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Contact Model Fusion for Event-Based Locomotion in Unstructured Terrains

Gerardo Bledt1,2, Patrick M. Wensing3, Sam Ingersoll4, and Sangbae Kim1

Abstract— As legged robots are sent into unstructured envi-
ronments, the ability to robustly manage contact transitions
will be a critical skill. This paper introduces an approach
to probabilistically fuse contact models, managing uncertainty
in terrain geometry, dynamic modeling, and kinematics to
improve the robustness of contact initiation at touchdown.
A discrete-time extension of the generalized-momentum dis-
turbance observer is presented to increase the accuracy of
proprioceptive force control estimates. This information is
fused with other contact priors under a framework of Kalman
Filtering to increase robustness of the method. This approach
results in accurate contact detection with 99.3% accuracy and
a small 4−5ms delay. Using this new detector, an Event-Based
Finite State Machine is implemented to deal with unexpected
early and late contacts. This allows the robot to traverse
cluttered environments by modifying the control actions for
each individual leg based on the estimated contact state rather
than adhering to a rigid time schedule regardless of actual
contact state. Experiments with the MIT Cheetah 3 robot show
the success of both the detection algorithm, as well as the Event-
Based FSM while making unexpected contacts during trotting.

I. INTRODUCTION

Legged robots offer the promise to negotiate difficult
terrain environments beyond the reach of wheeled or tracked
vehicles. As robots begin to navigate such terrains, an
increasing burden is placed on control systems that are
designed to manage contact transitions and achieve solid
footholds amidst incomplete and uncertain terrain knowl-
edge. Contact force sensing and its associated feedback
mechanisms will play a crucial role in this process. However,
conventional force estimation is noisy, with force sensing
technology notoriously fragile. Thus, an ability to reliably
manage contact transitions through proprioceptive sensing
alone is a desirable skill for rough terrain locomotion.

The MIT Cheetah 3 robot is a recently developed platform
designed to move through the world using terrain-blind
locomotion. Rather than use perception to build a map
of the terrain before attempting to cross it, proprioceptive
sensing is sought via highly-transparent actuation [1], joint
angle readings, and feedback from an Inertial Measurement
Unit (IMU). Each of these sensors explicitly provides only
perception about the robot’s body and leg states rather than
the external environment. Work to develop robust control
without reliance on perception will ultimately mitigate sens-
ing accuracy requirements upon later integration.
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Fig. 1. Traversing Rough Terrain with Event-Based Gait Switching.
With reliable contact detection, an event-based gait switching control
strategy was employed on the MIT Cheetah 3 robot to reliably move across
unstructured terrains.

In the absence of external force sensing, a now-classic
method has become the application of disturbance observers
[2] based on the generalized momentum (GM) of the robot.
While originally introduced for manipulators, this method
has been applied to localize contacts in humanoids [3] and
further extended to multi-contact cases through a novel
synergy with particle filtering [4]. These methods have also
inspired other contact detection strategies in quadrupeds.
Hwangbo et al. [5] used inference over a Hidden-Markov
Model (HMM) to fuse dynamics, differential kinematics, and
kinematics for contact detection [5]. Camurri et al. [6] used
approximate inverse-dynamics-based forces as inputs to a
contact probability prior for determining when a foothold
was secure enough for use in base-velocity estimation.

Despite the solid theoretical grounding of the GM ob-
servers, they have yet to be applied for probabilistic con-
tact detection. Work in [5] assumes access to acceleration
measurements that may be impossible to obtain in practice,
while [6] neglects acceleration effects for the same reason.
Interestingly, the main benefit of the GM technique is its
ability to skirt the need for acceleration measurements by
leveraging properties of the Coriolis matrix. We explore this
potential here.

Other work has concentrated on design of control strate-
gies following contact detection in uneven terrain. Carefully
crafted state machines [7] have shown great potential in
experimental biped walking by encoding adaptive recovery
based on the timing of the disturbance within the gait cycle.
Other work has focused on designing families of controllers
to enable reactive recovery upon touchdown [8]. Reactively
modified central pattern generators (CPGs) have also shown
an ability for terrain adaptability [9]; however, the kinematic
nature of CPGs requires additional mechanisms to manage
dynamic balance. An alternative methodology is design



control laws that are formally robust to terrain variations
(as in [10]), which could be extended to quadrupeds to yet
supplement reactive approaches.

