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Abstract

In the face of massive data sets, classical algorithmic models, where the algorithm reads the entire
input, performs a full computation, then reports the entire output, are rendered infeasible. To
handle these data sets, alternative algorithmic models are suggested to solve problems under the
restricted, namely sub-linear, resources such as time, memory or randomness. This thesis aims at
addressing these limitations on graph problems and combinatorial optimization problems through
a number of different models.

First, we consider the graph spanner problem in the local computation algorithm (LCA) model.
A graph spanner is a subgraph of the input graph that preserves all pairwise distances up to a small
multiplicative stretch. Given a query edge from the input graph, the LCA explores a sub-linear
portion of the input graph, then decides whether to include this edge in its spanner or not - the
answers to all edge queries constitute the output of the LCA. We provide the first LCA constructions
for 3 and 5-spanners of general graphs with almost optimal trade-offs between spanner sizes and
stretches, and for fixed-stretch spanners of low maximum-degree graphs.

Next, we study the set cover problem in the oracle access model. The algorithm accesses a
sub-linear portion of the input set system by probing for elements in a set, and for sets containing
an element, then computes an approximate minimum set cover: a collection of an approximately-
minimum number of sets whose union includes all elements. We provide probe-efficient algorithms
for set cover, and complement our results with almost tight lower bound constructions. We further
extend our study to the LP-relaxation variants and to the streaming setting, obtaining the first
streaming results for the fractional set cover problem.

Lastly, we design local-access generators for a collection of fundamental random graph models.
We demonstrate how to generate graphs according to the desired probability distribution in an
on-the-fly fashion. Our algorithms receive probes about arbitrary parts of the input graph, then
construct just enough of the graph to answer these probes, using only polylogarithmic time, ad-
ditional space and random bits per probe. We also provide the first implementation of random
neighbor probes, which is a basic algorithmic building block with applications in various huge graph
models.

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In the face of massive data sets, classical algorithmic models, where the algorithm reads the entire

input, performs a full computation, then reports the entire output, are rendered infeasible. To

handle these data sets, alternative algorithmic models are suggested to solve problems under the

restricted resources such as time, memory or randomness. In particular, to study sub-linear time

algorithms for graph problems, it is necessary to describe how an algorithm may access its input,

how it can offer its output, and how much power of computation it has, as well as how we measure

the algorithm's performance. This thesis aims at addressing the massive data sets on graph problems

through a number of different models.

Let us first consider sub-linear time algorithms, where the algorithm do not have enough time

to read the entire input. To this end, many oracle access models have been defined: the algorithm

interacts with an oracle that provides access to the input. For example, suppose that we wish to

solve a graph problem, such as computing a minimal vertex cover or a graph spanner. Typically in

this setting, the algorithm is allowed to make certain types of probes to the oracle and learn about

the desired part of the graph. For instance, probes of the form "are u and v adjacent?" or "what

is the ith neighbor of u?" are frequently studied in sparse graphs and dense graphs, respectively.

Alternative types of probes may instead offer random information about the input graph. For

example, "sample a uniform random neighbor or u" allows us to perform random walks, or "sample

a uniform random edge" aids in approximating certain graph parameters. The oracle access models

can also be further extended beyond the graph setting. Consider the set cover problem: the input

set system can be represented though its element-set dependency graph, which naturally suggests

analogous probe types, such as "does S contain e?" or "what is the ith element of S?". These allowed

probes heavily depend on the nature of the problem, such as how the large input is stored in the

database, or how one may actually inspect these aspects in a real-world network.

Given an oracle access, one may construct sub-linear time algorithms for computing an output,

given that the output is of sufficiently small size, such as decision problems (e.g., "is the input graph

bipartite?"), and parameter approximation problems (e.g., "what is the size of the minimum set

cover?"). Some problems that potentially have large solutions may indeed admit sparse solutions

that can be described succinctly, such as the (approximate) fractional set cover problem. However,

when considering massive graphs containing millions or even billions of vertices (e.g., the underlying

15



graphs of WWW or Twitter), even the output can be too large for a single processor to store: the

problem of computing a sparse spanning subgraph, for example, has solutions of linear size. For

these problems we consider the model of local computation algorithms (LCAs). In addition to the

oracle access, an LCA is also given a queryl specifying a single location in the output. The algorithm

must compute the specified part of the output, using very little resources and definitely without

computing the whole output up-front. For the spanning subgraph problem, the algorithm is asked

"is edge e in the subgraph?", and the yes/no answers returned by the algorithm on all edges must

be consistent with a single valid spanning subgraph. Moreover, the algorithm must compute its

answer independently without storing information for future invocation: the algorithm must be

parallelizable and query-oblivious.

In terms of performance measurement of sub-linear time algorithms, we naturally aim to optimize

the time complexity of our algorithms, either for the overall computation, or for answering a single

query in case of LCAs. Other classical notions can also be applied, such as the space complexity

or the required amount of random bits. In most study of the oracle access model, probes to the

input are largely assumed to be computationally free or require very little overhead. Nonetheless,
we may consider the probe complexity of an algorithm: how many probes does the algorithm need

to make to the oracle? On the one hand, this notion considers the pure theoretical question of how

much informational quantity is necessary to solve the computational problem. On the other hand,
probe complexity reflects the real-world bottleneck performance when the probe access is costly: for

example, the communication to the database may be overwhelmingly large that the computation

time becomes negligible, or a probe may incur an actual "field work" investigation of a physical

network to answer.

Real-world networks are frequently too large to be fully stored or impossible to be fully observed.

One important method for studying large graphs is to propose random graph models that generate

random graphs satisfying prominent behaviors observed in these real-world networks, such as the

power-law degree distribution or the small-world phenomenon. Many works have been devoted to

efficient generation of these random graphs; likewise, it is natural to study how to realize oracles

for these random graph models. We study the local-access generators that provide various types

of probes to random graphs, including fundamental models such as the Erd6s-R6nyi model, the

Stochastic Block model, and the Small-World model. A local-access generator is required to provide

consistent answers according to its graph, which is incrementally sampled from the distribution

sufficiently close to that of the desired random graph model. As the design of sub-linear time

algorithms generally considers the processing time of the oracle rather negligible, it is important for

our generators to be extremely efficient in computing their answers for the given probes.

Lastly, aside from sub-linear time algorithms, we consider sub-linear space algorithms, namely in

the streaming model. In the streaming model, streaming algorithms are allowed to inspect the input

'We clarify the difference between queries and probes for LCAs. The user gives a query to the LCA,
specifying the desired part of the output that needs to be computed. The LCA is a sub-linear time algorithm
and therefore occupies the oracle access model: it makes probes to the oracle to learn about the input instance
in order to compute its answer to the given query. This characteristic of LCAs, computing their respective
"local" parts of the output, is similar to that of Distributed Local algorithms - likewise, the LCA model is
also known as the Centralized Local model.
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in a sequential fashion within typically a few number of passes in order to compute their output, and

may only use sub-linear computational memory overall: they can see, but cannot store, the entire

input. The power of computation of streaming algorithms is very distinct from that of sub-linear

time algorithms under the oracle access model: sub-linear time algorithms cannot see the entire

input, but instead they have the ability to adaptively probe the input in an interactive fashion.

