
Learning to Route Efficiently with End-to-End Feedback:
The Value of (Identifiable) Networked Structure

by

Ruihao Zhu
B.Eng Electrical and Computer Engineering, Shanghai Jiao Tong

University, 2015
B.Eng Computer Science and Engineering, University of Michigan, 2015

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

c○ 2018 Massachusetts Institute of Technology. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Aeronautics and Astronautics

August 23, 2018

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Eytan Modiano

Professor, Department of Aeronautics and Astronautics
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hamsa Balakrishnan

Associate Professor, Department of Aeronautics and Astronautics
Chair, Graduate Program Committee



2



Learning to Route Efficiently with End-to-End Feedback:
The Value of (Identifiable) Networked Structure

by Ruihao Zhu

Submitted to the Department of Aeronautics and Astronautics on August 23, 2018,
in partial fulfillment of the requirements for the degree of

Master of Science

Abstract

In this thesis, we introduce efficient algorithms which achieve nearly optimal instance-
dependent and worst case regrets for the problem of stochastic online shortest path routing
with end-to-end feedback. The setting is a natural application of the combinatorial stochas-
tic bandits problem, a special case of the linear stochastic bandits problem. We show how
the difficulties posed by the large scale action set can be overcome by the networked struc-
ture of the action set. Our approach presents a novel connection between bandit learning
and shortest path algorithms. Our main contribution is a series of adaptive exploration al-
gorithms that achieves nearly optimal O

((
d2 ln(T )+d3)∆max/∆2

min
)

instance-dependent
regret and Õ(d

√
T ) worst case regret at the same time. Driven by the carefully designed

Top-Two Comparison (TTC) technique, the algorithms are efficiently implementable. We
also conduct extensive numerical experiments to show that our proposed algorithms not
only achieve superior regret performances, but also reduce the runtime drastically.

Thesis Supervisor: Eytan Modiano
Title: Professor, Department of Aeronautics and Astronautics

3



For my parents.

4



Acknowledgments

I have been fortunate enough to have Prof. Eytan Modiano as my advisor. He has been

incredibly insightful, patient, and encouraging in guiding my research. To me, Prof. Modi-

ano is much more than a research advisor. He helped me plan courses, prepare qualifying

exams, improve writing skills, and others. Despite he is busy, he always finds time to meet

and talk about our research project. I would like to thank Prof. Modiano for his time and

effort.

I would like to thank the great fellow students in the Communications and Networking

Research Group (CNRG) group: Qingkai Liang, Igor Kadota, Anurag Rai, Jianan Zhang,

Thomas Stahlbuhk, Rajat Talak, Hyang-Won Lee, Abhishek Sinha, Bai Liu, Xinzhe Fy,

and Vishrant Tripathi. It is the intriguing communication during the group meetings and

individual discussions that help to shape this work. Rajat further deserves a special thank

for sharing his desk with me.

During my first two years at MIT, I have met a lot of great people: Zhi Xu, Weike Sun,

Weishun Zhong, Jun Yin, Alan Malek, Chelsea Qiu, Minghao Qiu, Chin-Chia Hsu... Thank

you all so much for bringing me lots of fun!

Last but not least, my deepest thanks go to my beloved parents, Mr. Zhu Huayu and Ms.

Zhu Yanting. They have always been supportive and encouraging. No words can express

how grateful I am for having such great parents. Thank you so much for your unselfish

love, support, and everything.

5



THIS PAGE INTENTIONALLY LEFT BLANK

6



Contents

1 Introduction 13

1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Main Contributions and Outline of the Thesis . . . . . . . . . . . . . . . . 18

2 Background 21

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Design Challenges and Solution Strategies . . . . . . . . . . . . . . . . . . 23

2.4 Exploration Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Barycentric Spanners and Network Identifiability . . . . . . . . . . 24

3 Main Results 27

3.1 Explore-then-Commit Algorithm: A Warm-Up . . . . . . . . . . . . . . . 27

3.1.1 Design Intuitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Top-Two Comparison Algorithm: An Adaptive Exploration Approach . . . 30

3.2.1 Design Intuitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Efficient Implementation . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.5 Getting Nearly Optimal Worst Case Regret . . . . . . . . . . . . . 37

7



3.3 Algorithm for General Networks . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Additional Notations . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Efficient Algorithm for Identifying the Basis . . . . . . . . . . . . 39

3.3.3 Comparing to the Identifiable Network Setting . . . . . . . . . . . 41

3.3.4 Obtaining Low Regret for General Networks . . . . . . . . . . . . 42

3.4 Discussions and Implications . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Conclusion 51

A Proofs 53

A.1 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.3 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.4 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.5 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.6 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.7 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.8 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B Algorithm for Finding Barycentric Spanners 69

8



List of Figures

1-1 A toy example of an overlay network. Here, only the source and destination

are overlay nodes. All other nodes belong to the underlay network. . . . . . 14

3-1 Intuitions underpinning criterion (3.5) . . . . . . . . . . . . . . . . . . . . 33

3-2 Examples of 4-by4 grid network . . . . . . . . . . . . . . . . . . . . . . . 46

3-3 Plots of results when R = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . 48

3-4 Plots of results when R = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3-5 Additional results for grid networks . . . . . . . . . . . . . . . . . . . . . 50

9



THIS PAGE INTENTIONALLY LEFT BLANK

10



List of Tables

1.1 State-of-art algorithms for linear and combinatorial bandits. Combinatorial

bandits is a special case of linear bandits with action set constrained to

subset of {0,1}d. In combinatorial bandits, l denotes the maximal `0 norm

among all the actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Basic statistics and average runtime of different algorithms for grid net-

works when R = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11



12

THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 1

Introduction

We study the problem of shortest path routing over a network, where the link delays are not

known in advance. When delays are known, it is possible to compute the shortest path in

polynomial time via the celebrated Dijkstra’s algorithm [21] or the Bellman-Ford algorithm

[13]. However, link delays are often unknown, and evolve overtime according to some un-

known stochastic process. Moreover, there are many real-world scenarios in which only the

end-to-end delays are observable. For example, overlay network is an communication net-

work architecture that integrates controllable overlay nodes into an uncontrollable underlay

network of legacy devices. It is generally difficult to ensure individual link delay feedback

when routing in an overlay network as the underlay nodes are not necessarily cooperative.

Fig. 1-1 shows a very simple overlay network, where the only overlay nodes are the source

node (node 1) and destination node (node 6); while the nodes within the dotted circle are

underlay nodes. Here, the decision maker (DM) can choose to route the packets from

one of the five paths available, namely (1,2,3,6),(1,2,5,6),(1,2,3,5,6),(1,2,4,5,6), and

(1,4,5,6). If it picks path (1,2,5,6), it can only get the realized delay of the whole path

(1,4,5,6), but not any of the realized delays of link (1,4),(4,5), or (5,6). These uncer-

tainties and the network architectural constraints make the problem fall into the category

of stochastic online shortest path routing with end-to-end feedback [35].

Stochastic online shortest path routing is one of the most fundamental real-time decision-

making problems. In its canonical form, a DM is presented a network with d links, each



14 CHAPTER 1. INTRODUCTION

Figure 1-1: A toy example of an overlay network. Here, only the source and destination
are overlay nodes. All other nodes belong to the underlay network.

link’s delay is a random variable, following an unknown stochastic process with unknown

fixed mean over T rounds. In each round, a packet arrives to the DM, and it chooses a path

to route the packet from source to destination. The packet then incurs a delay, which is

the sum of the delays realized on the associated links. Afterwards, the DM learns the end-

to-end delay, i.e., the realized delay of the path, but the individual link’s delay remained

concealed. This is often called the bandit-feedback setting [35, 25]. The DM’s goal is to de-

sign a routing policy that minimizes the cumulative expected delay. When the DM has full

knowledge of the delay distributions, it would always choose to route the packets through

the path with shortest expected delay. With that in mind, a reasonable performance met-

ric for evaluating the policy is the expected regret, defined to be the expected total delay

of routing through the actual paths selected by the DM minus the expected total delay of

routing through the path with shortest expected delay. In order to minimize the regret, the

DM needs to learn the delay distributions on-the-fly. One viable approach to estimate the

path delays is to inspect the end-to-end delays experienced by packets sent on different

paths. This gives rise to an exploration-exploitation dilemma. On one hand, the DM is not

able to estimate the delay of an under-explored path; while on the other, the DM wants

to send the the packet via the estimated shortest path to greedily minimize the cumulative

delay incurred by the packets.

The Upper Confidence Bound (UCB) algorithm, following the Optimism-in-the-Face

of Uncertainty (OFU) principle, is one of the most prevalent strategies to deal with the



15

exploration-exploitation dilemma. In the ordinary stochastic MAB settings, the UCB algo-

rithm proposes a very intuitive policy framework, that DM should select actions by max-

imizing over rewards estimated from previous data but only after biasing each estimate

according to its uncertainty. Simply put, one should choose the action that maximizes the

“mean plus confidence interval." Treating the inverse of delay as reward, a naive applica-

tion of UCB algorithm to stochastic online shortest path routing can results in regret bounds

and computation time that scale linearly with the number of paths. For small scale overlay

networks, this achieves low regret efficiently. However, networks often have exponentially

many paths, and direct implementation of the UCB algorithm is neither computationally

efficient nor regret optimal. In the combinatorial semi-bandits setting, the realized delay of

each individual link on the chosen path is revealed. The authors of [22] takes the advantage

of the individual feedbacks, and propose a solution for the problem by computing the UCB

of each link. The authors of [25, 35] further designs algorithms to match the regret lower

bounds. Unfortunately, algorithms proposed for semi-bandit feedback setting cannot be

extended to the bandit feedback setting as individual link feedback is not available.

To address the above mentioned shortcomings in efficiency and performance brought by

the large size of action set and end-to-end feedback, existing works have tried to investigate

the stochastic online shortest path routing problem with end-to-end feedback through the

lens of linear stochastic bandits, see e.g., [20, 1, 2]. There, tools from linear regression

are employed to estimate the reward of each action, and the action with highest UCB is

picked in each round. Although the regrets of the algorithms scale sub-linearly with the

size of the action set, implementing the OFU algorithm requires the DM to solve a bilinear

optimization problem that is polynomial time equivalent to the NP-hard negative definite

linearly constrained quadratic programming problem [20]. This degrades the practicality

of the algorithms significantly, especially when deployed in large-scale networks. Even

worse, existing works in linear stochastic bandits literature examine the problem with a

very general setup, i.e., ignoring the network structure of the action set. Hence, only sub-

optimal regret bounds are achieved.

As a matter of fact, finding efficient algorithms for linear stochastic bandits with optimal

instance-dependent and worst case regrets remains as an open problem [14]. Although the



16 CHAPTER 1. INTRODUCTION

problem of stochastic online shortest path routing falls into the category of combinatorial

stochastic bandits, a special case of linear stochastic bandits with action set constrained

to be subset of {0,1}d, the difficulty in designing efficient optimal algorithms remains the

same. All of the above mentioned findings motivate us to exploit the networked structure of

the action set to design efficient algorithms for the stochastic online shortest path problem

with end-to-end feedback. Specifically, we aim at answering the following question:

Can we leverage the power of the networked structure to design efficient algorithms that

achieve (nearly) optimal instance-dependent and worst case regret bounds simultaneously

for stochastic online shortest path routing under bandit-feedback?

1.1 Related Works

Stochastic multi-armed bandits is a prevalent framework for sequential decision-making.

