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Abstract

Web services like Google, Facebook, and Dropbox are a regular part of users' lives.
However, using these applications can cause sensitive data leakage both on the server
and client. On the server-side, applications collect and analyze sensitive user data to
monetize it. Consequently, this sensitive data can leak through data breaches or can
be accessed by malicious service providers. On the client, when a user accesses a web
service through the browser, sensitive user information may leak outside of the browser,
e.g., to DNS interfaces or the swap space. An attacker who accesses the user device after
a session has terminated can view this information.

This dissertation presents two practical, secure systems, Veil and Splinter, that prevent
some of this data leakage. Veil minimizes client-side information leakage from the browser
by allowing web application developers to enforce stronger private browsing semantics
without browser support. Splinter allows the server to properly respond to a user query
without the server learning any sensitive information present in the query.

Thesis Supervisor: Nickolai Zeldovich
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Introduction

1.1 Motivation

Consumers are increasing their usage of web services. Whenever users interact with

these applications, the web service collects their data, which can contain sensitive

information, such as their medical conditions, political preferences, and income [77, 78].

Unfortunately, this data can leak through numerous channels on both the server and

client. As web systems become more complex, the number of these channels continues

to grow. Not only is there more data but also the number of applications that handle and

access this data is growing. Here are some examples of the data leakage. On the server

side, data can leak through breaches or be accessed by malicious service administrators.

On the client side, sensitive user information can leak from the browser whenever a user

accesses a web application. These scenarios raise an important question: how do we

build practical, secure mechanisms to prevent this data leakage?

Much research has focused on building systems [34, 61, 96, 97] that protect sensitive

user data stored in web application databases or cloud providers from leaking as a result

of data breaches or malicious service providers. However, the focus of this dissertation

is different. We are not protecting sensitive user data that already exists on the server.

Instead, we build systems that prevent data leakage on the client (Veil), specifically from

the browser, and that protect sensitive data in queries (Splinter). In the section below,

we provide an overview of these two systems.

1.2 Our Systems

1.2.1 Veil: Private Browsing Semantics without Browser-side Assistance

All popular web browsers offer a "private browsing mode." After a private session

terminates, the browser is supposed to remove client-side evidence that the session

occurred. Unfortunately, browsers still leak information through the file system, the

browser cache, the DNS cache, and on-disk reflections of RAM such as the swap file.
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Veil is a new deployment framework that allows web developers to prevent these

information leaks, or at least reduce their likelihood. Veil leverages the fact that, even

though developers do not control the client-side browser implementation, developers do

control 1) the content that is sent to those browsers, and 2) the servers which deliver

that content. Veil-enabled web sites collectively store their content on Veil's blinding

servers instead of on individual, site-specific servers. To publish a new page, developers

pass their HTML, CSS, and JavaScript files to Veil's compiler; the compiler transforms

the URLs in the content so that, when the page loads on a user's browser, URLs are

derived from a secret user key. The blinding service and the Veil-enabled page exchange

encrypted data that is also protected by the user's key. The result is that Veil pages can

safely store encrypted content in the browser cache; furthermore, the URLs exposed to

system interfaces like the DNS cache are unintelligible to attackers who do not possess the

user's key. To protect against post-session inspection of swap file artifacts, Veil uses heap

walking (which minimizes the likelihood that secret data is paged out), content mutation

(which garbles in-memory artifacts if they do get swapped out), and DOM hiding (which

prevents the browser from learning site-specific HTML, CSS, and JavaScript content in

the first place). Veil-enabled pages load on unmodified commodity browsers, allowing

developers to provide stronger semantics for private browsing without forcing users to

install or reconfigure their machines. Veil provides these guarantees even if the user does

not visit a page using a browser's native privacy mode.

1.2.2 Splinter: Practical, Private Web Application Queries

Many online services let users and businesses query datasets such as maps, flight prices,

patents, and medical information. The datasets themselves do not contain sensitive

information, but unfortunately, queries on these datasets can reveal sensitive information.

This dissertation presents Splinter, a system that protects queries and scales to realistic

applications. A user splits her query into multiple parts and sends each part to a different

provider that holds a copy of the data. As long as any one of the providers does not

collude with the others, the providers cannot determine the query. Splinter uses and

extends a new cryptographic primitive called Function Secret Sharing (FSS) that makes

it more efficient than prior systems based on other cryptographic techniques such as

Private Information Retrieval and garbled circuits. We develop protocols extending FSS

to new types of queries, such as MAX and TOPK queries. We also provide an optimized

implementation of FSS using AES-NI instructions and multicores. Splinter achieves end-

to-end latencies below 1.6 seconds for realistic workloads including a Yelp clone, flight

search, and map routing.

12
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Veil: Private Browsing Semantics without

Browser-side Assistance

2.1 Motivation

Web browsers are the client-side execution platform for a variety of online services. Many

of these services handle sensitive personal data like emails and financial transactions.

Since a user's machine may be shared with other people, she may wish to establish a

private session with a web site, such that the session leaves no persistent client-side state

that can later be examined by a third party. Even if a site does not handle personally

identifiable information, users may not want to leave evidence that a site was even

visited. Thus, all popular browsers implement a private browsing mode which tries to

remove artifacts like entries in the browser's "recently visited" URL list.

Unfortunately, implementations of private browsing mode still allow sensitive infor-

mation to leak into persistent storage [3, 52, 65, 83]. Browsers use the file system or a

SQLite database to temporarily store information associated with private sessions; this

data is often incompletely deleted and zeroed-out when a private session terminates,
allowing attackers to extract images and URLs from the session. During a private session,
web page state can also be reflected from RAM into swap files and hibernation files; this

state is in cleartext, and therefore easily analyzed by curious individuals who control a

user's machine after her private browsing session has ended. Simple greps for keywords

are often sufficient to reveal sensitive data [3, 52].

Web browsers are complicated platforms that are continually adding new features

(and thus new ways for private information to leak). As a result, it is difficult to implement

even seemingly straightforward approaches for strengthening a browser's implementation

of incognito modes. For example, to prevent secrets in RAM from paging to disk, the

browser could use OS interfaces like mlock() to pin memory pages. However, pinning

may interfere in subtle ways with other memory-related functionality like garbage

collecting or tab discarding [92]. Furthermore, the browser would have to use mlocko

indiscriminately, on all of the RAM state belonging to a private session, because the

13



browser would have no way to determine which state in the session is actually sensitive,
and which state can be safely exposed to the swap device.

In this dissertation, we introduce Veil, a system that allows web developers to imple-

ment private browsing semantics for their own pages. For example, the developers of a

whisteblowing site can use Veil to reduce the likelihood that employers can find evidence

of visits to the site on workplace machines. Veil's privacy-preserving mechanisms are

enforced without assistance from the browser-even if users visit pages using a browser's

built-in privacy mode, Veil provides stronger assurances that can only emerge from an

intentional composition of HTML, CSS, and JavaScript. Veil leverages five techniques to

protect privacy: URL blinding, content mutation, heap walking, DOM hiding, and state

encryption.

" Developers pass their HTML and CSS files through Veil's compiler. The compiler

locates cleartext URLs in the content, and transforms those raw URLs into blinded

references that are derived from a user's secret key and are cryptographically unlink-

able to the original URLs. The compiler also injects a runtime library into each page;

this library interposes on dynamic content fetches (e.g., via XMLHttpRequests),

and forces those requests to also use blinded references.

" The compiler uploads the objects in a web page to Veil's blinding servers. A user's

browser downloads content from those blinding servers, and the servers collaborate

with a page's JavaScript code to implement the blinded URL protocol. To protect

the client-side memory artifacts belonging to a page, the blinding servers also

dynamically mutate the HTML, CSS, and JavaScript in a page. Whenever a user

fetches a page, the blinding servers create syntactically different (but semantically

equivalent) versions of the page's content. This ensures that two different users of

a page will each receive unique client-side representations of that page.

" Ideally, sensitive memory artifacts would never swap out in the first place. Veil

allows developers to mark JavaScript state and renderer state as sensitive. Veil's

compiler injects heap walking code to keep that state from swapping out. The code

uses JavaScript reflection and forced DOM relayouts to periodically touch the

memory pages that contain secret data. This coerces the OS's least-recently-used

algorithm to keep the sensitive RAM pages in memory.

" Veil sites which desire the highest level of privacy can opt to use Veil's DOM

hiding mode. In this mode, the client browser essentially acts as a dumb graphical

terminal. Pages are rendered on a content provider's machine, with the browser

sending user inputs to the machine via the blinding servers; the content provider's

machine responds with new bitmaps that represent the updated view of the page.

14



Information leaks
Persistent, per-site client-side through client-side,

Browsing mode storage name-based interfaces Per-site browser RAM artifacts GUI interactions

Regular browsing Yes (cleartext by default) Yes Yes Locally processed
Regular incognito mode No Yes Yes Locally processed

Veil with encrypted
client-side storage, mutated Yes (always encrypted) No (blinding servers) Yes (but mutated and heap-walked) Locally processed
DOM content, heap walking
Veil with DOM hiding No No (blinding servers) No Remotely processed

Table 2-1: A comparison between Veil's two browsing modes, regular incognito browsing,
and regular browsing that does not use incognito mode.

In DOM hiding mode, the page's unique HTML, CSS, and JavaScript content is

never transmitted to the client browser.

e Veil also lets a page store private, persistent state by encrypting that state and by

naming it with a blinded reference that only the user can generate.

By using blinded references for all content names (including those of top-level web

pages), Veil avoids information leakage via client-side, name-centric interfaces like the

DNS cache [35], the browser cache, and the browser's address bar. Encryption allows a

Veil page 1 to safely leverage the browser cache to reduce page load times, or store user

data across different sessions of the private web page. A page that desires the highest

level of security will eschew even the encrypted cache, and use DOM hiding; in concert

with URL blinding, the hiding of DOM content means that the page will generate no

greppable state in RAM or persistent storage that could later be used to identify the page.

Table 2-1 summarizes the different properties of Veil's two modes for private browsing.

In summary, Veil is the first web framework that allows developers to implement

privacy-preserving browsing semantics for their own pages. These semantics are

stronger than those provided by native in-browser incognito modes; however, Veil pages

load on commodity browsers, and do not require users to reconfigure their systems or run

their browsers within a special virtual machine [32]. Veil can translate legacy pages to

more secure versions automatically, or with minimal developer assistance ( 2.5), easing

the barrier to deploying privacy-preserving sites. Experiments show that Veil's overheads

are moderate: 1.25x-3.25x for Veil with encrypted client-side storage, mutated DOM

content, and heap walking; and 1.2x-2.lx for Veil in DOM hiding mode.

2.2 Deployment Model

Veil uses an opt-in model, and is intended for web sites that want to actively protect

client-side user privacy For example, a whistleblowing site like SecureDrop [132] is

incentivized to hide client-side evidence that the SecureDrop website has been visited;

'We use the term Veil page to refer to a Veil-enabled page in this dissertation.
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strong private browsing protections give people confidence that visiting SecureDrop on

a work machine will not lead to incriminating aftereffects. As another example of a site

that is well-suited for Veil, consider a web page that allows teenagers to find mental

health services. Teenagers who browse the web on their parents' machines will desire

strong guarantees that the machines store no persistent records of private browsing

activity.

Participating Veil sites must explicitly recompile their content using the Veil compiler.

This requirement is not unduly burdensome, since all non-trivial frameworks for web

development impose a developer-side workflow discipline. For example, Aurelia [18],
CoffeeScript [25], and Meteor [70] typically require a compilation pass before content

can go live. To handle dynamic content that results from personalization on a webpage,

blinding servers can also help with the compilation process. We discuss this in more

detail in Section 2.4.7.

Participating Veil sites must also explicitly serve their content from Veil blinding

servers. Like Tor servers [29], Veil's blinding servers can be run by volunteers, although

content providers can also contribute physical machines or VMs to the blinding pool

( 2.4.2).

Today, many sites are indifferent towards the privacy implications of web browsing;

other sites are interested in protecting privacy, but lack the technical skill to do so; and

others are actively invested in using technology to hide sensitive user data. Veil targets

the latter two groups of site operators. Those groups are currently in the minority, but

they are growing. An increasing number of web services define their value in terms of

privacy protections [31, 33, 98, 99], and recent events have increased popular awareness

of privacy issues [91]. Thus, we believe that frameworks like Veil will become more

prevalent as users demand more privacy, and site operators demand more tools to build

privacy-respecting systems.

2.3 Threat Model

As described in Section 2.2, Veil assumes that a web service is actively interested in

preserving its users' client-side privacy. Thus, Veil trusts web developers and the blinding

servers. Veil's goal is to defend the user against local attackers who take control of a

user's machine after a private session terminates. If an attacker has access to the machine

during a private session, the attacker can directly extract sensitive data, e.g., via keystroke

logging or by causing the browser to core dump; such exploits are out-of-scope for this

dissertation.

Veil models the post-session attacker as a skilled system administrator who knows the

location and purpose of the swap file, the browser cache, and files like /var/log/* that

record network activity like DNS resolution requests. Such an attacker can use tools like

16



grep or find to look for hostnames, file types, or page content that was accessed during

a Veil session. The attacker may also possess off-the-shelf forensics tools like Mandiant

Redline [67] that look for traces of private browsing activity. However, the attacker lacks

the skills to perform a customized, low-level forensics investigation that, e.g., tries to

manually extract C++ data structures from browser memory pages that Veil could not

prevent from swapping out.

Given this attacker model, Veil's security goals are weaker than strict forensic denia-

bility [32]. However, Veil's weaker type of forensic resistance is both practically useful

and, in many cases, the strongest guarantee that can be provided without forcing users

to run browsers within special OSes or virtual machines. Veil's goal is to load pages

within unmodified browsers that run atop unmodified operating systems. Thus, Veil is

forced to implement privacy-preserving features using browser and OS interfaces that are

unaware of Veil's privacy goals. These constraints make it impossible for Veil to provide

strict forensic deniability. However, most post-session attackers (e.g., friends, or system

administrators at work, Internet cafes, or libraries) will lack the technical expertise to

launch FBI-style forensic investigations.

Using blinded URLs, Veil tries to prevent data leaks through system interfaces that

use network names. Examples of name-based interfaces are the browser's "visited pages"

history, the browser cache, cookies, and the DNS cache (which leaks the hostnames

of the web servers that a browser contacts [3]). It is acceptable for the attacker to

learn that a user has contacted Veil's blinding servers-those servers form a large pool

whose hostnames are generic (e.g., veil. io) and do not reveal any information about

particular Veil sites ( 2.4.2).

Veil assumes that web developers only include trusted content that has gone through

the Veil compiler. A page may embed third party content like a JavaScript library, but the

Veil compiler analyzes both first party and third party content during compilation ( 2.4.1).

Veil also assumes that blinding servers do not maliciously modify content uploaded by

the web developers.

Heap walking ( 2.4.5) allows Veil to prevent sensitive RAM artifacts from swapping

to disk. Veil does not try to stop information leaks from GPU RAM [58], but GPU RAM

is never swapped to persistent storage. Poorly-written or malicious browser extensions

that leak sensitive page data [59] are also outside the scope of this dissertation.

