportional
damping and was shown not to couple the modes of vibration.11.12 Because the
damping is assumed to be proportional, the asymptotic stability proof will only
be carried out for the case of velocity feedback, known as "electronic damping."

Substituting equations (4.5) and (4.18) into equation (4.1) yields

1n(t) Dy, V4b(x) + ph "( )cb(x) NOT V2Dx) = u(t) £,2Z,L[ARX)] (4.19)

With velocity feedback used as the temporal control law,
u(t) = -kv,@); k>0, (4.20)

and equation (4.18) used to describe the displacement, the control input may be
represented as,

dn(t) ,zp

S

u(t) = - , P ) L A(x))dx. (4.21)

Substituting equation (4.21) into equation (4.19) gives
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2
ond n(t) @(x) +1(5)[D;V*Px) -T V2dx)] =

8 E
% dzg’) C‘Z 4 { , 20 L[A®)] dx} L[Ax)].

(4.22)

By multiplying both sides by the spatial portion of the response, &(x), and
integrating over the domain of the laminate, the partial differential equation
(4.22) can be put into the following form:

“dr? dt ¢
+70) { fa [D,; @) V*®(x) - T &(x) V2¢(x)]dx} =0

2
X (U] [ [ ¢2(x)de " ""“’”‘Zp{ ¢(x)L[A(x)]dX}
(4.23)

The result is an ordinary differential equation for a simple oscillator with
positive coefficients. The coefficients multiplying the acceleration and velocity
terms are positive, but the sign of the coefficient multiplying the displacement
term is less easily determined. However, the sign of this coefficient can be
checked by expanding the response into modes,

w(xt) = ngl ALY, (%) N,(8). (4.24)

Due to the simply-supported boundary conditions of the laminate, the mode
shapes are sinusoidal in x and y,

Pu(X) = Apy Vrg 0,(%) ?,(0) = A, ¥, sin(rzxla) sin(qzylb). (4.25)

A positive number is obtained when the biharmonic operator, V 4[.], acting on
an eigenfunction defined by (4.25) is multiplied by the same eigenfunction and a
negative number is obtained when the Laplacian operator, V2[.] acting on an
eigenfunction is multiplied by the same function. Therefore, because both D;;
and T are positive, the expression in the integrand in the last term of (4.23) will
always be positive.

The acceleration of the laminate when its velocity is zero may now be written
as
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{ fn [D),8(x) V4d(x) - T &(x) V2d(x)]dx

ph [ fn ¢2(x)dx]

2
dd?—gt) =-n0

(4.26)

The result shows that the acceleration is always nonzero for nonzero values of
displacement and the acceleration always has the opposite sign of displacement.

The invariant set theorem may now be applied to the problem to demonstrate
asymptotic stability. The set R is the set of all points where V (w) = 0. This

occurs whenever the velocity gg_gt) = 0. The largest invariant set, M, within R

must only include the equilibrium point w(x,f) = 0. This is because the
acceleration will be nonzero for any nonzero displacement and so the only
instance when the laminate will remain at a given state where V (w) = 0 for all
time is when the laminate reaches the equilibrium state.

4.4 Simulation

To simulate the system, a state space representation is needed. Burke and
Hubbard!3 defined the system matrices for a general transducer augmented
distributed parameter system using an integral equation formulation such that
the following input/output relationship could be defined

v 5(8) = G(s)u (s) = [CD(s)Bu (s), (4.27)

where v4(t) is the sensor signal presented in equation (4.15), C is a vector of
sensor modal coefficients, B is a vector of actuator modal coefficients, ® is the
state transition matrix and u(s) is the Laplace-transform of the temporal control
input to the system.

The actuator modal coefficient matrix has alternating zeros because the modal
state vector consists of both modal displacements and velocities,

B=[0b;0b,..0by. (4.28)
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The modal coefficients for the plate have the same definition as in the previous
chapter except that they are now scaled by the bonding efficiency and moment
arm,

b, = £,2, fD 0, (%) L[A ®)]dx. ( @) (4.29)

The mode shapes are now also mass-normalized such that,
|, P41t o0 = 1. (430)

The normalization constant, ¥, is

_ 2
Tn = Jabph (1//ke) (4.31)

Due to colocation, the sensor modal coefficient matrix, assuming a direct rate
measurement, is equal to the transpose of the actuator modal coefficient matrix,

C=[0c 0cy..0cy. (4.32)

The sensor modal coefficient matrix for the plate, however, differs from the
actuator matrix by a constant which is the capacitance of the sensor:

k
¢y = "eazpf P, L[A ®)]dx Vs 433
C o7 ’ (./kgm) (4.33)

1
G=(398% @ (439)

The state transition matrix has a block diagonal form ordered by mode
number,

@ = diag (O, D, ... By) . (4.35)
Each block is related to the plant matrix for each mode.

o = (sI—A,,)-'l . (4.36)
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The plant matrix for each mode consists of the natural frequency and the
modal damping term,

0 1
An=[ —-(0} "ZCn“’nJ° (4.37)

These individual plant matrices can be assembled into one plant matrix
describing the system dynamics.