Nonetheless, we instead demonstrate intimate connections between algorithm design techniques

under the oracle access model and the streaming model, inventing techniques that are useful in

both settings along the way in our study.

1.1 Local Computation Algorithms for Graph Spanners

In Chapter 2, we study the local computation algorithms for graph spanners. This chapter is based

on joint work with Merav Parter, Ronitt Rubinfeld and Ali Vakilian. Here, we begin by giving more

detailed descriptions of graph spanners and the LCA model, then formally state our contribution.

Graph spanners. A graph spanner is a fundamental graph structure, which is a sparse subset of

edges of a source graph G = (V, E) that faithfully preserves the pairwise distances in G up to a

small multiplicative stretch. More formally, given an unweighted undirected graph G = (V, E), a

subgraph H = (V, E') where E' C E is a k-spanner of G if, for any pair of vertices u, v E V that

are connected, distG(U, v) distH(u, v) < k ' distG(u, v); the parameter k > 1 is called the stretch

factor. The notion of spanners was introduced by Peleg and Schiffer [PS89] and has been used

widely in different applications such as routing schemes [AP92, PelOO], synchronizers [PU89, AP90],
SDD's [ST11], spectral sparsifiers [KP12].

The common objective in the computation of spanners is to achieve the best-known existential

size-stretch trade-off efficiently. It is folklore that for every n-vertex graph G, there exists a (2k -I)-

spanner H C G with O(n1+1/k) edges. In particular, if the girth conjecture of Erdis [Erd65 is true,
then this size-stretch trade-off is optimal.

Local Computation Algorithms. LCAs are algorithms that compute the queried part of the

output, without computing the whole output, by examining only a small (sub-linear) portion of

the input; all local answers given by an LCA are consistent with a single valid output to the

computational problem. Specifically, in our context, the algorithm should locally decide whether a

given edge (u, v) E E belongs to the output (sparse) spanner or not: overall, the set of edges chosen

by the LCA, {e C E : the LCA returns yes on query e} must form a valid spanner for G with the

desired stretch factor and total number of edges. In a sense, such LCAs give the user the "illusion"

that a specific sparse spanner for the graph is maintained, without ever fully computing it.

This model has been proposed in [RTVX11], aiming to capture many different types of prob-

lems, including locally list-decodable codes, local decompression and local reconstructors/filters.

LCAs have been established for a large collection of problems, including Maximal Independent Set,
Maximum Matching, and Vertex Cover [RTVX1 1, ARVX12, MV13, EMR14, MPV18, RV16, LRY17.
The study of LCAs with sublinear probe complexity for nearly linear size spanners (or sparsifiers)

is initiated in [LRR14, LRR16] for some restricted families of graphs such as minor-closed families.

Recently, Lenzen and Levi [LL18] designed the first LCA for sparsifiers in general graphs.
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In this work, we consider the oracle access model allowing the following types of probes [Gol11,
GGR98]: NEIGHBOR probe ("what is the ith neighbor of U"?), DEGREE probe ("what is deg(u)?") and

ADJACENCY probe ("are u and v neighbors"?). In particular, the answer to an ADJACENCY probe

on an ordered pair (u, v) is the index of v in I'(u) if the edge exists, and _ otherwise.

Our results. We provide the first sub-linear time/probe LCAs for spanners with fixed stretch

values, and in particular, achieve optimal size/stretch trade-offs for 3 and 5-spanners (up to poly-

logarithmic factors). Along the way, we establish a collection of fundamental sub-linear techniques

for handling computational problems via access oracles, even in presence of vertices with potentially

linear degrees. In more details:

" For general graphs and for parameter r E {2, 3}, there exist an LCA for constructing a (2r - 1)-

spanner H C G with 6(n1+1/r) edges and probe complexity of Q(nl-1/ 2r). These size/stretch

trade-offs are best possible (up to polylogarithmic factors).

" For every k > 1 and n-vertex graph with maximum degree A, there exists an LCA for

constructing of an O(k 2 )-spanner H C G with Q(n1+1/k) edges and probe complexity of

O(A 4 n2 / 3 ), hence the probe complexity of the algorithm is sublinear for A - (nil/12-E).

This improves upon, and extends the recent work of [LL18], that obtained an 0(n) size

subgraph with stretch of O(poly(A, log n)) and a similar probe complexity.

" Despite the nE(1) probe complexities, all of our LCAs only require poly(log n) independent

random bits, via a novel analysis of graph connectivity with bounded independence.

" We complement these constructions by providing lower bound results for the probe complexity

of LCAs for the simpler task of spanning subgraphs: Any local algorithm that with success

probability of at least 2/3 maintains a sparse spanner of the input graph with o(m) edges (no

matter what the stretch factor is), has probe complexity Q(min{Vi, n2 /m}), where m is the

number of edges in G.

1.2 Set Cover and Fractional Set Cover

1.2.1 Set Cover in the Oracle Access Model

In Chapter 3 of this thesis, we study the classic set cover problem from the perspective of sub-

linear algorithms. This chapter is based on joint work with Piotr Indyk, Sepideh Mahabadi, Ronitt

Rubinfeld and Ali Vakilian. The full version of this chapter appears in [IMR+18]. We now give the

formal definition of the Set Cover problem, define the oracle access model for accessing the input

set cover instance (e.g., a set system), then discuss our results.

Set Cover. Set Cover is a classic combinatorial optimization problem, in which we are given a set

(universe) of n elements U = {ei, - - - , en} and a collection of m sets F = {S, - - - , Sm}. The goal

is to find a minimum set cover of U, i.e., a collection of sets in F whose union is U, of minimum

size. Set Cover is well-studied, and finds applications in operations research [GW97,KK82,BCSO9],
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information retrieval and data mining [SG09], learning theory [KV94], web host analysis [CKT10],
among many others.

Although the problem of finding an optimal solution is NP-complete, a natural greedy algorithm

which iteratively picks the "best" remaining set (the set that covers the most number of uncovered

elements) is widely used. The algorithm finds a solution of size at most k ln n where k is the optimum

cover size, and can be implemented to run in time linear in the input size. The fractional variant can

be approximated up to a factor arbitrarily close to 1, using an algorithm that runs in nearly-linear

time as well (see e.g., [You0l, KY14] and the references therein). However, the input size itself

could be as large as e(mn), so for large data sets even reading the input might be infeasible.

This raises a natural question: is it possible to compute an approximate solution to minimum

set cover in sub-linear time? This question was previously addressed in [NO08,YYI12], who showed

that (for the integral set cover) one can design constant running-time algorithms by simulating the

greedy algorithm, under the assumption that the sets are of constant size and each element occurs

in a constant number of sets. However, those constant-time algorithms have a few drawbacks. In

particular, they only provide a mixed multiplicative/additive guarantee (the output cover size is

guaranteed to be at most k - Inn + en). Furthermore, the dependence of their running times on

the maximum set size is exponential, and finally, they only output the (approximate) minimum set

cover size, not the cover itself.

Oracle access model for set systems. As in the prior works [NO08, YYI12] on Set Cover, our

algorithms and lower bounds assume that the input can be accessed via the following two types of

probes:

" ELTOF: given a set Si and an index j, the oracle returns the j-th element of Si.

" SETOF: given an element ej and an index j, the oracle returns the j-th set containing ei.

Both operations are natural, providing a "two-way" connection between the sets and the elements.