2.4 Design

As shown in Figure 2-2, the Veil framework consists of three components. The compiler

transforms a normal web page into a new version that implements static and dynamic

privacy protections. Web developers upload the compiler's output to blinding servers.
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<html>cs0

<JavScript eVeil bootstrap page

/html> Image Veil blinding
servers Overwrites

Veilcompler -, lscript>veilFetch("b4c...")</script>
a,4 <script>veilFetch(59f...')</script>

Z' <script>veilFetch("c29...")</script>
</html>

<html> 9o L cO
<script>veilFetch("b4c...i)</script> 90<tml
<scriptveilFetch('59f...1)</script'. 1.1- 00" Original page <link ... >
<script>veilFetch("c29...")</script> < stm >

</html t 2 .r> content restored <ip...>
I<img. ..

</html>

Figure 2-2: The Veil architecture (cryptographic operations omitted for clarity).

These servers act as intermediaries between content publishers and content users, en-

crypting content. To load the Veil page, a user first loads a small bootstrap page. The

bootstrap asks for a per-user key and the URL of the Veil page to load; the bootstrap then

downloads the appropriate objects from the blinding servers and dynamically overwrites

itself with the privacy-preserving content in the target page.

In the remainder of this section, we describe Veil's architecture in more detail. Our

initial discussion involves a simple, static web page that consists of an HTML file, a CSS

file, a JavaScript file, and an image. We iteratively refine Veil's design to protect against

various kinds of privacy leakage. Then, we describe how Veil handles more complex

pages that dynamically fetch and generate new content.

2.4.1 The Veil Compiler and veilFetcho

The compiler processes the HTML in our example page (Figure 2-2), and finds references

to three external objects (i.e., the CSS file, the JavaScript file, and the image). The

compiler computes a hash value for each object, and then replaces the associated HTML

tags with dynamic JavaScript loaders for the objects. For example, if the original image

tag looked like this:

<img src="http://foo.com/img.jpg"/>

the compiler would replace that tag with the following:

<script>veilFetch("b6aed...") ;</script>

where the argument to veilFetchO is the hash name of the image. At page load time,

when veilFetchO runs, it uses an XMLHttpRequest request to download the appro-

priate object from the blinding service. In our example, the URL in the XMLHttpRequest

might be http: //veil. io/b6aed. . ..

18



Such a URL resides in the domain of the blinding servers, not the domain of the

original content publisher. Furthermore, the URL identifies the underlying object by

hash, so the URL itself does not leak information about the original publisher or the

data contained within the object. So, even though the execution of veilFetch() may

pollute name-based interfaces like the DNS cache, a post-session attacker which inspects

those registries cannot learn anything about the content that was fetched. However, a

network-observing attacker who sees a veilFetcho URL can simply ask the blinding

server for the associated content, and then directly inspect the data that the user accessed

during the private session!

To defend against such an attack, Veil associates each user with a symmetric key kuser
(we describe how this key is generated and stored in Section 2.4.4). Veil also associates the

blinding service with a public/private keypair. When veilFetch(hashName) executes, it

does not ask the blinding service for hashName-instead, it asks for <hashName>ker,,- In

the HTTP header for the request, veilFetcho includes < kuser >PubKeyBServ, i.e., the

user's symmetric key encrypted by the blinding service's public key. When the blinding

service receives the request, it uses its private key to decrypt < kuser >PubKeyBServ

Then, it uses < kuser > to extract the hash name of the requested object. The blinding

service locates the object, encrypts it with kuser, and then sends the HTTP response back

to the client. Figure 2-3 depicts the full protocol.2 In practice, the blinding service's

public/private keypair can be the service's TLS keypair, as used by HTTPS connections

to the service. Thus, the encryption of kuser can be encrypted by the standard TLS

mechanisms used by an HTTPS connection.

Once veilFetcho receives the response, it decrypts the data and then dynamically

reconstructs the appropriate object, replacing the script tag that contained veilFetcho

with the reconstructed object. The compiler represents each serialized object using

JSON [26]; Figure 2-4 shows an example of a serialized image. To reinflate the image,
veilFetcho extracts metadata like the image's width and height, and dynamically in-

jects an image tag into the page which has the appropriate attributes. Then, veilFetch()

extracts the Base64-encoded image data from the JSON, and sets the src attribute of

the image tag to a data URL [68] which directly embeds the Base64 image data. This

causes the browser to load the image. veilFetchO uses similar techniques to reinflate

other content types.

This client-server protocol has several nice properties. First, it solves the replay

problem-if an attacker wants to replay old fetches, or guess visited URLs (as in a CSS-
2A stateful blinding service can cache decrypted user keys and eliminate the public key operation from

all but the user's first request.

19



Veil page Blinding service

HTTP GET <objectHash>kuser
Veil-key: <kuser>PubKey KService

HTTP 200 OK
<objectData>kuser

Figure 2-3: The veilFetcho protocol.

{"img-type": "jpeg",
"dataURI": "ab52f. ..

"tag-attrs": {"width": "20px",
"height": "50px"}}

Figure 2-4: A serialized <img> tag.

based history attack [53, 126]), the attacker will not be able to decrypt the responses

unless she has the user's key Also, since the blinding service returns encrypted content,

that encrypted content is what would reside in the browser cache. Thus, Veil pages can

now persist data in the browser cache such that only the user can decrypt and inspect that

content. Of course, a page does not have to use the browser cache-when a publisher

uploads an object to the blinding service, the publisher indicates the caching headers

that the service should return to clients.

In addition to uploading data objects like images to the blinding service, the com-

piler also uploads "root" objects. Root objects are simply top-level HTML files like

foo. com/index. html. Root objects are signed with the publisher's private key, and

are stored in a separate namespace from data objects using a 2-tuple key that consists of

the publisher name (foo. com) and the HTML name (index. html). Unlike data objects,

which are named by hash (and thus self-verifying), root objects change over time as the

associated HTML evolves. Thus, root objects are signed by the publisher to guarantee

authenticity and allow the blinding service to reject fraudulent updates.

2.4.2 The Blinding Service

In the previous section, we described the high-level operation of the blinding service. It

exports a key/value interface to content publishers, and an HTTP interface to browsers.

The HTTP code path does content encryption as described above. As described in Sec-

tion 2.4.6, the blinding service also performs content mutation to protect RAM artifacts

that spill to disk; mutation does not provide cryptographically strong protections, but

it does significantly raise the difficulty of post-session forensics. The blinding servers

also implement the DOM hiding protocol ( 2.4.8), which Veil sites can use to prevent

exposing any site-specific HTML, CSS, or JavaScript to client browsers.
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The blinding service can be implemented in multiple ways, e.g., as a peer-to-peer

distributed hash table [108, 115], a centralized service that is run by a trusted author-

ity like the EFF, or even a single cloud VM that is paid for and operated by a single

privacy-conscious user. In practice, we expect a blinding service to be run by an altruistic

organization like the EFF, or by altruistic individuals (as in Tor [29]), or by a large set of

privacy-preserving sites who will collaboratively pay for the cloud VMs that run the blind-

ing servers. Throughout the dissertation, we refer to a single blinding service veil. io

for convenience. However, independent entities can simultaneously run independent

blinding services.

Veil's publisher-side protocol is compatible with accounting, since the blinding service

knows which publisher uploaded each object, and how many times that object has been

downloaded by clients. Thus, it is simple for a cloud-based blinding service to implement

proportional VM billing, or cost-per-download billing. In contrast, an altruistic blinding

service (e.g., implemented atop a peer-to-peer DHT [108, 115]) could host anonymous

object submissions for free.

2.4.3 The Same-origin Policy

A single web page can aggregate content from a variety of different origins. As currently

described, Veil maps all of these objects to a single origin: at compile time, Veil downloads

the objects from their respective domains, and at page load time, Veil serves all of the

objects from https: //veil. io.

The browser uses the same-origin policy [109] to constrain the interactions between

content from different origins. Mapping all content to a single origin would effectively

disable same-origin security checks. Thus, Veil's static rewriter injects the sandbox

attribute [94] into all <iframe> tags. Using this attribute, the rewriter forces the browser

to give each frame a unique origin with respect to the same-origin policy This means that,

even though all frames are served from the veil. io domain, they cannot tamper with

each other's JavaScript state. In our current implementation of the compiler, developers

are responsible for ensuring that dynamically-generated frames are also tagged with

the sandbox attribute; however, using DOM virtualization [51, 72], the compiler could

inject DOM interpositioning code that automatically injects sandbox attributes into

dynamically-generated frames.

DOM storage [124] exposes the local disk to JavaScript code using a key/value inter-

face. DOM storage is partitioned by origin, i.e., a frame can only access the DOM storage

of its own domain. By assigning an ephemeral, unique origin to each frame, Veil seemingly

prevents an origin from reliably persisting data across multiple user sessions of a Veil page.

To solve this problem, Veil uses indirection. When a frame wants to access DOM storage,

it first creates a child frame which has the special URL https: //veil. io/domStorage.

The child frame provides Veil-mediated access to DOM storage, accepting read and write
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requests from the parent frame via postMessageO. Veil associates a private storage

area with a site's public key, and engages in a challenge/response protocol with a frame's

content provider before agreeing to handle the frame's IO requests; the challenge/re-

sponse traffic goes through the blinding servers ( 2.4.7). The Veil frame that manages

DOM storage employs the user's key to encrypt and integrity-protect data before writing

it, ensuring that post-session attackers cannot extract useful information from DOM

storage disk artifacts.

Since Veil assigns random, ephemeral origins to frames, cookies do not work in the

standard way. To simulate persistent cookies, an origin must read or write values in DOM

storage. Sending a cookie to a server also requires explicit action. For example, a Veil

page which contains personalized content might use an initial piece of non-personalized

JavaScript to find the local cookie and then generate a request for dynamic content

( 2.4.7).

2.4.4 The Bootstrap Page

Before the user can visit any Veil sites, she must perform a one-time initialization step

with the Veil bootstrap page (e.g., https: //veil. io). The bootstrap page generates

a private symmetric key for the user and places it in local DOM storage, protecting it

with a user-chosen password. Veil protects the in-memory versions of the password and

symmetric key with heap walking ( 2.4.5) to prevent these cleartext secrets from paging

to disk.

Later, the user determines the URL (e.g., foo. com/index. html) of a Veil site to

load. The user should discover this URL via an already-known Veil page like a directory

site, or via out-of-band mechanisms like a traditional web search on a different machine

than the one needing protection against post-session attackers; looking for Veil sites

using a traditional search engine on the target machine would pollute client-side state

with greppable content. Once the user possesses the desired URL, she returns to the

bootstrap page. The bootstrap prompts the user for her password, extracts her key from

local storage, and decrypts it with the password. The bootstrap then prompts the user

for the URL of the Veil page to visit. The bootstrap fetches the root object for the page.

Then, the bootstrap overwrites itself with the HTML in the root object. Remember that

this HTML is the output of the Veil compiler; thus, as the browser loads the HTML, the

page will use veilFetchO to dynamically fetch and reinflate encrypted objects.

Once the bootstrap page overwrites itself, the user will see the target page. How-

ever, no navigation will have occurred, i.e., the browser's address bar will still say

https: //veil. io. Thus, the browser's history of visited pages will never include the

URL of a particular Veil page, only the URL of the generic Veil bootstrap. The compiler

rewrites links within a page so that, if the user clicks a link, the page will fetch the
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relevant content via a blinded URL, and then deserialize and evaluate that content as

described above.

2.4.5 Protecting RAM Artifacts

As a Veil page creates new JavaScript objects, the browser transparently allocates physical

memory pages on behalf of the site. Later, the OS may swap those pages to disk if memory

pressure is high and those pages are infrequently used. JavaScript is a high-level, garbage-

collected language that does not expose raw memory addresses. Thus, browsers do not

define JavaScript interfaces for pinning memory, and Veil has no explicit way to prevent

the OS from swapping sensitive data to disk.

By frequently accessing sensitive JavaScript objects, Veil can ensure that the underly-

ing memory pages are less likely to be selected by the OS's LRU replacement algorithm.

Veil's JavaScript runtime defines a markAsSensitive(obj) method; using this method,

an application indicates that Veil should try to prevent obj from paging to disk. Internally,

Veil maintains a list of all objects passed to markAsSensitive (). A periodic timer walks

this list, accessing every property of each object using JavaScript reflection interfaces.

Optionally, markAsSensitive() can recurse on each object property, and touch every

value in the object tree rooted by obj. Such recursive traversals make it easier for devel-

opers to mark large sets of objects at once. JavaScript defines a special window object

that is an alias for the global namespace, so if an application marks window as recursively

sensitive, Veil will periodically traverse the entire heap graph that is reachable from

global variables. Using standard techniques from garbage collection algorithms, Veil can

detect cycles in the graph and avoid infinite loops.

markAsSensitive() maintains references to all of the sensitive objects that it has

ever visited. This prevents the browser from garbage collecting the memory and possibly

reusing it without applying secure deallocation [24]. At page unload time, Veil walks the

sensitive list a final time, deleting all object properties. Since JavaScript does not expose

raw memory, Veil cannot memset() the objects to zero, but deleting the properties does

make it more difficult for a post-session attacker to reconstruct object graphs.

Sensitive data can reside in the JavaScript heap, but it can also reside in the memory

that belongs to the renderer. The renderer is the browser component that parses HTML,

calculates the screen layout, and repaints the visual display. For example, if a page

contains an HTML tag like <b>Secret</b>, the cleartext string Secret may page out

from the renderer's memory. As another example, a rendered page's image content may

be sensitive.

The renderer is a C++ component that is separate from the JavaScript engine;

JavaScript code has no way to directly access renderer state. However, JavaScript can

indirectly touch renderer memory through preexisting renderer interfaces. For example,

if the application creates an empty, invisible <img> tag, and injects the tag into the page's
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HTML, the browser invalidates the page's layout. If the application then reads the size

of the image tag's parent, the browser is forced to recalculate the layout of the parent

tag. Recalculating the layout touches renderer memory that is associated with the parent

tag (and possibly other tags). Thus, Veil can walk the renderer memory by periodically

injecting invisible tags throughout the HTML tree (forcing a relayout) and then removing

those tags, restoring the original state of the application.

The browser's network stack contains memory buffers with potentially sensitive

content from the page. However, Veil only transmits encrypted data over the network, so

network buffers reveal nothing to an attacker if they page out to disk and are subsequently

recovered. Importantly, Veil performs heap walking on the user's password and symmetric

key. This prevents those secrets from paging out and allowing an attacker to decrypt

swapped out network buffers.

2.4.6 Mutation Techniques

Veil's main protection mechanism for RAM artifacts is heap walking, and we show in

Section 2.7.3 that heap walking is an effective defense during expected rates of swapping.

However, Veil provides a second line of defense via content mutation. Mutation ensures

that, each time a client loads a page, the page will return different HTML, CSS, and

JavaScript, even if the baseline version of the page has not changed. Mutation makes

grep-based attacks more difficult, since the attacker cannot simply navigate to a non-Veil

version of a page, extract identifying strings from the page, and then grep local system

state for those strings. Content mutation is performed by the blinding servers ( 2.4.2);

below, we briefly sketch some mutation techniques that the blinding servers can employ.