A =diag (AA, ... Ay). (4.38)

The system can then be defined by the modal state equations, where the
vector 1 contains the modal displacements and velocities:

N =An+Bu. (4.39)

and the scalar y ; represents the sensor output:
ys=Cn (4.30)

Fig. 4.3 shows a simulation of an uncontrolled simply-supported plate after
an impact. The sensor output is shown as a function of time. Fifteen modes were
included in the simulation with 0.5% damping assumed for each mode. Fig. 4.4
shows a simulation of the same plate with velocity feedback applied. The gain
used in this case is large enough such that the maximum voltage applied to the
actuator array is 400 Volts. It was assumed in this simulation that a perfect rate
measurement of the sensor array was available, that there were no limiting
actuator dynamics, and that the actuator and sensor arrays were perfectly
bonded to the plate. It can be seen from the simulations that the velocity
feedback controller adds to the linear damping already present in the system.
The decay envelope shape does not change, but the settling time is reduced
significantly. It is also seen that the modes are evenly penalized in that there is
no mode which dominates the closed-loop response.

-97-
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Simulated sensor output (Volts)
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Fig. 4.3 Simulated impact response of plate: no control input.
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Fig. 4.4 Simulated impact response of plate: velocity feedback.
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The balanced modal coupling in the system is evident when looking at the
calculated open-loop frequency response function between the actuator array
and the sensor array shown in Fig. 4.5. This shows that the transducer
distribution couples evenly into the modes of the system. The alternating
pole/zero pattern is due to the colocation of the actuator array with the sensor

array.
20
A S ) i § : {n
10 x / ; 8 S .......... \
: : AV I T, \
@ O ....... f\'.![\./
£ o “V ......
g |/ &/
S 20 R
230 e
40 : . : . : :
0 20 40 60 80 100 120 140
Frequency (Hz)
Fig. 4.5 Calculated open-loop frequency response function.
4.5 Summary

This chapter described the plant and transducer setup and dynamics. A
rectangular, three-layer laminate plate which was simply-supported at the edges
was used as a sample problem. Marginal stability was proven for any dissipative
controller. Asymptotic stability was proven for the case of velocity feedback.
The state matrices were then presented for the distributed parameter system so
that the system was able to be simulated easily using MATLAB. The results of
the simulations show the behavior of the simply-supported plate when velocity
feedback is used as the control input.
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The experimental work in the following chapter utilizes both of the sensor
and actuator distributions along with velocity feedback to perform a validation
of the concepts described above. Although the experimental plate has boundary
conditions lying between simply-supported and clamped, the behavior of the
experimental system under closed-loop control should be similar to that shown
by the simulations in this chapter. The control should add damping to all of the
modes within the disturbance bandwidth.
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Chapter 5:

Experimental Demonstration: Active
Vibration Damping of a Bernoulli-Euler Plate

5.1 Introduction

This chapter describes an experiment which embodies and validates the
modeling and design concepts developed in Chapters 2 and 3. In these
chapters, it was shown that two-dimensional distributed transducers can be
designed to have controllability and observability over a large modal group,
and that the modal coefficients would have the same magnitude, e.g.
balanced coupling.

The transducer distribution used for the active control of the plate
described in this chapter was the “all-mode” distribution composed of gain-
weighted, shaped transducer segments developed in Chapter 3. This
transducer distribution facilitates global sensing and control over a wide
bandwidth. It was decided to demonstrate global vibration suppression using
this transducer distribution. The control bandwidth chosen for this
experiment included the first 15 modes of the plate. These modes include all
of the types of modal symmetry present in a simply-supported plate.

The test article was a rectangular Bernoulli-Euler aluminum plate. To
approximate simply-supported boundary conditions, a 90 deg V-notch was
milled around the perimeter of the plate and the excess material was clamped
in a rigid test fixture.l In this manner, the plate has zero deflection at the
notch, but is allowed to have angular displacement there. This approximates
a simply-supported, or hinged, boundary condition with a rotational
constraint. Figure 5.1 shows a cutaway view of the plate alongside the
theoretical boundary condition model. As the ratio of the notch depth to
plate thickness increases, the effective spring constant of the rotational spring
will decrease.! When this ratio decreases to zero, the spring constant
approaches infinity and the plate will have a clamped boundary condition.
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This plate configuration was chosen because the mode shapes will have the
same symmetries as those for a simply-supported plate and so the theoretical
work in the previous chapters can be applied.

