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Simplified Least Squares Shadowing sensitivity analysis
for chaotic ODEs and PDEs

Mario Chatera,∗, Angxiu Nia, Qiqi Wanga

aAeronautics and Astronautics, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, USA

Abstract

This paper develops a variant of the Least Squares Shadowing (LSS) method,
which has successfully computed the derivative for several chaotic ODEs and
PDEs. The development in this paper aims to simplify Least Squares Shadowing
method by improving how time dilation is treated. Instead of adding an explicit
time dilation term as in the original method, the new variant uses windowing,
which can be more efficient and simpler to implement, especially for PDEs.

Keywords: sensitivity analysis, linear response, adjoint equation, unsteady
adjoint, chaos, least squares shadowing

1. Introduction

In many engineering and non-engineering applications, quantities of interest
are time averages of some specific instantaneous output and this output may
be affected by parameters of the physical system/model. For example, when
evaluating the performance of a wing, the time averaged drag it produces is
of great importance for aerodynamicists. Any shape parameter of this wing
(width, length, curvature...) clearly has an impact on the produced drag and
could be consequently considered a parameter of the system. Computing the
derivative of the quantity of interest (time-averaged output) with respect to the
system’s parameters is crucial in:

• Numerical optimization: the derivative feeds a gradient-based algo-
rithm which is then used to optimize the systems parameters [1],[2],[3]

• Uncertainty quantification: the derivative itself gives a useful assess-
ment of the sensitivity and/or uncertainty of the system with respect to
its parameters [4],[5]

For chaotic systems such as those encountered in turbulent fluid flows, the so-
called butterfly effect makes conventional tangent/adjoint algorithms fail when
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computing the derivative of the quantity of interest. Indeed, the computed
derivatives of infinite-time averaged quantities are, in general, orders of mag-
nitude bigger than the real ones [6]. Some methods have been proposed to
overcome this problem [7],[8],[9]. Least Squares Shadowing (LSS) is a relatively
simple and efficient algorithm that evaluates the desired derivative by solving a
constrained least squares problem [10]. In the original version, corrective time
dilation factors have to be introduced to ensure its convergence but these same
terms lead to a heavier and more expensive system of equations to solve. Indeed,
the presence of time dilation terms prohibits the use of sparse solvers in a crucial
step of the LSS algorithm which consists of inverting a matrix. Since this matrix
scales up with the dimension of the problem, it is necessary to address this issue
if we want to improve our algorithm for very large, industrial-scale problems
[11]. In this paper, we introduce a modified version of LSS in which the time
dilation factors are replaced by a simple windowing procedure: the result of the
non corrected system of equations is multiplied by a specific windowing function.
This procedure has been used for systems that have a periodic behavior [12], but
we will show that the fundamental idea is still valid in our framework and can
be transposed to chaotic dynamical systems. Since this ”windowing” operation
is almost costless, the new algorithm is much more efficient than standard LSS,
specially for high-dimensional systems.

The paper is organized as follows: in the next section, we introduce the new
algorithm in both its tangent and adjoint versions. Then, in the third section,
the underlying theory of the algorithm is presented and we prove that the result
given by simplified LSS converges to the one given by the original algorithm
when integration time goes to infinity. Finally, the last section is dedicated
to a numerical application of the new algorithm using the Lorenz 63 test case
dynamical system.

2. A summary of the tangent and adjoint versions of simplified Least
Squares Shadowing

Consider a family of ergodic dynamical systems satisfying a differential equa-
tion parameterized by s :

du

dt
= f(u, s) (1)

where f is smooth with respect to both u and s. Ergodicity means that an
infinite-time averaged quantity

〈J〉(s) := lim
T→∞

1

T

∫ T

0

J(u, s)dt

where J is a measurable function and u = u(t; s) is a trajectory for parameter s,
does not depend on the initial condition of the trajectory u(0; s). The derivative
of such infinite-time averaged quantity can be approximated by the following
three steps:
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1. Integrate equation (1) until the initial transient behavior has passed. Then
further integrate the equation over a period of T , which should be a mul-
tiple of the longest time scales in its solution. Store the trajectory of the
second time integration as u(t), 0 ≤ t ≤ T .

2. Find the function v̌(t), 0 ≤ t ≤ T which minimizes
∫ T

0
|v̌(t)|2dt and satisfies

the linearized equation
dv̌

dt
= fuv̌ + fs, (2)

where the time-dependent Jacobians fu := ∂f
∂u and fs := ∂f

∂s are based on
the trajectory obtained in the previous step. This v̌(t) can be found by
solving a system of linear equations derived from the KKT conditions of
the constrained least squares problem :

dv̌
dt = fuv̌ + fs
dw̌
dt = −fTu w̌ + v̌

w̌(0) = w̌(T ) = 0

(3)

Note that this is the Least Squares Shadowing problem in previous liter-
ature [10], but without a time-dilation term.