Note that blinding servers can mutate content in the background, before the associated

pages are requested by a client. For example, blinding servers can store a pool of mutated

versions for a single object, such that, when a client fetches HTML that refers to the object,

the blinding server can late-bind the mutated version that the page references. Using this

approach, mutation costs need not be synchronous overheads that are paid when a client

requests a page. In addition, when a user requests a Veil page, the blinding servers update

the corresponding hashes for the mutated objects in the root object before sending it to

the user to preserve the self-verification property of Veil objects described in Section 2.4.1.

JavaScript: To mutate JavaScript files, the blinding service uses techniques that are

adapted from metamorphic viruses [127]. Metamorphic viruses attempt to elude malware

scanners by ensuring that each instantiation of the virus has syntactically different code

that preserves the behavior of the base implementation. For example, functions can be

defined in different places, and implemented using different sequences of assembler

instructions that result in the same output.
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Our prototype blinding service mutates JavaScript code using straightforward ana-

logues of the transformations described above. JavaScript code also has a powerful

advantage that assembly code lacks-the eval () statement provides a JavaScript pro-

gram with the ability to emit new mutated code at runtime. Such "eval ()-folding" is

difficult to analyze [27], particularly if the attacker can only recover a partial set of RAM

artifacts for a page. 3

However, note that if a faulty blinding server forgets to mutate invocations of

veilFetch(hashName), then unscrambled object hash names may be paged out to

disk in JavaScript source code! If an attacker recovered such artifacts, he could directly

replay the object fetches that were made by the private session. Thus, JavaScript mutation

is a core responsibility for the blinding service.

HTML and CSS: The grammars for HTML and CSS are extremely complex and expressive.

Thus, there are many ways to represent a canonical piece of HTML or CSS [47]. For

example, HTML allows a character to be encoded as a raw binary symbol in a character

encoding like UTF-8 or Unicode-16. HTML also allows characters to be expressed as

escape sequences known as HTML entities. An HTML entity consists of the token "&#"
followed by the Unicode code point for a character and then a semicolon. For instance,
the HTML entity for "a" is "&#97;". The HTML specification allows an HTML entity to

have leading zeroes which the browser ignores; the specification also allows for code

points to be expressed in hexadecimal. Thus, to defeat simple exact-match greps of HTML

artifacts, the blinding service can randomly replace native characters with random HTML

entity equivalents.

There are a variety of more sophisticated techniques to obfuscate HTML and CSS.

For a fuller exploration of these topics, we defer the reader to other work [47]. Our

blinding service prototype uses random HTML entity mutation. It also obscures the HTML

structure of the page using randomly inserted tags which do not affect the user-perceived

visual layout of the page.

Images: The blinding service can automatically mutate images in several ways. For

example, the blinding service can select one of several formats for a returned image (e.g.,

JPEG, PNG, GIF, etc.). Each instantiation of the image can have a different resolution, as

well as different filters that are applied to different parts of the visual spectrum. Web

developers can also use application-specific knowledge to generate more aggressive

mutations, such as splitting a single base image into two semi-transparent images that

are stacked atop each other by client-side JavaScript. As explained in our threat model

( 2.3), Veil does not protect against leaks of the raw display bitmap that resides in GPU
3 Some .NET viruses already leverage access to the runtime's reflection interface to dynamically emit

code [118].
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memory; thus, the mutation techniques from above are sufficient to thwart grep-based

forensics on memory artifacts from the DOM tree. For a more thorough discussion of

image mutation techniques that thwart classification algorithms, we defer to literature

from the computer vision community [16].

2.4.7 Dynamic Content

At first glance, Veil's compile-time binding of URLs to objects seems to prevent a publisher

from dynamically generating personalized user content. However, Veil can support

dynamic content generation by using the blinding service as a proxy that sits between the

end-user and the publisher. More specifically, a Veil page can issue an HTTP request with

a msg-type of "forward". The body of the request contains two things: user information

like a site-specific Veil cookie ( 2.4.3), and a publisher name (e.g., foo. com). The page

gives the request a random hash name, since the page will not cache the response. When

the blinding service receives the request, it forwards the message to the publisher's

dynamic content server. The publisher generates the dynamic content from the provided

user information, and then sends the content to the blinding service, who forwards it

to the client as the HTTP response to the client's "forward" request. The client and the

publisher can encrypt the user information and the personalized content if the blinding

service is not trusted with user-specific data; in this scenario, the content provider's web

server is responsible for mutating objects before returning them to the client. Regardless,

the content provider must compile dynamically-generated content ( 2.4.1 and 2.5).

Another option is to start with the same forwarding protocol as above, but instead

of having the publisher compile and mutate the content, the publisher just sends the

unmodified user-specific content back to the blinding servers. Then, the blinding servers

compile and mutate the content before returning it to the user.

The question is which of the two options is better. More specifically, should the

blinding servers or the publishers perform compilation and mutation? Ideally, the end

host would manipulate the dynamic content as it might contain sensitive user information,

which can be encrypted on host and thus hidden from the blinding servers. However,

the downside is that all end hosts have to adopt Veil. Having the proxy perform the

manipulation solves this problem, but this scenario would require the proxy to handle a

heavier computation workload. The networking community has examined these tradeoffs

in a similar context, so we refer the reader to that specific research for a more in-depth

discussion [2, 80]. The performance overhead is minimal because only the dynamic

portions of the site have to be compiled during the page load, and more detailed numbers

are in Section 2.7.2.
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2.4.8 DOM Hiding

Heap walking reduces the likelihood that in-memory browser state will swap to disk.

Content mutation ensures that, if state does swap out, then the state will not contain

greppable artifacts from a canonical version of the associated page. However, some Veil

sites will be uncomfortable with sending any site-specific HTML, CSS, or JavaScript to

a client, even if that content is mutated. For example, a site might be concerned that a

determined sysadmin can inspect swapped-out fragments of mutated HTML, and try to

reverse-engineer the mutation by hand.

To support these kinds of sites, Veil provides a mode of operation called DOM hiding.

In DOM hiding mode, the user's browser essentially acts as a thin client, with the full

version of the page loaded on a remote server that belongs to the content provider. The

user's browser employs a generic, page-agnostic JavaScript library to forward GUI events

to the content provider through the blinding service; the content provider's machine

applies each GUI event to the server-side page, and then returns an image that represents

the new state of the page.

The advantage of DOM hiding is that site-specific HTML, CSS, and JavaScript is

never pushed to the user's browser. The disadvantage is that each GUI interaction now

suffers from a synchronous wide-area latency. For some Veil sites, this trade-off will be

acceptable. We characterize the additional interactive latency in Section 2.7.4.

Figure 2-5 provides more details about how Veil implements DOM hiding. The Veil

bootstrap page receives the URL to load from the user, as described in Section 2.4.4.

The bootstrap page then issues an initial HTTP request through the blinding servers to

the content provider. The content provider returns a page-agnostic remoting stub; this

stub merely implements the client-side of the remote GUI architecture. As the content

provider returns the stub to the user, the provider also launches a headless browser4

like PhantomJS [1] to load the normal (i.e., non-rewritten) version of the page. The

content provider associates the headless browser with a Veil GUI proxy. The proxy uses

native functionality in the headless browser to take an initial screenshot of the page.

The GUI proxy then sends the initial screenshot via the blinding servers to the user's

remoting stub. The stub renders the image, and uses page-agnostic JavaScript event

handlers to detect GUI interactions like mouse clicks and keyboard presses. The stub

forwards those events to the GUI proxy. The proxy replays those events in the headless

browser, and ships the resulting screen images back to the client. Note that a page which

uses DOM hiding will not use encrypted client-side browser caching ( 2.4.1) or DOM

storage ( 2.4.3)-there will be no page-specific client-side state to store.

4A headless browser is one that does not have a GUI. However, a headless browser does maintain the rest
of the browser state; for example, DOM state can be queried using normal DOM methods, and modified
through the generation of synthetic DOM events like mouse clicks.

27



display area page

GUI event Veil blinding
handlers + servers

image
rendering

Headlesslogic browser

Regular Remoting protocol
browser Veil GUI proxy

User Content provider

Figure 2-5: With DOM hiding, the client-side remoting stub sends GUI events to the

content provider, and receives bitmaps representing new page states. The page's raw

HTML, CSS, and JavaScript are never exposed to the client.

2.4.9 Discussion

Veil tries to eliminate cleartext client-side evidence of browsing activity. However, Veil

does not prevent the server-side of a web page from tracking user information. Thus, Veil

is compatible with preexisting workflows for ad generation and accounting (although

advertising infrastructure must be modified to use blinded URLs and "forward" messages).

If a Veil page wants to use the browser cache, Veil employs encryption to prevent

attackers from inspecting or modifying cache objects. However, an attacker may be able

to fingerprint the site by observing the size and number of its cached objects. Sun et

al. [116] provide a survey of techniques which prevent such fingerprinting attacks; their

discussion is in the context of protecting HTTPS sessions, but their defensive techniques

are equally applicable to Veil. The strongest defense is to reduce the number of objects in

a page. Veil's compiler can easily do this by inlining objects into HTML [71]; for example,

the compiler can directly embed CSS content that the original HTML incorporated via a

link to an external file. The blinding service can also inject noise into the distribution

28

Veil
remoting
stub

Bitmap
Normal

version of



of object sizes and counts. For example, when the service returns objects to clients,
it can pad data sizes to fixed offsets, e.g., 2KB boundaries or power-of-2 boundaries.

Alternatively, the blinding service can map object sizes for page X to the distribution

for object sizes in a different page Y [128]. All of these defensive approaches hurt

performance in some way-inlining and merging reduce object cacheability, and padding

increases the amount of data which must be encrypted and transmitted over the network.

Note that publishers must explicitly enable client-side caching, so paranoid sites can

simply disable this feature.

2.5 Porting Legacy Applications

In this section, we describe how Veil helps developers to port legacy web pages to the Veil

framework. In particular, we provide case studies which demonstrate how Veil's compiler

and runtime library can identify unblinded fetches and, in some cases, automatically

transform those fetches into blinded ones.

Raw XMLHttpRequests: Veil's compiler traverses a statically defined HTML tree, con-

verting raw URLs into Veil hash pointers. However, a page's JavaScript code can use

XMLHttpRequests to dynamically fetch new content. Veil's static HTML compiler does

not interpose on such fetches, so they will generate unblinded transfers that pollute the

client's DNS cache and browser cache.

In debugging mode, Veil's client library shims the JavaScript runtime [72] and

interposes on the XMLHttpRequest interface. This allows Veil to inspect the URLs in

XMLHttpRequests before the associated HTTP fetches are sent over the network. Veil

drops unblinded requests and writes the associated URLs to a log. A web developer can

then examine this log and determine how to port the URLs.

For static content, one porting solution is to leverage Veil's AJAX maps. Once the

debugging client library has identified a page's raw XMLHttpRequest URLs, the library

sends those URLs to Veil's HTML compiler. The compiler automatically fetches the

associated objects and uploads them to the object servers. Additionally, when the compiler

rewrites the HTML, it injects JavaScript code at the beginning of the HTML which maps

the raw XMLHttpRequest URLs to the hash names of the associated objects. Later, when

the page is executed by real users, Veil's shimmed XMLHttpRequests use the AJAX map

to convert raw URLs to blinded references. Veil will drop requests that are not mentioned

in the translation map. This approach is complete from the security perspective, since

all unblinded XMLHttpRequests will be dropped. However, for this approach to please

users (who do not want any requests to drop), Veil developers should use testing tools

with good coverage [74, 82, 110] to ensure that all of a page's XMLHttpRequest URLs

are mapped.
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AJAX maps are unnecessary for native Veil pages which always generate blinded

XMLHttpRequests. However, URL validation via XMLHttpRequest shimming is useful

when developers must deal with complex legacy libraries.

Dynamic tag generation: A legacy page can generate unblinded fetches by dynamically

creating new DOM nodes that contain raw URLs in src attributes. For example, using

document. createElement (), a page can inject a new <img> tag into its HTML. A page

can also write to the innerHTML property of a preexisting DOM node, creating a new

HTML subtree that is attached to the preexisting node. Neither type of tag creation will

be captured by XMLHttpRequest shimming.

XMLHttpRequest shimming is a specific example of a more general technique called

DOM virtualization. If desired, the entire DOM interface can be virtualized [4, 51, 73],
allowing Veil to interpose on all mechanisms for dynamic tag creation. However, full DOM

virtualization adds non-trivial performance overhead-the native DOM implementation

is provided by the browser in fast C++ code, but a virtualized DOM is implemented

by the application in comparatively slow JavaScript code. Furthermore, the full DOM

interface is much more complex than the narrow XMLHttpRequest interface.

Our current implementation of Veil supports XMLHttpRequest shimming, but not full

DOM virtualization. We leave the integration of Veil with a full virtualization system [50]

as future work.

Unblinded links in CSS: CSS files can directly reference image objects using the url()

statement, e.g., body{background: url('x. jpg ')}. After the Veil compiler processes

HTML files, it examines the associated CSS files and replaces raw image links with inline

data URLs. Thus, when the Veil page loads a post-processed CSS file, the image data will

be contained within the CSS itself, and will not require network fetches.

Angular.js: Angular [7] is a popular JavaScript framework that provides model-view-

controller semantics for web applications. Angular uses a declarative model to express

data bindings. For example, the {{}} operator is used to embed live views of the con-

troller into HTML. The HTML snippet <img src={{controller .x}}/> instructs An-

gular to dynamically update the content of the <img> whenever the JavaScript value

controller .x changes. Many other popular frameworks define a similar templating

mechanism [9, 100, 122].

The { { }} operator is not part of the official HTML grammar. To implement {{ } } and

other kinds of data binding, Angular uses a dynamic DOM node compiler. This compiler is

a JavaScript file that runs at the end of the page load, when the initial DOM tree has been

assembled. The compiler locates special Angular directives like {{ }}, and replaces them

with new JavaScript code and DOM nodes that implement the data binding protocol.
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Angular allows URLs to contain embedded {{}} expressions. Since these URLs are

not resolved until runtime, Veil's static compiler cannot directly replace those URLs with

blinded ones. However, Veil can rewrite Angular directives in a way that passes control to

Veil code whenever a data binding changes. In the previous <img> example, Veil rewrites

the tag as follows:

<img src="G" alt={{controller.x}}/>

The src attribute of the image is set to a network path which is known to be nonexistent

(but whose URL does not leak private information). When the page tries to load the

image, the load failure will invoke a custom onerror handler that Veil has attached to the

window object. That handler will read the value of the alt attribute, which will contain

the dynamic value of controller. x. Veil will then issue a blinded fetch for the associated

image. In parallel, Veil also sets an Angular $watch( statement to detect future changes

in {{controller .x}}; when a change occurs, Veil reads the new value, and then blindly

fetches and updates the image as before. This basic approach is compatible with the

template semantics of other popular JavaScript frameworks [9, 100, 122].