Furthermore, for some graph problems modeled by Set Cover (such as Dominating Set or Vertex

Cover), such oracles are essentially equivalent to the NEIGHBOR probe. We also note that in another

popular oracle access model employing the MEMBERSHIP probes, where we can probe whether an

element e is contained in a set S (analogously to the ADJACENCY probe), it can be easily seen that

even checking whether a feasible cover exists requires Q(mn) probes.

Our results. We provide sub-linear algorithms for set cover that, unlike prior work, construct actual

solutions (rather than approximating their sizes) with fully multiplicative approximate guarantee,
and do not rely on any assumptions on the cardinalities of sets or occurrences of elements. Formal

details are provided as follows.

" We show an adaptation of the streaming algorithm presented in [HIMV16] to the sub-linear

oracle access model, that returns an a-approximate cover using O(m(n/k) 1/(-1) +nk) probes

to the input, where k denotes the value of a minimum set cover.

" We complement this upper bound by proving that for lower values of k, the required number

of probes is U(m(n/k)1 /( 2a)), even for estimating the optimal cover size. We prove that

even checking whether a given collection of sets covers all the elements would require Q(nk)

19



probes. These two lower bounds provide strong evidence that the upper bound is almost tight

for certain values of the parameter k.

e We show that this bound is not optimal for larger values of the parameter k, as there exists

a (1 + E)-approximation algorithm with O(k) probes. We show that this bound is essen-

tially tight for sufficiently small constant e, by establishing a lower bound of Q(mn/k) probe

complexity.

Our lower-bound results follow by carefully designing two distributions of instances that are

hard to distinguish. In particular, our first lower bound involves a probabilistic construction of a

certain set system with a minimum set cover of size ak, with the key property that a small number

of "almost uniformly distributed" modifications can reduce the minimum set cover size down to

k. Thus, these modifications are not detectable unless a large number of probes are asked. We

believe that our probabilistic construction technique might find applications to lower bounds for

other combinatorial optimization problems.

1.2.2 Fractional Set Cover in the Streaming Model and the Oracle Access Model

In Chapter 4, we study the Fractional Set Cover problem, both in the streaming model and the

oracle access model. This chapter is based on joint work with Piotr Indyk, Sepideh Mahabadi,

Ronitt Rubinfeld, Jonathan Ullman and Ali Vakilian. The full version of the streaming section of

this work appears in [IMR+17]. We now define the fractional set cover problem, state our results for

both models, then discuss some of the connections between algorithm design techniques in the two

models that we observe in our study, in both the integral and the fractional variants of Set Cover.

Fractional Set Cover. Fractional Set Cover is the continuous relaxation of the set cover problem

over a universe of n elements and a collection of m sets, where each set S C F can be picked

fractionally, with a value in [0, 1]. That is, each variable xs corresponding to the set S is assigned a

value from [0, 1], such that for each element e its "fractional coverage" ES:eES XS is at least 1, and

the sum Es xs is minimized.

Our results. For the streaming model, we present a randomized (1 + E)-approximation algorithm

that makes p passes over the data, and uses O(mn0 (1 /P') + n) memory space. The algorithm works

in both the set arrival and the edge arrival models. To the best of our knowledge, this is the first

streaming result for the fractional set cover problem. We design our streaming algorithms based

on the multiplicative weights update (MWU) method. Using many techniques developed in the

streaming model, we then extend our results to the oracle access model.

For the oracle access model, we show three sub-linear time (1 + E)-approximate algorithms. The

first two algorithms are most efficient when k is small. Specifically, one algorithm has C(k + 1k

probe complexity and runtime. Our second algorithm reduces the number of probes further by a

factor of (roughly) Vk while increasing the runtime by the same factor. Our third algorithm is most

efficient when k is large, and uses O(') probes and similar running time. We also show that, for

constant values of k, the probe complexity of any algorithm for fractional set cover must depend

linearly on both m and n: we complement these results via a lower bound of Q("t') for sufficiently

small constant E, employing similar techniques from the integral variant.
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The first two algorithms for Fractional Set Cover use the MWU framework, which iteratively

identifies unsatisfied constraints and re-calibrates their "importance". The first algorithm imple-

ments each constraint-checking round separately by using random sampling. Our second algorithm

reduces the number of probes by re-using the random samples in multiple rounds. Since the MWU

algorithm updates the constraints in an adaptive fashion, we employ the adaptive data analysis

framework of Dwork et al. [DFH+15] and Bassily et al. [BNS+16], which allows us to control the

probabilistic dependencies. To the best of our knowledge this is the first application of the frame-

work to the design of sub-linear algorithms. Nonetheless, the best existing algorithm is based on

a much cleaner insight from [KY14]. While our result is not the state-of-the-art algorithm, we

speculate that this discovered connection may have applications in some context.

Shared techniques between the oracle access model and the streaming model. In our

study of both variants of the Set Cover problem, algorithms from both models share the essential

scheme of progressing in multiple rounds: in each round we detect and selectively sample the
"relatively unsolved" portion of the problem, then solve it in an offline fashion, and update the

maintained solution. For the Set Cover problem, we leverage existing sampling techniques from

the streaming setting to construct probe-efficient algorithms in the oracle access model. These

algorithms straightforwardly compute good solutions to the sampled subproblem that also turn out

to significantly reduce the overall problem size in each round (e.g., by choosing sets that cover many

uncovered elements).

On the other hand, for the Fractional Set Cover problem, we design an algorithmic framework

for both models based on the multiplicative weights update (MWU) method. Unlike the integral

setting, the overall problem size is not reduced due to the continuous nature of the fractional

variant. As briefly discussed earlier, following the MWU method, in each MWU round, we sample

subproblems (elements) with respect to their weights (importance). In our study, we invent building

blocks that are useful in both settings, such as "advance sampling" for the simulation of multiple

MWU rounds despite these "updated weights" - this technique aids in reducing the total number of

probes/passes in our algorithms.

1.3 Local-Access Generators for Random Graphs

In Chapter 5, we study the problem of constructing local-access generators for graphs drawn from

the Erdcs-R6nyi G(n, p) model, and the Stochastic Block model, and the Small-World model. This

chapter is based on joint work with Amartya Shankha Biswas and Ronitt Rubinfeld. Here, we

provide a simplified definition of the local-access generator, then discuss our results.

Local-access generators for random graphs. Random graphs are used in a variety of disciplines

to model communication networks, the WWW, and social networks. The naive approach that

first generates the entire random graph before executing any procedures on the generated graph

becomes infeasible when the size of the random graph is too large. Moreover, in many cases it

is not important to have the entire graph prepared beforehand: we may only need to probe the

graph in an increasing fashion. To handle this scenario, we consider a local-access generator which

incrementally constructs the random graph locally, at the probed portions, in a manner consistent
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with the random graph model and all previous choices. Local-access generators can be useful when

studying the local behavior of specific random graph models. Our goal is to design local-access

generators whose required resource overhead for answering each probe is significantly more efficient

than generating the whole random graph.

The following formal definition is largely inspired by that of [ELMR17] but incorporates minor

changes. A local-access generator is a data structure that provides oracle access to a random graph

G drawn from a distribution D over a family of unweighted graphs (undirected or directed). We

require the following properties from the local-access generator: (1) the responses of the local-access

generator to all probes throughout the entire execution must be consistent with a single graph,
(2) the random graphs provided by the generator must be sampled' from some distribution D' that

is (n-c)-close to the desired distribution D, and (3) the resources, namely the computation time,
additional random bits required, and additional space usage per probe, must be small, preferably

polylog(n).