The main contribution of this paper is to pursue the GM-
based disturbance observer within a unified framework for
probablistic contact detection that fuses multiple priors. This
provides a simpler solution than the HMM approach in
[5] and further demonstrates a sensing delay superior to or
equal to all resuls provided in the HMM method. Priors
based on kinematics and gait phase increase accuracy of
the GM method, while tuning of the filter demonstrates
optimality of including all priors with relative equal weight.
An alternate derivation of the GM method in discrete-time
further facilitates accurate force estimates in computational
control loops.

Overall, this provides a method for detecting the contact
of a leg on the ground and modifying the control actions
for the leg in the absence of a direct force sensor on the
foot. The contact detection algorithm allows for a more
robust locomotion strategy that detects and handles early
and late contacts. With this, the robot is able to safely handle
large unexpected terrain changes and obtains stable footholds
through the incorporation of low-delay detection.

The remainder of this paper is structured as follows.
Section II introduces the overall intrstructure of the control
law, motivating the need for proprioceptive contract detec-
tion. Section III details an improvement to the GM-based
disturbance estimate for discrete-time implementation, and
Section IV discusses its fusion with other contact priors
for robust contact detection. Section V describes contact
detection results in simulations and experiments that are then
integrated for reactive gait modification in Section VI. A
concluding discussion is offered in Section VII.

II. ROBOT CONTROL

Locomotion control of the MIT Cheetah 3 is defined by
a simple gait scheduler that switches the robot between two
distinct states, contact and swing. Since legged locomotion is
an inherently hybrid form of movement, the robot encounters
discrete mode switches as each of the legs enters or leaves
contact. The current leg state is defined by the boolean
variable, s ∈

{
0 = swing, 1 = contact

}
. However, without

some way of sensing the leg state, the robot does not
know the true values of s and therefore its control may
be switched based purely on a phase-dependent scheduler.
This initial gait-specific scheduler informs the controller as
to what state the legs should be in with a boolean variable,
sφ ∈

{
0 = swing, 1 = contact

}
.

A. Periodic Phase-Based State Scheduler

We consider a steady state legged locomotion gait as a
collection of contact and swing states for each leg with
discrete, instantaneous transitions between them. The under-
lying mechanism behind the leg state switching is a periodic
phase-based state scheduler. An overall phase variable, φ ∈
[0, 1), cycles over a defined period depending on the current
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Fig. 2. Gait Scheduler Phase Map. An overall phase variable, φ, controls
the gait cycle with each leg having an individual offset. The cycle includes
contact (solid) and swing (dashed) states.

desired gait. During the course of the period, the phase vari-
able encounters phase values where a high-level controller
is notified of scheduled changes between the stance state,
cφ := {sφ = 1}, and swing state, c̄φ := {sφ = 0}.

Currently, the scheduler uses a phase variable that is a
linear function of time

φ =
t− t0
T

(1)

where t is the current time, t0 is the start time of the current
period, and T is the determined cycle period. The phase
variable φi = φ + φi,offset, for each foot, i, is determined
for each gait. Figure 2 shows the typical mapping of a trot
gait where the dashed periods in the cycle signify scheduled
swing states, c̄φ, and the solid sections are scheduled contact
states, cφ. We see that diagonal pairs of legs have the same
offset, which is one half cycle away from the other pair.

According to the scheduled state for the leg, control
actions are different between swing and stance. For the legs
in swing, the robot uses an impedance controller to track
a calculated swing trajectory. This approach has been used
successfully by the MIT Cheetah before [11]. When a leg is
scheduled to be in stance, it is used in a balance controller
similar to the QP balance controller used in [12]. The forces
coming from the QP solver are sent to the leg which is
capable of force control through the joint torques on the
motors. As such, it is clear that if a leg is scheduled to be in
swing but is actually in contact, the controller will continue
to forcefully drive the foot into the terrain until the swing
phase is done. In the opposite case where the leg is scheduled
to be in contact, but it is not, the controller will immediately
request for the leg to produce a ground reaction force, caus-
ing the leg to stomp into contact mid-swing. Neither situation
is desirable and will cause instability during locomotion, but
both occur frequently while traversing unstructured terrain
and encountering unexpected obstacles.