Early work on stochastic MAB problems [31, 26, 23] tended to be more focused on asymp-

totic guarantees, whereas more recent work [10, 9] has been directed towards a non-

asymptotic analysis in which regret can be bounded over a fixed time horizons T . Two

of the best-known and well-studied techniques are known as the UCB algorithm that fol-

lows the OFU principle [10] and the explore then exploit algorithm [11, 34]. Recently, the

Bayesian setting accompanied by the Thompson Sampling (TS) technique has also been

thoroughly analyzed due to the ease of implementation and favorable empirical results

[33].

To model inter-dependence relationships among different arms, models for stochastic

linear bandits have also been studied. In stochastic linear bandits, each action can be de-

scribed by a finite number of features, and the expected reward/loss function is linear in

these features. The reward/loss function can thus be expressed as a vector in ℜd , and the

uncertainty arises from the noisy feedbacks of the observed rewards/losses. In [8, 17], the

authors consider stochastic linear bandits with fixed finite action sets; while in [20, 1, 32],

stochastic linear bandits with possibly infinite cardinality of actions has been studied. The

authors of [2] unify these two lines of research, and have proposed the state-of-art algo-

rithm for the problem. All these algorithms follow essentially the OFU principle. But the



1.1. RELATED WORKS 17

OFU-inspired algorithms are impractical to run when the number of actions become large

as they all require the solution of a NP-hard bilinear optimization problem. TS algorithms

proposed in [33, 5, 3] are able to bypass the high computational complexities provided that

the DM can efficiently sample from the posterior on the reward function. Unfortunately,

achieving optimal regret bound via TS algorithms is possible only if the true prior over the

reward/loss vector is known. To further capture the non-stochastic aspect of linear bandits,

adversarial linear bandits in which the reward/loss vector can change over time arbitrarily

(or even adversarially) have been studied [12, 4, 15]. Among them, [15] gave an efficient

strategy with optimal regret when the action set is convex, and one can do efficient linear

optimization on the action set. Since adversarial setting is not the main topic of this paper,

interested readers can refer to [15] and the references therein.

A special case of linear bandits is combinatorial bandits where the action set is con-

strained to subset of {0,1}d. In combinatorial stochastic bandits, it is often assumed that

the reward/loss vector is observed at all the coordinates sampled by the action taken. This

is the so-called semi-bandit feedback setting [6]. The authors of [22] initiated the study

of combinatorial stochastic bandits under semi-bandit feedback and a network-structured

action set; while [16] studied the general action set case. The authors of [25] further char-

acterized tight upper and lower bounds for this problem. Assuming the noise is indepen-

dent across different coordinates, the authors of [35] improved upon the results obtained in

[25]. For the bandit feedback case, the authors of [28] gives algorithms that require brute-

force search over the action space. For adversarial combinatorial bandits, the authors of

[7] presented the efficient and optimal algorithm for the semi-bandit feedback case while

the authors of [24] described an optimal algorithm for the bandit feedback case, but its

computational complexity scales linearly with the number of actions.

Table 1.1 gives a brief summary of state-of-art results for linear bandits and combina-

torial bandits.



18 CHAPTER 1. INTRODUCTION

Problem Instance-dependent regret Worst case regret Efficient
[2] linear stochastic bandits O

(
(lnT +d ln lnT )2 lnT/∆min

)
Õ
(
d
√

T
)

×
[5, 3] linear stochastic bandits N.A. Õ

(
d3/2
√

T
)

�

[15] adversarial linear bandits N.A. Õ
(
d
√

T
)

�

[24] adversarial combinatorial bandits N.A. Õ
(

l3/2
√

dT
)

×

[25] combinatorial stochastic semi-bandits O(dl lnT/∆min) Õ
(√

dlT
)

�

[7] adversarial combinatorial semi-bandits N.A. Õ
(√

dT
)

�

Our work combinatorial stochastic bandits O
((

d2 lnT +d3)∆max/∆2
min
)

Õ
(
d
√

T +d2) �

Table 1.1: State-of-art algorithms for linear and combinatorial bandits. Combinatorial
bandits is a special case of linear bandits with action set constrained to subset of {0,1}d.
In combinatorial bandits, l denotes the maximal `0 norm among all the actions.

1.2 Main Contributions and Outline of the Thesis

In this thesis, we give an affirmative answer to the above question. We start with algorithms

for the stochastic online shortest path routing problem with identifiable network structure,

and gradually remove the extra assumptions to arrive at the most general case. Specifically,

our contributions can be summarized as follows:

∙ Assuming network identifiability, we first develop an efficient non-adaptive explo-

ration algorithm with nearly optimal instance-dependent regret and sub-optimal worst

case regret when the minimum gap 1 is known.

∙ The main contribution is a series of adaptive exploration algorithms with nearly op-

timal instance-dependent and worst case regrets without any knowledge of the min-

imum gap. Coupled with the novel Top-Two Comparison technique, the algorithms

can be efficiently implemented.

∙ We show that our results can be extended to unidentifiable networks without degrad-

ing the regret performances.

∙ We conduct extensive numerical experiments to validate that our proposed algorithms

1The concepts of instance-dependent regret, worst case regret, and minimum gap will be defined in Section
2



1.2. MAIN CONTRIBUTIONS AND OUTLINE OF THE THESIS 19

not only achieve superior regret performances, but also reduce the runtime drastically.

The rest of the thesis is organized as follows.

∙ In Chapter 2, we introduces some background and describe the model of stochastic

online shortest path routing.

∙ In Chapter 3, we present the main contributions of the thesis, including the intuitions,

design details, theoretical analysis, discussions, and numerical results of the proposed

algorithms.

∙ In Chapter 4, we conclude our thesis.



20 CHAPTER 1. INTRODUCTION

THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 2

Background

In this chapter, we lay out the foundation for our discussions.

2.1 Notations

Throughout the thesis, all the vectors are column vectors by default unless specified oth-

erwise. We define [n] to be the set {1,2, . . . ,n} for any positive integer n. We use ‖𝑥‖p to

denote the `p norm of a vector 𝑥 ∈ℜd. To avoid clutter, we often omit the subscript when

we refer to the `2 norm. For a positive definite matrix A ∈ Rd×d , we use ‖𝑥‖A to denote the

matrix norm
√
𝑥⊤A𝑥 of a vector 𝑥 ∈ ℜd. We also denote x∧ y as the minimum between

x,y∈ℜ. We describe the growth rate using the big-O notation O(·), and Õ(·) if logarithmic

factors are ignored.

2.2 Model

Given a directed acyclic network G, an online stochastic shortest path problem is defined

by a d-dimensional unknown but fixed mean link delay vector 𝜇 ∈ [0,µmax]
d , paths 𝑎k =(

ak,1, . . . ,ak,d
)⊤ ∈ A ⊆ {0,1}d for 1 ≤ k ≤ K = |A |, and noise terms ηt for 1 ≤ t ≤ T,

where k is the index for paths and t is the index for rounds. Here, A is the set of all

possible paths in G, and for a path 𝑎k ∈ A , ak, j = 1 if and only if it traverses link j.

With some abuse of notation, we use k and 𝑎k interchangeably to denote path 𝑎k, and we



22 CHAPTER 2. BACKGROUND

refer A as both a set and a matrix. Routing a packet through path 𝑎k in round t incurs

the delay Lt,k = ⟨𝑎k,𝜇⟩+ηt . Following the convention of existing bandits literature [2],

we assume that ηt is conditionally R-sub-Gaussian, where R ≥ 0 is a fixed and known

constant. Formally, this means

∀α ∈ℜ E
[
exp(αηt) |aI1, . . . ,aIt−1,η1, . . . ,ηt−1

]
≤ exp

(
α2R2

2

)

and

E
[
ηt |aI1, . . . ,aIt−1,η1, . . . ,ηt−1

]
= 0.

In each round t, a DM follows a routing policy P to choose the path It to route the packet

based on its past selections and previously observed feedback. Here, we consider end-to-

end (bandit) feedback setting in which only the delay of the selected path is observable

as a whole rather than the individual (semi-bandit) feedback in which the delays of all the

traversed links are revealed. We measure the performance of P via expected regret against

the optimal policy with full knowledge of 𝜇

E [RegretT (P)] = E

[
T

∑
t=1

Lt,It − min
k∈[K]

T

∑
t=1

Lt,k

]
=

T

∑
t=1
⟨𝑎It ,𝜇⟩−T ⟨𝑎*,𝜇⟩,

where 𝑎* = argmin𝑎k∈A ⟨𝑎k,𝜇⟩ is the optimal path. In this paper, we require that 𝑎* is

unique1. For any path 𝑎k ̸= 𝑎*, we define ∆k = ⟨𝑎k−𝑎*,𝜇⟩ as the difference of expected

delay, i.e., the gap, between 𝑎k and 𝑎*. The maximum and minimum of ∆k over all k ∈

[K] with 𝑎k ̸= 𝑎* are denoted as ∆max and ∆min, and are referred to as the maximum and

minimum gap, respectively.Without loss of generality, we assume µmax = 12 so that each

path’s expected delay is within [0,d] and hence,

∆max ≤ d. (2.1)

As it is common in stochastic bandit learning settings [10, 2], we distinguish two dif-

ferent kinds of regret measures, namely the instance-dependent regret and the worst case

1We shall comment on this assumption in Section 3.4
2We shall relax this in the numerical experiments in Section 3.5.



2.3. DESIGN CHALLENGES AND SOLUTION STRATEGIES 23

regret

∙ Instance-dependent regret: A regret upper bound is called instance-dependent if it

is comprised of quantities that only depend on T,d,∆k’s, and absolute constants.

∙ Worst case regret: A regret upper bound is called worst case if it is comprised of

quantities that only depend on to T,d, and absolute constants.

It is commonly known that when ∆k’s are allowed in the regret expressions, the regret can

fall into the logT/∆min regime [10]. But depending on the choice of 𝜇, ∆min can become

extremely small for any given T,d, and R, and the instance-dependent regret guarantee

becomes meaningless. We therefore have to turn to the worst-case regret bound. We note

that, definitely, the regret is given by the minimum of the instance-dependent regret and

worst case regret. Hence, it is desirable to obtain algorithms that have good instance-

dependent and worst case regrets at the same time.

2.3 Design Challenges and Solution Strategies

Since the mean link delay vector𝜇 is unknown, and we only get to know the end-to-end de-

lay of the chosen path in each round, the DM falls into the so called exploration-exploitation

dilemma. On one hand, the DM needs to explore the network to acquire accurate estimate

of the expected delay of each path; while on the other, it needs to exploit the path with least

delay to ensure low regret. As our problem resembles the stochastic multi-armed bandits

problem, there are at least two natural approaches to address it:

∙ Optimism-in-the-Face-of-Uncertainty (OFU): Following this principle, the DM bal-

ances exploration and exploitation by optimistically choosing the action with lowest

confidence bound, i.e., the empirical mean loss with the confidence interval sub-

tracted. In [20, 2], this approach has been shown to work in the general linear

stochastic bandits setting, yet as pointed out in Section 1, a direct adoption of the

OFU principle to our problem cannot work. First, it fails to capture the underly-

ing network structure, and brings a sub-optimal O
(

lnT
∆min

(lnT +d ln lnT )2
)

instance-

dependent and O(d logT
√

T ) worst case regret bounds [2]. Even worse, the practi-



24 CHAPTER 2. BACKGROUND

cality of the algorithm is hindered by the high computational complexity in choosing

the path to route. Indeed, it has been shown in [20] that the algorithm for path selec-

tion is polynomial time equivalent to a NP-hard negative definite linearly constrained

quadratic programming.