Our results. Our work focus on undirected graphs with independent edge probabilities; that is,
each edge is chosen as an independent Bernoulli random variable (but the biases for different edges

may be correlated according to a global rule). We provide a general implementation for generators

in this model. Then, we use this construction to obtain the first efficient local implementations for

the Erdos-R6nyi G(n,p) model, and the Stochastic Block model.

As in previous works of local-access implementations for random graphs, we support VERTEX-

PAIR probes ("are u and v adjacent?") and NEXT-NEIGHBOR probes ("return a neighbor of v that

has not been returned before"). In addition, we introduce a new RANDOM-NEIGHBOR probe ("return

a uniform random neighbor of v"). We also give the first local-access generation procedure for ALL-

NEIGHBORS probes ("return all neighbors of v") in the (sparse and directed) Kleinberg's Small-World

model. Note that, in the sparse case, an ALL-NEIGHBORS probe can be used to simulate the other

types of probes efficiently. All of our generators require no pre-processing time, and answer each

probe using polylog(n) time, random bits, and additional space.
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Chapter 2

Graph Spanners

2.1 Introduction

One of the fundamental structural problems in graph theory is to find a sparse structure which

preserves the pairwise distances of vertices. In many applications, it is crucial for the sparse structure

to be a subgraph of the input graph; this problem is called the spanner problem. For an input graph

G = (V, E), a k-spanner H C G (for k > 1) satisfies that for any v, u E V, the distance from v to u in

H is at most k times the distance from v to u in G, where k is referred to as the stretch of the spanner.

Furthermore, to reduce the cost of the solution, it is desired to output a minimum size/weight such

subgraph H. The notion of spanners was introduced by Peleg and Schiffer [PS89] and has been used

widely in different applications such as routing schemes [AP92, Peloo], synchronizers [PU89, AP90],
SDD's [STil], spectral sparsifiers [KP12I.

It is folklore that for every n-vertex graph G, there exists a (2k - 1)-spanner H C G with

O(nl+l/k) edges. In particular, if the girth conjecture of Erd6s [Erd65] is true, then this size-stretch

trade-off is optimal.

Spanners have been considered by now in many different models: distributed algorithms [DG08,
DGP07, BS07, DGPV08, DGPV09, Pet 10, EN17], dynamic streaming [AGM12, KW14], parallel com-
puting [MPVX15] and dynamic algorithms [Elkl1,BKS12,BK16]. In all these settings the objective

is to compute efficiently (under a particular cost measure) a sparse spanner H with small stretch.

Local computation of small stretch spanners. When the graph is so large that it does not fit

into the main memory, the existing algorithms are not sufficient for computing a spanner. Instead,
we aim at designing an algorithm that answers queries of the form "is (u, v) in the spanner?" without

computing the whole solution upfront. One way to get around this issue is to consider the Local Com-

putation Algorithms (LCA) model (also known as the Centralized Local model) [RTVX11,ARVX12].

There can be many different plausible k-spanners; however, the goal of LCAs for the k-spanner prob-

lem is to design an algorithm that, given access to primitive probes (i.e. NEIGHBOR, DEGREE and

ADJACENCY probes) on the input graph G, for each query on an edge e E E(G) consistently with

respect to a unique k-spanner H C G (picked by the LCA arbitrarily), outputs whether e E H. The

performance of the LCA is measured based on the quality of solution (i.e. number of edges in H)
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and the probe complexity (the maximum number of probes per each query) of the algorithm.1 An

LCA gives us the "illusion" as if we have query access to a precomputed k-spanner of G.

LCAs have been established by now for a large collection of problems, including Maximal Inde-

pendent Set, Maximum Matching, and Vertex Cover [RTVX11, ARVX12, MV13, EMR14, MPV18,
RV16, LRY17]. The study of LCAs with sublinear probe complexity for nearly linear size spanners

(or sparsifiers) is initiated in [LRR14, LRR16] for some restricted families of graphs such as minor-

closed families. However, their focus is mainly on designing LCAs that preserve the connectivity; in

the context of spanners, the stretch factor is allowed to be as large as n. Moreover, in their work,
the input graph is sparse (has 0(n) edges), while the k-spanner problem is more challenging when

the input graph is dense (has Q(n) edges). Recently, Lenzen and Levi [LL18] designed the first LCA

for sparsifiers in general graphs. In particular, their algorithm implies an LCA for spanners with

(1 + E)n edges, stretch 0(log 2 n - poly(A/E)) and probe complexity of 0(poly(A/E) - n2/ 3 ), where

A is the maximum degree of the input graph.

In this work, we show that sublinear time LCAs for spanners are indeed possible in several cases.

We give: (I) 3 and 5-spanners for general graphs with optimal trade-offs between the number of

edges and the stretch parameter (up to polylogarithmic factors), and (II) general k-spanners, either

in the dense regime (when the minimum degree is at least n1/ 2 -1/(2k)) or in the sparse regime (when

the maximum degree is n1/1 2-E).

2.1.1 Our results and techniques

In this work we study the design of LCAs for graph spanners and in particular answer the following:

How can we decide quickly if a given edge e belongs to a sparse spanner (with fixed stretch) of

the input graph, without preprocessing and storing any auxiliary information? In the design of

LCAs for graph problems, the set of defined probes to the input graph plays an important role.

Here we consider the following common probes: NEIGHBOR probe ("what is the ith neighbor of

U"?), DEGREE probe ("what is deg(u)?") and ADJACENCY probe ("are u and v neighbors"?) [Golil,
GGR98]. We emphasize that the answer to an ADJACENCY probe on an ordered pair (u, v) is the

index of v in I'(u) if the edge exists and _L otherwise. Note that if the maximum degree in the input

graph is 0(1), each ADJACENCY probe can be implemented by 0(1) number of NEIGHBOR probes.

Next, we discuss our approaches and results in more details; refer to Table 2.1 for a summary

of the results.

Contribution (I): LCAs for 3 and 5-Spanners for General Graphs

Our first contribution is the local construction of 3 and 5-spanners for general graphs, while achieving

the optimal trade-offs between the number of edges and the stretch factors (up to polylogarithmic

factors). In particular, our LCAs have o(n) probe complexity even when the input graph is dense

- unlike distributed local algorithms, or LCAs under the maximum degree assumption, our LCAs

'LWe may also measure the time complexity of an LCA. In our LCAs, the time complexities are clearly
only a factor of poly(log n) higher than the corresponding probe complexities, so we focus our analysis on
probe complexities.