3. Approximate the derivative of 〈J〉(s) by computing a windowed time-
average :

d〈J〉
ds
≈ 1

T

∫ T

0

w( tT ) (Juv̌ + Js) dt (4)

where w, the window function, is a scalar function in [0, 1] satisfying

(a) w continuously differentiable,
(b) w(0) = w(1) = 0,

(c)
∫ 1

0
w(r)dr = 1.

An example satisfying all three criteria is w(r) = 1− cos 2πr.

This resulting derivative approximation converges to the true derivative as
T → ∞, as mathematically derived in Section 3 and under the same assump-
tions1 as the original Least Squares Shadowing method [13].

In the algorithm above, the cost of solving the constrained least squares
problem (3) scales with the dimension of s, and is independent from the di-
mension of J . Such an algorithm, which favors a low-dimensional parameter s
and a high-dimensional quantity of interest J , is called the tangent (or forward)
version of simplified LSS.
A corresponding adjoint (or backward) version can be derived, whose compu-
tation cost favors a high-dimensional s and a low-dimensional J . This adjoint
algorithm, also consists of three steps :

1The essential assumption is for the dynamical system to be uniformly hyperbolic.
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1. Obtain a trajectory u(t), 0 ≤ t ≤ T in the same way as Step 1 of the
previous algorithm.

2. Solve the system of linear equations
d ˆ̌w
dt = fu ˆ̌w
dˆ̌v
dt = −fTu ˆ̌v − ˆ̌w −w( tT )JTu
ˆ̌v(0) = ˆ̌v(T ) = 0

(5)

where w(r), 0 ≤ r ≤ 1 is a scalar windowing function satisfying the cri-
teria described in Step 3 of the previous algorithm. This system of linear
differential equations is the dual of the system in Step 2 of the previ-
ous algorithm, derived by combining it with Equation (4) and integrating
by parts. A complete derivation of the adjoint version can be found in
Appendix A.

3. Approximate the derivative of 〈J〉(s) by the following equation, derived
together with Equations (5) in Step 2 :

d〈J〉
ds
≈ 1

T

∫ T

0

(
fTs ˆ̌v + Js

)
dt (6)

We can show that the adjoint version of LSS (equations 5,6) produces the same

estimation of d〈J〉
ds than the one given by the tangent version (equations 3, 4)

up to round-off errors [10]. The approximated d〈J〉
ds should be the same if the

differential equations are solved exactly in both algorithms, and the integrals
are evaluated exactly. With such exact numerics, the error in the approximation
is solely due to the infeasibility of using an infinite T , and should diminish as
T → ∞. This error depends on the trajectory u(t), but does not depend on
whether the tangent or adjoint algorithm is used. Throughout this paper, we
analyze the tangent version of LSS, but the conclusions are also valid for the
adjoint version since both algorithms give the same result up to round-off errors.

3. How windowing mitigates the effect of time dilation

The method introduced in this paper is similar to the original Least Squares
Shadowing method, except for two major differences. The first difference is the
use of a smooth windowing function w satisfying

w(0) = w(1) = 0 and

∫ 1

0

w(r)dr = 1;

which averages to 1 and tapers off to 0 at both ends of the interval [0, 1]. The
second difference is the lack of a time dilation term in Equation (3) (Equation
(5) for the adjoint version). Removal of the time dilation term can simplify the
implementation of a chaotic sensitivity analysis capability for many solvers.
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To understand the removal of the time dilation term, we should first under-
stand the original Least Squares Shadowing formulation [10], and why it has
a time dilation term. The Least Squares Shadowing method approximates the
derivative of a long time average via an exchange of limit and derivative :

d〈J〉
ds

:=
d

ds
lim
T→∞

1

T

∫ T

0

J(u(t; s), s)dt = lim
T→∞

d

ds

1

T

∫ T

0

J(u(t; s), s)dt (7)

As a sufficient condition for this exchange, we require the total derivative of J
with respect to s,

d

ds
J(u(t; s), s) = Ju

∂u

∂s
+ Js

to be uniformly continuous. For this to hold, we ask for J to have uniformly
continuous partial derivatives, and ∂u

∂s to be uniformly bounded and continuous.

Among these conditions, it is most difficult to make ∂u
∂s uniformly bounded,

when u is governed by a family of chaotic dynamical systems. ∂u
∂s describes

the difference between two solutions that satisfy the governing equations with
infinitesimally different parameters s and s + δs. It must satisfy the linearized
governing equation

∂v̌

∂t
= fuv̌ + fs. (8)

It is well known, as the “butterfly effect”, that solutions to this linearized equa-
tion can grow exponentially as t increases. Under some assumptions on the
dynamical system, the shadowing lemma ([14], [15]) ensures the existence of a
non-exponentially growing solution. Nevertheless, this solution is potentially
linearly growing and thus not uniformly bounded. For a uniformly bounded
solution to exist, Equation (8) has to be slightly modified to :