The rest of this chapter is organized as follows. Section 5.2 describes the
plate and clamping fixture. The results of a modal test of the plate are given
in section 5.3. Section 5.4 describes the application of distributed
piezopolymer film transducer to the plate. Section 5.5 presents the results of
an open-loop test of the structure, a transfer function between the actuator
and the sensor distribution. Section 5.6 shows the results of closed-loop tests
of the structure using velocity feedback in the presence of both transient and
stochastic disturbance inputs. In addition, a test characterizing the interaction
of the PVDF sensor array with the acoustic environment is described. Finally,
conclusions and recommendations for future work are given in section 5.7.

fr
// ame | 90 deg V-notch
: plate
7
/// |
rotational spring Lt
plate
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Z

Fig. 5.1 Side view of plate with V-notch compared to simply-supported
plate with rotational edge constraint.
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5.2 Experimental Plate and Test Fixture

The aluminum plate (p = 2710 kg/m3, E = 69.6 x 10° Pa) and steel
mounting frames (p = 7840 kg/m3, E = 202.0 x 10° Pa) are shown in Fig. 5.2. A
vertical support configuration was chosen to permit access for a shaker input
disturbance and to eliminate much of the in-plane tension due to gravity (e.g.
sag). The plate is sandwiched between the two steel mounting frames. The
notch of the plate is milled at the boundary where the plate meets the
clamping frames. The plate is made from 6061-T6 flat sheet aluminum. The
plate is 1/32 (0.031) inch thick and the dimensions of the plate between the
centerlines of the notch are 26.4 inches by 18.5 inches. The notch was milled
using a numerically controlled milling machine to a depth of 0.024 inches.

The clamping frames were designed to have significant mass in
comparison to the plate. The frames were made from cold-rolled steel bars
welded together and milled to the desired flatness of 0.001 inches. The frames
were clamped to each other and the plate using 3/8 inch cap screws. The plate
and frames were supported vertically by an alumimum support made from I
beams and L beams. The entire structure was mounted to a floating Newport
optics table. This was done to prevent building structural vibrations from
contaminating the experiment.

Fig. 5.2. Experimental plate and clamping frames.
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5.3 Modal Test

A modal test was conducted to verify that the experimental plate had
mode shapes which were similar to the simply-supported plate discussed in
Chapter 3. The same symmetries and mode order were expected due to the
symmetric boundary condition and the plate’s aspect ratio. Due to the
rotational edge constraint, it was expected that the slope of the mode shapes
near the boundary of the plate would be smaller than for a simply-supported
plate which has no rotational constraint.

The modal test was conducted using a Zonic 6088 spectrum analyzer. The
analyzer has a signal source output which drove a Ling V203 shaker with a
low-passed random noise signal. The cutoff frequency chosen for the tests
was 125 Hz. The shaker was connected to a steel stinger, which was in turn
connected to a PCB force head model 209. The force head was attached to the
plate with cyanoacrylate adhesive. An Entran EGA-125-5D 0.5 gram
accelerometer was used as the roving sensor for the modal test. The
accelerometer was attached to the plate using a thin layer of beeswax. The
modal test setup, with the shaker and accelerometer, is shown in Fig. 5.1.

Ninety-nine test points were used- eleven across the length of the plate
and nine across the width. The Zonic was set up for continuous processing
with Kaiser-Bessel windowing and 50% overlap. Thirty averages were used
to calculate the frequency response function at each location.

The Zonic’s built-in modal analysis software was used to fit the frequency
response functions to a multiple degree of freedom model. The frequency
and damping results are shown in Table 5.1. Two modes were overlapping in
frequency. The ordering of the modes is the same as expected for a simply-
supported plate with the same aspect ratio.
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Table 5.1 Frequency and damping values for experimental plate.

Mode Frequency Damping (%)
(Hz)
(1,1) 43.82 0.44
(2,1) 54.53 0.44
(3,1) & (1,2) 65.49 0.36
(2,2) 67.19 0.34
(3,2) 84.30 0.32
4,1) 87.42 0.35
(1,3) 90.14 0.35
(2,3) 103.14 0.34
(4,2) 108.17 0.37
(5,1) 118.41 0.25

The mode shapes obtained from the test were similar to the simply-
supported mode shapes, with the exception of a decreased slope near the
boundary. This was expected due to the rotational edge constraint. However,
the modes had the same symmetry and ordering as for a simply-supported
plate. Several example shapes are shown in Figures 5.3, 5.5, and 5.7. The
corresponding simply-supported mode shapes are shown in Figures 5.4, 5.6,
and 5.8 for comparison.

Fig. 5.3 Experimental (1,1) mode shape.
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supported (1,1) mode shape.

Fig. 5.4 Theoretical simply-

supported (2,1) mode shape.

Fig. 5.6 Theoretical simply-
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Fig. 5.8 Theoretical simply-supported (3,2) mode shape.

5.4 Transducer Application

The transducer material used for this experiment is Atochem uniaxial,
52um, piezopolymer film (PVDF) with a nickel-aluminum electrode coating.
It is flexible, available in large areas, and can be cut to any shape. Both the
sensor distribution and actuator distribution were constructed from this
material. These distributions were identical, and placed on opposite sides of
the plate. The sensor distribution is shown in Fig. 5.9 and the actuator
distribution, on the back side of the plate, is shown in Fig. 5.10. Their
construction and application is discussed in this section.
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5.10 Actuator distribution on experimental plate.
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The method for cutting the film and attaching it to the plate was adapted
from Burke.? The techniques are briefly reviewed here along with the
additional experience gleaned from cutting the large area transducers needed
for this experiment.