2Indeed, the girth conjecture of Erd6s is resolved for these stretch factors; see e.g., [Wen9l].
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Reference Graph Family # Edges Stretch Probe Complexity

Bounded Degree Graphs (1 + E)n - (N)

[LRR14] Expanders (1 + E)n - O(#)

Subexponential growth (1 + 6)n O( n)

[LR15] Minor-free (1 + E)n poly(A, 1/) poly(A, 1/s)

[LRR16] Minor-free (1 + F)n O((log A)/e) poly(A, 1/6)

[LMR+17] Expansion (1/ log n)l+o(l) (1 + E)n super-exponential in 1/E super-exponential in 1/E

[LL18] General (1 + e)n O(log 2 n -poly(A/E)) 0(n2 /3 
. poly(A/6))

Thni. 2.1.1 General Q(nl+l/r) 2r - 1 (r E {2,3}) 6(n1-1/(2r))

4 Thm. 2.2.14 Min degree O(nil/2-1/( 2k)) Q(n1+1/k) 5 6(n-1-/(2k))

Thm. 2.1.2 Max degree O(nl/12-E) Q(nl+1/k) 0(k 2) C(4-)

Thm. 2.1.3 General o(m) any k < n Q(min{f nr 2/m})

Table 2.1: Table of results on LCAs for the spanner problem. The symbol '-' indicates that the
stretch is not analyzed. The input graph is a simple graph with n vertices, m edges, maximum
degree A, and belongs to the indicated graph family. 0 hides a factor of poly(log n, k).

must operate on these graphs despite the inability to even learn the neighbor set of a high-degree

vertex.

Most distributed spanner constructions are based on thinning the graph via clustering: construct

a random set S of centers by adding each vertex to S independently with some fixed probability. For

each vertex v sufficiently close to a center in S, include the edges of the shortest path connecting

v to its closest member s E S: this induces a cluster around each s E S, where every pair of

vertices in the same cluster are connected by a short path. Then, add sufficient edges connecting

pairs of neighboring clusters to ensure the desired stretch factor. We design our LCAs around this

standard clustering idea, but naYve attempts to construct small spanners under sub-linear probes

only succeed under rather strong assumptions on the edges, such as very restricted range for their

endpoints' degrees. We observe that we may partition the edge set into a constant number of classes,
and separately "take care of" each class by constructing a stretch-k spanner for the subgraph formed

by the edges of that respective class. The union of these constructed solutions is a k-spanner for

the initial graph.

The common distributed construction of 3-spanners. The following algorithm constructs

a 3-spanner H C G with 5(n3 / 2 ) edges. First, add to H all edges incident to vertices of degree

at most f. Second, pick a collection S of centers by sampling each vertex independently with

probability 0((log n)/V/ii). Each vertex v of degree at least /n picks a single neighboring center

s c S n 1(v) 3 (which exists w.h.p.) as its center, then adds (v, s) to H, forming a collection of

ISj = O(vn) clusters (stars) around these centers. Lastly, every vertex u adds only one edge to
each of its neighboring clusters. This results in a 3-spanner, because if an edge from any u to some

vertex v of a neighboring cluster S is omitted, a different edge from u to w in cluster S would have

been chosen, providing the path (u, w, s, v) of desired stretch 3 connecting u and v.

3F(v) denotes the neighbor set of v, whereas F+(v) = 1(v) U {v}.
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Overview of the LCA for 3-spanners. Here, the goal is to design an LCA that constructs a

3-spanner H C G of size 0(n3 / 2 ) and probe complexity of 6(n3 / 4 ): the LCA is given an edge (u, v)

and must answer whether (u, v) c E(H). The algorithm can straightforwardly handle the edges

incident to the vertices of degree less than Vjii by applying a DEGREE probe to each of its endpoint.

The LCA model allows each vertex to consistently flip a coin and decide if it is a center. However,

determining v's unique center, or testing its membership in some cluster, requires a linear scan of

deg(v) probes. Lastly, as we try to connect u to the cluster of s, u must pick exactly one adjacent

vertex in s's cluster; in other words, for each of v E F'(u), we add (u, v) only if v belongs to a cluster

not encountered by any other neighbor preceding v in u's neighbor-list. Overall, this entire process

requires finding v's center s then testing, for up to deg(u) neighbors of u, its membership to the

cluster of s: our total probe complexity could potentially be quadratic in the degree.

Multiple Centers. 4 To implement the cluster membership test more efficiently, we allow each

vertex to join a slightly larger number of clusters. Instead of assigning each vertex v to exactly

one of the centers in its neighbor list, assign v to the clusters of all centers that are among its first

r neighbors in v's neighbor-list. W.h.p., if deg(v) ;> Vi then it is assigned to 0(logn) clusters,

thereby increasing the size of our spanner only by a factor of O(log n). This insight enables the

algorithm to test cluster membership with a single ADJACENCY probe: the vertex v belongs to

the cluster of s, if the index of s in v's neighbor-list is at most / (the index is returned by the

ADJACENCY probe on v and s). This idea alone decreases the probe complexity of our LCA to

6(deg(u)).

Neighbor Partitioning.5 The multiple center technique above allows our LCA to handle edges

adjacent to a vertex u of degree at most n3/4 . For deg(u) > n3 /4 , our LCA cannot even afford to

look at all neighbors of u. To this end, we partition the neighbors of u into blocks of size n3 / 4 each.

Rather than adding one edge between u to each neighboring cluster, we now allow one edge between

each block of u to each neighboring cluster: this increases the number of edges added from u by a

factor of deg(u)/n3/ 4 < n 1/4, but keeps the probe complexity down at 6(n3/ 4 ) as we only need to

scan the block containing v given the query (u, v) instead of u's entire neighbor-list. Now, to resolve

the increase in the spanner size, we turn back to our previously-an-obstacle now-an-assumption

deg(u) > n3 /4: we only need ISI = 0(n1/4 logn) instead of 6(Vf) to ensure each such u has a

neighboring center, reducing the spanner size back down by a factor of E(n1/ 4 ), as desired.

Overview of the LCA for 5-spanners. In 5-spanners, the desired bound for the LCA is a

solution of size 0(n4 / 3 ) and the probe complexity 6(n5 /1 ). We first observe that our 3-spanners

suffice to handle of a certain subset of edges with the promised number of edges and probe complexity

for LCA of 5-spanners. More specifically, we only need to design LCAs that handle edges whose

both endpoints have degrees in [n 1/ 3 , in5/ 6]. Our previous 3-spanner construction adds a few edges

between each neighboring vertex-cluster pair, but for 5-spanners we have two extra edges we can

4The construction of the spanner Hhigh that takes care of edges (u, v) where n1/ 2 < max{deg(u), deg(v)}
in 3/ 4 = Asuper is illustrated in Fig. 2-2 (page 38); MItCtrs+(v) denotes the set of multiple centers of v.

5 The construction of the spanner Hsuper that takes care of edges (u, v) where max{deg(u), deg(v)} >
Asuper = n 3 4 is illustrated in Fig. 2-4 (page 40); each IAs per,i(u) denotes the ith block of neighbors of size
E(Asuper) of U.
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use to connect endpoints of omitted edges. Hence, we attempt to extend our 3-spanner construction

in two ways: eitherf add edges between each neighboring cluster-cluster pair, or stick with the

vertex-cluster pairs but enlarge the clusters so they have radius two (no longer stars).