∂v

∂t
= fuv + fs + ηf. (9)

for some uniformly bounded scalar function of time η, [16]. The solution to
this equation, v, describes the difference between two solutions that satisfy the
governing equation with both infinitesimally different parameter s and infinites-
imally different rate of time marching. Specifically, if u(t) satisfies the equation

du

dt
= f(u, s),

then u(t) + εv(t) satisfies the equation

d(u+ εv)

(1 + εη)dt
= f(u+ εv, s+ ε)

The relative difference between the rates of time marching is quantified by η.
The shadowing lemma ensures that there exists a pair of v and η that are both
uniformly bounded in time and satisfy Equation (9). The original Least Squares
Shadowing method approximates this uniformly bounded pair by minimizing the
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norm of v and η under the constraint of Equation (9). The desired derivative is
then computed by modifying Equation (7) into :

d〈J〉
ds

= 〈Juv〉+ 〈Js〉+ 〈ηJ〉 − 〈η〉〈J〉, (10)

to account for the time dilation effect of η.

The new method in this paper avoids time dilation by only computing an
approximation of v instead of the uniformly bounded pair (v, η). This new
quantity denoted v̌τ̌ is equal to :

v̌τ̌ (t) = v(t)− f(t)

∫ t

τ̌

η(r)dr (11)

for some τ̌ , where f(t) denotes f(u(t; s), s) = du
dt . The subscript τ̌ indicates

that v̌τ̌ is ”anchored” to v at time τ̌ since v̌τ̌ (τ̌) = v(τ̌). As we will see later
on in section 4 (figure 2), the norm of v̌τ̌ has a V-shape and the ”bottom of
the V” is reached around t = τ̌ which explains the choice of the notation τ̌ . In
general, v̌τ̌ has linear growth with respect to time due to the second term in
equation (11). Time differentiating Equation (11), using (9) and the fact that
df
dt = fu

du
dt = fuf , we recover :

dv̌τ̌
dt

=
dv

dt
− df

dt

∫ t

τ̌

ηdr − ηf = fuv̌τ̌ + fs,

meaning that v̌τ̌ satisfies the simple no time-dilated Equation (8).

Since this v̌τ̌ (t) defined by Equation (11) is not uniformly bounded it cannot
be directly used to compute the desired derivative by commuting the limit and
derivative as in Equation (7). Instead, we introduce an approximation that
involves a window function w : [0, 1] → R to mitigate the linear growth of v̌τ̌ .
This approximation is

d〈J〉
ds
≈ 1

T

∫ T

0

w( tT )(Juv̌τ̌ + Js)dt (12)

for any τ̌ ∈ [0, T ]. The validity of this approximation is established through the
following theorem.

Theorem 1. If the following are true:

1. w is continuously differentiable,

2. w(0) = w(1) = 0, and

3.
∫ 1

0
w(r)dr = 1,

4. τ̌ is a function of T satisfying 0 ≤ τ̌ ≤ T and lim
T→∞

τ̌

T
exists.
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then,

d

ds
lim
T→∞

1

T

∫ T

0

J(u(t; s), s)dt = lim
T→∞

1

T

∫ T

0

w( tT )(Juv̌τ̌ + Js)dt . (13)

This equality is nontrivial. To prove that it is true, we first define the
following.

Definition 1. For any continuous function w : [0, 1] → R, the mean of the
window is

w :=

∫ 1

0

w(r)dr;

the infinitely-long windowed time average of a signal x(t) is

〈x〉w := lim
T→∞

1

T

∫ T

0

w( tT )x(t)dt,

A special case of the window function is w ≡ 1 called square window. The
mean of this window is 1; the infinitely-long windowed time average of a signal
x(t) is simply its ergodic average, which we already denoted as :

〈x〉 := lim
T→∞

1

T

∫ T

0

x(t)dt.

Lemma 2. If x(t) is bounded and 〈x〉 exists, then 〈x〉w also exists for any
continuous w, and the following equality is true:

〈x〉w = w 〈x〉.

The proof is given in Appendix B.

Note that Lemma 2 does not apply to the windowed average on the right
hand side of Equation (13) in Theorem 1. This is because the lemma requires
x(t) to be independent of the averaging length T . But in Theorem 1, τ̌ and
thus Juv̌τ̌ + Js depends on T . To apply Lemma 2, we must first decompose v̌τ̌
according to Equation (11). Lemma 2 can then be applied to all but one of the
components:

lim
T→∞

1

T

∫ T

0

w( tT )(Juv̌τ̌ + Js)dt

= 〈Juv〉w + 〈Js〉w − lim
T→∞

1

T

∫ T

0

w( tT )Juf(t)(
∫ t
τ̌
η(r)dr)dt

= 〈Juv〉+ 〈Js〉 − lim
T→∞

1

T

∫ T

0

w( tT )
(∫ t

τ̌
η(r)dr

)dJ
dt
dt

(14)

if w = 1. Here we used the fact that :

dJ

dt
= Ju

du

dt
+ Js
�
�
��
0

ds

dt
= Juf

7



We then apply integration by parts to the remaining windowed average, and use
the assumption that w(0) = w(1) = 0 in Theorem 1, to obtain :