∙ Explore-then-Exploit: Instead of doing exploration and exploitation simultaneously,

the DM can collect data to construct accurate estimates for all actions’ losses by first

performing uniform exploration over all possible actions, and eliminates an action

whenever it is confident that this action is sub-optimal. This procedure runs until

there is only one action left. It has been shown in [11] that the adaptive exploration

approach works well for the ordinary stochastic multi-armed bandits setting.

As it is unclear (at least to the authors) how to get the OFU approach to work efficiently

in our setting, we adopt the explore-then-exploit approach here. An immediate difficulty

in implementing this approach is that the DM cannot afford to uniformly explore exponen-

tially many paths. It’s thus of great importance to devise a way to efficiently collect data in

the stochastic online shortest path routing setting.

2.4 Exploration Basis

In order to execute the uniform exploration efficiently, the DM relies on the basis of the

network. Intuitively, a set B ⊆ A is the basis of A if it “spans” the set A , i.e., each

path in A can be expressed as a linear combination of the paths in B. If the DM is able

to accurately estimates the delays of the basis paths, it can also construct accurate delay

estimators for all the paths in A thanks to the linearity of expectation. It is worth noting

that the concept of exploration basis has been raised in adversarial linear bandits before

[12], and we review it here as it is going to be useful for our problem.

2.4.1 Barycentric Spanners and Network Identifiability

Note that we have two requirements for B, the first is that all the paths in B should exist

in A , i.e., B ⊆A ; while the second is that the set B should span the original path set A ,



2.4. EXPLORATION BASIS 25

i.e., rank(B) = d. To this end, we introduce the concept of barycentric spanner that has

been invented in [12]:

Definition 1 (Barycentric spanner [12]). Let W be a vector space over the real numbers,

and W0 ⊆ W a subset whose linear span is a d-dimensional subspace of W . A set X =

{𝑥1, . . . ,𝑥d} ⊆ W0 is a barycentric spanner for W0 if every 𝑥 ∈ W0 may be expressed as

a linear combination of elements of X using coefficients in [−1,1]. X is a C-approximate

barycentric spanner if every 𝑥 ∈W0 may be expressed as a linear combination of elements

of X using coefficients in [−C,C].

The authors of [12] also presented a result regarding the existence and search of barycen-

tric spanner.

Proposition 2 ([12]). Suppose W0 ⊆ ℜd is a compact set not contained in any proper

linear subspace. Given an oracle for optimizing linear functions over W0, for any C > 1

we may compute a C-approximate barycentric spanner for W0 in polynomial time, using

O
(
d2 logC(d)

)
calls to the optimization oracle.

The authors of [12] also present an algorithm for finding 2-approximate barycentric

spanners. For completeness of presentation, we include this in Appendix B. The assump-

tion stated in Proposition 2 that the set W0 is not contained in any proper subspace is closely

related to network identifiability. Informally, we say that a network G with d links is iden-

tifiable if A , its set of paths, spans the space ℜd . In Theorem 3.1 of [29], the authors

showed that it is in general impossible for G to be identifiable if all the paths in A origi-

nate from and end at the same pair of nodes, but Theorem 3.2 of [29] also states that it is

possible for a subgraph of G to be identifiable. To accelerate our discussion, we call each

of the links that is incident to either the source or the destination as an external link, and

all other links the internal links. A network G0 ⊆ G with both the source and destination

nodes as well as all the external links of G removed is called the internal network. In

Fig. 1-1, links (1,2),(1,4),(3,6), and (5,6) are external links; while the rest are internal

links. We can see that the internal network with node 2,3,4,5 is identifiable as the paths

(2,3),(2,3,5),(2,5),(2,4,5), and (4,5) span the space ℜ5. To this end, we temporarily

make the following additional assumption (to be relaxed in Section 3.3)



26 CHAPTER 2. BACKGROUND

Assumption 1. The internal network of G is identifiable, and the expected delays of all the

external links are known a priori. To avoid clutters, we further assume that the expected

delays of the external links are deterministically 0.

With some abuse of notations, d refers to the number of internal links whenever As-

sumption 1 is imposed. Given Proposition 2 and Assumption 1, the DM should be able

implement Algorithm 5 in Appendix B to identify in polynomial time the 2-approximate

barycentric spanners B, i.e., for any path 𝑎∈A , there exists some 𝜈𝑎 ∈ [−2,2]d, such that

B𝜈𝑎 = 𝑎. By the definition of 2-approximate barycentric spanners, the maximal `2 norm

of 𝜈𝑎 over all 𝑎 ∈A is upper bounded by 2
√

d, i.e.,

max
𝑎∈A
‖𝜈a‖ ≤

√√√√ d

∑
i=1

4≤ 2
√

d. (2.2)



Chapter 3

Main Results

In this chapter, we present the main contributions of the thesis.

3.1 Explore-then-Commit Algorithm: A Warm-Up

In this section, we develop the Explore-then-Commit (EC) algorithm based on non-adaptive

exploration to solve the problem.

3.1.1 Design Intuitions

The design of the EC algorithm follows an intuitive rationale: if the DM is able to recover

the expected delay of each path of the barycentric spanners accurately, it will also be able

to accurately estimate the expected delay of each path as the delay of each path is the linear

combination of the barycentric spanners. Once the DM believes that the optimal path have

been detected with high probability, it could choose to commit to this path, and incurs low

regret. To begin, we assume that the DM knows the minimum gap ∆min. We will later relax

this assumption to obtain practical algorithms.

3.1.2 Design Details

We denote the barycentric spanners of G as B. Given a positive integer n (≤ ⌊T/d⌋), we

aim at getting a good estimate of 𝜇 in the first n ·d rounds, and then chooses the estimated



28 CHAPTER 3. MAIN RESULTS

best path in each of the remaining T − n · d rounds. We thus call the first n · d rounds as

the exploration stage, and the remaining T −n ·d rounds as the committing stage. The EC

algorithm divides the exploration stage into epochs of length d, and chooses each path in

B once in every epoch until the end of the exploration stage. Afterwards, the EC algo-

rithm makes use of the Ordinary Least Square (OLS) estimator to construct an estimate for

𝜇. Specifically, the paths used in the first n epochs (or n ·d rounds) form the design matrix

Dn =
(
𝑎I1, . . . ,𝑎Ind

)⊤
and the observed losses form the response vector

𝑟n =
(

L1,I1, . . . ,Lnd,Ind

)⊤
.

The OLS estimator then gives us

�̂�n =
(

D⊤n Dn

)−1
D⊤n 𝑟n. (3.1)

Thanks to the identifiability assumption, D⊤n Dn is full rank, and �̂�n is well-defined. One

can easily verify E [�̂�n] = 𝜇. Finally, the EC algorithm applies an arbitrary shortest path

algorithm to compute the path with the lowest estimated delay, and commits to this path in

the exploitation stage.

3.1.3 Regret Analysis

An essential tool in our analysis is a deviation inequality on the OLS estimator.

Lemma 3. For a given positive integer m, the probability that the difference between �̂�m

and 𝜇 under the Vm norm is not less than R
√

2d +3lnδ−1 is at most δ , after m epochs of

explorations, i.e.,

Pr
(
‖�̂�m−𝜇‖Vm ≥ R

√
2ln(2)d +4lnδ−1

)
≤ δ ,

where Vm = D⊤m Dm.



3.1. EXPLORE-THEN-COMMIT ALGORITHM: A WARM-UP 29

Proof. The proof of Lemma 3 is mostly adopted from [27], and is deferred to Section

A.1.

With Lemma 3, we further develop the key deviation inequality that we will be working

with throughout the rest of the paper

Lemma 4. For a given positive integer m, the probability that there exists a path 𝑎 ∈

A , such that the estimated mean delay of 𝑎 deviates from its mean delay by at least

R
√

8ln(2)d2 +16d lnδ−1/m is at most δ , after m epochs of explorations, i.e.,

Pr

(
∃𝑎 ∈A : |⟨𝑎,𝜇⟩−⟨𝑎, �̂�m⟩| ≥ R

√
8ln(2)d2 +16d lnδ−1

m

)
≤ δ .

Proof. The proof of Lemma 4 makes use of Lemma 3 and the fact that the maximal `2

norm of 𝜈𝑎 over all 𝑎 ∈A is upper bounded by 2
√

d, i.e., eq. (2.2). Due to limitation of

space, we defer the full proof to Section A.2.

We are now ready to present the regret bound of EC algorithm.

Theorem 5. With the knowledge of ∆min, EC algorithm can have the following regret

bounds

∙ (Instance-dependent regret)

O

((
d2 ln(dT )+d3)∆max

∆2
min

)
.

∙ (Worst case regret)

Õ
(

d
5
4 T

2
3

)
.

Proof. See Section A.3.

Remark 1. Note that the instance-dependent regret bound obtained in Theorem 5 is a

significant improvement compared to the direct application of OFU approach, and the

worst case regret can be achieved without knowing ∆min. Nevertheless, we should be aware



30 CHAPTER 3. MAIN RESULTS

that the choice of n for the instance-dependent regret bound relies on knowing ∆min, which

is never the case in practice.

Though being computationally efficient, the above remark indicates that the non-adaptive

EC algorithm is not enough to achieve the optimal regret bounds.

3.2 Top-Two Comparison Algorithm: An Adaptive Ex-

ploration Approach

As we have seen from the previous discussions, the non-adaptive EC algorithm fail to make

full use of the observed delays to explore adaptively, and the success of it relies almost

solely on knowing ∆min ahead of time.

In this section, we study adaptive exploration algorithms that have been shown to

achieve nearly optimal regret bounds in stochastic MAB [11, 34] to obtain nearly optimal

instance-dependent and worst case regret bounds. Different from those in ordinary stochas-

tic MAB settings, the algorithm builds on top of a novel top two comparison (TTC) method

to allow efficient computation. We start by attaining a nearly optimal instance-dependent

regret bound, and then show that how to attain a nearly optimal worst case regret bound

simultaneously.

3.2.1 Design Intuitions

Adaptive exploration algorithms often serve as an alternative for UCB algorithms in stochas-

tic multi-armed bandits [11, 34]. In [11, 34], the DM uniformly explores all remaining ac-

tions, and periodically executes an action elimination rule to ensure with high probability

that:

∙ The optimal action remains with high probability;

∙ The sub-optimal actions can be removed effectively.

until only one action is left, and commits to that action in the rest of the rounds. The adap-

tive exploration algorithms achieve optimal O(K logT ) instance-dependent and O(
√

KT logT )



3.2. TOP-TWO COMPARISON ALGORITHM: AN ADAPTIVE EXPLORATION
APPROACH 31

worst case regret bounds for stochastic multi-armed bandits.