Cluster partitioning (bucketing). 6 The first approach adds an edge between every pair of

neighboring clusters (stars). As deg(u), deg(v) > n1/ 3 2S (n2/3) clusters suffice to cover

u and v, yielding a spanner of size O(IS 2) 0(n 4/ 3 ) as desired. Unfortunately this approach

cannot be readily implemented with the desired probe complexity. To see why, consider clusters

centered at s and t, containing u and v respectively. A nafve attempt spends deg(s) - deg(t)

ADJACENCY probes for vertices between these clusters, as to consistently pick a unique edge between

the two clusters. Instead, in lieu of the neighbor partitioning technique, we improve the probe

complexity by partitioning the clusters into buckets of size 0(n1 / 3), and so we may pick only one

edge between any pair of buckets, yielding the desired 0(n2 / 3 ) probe complexity for this step. By

a careful analysis, we show that the number of created buckets is only 6(n2/3 ), still yielding the

desired spanner size O(n4/3 ). However, unlike partitioning a neighbor-list, partitioning a cluster

requires full knowledge of the members of the cluster - they are not nicely indexed in a list any

more. To this end, we only pick centers of degree deg(s), deg(t) < n5 / 6 so that identifying the

member of their clusters takes 5(n5 / 6 ) probes (via the multiple center technique). However, these

clusters are only guaranteed to cover vertices that have many neighbors with degree less than n/ 6 .

We handle the complimentary case in the following second approach.

Representatives. 7 We now turn to vertices of degrees [ni1 /3, n5 / 6 ] that have many neighbors of

degree at least n5 / 6 . As discussed earlier, we will increase the radius of clusters to two: these vertices

will be at distance two from their centers, whereas the inner stars of these clusters are simply the

previously-constructed 3-spanner. Recall that the clustering approach handle vertices of high degree

(now with threshold n2/ 3 in our construction): all high-degree vertices join some clusters: they are

adjacent to the centers, and now forming the first-level of our radius-2 clusters. Thus, to choose

which cluster to join (in the second-level), our vertex, which has many high-degree neighbors, simply

chooses and connects itself to one or more high-degree neighbors, called its representatives. To find

representatives of a vertex v, we simply pick e(log n) random neighbors of v, and w.h.p. one of

them will have high-degree, and hence is chosen as v's representative.

Our LCA picks a set of ISI = 6(n1/ 6) centers for the 3-spanner. For each edge (u, v) where

deg(u), deg(v) > ni1 / 3 and v has many high-degree neighbors (with degree at least n 5 / 6 ), v has

log n representatives, and each representative has e(logn) centers w.h.p., so v belongs to O(log 2 n)

clusters. As per the 3-spanner case, we keep (u, v) if v is in a cluster that no previous neighbors of

u belong to; this gives the spanner size of n - S = 6(n7/ 6 ). We may find the representatives of each

6 The construction of the spanner Hbckt that takes care of edges (u, v) where deg(u), deg(v) 2
LAmed, Asuper] = [n 1/ 3, n5/ 6], such that the majority of the first n1/ 3 neighbors of both u and v are of
degree at most n5 /6, is illustrated in Fig. 2-6 (page 43); CIst(s) denotes the cluster of vertices that have s
among their multiple centers, and Bucket(u, s) denotes the bucket in Cist(s) containing u.

7The construction of the spanner Hrep that, together with Hsuper with parameter Asuper - n 5/ 6 , takes
care of edges (u, v) where deg(u), deg(v) E [n1/3 ,i5/ 6 ], such that the majority of the first n1/ 3 neighbors of
u or v are of degree at least n5/ 6 , is illustrated in Fig. 2-7 (page 44); Reps(v) denotes the representatives of
v, and RepsCtrs+(v) denotes the set of v's representatives' multiple centers.
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neighbor of u in O(log n) probes, and for all these deg(u) -O(log n) = 6(n5/ 6 ) representatives, check

if they belong to any of v's O(log2 n) clusters with 6(n5/ 6 ) membership tests. The probe complexity

is also equally contributed to by the process of finding v's representatives' centers, taking 0(n5 / 6 )
probes per representative, which is 6(n5 / 6 ) probes in total.

Theorem 2.1.1 (3 and 5-spanners). For every n-vertex graph G there exists an LCA for (2r - 1)-

spanners with b(n1+1/r) edges and probe complexity 6(n1-1/(2 r)) for r - {2, 3}. Moreover, the

algorithm only uses O(log2 n) random bits.

In fact, if G has minimum degree w(nl/ 3 ), we may apply the 5-spanner construction (with

modified parameters) to obtain 5-spanners with even lower number of edges as indicated in Table 2.1

(Theorem 2.2.14): this minimum degree assumption indeed allows even sparser spanners, bypassing

the girth conjecture that holds for general graphs. We also remark that, in the somewhat related

setting of dynamic computation, spanner algorithms with worst-case sublinear update time are

currently known only for 3 and 5-spanners as well [BK16].

Contribution (II): LCA for 0(k2 )-Spanners for Graphs with Maximum Degree A

Our second contribution is the local construction of 0(k 2 )-spanners with 0(n+l/k) edges for any

k > 1, which has sub-linear probe complexity for graphs of maximum degree A = 0(n1/12-E).

Recall that there are distributed algorithms for constructing (2k - 1)-spanners in k rounds. In

the standard reduction from distributed algorithms to LCAs, given the query (u, v), if we visit all

vertices within distance k of u and v, we will be able to simulate the distributed algorithm and

answer accordingly. However, in the case A = Q(nl/k+,), scanning the entire k-neighborhood may

lead to the probe complexity of Q(min{Ak, An}) = Q(n), rendering this approach prohibitively

costly. Our approach instead builds on the recent work of Lenzen and Levi [LL18] - their work

aims at locally constructing a spanning subgraph with only 0(n) edges, but the stretch parameter

of their subgraph can generally be as large as 0(poly(A) log2 n). Incorporating our new techniques,
we design our LCA with the following guarantee:

Theorem 2.1.2 (Spanners for Graphs with Maximum Degree A). For every integer k > 1 and every

n-vertex graph G with maximum degree A, there exists an LCA for O(k2 )-spanner with O(nl+l/k)
edges and probe complexity C(A 4 n2/ 3 ). In particular, for A = 0(n1 / 12 -e), the probe complexity is

(n'-4,). Moreover, the algorithm only uses 0(log 2 n) random bits.

Our LCA extends the construction of [LL18 in two important aspects. Firstly, we reduce

the stretch parameter of the constructed subgraph to 0(k 2 ), independent of both n and A, while

using only O(nl+I/k) edges. In particular, the algorithm achieves a sub-linear probe complexity for

A = 0(n1/12-E). Secondly, our construction can be implemented using only poly(log n) independent

random bits (where [LL18] uses poly(n) bits). Unlike previous works in LCAs that generally bound

the required randomness trivially from the fact that their LCAs only make poly(log n) probes and

hence only require poly(log n)-independent random bits, our probe complexity depends polynomially

on n. Thus, our LCA requires a specialized analysis that bounds the required independence based

on its behavior.
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We now summarize the key techniques in the design of our LCA as follows.

Sparse edges: simulating distributed algorithms. For a given stretch parameter k, we par-

tition the edges in G into the sparse set Esparse and the dense set Edense. Roughly speaking, the

sparse set Edense only consists of edges (u, v) for which the k-neighborhood in G of either u or v

contains at most 0(n2/ 3 ) vertices. 8 For this sparse region in the graph, we can simulate a standard

distributed algorithm for spanners, with small probe complexity. The reason is that distributed

algorithms for (2k - 1)-spanners use k rounds of communication and hence depend only on the

kth-neighborhood of the vertices and the random bits. If the query edge (u, v) is in this sparse

region, the LCA can probe for the entire kth-neighborhood of one of its endpoints u, v by making

0(A . n2/ 3 ) probes (as oppose to the naYve no(k) bound when the kth-neighborhood is not sparse)
and then simulate the distributed algorithm in this neighborhood. For this purpose, we will employ

a version of Baswana-Sen that uses only a poly-logarithmic number of random bits [BS07, CPS17].