− lim
T→∞

1

T

∫ T

0

w( tT )
(∫ t

τ̌
η(r)dr

)dJ
dt
dt

= lim
T→∞

1

T

∫ T

0

w( tT )η(t)J(t) dt+
1

T

∫ T

0

d

dt
w( tT )

(∫ t
τ̌
η(r)dr

)
J(t) dt

= 〈ηJ〉+ lim
T→∞

1

T

∫ T

0

w′( tT ) 1
T

(∫ t
τ̌
η(r)dr

)
J(t) dt

(15)

Here w′ is the derivative of the window function w. By substituting Equation
(15) into Equation (14), then comparing with Equation (7), we see that we can
prove Theorem 1 by proving the equality

lim
T→∞

1

T

∫ T

0

w′( tT ) 1
T

(∫ t
τ̌
η(r)dr

)
J(t) dt = −〈η〉〈J〉 (16)

We now establish this equality, thereby proving Theorem 1, through two lemmas:

Lemma 3. If η is bounded and 〈η〉 exists, then

lim
T→∞

(
sup

τ̌ ,t∈[0,T ]

(
1
T

(∫ t
τ̌
η(r)dr

)
− 〈η〉 t− τ̌

T

))
= 0.

The proof of this lemma is given in Appendix C. This lemma establishes the
equality that

lim
T→∞

1

T

∫ T

0

w′( tT ) 1
T

(∫ t
τ̌
η(r)dr

)
J(t) dt = 〈η〉 lim

T→∞

1

T

∫ T

0

w′( tT )
t− τ̌
T

J(t) dt

The remaining task in proving Equation (16) is achieved by the following lemma:

Lemma 4. If J is bounded, w ∈ C1[0, 1], w(0) = w(1) = 0, and lim
T→∞

τ̌

T
exists,

then

lim
T→∞

1

T

∫ T

0

w′( tT )
t− τ̌
T

J(t) dt = −w〈J〉

Proof. Let τ̌ = lim
T→∞

τ̌

T
. Because both J and w′ are bounded (w is continu-

ously differentiable in a closed interval),

lim
T→∞

1

T

∫ T

0

w′( tT )
t− τ̌
T

J(t) dt = lim
T→∞

1

T

∫ T

0

w′( tT )
(
t
T − τ̌

)
J(t) dt

Define wτ̌ (r) = w′(r)(r − τ̌), then Lemma 2 can turn the equality above into,

lim
T→∞

1

T

∫ T

0

w′( tT )
t− τ̌
T

J(t) dt = 〈J〉wτ̌
= wτ̌ 〈J〉,
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in which

wτ̌ :=

∫ 1

0

w′(r)(r − τ̌)dr =

∫ 1

0

dw

dr
r dr −

�
��

��
�*0∫ 1

0

dw

dr
τ̌ dr = −

∫ 1

0

w(r)dr = −w

�

In our case, not only lim
T→∞

τ̌

T
exist but we even have lim

T→∞

τ̌

T
→ 1

2
as shown in

Appendix D. This result comes from the fact that the computed v̌τ̌ minimizes∫ T
0
|v̌τ̌ (t)|2dt.

Lemma 3-4 combines to prove Equation (16), which combines with (14) and
(15) to :

lim
T→∞

1

T

∫ T

0

w( tT )(Juv̌τ̌ + Js)dt = 〈Juv〉+ 〈Js〉+ 〈ηJ〉 − 〈η〉〈J〉 . (17)

This, together with Equation (10), derived in previous literature ([10], [16]),

proves that the desired derivative d〈J〉
ds can be computed via a windowed average

of Juv̌τ̌ +Js, where v̌ is a solution to the tangent equation without time dilation.

4. Numerical results

Now, we are going to apply simplified LSS to a test case dynamical system
known as Lorenz 63. It is a 3-dimensional autonomous differential equation
parameterized by σ, β, ρ and the dynamics happen to be chaotic when the
parameters belong to a certain range of values. The governing equations are the
following : 

dx
dt = σ(y − x)
dy
dt = x(ρ− z)− y
dz
dt = xy − βz

Edward Lorenz introduced them in 1963 to model the atmospheric convec-

tion. The quantity of interest in this example is 〈z〉 = limT→∞
1
T

∫ T
t=0

z(t)dt,

the time average of the component z and the algorithm is used to compute d〈z〉
dρ ,

its derivative with respect to ρ. In this case, the design paramater s is equal
to ρ and J(u, ρ) = z where u = (x, y, z). While a variety of values for ρ will
be tested, the other two parameters are set to σ = 10 and β = 8

3 . It has been

shown that d〈z〉
dρ is approximately equal to 1 for a wide range of values of ρ (our

numerical applications will stay in this range)[6].