We start by demonstrating how an adaptive exploration algorithm can achieve the nearly

optimal O
((

d logT +d2)∆max/∆min
)

instance-dependent regret bound. Similar to the EC

algorithm, the adaptive exploration algorithm also splits the T rounds into an exploration

stage and a committing stage: in each epoch m = 1,2, . . . of the exploration stage, the

DM selects every path in B once so that all of them have m samples. To ease our presen-

tation, we denote the estimated shortest path after m epochs of uniform exploration as ãm,

i.e.,

�̃�m← argmin
𝑎∈A

⟨𝑎, �̂�m⟩,

and follow Lemma 4 to denote the 1−δ confidence bound as ∆̃m, i.e.,

∆̃m = R

√
8ln(2)d2 +16d lnδ−1

m
. (3.2)

We denote the total length of exploration stage by a random variable N. We then use a

simple union bound to show the probability that there exists a path 𝑎 ∈ A , such that the

estimated mean delay of 𝑎 deviates from its mean delay by at least ∆̃m at the end of any

epoch in the committing stage can be upper bounded as

Pr
(
∃m ∈ [N] ,𝑎 ∈A : |⟨𝑎,𝜇⟩−⟨𝑎, �̂�m⟩| ≥ ∆̃m

)
≤
⌊T/d⌋

∑
N=1

N

∑
m=1

Pr
(
∃𝑎 ∈A : |⟨𝑎,𝜇⟩−⟨𝑎, �̂�m⟩| ≥ ∆̃m

)
≤
⌊T/d⌋

∑
N=1

T

∑
m=1

δ (3.3)

≤T 2δ

d
,

where we have used Lemma 4 and the fact that N ≤ T in inequality (3.3). In other words,

if we denote the event E as following: any path 𝑎k’s estimated delay ⟨𝑎k, �̂�m⟩ is within ∆̃m



32 CHAPTER 3. MAIN RESULTS

distance from its true expected delay ⟨𝑎k,𝜇⟩ for all m ∈ [N], i.e.,

E = {∀m ∈ [N]∀𝑎 ∈A : |⟨𝑎,𝜇⟩−⟨𝑎, �̂�m⟩| ≤ ∆̃m} (3.4)

then event E holds with probability at least (1−T 2δ/d) in the adaptive exploration algo-

rithm. From inequality (2.1), the worst possible total regret (i.e., choosing the path with

maximum gap in each round) an algorithm can incur is T ∆max ≤ T d, we can tune δ prop-

erly, i.e., setting δ = T−3, so that the regret incurred by the algorithm in case E does not

hold is at most 1. Therefore, we only need to focus the case when E holds.

Conditioned on E, we assert that the DM could detect if any of the remaining paths 𝑎k

is sub-optimal by checking whether

⟨𝑎k, �̂�m⟩−⟨�̃�m, �̂�m⟩> 2∆̃m (3.5)

holds at the end of each epoch m. Afterwards, the identified sub-optimal paths are elimi-

nated. We use Figure 3-1 to illustrate the rationale behind this criterion. Note that in both

Fig. 3-1(a) and 3-1(b), the horizontal right arrow is the positive number axis.

In Fig. 3-1(a), suppose ⟨�̃�m, �̂�m⟩ and ⟨𝑎k, �̂�m⟩ lie at B and F, respectively. Conditioned

on event E, ⟨�̃�m,𝜇⟩ should locate within the interval [A,C] while ⟨𝑎k,𝜇⟩ should locate

within the interval [D,H]. Now if further B and F are more than 2∆̃m away from each other,

then

⟨�̃�m,𝜇⟩< ⟨𝑎k,𝜇⟩. (3.6)

In other words, path 𝑎k is sub-optimal as its expected delay is at least longer than �̃�m.

Similarly in Fig. 3-1(b), suppose ⟨�̃�*,𝜇⟩ and ⟨𝑎k,𝜇⟩ lie at A′ and D′, respectively. Con-

ditioned on event E, ⟨�̃�m, �̂�m⟩ (≤ ⟨𝑎*, �̂�m⟩) should locate to the left of B′ while ⟨𝑎k, �̂�m⟩

should locate to the right of C′. Now if ∆k > 4∆̃m, then

⟨𝑎k, �̂�m⟩−⟨�̃�m, �̂�m⟩> 2∆̃m, (3.7)



3.2. TOP-TWO COMPARISON ALGORITHM: AN ADAPTIVE EXPLORATION
APPROACH 33

which means the sub-optimal path 𝑎k is detected according to criterion (3.5).

(a) The removed arm is sub-optimal (b) All sub-optimal actions can be detected effectively

Figure 3-1: Intuitions underpinning criterion (3.5)

We formalize these observations in the following lemma.

Lemma 6. Conditioned on event E, if criterion (3.5) holds, then

1. path 𝑎k is sub-optimal;

2. any sub-optimal path 𝑎k with ∆k > 4∆̃m is detected.

Proof. See Section A.4.

These two nice properties of criterion (3.5) jointly guarantees that the optimal path

remains in A , and any sub-optimal path 𝑎k is removed once ∆̃m shrinks down to below

∆k/4. Specifically, if m arrives to a value m that ∆̃m ≤ ∆min/4 (or m = R2(128ln(2)d2 +

256d lnδ−1)/∆2
min), all sub-optimal paths should have been eliminated.

Roughly speaking, conditioned on E, the regret of the adaptive algorithm is

dm∆max = O

((
d2 lnδ−1 +d3)∆max

∆2
min

)
. (3.8)

Recalling that the regret conditioned on ¬E is at most T d, setting δ = T−3, the expected

regret of this algorithm is upper bounded as O
((

d2 lnT +d3)∆max/∆2
min
)
, and we shall

formalize this analysis in Theorem 7. Surprisingly, adaptivity saves us from a lack of

knowledge on the exact value of ∆min.



34 CHAPTER 3. MAIN RESULTS

3.2.2 Efficient Implementation

One may note that implementing the criterion (3.5) requires an enumeration over the set A ,

which is typically exponential in size (in terms of d). In this subsection, we further propose

an polynomial time implementation, namely the Top Two Comparison (TTC) algorithm,

for our problem.

Different from the adaptive exploration algorithms proposed for stochastic multi-armed

bandit problems [11, 34], which uniformly explores the set of remaining actions, our strat-

egy decouples the exploration basis B from path elimination by making use of the barycen-

tric spanners B. In other words, the DM does not need to eliminate the sub-optimal paths

one by one. It can instead remove all of them at the same time once the difference between

the delay of the estimated shortest path and the delay of the estimated second shortest path

is larger than 2∆̃m for some epoch m.

To find the estimated second shortest path, we make the observation that the estimated

second shortest path should traverse at least one link that is different than those in the esti-

mated shortest path. The DM could start by iteratively setting the delay of links traversed

by the shortest path to a large number, i.e., 100d, one at a time, while keeping the esti-

mated delays of all other links intact, and find the delay of the shortest path with respect to

the “perturbed" estimated delay vector. Finally, the minimum delay over these “perturbed"

delays is the second shortest delay.

3.2.3 Design Details

We are now ready to formally present the TTC algorithm. Following the design guidelines

presented in Sections 3.2.1 and 3.2.2, the TTC algorithm initializes the set of remaining

path as A1 = A , and divides the time horizon into epochs. In the mth epoch, TTC algo-

rithm distinguishes two cases:

1. If Am contains only one path, TTC algorithm chooses this path, and sets Am+1 =Am;

2. Otherwise, the TTC algorithm picks each path in B once so that every path in B has

been selected m times. It then computes the OLS estimate �̂�m for𝜇, and identifies the



3.2. TOP-TWO COMPARISON ALGORITHM: AN ADAPTIVE EXPLORATION
APPROACH 35

path �̃�m with least estimated delay, i.e., �̃�m = argmin𝑎∈Am
⟨𝑎, �̂�m⟩ and the path with

estimated second shortest delay, i.e., 𝑎m = argmin𝑎∈Am∖{ãm}⟨𝑎, �̂�m⟩ via a second

shortest path sub-routine. Afterwards, TTC algorithm checks the gap between �̃�m

and 𝑎m : If ⟨𝑎m, �̂�m⟩− ⟨�̃�, �̂�m⟩ ≥ 2∆̃m. The set of remaining path for the (m+ 1)th

epoch is denoted as Am+1 = {�̃�m}; otherwise, Am+1 = Am.

The pseudo-code of TTC algorithm is shown in Algorithm 1 and the pseudo-code of the

sub-routine for finding second shortest path is shown in Algorithm 2. Please note that the

algorithms are run in epochs (indexed by m), and A can be represented by the incidence

matrix of G.

Algorithm 1 Top-Two Comparison Algorithm
1: Input: A set of paths A , barycentric spanners B ⊆A , time horizon T.
2: Initialization: A1←A , ∆̃m← R

√
(8ln(2)d2 +48d lnT/m for m = 1,2, . . . .

3: for epoch m = 1,2, . . . do
4: if |Am|= 1, then
5: Choose the path in Am.
6: Am+1←Am.
7: else
8: Choose each path in B once.
9: �̂�m←

(
D⊤m Dm

)−1
D⊤m 𝑟m.

10: �̃�m← argmin𝑎∈Am
⟨𝑎, �̂�m⟩.

11: 𝑎m← SSP(A , �̂�m, �̃�m) (calls the second shortest path sub-routine).
12: if ⟨𝑎i, �̂�m⟩−⟨�̃�i, �̂�m⟩> 2∆̃m, then
13: Am+1←{�̃�m}.
14: else
15: Am+1←Am.
16: end if
17: end if
18: end for

3.2.4 Regret Analysis

The analysis essentially follows the intuition presented in Section 3.2.1, and the instance-

dependent regret of the TTC algorithm is given by the following theorem.

Theorem 7. For any T ≥ dm, the instance-dependent expected regret of TTC algorithm is



36 CHAPTER 3. MAIN RESULTS

Algorithm 2 Second Shortest Path (SSP) Sub-Routine
1: Input: A set of paths A , a vector𝜓 of link delays, and the shortest path 𝑎with respect

to A and 𝜓.
2: Output: The second shortest path with respect to A and 𝜓.
3: Initialization: 𝑠← 0d.
4: for all j ∈ [d] do
5: if a j = 1 then
6: 𝜓′j←𝜓.

7: ψ ′j, j← 10d.
8: 𝑐 j← argmin𝑎′∈A ⟨𝑎′,𝜓′j⟩.
9: s j← ⟨𝑐 j,𝜈⟩.

10: end if
11: end for
12: j′ = argmin j∈[d]:a j=1 s j.
13: return 𝑐 j′.

bounded as

E [RegretT (TTC algorithm)] = O

((
d2 lnT +d3)∆max

∆2
min

)
.

Proof. See Section A.5.

We now pause for a while to comment on the bound provided in Theorem 7. In the

worst case, i.e., when ∆max = d, if ∆min ≤ d3/2T−1/4, the RHS of Theorem 7 is of order

Ω̃
(
d
√

T +d2) . As the regret bound from adversarial linear bandits is of order Õ(d
√

T ),

this indicates that the instance-dependent regret bound becomes vacuous once ∆min be-

comes smaller than d3/2T−1/4. Even though adaptive exploration saves us from not know-

ing ∆min, it cannot achieve nearly optimal worst case regret bound automatically. This is

because the TTC algorithm shares similar structure to EC algorithm, and as we have seen

in Theorem 5 that tuning the parameter n to achieve sub-optimal Õ(d5/4T 2/3) worst case

regret bound does not require any knowledge of ∆min, neither. Some other techniques are

needed if we want to get nearly optimal instance-dependent and worst case regrets at the

same time.