This simulation yields an LCA handling the sparse edges with Q(zA2rn 2 / 3 ) probe complexity. Hence,
the overall probe complexity of our LCA is strictly dominated by that of the dense edges case

described below.

Dense edges: partitioning of dense vertices into low-diameter Voronoi cells. To take

care of the dense edges, we sample9 a collection S of 0(n2 / 3 log n) centers and partition the (dense)

vertices into Voronoi cells around these centers. 10 This is done by connecting each dense vertex

via a lexicographically-first shortest path to its closest sampled center. Our LCA can identify the

Voronoi center, together with this path, of any given vertex using O(A -i 1 / 3 ) probes via a breadth-

first search algorithm. These shortest path edges connect vertices of the same Voronoi cell, forming

a tree structure of depth k (by the definition of dense vertices), ensuring a diameter of at most 2k

(whereas in [LL18], the diameter of the Voronoi cells is 0(A log n)).

Attempting to connect these Voronoi cells together incurs two problems. The first problem is

that, we still cannot afford to add an edge between every adjacent pairs of 6(n2/ 3 ) Voronoi cells.

To resolve this issue, we again resort to the common distributed construction of 3-spanners (page

25): for an N-vertex graph, mark 0(1/N) vertices as centers, form clusters around them, then

connect them into a 3-spanner using 6(N 3/ 2 ) edges - further details will be discussed momentarily.

Since there are N = 6(n2/ 3 ) Voronoi cells, this approach only requires 6(N 3 / 2 ) = 6(n) edges to

connect our Voronoi cells. If we could actually implement such an approach, we would then obtain

a 3-spanner over the Voronoi cells, or a 3 - (2k) = 0(k)-spanner over the dense vertices - a result

better than the 0(k 2 ) stretch that we originally claim.

Refining Voronoi cells into small clusters. We have a more demanding second problem: it

is simply impossible to implement the 3-spanner construction above. Observe that a Voronoi cell

may contain as many as 0(n) vertices. In particular, given a vertex v, we cannot enumerate all

8 An edge is dense if both of its endpoints are dense vertices that contain some center in their k-
neighborhoods; otherwise it is sparse. The set S C V of ISI = 0(n2 / 3 log n) centers is chosen randomly,
implying the above condition via the hitting set argument.

9Each vertex v c V locally decides that v G S with probability 8(n- 1/ 3 log n), yielding a set S of size
E (n2/ 3 log n) in expectation.

10The Voronoi partitioning with random centers has also been used in other related contexts; see e.g.,
[MZ13].
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vertices in a Voronoi cell containing v, let alone finding all of its adjacent Voronoi cells. To this

end, we further subdivide the Voronoi cells into clusters of a more tractable size of 0(n'/3 ) vertices

each. (In [LL18], the cluster size is linear in A: we introduce a different construction and analysis

to remove this dependence on A.) We show that our LCA can identify visit its entire cluster

using O(A3 t2/3 ) probes. An essential property of this refinement is that the number of clusters

(resp., clusters in marked Voronoi cells) does not significantly increase from that of Voronoi cells

(resp., marked Voronoi cells), so rules (1) and (2) can still be applied, in the "cluster level" instead

of the "Voronoi cell level", without significantly increasing the number of added edges. The problem,
still, is that from a vertex v, we cannot find all Voronoi cells adjacent to v's Voronoi cell - but now,
we can at least find some Voronoi cells: those adjacent to v's cluster. We now discuss these ideas

in more details. 1 ' In particular, we show that the same 3-spanner connection rules, when executed

on this incomplete neighborhood information, still offers the connectivity guarantee, but sacrifices

the stretch factor guarantee.

Connecting Voronoi cells. We hope connect our Voronoi cells in the same fashion as the 3-

spanner construction, on the supergraph where each Voronoi cell is contracted into a single vertex.

We mark a random subset of O(nl/ 3 log n) Voronoi cells (among the n2/ 3 Voronoi cells), then connect

them according to the following rules using 6(n) edges each. Rule (1): We connect every pair of

marked Voronoi cells to their neighboring Voronoi cells. Rule (2): Let us call a Voronoi cell bad

if it has no neighboring marked Voronoi cells - bad Voronoi cells are likely to have only O(n 1/ 3 )
neighboring Voronoi cells, so we can connect them to all their neighboring Voronoi cells as well.

Rule (3): We handle the remaining edges, namely the incident edges of good Voronoi cells b having

some neighboring marked Voronoi cell c, as follows. For each pair of (not necessarily adjacent)

Voronoi cell a and marked Voronoi cell c sharing common neighboring Voronoi cells F(a) n 1(c), we

keep an edge from a to a single Voronoi cell b* E F(a) n (c): for any good b where (a, b) is omitted,
b will be connected to a in our spanner via (b, c, b*, a). (where incident edges of c are added because

c is marked).

Suppose that we have access to this supergraph, and let the query edge (u, v) be between Voronoi

cells a and b. Locally choosing the edges for rules (1) and (2) only requires checking 17(a) and F(b).

For rule (3), we keep the edge connecting a to b if there exists some marked c E 1F(b) such that the

ID of b (defined as ID(v) of its center v) is the minimum among F1(a) n r(c). Unfortunately there is

a major problem with this approach: we do not actually see this supergraph of Voronoi cells. For

instance, from v in b, we can only see the cluster containing b, and then find out the neighboring

Voronoi cells of this cluster: we do not see the entire 1(b).

Connectivity via partial neighborhood information. We first show that there are 6(n2/ 3 )
clusters, 6(n1/ 3 ) of which belong to marked clusters: since these quantities do not differ much from

their Voronoi cell counterparts, we can apply the first two rules analogously. Next, we observe that

applying rule (3) using only partial neighborhood information still yields a valid spanner. Suppose

that we omit the query edge (u, v) (between Voronoi cells a and b) because we discover a marked

c E F(b) and some b' E IF(a) n f(c) with ID(b') < ID(b): b' has the minimum ID among the Voronoi

"The illustrated example on page 58, accompanied by Figure 2-12, may be helpful for understanding the
upcoming description.
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cells that the LCA actually sees in F(a) nF(c). Observe that the path (b, c, b') is still in the spanner,

and there is some edge (u', v') between Voronoi cells a and b', but we do not know if (u', v') will

be kept by the LCA (because the LCA with query (u', v') may not see c from b'). At this point,
we must instead prove connectivity between a and b' (as opposed to a and b, our original task for

query (U, v)). Since ID(b') < ID(b), we can inductively repeat this argument with decreasing ID at

each step: eventually we will reach some b* E 1(a) with sufficiently low ID that an edge between a

and b* is kept by the LCA.