The PVDF film was measured, marked, and laid out to be cut on a flat
surface. A large straight edge was placed along the film where a cut was to be
made and taped down to the cutting surface using masking tape. Care was
taken not to allow the tape to touch the film. With the straight edge pressed
against the film this way, one does not have to hold it down while making a
long cut. This helped to prevent cutting mistakes. The film was cut using
single-edged razor blades. The film is tough enough to dull the razor blade,
so only one cut was made with each blade.

A kitchen “scrunge” pad was used to prepare the aluminum plate for
application of the PVDF. After the surface of the plate was polished, the
locations of the film were marked using an etching tool. The entire plate was
wiped clean with acetone to remove any remaining particles.

The transducers were laminated to the plate using a mixture of four parts
RBC 3215 epoxy resin with one part RBC AB-532 resin hardener. The mixture
was applied to the plate using a 1 inch foam brush. The layer was partially
evened out using a straight-edge razor blade. The transducer section was then
wrapped around an acrylic cylinder. It was the:i slowly rolled onto the epoxy
layer on the plate while pressing down to eliminate air bubbles trapped
beneath the film. Air bubbles and excess epoxy were then worked out from
underneath the film by hand. Various brayers, rubber then acrylic, were then
rolled over the area of the film. This serves to ensure a thin, uniform bond
between the film and the plate. The film, with electrode coating, should have
a mirror-like finish when the procedure is complete. This result can be seen
by the light reflected from the sensor distribution shown in Fig. 5.9.

After the piezo film had been laminated to the plate, small brass contact
pads were attached to the “roots” of the transducer film sections using Tra-
Con Tra-Duct BA-2902 conductive epoxy. Stranded wire, 26 guage, was
soldered to the pads to provide the needed electrical connections to the film.

-110 -



This was done before attaching the pads to the film so that no heat would be
applied to the film that might locally depolarize it.

The actuator distribution in Fig. 5.10 looks different than the sensor
distribution shown in Fig. 5.9 because the nickel-aluminum electrode coating
was fortified with Chomerics Cho-Shield conductive acrylic spray. This was
done because the film’s electrode layer was too thin to handle the high
voltage that can be applied to the actuators. One six-ounce spray can was used
to cover the actuator array. Drafting tape, which will not harm the PVDF, was
used to mask the plate around the PVDF actuator before applying the
conductive acrylic spray. This spray coating causes the pale, non-reflective
finish of the actuators seen in Fig. 5.10.

A Faraday cage made from aluminum window screen was placed over the
mounting frame, covering the actuator side of the plate so as to prevent
electromagnetic cross-talk between the actuator and sensor distributions.

5.5 Open-Loop Test

An open-loop measurement of the frequency response function between
the actuator and the sensor distribution was conducted to verify that the
actuator and sensor arrays were colocated and to verify that the distributions
coupled evenly into the modes of the structure as predicted in Chapter 3. A
schematic of the signal flow for the open-loop test is shown in Fig. 5.11.
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Fig. 5.11 Signal flow for open-loop test of actuator and sensor.

In this configuration, the system is single-input/single-output. The
output from each PVDF sensor segment is individually gair-weighted. Then,
all of the gain-weighted sensor outputs are added together in a summing
amplifier. The resulting single output signal is then fed to the Zonic
spectrum analyzer. The signal source of the Zonic is used to provide one
signal which drives a similar array of gain-weighting amplifiers for the
actuator distribution. This signal is also given to the Zonic for use in the
frequency response function calculation. The output from each of the
actuator gain-weighting amplifiers is then passed to a Kepco BOP-1000M
bipolar operational power supply/amplifier which amplifies the voltage by
100 so as to drive the PVDF actuators. Since the plate itself served as a
common ground, the Kepco amplifiers were run with fully differential
outputs in the voltage mode. Originally, the signal from the Zonic was to be
passed through one Kepco amplifier which would then drive a voltage
divider which would have provided the gain-weighted signal to each actuator
segment. This proved to be difficult to accomplish because the PVDF had a
large capacitance, and the voltage divider formed a low-pass network with the
actuator segments, thus rolling off the signal for each segment over
frequencies below the desired controller bandwidth.
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The sensing electronics are shown in Fig. 5.12. The input voltage, sourced
from each sensor segment, is passed through a non-inverting, gain-weighting
amplifier. The values of R; and R; are varied to obtain the correct gain for
the sensor voltage. R; included a potentiometer so that this gain could be
precisely adjusted. The dotted lines on the figure indicate leads to the other
gain-weighting amplifiers. Each of the resulting voltages is added together
through the summing amplifier. Also shown on the schematic is the
differentiator used to provide the velocity signal used for feedback. This
differentiator was tested individually and was not included in the open-loop
test results that follow.

01 uF 100 KQ
mﬂz | | \ 1 KQ
bl LF351 MWN—o

Fig. 5.12 Sensor electronics inciuding gain-weighting amplifier,
summing amplifier, and differentiator
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Table 5.2 Amplifier gains and resistor ratios for amplifying electronics.