3.2. TOP-TWO COMPARISON ALGORITHM: AN ADAPTIVE EXPLORATION
APPROACH 37

3.2.5 Getting Nearly Optimal Worst Case Regret

It turns out that we can get nearly optimal instance-dependent and worst case regrets at the

same time with just a bit more work. The key idea is to limit the length of the exploration

stage so that once the smallest gap ∆min is believed to be smaller than dT−1/4 with high

probability, the DM switches to an efficient alternative algorithm for adversarial linear

bandits to solve the problem. A candidate for the alternative algorithm can be found in

[15]. Specifically, we set

n =
√

T R2(8ln(2)d +48lnT )/d2,

and modifies the TTC algorithm as following:

1. For each epoch m≤ n, the DM runs the TTC algorithm;

2. If the set An+1 contains only one path, the DM selects this path in the rest of the

rounds;

3. Else if the set An+1 contains more than one path, the DM finds that ∆min ≤ 4∆̃n =

Õ
(

d3/2T−1/4
)

holds with probability at least (1−T 2δ/d), and thus terminates the

TTC algorithm, and runs the efficient algorithm for adversarial linear bandits in [15]

over the network to solve the problem.

We name this as the Modified Top Two Comparison (MTTC) algorithm, and its pseudo-

code is shown in Algorithm 3. We are now ready to state the regret bound of MTTC

algorithm.

Theorem 8. For any T ≥ dn, the expected regret of MTTC algorithm is bounded as

∙ (Instance-dependent regret)

E [RegretT (MTTC algorithm)] = O

((
d2 lnT +d3)∆max

∆2
min

)
.



38 CHAPTER 3. MAIN RESULTS

Algorithm 3 Modified Top-Two Comparison Algorithm
1: Input: A set of paths A , barycentric spanners B ⊆A , time horizon T.
2: Initialization: A1 ← A ,n ←

√
T R2(8ln(2)d + 48lnT )/d2, ∆̃m ←

R
√
(8ln(2)d2 +48d lnT/m for m = 1,2, . . .

3: for epoch m = 1,2, . . . ,n do
4: Run TTC algorithm
5: end for
6: if |An+1|= 1 then
7: Choose the path in An+1 for the rest of the rounds.
8: else
9: Run the efficient algorithm for adversarial linear bandits in [15].

10: end if

∙ (Worst case regret)

E [RegretT (MTTC algorithm)] = Õ
(

d
√

T
)
.

Proof. See Section A.6.

3.3 Algorithm for General Networks

The success of TTC algorithm and MTTC algorithm in achieving nearly optimal regrets

rely on being able to identify the barycentric spanners, and make efficient exploration over

them. In finding barycentric spanners for the network G, it is required that Assumption 1

or the following two conditions hold:

1. The internal network is identifiable.

2. The expected delays of all the external links are known a priori.

In practice, this is not always the case. For example, if the network scale grows large,

it is very likely that even the internal network of G is not fully identifiable. Also, if the

external links are shared among many entities, it is hard to obtain the expected delays of

all the external links. Without Assumption 1, the network becomes unidentifiable, and one

possible way to overcome this shortcoming is to project A into some sub-space so that it is

still full rank in that sub-space. But it is unclear how to implement the projection without



3.3. ALGORITHM FOR GENERAL NETWORKS 39

enumerating all the paths in A , which is computationally inefficient. Therefore, we are

in need of a new technique for our problem. Fortunately, the explore-then-commit nature

of the algorithms proposed allows us to replace the barycentric spanners with an arbitrary

basis set of A , and use them as a template to achieve low regret. Throughout this section,

we shall assume that the rank of A is d0 < d.

3.3.1 Additional Notations

In this section, we will make use of matrix notations heavily. For any matrix M ∈ℜd1×d2 ,

we use M(i, j) to denote its element at the ith row and jth column, M(i, :), and M(:, j) to

denote its ith row and jth column vectors, respectively, and M ([i1, i2], :) , and M (:, [ j1, j2])

to denote the matrices obtained by keeping only the ith1 to ith2 rows and jth
1 to jth

2 columns,

respectively Moreover, M(−i, :) and M(:,− j) are the matrices obtained by removing the

ith row and jth column of M, respectively. M(−i,− j) is the (d1− 1)-by-(d2− 1) matrix

obtained by removing the ith row and jth column of M simultaneously.

3.3.2 Efficient Algorithm for Identifying the Basis

As a first step, we present an algorithm that finds a basis of A even when the network

G is unidentifiable. Inspired by the algorithm for finding barycentric spanners for identi-

fiable networks, i.e., Algorithm 5 in Appendix B, the high-level idea can be described as

following:

1. Initiate a matrix C to the d-dimensional identity matrix;

2. Greedily replace as many columns of C as possible by paths in A while keeping C

full rank.

3. All the columns in C that are obtained from A constitute B.

Since steps (1) and (3) can be easily implemented, we further elaborate on an iterative

algorithm for step (2). For ease of presentation, we use Cu to denote the resulted matrix

after the uth iteration with C0 = C . At the beginning of the (u+1)th iteration, suppose Cu



40 CHAPTER 3. MAIN RESULTS

can be written as

Cu =
(
C ′u,C

′′
u
)
, (3.9)

where C ′u are the columns obtained from A ; while C ′′u are the columns inherited from C0,

the algorithm then finds a column 𝑐 ∈ C ′′u such that replacing 𝑐 with an element in 𝑎 ∈A

can result in a full rank matrix, and sets

Cu+1 = (𝑎,Cu(:,− j)) , (3.10)

where j is the column index of 𝑐. This algorithm terminates once such 𝑐 cannot be found

in Cu after some iterations u.

To efficiently implement the above iterative algorithm, i.e., to find such 𝑎 in each iter-

ation if it exists, we note that the matrix Cu+1 is full rank if and only if the determinant of

Cu+1 is nonzero, i.e.,

rank(Cu+1) = d ⇔ detCu+1 ̸= 0. (3.11)

For now, suppose we are given a full rank matrix Cu, if the jth column of Cu is replaced by

an 𝑎 ∈A to form

C j
u = (Cu(1, j−1),𝑎,Cu( j+1,d)) ,

the determinant of C j
u can be written as a linear function of 𝑎, i.e.,

detC j
u =

d

∑
i=1

[
(−1)i+ j det(Cu(−i,− j))

]
ai (3.12)

by the Laplace expansion, and the value of det(Cu(−i,− j)) can be computed efficiently

using the LU decomposition. Now to find an index j(> u) and 𝑎 that satisfies detC j
u ̸= 0,

we can equivalently solve the following optimization problem

max
𝑎∈A

∣∣detC j
u
∣∣ , (3.13)



3.3. ALGORITHM FOR GENERAL NETWORKS 41

for all j > u. If there exists some j > u such that the solution 𝑎 satisfies
∣∣∣detC j

u

∣∣∣ > 0, we

can then replace the jth column of Cu by 𝑎 to form Cu+1 according to eq. (3.10).

For a given j, defining a vector 𝑐 j ∈ℜd with each entry defined by eq. (3.12), i.e.,

∀i ∈ [d] c j,i =
[
(−1)i+ j det(Cu(−i,− j))

]
, (3.14)

the optimal solution of (3.13) can be obtained by first solving the following two sub-

problems

max
𝑎∈A
⟨𝑐 j,𝑎⟩, min

𝑎∈A
⟨−𝑐 j,𝑎⟩, (3.15)

and then picking the solution with larger absolute value. To solve the first sub-problem, we

can use the following steps:

1. Assign delay c j,i to link i of G for all i ∈ [d];

2. Compute the longest path. This requires a call to an appropriate efficient longest path

algorithm for directed acyclic graphs, e.g., topological sorting [19].

The formal description of this algorithm for basis identification is shown in Algorithm 4.

We are now ready to prove the correctness of the algorithm, i.e., if the rank of A is

d0 < d, then Algorithm 4 returns a basis B ⊆A , such that the rank of B is d0.

Lemma 9. Algorithm 4 terminates in polynomial time. Upon termination, the matrix B

returned by Algorithm 4 is a basis of A , i.e., B has linearly independent columns and for

every 𝑎 ∈A , there exists a vector 𝜈a, such that B𝜈a = 𝑎.

Proof. See Section A.7

3.3.3 Comparing to the Identifiable Network Setting

Again, our hope is to modify MTTC algorithm so that it can achieve low regrets for general

networks. With the new basis B at hand, we can almost follow what we have developed

in Section 3.2. But a more careful inspection suggests the following differences between



42 CHAPTER 3. MAIN RESULTS

Algorithm 4 Basis Identification for General Networks
1: Input: A set of paths A .
2: Initialization: C0← I,u← 0,Flag←True.
3: Output: B, the basis A .
4: while u≤ d−1 and Flag==True do
5: for j = u+1, . . . ,d do
6: ∀i ∈ [d] c j,i← (−1)i+ j det(Cu(−i,− j)) .
7: 𝑎′1← argmax𝑎∈A ⟨𝑐 j,𝑎⟩.
8: 𝑎′2← argmin𝑎∈A ⟨−𝑐 j,𝑎⟩.
9: 𝑎← argmax𝑎′1,𝑎′2

{
|⟨𝑐 j,𝑎

′
1⟩|, |⟨𝑐 j,𝑎

′
2⟩|
}

10: if |⟨𝑐 j,𝑎⟩|> 0 then
11: Cu+1← (𝑎,Cu(:,− j)) .
12: u← u+1.
13: break
14: else if j == d
15: Flag←False.
16: end if
17: end for
18: end while
19: B← Cu(:, [1 : u])
20: return B.

identifiable network setting and the general network setting. First, the number of columns

of the basis B is d0 instead of d. This can be easily resolved by setting the length of each

epoch to d0. However, we note that this simple change is not enough: the d-dimensional

matrix Vm =
(
D⊤m Dm

)
= mBB⊤ is not full rank, i.e., rank(Vm) = d0 for all m≥ 1, which

means we cannot compute the OLS estimate of 𝜇 the same as eq. (3.1).

3.3.4 Obtaining Low Regret for General Networks

To allow the DM to implement the MTTC algorithm for general networks, we need to

resolve the issues raised by the singularity of Vm. To this end, we use a slightly different

version of OLS estimator [30], i.e., the OLS estimator of 𝜇 after m epochs of explorations

is

�̂�m =
(
D⊤m Dm

)†
Dm𝑟m, (3.16)



3.3. ALGORITHM FOR GENERAL NETWORKS 43

where
(
D⊤m Dm

)† denotes the Moore-Penrose pseudo-inverse of Vm =
(
D⊤m Dm

)
as Vm is

not invertible. Accompanying this new estimator is a new deviation inequality.

Lemma 10. For a given positive integer m, the probability that there exists a path 𝑎 ∈

A , such that the estimated mean delay of 𝑎 deviates from its mean delay by at least

R
√

32ln(6)d2
0S+32d0S lnδ−1/m is at most δ , after m epochs of explorations, i.e.,

Pr

|⟨𝑎,𝜇⟩−⟨𝑎, �̂�⟩| ≥ R

√
32ln(6)d2

0S+32d0S lnδ−1

m

≤ δ ,

where S is the smallest positive number such that every coordinate of 𝜈a lies within [−
√

S,
√

S],

i.e., 𝜈𝑎 ∈
[
−
√

S,
√

S
]d0 for all 𝑎 ∈A .

Proof. See Section A.8.

We note that this deviation inequality is in general different (and often worse) than that

of Lemma 4 as Vm is not invertible and S is not equal to 2 since the columns of B are not

necessarily 2-approximate barycentric spanners.

To work with this deviation inequality, we need to have at least an upper bound of S.