The chosen windowing functions for this test case are (see figure 1) :

• Square window :
w(t) = 1, t ∈ [0, 1]
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• Sine window:
w(t) = sin(πt), t ∈ [0, 1]

• Sine squared window :

w(t) = sin2(πt), t ∈ [0, 1]

• Sine to the power four also known as Hann-squared window :

w(t) = sin4(πt), t ∈ [0, 1]

• Bump window :

w(t) = exp(
−1

t− t2
), t ∈ [0, 1]

defined up to normalization constants.

All windows respect the criteria of theorem 1 with the exception of the square
window which is equivalent to not using any window. The major difference
between the last four functions is their Taylor expansion in the neighborhood
of t = 0 and t = 1. Actually, we can expect the areas around the extremi-
ties to be the most ”sensible” ones, leading the the biggest error terms in the

approximation of d〈z〉dρ since v̌τ̌ is maximal in these areas. Thus, choosing a win-
dowing function that collapses quite fast on the extremities is expected to be
the more accurate. The simple sine has non zero derivatives on the extremities,
the squared one has a zero derivative on both sides, the Hann-squared function
has zero coefficients until the 3rd order derivative while the bump function has
zero coefficients for all derivative orders. A deep and rigorous analysis of this
intuitive idea has been carried out by Krakos et al. for the periodic case (peri-
odic dynamical system)[12].

For all simulations, the equations were discretized using an implicit second-
order Crank-Nicolson scheme2 solved up to machine precision and a uniform
timestep of ∆t = 0.02. The burn-in period for computing u(t) was set to 10
time units.

First, figure 2 shows the norm of the computed v̌τ̌ with respect to t where
ρ = 28 and the time integration length is T = 100. We can clearly notice the
linear growth of the ”envelope” of v̌τ̌ as t increases or decreases as predicted in
equation (11) :

v̌τ̌ (t) = v(t)− f(t)

∫ t

τ̌

η(r)dr

2It is worth noting that both integration scheme for u(t) and discretization of equations
(3) should have the same accuracy order for stability reasons.
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Figure 1: Shape of the different windowing functions

Furthermore, v̌τ̌ is minimal around t = T
2 = 50 which is in agreement with the

following result :

lim
T→∞

τ̌

T
→ 1

2

Then, we have computed d〈z〉
dρ for ρ ∈ [25, 35] and T = 50 using different

windowing functions as well as the original Least Squared Shadowing algorithm
(figure 3). In this range of the parameter ρ, the dynamical system is known
to be quasi-hyperbolic and the analysis we carried out in the previous section
remains valid.
In order to have a rough estimation of d〈z〉

dρ for this range of ρ, we computed

〈z〉(ρ = 25), 〈z〉(ρ = 35) for 50 different initial conditions and constituted the
finite difference approximation :

d〈z〉
dρ
≈ 〈z〉(ρ = 35)− 〈z〉(ρ = 25)

35− 25
(18)

Then, we represented in figure 3 the mean of these estimations as well as their
3-sigma confidence interval:

CI =
[
µfd

50 ± 3
σfd

50√
50

]
(19)

where µfd
50 is the average of the 50 samples of d〈z〉dρ computed using finite difference

and σfd
50 is their estimated standard deviation. After comparing these bounds

11



Figure 2: Norm of v̌τ̌ with respect to t for ρ = 28

with the results obtained with our algorithms, we notice that original LSS as
well as the windowed algorithms give correct and very similar estimations of
d〈z〉
dρ . Since the different versions of LSS have been tried on a single trajectory

and for a finite integration time T = 50, there is no reason for the computed
derivatives to be unbiased. Furthermore, all windows do not seem to have the
same performance: the results obtained with the Hann-squared and the bump
window are smoother and more self-consistent than the ones coming from the
sine squared and much more smoother than the ones given by the simple sine
window. In order to point out this phenomenon, a complementary analysis has
been done: for ρ = 28, ρ = 50 and integration time lengths of T = 25, T = 50
and T = 100, 2000 simulations (each one with a different initial condition) were

run to compute a 95% confidence interval of the standard deviation σ of d〈z〉
dρ

for each one of the windows (see figure 4). The 95% confidence intervals were
approximated as follows :

CI =

[(
σ2

2000 ± 1.96

√
σ4

2000

2000

(
(κ2000 − 1) +

2

2000− 1

)) 1
2
]

(20)

where σ2000 and κ2000 are, respectively, the estimates of the 2000 samples stan-
dard deviation and kurtosis.
The results confirm our previous remark: for a fixed T and ρ = 28, the Hann-
squared and bump windows have the lowest standard deviations meaning they
are more robust than the other windows. Among the valid windowing functions,
the simple sine gives the worst results. Then, for a fixed window, we notice that
increasing the time integration length decreases the standard deviation which is
an intuitive result since when T gets bigger the influence of the initial condition

12



Figure 3:
d〈z〉
dρ

using different windowing functions and original LSS for integration time

T = 50

on the dynamical system fades out (due to ergodicity). Finally, for ρ = 50,
all windows give bad results (standard deviation of order 1) which can be ex-
plained by the fact that the dynamical system is no longer quasi hyperbolic for
this value of ρ. The theory we have developed doesn’t hold anymore and there

is no reason for simplified LSS to converge to the true value of d〈z〉dρ (for T = 100,
the confidence intervals were so big and uninformative that we only represented
the standard deviation estimator).

