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High-energy neutrino emission has been predicted for several short-lived astrophysical transients
including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers.
IceCube’s optical and x-ray follow-up program searches for such transient sources by looking for two or
more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of
neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background
events and no likely electromagnetic counterparts have been identified in Swift follow-up observations.
Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E−2.5

neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained
to < 5% of the detected astrophysical flux and the energy released in neutrinos (100 GeV to 10 PeV) by a
median bright GRB-like source is< 1052.5 erg. For a harder E−2.13 neutrino spectrum up to 30% of the flux
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could be produced by GRBs and the allowed median source energy is < 1052 erg. A hypothetical
population of transient sources has to be more common than 10−5 Mpc−3 yr−1 (5 × 10−8 Mpc−3 yr−1 for
the E−2.13 spectrum) to account for the complete astrophysical neutrino flux.

DOI: 10.1103/PhysRevLett.122.051102

Introduction.—An astrophysical neutrino flux at high
energies (from ∼10 TeV to a few PeV) was discovered
by the IceCube neutrino observatory [1–3]. The neutrino
arrival directions are largely isotropic suggesting a pre-
dominantly extragalactic origin. Possible sources include
long gamma-ray bursts (GRBs) [4–7], core-collapse super-
novae (CCSNe) with choked jets [8–10], binary neutron
star mergers [11,12], and active galactic nuclei (AGNs)
[13–17] (see, e.g., Ref. [18], for a more extensive list).
While several neutrino events have been associated with
a blazar [19,20], blazars likely cannot account for the
complete astrophysical flux [21]. The absence of luminous
neutrino point sources [3,22,23] implies that the observed
flux can only be emitted by a class of sufficiently numerous
sources [24–27].
The IceCube detector is deployed in the glacial ice at the

geographical South Pole at depths between 1450 to 2450 m
and comprises a volume of 1 km3 [28]. It detects neutrino
events with energies between 100 GeV and a few PeV. If a
secondary muon is produced in a neutrino interaction,
its tracklike signature allows us to resolve the neutrino
direction to ∼1° [22]. IceCube has a dedicated optical and
x-ray follow-up program which is triggered by two or more
tracklike events detected within < 100 s that are consistent
with a point source origin [29–31]. Except for AGNs, the
above-mentioned source classes are all expected to produce
such short neutrino bursts as they are powered by central
engines which are typically active for few to about 100 s.
To look for a potential electromagnetic counterpart, follow-
up observations for the least backgroundlike alerts are
obtained with the X-Ray Telescope (XRT [32]) on board
the Neil Gehrels Swift observatory, the 48-inch telescope of
the Palomar Transient Factory (PTF [33,34]; until Feb.
2017), and the Robotic Optical Transient Search
Experiment (ROTSE [35]; until Nov. 2015).
So far, no optical or x-ray transient sources have been

positively associated with any of the neutrino multiplets
[30,31,36]. As the alert rates are consistent with the
background-only hypothesis, we find that strong con-
straints on the existence of short-lived transient populations
can be derived from the IceCube data alone.
Detected neutrino alerts.—IceCube’s optical and x-ray

follow-up program was established in Dec. 2008 to search
for short-lived transient neutrino sources and here we
present results from the first five years of operation with
the complete detector (Sept. 2011—May 2016).
For the follow-up program we select tracklike events,

called neutrino candidates, from the northern sky (for a

detailed description of the event selection see Ref. [37])
which are detected at a rate of about 3 mHz. To suppress the
dominating background of atmospheric neutrino and muon
events we search for two or more neutrino candidates with a
temporal separation of less than 100 s and an angular
separation of less than 3.5°. Doublets are alerts consisting
of two neutrino candidates, while we call alerts with three
or more candidates multiplets.
Within the live time of 1648.1 days we selected in total