If dynamic Angular URLs can be drawn from an arbitrarily large set, Veil uses the

"forward" message type from Section 2.4.9 to bind the raw URL to a blinded one. If the

URL is drawn from a finite set, the compiler can upload the associated objects to the

blinding service, and then inject the page with a blinding map that translates resolved

Angular URLs to the associated hash names. The blinding service mutates that table in

the same way that it mutates the hash names passed to veilFetcho.

2.6 Implementation

Our Veil prototype consists of a compiler, a blinding server, a GUI proxy, a bootstrap page,
and a client-side JavaScript library that implements veilFetcho and other parts of the

Veil runtime.

We implemented the compiler and the blinding server in Python. The compiler

uses BeautifulSoup [104] to parse and mutate HTML; the compiler also uses the Es-

prima/Escodegen tool chain [48, 117] to transform JavaScript code into ASTs, and to

transform the mutated ASTs back into JavaScript. To implement cryptography, we use the

PyCrypto library [62] in the blinding server, and the native Chrome WebCrypto API [125]

in the Veil JavaScript library. We use OpenCV [87] to perform image mutation on the

blinding server.

To implement DOM hiding, we used Chrome running in headless mode as the browser

used by the content provider's GUI proxy The GUI proxy was written in Python, and
used Selenium [111] to take screenshots and generate synthetic GUI events within the

headless browser.
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Operation Speed

Generate an AES key and encrypt it with RSA public key (2048 bit) 0.75 ms

Encrypt 64 character hash (blinded reference) 0.16 ms

Throughput for decryption using AES-CTR 520 MB/s

Throughput for verifying SHA256 hash of file 220 MB/s

Figure 2-6: Overhead for client-side JavaScript cryptography using the WebCrypto

API [125].

2.7 Evaluation

In this section, we evaluate Veil's raw performance, and its ability to safeguard user

privacy. Using forensic tools and manual analysis, we find that blinded references and

encrypted objects are sufficient to prevent information leakage through the browser

cache and name-based interfaces like the DNS cache. We show that Veil's heap walking

techniques are effective at preventing secrets from paging out unless system-wide memory

pressure is very high. We also demonstrate that the performance of our Veil's prototype

is acceptable, with page load slowdowns of 1.2x-3.25x.

All performance tests ran on a machine with a 2 GHz Intel Core i7 CPU with 8GB of

RAM. Unless otherwise specified, those tests ran in the Chrome browser, and we ran each

experiment 100 times and measured the average. We configured Veil to use 2048-bit

RSA and 128-bit AES in CTR mode. The phrase "standard Veil mode" corresponds to

non-DOM hiding mode.

2.7.1 Performance Microbenchmarks

Veil uses cryptography to implement blind references and protect the data that it places

in client-side storage. Figure 2-6 depicts the costs for those operations. Before a user can

load a Veil page, she must generate an AES key and encrypt it with the blinding service's

RSA key. This one time cost is 0.75 ms. The remaining three rows in Figure 2-6 depict

cryptographic overheads that Veil incurs during a page load.

" For veilFetcho to generate a blinded reference, it must encrypt a hash value

with the user's AES key This operation took 0.16 ms.

" When veilFetcho receives a response, it must decrypt that response with the

AES key That operation proceeds at 520 MB/s. For example, decrypting a 300 KB

image would require 0.6 ms.

" veilFetcho also validates the hash of the downloaded object. This proceeds at

220 MB/s, requiring 1.3 ms for a 300 KB image.
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Operation Speed

Decrypt AES key (2048 bit RSA) 3.1 ms
Decrypt 64 char hash (blinded reference) 0.04 ms
Throughput for encryption using AES-CTR 62 MB/s

Figure 2-7: Overhead for server-side operations using PyCrypto [62].

Figure 2-7 depicts the cryptography overheads on the server-side of the protocol. End-to-

end, fetching a 300 KB object incurs roughly 10 ms of cryptographic overhead.

2.7.2 Performance Macrobenchmarks: Standard Veil Mode

To measure the increase in page load time that Veil imposes, we ported six sites to

the Veil framework. Washington Post is the biggest site that we ported, and contains

large amounts of text, images, and JavaScript files. Imgur is a popular image-sharing

site; compared to the other test sites, it has many images but less text. Woot! is an

e-commerce site that has a large amount of text and images, but comparatively few

scripts. Piechopper is a highly dynamic site that uses Angular ( 2.5). Piechopper is

script-and-text heavy, but has few images. University represents a university's website.

This site is the smallest one that we tested, although it uses CSS with raw URLs that Veil

must blind ( 2.5). Google represents the results page for the search term "javascript."

Most of that page's JavaScript and CSS objects are inlined into the HTML, meaning that

they do not require network fetches.

To port a preexisting site to Veil, we had the compiler download the top-level HTML

file and extract the URLs which referenced external objects like images. The compiler

downloaded those objects from the relevant servers. After calculating hashes for those

objects (and converting raw URLs into blinded ones), the compiler uploaded the objects

to the blinding server. Since preexisting sites were not designed with Veil in mind, they

occasionally fetched content dynamically, e.g., via unblinded <img> tags generated by

JavaScript at runtime. For sites like this, we observed which objects were dynamically

fetched, and then manually handed them to the compiler for processing; we also man-

ually rewrote the object fetch code to refer to the compiler-generated object names.

Native Veil pages would invoke the Veil runtime library to dynamically fetch such content,
avoiding the need for manual rewriting.

Page load time: Figure 2-8 depicts the load times for three versions of each site: the

regular version of the site, a Veil port that does not perform cryptography, and a Veil port

with cryptography enabled. The regular versions of a page were loaded from a localhost
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Figure 2-8: Page load times for each website: regular; with Veil (but no cryptography);
with Veil (and using cryptography).

webserver, whereas the Veil pages were loaded from a localhost blinding server. This

setup isolated the overhead of cryptography and content mutation.

As shown in Figure 2-8, page loads using Veil with no cryptography were 1.25x-2x

slower. This is mostly due to extra computational overhead on the client. For exam-

ple, parsing overheads increased because, as we quantify below, mutated objects were

larger than the baseline objects; for images, the browser also had to Base64-decode the

bitmaps before displaying them. Veil with cryptography added another slowdown factor

of 1.lx-1.63x, with higher penalties for pages with many objects (regardless of their

type). The end-to-end slowdown for the full Veil system was 1.25x-3.25x. Note that these

slowdowns were for browsers with cold caches; Veil's overhead would decrease with

caching, since server-side cryptography could be avoided. Also note that the University

site was a challenging case for Veil, because the site was small in absolute size, but

has many small images. Thus, Veil's per-blinded-reference cryptographic overheads (see

Figures 2-6 and 2-7) were paid more frequently. A Veil-optimized version of the site

would use image spriting [42] to combine multiple small images into a single, larger

one.

34

WootImgur University PiecWaPo

M Regular
~= Veil-nocrypto
M Veil-crypto

p o
hopper Google



M Images
Index file

- Javascripta)
N

V)

0

0
0

N

0

0

Imgur Woot WaPo
~1= I

University Piechopper

10

Google

Figure 2-9: Size increases for Veil's mutated objects.

Dynamic content overhead: As described in Section 2.4.7, dynamic content has some

overhead because it has to be compiled during the page load. Fortunately, the compilation

cost for a single dynamic object is typically small. For example, compiling a 100 KB image

requires Base64-encoding it and generating a few metadata fields, taking roughly 75 ms.

Content providers or blinding servers can compile multiple dynamic objects in parallel.

Object growth: Figure 2-9 shows how object sizes grew after post-processing by Veil. Im-

ages experienced two sources of size expansion: mutation and Base64 encoding. Base64

encoding resulted in a 1.33x size increase. Our Veil prototype implements mutation

via the addition of Gaussian noise, with the resulting size increases dependent on the

image format. PNG is lossless, so the addition of noise generated a 10x size increase. In

contrast, JPG is a lossy format, so noise injection resulted in less than a 2x size increase.

The Piechopper and Google pages contained many PNGs, and thus suffered from worse

image expansion than the other test pages.

As shown in Figure 2-9, mutated JavaScript files typically remained the same size,

or became somewhat smaller-mutation adds source code, but Veil passes the mutated
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Figure 2-10: Scalability comparison between a blinding server and a regular web server.

code through a minifier which removes extraneous whitespace and rewrites variable

names to be shorter. HTML suffered from larger size increases, because mutation tricks

like random HTML entity encoding strictly increase the number of characters in the HTML.

Server-side scalability: Figure 2-10 shows the HTTP-level request throughput of a Veil

blinding server, compared to the baseline performance of a blinding server that performed

none of Veil's added functionality (and thus acted as a normal web server). HTTP requests

were generated using ab, the Apache benchmarking tool [121].

As shown in Figure 2-10, Veil reduces web server throughput by roughly 70% due

to the additional cryptographic operations that Veil must perform. By quantifying Veil's

scalability penalty for a fixed client load compared to a regular web server, blinding server

hosts can know the additional servers needed to handle a specific load on a Veil page.

Remember that when Veil operates in regular (i.e., non-DOM hiding mode), Veil blinding

servers mutate content in the background, out of the critical path for an HTTP response;

thus, the slowdowns in Figure 2-10 are solely caused by synchronous cryptographic

operations.

2.7.3 Preventing Information Leakage

Name-based interfaces: To determine how well Veil protects user privacy, we created a
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Figure 2-11: The effectiveness of heap walking to prevent secrets from paging out.

baseline VM image which ran Lubuntu 13.10 and had two different browsers (Firefox

and Chrome). In the baseline image, the browsers were installed, but they had not been

used to visit any web pages. We then ran a series of experiments in which we loaded

the baseline image, opened a browser, and then visited a single site. We took a snapshot

of the browser's memory image using gcore, and we also examined disk state such as

the browser cache and the log entries for DNS resolution requests. We did this for the

regular and Veil-enabled versions of each page described in Section 2.7.2.

In all tests, the Veil pages were configured to store data in the browser cache, and

in all tests, the cache only contained encrypted data at the end of the private session.

Greps through the memory snapshots and DNS records did not reveal cleartext URLs

or hostnames. Unsurprisingly, the regular versions of the web pages left unencrypted

data in the browser cache, and various cleartext URLs in name-based data stores. To

cross-validate these results, we repeated these experiments on Windows, and used the

Mandiant Redline forensics tool [67] to search for post-session artifacts in persistent

storage. Redline confirmed that the only cleartext URL in the browser history was the

URL for the Veil bootstrap page, and that all other URLs were blinded.

37



Protecting RAM artifacts: To determine whether heap walking can prevent secrets from

paging out, we wrote a C program which gradually increases its memory pressure. The

program allocates memory without deallocating any, and periodically, it reads the first

byte in every allocated page to ensure that the OS considers the page to be hot. We

ran the program inside of a QEMU VM with 1 GB of swap space and 1 GB of RAM. We

also ran a browser inside of the VM. The browser had 20 open tabs. Each tab had a

Uint8Array representing a tab-specific AES key, and a tab-specific set of strings in its

HTML. The control experiments did not do heap walking. The test experiments used

Veil's heap walking code to touch the AES key and the renderer state.

The VM used the pwritev system call to write memory pages to the swap file. To

determine whether secrets paged out as memory pressure increased, we used strace to

log the pwritev calls. Since each tab contained a set of unique byte patterns, we could

grep through our pwritev logs to determine whether secret RAM artifacts hit the swap

file. We ran experiments for increasing levels of memory pressure until the VM became

unresponsive, at roughly 75% in-use swap space.

Figure 2-11 shows the results. The x-axis varies the memory pressure, and the y-axis

depicts the number of tabs which suffered data leakage, as determined by greps through

the pwritev log. Heap walking successfully kept all of the secret keys from paging out,
up to the maximum 75% of in-use swap space. Without heap walking, keys begin to page

out at 35% swap utilization; by 50%, all keys had swapped out. Note that the data points

do not perfectly align on the x-axis due to nondeterminism in when the VM decides to

swap data out.

Heap walking was less effective for renderer memory pages. Those pages swapped

out earlier and immediately in the control case, around 35% swap utilization. With Veil,
renderer state also began to leak at 35% utilization, but Veil still managed to safeguard

12 out of 20 tabs up to 63% swap utilization.

2.7.4 DOM Hiding

When Veil runs in DOM hiding mode, the client-side page contains no site-specific,

greppable content. Thus, Veil does not need to perform heap walking (although Veil

does use blinding servers to eliminate information leakage through name-based system

interfaces). We loaded our test pages in DOM hiding mode, and confirmed the absence

of site-specific content by grepping through VM images as we did in Section 2.7.3.

Figure 2-12 evaluates the impact of DOM hiding on a page's initial load. The client,

the blinding server, and the content server ran on the same machine, to focus on com-

putational overheads. Figure 2-12 demonstrates that DOM hiding imposed moderate

overheads, with page load times increasing by 1.2x-2.lx. When Veil runs in DOM hiding
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Figure 2-12: DOM hiding's impact on page load times.

mode, image mutation has to be performed synchronously, for each screenshot that is

returned to a client; screenshotting requires 150ms-180ms, whereas image mutation

requires 170ms-200ms.

Figure 2-13 shows the time that a DOM-hiding page needed to respond to a mouse

click. Responding to such a GUI event required the browser to forward the event to the

content provider, and then receive and display the new screenshot. Once again, the bulk

of the end-to-end time was consumed by the screenshot capture and the image mutation

at the content provider.

Privacy-sensitive users and web sites are often willing to trade some performance for

better security. For example, fetching an HTTP object through Tor results in HTTP-level

RTTs of more than a second [123]. Thus, we believe that the performance of Veil's DOM

hiding mode is adequate for many sites. However, Veil's performance may be too slow for

sites that are highly interactive, or require content servers to frequently and proactively

push new images (e.g., due to animations in a page). Our next version of the Veil GUI

proxy will grab screenshots directly from the content server's framebuffer [20] instead of

via the comparatively-slow rendering API that browsers expose [76]; this implementation

change will greatly reduce screenshotting overhead.
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Figure 2-13: The time that a DOM-hiding page needs to respond to a mouse click event.

2.7.5 Network Latency

Figure 2-14 uses Chrome's built-in network emulation framework [43] to compare load

times for three versions of the Imgur page: a normal version; a Veil version which used

content mutation, heap walking, and encrypted storage; and a Veil version which used

DOM hiding. The DOM hiding variant was largely insensitive to increased network

latency, since loading a page only required two HTTP-level round trips (one to fetch the

bootstrap page, and another to fetch the initial screenshot). The other variant of Veil

was more sensitive to network latency The reason is that, in this version of the page, the

bootstrap code had to fetch multiple objects, all of which were served from the same

blinding server origin (https: //veil. io). Browsers cap the number of simultaneous

connections that a client can make to a single origin, so the Veil page could not leverage

domain sharding [56] to circumvent the cap. This limitation is not fundamental to

Veil's design, since content providers can shard across multiple blinding server domains

(e.g., https://a.veil. io and https://b.veil. io). However (and importantly), if

a content provider wishes to use sharding, the provider must be careful to avoid bias

in the mapping of objects to domains-otherwise, per-site fingerprints may arise in a
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Figure 2-14: The impact of emulated network latency on page load times. In all cases,
the download bandwidth cap was 30 Mbps, and the upload bandwidth cap was 10 Mbps,
emulating a broadband connection. Bandwidth was not varied because page load times

are largely governed by network latency, not bandwidth [37].

page's access patterns to various domains. Thus, for some content providers, domain

sharding may not be worth the potential loss in security.