5. Conclusion

Simplified LSS is an improvement of original LSS in the sense that the time
dilation factors have been removed from the formulation of the problem leading
to a much simpler system of equations to solve. When running the original ver-
sion of LSS, we are lead to solve a slightly more complex set of KKT equations
than (3) which can be found in [17]. This set of equations is solved by inverting
the Schur complement of the KKT matrix which contains the concatenation of
smaller matrices of the form fui × fTui + f(ui) × f(ui)

T where {ui} is a finite
discretization of a trajectory. The first term is a multiplication of two n × n
matrices where n is the phase space dimension. For PDEs, n can be extremely
large. However, since the finite stencil used to discretize the PDE is local, fui
is very sparse, so is fui × fTui . The second term, which is totally due to the time

13



Figure 4: Standard deviation confidence intervals for ρ = 28 (upper graph) and ρ = 50 (lower
graph) using different windowing functions
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dilation terms, is a n× 1 by 1× n multiplication which leads to a rank one but
fully dense n× n matrix. Consequently, fui × fTui + f(ui)× f(ui)

T is dense as
well and the Schur complement becomes hard, if not impossible to inverse for
high-dimensional systems.
With windowing, the time dilation factors are no longer needed and the Schur
complement is now only formed of fui × fTui submatrices. We can consequently
use sparse solvers and preconditioners such as incomplete LU factorization to
solve the KKT system. Simplified LSS can be efficiently applied to very large,
industrial-scale problems which were very hard if not impossible to tackle with
original LSS [11]. Additionally, simplified LSS is easier to implement.

The simplification has been made possible thanks to the introduction of a
windowing function that mitigates the linear growth of the shadowing direction
v̌τ̌ . This function is required to be continuously differentiable, null at its ex-
tremities and with integral equal to 1. Once picked in this class of functions,
the major characteristic of the window is the way it decays at its extremities: a
rapidly decaying function such as the bump window or the Hann-squared one
will be less sensitive to transient behavior and give more robust results. Since
all windowing functions lead to the same computational cost, our study strongly
recommends the choice of a fastly decaying window. In the same way, increas-
ing the time integration length decreases the influence of the initial condition
making the algorithm more robust and accurate.
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Appendix A. Derivation of the adjoint version of simplified LSS

The adjoint version is directly obtained from the equations of the tangent
version. We should have in mind that the objective function we want to compute
is :

d〈J〉
ds

=
1

T

∫ T

0

w( tT ) (Juv̌ + Js) dt (A.1)

In order to obtain the adjoint formulation, we need to replace the first term
w( tT )Juv̌ which is based on the solution v̌ to the forward problem by a new

term based on a backward solution ˆ̌v. First, we reformulate the forward set of
equations (3): 

dv̌
dt − fuv̌ − fs = 0
dw̌
dt + fTu w̌ − v̌ = 0

w̌(0) = w̌(T ) = 0

(A.2)

Then, we introduce the dual variables ˆ̌v and ˆ̌w for the first two equations and
obtain the scalar equation :∫ T

0

ˆ̌vT (
dv̌

dt
− fuv̌ − fs) + ˆ̌wT (

dw̌

dt
+ fTu w̌ − v̌)dt = 0 (A.3)

where the superscript T stands for the transpose operation. After integrating
by parts and thanks to the third equation of (A.2) :

0 = ˆ̌vT v̌(T )− ˆ̌vT v̌(0) +

∫ T

0

ˆ̌vT (−fuv̌ − fs)−
dˆ̌v

dt

T

v̌ + ˆ̌wT (fTu w̌ − v̌)− d ˆ̌w

dt

T

w̌dt

(A.4)

= v̌T ˆ̌v(T )− v̌T ˆ̌v(0) +

∫ T

0

(−fTu ˆ̌v − dˆ̌v

dt
− ˆ̌w)T v̌ + (fu ˆ̌w − d ˆ̌w

dt
)T w̌ − fTs ˆ̌vdt

(A.5)

Based on (A.1), we impose the adjoint (or backward) set of equations :
−fTu ˆ̌v − dˆ̌v

dt − ˆ̌w = w( tT )JTu
fu ˆ̌w − d ˆ̌w

dt = 0
ˆ̌v(0) = ˆ̌v(T ) = 0

(A.6)

After replacing the equalities of (A.6) into (A.5), we get:

1

T

∫ T

0

(−fTu ˆ̌v − dˆ̌v

dt
− ˆ̌w)T v̌dt =

1

T

∫ T

0

w( tT )Juv̌dt =
1

T

∫ T

0

fTs ˆ̌vdt (A.7)

Combining (A.1) and (A.7), the new objetive function becomes:

d〈J〉
ds

=
1

T

∫ T

0

(
fTs ˆ̌v + Js

)
dt (A.8)