III. INCREASING THE ACCURACY OF THE
MOMENTUM-BASED DISTURBANCE OBSERVER FOR

DISCRETE-TIME IMPLEMENTATION

This section describes a contribution to the application of
the now-classic generalized-momentum-based (GM-based)
disturbance observer [2] in discrete time. The main idea of
this method is as follows. Given the torques applied at the
joints, trajectory outcomes expected based on a model can
be compared to the actual outcomes, with any difference
attributed to an external disturbance. As we detail, the
classical algorithm based on this principle suffers from draw-
backs when implemented in discrete time. These drawbacks
arise due to the inconsistency between the derivation of the
method (which assumes continuous time implementation)
and its actual implementation (which is necessarily discrete
time). For motions with high dynamic effects, such as during
leg swing, it is found that the classical results provide
errant residuals. Through a new derivation of the GM-
based disturbance observer fully in discrete time, these errant
residuals are shown to be significantly reduced in our results.
The section proceeds with a quick review of the methods
from [2] followed by our new discrete-time derivation.

A. GM-Based Disturbance Observer in Continuous Time

To begin, consider the standard equations of motion

M q̈ + C q̇ + g = S>τ +
∑
i

J>i fei

where q ∈ Rnd the joint angles, nd the number of degrees
of freedom, M ∈ Rnd×nd the mass matrix, Cq̇ ∈ Rnd the
generalized Coriolis force, g ∈ Rnd the generalized gravity
force, S ∈ Rnj×nd an actuated joint selector matrix with nj
the number of actuated joints, Ji ∈ R3×nd the Jacobian for
contact i, and fei ∈ R3 the force at contact i.

Collecting the external forces into a disturbance vector
τ d ∈ Rnd

τ d =
∑
i

J>i fei ,

a filtered version of this disturbance torque τ d can be
computed as

τ̂ d =
λ

s+ λ
τ d

where s is the Laplace variable, λ is the cutoff frequency,
and τ̂ d gives an estimate of the disturbance. As in [2], τ̂ d
can be computed from

τ̂ d = λp(t)− λ
∫ t

0

(
S>τ + CT q̇− g + τ̂ d

)
dt

where p = Mq̇ the generalized momentum, and C ∈
Rnd×nd is formed through a proper factorization of the
Coriolis terms such that Ṁ− 2C is skew symmetric [13].

There is an alternate view on this disturbance observer
that helps to explain new results in the discrete-time case.
Through a change of variables w = λMq̇ − τ̂ d, it follows
that

w = λ

∫ t

0

[
S>τ + C>q̇− g + λp−w

]
dt (2)

This equation is recognized as a low pass filter

w =
λ

s+ λ

[
S>τ + C>q̇− g + λp

]
With this insight

τ̂ d = λp(t)− λ

s+ λ

[
λp + S>τ + C>q̇− g

]
(3)

As a result, the classical disturbance observer obtains filtered
disturbance forces through a feedforward from the general-
ized momentum with the addition of filtered dynamic effects.
When implementing these filter equations or integrals in
discrete time, it was found that the discretization process
introduced modeling errors that appeared as fictitious distur-
bances. We introduce an alternate derivation fully in discrete
time that addresses this error.

B. Discrete Time Equations

Instead, consider applying a discrete time filter to a
sampled version of τ d

(1 − γ)

1 − γz−1
τ d =

(1 − γ)

1 − γz−1

(
Mq̈ + Cq̇ + g − S>τ

)
(4)

where z the z-domain variable and 1 > γ > 0, with γ
monotonically related to the cutoff frequency. Letting wk =
(1− γ)γk the impulse response of the filter

(1− γ)

1− γz−1
M(q) q̈ =

N∑
k=0

wn−k M(qk) q̈k (5)

Although this formula contains joint accelerations that aren’t
measured, the sum can be evaluated using the discrete time
analog of intergation by parts known as summation by parts.
For a general sequence fi and gi summation by parts gives
N∑
k=0

fk(gk+1−gk) = fn+1gn+1−f0g0−
N∑
k=0

gk+1(fk+1−fk)

Applying this formula with

fk = γn−kMk and (6)
gk = q̇k/∆t (7)

and assuming q̇0 = 0, the output of the filter from Eq. (5)
is equal to

β pn+1 −
n∑

k=0

wn−k

(
1

∆t
(Mk+1 −Mk)q̇k+1 + β pk+1

)
(8)

where β = (1−γ)γ−1/∆t. Assuming a proper factorization
of C such that Ṁ = C + C> [13], the finite difference of
M in (8) can be simplified. As a result the convolution in
(8) can be re-expressed as:

(1− γ)

1− γz−1
M q̈ = β p− (1− γ)

1− γz−1

(
Cq̇ + C>q̇ + β p

)
(9)

Thus, it follows that (4) can be written as:

τ̂ d = βpk − (1 − γ)

1 − γz−1

(
βp + S>τ + C>q̇− g

)
(10)

To enable comparison with the previous method the cutoff
frequency λ is converted to a Z domain pole γ = e−λ∆t
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Fig. 3. Comparison of Force Estimates. During swing we expect no
external force on the leg. The discrete time disturbance observer gives a
better estimate than its continuous time derivation counterpart.

where ∆t is the sampling time. Note this result has a similar
structure to (3), however, the feedforward on the generalized
momentum is carefully calibrated to be consistent with
discrete-time features of implementation. In periods with
high dynamic effects, correctly accounting for these effects
has been found to be important for accurate force estimates.

C. Computing Estimated Forces

Regardless of the continuous or discrete time derivation,
force estimates are computed in a common way. Letting S`i
the selector matrix for the joints in leg i and Ji the leg
Jacobian, estimated forces are finally formed at each instant
as

f̂i = (S`iJ
T
i )−1S`i τ̂ d

which assumes that all disturbance forces on the leg come
from the foot. Figure 3 shows the estimated disturbance force
during swing in a realistic simulation with sensor noise and
discrete-time and quantization effects. Both observers use a
cutoff frequency of 15Hz and sample at 1KHz. Over the
time 29.35 − 29.72s the RMS error of the continuous time
observer (implemented in discrete time) is 8.7N, while the
RMS of the full discrete-time observer is 4.1N, improving
performance by over a factor of two during swing phase.
The leg does not experience large accelerations during stance
phases and therefore both observers are accurate. Although
these effects are shown for a trotting gait, beneficial aspects
of the discrete-time modifications would be expected to
increase for more dynamic gaits.

IV. PROBABILISTIC CONTACT MODEL FUSION

Realistically, we cannot simply trust that the controller
will adhere to the perfect timing of the scheduler by pulling
the foot off the ground or placing it down again on time.
Similarly, the ground cannot be assumed to be perfectly flat
and may contain unexpected ground height due to rough
terrain or unseen objects. Without an external force sensor,
we must estimate the forces at the leg from the encoder
data, proprioceptive forces, and the dynamics of the leg’s
model. Encoders will have discretization error and model
inaccuracies will cause an external force to show when
there is none. None of these single measurements will tell

us the leg state, but we can take the information from
each and use them to find a better estimate for whether
or not a particular foot is likely to be in contact with the
ground, ŝ ∈

{
0 = swing, 1 = contact

}
. A perfect detection

algorithm will have s = ŝ.
The use of various measurements lends itself nicely to

using a Kalman Filter to carry out the fusion. By posing
the states of the Kalman Filter as the overall estimated
probability of the feet being in contact with the ground as

x̂k =


P1(c)

...
PN (c)


k

. (11)

We can naturally use probabilistic contact models as priors
to fuse the available data. Using the probability of contact
as the state allows us to use a simple linear Kalman Filter
even though the dynamics involved in the measurements
are complex. An advantage of using probabilities rather
than discrete, binary contact states in the estimation is the
ability to anticipate a change of state as probability grows
or shrinks.

A. Prediction Model

The standard prediction equations for the Kalman filter
are presented here as

x̂k|k−1 = Akx̂k−1 +Bkuk (12)

Σk|k−1 = AkΣk−1A
T
k + Σwk

(13)

Given the gait schedule and the current phase, φ, of a leg,
the gait scheduler provides an expected contact state sφ of
each leg. Under ideal conditions, we would expect that s
and sφ are equivalent and switch simultaneously. However,
the robot is subject to possible timing delays in its control
system that may cause its leg to take off late, as well as
early or late contacts due to inaccurate swing leg trajectory
tracking or unforeseen ground height.