Domain sharding is also relevant to Content Security Policies (CSPs) [75]. A CSP

allows a page to restrict the origins which can provide specific types of content. For

example, a CSP might state that a page can only load JavaScript from https: //a. com,

and CSS from https: //b. com. A CSP is expressed as a server-provided HTTP response

header; the CSP is enforced by the browser. CSPs are useful for preventing cross-site

scripting attacks, but require a page to be able to explicitly shard content across domains.

As discussed in the last paragraph, Veil can enable sharding at the cost of reduced security.

2.8 Related Work

To minimize information leakage via RAM artifacts, applications can use best practices

like pinning sensitive memory pages, and avoiding excessive copying of secret data [46].
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Operating systems and language runtimes can also scrub deallocated memory as quickly

as possible [24]. Web browsers do not expose low-level OS interfaces to JavaScript code,

so privacy-preserving sites cannot directly access raw memory for the purposes of secure

deallocation or pinning. Determining the best way to expose raw memory to JavaScript

is an open research problem, given the baroque nature of the same-origin policy, and the

fact that the browser itself may contend with JavaScript code for exclusive access to a

memory page (e.g., to implement garbage collection or tab discarding [92]).

An OS can protect RAM artifacts by encrypting the swap space or the entire file

system [17, 101, 133]. Veil's content mutation and DOM hiding allow Veil to protect

RAM artifacts even when a browser does not run atop an encrypted storage layer. Content

mutation obviously does not provide a cryptographically strong defense, but DOM hiding

allows a Veil site to avoid sending any site-specific, greppable content to a client browser.

CleanOS [119] is a smartphone OS that protects sensitive data when mobile devices

are lost or stolen. CleanOS defines sensitive data objects (SDOs) as Java objects and

files that contain private user data. CleanOS observes which SDOs are not actively being

used by an application, and encrypts them; the key is then sent to the cloud, deleted

from the smartphone, and only retrieved when the SDOs become active again. SDOs

could potentially be used as a building block for private browsing. However, SDOs are

insufficient for implementing blinded references unless the SDO abstraction is spread

beyond the managed runtime to the entire OS.

Lacuna [32] implements private sessions by running applications inside of VMs.

Those VMs execute atop the Lacuna hypervisor and a modified Linux host kernel. The

hypervisor and the host kernel collectively implement "ephemeral" 10 channels. These

encrypted channels allow VMs to communicate with hardware or small pieces of trusted

code, but only the endpoints can access raw data-user-mode host processes and the

majority of the host kernel can only see encrypted data. Lacuna also encrypts swap

memory. Upon VM termination, Lacuna zeros the VM's RAM space and discards the

ephemeral session keys. PrivExec [86] is similar to Lacuna, but is implemented as an OS

service instead of a hypervisor. Lacuna and PrivExec provide stronger forensic deniability

than Veil. However, these systems force layperson end-users to install and configure a

special runtime; furthermore, private applications cannot persist data across sessions

because keys are ephemeral.

UCognito [130] exposes a sandboxed file system to a private browsing session. The

sandboxed file system resides atop the normal one, absorbing writes made during private

browsing. When the browsing session terminates, UCognito discards the writes. Like

PrivExec and Lacuna, UCognito requires a modified client-side software stack. UCognito

also does not protect against information leakage via the non-sandboxed parts of the

host OS. For example, unmodified RAM artifacts may page to the native swap file; DNS

requests are exposed to the host's name resolution subsystem.

42



Amazon Silk [5] is a browser used on Amazon Kindles and uses a technique called

remote dependency resolution (also known as split browsing) [81, 113]. When the Silk

client issues an HTTP request for a web page, the request actually goes to an Amazon-

maintained proxy that runs in the cloud. The proxy then uses a headless browser to

load the requested page. Since the proxy lives in the core of the Internet, the proxy

can fetch objects over low-latency network paths. As the proxy fetches these objects,

they are streamed back to the user. This technique allows Silk to avoid high last-mile

latencies afflicting the path between the client and Internet core. However, the client-side

Silk browser still loads regular DOM objects, like HTML, Javascript, CSS, etc., thus not

implementing DOM hiding that exists in Veil. It also does not protect RAM artifacts or

provide content mutation.

Collaborative browsing frameworks [64, 95] allow multiple users with different

browsers to simultaneously interact with a shared view of a web page. Like these frame-

works, Veil's DOM hiding mode has to synchronize the GUI inputs and rendering activity

that belong to a canonical version of a page. However, Veil only needs to support one

remote viewer. More importantly, Veil's DOM hiding mode only exposes the client browser

to generic JavaScript event handlers, as well as a bitmap display; in contrast, prior col-

laborative browsing frameworks replicate a site-specific, canonical DOM tree on each

client browser. Prior frameworks also do not use blinding servers to hide information

from client-side, name-centric interfaces like the DNS cache.

Silo [71] and the framework of Jiang et al [54] use client-side bootstrap pages which

dynamically overwrite themselves with new content. Silo uses this technique to layer a

delta-encoding protocol atop HTTP; Jiang's system uses dynamic assembly as a crude

copy-protection mechanism, so that users who right click and "Save as" a page will only

store the initial bootstrap HTML and not the dynamically assembled content. By itself,
dynamic assembly cannot provide strong privacy guarantees. For example, blinded URLs

are needed to prevent information leakage through the DNS cache and the browser

cache.

2.9 Conclusions

Veil is the first web framework that allows developers to implement private-session

semantics for their pages. Using the Veil compiler, developers rewrite pages so that all

page content is hosted by blinding servers. The blinding servers provide name indirection,

preventing sensitive information from leaking to client-side, name-based system inter-

faces. The blinding servers mutate content, making object fingerprinting more difficult;

rewritten pages also automatically encrypt client-side persistent storage, and actively

walk the heap to reduce the likelihood that in-memory RAM artifacts will swap to disk in

cleartext form. In the extreme, Veil transforms a page into a thin client which does not

43



include any page-specific, greppable RAM artifacts. Veil automates much of the effort

that is needed to port a page to Veil, making it easier for web developers to improve the

privacy protections of their applications.
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THREE

Splinter: Practical, Private Web Application

Queries

3.1 Motivation

Web services are collecting increasing amounts of data, and this data contains information

of interest to both users and businesses. For example, users can access crowdsourced

information, such as the most up-to-date traffic data to determine the fastest route.

Similarly, businesses can also leverage this crowdsourced data to extract cross-user

trends that would be difficult or impossible to detect without this data. Many of these

applications that crowdsource data currently allow users to query their datasets. For

example, users might search WebMD for some information on their medical condition.

They might also search Yelp to find a restaurant for dinner. Since this data can be

valuable, an increasing number of web services with crowdsourced data are also allowing

businesses and researchers to query their dataset. Google, for instance, has an API that

allows organizations to query its map data to improve business decisions. However, the

problem is that these queries can reveal sensitive information, such as medical conditions,
user behavior, and business strategy [77, 78].

To solve this problem, we introduce Splinter, a practical system that allows servers to

properly respond to queries without servers learning the sensitive information present

in the queries. In Splinter, each provider hosts a copy of the dataset (Figure 3-1). Then,
the user' divides each query into shares and sends them to these providers. As long

as any one of the providers is honest (does not collude with the others), the providers

cannot discover sensitive information in the query. However, given responses from all

the providers, the user can compute the answer to her query.

Previous private query systems have generally not achieved practical performance

because they use expensive cryptographic primitives and protocols. For example, systems

'In this chapter of the dissertation, we use the term "user" broadly to refer to a business, a researcher,
and end-user of an application, i.e. any client of Splinter.
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Figure 3-1: Splinter architecture. The Splinter client splits each user query into shares

and sends them to multiple providers. It then combines their results to obtain the final

answer. The user's query remains private as long as any one provider does not collude

with the others.

based on techniques such as Private Information Retrieval (PIR) [22, 84, 103] require

many round trips and high bandwidth for complex queries, while systems based on

garbled circuits [15, 57, 129] have a high computational cost. These approaches are

especially costly for mobile clients on high-latency networks.

To make private queries efficient, Splinter extends a recent cryptographic primitive

called Function Secret Sharing (FSS) [19, 39] for private queries. FSS allows the client

to split functions into shares that keep parameters of the function hidden unless all the

providers collude. With judicious use of FSS, many queries can be answered in only a

single network round trip with low CPU and bandwidth costs.

Splinter extends previous work on FSS in two important ways. First, prior work has

only demonstrated efficient FSS protocols for point and interval functions with additive

aggregates such as SUMs [19]. We present efficient protocols that support a more complex

set of non-additive aggregates such as MAX/MIN and TOPK. These protocols let Splinter

support a subset of SQL that can capture many popular online applications.
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Second, we develop an optimized implementation of FSS that leverages AES-NI [107]
instructions and multicore CPUs. For example, we use one-way compression functions,

a cryptographic technique that utilizes modern AES instruction sets. As a result, our

implementation is 2.5x faster per core than a naive implementation of FSS. Together,

these optimizations let Splinter query datasets with millions of records at sub-second

latency.

We evaluate Splinter by implementing three applications atop it: a restaurant review

site similar to Yelp, an airline ticket search, and a map routing service. For all of our

applications, Splinter can execute queries in less than 1.6 seconds, at a cost of less than

0.05 cents in server resources on Amazon EC2.

3.2 Splinter Architecture

In this section, we describe Splinter's principals and security goals. Then, we discuss

what services are amenable to Splinter and conclude with the threat model.

3.2.1 Splinter Principals

There are three main principals in Splinter: the data owners, the providers, and the user.

Data owners, such as Yelp and Google, collect non-sensitive data. By non-sensitive,
we mean the data is not sensitive to the users that provide. Although the data itself might

not be sensitive, data owners might restrict user access to this data because it is valuable

to the data owner. For example, Google Maps traffic data might not be sensitive, but

Google probably does not want to release this data publicly because it has business value.

Providers host a copy of the data. They can retrieve this data from a public repository

or mirror site, or license it from data owners. In both scenarios, the providers store the

data in cleartext.

Users issue queries to the provider. For a given user query, all the providers have to

execute it on the same view of the data. Maintaining data consistency from mirror sites

is beyond the scope of this dissertation, but standard techniques can be used [21, 120].

3.2.2 Security Goals

The goal of Splinter is to hide sensitive parameters in a user's query. Specifically, Splinter

lets users run parametrized queries, where both the parameters and query results are

hidden from providers. For example, consider the following query, which finds the 10

cheapest flights between a source and destination:

SELECT TOP 10 flightid FROM flights

WHERE source = ? AND dest = ?

ORDER BY price
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Splinter hides the information represented by the questions marks, i.e., the source and

destination in this example. The column names being selected and filtered are not hidden.

The number of conditions in the WHERE clause is also not hidden. Finally, Splinter also

hides the query's results from the providers-otherwise, the providers can use the results

to infer the source and destination. Splinter supports a subset of the SQL language, which

we describe in Section 3.4.

The easiest way to achieve these properties would be for users to download the whole

database and run the queries locally. However, in Section 3.2.3, we explain why doing

this might not be feasible.

3.2.3 Splinter-amenable Web Services

Although Splinter can handle complex queries, it is not meant as a private query system

for all SQL-like databases. Splinter's use cases are similar to those of PIR. More specifically,

the queries contain sensitive user information and need to be protected, but the database

itself does not contain sensitive user information. For example, users might not want

to reveal where they are traveling to Google when searching for directions. Similarly,

data analysts might want to hide their query parameters because they might leak trade

secrets for their algorithms.

Splinter works well for applications with large databases and regular updates because

downloading the whole database and receiving updates would be more expensive in

terms of bandwidth than querying the Splinter service. Services like flight price lookups,

map navigation, and domain name availability searches are good fits for Splinter. In

Section 3.8.2, we discuss and quantify the "break even" point for our case studies.

Even if it is more efficient for the user to download the whole database and updates,

Splinter can still be useful. Many applications might enforce rate limiting or query

restrictions to prevent users from accessing the whole database because the data might

contain proprietary information. For example, Yelp might allow only limited querying

for data scientists through an API but not give complete access to their dataset. In this

scenario, attempting a full database download would be too expensive in comparison to

employing the normal client-server query interface.

3.2.4 Threat Model

Splinter keeps the parameters in the user's query hidden as long as at least one of the

user-chosen providers does not collude (share information or communicate) with the

others. Splinter also assumes these providers are passive adversaries: a provider can

observe the interactions between itself and the client, but Splinter does not protect

against providers returning incorrect results or maliciously modifying the dataset.
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We assume the data on the providers is stored in cleartext and that the user com-

municates with each provider through a secure channel (e.g., using SSL), and that the

user's Splinter client is uncompromised. Our cryptographic assumptions are standard.

3.3 Function Secret Sharing

In this section, we give an overview of Function Secret Sharing (FSS), the main primitive

used in Splinter, and show how to use it in simple queries. Sections 3.4 and 3.5 then

describe Splinter's full query model and our new techniques for more complex queries.

3.3.1 Overview of Function Secret Sharing

Function Secret Sharing [19] lets a client divide a function f into function shares

fl, f2, ... ,fk so that k parties can help evaluate f without learning certain parameters.
These shares have the following properties:

" They are close in size to a description of f .

" They can be evaluated quickly (similar in time to f).

k
" They sum to the original function f . That is, for any input x, E fi(x) = f (x). We

assume that all computations are done over Z2,, where m is the number of bits in

the output range.

" Given any k - 1 shares fi, an adversary cannot recover the parameters of f .

Although it is possible to perform FSS for arbitrary functions [30], practical FSS

protocols only exist for point and interval functions. These take the following forms:

" Point functions fa are defined as fa(x) = 1 if x = a or 0 otherwise.

* Interval functions are defined as fa,b(x) = 1 if a 5 x b or 0 otherwise.

In both cases, FSS keeps the parameters a and b private: an adversary can tell that it

was given a share of a point or interval function, but cannot find a and b. In Splinter,
we use the FSS scheme of Boyle et al. [19]. Under this scheme, the shares fi for both

functions require O(A) bits to describe and O(f) bit operations to evaluate for a security

parameter A (the size of cryptographic keys), and f is the number of bits in the input

domain.
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Figure 3-2: Overview of how FSS can be applied to database records on two providers to

perform a COUNT query.

3.3.2 Using FSS for Database Queries

We can use the additive nature of FSS shares to run private queries over an entire table

in addition to a single data record. We illustrate here with two examples.

Example: COUNT query. Suppose that the user wants to run the following query on a

table served by Splinter:

SELECT COUNT(*) FROM items WHERE ItemId = ?

Here, '?' denotes a parameter that the user would like to keep private; for example,

suppose the user is searching for ItemId = 5, but does not want to reveal this value.