460 438 neutrino candidates. The selected data consist of
about ∼80% atmospheric neutrinos, ∼20% misrecon-
structed atmospheric muons from the southern sky [38],
and less than 1% astrophysical neutrinos depending on the
assumed spectral shape of the astrophysical neutrino flux.
Alerts can also be produced by chance coincidences of

background events and we calculate the rate of background
alerts by randomizing the detection times of events, as
described in Ref. [31]. The expected background is 312.7
doublets, 0.341 triplets, and only 5 × 10−4 quadruplets
within the analyzed live time. We have observed 338
neutrino doublets and one neutrino triplet [31] (see
Supplemental Material for more detail on the alerts
[39]). The resulting 90% upper limit [40] on the number
of astrophysical doublets is < 56, while the limit on the
expected number of astrophysical triplets is < 4.0 within
the analyzed live time. We find that the triplet rate provides
stronger constraints on the neutrino flux of transient source
populations.
The significance of doublet alerts is quantified as

described in Ref. [30], but all alerts were consistent with
being chance coincidences of atmospheric events. The two
most significant alerts were studied in great detail [30,31]
and no likely electromagnetic counterpart was detected.
Swift XRT follow-up observations have been obtained for
25 alerts and no sources were identified above a predefined
threshold (see Ref. [36]).
The alert rates, doublet significances and Swift XRT

follow-up observations hence do not provide evidence for
the existence of a population of short-lived transient
sources. In the following we therefore do not make use
of the collected follow-up observations, but use the low rate
of alerts with three or more neutrino candidates to calculate
generic constraints on the neutrino emission of short-lived
transient populations like GRBs and CCSNe.
Simulating transient source populations.—The low rate

of detected neutrino multiplets allows us to calculate limits
on the neutrino flux of a population of transient sources
with durations up to 100 s. For this purpose we simulate
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two types of transient source populations whose properties
are chosen such that they are similar to long GRBs and
CCSNe with a choked jet. The impact of the different
assumptions on the results is summarized in Table 3 of the
Supplemental Material [39].
The redshift distributions for GRBs and CCSNe are

taken from Refs. [41,42], respectively. The distribution for
CCSNe peaks at a lower redshift of z ∼ 2 compared to the
one for GRBs which peaks at z ∼ 3. We simulate sources in
the northern sky up to a redshift of z ¼ 8 and use the
cosmological parameters from Ref. [43]. Sources located at
z > 4 only contribute 1% (5%) of the events for the CCSN-
like (GRB-like) population and hence only have a small
effect on the results.
The distribution of GRB peak luminosities is relatively

broad, spanning at least 4 orders of magnitude [41]. We
assume that the neutrino peak luminosities of GRBs follow
the distribution measured in gamma rays. The population of
CCSNe does not show as large luminosity fluctuations at
the optical wavelengths [44] and we assume a narrow log-
normal distribution with a width of 0.4 in log-10 space
corresponding to fluctuations of one astronomical magni-
tude. The fluctuations assumed for the GRB-like popula-
tion are larger by a factor of 300. Ultimately the neutrino
luminosity functions of both populations are unknown, and
the two different scenarios allow us to quantify their
influence on the detection probability.
Transient durations in the source rest frame are drawn

from a log-normal distribution centered around 11.2 s with
a width of 0.58 in log-10 space, which approximately
reproduces the duration distribution of long GRBs mea-
sured at Earth [45]. We hence assume that the duration of
the neutrino and gamma-ray emission is similar. CCSNe
with choked jets have not yet been observed, but we chose
to use the same duration distribution. We assume that the
transient source instantaneously rises to its peak luminosity
and then decays exponentially according to its simulated
duration. The number of multiplet alerts does not depend
on the shape of the light curve as long as the neutrinos
arrive within 100 s.
The neutrino emission of each source is assumed to

follow a power-law spectrum similar to the detected
astrophysical neutrino flux

ϕðEÞ ¼ ϕ0 × ðE=GeVÞ−γ: ð1Þ

To account for the uncertainty on the measured neutrino
flux, we use two different spectral shapes: a hard spectrum
with γ ¼ 2.13 and ϕ0 ¼ 4.0 × 10−8 GeV−1 cm−2 s−1 sr−1