17



Appendix B. Lemma 2

Given any w ∈ C[0, 1],w ≥ 0, and bounded function x(t) such that 〈x〉 =

limT→∞
1
T

∫ T
0
x(t)dt exists, there is the relation:

lim
T→∞

1

T

∫ T

0

w( tT )x(t)dt = w · 〈x〉 (B.1)

Proof. Given any ε > 0, let ε1 = ε/2Bx, here Bx is the bound for x(t). w is
continuous on a compact set, hence its range is also bounded, say, by Bw. More-
over, w is uniformly continuous, hence ∃K, s.t. ∀τ1, τ2 ∈ [0, 1], |τ1 − τ2| ≤ 1/K,
we have |w(τ1)−w(τ2)| ≤ ε1. Construct the partition P = {0, 1

K ,
2
K , ..., 1}.

Now ∀i ∈ {1, 2, ...,K}, let wi = K ·
∫ i/K

(i−1)/K
w(τ)dτ , then w = 1

K

∑K
i=1 wi. Let

ξi(τ) = w(τ)−wi, τ ∈ Ii = [(i− 1)/K, i/K].
∀i,w is continuous on the segment Ii, which is a compact set, hence w

achieves its maximum and minimum value on this segment. Denote its maxi-
mum and minimum values on this segment by wi,max and wi,min respectively.
By selection of K, wi,max − wi,min ≤ ε1. By definition of wi, wi,min ≤ wi ≤
wi,max. Hence we have ξi(τ) ≤ ε1, τ ∈ Ii.

With above K, let ε2 = ε/2KBw. Since limT→∞
1
T

∫ T
0
x(t)dt exists, ∃T0,

such that ∀M ≥ T0 , 〈x〉 − 1
M

∫M
0
x(t)dt ≤ ε2. Hence we have:∣∣∣∣∣〈x〉 − 1

iM

∫ iM

0

x(t)dt

∣∣∣∣∣ ≤ ε2, i = 1, 2, 3, ...

the i-th inequality is equivalent to:

−iε2 ≤ i〈x〉 −
1

M

∫ M

0

x(t)dt...− 1

M

∫ iM

(i−1)M

x(t)dt ≤ iε2, i = 1, 2, 3, ...

the (i+1)-th inequality is equivalent to:

−(i+1)ε2 ≤ −(i+1)〈x〉+ 1

M

∫ M

0

x(t)dt...+
1

M

∫ (i+1)M

iM

x(t)dt ≤ (i+1)ε2, i = 0, 1, 2, ...

add above two inequalities together,

−(2i+ 1)ε2 ≤ 〈x〉 −
1

M

∫ (i+1)M

iM

x(t)dt ≤ (2i+ 1)ε2, i = 0, 1, 2, ...

Now ∀T ≥ KT0, let M = T/K, then M ≥ T0, and the difference between
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the two sides in B.1, when T is finite, could be represented by:

w · 〈x〉 − 1

T

∫ T

0

w( tT )x(t)dt

=
1

K

K∑
i=1

[
wi · 〈x〉 −

1

M

∫ iM

(i−1)M

(wi + ξi(
t
T ))x(t)dt

]

=
1

K

K∑
i=1

[
− 1

M

∫ iM

(i−1)M

ξi
(
t
T

)
x(t)dt+ wi ·

(
〈x〉 − 1

M

∫ iM

(i−1)M

x(t)dt

)]

the first term is confined by:∣∣∣∣∣ 1

M

∫ iM

(i−1)M

ξi(
t
T )x(t)dt

∣∣∣∣∣ ≤ ε1 · 1

M

∫ iM

(i−1)M

|x(t)| dt

the second term is confined by:∣∣∣∣∣wi ·

(
〈x〉 − 1

M

∫ iM

(i−1)M

x(t)dt

)∣∣∣∣∣ ≤ wi · (2i− 1)ε2

As a result,∣∣∣∣w · 〈x〉 − 1

T

∫ T

0

w( tT )x(t)dt

∣∣∣∣
≤ 1

K

K∑
i=1

[
ε1 ·

1

M

∫ iM

(i−1)M

|x(t)|dt+ wi · (2i− 1)ε2

]
≤ ε1 ·Bx + ε2 ·BwK ≤ ε

Now we find T ∗ = KT0, s.t. ∀T ≥ T ∗,
∣∣∣ 1
T

∫ T
0

w( tT )x(t)dt−w · 〈x〉
∣∣∣ ≤ ε. �

Appendix C. Lemma 3

If η is bounded and 〈η〉 exists, then

lim
T→∞

(
sup

τ̌ ,t∈[0,T ]

(
1
T

(∫ t
τ̌
η(r)dr

)
− 〈η〉 t− τ̌

T

))
= 0.