Pennant Amplifier R4/R;
Gain
1 9.131 8.131
2 7.578 6.578
3 5.724 4724
4 3.452 2.452
5 1.175 0.175

The open-loop test was conducted using low-passed random noise from
the Zonic signal source with a cutoff frequency of 125 Hz. The resulting
frequency response function is given in Fig. 5.13. For the most part, the
response function has the expected alternating pole/zero pattern shown in
Fig. 4.5 in Chapter 4. This verifies colocation of the gain-weighted actuator
array with the gain-weighted sensor array. The only anomalies were a 60 Hz
noise spike, the region around 25 Hz, and the region between 40 and 50 Hz.
The coherence around all of these frequencies was poor. The 60 Hz noise was
expected due to the line voltage, but the poor coherence in the 25 Hz region
and the 40-50 Hz region were not. The phenomena associated with the 25 Hz
and 40-50 Hz regions are identified in the next section.

One notes that the modal peaks in the frequency response function are all
of the same order of magnitude. This demonstrates that the transducer
distribution couples evenly into the modes of the structure within the
disturbance bandwidth as predicted in Fig. 4.5 in Chapter 4. Thus, all of the
modes excited by the disturbance are penalized evenly by the control action so
that global vibration performance can be achieved.

The frequency locations for the peaks are all lower than they were for the
modal tests. There are several reasons for this. In order to attach the
transducers, the plate and text fixture had to be disassembled. The
disassembly and then reassembly could have had a part in changing the
natural frequencies because the boundary conditions could have changed. In
addition, the epoxy used to attach the transducers to the plate adds damping
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to the plate. The combination of the transducers, epoxy, brass pads, and
conductive acrylic spray added mass to the plate. The effect of added mass and
added damping is to lower the natural frequencies of the plate.

20
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Fig. 5.13 Open-loop transfer function between actuator and sensor.

5.6 Closed-Loop Testing

Closed-loop tests were conducted to show that using velocity feedback
with the transducer distributions would result in a stable system with added
damping. A schematic of the signal flow for the closed-loop tests is shown in

Fig.5.14.
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Fig. 5.14 Signal flow for closed-loop tests.

The signal flow for the closed-loop tests is similar to that for the open-loop
test except that the sensor array output from the summing amplifier is now
passed through an analog differentiator to provide a velocity signal and this
is, in turn, passed through an Ithaco 4302, 24 dB/octave, low pass filter, set to a
1000 Hz bandwidth, to eliminate high-frequency noise signals. The PVDF
electrodes are large enough to allow the sensor distribution to behave as an
antenna and pick up high-frequency electromagnetic interference. The
output of the low pass filter is then passed to the Macintosh II control
computer. The Macintosh II contains three boards made by National
Instruments (NI). The NI NB-A2000 A/D converter samples the signal from
the low pass filter at a rate of 10,000 Hz. This digitized data is in turn passed to
the NI NB-DSP-2300 digital signal processor board in the control computer.
The DSP computes the control action and sets saturation limits on the
allowable control voltage. The computed control signal is then gain-weighted
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for each actuator segment before passing the values to 5 channels of the NI
NB-A0-6 D/A converter. Both the sensor and control signal are saved by the
DSP board to a daughter memory board for analysis after the control
experiment. The D/A converter drives the inputs of the Kepco amplifiers
which provide the necessary control voltages for the PVDF actuator segments.
The entire control loop is run synchronously at the sampling rate of 10 KHz.
This is accomplished by using the sample clock signal of the A/D converter to
update the D/A converter. During the contro

A band-limited impulse disturbance was employed to quantify the settling
time of the actively-controlled plate in comparison to its open-loop response.
A foam-covered ball was used to provide the input. The ball was suspended
in a pendular fashion so as to provide reasonably repeatable impacts to the
plate. The power spectral density of the sensor signal with the disturbance
showed that the disturbance had a bandwidth of approximately 150 Hz. This
excited the first 15 modes of the plate.

The time response of the plate using velocity feedback as the closed-loop
control law is plotted along with the open-loop (uncontrolled) response in
Fig. 5.15. For the closed-loop control experiment, the controller was turned
on before the impact. The gain chosen for the velocity feedback was the
maximum that could be used before high-frequency modes of the plate were
driven unstable. As expected, the highest gain demonstrated the best
damping performance. The settling time was reduced by more than fifty
percent. This is excellent performance considering that the first fifteen modes
of the plate were excited by the disturbance and that the control law used was
not dependent upon knowledge of these modal frequencies. The reduction in
settling time is comparable with that of the simulated simply-supported plate
shown in Fig. 4.3 (uncontrolled) and Fig. 4.4 (controlled).
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Fig. 5.15 Closed-loop time response (-) plotted with open-loop time
response (...).

All of the modes within the disturbance bandwidth were actively damped.
However, at the end of all of the closed-loop tests, there was a residual
vibration signal, apparent even after 2.5 seconds. This signal is shown in a
close-up view in Fig. 5.16. It is dominated by one signal at 25 Hz. This is not a
mode of the plate, but it is close to a mode at 22 Hz. It was suspected that this
was an external acoustic noise source that the controller could not control. As
was noted in the previous section, the open-loop actuator/sensor transfer
function shown in Fig. 5.13 shows poor coherence at this frequency.
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Fig. 5.16 Close-up view of controller residual response after 2.5 sec.