To run this query, the Splinter client defines a point function f (x) = 1 if x = 5 or

0 otherwise. It then divides this function into function shares fi,...,fk and distributes
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ItemId Price f1 (ItemId) f2 (ItemId)

5 8 10 -9
1 8 3 -3
5 9 10 -9

Figure 3-3: Simple example table with outputs for the FSS function shares fl, f2 applied
to the ItemId column. The function is a point function that returns 1 if the input is 5,
and 0 otherwise. All outputs are integers modulo 2 ' for some m.

them to the k providers, as shown in Figure 3-2. For simplicity, suppose that there are two

providers, who receive shares fi and f 2 . Because these shares are additive, we know that

fi(x) +f 2 (x) = f (x) for every input x. Thus, each provider p can compute fp(ItemId)

for every ItemId in the database table, and send back r= j_1 fp(ItemIdi) to the client

where n is the number of database records. The client then computes r1 + r2 , which is

equal to Z=1 f (ItemIdj), that is, the count of all matching records in the table.

To make this more concrete, Figure 3-3 shows an example table and some sample

outputs of the function shares, f1 and f 2 , applied to the ItemId column. There are a

few important observations. First, to each provider, the outputs of their function share

seem random. Consequently, the provider does not learn the original function f and the

parameter "5". Second, because f evaluates to 1 on inputs of 5, f1 (ItemId) +f2 (ItemId) =

1 for rows 1 and 3. Similarly, f1 (ItemId) + f2 (ItemId) = 0 for row 2. Therefore, when

summed across the providers, each row contributes 1 (if it matches) or 0 (if it does not

match) to the final result. Finally, each provider aggregates the outputs of their shares

by summing them. In the example, one provider returns 23 to the client, and the other

returns -21. The sum of these is the correct query output, 2.

This additivity of FSS enables Splinter to have low communication costs for aggregate

queries, by aggregating data locally on each provider.

Example: SUM query. Suppose that instead of a COUNT, we wanted to run the follow-

ing SUM query:

SELECT SUM(Price) FROM items WHERE ItemId=?

This query can be executed privately with a small extension to the COUNT scheme.

As in COUNT, we define a point function f for our secret predicate, e.g., f(x) = 1 if

x = 5 and 0 otherwise. We divide this function into shares f1 and f 2 . However, instead

of computing rp = 1 fp(ItemIdj), each provider p computes

n

r = Zfp(ItemIdi) -Pricei
i=1
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Figure 3-4: Splinter query format. The TOPK aggregate returns the top k values of expr

for matching rows in the query, sorting them by sort expr. In conditions, the parameters

labeled secret are hidden from the providers.

As before, r1 + r2 is the correct answer of the query, that is, i1 f (ItemIdi) -Pricei.

We add in each row's price, Pricei, 0 times if the ItemId is equal to 5, and 1 time if it

does not equal 5.

3.4 Splinter Query Model

Beyond the simple SUM and COUNT queries in the previous section, we have developed

protocols to execute a large class of queries using FSS, including non-additive aggregates

such as MAX and MIN, and queries that return multiple individual records instead of

an aggregate. For all these queries, our protocols are efficient in both computation and

communication. On a database of n records, all queries can be executed in O(nlogn)

time and O(log n) communication rounds, and most only require 1 or 2 communication

rounds (Figure 3-6 on page 59).

Figure 3-4 describes Splinter's supported queries using SQL syntax. Most operators are
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Query format:
SELECT aggregate1 , aggregate2, -
FROM table
WHERE condition
[GROUP BY expri, expr2 , - -

aggregate:

* COUNT I SUM I AVG I STDEV (expr)

* MAX I MIN (expr)

* TOPK (expr, k, sortexpr)

* HISTOGRAM (expr, bins)

condition:

* expr = secret

* secret1  expr secret2
* AND of '=' conditions and up to one interval

* OR of multiple disjoint conditions
(e.g., country="UK" OR country="USA")

expr: any public function of the fields in a table row
(e.g., ItemId + 1 or Price * Tax)



self-explanatory. The only exception is TOPK, which is used to return up to k individual

records matching a predicate, sorting them by some expression sortexpr. This operator

can be used to implement SELECT. . .LIMIT queries, but we show it as a single "aggregate"

to simplify our exposition. To keep the number of matching records hidden from providers,
the protocol always pads its result to exactly k records.

Although Splinter does not support all of SQL, we found it expressive enough to

support many real-world query services over public data. We examined various websites,
including Yelp, Hotels.com, and Kayak, and found we can support most of their search

features as shown in Section 3.8.1.

Finally, Splinter only "natively" supports fixed-width integer data types. However, such

integers can also be used to encode strings and fixed-precision floating point numbers

(e.g., SQL DECIMALs). For strings in predicates, we can also encode them using hashes.

We use them to represent other types of data in our sample applications.

3.5 Executing Splinter Queries

Given a query in Splinter's query format (Figure 3-4), the system executes it using the

following steps:

1. The Splinter client builds function shares for the condition in the query, as we shall

describe in Section 3.5.1.

2. The client sends the query with all the secret parameters removed to each provider,
along with that provider's share of the condition function.

3. If the query has a GROUP BY, each provider divides its data into groups using the

grouping expressions; otherwise, it treats the whole table as one group.

4. For each group and each aggregate in the query, the provider runs an evaluation

protocol that depends on the aggregate function and on properties of the condi-

tion. We describe these protocols in Section 3.5.2. Some of the protocols require

further communication with the client, in which case the provider batches its

communication for all grouping keys together.

The main challenge in developing Splinter is designing efficient execution protocols

for Splinter's complex conditions and aggregates (Step 4). Our contribution is mul-

tiple protocols that can execute non-additive aggregates with low computation and

communication costs.

One key insight that pervades our design is that the best strategy to compute each

aggregate depends on properties of the condition function. For example, if we know that

the condition can only match one value of the expression it takes as input, we can simply
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compute the aggregate's result for all distinct values of the expression in the data, and

then use a point function to return just one of these results to the client. On the other

hand, if the condition can match multiple values, we need a different strategy that can

combine results across the matching values. To reason about these properties, we define

three condition classes that we then use in aggregate evaluation.

3.5.1 Condition Types and Classes

For any condition c, the Splinter client defines a function f, that evaluates to 1 on rows

where c is true and 0 otherwise, and divides f, into shares for each provider. Given

a condition c, let EC = (el,..., et) be the list of expressions referenced in c (the expr

parameters in its clauses). Because the best strategy for evaluating aggregates depends

on c, we divide conditions into three classes:

" Single-value conditions. These are conditions that can only be true on one combina-

tion of the values of (el,..., et). For example, conditions consisting of an AND of

'=' clauses are single-value.

" Interval conditions. These are conditions where the input expressions e 1 ,..., et can

be ordered such that c is true on an interval of the range of values eI Ie2 1 ... Ilet
(where 11 denotes string concatenation).

" Disjoint conditions, i.e., all other conditions.

The condition types described in our query model (Figure 3-4) can all be converted

into sharable functions, and categorized into these classes, as follows:

Equality-only conditions. Conditions of the form el = secret, AND ... AND et = secrete
can be executed as a single point function on the binary string el ... let. This is simply

a point function that can be shared using existing FSS schemes [19]. These conditions

are also single-value.

Interval and equality. Conditions of the form el = secret, AND ... AND et_1 = secrett-1

AND secrett et secrett+1 can be executed as a single interval function on the binary

string e1 I ... Ilet. This is again supported by existing FSS schemes [19], and is an interval

condition.

Disjoint OR. Suppose that ci,...,ct are disjoint conditions that can be represented

using functions f,...,f,. Then c = ci OR... OR ct is captured by f, = fl +... + fe.
We share this function across providers by simply giving them shares of the underlying

functions f,,. In the general case, however, c is a disjoint condition where we cannot say

much about which inputs give 0 or 1.
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3.5.2 Aggregate Evaluation

Sum-Based Aggregates

To evaluate SUM, COUNT, AVG, STDEV and HISTOGRAM, Splinter sums one or more

values for each row regardless of the condition function class. For SUM and COUNT, each

provider sums the expression being aggregated or a 1 for each row and multiplies it by
fi(row), its share of the condition function, as in Section 3.3.2. Computing AVG(x) for

an expression x, requires finding SUM(x) and COUNT(x), while computing STDEV(x)

requires finding these values and SUM(x 2 ). Finally, computing a HISTOGRAM into

bin boundaries provided by the user simply requires tracking one count per bin, and

adding each row's result to the count for its bin. Note that the binning expression is not

private-only information about which rows pass the query's condition function.

MAX and MIN

Suppose we are given a query to find MAX(eo) WHERE c(el,..., et), for expressions

eo,..., e,. The best evaluation strategy depends on the class of the condition c.

Single-value conditions. If c is only true for one combination of the values ei,..., et,

each provider starts by evaluating the query

SELECT MAX(eo) FROM data GROUP BY ei,...,et

This query gives an intermediate table with the tuples (el,..., et) as keys and MAX(eo) as

values. Next, each provider computes Z MAX(eo) -fi(ei,..., et) across the rows of the

intermediate table, where fi is its share of the condition function. This sum will add a 0

for each non-matching row and MAX(eo) for the matching row, thus returning the right

value. Note that if the original table had n rows, the intermediate table can be built in

0(n) time and space using a hash table.

Interval conditions. Suppose that c is true if and only if e i I ... I let is in an interval

[a, b], where a and b are secret parameters. As in the single-value case, the providers

can build a data structure that helps them evaluate the query without knowing a and b.

In this case, each provider builds an array A of entries (k, v), where the keys are all

values of el I ... I Iet in lexicographic order, and the values are MAX(eo) for each key It

then computes MAX(A[i..j]) for allpower-of-2 aligned intervals of the arrayA (Figure 3-5).

This data structure is similar to a Fenwick tree [36].
Query evaluation then proceeds in two rounds. First, Splinter counts how many keys

in A are less than a and how many are less than b: the client sends the providers shares

of the interval functions k e [0, a - 1] and k e [0, b - 1], and the providers apply these
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A[3..6]
A

3 51 2 41 10 1

Size-2 intervals 5 2 4 1

Size-4 intervals 5 4

Size-8 intervals 5

Figure 3-5: Data structure for querying MAX on intervals. We find the MAX on each
power-of-2 aligned interval in the array, of which there are 0(n) total. Then, any interval
query requires retrieving 0(log n) of these values. For example, to find MAX(A[3..6]),
we need two size-1 intervals and one size-2.

to all keys k and return their results. This lets the client find indices i and j in A such

that all the keys k c [a, b] are in A[i..j].

Second, the client sends each provider shares of new point functions that select up

to two intervals of size 1, up to two intervals of size 2, etc out of the power-of-2 sized

intervals that the providers computed MAXes on, so as to cover exactly A[i..j]. Note that

any integer interval can be covered using at most 2 intervals of each power of 2. The

providers evaluate these functions to return the MAXes for the selected intervals, and

the client combines these 0(log n) MAXes to find the overall MAX on A[i..j]. 2

For a table of size n, this protocol requires 0(n log n) time at each provider (to sort

the data to build A, and then to answer 0(log n) point function queries). It also only

requires two communication rounds, and 0(log n) communication bandwidth. The same

protocol can be used for other associative aggregates, such as products.

Disjoint conditions. If we must find MAX(eo) WHERE c(el,..., et) but know nothing

about c, Splinter builds an array A of all rows in the dataset sorted by eo. Finding MAX(eo)

WHERE c is then equivalent to finding the largest index i in A such that c(A[i]) is true.

To do this, Splinter uses binary search. The client repeatedly sends private queries of the

form

SELECT COUNT(*) FROM A

WHERE c(el, ... , et) AND index E [secret,, secret2],
2 To hide which sizes of intervals were actually required, the client should always request 2 intervals of

each size and ignore unneeded ones.
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where index represents the index of each row in A and the interval for it is kept private.

By searching for secret intervals in decreasing power-of-2 sizes, the client can find the

largest index i such that c(A[i]) is true. For example, if we had an array A of size 8
with largest matching element at i = 5, the client would probe A[0..3], A[4..7], A[4..5],

A[6..7] and finallyA[4] to find that 5 is the largest matching index.

Normally, ANDing the new condition index e [secreti,secret2] with c would cause

problems, because the resulting conditions might no longer be in Splinter's supported

condition format (ANDs with at most one interval and ORs of disjoint clauses). Fortunately,

because the intervals in our condition are always power-of-2 aligned, it can also be written

as an equality on the first k bits of index. For example, supposing that index is a 3-bit

value, the condition index E [4,5] can be written as index0 1 = "10", where index0 ,1 is

the first two bits of index. This lets us AND the condition into all clauses of c.

Once the client has found the largest matching index i, it runs one more query

with a point function to select the row with index = i. The whole protocol requires

O(log n) communication rounds and O(n log n) computation and works well if c has

many conditions.

However, if c has a small number of OR clauses, an optimization is to run one query

for each clause in parallel. The user then resolves the responses locally to find the answer

to the original query. Although doing this optimization requires more bandwidth because

the returned result size is larger, it avoids the O(log n) communication rounds and the

O(n log n) computation.

TOPK

Our protocols for evaluating TOPK are similar to those for MAX and MIN. Suppose we

are given a query to find TOPK(e, k, esort) WHERE c(el,..., e,). The evaluation strategy

depends on the class of the condition c.

Single-value conditions. If c is only true for one combination of el,..., et, each

provider starts by evaluating

SELECT TOPK(e, k, esort) FROM data

GROUP BY el,...,et

This gives an intermediate table with the tuples (el,..., et) as keys and TOPK(.) for each

group as values, from which we can select the single row matching c as in MAX.

Interval conditions. Here, the providers build the same auxiliary array A as in MAX,
storing the TOPK for each key instead. They then compute the TOPKs for power-of-2

aligned intervals in this array. The client finds the interval A[i..j] it needs to query,
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extracts the top k values for power-of-2 intervals covering it, and finds the overall top k.

As in MAX, this protocol requires 2 rounds and O(log n) communication bandwidth.

Disjoint conditions. Finding TOPK for disjoint conditions is different from MAX be-

cause we need to return multiple records instead of just the largest record in the table

that matches c. This protocol proceeds as follows:

1. The providers sort the whole table by esort to create an auxiliary array A.

2. The client uses binary search to find indices i and j in A such that the top k items

matching c are in A[i..j]. This is done the same way as in MAX, but searching for

the largest indices where the count of later items matching c is 0 and k.

3. The client uses a sampling technique (Section 3.5.3) to extract the k records from

A[i..j] that match c. Intuitively, although we do not know which rows these are,

we build a result table of > k values initialized to 0, and add the FSS share for

each row of the data to one row in the result table, chosen by a hash. This scheme

extracts all matching records with high probability.

This protocol needs O(log n) communication rounds and O(n log n) computation if there

are many clauses, but like the protocol for MAX, if the number of clauses in c is small,
the user can issue parallel queries for each clause to reduce the communication rounds

and computation.

3.5.3 Extracting Disjoint Records with FSS

Here, we describe our sampling-based technique for returning multiple records using

FSS, used in TOPK queries with disjoint conditions (Section 3.5.2). Given a table T of

records and a condition c that matches up to k records, we wish to return those records

to the client with high probability without revealing c.