Consider the matrix Cd0 = (𝑓1, . . . ,𝑓d) , i.e., the matrix right after the termination of the

while-loop in Algorithm 4. By design of Algorithm 4, we know that B is the first d0

columns of Cd0, i.e., B = Cd0 (:, [1 : d0]) . By definition of 𝜈a, we can write

𝑎= B𝜈a =
d0

∑
i=1

ν𝑎,iB(:, i) =
d0

∑
i=1

ν𝑎,iCd0(:, i). (3.17)

We then make the following observation: for every j ≤ d0, if we replace Cd0(:, j) by 𝑎, we

have

∣∣det
(
𝑎,Cd0(:,− j)

)∣∣= ∣∣∣∣∣det

(
Cd0(:,− j),

d0

∑
i=1

ν𝑎,iCd0(:, i)

)∣∣∣∣∣
=

∣∣∣∣∣ d0

∑
i=1

ν𝑎,i det
(
Cd0(:,− j),Cd0(:, i)

)∣∣∣∣∣ (3.18)

=
∣∣ν𝑎, j det

(
Cd0(:,− j),Cd0(:, j)

)∣∣ (3.19)



44 CHAPTER 3. MAIN RESULTS

=
∣∣ν𝑎, j∣∣ ∣∣detCd0

∣∣ , (3.20)

where eq. (3.18) follows from the linearity of det operator and eq. (3.19) follows from the

fact that the determinant of a matrix is 0 if a matrix has two identical columns. Re-arranging

the terms in eq. (3.20), we have that

S = max
j∈[d0],𝑎∈A

∣∣ν𝑎, j∣∣= max
j∈[d0],𝑎∈A

∣∣det
(
𝑎,Cd0(:,− j)

)∣∣∣∣detCd0

∣∣ . (3.21)

As demonstrated in the Section 3.3.2, the optimization problem at the RHS of (3.21) can

be computed efficiently by first computing max𝑎∈A
∣∣det

(
𝑎,Cd0(:,− j)

)∣∣ individually for

every j ∈ [d0], and then taking maximum over j ∈ [d0].

Now, we are ready to apply MTTC algorithm to general networks. Inspired by the

identifiable networks setting, we only need to change the initialization parameters in MTTC

algorithm accordingly:

∆̃m = R

√
32ln(6)d2

0S+96d0S lnT
m

,∀m = 1,2, . . . , (3.22)

n =
√

T R2(32ln(2)d0 +96lnT )/d2
0S. (3.23)

The regret bound of MTTC algorithm for unidentifiable networks also follow immediately

from that of Theorem 8.

Theorem 11. The expected regret of MTTC algorithm is bounded as

∙ (Instance-dependent regret)

E [RegretT (MTTC algorithm)] = O

((
d2 lnT +d3)S∆max

∆2
min

)
.

∙ (Worst case regret)

E [RegretT (MTTC algorithm)] = Õ
(

d
√

T
)
.

The proof of Theorem 11 is omitted as it is very similar to that of Theorem 8.



3.4. DISCUSSIONS AND IMPLICATIONS 45

3.4 Discussions and Implications

In this section, we comment on the model assumptions and results.

Remark 2. In Chapter 2, we have assumed that there exists an unique optimal path. With-

out this it, the instance-dependent regret bounds for the TTC algorithm and the MTTC

algorithm break.

Remark 3. Other algorithms, such as that of [18] for combinatorial bandit optimization or

[5] for linear contextual bandit can also serve as the alternative in the MTTC algorithm by

setting the n accordingly.

Remark 4. With access to a linear optimization oracle, our proposed algorithms can

be transplanted to any combinatorial stochastic bandits problem to attain nearly optimal

instance-dependent and worst case regrets with polynomial computation time. Neverthe-

less, a simple adaptation to linear stochastic bandits is not guarantee to work as the action

set is an arbitrary subset of ℜd, and the estimated shortest and second shortest path may

use exactly the same links. Therefore, the second shortest path sub-routine cannot work

correctly.

3.5 Numerical Experiments

In this section, we conduct extensive numerical experiments on synthetic data to validate

the performances of TTC algorithm and MTTC algorithm in terms of time average regret,

i.e., regret/number of rounds, and computational efficiency.

3.5.1 Setups

We first present the setup of our numerical experiments. We vary T from 5000 to 25000

with a step size of 5000. We set µmax = 1000 to allow enough heterogeneity in each link’s

delay distribution, and we use normal distribution with R = 0.1 and 1 for the noise terms.

To demonstrate that our algorithms work well for networks with complicated topology and

various scales, we use the grid network structure. In a grid network, the underlay network



46 CHAPTER 3. MAIN RESULTS

is a p× p grid, and each node is able to route a packet to both the node on the right and

at beneath (if exists). Fig. 3-2 shows the network with a 4-by-4 underlay grid. In our

experiment, we consider grid networks with p = 2,4,6, and 8. For ease of implementation,

Figure 3-2: Examples of 4-by4 grid network

we use the Thompson sampling algorithm proposed in [5] as the alternative in MTTC algo-

rithm, and compare the performance of our algorithms with the (inefficient) OFU algorithm

proposed in [2] and the Thompson sampling algorithm [5]. Also for fair comparisons, we

set a hard computation budget of 100 seconds for each instance, and call a runtime error

once the runtime of an algorithm exceed this limit. We note that the parameters here are

chosen randomly, and the results should be similar with another set of parameters. Finally,

all the results presented here are averaged over 200 iterations.

3.5.2 Results

We first describe some basic statistics as well as the runtime of different algorithms in Table

3.1 to visualize the scales and complexities of the networks for different values of p. As we

can see, the OFU and TS algorithms consume tens to hundreds of times more runtime than

the TTC algorithm for all the cases. When k ≥ 6, the runtime of OFU algorithm exceeds

the computation budget.

The results of time average regret are shown in Fig. 3-4 and 3-3. From the plots, we can

read that the time average regrets of TTC algorithm and MTTC algorithm are significantly



3.5. NUMERICAL EXPERIMENTS 47

p = 2 4 6 8
d : #links 8 32 72 128

d0 : size of basis 4 16 36 64
|A | : #paths 4 56 792 11440

minimum #hop 3 5 7 9
maximum #hop 4 8 12 16

runtime of TTC algorithm (s) 0.01 0.16 1.00 1.14
runtime of MTTC algorithm (s) 0.10 5.78 18.65 35.08
runtime of OFU algorithm (s) 1.55 9.43 >90 >90
runtime of TS algorithm (s) 29.60 35.14 39.81 51.96

Table 3.1: Basic statistics and average runtime of different algorithms for grid networks
when R = 1

lower than those of the OFU and the TS algorithms’ in the low noise (or R = 0.1) case,

especially when the number of rounds is large. The only exception is when p = 8 and

T ≤ 15000, the time average regret of TTC algorithm is larger than that of the TS algorithm.

This is because as p increases, the value of S also increases, and it thus takes longer time

for TTC algorithm to identify the optimal path. For the high noise case, we can see that the

performances of MTTC algorithm and TS algorithm are close. Although the performances

of TTC algorithm is worse than the TS algorithm, we believe TTC algorithm and MTTC

algorithm can outperform TS algorithm as the T increases.

3.5.3 Additional Results

To verify our conjecture, we conduct additional experiment for the R = 1 case with larger

T with p = 2 and p = 4. When p = 2, we vary T from 5× 104 to 105 with a step of 104;

when p = 4, we vary T from 108 to 5×108 with a step of 108. The plots in Fig. 3-5 clearly

show that when T becomes large enough, TTC algorithm and MTTC algorithm finish with

lower regrets than TS algorithm.



48 CHAPTER 3. MAIN RESULTS

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

2

4

6

8

10

12

14

16

T
im

e 
av

er
ag

e 
re

g
re

t TTC

OFU

TS

MTTC

(a) p = 2,R = 0.1

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

5

10

15

20

25

30

35

40

45

T
im

e 
av

er
ag

e 
re

g
re

t TTC

OFU

TS

MTTC

(b) p = 4,R = 0.1

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

20

40

60

80

100

120

140

160

T
im

e 
av

er
ag

e 
re

g
re

t TTC

TS

MTTC

(c) p = 6,R = 0.1

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

50

100

150

200

250

300

350

T
im

e 
av

er
ag

e 
re

g
re

t TTC

TS

MTTC

(d) p = 8,R = 0.1

Figure 3-3: Plots of results when R = 0.1



3.5. NUMERICAL EXPERIMENTS 49

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

0.5

1

1.5

2

2.5

3

3.5

T
im

e 
av

er
ag

e 
re

g
re

t TTC

OFU

TS

MTTC

(a) p = 2,R = 1

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

20

40

60

80

100

T
im

e 
av

er
ag

e 
re

g
re

t TTC

OFU

TS

MTTC

(b) p = 4,R = 1

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

100

200

300

400

500

600

700

800

900

T
im

e 
av

er
ag

e 
re

g
re

t TTC

TS

MTTC

(c) p = 6,R = 1

0.5 1 1.5 2 2.5

Number of rounds
10

4

0

500

1000

1500

2000

2500

T
im

e 
av

er
ag

e 
re

g
re

t TTC

TS

MTTC

(d) p = 8,R = 1

Figure 3-4: Plots of results when R = 1



50 CHAPTER 3. MAIN RESULTS

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Number of rounds
10

4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e 
av

er
ag

e 
re

g
re

t TTC

TS

MTTC

(a) p = 2,R = 1

1 1.5 2 2.5 3 3.5 4 4.5 5

Number of rounds
10

7

0

0.005

0.01

0.015

T
im

e 
av

er
ag

e 
re

g
re

t

TTC

TS

MTTC

(b) p = 4,R = 1

Figure 3-5: Additional results for grid networks



Chapter 4

Conclusion

In this thesis, we developed efficient algorithms with nearly optimal regrets for the prob-

lem of stochastic online shortest path routing with end-to-end feedback. Starting from

identifiable networks, we have introduced EC algorithm to obtain nearly optimal instance-

dependent and sub-optimal worst case regrets efficiently. We have then presented the TTC

algorithm and the MTTC algorithm, a series of efficient algorithms that achieve nearly op-

timal instance-dependent and worst case regrets. Afterwards, we extended our results to

general networks. Finally, we conducted extensive numerical experiments to demonstrate

the superior regret performances and computation efficiency of our proposed algorithms.



52 CHAPTER 4. CONCLUSION

THIS PAGE INTENTIONALLY LEFT BLANK



Appendix A

Proofs

A.1 Proof of Lemma 3

Following the proof in [27], denote 𝑤 = 𝑟m−D𝜇, as the vector of noise, and 𝑧 = D⊤m𝑤,

we have

�̂�m−𝜇=
(

D⊤mDm

)−1
D⊤m 𝑟m−𝜇

=
(

D⊤mDm

)−1
D⊤m (𝑤+Dm𝜇)−𝜇

=V −1
m D⊤m𝑤

=V −1
m 𝑧. (A.1)

Therefore, ‖�̂�m−𝜇‖2
Vm

= ‖𝑧‖2
V −1

m
. In order to get a tail bound on the quantity ‖�̂�−𝜇‖Vm ,

we can instead work on ‖𝑧‖V −1
m

. Consider E
[
exp
(
𝛼⊤𝑧

)]
, the moment generating function

of 𝑧 with respect to 𝛼 ∈ℜd, by the R-sub-Gaussian property of η1, . . . ,ηnd,

E
[
exp
(
𝛼⊤𝑧t

)]
=E

[
exp

(
md

∑
s=1

(
𝛼⊤𝑎Is

)
ηs

)]

=E

[
Eηmd

[
exp

(
md

∑
s=1

(
𝛼⊤𝑎Is

)
ηs

)∣∣∣∣∣𝑎I1 , . . . ,𝑎Imd ,η1, . . . ,ηmd−1

]]



54 APPENDIX A. PROOFS

≤E

[
exp

(
md−1

∑
s=1

(
𝛼⊤𝑎Is

)
ηs

)]
exp

((
𝛼⊤𝑎Imd R

)2

2

)
...