A closed-loop frequency response function between a stochastic
disturbance input and the sensor output was measured using the shaker as
the disturbance. The shaker was configured as for the open-loop test in
section 5.5. The shaker was driven with low-passed random noise with a
cutoff frequency of 125 Hz. The result is shown along with the same test done
open-loop in Fig. 5.17. This result shows a damping improvement in some
modes, but shows an increased response for the first mode.
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Fig. 5.17 Closed-loop and open-loop response for plate with stochastic
disturbance.

It was suspected that this problem was due to an acoustic noise source at
this frequency. This would have caused the odd structure in the 25 Hz and
the 40-50 Hz regions on the open-loop test. To determine the cause, a
microphone was placed near the plate and the power spectral density (PSD) of
the sound field was measured. This test was conducted with the plate control
deactivated. The sound field’s PSD is shown in Fig. 5.18. As can be seen from
the plot, the highest point occurs at 25 Hz in a very narrow spike. This is no
doubt driven by fans in the air handling system. The balance of the sound
PSD is more broad-band, reflecting sound radiation from the air circulation in

the lab and other ambient sound.
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Fig. 5.18 Power spectral density measurement made of microphone
placed near plate.

The effect of this acoustic noise on the plate/transducer structure was then
determined from measuring the PSD of the sensor output when no
disturbance, except for laboratory acoustic noise, was input to the plate. This
PSD is shown in Fig. 5.19. Again, the controller was turned off for this test.
As can be seen from the plot, the modes of the plate are seen along with the
25 Hz signal. This signal is very close to the first mode at 22 Hz.
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Fig. 5.19 Power spectral density measurement made of baseline sensor
signal.
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The controller was assumed to have control over those acoustic
disturbances which excite modes in the plate. However, if an acoustic
disturbance also affected the PVDF sensor through its thickness, by
compression, then the controller would not have control over this
disturbance. PVDF can sense acoustic sources through its thickness because it
has a d33 or “hydrostatic” response in addition to a d3; and ds; in-plane strain
response. This is because the PVDF actuators are applied to the plate as
induced-strain devices. They can only affect bending in the plate. To see if an
acoustic noise source was causing a signal on the PVDF sensor through
compression of the PVDF, the plate was blocked with stiff foam over the
entire actuator side to prevent bending vibrations. In this way, the only
signal on the PVDF sensor would come from a hydrostatic response.

The resulting PSD of the sensor array signal with the plate blocked is
shown in Fig. 5.20. The modal structure (e.g. resonant bending) of the plate
has now disappeared. As can be seen from the plot, there is a significant peak
at 25 Hz. This would explain why the controller cannot control this
disturbance, because it affects the PVDF through its hydrostatic response. The
controller sees a sensor array output signal at 25 Hz and thinks that bending is
occuring in the plate at this frequency. It tries to counteract this bending and
therefore actually causes 25 Hz bending in the plate. This does not destabilize
the plate because the actuator array does not itself create a 3-3 sensor output.
The actuator array cannot cause force in the 3-3 direction.

In addition to the peak at 25 Hz, the PSD has high amplitude in the 40-50
Hz region. This explains the poor coherence in the same region shown in the
open-loop plot in Fig. 5.13. There is also a spike at 67 Hz but, as can be seen in
Fig. 5.13, this frequency is not near a mode of the plate. Finally, there are the
expected spikes at 60 and 120 Hz due to the line voltage.
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Fig. 5.20 Power spectral density measurement made of baseline sensor
signal with the plate backed (bending motion prevented).

This effect does not diminish the results of the active control experiment,
but it does highlight a concern when using PVDF as a sensor for structural
acoustic control applications. The PVDF is not as sensitive in its thickness
mode as in its bending mode, but the effect showed itself in this experiment
because the PVDF sensor had a large surface area covering half of the plate
(244 in?). The compression response is integrated over the entire surface of
the sensor. Therefore, a larger sensor area will result in this effect becoming
more significant.

5.7 Summary and Recornmendations

The experiment described in this chapter demonstrated that it is possible
to design, fabricate and apply two-dimensional transducer distributions which
will evenly couple into large groups of modes in plates. In addition, it was
shown that colocation was achieved for gain-weighted actuator and sensor
arrays. This facilitates the use of velocity feedback for global vibration
suppression. Knowledge of the spatial response of the structure is used,
especially modal symmetry, but no detailed knowedge is needed of the
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temporal dynamics of the plate structure. Phase lags in the control system,
however, must be understood in order to choose a maximum feedback gain.

In addition, an unexpected effect of using PVDF sensors in an acoustically
noisy environment was discovered. This could provide a practical limitation
for applying PVDF as a large-area sensor for structural acoustic control. This
can occur with any other distributed transducer which can sense in the
compression mode. Ways of alleviating or eliminating this effect should be
studied in the future.
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Chapter 6:

Conclusions and Recommendations

6.1 Conclusions

This work focused on the modeling and design of two-dimensional
distributed transducers for the active control of vibrations in plates. Chapter 1
reviewed the previous research conducted in the field of active control of
plates and showed the necessity of research into the spatial part of the control
design problem for plates.