and a soft spectrum with γ ¼ 2.5 and ϕ0 ¼ 7.1×
10−6 GeV−1 cm−2 s−1 sr−1. The normalization ϕ0 is per
neutrino flavor and includes both neutrinos and antineu-
trinos. The soft spectrum has been measured in a global
fit extending down to an energy of 10 TeV [46] while the
hard E−2.13 spectrum was found in an analysis restricted

to tracklike events from the northern sky with energies
≥ 100 TeV [3].
The sensitivity of the follow-up program is evaluated

using simulated IceCube neutrino events accounting for the
detector acceptance and the effects of high-energy neutrino
absorption in Earth’s core. During the data-taking period,
data selection methods and reconstructions have been
steadily improved. We account for these changes in our
simulations.
The energy distributions of the events which pass all

selection cuts are shown in Fig. 1. The total expected
number of astrophysical neutrino track events within the
livetime of 1648.1 days is about 470 and 2800νμ for the
E−2.13 and E−2.5 spectrum, respectively (see Table 2 in
the Supplemental Material [39] for more details). Here we
extrapolate the power-law neutrino flux down to 100 GeV.
Such a spectrum is expected if the neutrinos are produced
in pp interactions; however for pγ interactions there
would be a low-energy cutoff [26]. Above the threshold
of 10 TeV, where the astrophysical flux is constrained by
data [47], we expect about 280νμ or 910νμ, respectively.
Generic constraints.—The simulated source populations

are used to infer limits on the neutrino emission of short
transient sources. We vary both the rate of sources and the
neutrino flux emitted by the complete population to rule out
scenarios that produce more than one detected neutrino
multiplet within the analyzed live time at 90% confidence
level.
While the source rate is a free parameter in the final

result, we discuss in addition the results for two measured
transient rates in more detail: In the first example we
constrain the neutrino emission of a GRB-like population

FIG. 1. Expected number of astrophysical neutrinos passing the
event selection of the follow-up program within the 1648.1 day
live time. Two different fits to the measured flux are adopted [see
Eq. (1)]. The reconstructed energy can be much lower than the
true neutrino energy shown here, since most tracklike events are
not contained within the instrumented volume.
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while in the second one we assume that 1% of all CCSNe
contribute to the astrophysical neutrino flux (e.g., because
they contain choked jets pointed towards Earth; see also
Refs. [48–50]). The local rates of GRBs and CCSNe are
taken from Refs. [51–53], respectively. They allow us to
convert between the local source rate and the number of
transients (see Table I).
We then vary the neutrino flux of the source populations

and calculate the expected number of detected neutrino
events for each source. This depends on the source redshift,
peak luminosity, transient duration, and zenith direction.
We use a Poisson distribution to calculate how likely it is
that one, two, or more than two neutrinos are detected from
a source (shown in parentheses in Table I).
The probability that the reconstructed directions of two

neutrinos from the same source are separated by more than
3.5° depends strongly on the neutrino energies and zenith
direction with a median probability of 27% for the E−2.5

spectrum. Additional losses occur when the neutrinos
arrive more than 100 s apart, which happens for 9% of
the sources for the assumed duration and redshift distri-
bution. Assuming that the population produces the entire
astrophysical neutrino flux, the expected number of astro-
physical doublet and multiplet alerts is shown in the middle
part of Table I. Sources with a single detected event cannot
produce an alert.