≤exp

(
md

∑
s=1

(
𝛼⊤𝑎IsR

)2

2

)

=exp
(

R2

2
𝛼⊤Vm𝛼

)
. (A.2)

One can rewrite this to

E
[

exp
(
𝛼⊤𝑧− R2

2
𝛼⊤Vm𝛼

)]
≤ 1.

We further define

M𝛼 = exp
(
𝛼⊤𝑧− R2

2
𝛼⊤Vm𝛼

)
and

M =
∫

M𝛼h(𝛼)d𝛼,

where h(·) is the density of the N
(
0,V −1

m /R2) . Now we have

M =
Rd√

(2π)d detV −1
m

∫
exp
(
𝛼⊤𝑧−R2𝛼⊤Vm𝛼

)
d𝛼

=
Rd√

(2π)d detV −1
m

∫
exp

(
𝑧V −1

m 𝑧

4R2 −R2
∥∥∥∥𝛼− V −1

m 𝑧

2R2

∥∥∥∥2

V

)
d𝛼

=
1

2d/2 exp

(
‖𝑧‖2

V −1
m

4R2

)
. (A.3)

Note that

E[M] =
∫

E[M𝛼]h(𝛼)d𝛼≤ 1,

we have

E

[
exp

(
‖𝑧‖2

V −1
m

4R2

)]
≤ 2d/2,



A.1. PROOF OF LEMMA ?? 55

and thus

Pr
(
‖𝑧‖2

V −1
m
≥ R2 (2ln(2)d +4lnδ

−1))≤ δ (A.4)

by Chernoff Bound. Therefore, we have shown that

Pr
(
‖�̂�− �̂�‖Vm ≥ R

√
2ln(2)d +4lnδ−1

)
≤ δ . (A.5)



56 APPENDIX A. PROOFS

A.2 Proof of Lemma 4

From Lemma 3, we have the probability that the difference between �̂�m and 𝜇 under the

Vm norm is not less than R
√

2ln(2)d +4lnδ−1 is at most δ , i.e.,

Pr
(
‖�̂�m−𝜇‖Vm ≥ R

√
2ln(2)d +4lnδ−1

)
≤ δ .

Equivalently, we have with probability at least 1−δ .

(�̂�m−𝜇)⊤Vm (�̂�m−𝜇)≤ γ
2, (A.6)

where

γ = R
√

2ln(2)d +4lnδ−1.

By definition of B and Vm, we know that Vm = mBB⊤. Denoting 𝑥 = B⊤ (�̂�m−𝜇) ,

(A.6) indicates that with probability at least 1−δ ,

‖𝑥‖2 ≤ γ2

m
. (A.7)

As B is the 2-approximate barycentric spanners of A , for any 𝑎 ∈ A , there exists some

𝜈𝑎 ∈ [−2,2]d, such that B𝜈𝑎 = 𝑎. Therefore,

⟨𝑎, �̂�m−𝜇⟩2 =(�̂�m−𝜇)⊤B𝜈𝑎𝜈
⊤
𝑎 B⊤ (�̂�m−𝜇)

=𝑥⊤𝜈𝑎𝜈
⊤
𝑎 𝑥

=
(
𝑥⊤𝜈𝑎

)2

≤‖𝑥‖2‖𝜈𝑎‖2

≤4dγ2

m
,

where the second last inequality follows from Cauchy-Schwarz inequality.



A.3. PROOF OF THEOREM ?? 57

A.3 Proof of Theorem 5

We prove the instance dependent and worst case regrets separately.

1. Obtaining Instance Dependent Regret: To keep track of the regret incurred by EC

algorithm in the committing stage, we consider the event {𝑎It0
̸= 𝑎*} with t0 = n · d + 1.

This means that EC algorithm either has a large overestimate on ⟨𝑎*,𝜇⟩, that is

⟨𝑎*, �̂�⟩ ≥ ⟨𝑎*,𝜇⟩+
∆It0
2

, (A.8)

or a major underestimate on ⟨𝑎It0
,𝜇⟩, that is

⟨𝑎It0
, �̂�⟩ ≤ ⟨𝑎It0

,𝜇⟩−
∆It0
2

. (A.9)

From Lemma 4, we set

4dγ2

n
=

∆2
min
4

, (A.10)

which is equivalent to

δ = exp
(

ln(2)d−
∆2

minn
64dR2

)
. (A.11)

This further indicates

Pr
(
⟨𝑎*, �̂�⟩ ≥ ⟨𝑎*,𝜇⟩+

∆It0
2

)
≤Pr

(
⟨𝑎*, �̂�⟩ ≥ ⟨𝑎*,𝜇⟩+

∆min

2

)
≤Pr

(
⟨𝑎*, �̂�−𝜇⟩2 ≥

∆2
Imin

4

)

=Pr
(
⟨𝑎*, �̂�−𝜇⟩2 ≥

8dγ2

n

)
≤exp

(
ln(2)d−

∆2
minn

64dR2

)
.



58 APPENDIX A. PROOFS

Similarly,

Pr
(
⟨𝑎It0

, �̂�⟩ ≤ ⟨𝑎It0
,𝜇⟩−

∆It0
2

)
≤ exp

(
ln(2)d−

∆2
minn

64dR2

)
.

By union bound, we have

Pr
({
𝑎It0
̸= 𝑎*

})
≤ 2exp

(
ln(2)d−

∆2
minn

64dR2

)
. (A.12)

the expected regret of EC algorithm is upper bounded as

E [Regret(Explore-then-Commit alorithm)]

≤n ·d∆max +2(T −n ·d)∆max exp
(

ln(2)d−
∆2

minn
64dR2

)
≤n ·d∆max +2T ∆max exp

(
ln(2)d−

∆2
minn

64dR2

)
. (A.13)

Setting

n =
64dR2 ln(dT )+64ln(2)d2R2

∆2
minT

(A.14)

brings us

E [RegretT (EC algorithm)]

≤64d2R2∆max ln(dT )+64ln(2)d3R2∆max

∆2
min

+2. (A.15)

2. Obtaining Worst Case Regret:

With probability at least 1−δ , we have |⟨𝑎k, �̂�−𝜇⟩| ≤
√

4dγ2/n holds for all 𝑎k ∈A .

Therefore, with probability at least 1−δ ,

⟨𝑎It0
,𝜇⟩ ≤⟨𝑎It0

, �̂�⟩+
√

4dγ2/n

≤⟨𝑎*, �̂�⟩+
√

4dγ2/n

≤⟨𝑎*,𝜇⟩+2
√

4dγ2/n



A.3. PROOF OF THEOREM ?? 59

Therefore, the expected regret of EC algorithm is upper bounded as

E [Regret(Explore-then-Commit alorithm)]

≤n ·d∆max +

√
4dγ2T 2

n
+T δ

≤nd2 +

√
4dR(2ln(2)d +4lnδ−1)T 2

n
+T δ

≤6d
5
4 T

2
3
√

R lnT +1. (A.16)

Here we take n = d−3/4T 2/3, and δ = 1/T.



60 APPENDIX A. PROOFS

A.4 Proof of Lemma 6

On one hand, if (3.5) holds, then the detected path 𝑎k cannot be optimal, i.e., given

⟨𝑎k, �̂�m⟩−⟨�̃�m, �̂�m⟩ ≥ 2∆̃m,

we have

⟨𝑎k,𝜇⟩ ≥⟨𝑎k, �̂�m⟩− ∆̃m (A.17)

>⟨�̃�m, �̂�m⟩+ ∆̃m (A.18)

≥⟨�̃�m,𝜇⟩, (A.19)

where inequalities (A.17) and (A.19) hold because we have conditioned on E, and inequal-

ity (A.18) follows from re-arranging the terms in (3.5). This implies that routing a packet

via path 𝑎k incurs more delay than that of ãm, and it thus cannot be optimal; On the other

hand, this criterion (3.5) also promises that any path 𝑎k with a gap

∆k > 4∆̃m

is detected after epoch m, i.e.,

⟨𝑎k, �̂�m⟩− ∆̃m ≥⟨𝑎k,𝜇⟩−2∆̃m (A.20)

=⟨𝑎*,𝜇⟩+∆k−2∆̃m (A.21)

>⟨𝑎*,𝜇⟩+2∆̃m (A.22)

≥⟨𝑎*, �̂�m⟩+ ∆̃m (A.23)

≥⟨�̃�m, �̂�m⟩+ ∆̃m (A.24)

where inequalities (A.20) and (A.23) hold because we have conditioned on E, equality

(A.21) holds by definition of ∆k, inequality (A.22) follows from the assumption that ∆k >



A.4. PROOF OF LEMMA ?? 61

4∆̃m, and inequality (A.24) follows from the optimality of �̃�m. This is equivalent to

⟨𝑎k, �̂�m⟩−⟨�̃�m, �̂�m⟩>2∆̃m, (A.25)

and 𝑎k is detected.



62 APPENDIX A. PROOFS

A.5 Proof of Theorem 7

We begin by decomposing the regret as following

E [RegretT (TTC algorithm)]

=E [RegretT (TTC algorithm) |¬E]Pr(¬E)

+E [RegretT (TTC algorithm) |E]Pr(E)

≤E [RegretT (TTC algorithm) |¬E]

+T 2
δE [RegretT (TTC algorithm) |E] ,

and then distinguish the following two cases:

1. Analyzing E [RegretT (TTC algorithm) |¬E]

Under this case, all the sub-optimal arms should be eliminate when

∆̃m ≤ ∆min/4,

or

m = (256dR2 lnδ
−1 +128ln(2)d2R2)/∆

2
min.

Therefore,

E [RegretT (TTC algorithm) |¬E]

≤256d2R2∆max lnδ−1 +128ln(2)d3R2∆max

∆2
min

. (A.26)

2. Analyzing T 2δE [RegretT (TTC algorithm) |E]

We know that the regret of each round is at most ∆max, and the total regret can be

trivially upper bounded by T ∆max. Therefore,

T 2
δE [RegretT (TTC algorithm) |E]≤ T 3

∆maxδ . (A.27)



A.5. PROOF OF THEOREM ?? 63

Combining the above two cases, we can sett δ to T−3, and have

E [RegretT (TTC algorithm)]

≤768d2R2∆max lnT +128ln(2)d3R2∆max

∆2
min

+1. (A.28)



64 APPENDIX A. PROOFS

A.6 Proof of Theorem 8

Conditioned on E, The first half of the theorem follows directly from Theorem 7. Now

suppose ∆min ≤ d3/2T−1/4, then the MTTC algorithm switches to the alternative. The

regret of in the first n epochs can be upper bounded as

∆maxdn≤ d2n =
√

T R2 (32ln(2)d +48lnT ) (A.29)

The regret of running the alternative can be upper bounded as C′(d
√

T lnT ) with some

absolute constant C′, and the expected regret conditioned on¬E is constant. The conclusion

then follows.



A.7. PROOF OF LEMMA ?? 65

A.7 Proof of Lemma 9

We first note that in each iteration of while-loop in Algorithm 4, either u is increased by

1 or the variable Flag is set to False. Therefore, after at most d iterations, the algorithm

terminates. We then see that the statement B has linearly independent columns holds

trivially as Cu has linearly independent columns by virtue of our algorithm, and B is just a

sub-matrix of Cu.