To handle these issues, we can build a probabilistic
model for the expectation of contact given the scheduled
leg state and subphase during stance, φc, or swing, φc̄. The
probability of contact given the current contact state and
subphase percent is chosen to take the form

P (c|sφ, φ) =
1

2

(
sφ

[
erf
(
φ−µc0

σc0

√
2

)
+ erf

(
µc1−φ
σc1

√
2

)]
+

s̄φ

[
2 + erf

(
µc̄0
−φ

σc̄0

√
2

)
+ erf

(
φ−µc̄1

σc̄1

√
2

)])
where sφ acts as a switch between swing or stance. The
mean, µ, parameters encode the expected subphase value
at which the contact state switches while the variance, σ2,
parameters are determined by the variability in the subphase
value at contact. Figure 4 shows the two curves for the
probability of contact based on the phase and scheduled state
for different variances. Towards the beginning and end of
the contact phase it is less likely that the leg is in contact,
while it is more likely that the leg is in contact towards the
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Fig. 4. Phase-Based Probability of Contact. Various parameters defining
the probability of being in contact given the scheduled state and percent of
progress through the state subphase.

beginning and end of swing. This model can therefore be
used as the instantaneous input to the system as

uk =


P1(c|sφ, φ)

...
PN (c|sφ, φ)


k

(14)

which is stacked for each of the robot’s legs using their indi-
vidual scheduled states and phases. Roughly, the following
covariance matrix encodes the trust that we place on the
accuracy of our phase-based switching model as

Σwk
=

σ
2
φ,1 . . . 0
...

. . .
...

0 . . . σ2
φ,N


k

. (15)

Since we are simply looking at instantaneous contact de-
tection by fusing the currently available measurements, the
state and input matrices are defined to be

Ak = 0N and Bk = IN (16)

B. Correction: Measurement Models

Knowing that the prediction likely contains inaccuracies
in the gait schedule, we can use available measurements to
correct the prediction and get a more informed estimate for
probability of contact. The standard Kalman Filter correction
equations are presented as

Kk = Σk|k−1H
T
k

(
HkΣk|k−1H

T
k + Σvk

)
(17)

x̂k|k = x̂k|k−1 +Kk

(
z̃k −Hkx̂k|k−1

)
(18)

Σk|k =
(
I−KkHk

)
Σk|k−1 (19)

1) Measurement Model: Ground Height: In the absence
of an environmental perception system, ground height, zg ,
can be modeled probabilistically. The random variable for
the height of the ground is drawn from a Normal Gaussian
distribution as Zg ∼ N (µzg , σ

2
zg ). The defining parameter

for average ground height, µzg , is set to be zero with no
external information since we cannot make assumptions
about the terrain. Similarly, the variance loosely corresponds
to the ”roughness” of the terrain. As such, we can use the
ground height model to create a belief for the height at which
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Fig. 5. Probability of Contact From Foot Height. Normal Gaussian
distribution for the location of the ground and the associated probability of
contact given the foot height measurement.

we expect to be in contact with the ground given the position
of the foot in the vertical direction, pz . The probability of
contact given foot height is defined as

P (c|pz) =
1

2

[
1 + erf

(
µzg−pz
σzg

√
2

)]
(20)

Figure 5 shows both the Gaussian model of the ground,
as well as the inferred probability of contact given foot
height. Each is shown for different parameters corresponding
to various roughness estimates. Eventually, the values of
µzg and σ2

zg can be adapted as we gain information from
other sensors or historical footsteps. This model provides the
first correction measurement with an associated covariance
matrix

z̃1,k =


P1(c|pz)

...
PN (c|pz)


k

Σv1,k
=

σ
2
pz,1 . . . 0
...

. . .
...

0 . . . σ2
pz,N


k
(21)

as a measure of our belief in the validity of the contact height
model.

2) Measurement Model: Contact Force: The only true
indicator of contact is external force felt at the foot. How-
ever, the robot is not currently equipped with a direct force
sensor. With the force estimate presented in Section III, we
can create another simple probabilistic model for the force of
contact with Gaussian random variable Fc ∼ N (µfc , σ

2
fc

).
Here µfc is the average force sensed at the initiation of
contact and σ2

fc
is a measure of the noise on the estimate.

This gives the probability of contact given the estimated foot
force as

P (c|fz) =
1

2

[
1 + erf

(
fz−µfc

σfc

√
2

)]
. (22)

The model and associated contact probability given vertical
foot force are shown in Figure 6. This force based probability
provides our second measurement

z̃2,k =


P1(c|fz)

...
PN (c|fz)


k

Σv2,k
=

σ
2
fz,1

. . . 0
...

. . .
...