A new modeling technique for two-dimensional distributed transducers
was presented in Chapter 2. This approach allows distributed transducer
shape to be incorporated into the control design process for multi-
dimensional structures as an additional design parameter. The method is
applicable to many types of strain-inducing transducers, such as piezoelectric,
electrostrictive, and magnetostrictive materials. The derivation was based
upon the theory of multivariable distributions and was extended to
distributions with composite functions as arguments. In this manner,
arbitrary spatial weightings of transducers could be described. A
differentiation theorem for such distributions was developed and used to
calculate the spatial differential operator for a strain-inducing transducer.
Several applications were presented to show the utility of this technique and
compare the results to previous research in the field.

This modeling method was used to verify shaping techniques developed
previously to approximate one-dimensional transducer shading. It was also
shown that two-dimensional delta and doublet function distributions could
be obtained even when using a uniaxial transducer if the boundaries of the
transducer (or electrode) were shaped to be nonorthogonal to the material
axes. The approach is in exact agreement with previous work by Lee and
Moon where they demonstrated that when the material axes of a transducer
are skewed with respect to the rectangular boundary axes of an PVDF
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electrode distribution, both delta and doublet function distributions along the
boundary are obtained. Guidelines for defining spatial transducer
distributions using generalized functions with composite arguments were
also established.

In Chapter 3, the motivation for two-dimensional transducer shading was
presented and various methods for achieving shading were considered for
the active control of thin plates. Two-dimensional transducer shaping was
shown to be a useful design tool for the control problem. It was also shown
that transducer shaping can be combined with gain-weighting to provide
close approximation of continuously shaded transducer distributions. The
analysis was applied to two specific examples. One utilizes two-dimensional
transducer shaping alone to establish controllability and observability over all
but the even-even modes in a simply-supported plate. This transducer
distribution is a very practical solution for the acoustic radiation attenuation
problem. The second distribution is a superposition of gain-weighted, shaped
transducer sections providing a good approximation to a continuous two-
dimensional shaded transducer distribution. This distribution provides “all-
mode” controllability and observability over a large bandwidth and is
therefore useful for global vibration suppression in plates. An optimization
method used to fit the approximation to the continuous transducer
distribution over a specified number of modal coefficients was described.

Chapter 4 described the plate and transducer setup and dynamics. A
rectangular, three-layer laminate which was simply-supporied at the edges
was used as a sample problem. Marginal stability was proven for any
dissipative controller. Asymptotic stability was proven for the case of velocity
feedback. The state matrices were then presented for the distributed
parameter system so that the system was able to be simulated using MATLAB.

The experiment described in Chapter 5 demonstrated that it is possible to
design two-dimensional colocated transducer arrays which will evenly couple
into large groups of modes in plates. This facilitates the use of velocity
feedback for global vibration suppression. Knowledge of the spatial response
of the structure is used, especially modal symmety, but no knowedge is
needed of the temporal dynamics of the structure. In addition, an unexpected
effect of using PVDF sensors in an acoustically noisy environment was
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discovered. This could pose problems when trying to use PVDF as a large-
area sensor for structural acoustic control. This could occur with any other
distributed transducer which can sense in the hydrostatic mode. Ways of
alleviating or eliminating this effect should be studied in the future.

This thesis focused upon the modeling and design of two-dimensional
transducers for the active control of multidimensional elastic structures. It
was shown that two-dimensional distributed transducers can produce effects
that are simply not possible using discrete transducers. Two-dimensional
transducers can actuate or sense doublet functions distributed along
transducer boundaries which vary across the surface of the structure. This
effect allows one to achieve modal coupling that was impossible to achieve
using any combination or number of discrete transducers.

6.2 Future Directions

The modeling work for distributed transducers should be extended to
curved shapes. A circular transducer which is perfectly biaxial should exhibit
uniform moments along the boundaries. This could be used as a test case for
the modeling method. The result for an elliptical transducer could be derived
and checked in the limit as the ellipse approaches a circle. In addition, the
modeling work should be extended to cover two-dimensional distributed
transducers applied to shells. Design guidelines for the control of shells could
then be derived based upon this result.

The design work in Chapter 3 covered specific transducer distributions and
shading. The work in this chapter should be extended to allow the design of a
transducer distribution to directly meet desired performance goals specified
through a modal coefficient profile.

In addition, the analytical transducer design work should be merged with
multidimensional structures which are described by finite element models.
In this way, the coupling of two-dimensional transducer distributions into
these structures could be evaluated and experimentally checked.
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Finally, a way of eliminating the hydrostatic sensitivity of PVDF, described
by the d33 constant, should be determined if it is desired to use PVDF as a
large-area structural sensor in an acoustically noisy environment.
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Appendix:

Theory of Distributions Review

This appendix reviews the theory of distributions. The material in this appendix
was gathered from Zemanian! and Lighthill.2 In section A.1 and the first part of
A.2, the definition of a distribution and various properties of distributions are
summarized from the development presented by Zemanian.2 Next, in section
A .3, derivatives of distributions are defined and explained, again in a manner
similar to Zemanian.