To solve this problem, the providers each create a result table R of size I > k,
containing (value, count) columns all initialized to 0. They then iterate through the

records and choose a result row to update for each record based on a hash function h of

its index i. For each record r, each provider adds 1 -f,(r) to R[h(i)].count and r -f,(r)
to R[h(i)].value, where f, is its share of the condition c. The client then adds up the R

tables from all the providers to build up a single table, which contains a value and count

for all indices that a record matching c hashed into.

Given this information, the client can tell how many records hashed into each index:

entries with count=1 have only one record, which can be read from the entry's value.

Unfortunately, entries with higher counts hold multiple records that were added together

in the value field. To recover these entries, the client can run the same process multiple

times in parallel with different hash functions h.
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Aggregate Condition Time Rounds Bandwidth

Sum-based any O(n) 1 0(1)

MAX/MIN 1-value O(n) 1 0(1)
MAX/MIN interval 0(n log n) 2 0(log n)

MAX/MIN disjoint 0(n log n) 0(log n) 0(log n)

TOPK 1-value O(n) 1 0(1)
TOPK interval 0(n log n) 2 0(log n)

TOPK disjoint 0(n log n) 0(log n) 0(log n)

Figure 3-6: Complexity of Splinter's query evaluation protocols for a database of size n.

For bandwidth, we report the multiplier over the query's normal result size.

In general, for any given value of r and k, the probability of a given record colliding

with another under each hash function is a constant (e.g., it is less than 1/3 for r = 3k).

Repeating this process with more hash functions causes the probability to fall exponen-

tially. Thus, for any k, we can return all the distinct results with high probability using

only 0(log k) hash functions and hence only 0(log k) extra communication bandwidth.

3.5.4 Complexity

Figure 3-6 summarizes the complexity of Splinter's query evaluation protocols based on

the aggregates and condition classes used. We note that in all cases, the computation

time is 0(n log n) and the communication costs are smaller than the size of the database.

This makes Splinter practical even for databases with millions of records, which covers

many common web application datasets, as shown in Section 3.8. Finally, the main

operations used to evaluate Splinter queries at providers, namely sorting and sums, are

highly parallelizable.

3.6 Optimized FSS Implementation

Apart from introducing new protocols to evaluate complex queries using FSS, Splinter

includes an FSS implementation optimized for modern hardware.

The two-party FSS protocol [19] is efficient because of its use of one-way functions.

A common class of one-way functions is pseudorandom generators (PRGs) [60], and

in practice, AES is the most commonly used PRG because of hardware accelerations,

i.e. the AES-NI [107] instruction. Generally, using AES as a PRG is straightforward (use

AES in counter mode). However, the use of PRGs in FSS is not only atypical, but it also

represents a large portion of the computation cost in the protocol. The FSS protocol

requires many instantiations of a PRG with different initial seed values, especially in
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the two-party protocol [19]. Initializing multiple PRGs with different seed values is

very computationally expensive because AES cipher initialization is much slower than

performing an AES evaluation on an input. Therefore, the challenge in Splinter is to find

an efficient PRG for FSS.

Our solution is to use one-way compression functions. One way compression functions

are commonly used as a primitive in hash functions, like SHA, and are built using a

block cipher like AES. In particular, Splinter uses the Matyas-Meyer-Oseas one-way

compression function [69] because this function utilizes afixed key cipher. As a result,

the Splinter protocol initializes the cipher only once per query.

More precisely, the Matyas-Meyer-Oseas one-way compression function is defined as:

F(x) = Ek(x) ex

where x is the input, i.e. PRG seed value, and E is a block cipher with a fixed key k.

The output of a one-way compression function is a fixed number of bits, but we can use

multiple one-way compression functions with different keys and concatenate the outputs

to obtain more bits. Security is preserved because a function that is a concatenation of

one-way functions is still a one-way function.

With this one-way compression function, Splinter initializes the cipher, Ek, at the

beginning of the query and reuses it for the rest of the query, avoiding expensive AES

initialization operations in the FSS protocol. For each record, the Splinter protocol needs

to perform only n XORs and n AES evaluations using the AES-NI instruction, where n

is the input domain size of the record. In Section 3.8.5, we show that Splinter's use of

one-way compression functions results in a 2.5x speedup over using AES directly as a

PRG.

3.7 Implementation

We implemented Splinter in C++, using OpenSSL 1.0.2e [89] and the AES-NI hardware

instructions for AES encryption. We used GMP [38] for large integers and OpenMP [88]

for multithreading. Our optimized FSS library is about 2000 lines of code, and the

applications on top of it are about 2000 lines of code. There is around 1500 lines

of test code to issue the queries. Our FSS library implementation can be found at

https://github.com/frankw2/libfss.
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Dataset Query Desc. FSS Scheme Input Bits Round Query Size Response Response
Trips Size Time

Restaurant COUNT of Thai restau- Two-party 11 1 -2.75 KB -0.03 KB 57 ms
rants (Q1) Multi-party -10 KB -18 KB 52 ms

Restaurant Top 10 Mexican restau- Two-party 22 1 ~16.5 KB ~7 KB 150 ms
rants near user (Q2) Multi-party -1.9 MB -0.21 KB 542 ms

Restaurant Best rated restaurant in Two-party -244 KB -0.7 KB 1.3 s
category subset (Q3) Multi-party -880 KB -396 KB 1.6 s

Flights AVG monthly price for a Two-party 17 -8.5 KB -0.06 KB 1.0 s
certain flight route (Q1) Multi-party -160 KB -300 KB 1.2 s

Flights Top 10 cheapest flights Two-party 13 1 -3.25 KB -0.3 KB 30 ms
for a route (Q2) Multi-party -20 KB -0.13 KB 39 ms

Maps Routing query on NYC Two-party Grid: 14 2 -12.5 KB -31 KB 1.2 s
map Multi-party Transit Node: 22 -720 KB -1.1 KB 1.0 s

Figure 3-7: Performance of various queries in our case study applications on Splinter.
Response times include 14 ms network latency per network round trip. All subqueries
are issued in parallel unless they depend on a previous subquery. Query and response
sizes are measured per provider. For the multi-party FSS scheme, we run 3 parties. Input
bits represent the number of bits in the input domain for FSS, i.e., the maximum size of
a column value.

3.8 Evaluation

We built and evaluated clones of three applications on Splinter: Yelp clone, flight price

lookup, and map routing, using real datasets. We also compared Splinter to previous

private systems, and estimate hosting costs. Our providers ran on 64-core Amazon EC2

x1 servers with Intel Xeon E5-2666 Haswell processors and 1.9 TB of RAM. The client

was a 2 GHz Intel Core i7 machine with 8 GB of RAM. Our client's network latency to

the providers was 14 Ins.

Overall, our experiments show the following:

" Splinter can support realistic applications including the search features of Yelp and

flight search sites, and data structures required for map routing.

* Splinter achieves end-to-end latencies below 1.6 seconds for queries in these

applications on realistic data.

" In most cases, Splinter's protocols are more efficient than those of the most recent

practical private query system by Olumofin et al. [84].

3.8.1 Case Studies

Here, we discuss the three application clones we built on Splinter. Figure 3-7 summarizes

our results, and Figure 3-8 describes the sizes and characteristics of our three datasets.
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Dataset # of rows Size (MB) Cardinality

Yelp [131] 225,000 23 900 categories

Flights [33] 6,100,000 225 5000 flights

NYC Map [28] 260,000 nodes 300 1333 transit nodes
733,000 edges

Figure 3-8: Datasets used in the evaluation. The cardinality of queried columns affects
the input bit size in our FSS queries.

Finally, we also review the search features available in real websites to study how many

Splinter supports.

Restaurant review site: We implement a restaurant review site using the Yelp academic

dataset [131]. The original dataset contains information for local businesses in 10 cities,

but we duplicate the dataset 4 times so that it would approximately represent local

businesses in 40 cities. We use the following columns in the data to perform many of

the queries expressible on Yelp: name, stars, review count, category, neighborhood and

location.

For location-based queries, e.g., restaurants within 5 miles of a user's current location,

multiple interval conditions on the longitude and latitude would typically be used. To

run these queries faster, we quantize the locations of each restaurant into overlapping

hexagons of different radii (e.g., 1, 2 and 5 miles), following the scheme from [79].

We precompute which hexagons each restaurant is in and expose these as additional

columns in the data (e.g., hex1mi and hex2mi). This allows the location queries to use

'=' predicates instead of intervals.

For this dataset, we present results for the following three queries:

Q1: SELECT COUNT(*) WHERE category="Thai"

Q2: SELECT TOP 10 restaurant

WHERE category="Mexican" AND (hex2mi=1 OR hex2mi=2 OR hex2mi=3)

ORDER BY stars

Q3: SELECT restaurant, MAX(stars)

WHERE category="Mexican" OR category="Chinese" OR category="Indian"

OR category="Greek" OR category="Thai" OR category="Japanese"

GROUP BY category

Q1 is a count on the number of Thai restaurants. Q2 returns the top 10 Mexican

restaurants within a 2 mile radius of a user-specified location by querying three hexagons.
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We assume that the provider caches the intermediate table for the Top 10 query as

described in Section 3.5.2 because it is a common query. Finally, Q3 returns the best

rated restaurant from a subset of categories. This requires more communication than

other queries because it performs a MAX with many disjoint conditions, as described in

Section 3.5.2. Although most queries will probably not have this many disjoint conditions,

we test this query to show that Splinter's protocol for this case is also practical.

Note that for Q2 and Q3, the communication costs will be higher compared to Q1

because in Q2 and Q3, we are returning ASCII-encoded strings of the restaurant names

rather than just an integer in Q1.

Flight search: We implement a flight search service similar to Kayak [55], using a

public flight dataset [33]. The columns are flight number, origin, destination, month,
delay, and price. To find a flight, we search by origin-destination pairs. We present results

for two queries:

Q1: SELECT AVG(price) WHERE month=3

AND origin=1 AND dest=2

Q2: SELECT TOP 10 flight-no

WHERE origin=1 and dest=2 ORDER BY price

Q1 shows the average price for a flight during a certain month. Q2 returns the top 10

cheapest flights for a given source and destination, which we encode as integers. Since

this is a common query, the results in Figure 3-7 assume a cached Top 10 intermediate

table.

Map routing: We implement a private map routing service, using real traffic map data

from DIMACS [28] for New York City However, implementing map routing in Splinter

is difficult because the providers can perform only a restricted set of operations. The

challenge is to find a shortest path algorithm compatible with Splinter. Fortunately,
extensive work has been done to optimize map routing [10]. One algorithm compatible

with Splinter is transit node routing (TNR) [8, 12], which has been shown to work well

in practice [11]. In TNR, the provider divides up a map into grids, which contain at least

one transit node, i.e. a transit node that is part of a "fast" path. There is also a separate

table that has the shortest paths between all pairs of transit nodes, which represent

a smaller subset of the map. To execute a shortest path query for a given source and

destination, the user can use FSS to download the paths in her source and destination

grid. She locally finds the shortest path to the source transit node and destination transit

node. Finally, she queries the provider for the shortest path between the two transit

nodes.
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FSS scheme Grid Transit Node Total

Two Party 0.35 s 0.85 s 1.2 s
Multi-party 0.15 s 0.85 s 1.0 s

Figure 3-9: Grid, transit node, and total query times for NYC map. A user issues 2 grid
queries and one transit node query. The two grid queries are issued together in one
message, so there are a total of 2 network round trips.

We used the source code from Arz et al. [8] and identified the 1333 transit nodes.

We divided the map into 5000 grids, and calculated the shortest path for all transit node

pairs. The grid table has 5000 rows representing the edges and nodes in a grid, and the

transit node table has about 800,000 rows representing the number of shortest paths for

all transit node pairs.

Figure 3-7 shows the total response time for a routing query between a source and

destination in NYC. Figure 3-9 shows the breakdown of time spent on querying the grid

and transit node table. One observation is that the multi-party version is slightly faster

than the two party version because it is faster at processing the grid query as shown

in Figure 3-9. The two-party version of FSS requires using GMP operations, which is

slower than integer operations used in the multi-party version, but the two-party version

requires less bandwidth.

Splinter has response times of 50 ms to 1.6 seconds. Although these response times

are much higher compared to a system without FSS and Splinter, privacy-sensitive users

are often willing to trade some performance for better security. For example, fetching a

website on Tor takes 3-4 seconds [123]. Therefore, we believe that our performance is

acceptable.

3.8.2 Communication Costs

Figure 3-7 shows the total bandwidth of a query request and response for the various

case study queries. The sum of those two values represents total bandwidth between the

providers and user.

There are two main observations. First, both the query and response sizes are much

smaller than the size of the database in most cases. Second, for non-aggregate queries,

the multi-party protocol has a smaller response size compared to the two-party protocol

but the query size is much larger than the two-party protocol, leading to higher overall

communication. For aggregate queries, the multi-party FSS scheme is only xor homo-

morphic, so it outputs all the matches for a specific predicate/condition. The user has

to perform the aggregation locally, leading to a larger response size than the two-party

protocol. Overall, the multi-party protocols have higher total bandwidth compared to
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the two-party protocols despite some differences in response size. However, FSS is a

relatively new cryptographic primitive, especially compared to PIR and garbled circuits,

so we believe that improvements in the FSS protocol could lower these communication

costs in the future.

As stated in Section 3.2.3, querying with Splinter and PIR systems might be more

efficient than downloading the whole database, assuming there is no rate limiting or

query restrictions as described in Section 3.2.3. Query restrictions imposed by data

owners will probably lead to more round trips and communication costs compared to

downloading the database under normal network conditions. Thus, depending on the

specific restrictions, using Splinter might be more efficient than attempting to download

the whole database under restricted network conditions.

To better quantify the "break even" point, i.e. where the communication costs are

equal to the database size, we look at our case study datasets. For the Yelp clone, we

assume that the user downloads only her city (not all 40). For two-party Restaurant Q1,

it will take about 250 of these types of queries before reaching that point. For multi-

party Restaurant Q1 and two-party Restaurant Q2, it would take about 25 queries. For

multi-party Restaurant Q2 and Restaurant Q3, it would take about 1 query to reach that

point. However, users tend to issue different kinds of queries and updates might happen,

it is not obvious whether downloading the whole database or using Splinter would be

more efficient for this case study. Moreover, the purpose of this case study is to compare

Splinter's performance on smaller datasets to prior systems and to larger datasets. For

flights, it would take about 550 queries for multi-party Flights Q1 and 50,000 queries for

the other flight queries. Finally, for maps, it would take 25,000 queries for the two-party

version and 2500 for the multi-party version. However, these two databases are larger

than Yelp and change more frequently, so it might not make sense to download the

database. We discuss Splinter-amenable web services in more detail in Section 3.2.3.