0 . . . σ2
fz,N


k
(23)
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Fig. 6. Probability of Contact From Foot Force. Normal Gaussian
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probability of contact given the foot force measurement.

The two sets of individual measurements are stacked
to form the observation measurement vector used in the
Kalman Filter. Similarly, the covariance matrices of each
measurement form an overall block diagonal covariance
matrix as follows

z̃k =

[
z̃1,k

z̃2,k

]
Σvk =

[
Σv1,k

0N
0N Σv2,k

]
. (24)

The output matrix, Hk, is formed as two stacked N × N
identity matrices where N is the number of feet.

Hk =

[
IN
IN

]
(25)

By fusing the gait scheduler state expectations with the
measurement model probabilities, we can get a better guess
for the actual contact state of each leg. Owing to the fact
that the Kalman filter is implemented with Ak = 0, this
fusion process could be derived through a static likelihood
maximization with Bayes law. Yet, this process is one pre-
embedded in standard Kalman updates, which may be more
accessible in robotics.

V. IMPLEMENTATION RESULTS

The algorithm was verified both through a realistic dynam-
ics simulation environment developed by the Biomimetic
Robotics Lab at MIT as well as through experiments on
the MIT Cheetah 3 robot.

A. Simulation

To determine the feasibility of the algorithm and find
reasonable values for the Gaussian parameters in the models,
a simulation of the robot was run in various scenarios
including trotting on flat even ground, on random rough
terrain, and up a small step. Table I details the initial
parameters used in the contact detection simulation. These
parameters were chosen based on intuition and previous
experimental data from basic locomotion tests with the robot.

The simulation was run using a slow, long period trotting
gait with zero forward velocity and turn rate. The foot height
and vertical force measurements during steps for the front
foot are shown in Figure 7. The top plot shows the current
subphase from 0 to 1, with the wide ramps corresponding

TABLE I
PROBABILISTIC GAUSSIAN PARAMETERS

Motion Model
Parameter Mean, µ Units Variance, σ2 Units

c̄0 0 - 0.05 -
c̄1 1 - 0.05 -
c0 0 - 0.05 -
c1 1 - 0.05 -

Measurement Model
Parameter Mean, µ Units Variance, σ2 Units

zg 0 m 0.1 m2

fc 40 N 25 N2
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Fig. 7. Simulated Contact Detection. Robot measurements during
simulation showing accurate contact detection compared to ground truth.

to the scheduled stance state, cφ, and the narrow parts to
the scheduled swing state, c̄φ. The second and third plots
are the time series plots of the measurements, foot height,
pz , and estimated foot force, fz , respectively. The bottom
shows the probability of contact that results of the fusion
from the models with the ground truth state, s, and estimated
state, ŝ, overlaid on top. A hysteric threshold, Pc(c), for the
probability of contact at which we can reasonably declare
contact is defined to give

ŝ =

{
1, ifP (c) > Pc(c)

0, ifP (c) ≤ Pc(c)
(26)

Using the simulated results, an optimization was run to
find the best parameters over various data sets that included
flat ground, rough terrain, and a step. The optimization was
run offline using fmincon in MATLAB. A cost function
was designed as a weighted combination of the squared
classifier error and the squared difference between contact
probability and leg state

J(χ) = (s− ŝ)Wc(s− ŝ) + (s− P (c))Wn(s− P (c))

χ∗ = argmin
χ

J(χ)

with Wc >> Wn since what we care about most is
correct classification and χ being the set of model estimation
parameters for all of the contact models. Although the
resulting parameters are biased to the tested situations, an
effort was made to include a wide variety of terrains to get
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Fig. 8. Experimental Contact Detection. Robot measurements during
experiment showing robustness to large real world force estimate noise and
unexpected foot contact height.

a general parameter set for use in new situations. Resulting
values for the covariance matrices of the three probability
models were

Σwk
= 0.998IN

Σv1,k
= 0.841IN

Σv2,k
= 0.930IN

which shows that the relative weighting of each was similar
and therefore all three measurements were beneficial and
equally necessary to increase detection robustness.