As an intermediate step, we show rank(B) = rank(A ). Since B is always a subset of

A , the rank of B cannot exceed that of A . Now if rank(B) < rank(A ) = d0, then there

must exists an 𝑎 ∈A , such that 𝑎 is linearly independent of the columns of B. We declare

that this is impossible once the algorithm terminate after u iterations. Upon termination,

the matrix (𝑎,Cu) has rank d as Cu is full rank. By definition of 𝑎, the rank of (𝑎,B) is

rank(B)+1≤ d0 < d, and therefore, we must be able to start from (𝑎,B), and add columns

from Cu(:, [u+ 1,d]) to form a d-by-d full rank matrix by basis extension theorem. This

is equivalent to replace a column of Cu(:, [u+ 1,d]) with 𝑎 while keeping resulted matrix

full rank, which is exactly step (2) of the procedure. This means the algorithm should not

terminate, and it is a contradiction. Therefore, rank(B) = rank(A ).

Now for any 𝑎 ∈ A , if 𝑎 cannot be expressed as linearly combination of columns of

B, then adding 𝑎 to B has rank d0 +1. As (B,𝑎) is a sub-matrix of A , we have

d0 +1 = rank(B,𝑎)≤ rank(A ) = d0,

which is a contradiction.



66 APPENDIX A. PROOFS

A.8 Proof of Lemma 10

We first show that the noise vector 𝑤t = (η1, . . . ,ηt) is R-sub-Gaussian for all t ∈ [T ]. It is

easy to see that E [𝑤t ] = 0, and for any 𝛼 ∈ℜt , we have

E
[
exp
(
𝛼⊤𝑤t

)]
=E

[
E

[
exp

(
t−1

∑
s=1

αsηs +αtηt

)∣∣∣∣∣𝑎I1 , . . . ,𝑎It ,η1, . . . ,ηt−1

]]

≤E

[
E

[
exp
(

α2
t R2

2

)
exp

(
t−1

∑
s=1

αsηs

)∣∣∣∣∣𝑎I1 , . . . ,𝑎It ,η1, . . . ,ηt−1

]]

=exp
(

α2
t R2

2

)
E

[
exp

(
t−1

∑
s=1

αsηs

)]
...

=exp
(
‖𝛼‖2R2

2

)
. (A.30)

Now from Theorem 2.2 of [30], we have the probability that the difference between �̂�m

and 𝜇 under the Vm norm is not less than R
√

32ln(6)d0 +32lnδ−1 is at most δ , i.e.,

Pr
(
‖�̂�m−𝜇‖Vm ≥ R

√
32ln(6)d0 +32lnδ−1

)
≤ δ .

Equivalently, we have

(�̂�m−𝜇)⊤Vm (�̂�−𝜇)≤ γ
2, (A.31)

where

γ = R
√

32ln(6)d0 +32lnδ−1.

By definition of B and Vm, we know that Vm = mBB⊤. Denoting

𝑥= B⊤ (�̂�m−𝜇) ,



A.8. PROOF OF LEMMA ?? 67

(A.31) indicates with probability at least 1−δ ,

‖𝑥‖2 ≤ γ2

m
. (A.32)

As B is the basis of A , for any 𝑎∈A there exists some 𝜈𝑎, such that B𝜈𝑎 =𝑎. Therefore,

⟨𝑎, �̂�m−𝜇⟩2 =(�̂�m−𝜇)⊤B𝜈𝑎𝜈
⊤
𝑎 B⊤ (�̂�m−𝜇)

=𝑥⊤𝜈𝑎𝜈
⊤
𝑎 𝑥

=
(
𝑥⊤𝜈𝑎

)2

≤‖𝑥‖2‖𝜈𝑎‖2

≤Sγ2

m
,

where the second last inequality follows from Cauchy-Schwarz inequality.



68 APPENDIX A. PROOFS

THIS PAGE INTENTIONALLY LEFT BLANK



Appendix B

Algorithm for Finding Barycentric

Spanners

In this section, we briefly state the algorithm from [12] to illustrate how to construct

barycentric spanners when the network is identifiable. The detail is shown in Algorithm 5.

Here, B(:,− j) is the matrix B with the jth column removed. Each iteration of the for- and

while-loop requires two quantities, i.e.,

argmax
𝑎∈A

det(𝑎,B(:,− j)), (B.1)

argmax
𝑎∈A

−det(𝑎,B(:,− j)), (B.2)

to compute argmax𝑎∈A det |(𝑎,B(:,− j))|, This can be done by two calls to the longest

path algorithm for directed acyclic graphs. Specifically, the each coefficient of the linear

function det(𝑎,B(:,− j) is the determinant of a (d− 1)-by-(d− 1) sub-matrix of B(:, j)

and can therefore be computed efficiently. Afterwards, we can set the each link’s delay to

the corresponding coefficient in G, and run the longest path algorithm over this network to

find 𝑎.



70 APPENDIX B. ALGORITHM FOR FINDING BARYCENTRIC SPANNERS

Algorithm 5 Basis Identification for Identifiable Networks [12]
1: Input: A set of paths A .
2: Initialization: B← I.
3: for j = 1, . . . ,d do
4: B(:, j)← argmax𝑎∈A det |(𝑎,B(:,− j)) |.
5: end for
6: while ∃𝑎 ∈A , j ∈ [d] s.t., det |(𝑎,B(:,− j)) |> 2det |B| do
7: B(:, j)← 𝑎.
8: end whilereturn B.



Bibliography

[1] Yasin Abbasi-Yadkori, Andras Antos, and Csaba Szepesvári. Forced-exploration
based algorithms for playing in stochastic linear bandits. In COLT Workshop on On-
line Learning with Limited Feedback, 2009.

[2] Yasin Abbasi-Yadkori, David Pál, and Csaba. Szepesvári. Improved algorithms for
linear stochastic bandits. In NIPS, 2011.

[3] Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In AIS-
TAT, 2017.

[4] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An
efficient algorithm for bandit linear optimization. In COLT, 2009.

[5] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with
linear payoffs. In ICML, 2013.

[6] Jean-Yves Audibert, Sebastien Bubeck, and Gabor Lugosi. Minimax policies for
combinatorial prediction games. In COLT, 2011.

[7] Jean-Yves Audibert, Sebastien Bubeck, and Gabor. Lugosi. Regret in online combi-
natorial optimization. In Mathematics of Operations Research, 2012.

[8] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. In
JMLR, 2002.

[9] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research, 3:397–422, 2003.

[10] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 2002.

[11] Peter Auer and Ronald Ortner. Ucb revisited: Improved regret bounds for the stochas-
tic multi-armed bandit problem. In Periodica Mathematica Hungarica, 2010.

[12] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive
routing. In STOC, 2004.



72 BIBLIOGRAPHY

[13] Richard Bellman. On a routing problem. In Quart. Appl. Math., 1958.

[14] Sebastien Bubeck. Bandit theory, part ii. In
https://blogs.princeton.edu/imabandit/2016/05/13/bandit-theory-part-ii/, 2016.

[15] Sebastien Bubeck and Ronen Eldan. The entropic barrier: a simple and optimal uni-
versal self-concordant barrier. In COLT, 2015.

[16] Wei Chen, Yajun Want, and Yang Yuan. Combinatorial multi-armed bandit: General
framework, results and applications. In ICML, 2013.

[17] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear
payoff functions. In AISTATS, 2011.

[18] Alon Cohen, Tamir Hazan, and Tomer Koren. Tight bounds for bandit combinatorial
optimization. In COLT, 2017.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to algorithms. In MIT Press, 2009.

[20] Varsha Dani, Thomas Hayes, and Sham Kakade. Stochastic linear optimization under
bandit feedback. In COLT, 2008.

[21] Edsger Dijkstra. A note on two problems in connexion with graphs. In Num. Math.,
1959.

[22] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimiza-
tion with unknown variables: Multi-armed bandits with linear rewards and individual
observations. In IEEE/ACM Transactions on Networking, 2012.

[23] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation
indices. John Wiley & Sons, 2011.

[24] Elad Hazan, Zohar Karnin, and Raghu Meka. Volumetric spanners: An efficient
exploration basis for learning. In Journal of Machine Learning Research, 2016.

[25] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári. Tight regret
bounds for stochastic combinatorial semi-bandits. In AISTATS, 2015.

[26] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6:4–22, 1985.

[27] Tor Lattimore and Csaba Szepesvari. Bandit algorithms. In Cambridge University
Press, Available at: http://banditalgs.com, 2018.

[28] Keqin Liu and Qing Zhao. Adaptive shortest-path routing under unknown and
stochastically varying link states. In WiOpt, 2012.

[29] Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, and Don Towsley. Identifia-
bility of link metrics based on end-to-end path measurements. In IMC, 2013.



BIBLIOGRAPHY 73

[30] Philippe Rigollet and J. Hutter. High dimensional statistics. In http://www-
math.mit.edu/ rigollet/PDFs/RigNotes17.pdf, 2017.

[31] Herbert Robbins. Some aspects of the sequential design of experiments. Bull. Amer.
Math. Soc., 58(5):527–535, 1952.

[32] Paat Rusmevichientong and John Tsitsiklis. Linearly parameterized bandits. In Math-
ematics of Operations Research, 2010.

[33] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling.
In Mathematics of Operations Research, 2014.

[34] Aleksandrs Slivkins. Introduction to multi-armed bandits. In
http://slivkins.com/work/MAB-book.pdf, 2017.

[35] Mohammad Sadegh Talebi, Zhenhua Zou, Richard Combes, Alexandre Proutiere, and
Mikael Johansson. Stochastic online shortest path routing: The value of feedback. In
IEEE Transactions on Automatic Control, 2018.


	 1 Introduction
	 1.1 Related Works
	 1.2 Main Contributions and Outline of the Thesis

	 2 Background
	 2.1 Notations
	 2.2 Model
	 2.3 Design Challenges and Solution Strategies
	 2.4 Exploration Basis
	 2.4.1 Barycentric Spanners and Network Identifiability


	 3 Main Results
	 3.1 Explore-then-Commit Algorithm: A Warm-Up
	 3.1.1 Design Intuitions
	 3.1.2 Design Details
	 3.1.3 Regret Analysis

	 3.2 Top-Two Comparison Algorithm: An Adaptive Exploration Approach
	 3.2.1 Design Intuitions
	 3.2.2 Efficient Implementation
	 3.2.3 Design Details
	 3.2.4 Regret Analysis
	 3.2.5 Getting Nearly Optimal Worst Case Regret

	 3.3 Algorithm for General Networks
	 3.3.1 Additional Notations
	 3.3.2 Efficient Algorithm for Identifying the Basis
	 3.3.3 Comparing to the Identifiable Network Setting
	 3.3.4 Obtaining Low Regret for General Networks

	 3.4 Discussions and Implications
	 3.5 Numerical Experiments
	 3.5.1 Setups
	 3.5.2 Results
	 3.5.3 Additional Results


	 4 Conclusion
	A Proofs
	A.1 Proof of Lemma 3
	A.2 Proof of Lemma 4
	A.3 Proof of Theorem 5
	A.4 Proof of Lemma 6
	A.5 Proof of Theorem 7
	A.6 Proof of Theorem 8
	A.7 Proof of Lemma 9
	A.8 Proof of Lemma 10

	B Algorithm for Finding Barycentric Spanners