Proof. First, we write:

1
T

(∫ t
τ̌
η(r)dr

)
− 〈η〉 t− τ̌

T
= t−τ̌

T

(
1

t− τ̌

(∫ t
τ̌
η(r)dr

)
− 〈η〉

)
(C.1)

Based on the two assumptions t, τ̌ ∈ [0, T ] and η ≤ ‖η‖∞ < ∞, we obtain the
following bounds on the two terms of the product we have just derived:
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∣∣∣ t− τ̌
T

∣∣∣ ≤ 1 as well as
∣∣∣ 1

t− τ̌

(∫ t
τ̌
η(r)dr

)
− 〈η〉

∣∣∣ ≤ 2‖η‖∞ (C.2)

Let us define c = max
(
1, 2‖η‖∞

)
. Based on the ergodicity of η, for any ε > 0

there is a constant M > 0 such that for all t0 and T ≥M :∣∣∣ 1

T

∫ t0+T

r=t0

η(r)dr − 〈η〉
∣∣∣ < ε (C.3)

Consequently, for all ε > 0 and for all T > cM
ε , we have:

• if |t− τ̌ | < M , then
∣∣∣ t−τ̌T ∣∣∣ ≤ ε

c which means that :∣∣∣∣∣ t−τ̌T
(

1

t− τ̌

(∫ t
τ̌
η(r)dr

)
− 〈η〉

)∣∣∣∣∣ ≤ ε

c

∣∣∣∣∣ 1

t− τ̌

(∫ t
τ̌
η(r)dr

)
− 〈η〉

∣∣∣∣∣ ≤ ε (C.4)

• if |t− τ̌ | ≥M , thanks to relation (C.3):∣∣∣ 1

t− τ̌

(∫ t
τ̌
η(r)dr

)
− 〈η〉

∣∣∣ ≤ ε (C.5)

which again implies :∣∣∣ t−τ̌T ( 1

t− τ̌

(∫ t
τ̌
η(r)dr

)
− 〈η〉

)∣∣∣ ≤ ε (C.6)

that concludes the proof.

Appendix D. Proof of convergence of limT→∞
τ̌
T

When minimizing the cost function
∫ T

0
‖v̌τ̌ (t)‖2dt, the choice of τ̌ is arbitrary,

thus :

d

dτ̌

(∫ T

0

‖v̌τ̌ (t)‖2dt
)

= 0 (D.1)

at the global minimum. We have :∫ T

0

‖v̌τ̌ (t)‖2dt =

∫ T

0

(
‖v(t)‖2 + ‖f(t)‖2

( ∫ t

τ̌

η(r)dr
)2 − 2v(t)T f(t)

∫ t

τ̌

η(r)dr
)
dt

(D.2)

Thus :

d

dτ̌

(∫ T

0

‖v̌τ̌ (t)‖2dt
)

= −2

∫ T

0

‖f(t)‖2η(τ̌)
( ∫ t

τ̌

η(r)dr
)
dt+ 2

∫ T

0

v(t)T f(t)η(t)dt

(D.3)

= 2η(τ̌)
(∫ T

0

v(t)T f(t)dt−
∫ T

0

‖f(t)‖2
( ∫ t

τ̌

η(r)dr
)
dt
)

(D.4)
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It can be shown that the τ̌ such that η(τ̌) = 0 if any, don’t correspond to a
global minimum. We consequently should have :∫ T

0

v(t)T f(t)dt−
∫ T

0

‖f(t)‖2
( ∫ t

τ̌

η(r)dr
)
dt = 0 (D.5)

On one side : ∣∣∣ ∫ T

0

v(t)T f(t)dt
∣∣∣ ≤ ∫ T

0

‖v‖∞‖f‖∞dt (D.6)

≤ T‖v‖∞‖f‖∞ (D.7)

On the other,
∫ t
τ̌
η(r)dr ∼ (t− τ̌)〈η〉 which implies :

∣∣∣ ∫ T

0

‖f(t)‖2
( ∫ t

τ̌

η(r)dr
)
dt
∣∣∣ ∼ ∣∣∣ ∫ T

0

‖f(t)‖2(t− τ̌)〈η〉dt
∣∣∣ (D.8)

after integrating by parts :∣∣∣ ∫ T

0

‖f(t)‖2(t− τ̌)〈η〉dt
∣∣∣ = |〈η〉|

∣∣∣(T − τ̌)

∫ T

0

‖f(s)‖2ds−
∫ T

0

∫ t

0

‖f(s)‖2dsdt
∣∣∣

(D.9)

∼ |〈η〉|
∣∣∣T (T − τ̌)〈‖f‖2〉 − T 2

2
〈‖f‖2〉

∣∣∣ (D.10)

∼
∣∣∣〈η〉〈‖f‖2〉T 2(

1

2
− τ̌

T
)
∣∣∣ (D.11)

which means that :∣∣∣ ∫ T

0

‖f(t)‖2
( ∫ t

τ̌

η(r)dr
)
dt
∣∣∣ ∼ |〈η〉〈‖f‖2〉| × T 2|(1

2
− τ̌

T
)| (D.12)

This relation shows that if τ̌
T 6→

1
2 as T → ∞, the second term grows as T 2

while the first term grows, at most, as T . This contradicts equation (D.5) and
concludes the proof.
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