Using the Feldman Cousins method [40], we rule out
scenarios in which the detection of more than one multiplet
from signal or background (0.341 chance coincidences) is
expected with 90% probability. We find that the expected
number of astrophysical multiplets is < 4.0 within the
analyzed live time. We calculate limits on the population’s
neutrino emission and on the energy that the median source
in the population can release in neutrinos in the energy
range from 100 GeV to 10 PeV in the source rest frame.
Systematic errors on IceCube’s sensitivity are dominated

by the uncertainty on the optical efficiency of the detector
and scattering and absorption in the ice. To quantify these
uncertainties, we repeat the analysis with the efficiency
reduced by 10% and ice absorption increased by 10%.
Because of the lower number of detected neutrino events
and the worse angular resolution, the number of multiplets
decreases by 17% (14%) for the E−2.5 (E−2.13) spectrum.
Figure 2 shows the upper limits, including systematic

errors, on the median source energy for the GRB-like and
SN-like source populations. The diagonal dashed lines
indicate the median transient energy which would produce
the complete detected flux. The corresponding lines for
the harder E−2.13 spectrum are a factor of 13 lower due to
the extrapolation to lower energies (compare Fig. 1). The
ratio between the limits and the respective broken lines

TABLE I. Expected number of alerts from simulated source
populations and 90% upper limits on their neutrino emission. The
limits were calculated based on the observation of only one
neutrino triplet within the analyzed live time.

Population Long GRBs 1% of CCSNe
Spectral shape E−2.13 E−2.5 E−2.13 E−2.5

Rate [Mpc−3 yr−1] 4.2 × 10−10 6.8 × 10−7

No. sourcesa 7200 5.9 × 106

Expected no. of alerts:b

No. singlets (1νμ) 0 (143) 0 (339) 0 (450) 0 (2470)
No. doublets (2νμ) 16 (26) 58 (92) 2.3 (4.0) 33 (60)
No. multiplets (≥ 3νμ) 22 (28) 119 (144) 1.1 (1.5) 19 (26)

Resulting limits:c

Frac. of diffuse flux < 30% < 5% < 250% < 40%
Source ν energy [erg] < 1052 < 1052.5 < 1050.5

d < 1050.8

aNumber of transients in the northern sky within z ≤ 8 within the
live time of 1648.1 days.
bExpected number of signal doublets and multiplets if the
respective population accounts for 100% of the astrophysical
neutrino flux. The numbers in parentheses do not include losses
due to our cuts (two events within < 3.5° and 100 s). The total
number of expect events is ∼470 for an E−2.13 spectrum and
∼2800 for an E−2.5 spectrum.
c90% C.L. upper limits on the neutrino emission (100 GeV to
10 PeV; flavor equipartition) based on the detection of only one
multiplet.
dThe detected astrophysical flux yields a more constraining limit
on the energy emitted in neutrinos of < 1050.1 erg.

FIG. 2. Limits on the median source energy (90% C.L.) emitted
in neutrinos between 100 GeVand 10 PeV within 100 s. The area
above the bands is excluded for CCSN-like (orange) and GRB-
like (gray) populations, respectively. The upper edge of the limit
corresponds to an E−2.5 neutrino spectrum and the lower one to an
E−2.13 spectrum. The diagonal dashed lines show which source
energy accounts for 100% of the astrophysical flux for an E−2.5

spectrum. For the E−2.13 spectrum, the complete flux is produced
by 13 times fainter sources (lines not shown). The rate of long
GRBs, NS-NS mergers, and CCSNe is indicated. Beaming is
included for long GRBs, but not for NS-NS mergers or CCSNe
due to the unknown jet opening angles. The figure shows the limit
on the median transient energy and the average energy is a factor
of 3.8 (18) larger for the CCSN-like (GRB-like) population.
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depicts the fraction of the detected astrophysical flux that a
population with a given rate can at most produce (also given
in the second last row of Table I). For populations consisting
of many faint sources these lines provide more constraining
limits, because only few multiplets are expected.
The study was repeated using only events with energies