A.1 Definition of a Distribution (Generalized Function)

A functional assigns a number to every function which belongs to a specific set of
functions, called test functions:

(£.9)= (0. 00)= [ 10 90 dt, (A1)

where fis the functional and f is a test function. The definition of a suitable test
function will follow. The ( ) notation used is the same as the inner product
notation. Functionals are always defined as inner products with test functions.
A distribution (or generalized function) is a functional which is also linear and
continuous. Linearity of a distribution is defined by

<ﬁ ¢1+¢2)=(f, ¢1>+<ﬁ ¢2)/ (A.2)
(fag)=a(f ¢), (A.3)
where a is a complex number (allowed to be real).

Continuity of a distribution is defined in the following manner. If a sequence of
a functions converges to the test function ¢(z),
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{9, 0}°_ =00, (A4)

then, the sequence of a distribution acting on the function sequence converges to
the value of the distribution acting on the test function ¢(s),

{(F o), (L0 (A.5)

The test function ¢(f) upon which the distribution acts has the following
properties:

a. Operates on the independent, real variable, ;
b. Complex-valued (can take either real or complex values);

c. Infinitely smooth on some finite interval (the function has continuous
derivatives of all orders - these derivatives can be zero though);

d. Zero outside of a finite interval (bounded support).

An example of a test function is the following;:

§(t)={° Itm}. (A.6)

x |t]<1

This function satisfies the criteria for a test function because it is infiritely smooth
over the open interval (-1,1) and zero outside of this interval. This testing
function does have discontinuities at 1 and -1. However, since test functions are
only used in conjunction with distributions under integration, these
discontinuities simply become bounds on the integral.

Also note that the bounded support requirement on the testing function can be
relaxed if the distribution itself has bounded support. For example, the delta
function, 6(¢), has bounded support in that it only has a nonzero value at ¢ = 0.

Two distributions, f and g, are defined as equal if they yield the same result when
applied to a test function, i.e.

(f9)=(s¢) (A7)

for all testing functions ¢.
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A.2 Operations on Distributions

Addition The sum of two distributions, f and g, is also a distribution and is
defined as

(f+e. o)=(f0)+(s ¢) (A8)
Multiplication of a distribution by a constant If @ is any complex number

(allowed to be real), then the product of a with a distribution, f, is defined as

(of, 9)=(f, ap)=a(f, ¢). (A9)
The last step in equation (A.9) follows directly from the linearity property of
distributions.

Translation of a distribution If ¢ is a real number, then a distribution translated
by t acting on a test function is equivalent to the distribution without translation
acting on a test function translated by -7.

(ft-9, 0(0))={f(), ot + D). (A.10)

This definition was established using a linear change of variable under
integration

Example: Sifting property of delta functions

The “delta function”, 8(¢) , is a well-known distribution with the
following definition:

(8@, p(1) )= ¢(0). (A.11)

Note that the delta function, 6(r) , “sifts out”! the value of the test
function at t = 0. The scalar value assigned to ( 6(¢ - 7), ¢(¢) ) is defined
using the translation property of a distribution:

(8(-17),9(®))=(@), ¢(t+ 1) )= ¢(7).. (A.12)

The delta function, 6(z - 7), “sifts out”1 the value of the test function at ¢
=T
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A.3 Distributional Derivatives

Ordinary differentiation does not make much sense on distributions. Take, for
example, the case of the Heaviside function shown in Figure A.1:

Figure A.1: Heaviside Function

The ordinary derivative of this distribution would be zero for t < a and ¢ > a but
would be infinite at t = a.

Distributional derivatives will be defined in this section. All distributions have
derivatives of all orders and each distributional derivative is a distribution itself.
The first distributional derivative is defined as

(F®,00)=(f .- ¢'®). (A.13)
To understand this definition, use integration by parts:
(r©.0@)=[ r® o0 a

=J:_udv (A.14)
=uv]:—[:vdu

where

u=¢(1)
du=¢'(t) dt
dv=f'(t) dt

v=f(1)

(A.15)
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Substituting in:
uv]. -J: vdu=f() ¢~ -[: f@)¢'(r)de. (A.16)

The first term in the right-hand side of the equation is zero if either ¢ ()
or f(t) has bounded support, i.e. either ¢(r) or f(t) is zero at t = + oo,

Therefore,
(@), 0(0))=(f(0),-0"(®)). (A.17)

Using relation (A.17) helps when trying to determine distributional derivatives.
For example, one might ask what the distributional derivative of the Heaviside

function is:

(R’ (@, o)) =(h(t),— ¢’(D))

- (A.18)
=—J; ¢’(Hadr .
Now integrate to obtain
- [ ¢t =- ()1~ 9010}
= ¢(0) (A.19)
= f : 8 o()dt
Therefore,
(' (®, $(0) =(3(0), (). (A.20)

The derivative of the heaviside function is equivalent to the delta
function in the distributional sense.

Substituting the delta function into equation (A.13) yields the
following relation:

(6°(), (D) =(8(), ¢’ (1)) =—¢’(0). (A.21)
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The derivative of the delta function is known as the doublet function.
Instead of sifting out the value of the test function at ¢ = 0, the doublet
function sifts out the slope of the test function at ¢ = 0.
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