B. Experimental

The algorithm was implemented on the MIT Cheetah 3
hardware using the same trotting gait as in the simulation
described in V-A. Ground truth contact data was determined
by a force plate setup that records ground reaction forces
over time. The results of the experiment during trotting
for the right front foot are shown in Figure 8. During the
experiment, contact occurred earlier than expected and at
a location higher than expected. Due to this unexpected
contact, the foot bounced off of the ground from the large
spike in force before touching down again. We also see
that during the swing, there is a large amount of noise
from the force estimate, likely due to model inaccuracies
and the noisy use of differentiated encoder data. Neither
measurement nor the gait scheduler could reliably be used
to detect contact on its own. This is precisely the power of
fusion for the contact detection algorithm.

Figure 9 shows that we correctly detect the early contact
and are aware that we are not in contact during the bounce
although we are scheduled to be in contact according to the
gait scheduler. Despite these errors in both the measurements
and the controlled gait schedule, the algorithm was able to
correctly identify contact 99.3% of the time in this test. A
small 4 − 5ms delay during the initial unexpected contact
accounts for this slight inaccuracy.

VI. EVENT-BASED GAIT SWITCHING

With the realization of contact detection, we can move
away from the timed gait schedule control towards event-
based control. Since the timed gait scheduling used no

6.7 6.8 6.9 7 7.1 7.2 7.3
0

0.5

1

Predicted Contact State

Predicted Contact Probability

Actual Contact State

Fig. 9. Unexpected Foot Contact. Implementation of the algorithm on
the actual hardware that shows accurate contact detection with unexpected
early contact and foot bounce.

Fig. 10. Contact State FSM. A finite state machine notifies the robot
whether the robot is functioning under normal scheduled conditions or has
encountered unexpected early or late contact.

feedback to switch between contact and swing states in the
legs, there was rigid, forced time-based switches between the
state of a leg in swing or stance. This leads to the problems
presented in Section II. Under near-perfect conditions these
inconsistencies have minimal effect, but in very unstructured
terrain with large discrete height changes such as blocks or
stairs they can severely impact performance. Having quick,
accurate contact detection allows the robot to correct these
issues and expand the possible operating situations.

The phased scheduled state, sφ, remains the underlying
mechanism for choosing the gait pattern. However, leg
control uses the estimated contact state, ŝ, coming from the
algorithm. A simple Event-Based Finite State Machine in
Figure 10 shows the states and transition conditions.

With the new framework, once the robot’s leg is scheduled
to be in swing it will continue to follow the desired swing
foot trajectory until it detects contact regardless of if it has
been scheduled to be in contact during that time. However,
as soon as it detects a contact, it will attempt to hold the
current foot position rather than following a trajectory. If the
algorithm continues to detect contact after some delay time,
t > (tdelay + t0), where t0 is the initial time for detected
contact, the balance controller will be notified that the leg
is available for balance. This intentional delay is meant to
prevent fleeting contact from catastrophically affecting the
robot’s gait by trying to use the leg to balance if it simply
makes a slight passing contact or if it slips.

Although a simple change from rigid time-based gait
scheduler to an event-based FSM, the robot’s robustness to
unexpected contact with large height differences has been
improved as a result of accurate contact detection. Using a



Fig. 11. Touchdown High Speed Comparison. The bottom series shows a touchdown event with no Event-Based FSM where the early contact causes
a bounce (highlighted by the red circle) upon touchdown. The top series shows that the Contact Detection notifies the FSM that contact has occurred and
switches to the early contact state, mitigating any bounce.

high-speed camera, we captured the touchdown event with
and without the event-based switching. Figure 11 features
a time series of snapshots that show the results of this
implementation on the experimental force plate setup. Once
contact occurs, the algorithm holds the current foot position
and prevents the bounces observed previously.

VII. CONCLUSION

The work presented in this paper develops a novel ap-
proach for event-based legged locomotion control using a
probabilistic contact detection algorithm. The timed gait
scheduler provides an expectation for state switching at the
scheduled state and phase. However, as we accept switching
will not happen perfectly on schedule, we make use of
available robot states to infer when contact occurs or breaks.
Since the robot cannot directly measure force, an accurate
discrete-time momentum based observer is derived to esti-
mate external forces on the leg. However, this estimate is still
subject to noise so simple probabilistic models are designed
for the height and force at which contact with the ground is
initiated. These measurement models are fused together to
increase the accuracy of the estimated contact state. With the
ability to reliably sense contact with the ground, an event-
based switching strategy is employed to deal with early and
late contacts. The event-based framework allows the robot
to traverse unstructured terrain with obstacles without the
use of direct environment perception.
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