3.8.3 Coverage of Supported Queries

We also manually characterized the applicability of Splinter to several widely used

online services by studying how many of the search fields on these services' interfaces

Splinter can support. Figure 3-10 shows the results. Most services use equality and range

predicates: for example, the Hotels.com user interface includes checkboxes for selecting

categories, neighborhoods, stars, etc, a range fields for price, and one free-text search

field that Splinter does not support. In general, all features except free-text search could

be supported by Splinter. For free-text search, simple keywords that map to a category

(e.g., "grocery store") could also be supported.

65



Website Search Feature j Splinter Primitive

Booking Method, Cities, Distance Equality
Yelp Price Range

Best Match, Top Rated, Most Reviews Sorting
Free text search

Destination, Room type, Amenities Equality
Check in/out, Price, Ratings Range

Stars, Distance, Ratings, Price Sorting
Name contains

From/To, Cabin, Passengers, Stops Equality

Date, Flight time, Layover time, Price Range

Google Maps I From/To, Transit type, Route options j Equality

Figure 3-10: Example website search features and their equivalent Splinter query class.

Splinter Query RTs in [84] RTs in Splinter

Restaurant Q1 6 1

Restaurant Q2 6 1

Restaurant Q3 6 11

Flights Q1 13 1

Flights Q2 8 1

Map Routing 19 2

Figure 3-11: Round trips required in Olumofin et al. [84] and Splinter.3

3.8.4 Comparison to Other Private Query Systems

To the best of our knowledge, the most recent private query system that can perform a

similar class of queries as Splinter is that of Olumofin et al. [84], which uses multi-party

PIR. In PIR, a user can query for an index i without revealing the index or the result to

the servers, making it a more restrictive querying model compared to FSS, but Olumofin

et al. develops protocols to extend PIR beyond just index querying. However, FSS can

perform many of the complex queries in Olumofin et al. without additional protocols,

' The number of round trips in Restaurant Q3 is O(log n) in both Splinter and Olumofin et al., but the
absolute number is higher in Splinter because we use a binary search whereas Olumofin et al. use a 4-ary
tree. Splinter could also use a 4-ary search to achieve the same number of round trips, but we have not yet
implemented this.
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Figure 3-12: Total bandwidth for Splinter and Olumofin et al. [84]

Splinter Query

Restaurant Qi

Restaurant Q2

Restaurant Q3

Flights Q1

Flights Q2

Map Routing

Time in [84] Time in Splinter

80 ms 40 ms

245 ms 130 ms

1.2s 1.1 s

10.9 s 0.97 s

150 ms 15 ms

10.6s 1.1 s

Figure 3-13: Server-side computation costs for Olumofin et al. [84] and Splinter.
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such as COUNT and SUM with non-index predicates.

We implemented the private query protocol in Olumofin et al., ported our case queries,

and ran them on the same Amazon AWS setup as Splinter (described at the beginning of

this section). We compare the two-party version of Splinter with Olumofin et al. because

the system of Olumofin et al. assumes only two parties and does not describe how to

extend it to more servers. 4 In particular, we compare Olumofin et al. and Splinter on the

following three metrics: number of round trips, bandwidth, and server-side computation.

We find that across all of our queries, Splinter is almost always more efficient than

Olumofin et al., often by an order of magnitude or more.

Figure 3-11 shows the round trips required in Olumofin et al.'s system and in Splinter

for the queries in our case studies. Olumofin et al. creates an m-ary (m = 4) B+ index

tree for the dataset and uses PIR to extract the results. Consequently, their queries require

O(logm n) round trips, where n is the number of records. In Splinter, the number of

rounds trips does not depend on the size of the database for most queries. As shown

in Section 3.5.2, the exception is for MIN/MAX and TOPK queries with many disjoint

conditions where Splinter's communication is similar; if there are a small number of

disjoint conditions, Splinter will be faster than previous systems because the user can

issue parallel queries.

Figure 3-12 shows the total bandwidth required in Olumofin et al.'s system and in

Splinter. Note that Olumofin et al. does not have a direct way to support queries with

disjoint OR conditions used in Restaurant Q3, so we assumed that they issue a separate

query for each OR condition. Splinter has much lower overall communication costs,

especially for the queries on the larger flights and maps databases. The main reason

for this is that the bandwidth in PIR depends on both the number of database records

(specifically a square root factor) and record size whereas in FSS, the bandwidth is

independent of the number of records and depends just on the record size. Therefore, the

disparity in bandwidth will increase as the database size increases. This larger bandwidth

is problematic on mobile networks where data is more expensive.

Figure 3-13 shows the server-side computation costs for both systems. As expected,

the difference is minimal on the smaller restaurant database but greater on the larger

databases. Although the PIR scheme used in Olumofin et al. has similar performance to

FSS, their protocols require more PIR operations per record.

Compared to Splinter, Olumofin et al. also has more round trips for the smaller

database, which increases the overall response times. For example, in our experimental

setup with 14 ms network latency, Olumofin et al. would incur an additional 70 ms delay

versus Splinter for Restaurant Q1 and Restaurant Q2. This delay increases as we move

4 From our understanding, it is possible for Olumofin et al. to support more than two parties, but

server-side computation and bandwidth would increase, most likely eliminating effects of the optimizations

described in their paper.
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to mobile networks. If we replace the client with a mobile device on a 4G network with

latency of approximately 100 ms [90], the restaurant queries would incur an additional

500 ms delay in Olumofin et al. compared to Splinter. For bigger databases, the number

of round trips increases, so the total amount of latency incurred will also increase. For

instance, for maps, the additional latency on Olumofin et al. would be about 1.7 seconds.

3.8.5 FSS Microbenchmarks

Cryptographic operations are the main cost in Splinter. We present microbenchmarks

to show these costs of various parts of the FSS protocol, tradeoffs between various FSS

protocols, and the throughput of FSS. The microbenchmarks also show why the response

times in Figure 3-7 are different between the two-party and multi-party FSS cases. All

of these experiments are done on one core to show the per-core throughput of the FSS
protocol.

Two-party FSS: For two-party FSS, generating a function share takes less than 1 ms.

The speed of FSS evaluation is proportional to the size of the input domain, i.e. number

of bits per record. We can perform around 700,000 FSS evaluations per second on 24-bit

records, i.e. process around 700,000 distinct 24-bit records, using one-way compression

functions. Figure 3-14 shows the per-core throughput of our implementation for different

FSS schemes, i.e. number of unique database records that can be processed per second.

It also shows that using one-way compression functions as described in Section 3.6, we

obtain a 2.5x speedup over using AES as a PRG.

Multi-party FSS: As shown in Figure 3-14, for the multi-party FSS scheme from [19],
the time to generate the function share and evaluate it is proportional to 2 n/2 where n is

the number of bits in the input domain. The size of the share scales with 2 n/2 rather than

just n in the two-party case. An important observation is that using one-way compression

functions instead of AES does not make a significant difference for multi-party FSS

because the PRG is called less often compared to two-party FSS. For small input domains

(< 20 bits), the multi-party version of FSS is faster than the 2-party version, but a provider

cannot aggregate locally for SUM and COUNT queries in the multi-party version.

3.8.6 Hosting Costs

We estimate Splinter's server-side computation cost on Amazon AWS, where the cost

of a CPU-second using Amazon Lambda is about 0.005 cents. The cost of storage and

running a web server can be amortized over requests. We found that most of our queries

cost less than 0.005 cents. Map queries are a bit more costly, about 0.05 cents to run
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Figure 3-14: Per-core throughput of various FSS protocols. The graph shows the number

of FSS operations that can be performed, i.e. database records processed, per second for

various input sizes, on one core.

a shortest path query for NYC, because the amount of computation required is higher.

With the decreasing cost of cloud computing resources [6], we expect even lower costs

in the future. Although there are other costs associated with running a web service, our

results show that Splinter's server-side computation costs are very reasonable.

3.9 Discussion and Limitations

Economic feasibility: Although it is hard to predict real-world deployment, we believe

that Splinter's low cost makes it economically feasible for several types of applications.

Here are some possible methods for monetization. For example, despite many current

data owners, such as Yelp and Google Maps, generating revenue primarily by showing

ads and mining user data, they can license their data to Splinter providers and have these

providers manage a Splinter deployment. The providers can then charge a subscription

fee, e.g. $1 a month, for usage of the server. Similarly, these providers can collectively

issue a utility token that can be used to pay for the queries. Splinter's trust model, where
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only one provider needs to be honest, also makes it easy for new providers to join the

market, increasing users' privacy.

This business model seems reasonable as studies have shown that many consumers

are willing to pay for services that protect their privacy [49, 106]. In fact, users might

not use certain services because of privacy concerns [102, 105]. Similarly, more users

are using sites like DuckDuckGo and technologies like Tor because they are unwilling

to have sites track their query behavior, which shows a growing consumer market for

privacy-preserving technologies. However, whether such a business model would work

or be feasible in practice is beyond the scope of this dissertation.

Unsupported queries: As shown in Section 3.4, Splinter supports only a subset of SQL.

Splinter does not support partial text matching or image matching, which are common in

types of applications that might use Splinter. Moreover, Splinter cannot support private

joins, i.e. Splinter can only support joining with another table if the join condition is

public, which encompasses a large majority of join operations. Despite these limitations,
our study in Section 3.8.3 shows Splinter can support many application search interfaces.

Number of providers: One limitation of Splinter is that a Splinter-based service has to

be deployed on at least two providers. However, previous practical PIR systems described

in Section 3.10 also require at least two providers.

Full table scans: FSS, like PIR, requires scanning the whole input dataset on every

Splinter query, to prevent providers from figuring out which records have been accessed.

Despite this limitation, we have shown that Splinter is practical on large real-world

datasets, such as maps.

Splinter needs to scan the whole table only for conditions that contain sensitive

parameters. For example, consider the query:

SELECT flight from table WHERE src=SFO

AND dst=LGA AND delay < 20

If the user does not consider the delay of 20 in this query to be private, Splinter could

send it in the clear. The providers can then create an intermediate table with only flights

where the delay < 20 and apply the private conditions only to records in this table. In a

similar manner, users querying geographic data may be willing to reveal their location at

the country or state level but would like to keep their location inside the state or country

private.
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3.10 Related Work

Splinter is related to work in Private Information Retrieval (PIR), garbled circuit systems,

encrypted data systems, and Oblivious RAM (ORAM) systems. Splinter achieves higher

performance than these systems through its mapping of database queries to the Function

Secret Sharing (FSS) primitive.

PIR systems: Splinter is most closely related to systems that use Private Information

Retrieval (PIR) [23] to query a database privately In PIR, a user queries for the ith record

in the database, and the database does not learn the queried index i or the result. Much

work has been done on improving PIR protocols [85, 93]. Work has also been done to

extend PIR to return multiple records [44], but it is computationally expensive. Our work

is most closely related to the system in [84], which implements a parametrized SQL-like

query model similar to Splinter using PIR, but requires more computation than Splinter.

Popcorn [45] is a media delivery service that uses PIR to hide user consumption

habits from the provider and content distributor. However, Popcorn is optimized for

streaming media databases, like Netflix, which have a small number (about 8000) of

large records, so Popcorn serves a different purpose than Splinter.

Note that both systems above are designed and optimized, assuming two servers, and

it is not obvious that these optimizations hold beyond two servers. Splinter can efficiently

support two and three servers because it extends Function Secret Sharing (FSS) [19, 39],

which enables executions of complex operations such as SUMs in one round trip.

Garbled circuits: Systems such as Embark [57], BlindBox [112], and private shortest

path computation systems [129] use garbled circuits [14, 40] to perform private compu-

tation on a single untrusted server. Even with improvements in practicality [13], these

techniques still have high computation and bandwidth costs for queries on large datasets

because a new garbled circuit has to be generated for each query. (Reusable garbled

circuits [41] are not yet practical.)

Encrypted data systems: Systems that compute on encrypted data, like CryptDB [96],

Mylar [97], SPORC [34], Depot [66], and SUNDR [61], all try to protect private data

against a server compromise, which is a different problem than what Splinter tries to solve.

CryptDB is most similar to Splinter because it allows for SQL-like queries over encrypted

data. However, all these systems protect against a single, potentially compromised server

where the user is storing data privately, but they do not hide data access patterns. In

contrast, Splinter hides data access patterns and a user's query parameters but is only

designed to operate on a cleartext datasets that is hosted at multiple providers.
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ORAM systems: Splinter is also related to systems that use Oblivious RAM [63, 114].

ORAM allows a user to read and write data on an untrusted server without revealing

her data access patterns to the server. However, ORAM cannot be easily applied into the

Splinter setting. One main requirement of ORAM is that the user can only read data that

she has written. In Splinter, the provider hosts a cleartext dataset, not created by any

specific user, and many users need to access the same dataset.

3.11 Conclusions

Splinter is a new private query system that protects sensitive parameters in SQL-like

queries while scaling to realistic applications. Splinter uses and extends a recent cryp-

tography primitive, Function Secret Sharing (FSS), allowing it to achieve much better

performance compared to previous private query systems. We develop protocols to ex-

ecute complex queries with low computation and bandwidth. As a proof of concept,

we have evaluated Splinter with three sample applications-a Yelp clone, map routing,

and flight search-and showed that Splinter has low response times from 50 ms to 1.6

seconds with low hosting costs.
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FOUR

Conclusion and Future Work

In this dissertation, we presented two systems, Veil and Splinter, to minimize data leakage

when a user accesses a web service. These systems have raised interesting questions

regarding the practicality of privacy-preserving systems.

Veil is the first platform to allow developers to provide stronger private browsing

semantics directly to users. A few key questions remain. How do we handle more complex

content like videos? In current version of Veil, we assume that developers create a pool

of blinding servers. However, content delivery networks and proxies are becoming more

prevalent. How do we leverage this existing infrastructure to make Veil more usable? Is

it easy to turn these proxies into blinding servers? What specifically needs to change to

allow for this?

Splinter leveraged function secret sharing (FSS) to reduce the overhead associated

with private queries compared to previous work. However, open research problems

still remain. For example, can private queries scale to billions or trillions of records?

Furthermore, can private queries support more expressive operators like JOINs or NOT

conditions? What are the limitations on the types of FSS can support practically?

Secure multi-party computation (MPC) allows participants to evaluate a common

function without revealing their respective inputs. As hospitals, governments, and cor-

porations increasingly transition from paper records to electronic ones, MPC-style com-

putations represent a natural way to securely enable cross-organization data sharing.

MPC is a well-studied cryptographic solution to this problem, but its impracticality has

prevented widespread adoption. However, FSS and MPC are closely related, and the

creation of FSS has shown promise for more practical protocols. In particular, are there

ways to perform MPC practically on more complex computations, such as graph queries?

With the increased number of data and privacy breaches, users are becoming more

aware of the "cost" of using web services, i.e. providing these services with their data.

Moreover, regulations like GDPR are levying heavy penalties on organizations that do not

build secure mechanisms that protect user data. As a result, we will see an increase both

in users and web services that want more data protections. In addition, users are willing

to trade some performance for privacy and security as long as it does not affect their
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experience and workflow. The increased use of DuckDuckGo and Tor support this trend.

Therefore, as the need for secure systems grows, it is important to focus on performance

and practicality. We hope that the systems in this dissertation serve as a good foundation

for thinking about practical, secure mechanisms in various web application contexts.
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