above 10 TeV where the astrophysical flux has been mea-
sured. Without the extrapolation to 100 GeV both neutrino
spectra yield similar results (compare also Fig. 1). The limit
for the smaller energy range (shown in Fig. 1 in the
Supplemental Material [39]) is a factor of ∼1.5 lower com-
pared to the lower edge of the bands shown in Fig. 2,
but corresponds to a larger fraction of the astrophysical
neutrino flux.
The typical distance of a transient source that produces a

neutrino multiplet depends on the source luminosity and on
the source rate of the population, and is large for most
considered rates (e.g., a median distance of 100Mpc for 1%
of the CCSN rate and the E−2.13 neutrino spectrum). Only
for the CCSN rate does the median distance decrease to
∼10 Mpc, such that local inhomogeneities in the Universe
might affect the multiplet rate [54].
As shown in Fig. 2 and Table I, we can constrain the

neutrino emission from a GRB-like population to 5% of the
astrophysical flux adopting the E−2.5 neutrino spectrum and
to 30% for the E−2.13 spectrum. More frequent sources,
such as NS-NS mergers [55] or CCSNe, can account for
much or all of the astrophysical neutrino flux. However, the
rates shown for those two source classes do not include a
beaming factor. If the neutrino emission is collimated in a
jet the rate of observable transients would be reduced.
CCSN-like populations can only account for the

complete astrophysical flux if their rate is larger than
10−5 Mpc−3 yr−1 (5 × 10−8 Mpc−3 yr−1) for an E−2.5

(E−2.13) spectrum. We can hence exclude rare transients
with less than 15% (0.07%) of the CCSN rate [53]
producing the entire astrophysical neutrino flux.
Conclusion.—IceCube’s optical and x-ray follow-up

program triggers observations when multiple muon neu-
trino candidates are detected within 100 s and are direc-
tionally consistent with a common source origin. The
observed alert rates can be explained by background and
no likely neutrino source has been identified. Extrapolating
the detected astrophysical neutrino flux to 100 GeV, we
expect the detection of 470 to 2800 astrophysical muon
neutrino events within the data collected over 1648.1 days.
Based on the low rate of detected neutrino multiplets
we calculate limits on the neutrino flux for two classes
of short transient sources similar to GRBs and CCSNe with
choked jets.
We find that a transient source population similar to long

GRBs can at most account for 5% (30%) of the astro-
physical neutrino flux for a neutrino spectrum of E−2.5

(E−2.13; see Fig. 2). This corresponds to a limit on the
energy emitted in neutrinos within 100 s of < 1052.5 erg

(< 1052 erg). Fewer neutrino multiplets are expected if
the neutrino flux is emitted by a larger number of faint
transients. A CCSN-like population can account for the
complete flux if its rate at z ¼ 0 is larger than
10−5 Mpc−1 yr−1 (5 × 10−8 Mpc−1 yr−1).
The derived limits are valid for transient sources with

durations up to 100 s which follow the star formation rate or
GRB redshift distribution. Dedicated searches for the
neutrino emission from GRBs and CCSNe provide stronger
constraints [56–58]. However, the limits derived here are
more general: They are solely based on neutrino detections
and therefore also apply to sources that are not detected in
electromagnetic radiation or that exhibit a time delay
between the neutrino and electromagnetic signal. For
binary neutron star mergers, the optimistic extended
emission scenario in Ref. [11] would yield ∼2 detected
neutrino multiplets within the analyzed live time and is
hence within reach of the follow-up program. Different
models [11,12,59], however, predict source energies that
are several orders of magnitude below the calculated limit.
The obtained limits strongly depend on the number of

detected astrophysical neutrinos which is determined by
the event selection, the assumed neutrino spectrum and the
considered energy range. This is the likely cause for the
different limits found in literature [25,26]. Contrary to
previous analyses, our results are based on the full
simulation of the IceCube detector including energy and
directional dependent sensitivity and resolution, live time,
event selection, and alert generation. Our search for
transient neutrino sources is ongoing [37] and real-time
multiwavelength follow-up observations extend our sensi-
tivity to sources which cannot be detected and identified by
IceCube alone.
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