Establishing the stretch guarantee. Recall that vertices within each Voronoi cell are connected

by a diameter-2k tree structure, so it suffices to show that the inductive argument above terminates

in 0(k) steps; that is, the spanner path from Voronoi cell supervertices a to b only visits 0(k) other

Voronoi cells. To this end, we make the following modication to rule (3): instead of comparing the

IDs of Voronoi cells through ID(v) of centers, we use an independent random rank assignment r(v)
of centers. The work of [LL18] observes that during each inductive step, conditioned on r(b') < r(b)

we have r(b') < r(b)/2 with probability 1/2, so the argument terminates in expected 0(log n) steps,
yielding a path on the supergraph of length O(log n).

We enhance this idea further by modifying rule (3), thereby adding an edge from a to b if

there exists a marked Voronoi cell c such that the rank r(b) of b is among the (nI/k log n) lowest

ranks in 17(a) n F(c) restricted to those discovered by the LCA. Via a similar argument, we have

r(b') < n- /k . r(b) w.h.p., and so the inductive argument only requires 0(k) steps, yielding the

overall stretch factor of 0(k 2 ).

Implementation with bounded independence using 0(log 2 n) random bits. We relax the

assumption that the rank assignment for the Voronoi cells is chosen with full independence, and

instead show that in order to guarantee the termination of the inductive process within 0(k) steps,
it suffices to work with only T = 0(k) hash functions hl, - - - , hT chosen uniformly at random form

a family of 0(log n)-wise independent hash functions of the form {0, 1} og " --+ {o, 1 }0((log n)/k). We

define our rank function as a concatenation of hi's on the ID of the Voronoi cell's center: for the

Voronoi cell centered at v, its rank is given by r(v) = hi(ID(v)) o ... o hT(ID(v)). From the earlier

example, let Voro = b, Vor1 = b', Vor 2, ... denote the sequence of Voronoi cells in F(a) we consider in

each inductive step. We then show in our analysis that as we reach the Voronoi cell Vori, w.h.p. the

rank of its center is 0 in all its first i hash functions (i.e., hl = ... = hi = 0 on Vori's center's

ID). This in particular implies that the sequence of ranks of Voro, Vori, ... may decrease at most

T times before the inductive process inevitably terminates, establishing the desired 0(k 2 ) stretch

bound w.h.p. even when the full independence of rank assignment is replaced with 0(log n)-wise

independence. Hence our LCA only requires 0(log 2 n) independent random bits, as desired.

Contribution (III): Lower Bounds. To establish the lower bound, we construct two distributions

over undirected d-regular graph instances that contain a designated edge e. For graphs in the first

family, it holds that after removing e, w.h.p., they remain connected while in the second family,

removing e disconnects the endpoint of e and leave them in separate connected components. We

show that for the edge e, any LCA that makes o(min{fV, n/d}) = o(min{x/ii, n2 /m}) probes can

only distinguish whether the underlying graph is from the first family or the second family with
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probability 1/2 + o(1).

Our approach mainly follows from the analysis of [KKR04] on the construction of [LRR14]. The

lower bound of [LRR14] shows Q(V'n) for the probe complexity of LCA for spanning graphs that

only uses NEIGHBOR probes. However, in our setting, ADJACENCY probes are allowed as well. To

handle the additional probe, we follow [KKR04] to show that if the number of probes performed

by an algorithm is o(rn2 /nd), w.h.p. the answer to all ADJACENCY probes are no. Although our

ADJACENCY probes return more information compared to [KKR04] if the edge exists, since the

answer to all of them are no, the same argument follows.

Theorem 2.1.3 (Lower Bound). Any local randomized LCA that computes, with success probability

at least 2/3, a spanner of the simple m-edge input graph G with o(m) edges, has probe complexity

Q(min{fj, n 2/M}).

2.1.2 Additional related work: spanners in many other related settings

Local distributed algorithms. The construction of spanners in the distributed local model,
where messages are unbounded, has been studied extensively in both the randomized and the

deterministic settings [BS07, EN17, DG08, DGP07, DGPV08, DGPV09, Petl0]: the state of the art

of both randomized and deterministic constructions is 0(k) rounds.

Dynamic algorithms for graph spanners. In the dynamic setting, the input graph G undergoes

updates (e.g., edge insertions and deletions) and one wants to avoid recomputing the spanner from

scratch after every update. In this model, the challenge is to dynamically maintain a spanner under

the edge insertion/deletion with only a small amount of time required per update. Most of the dy-

namic algorithms for spanners maintain an auxiliary clustering structure that aids the modification

of current spanner. Recently in [BK16], the first fully dynamic algorithms with sublinear worst-case

bounds have been obtained only for 3-spanners and 5-spanners. We hope that the tools developed

here will be useful for the dynamic setting as well.

Streaming algorithms. In the setting of dynamic streaming, the input graph is presented online

as a long stream of insertions and deletions to its edges. For spanners, the goal is to maintain a

sparse spanner for the graph using small space and few passes over the stream. Ahn, Guha and

McGregor [AGM12] showed the first a sketch-based algorithm for spanners in this setting, yielding

(kl92 5 - 1)-spanner with O(n1+1/k) edges and 0(log k) passes. Kapralov and Woodruff [KW14]

showed an alternative tradeoff yielding 0(2k)-spanner with Q(n'+1/k) edges using only two passes.

In dynamic streaming one can keep the entire solution and the challenge is to update the solution

though the pass over the stream. In contrast, in the LCA model, one cannot afford keeping the

entire solution (i.e., already the number of vertices is too large) but the input graph remains as is.

2.1.3 Model Definition and Preliminaries

Graph notation. Throughout, we consider simple unweighted undirected graphs G = (V, E) on

n = IVI vertices and m = JE| edges. Each vertex v is labeled by a unique O(logn)-bit value
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ID(v)". For u E V, let F(u, G) = {v : (u, v) E E} be the neighbors of u, deg(u, G) = IF(u, G)I

be its degree, and define F+(u, G) = F(u, G) U {u}. Denote VI = {v E V : deg(u, G) E I}

where I is an interval. For u, V E V, let dist(u, v, G) be the shortest-path distance between u
and v in G. Let ]7k(u, G) = {v : dist(u, v, G) < k} be the kth-neighborhood of u, and denote

its size degk(u, G) = IFk(u, G)1. A graph H is a subgraph of G, denoted H C G, if its edge set

E(H) C E(G). The union of two subgraphs H, H' of G is given by H U H' = (V, E(H) U E(H')).

The parameter G may, in general, be omitted for the input graph.

We assume that the input graph comes with its adjacency list representation: each neighbor

set has a fixed ordering, 1(u) ={v',... , vdeg(u)}; this ordering may be arbitrarily (e.g., not nec-

essarily sorted by vertex IDs). Many of the algorithms in this work are based on partitioning

the neighbor-list into balanced-size blocks. For A E [n] and u C V such that deg(u) > A, let

FA,1(u), . . . , rA,e(deg(u)/A)(u) be blocks of neighbors obtained by partitioning F(u) into consecutive

parts. Each block is of size A, except possibly for the last block that is allowed to contain up to

2A vertices.

Local Computation Algorithms. We adopt the definition of LCAs by Rubinfeld et al. [RTVX11].

A local algorithm have access to the adjacency list oracle OG which provides answers to the following

probes (in a single step):

" NEIGHBOR probes: Given a vertex v E V and an index i, the ith neighbor of v is returned

if i < deg(v). Otherwise, _ is returned. The orderings of neighbor sets are fixed in advance,

but can be arbitrary.

" DEGREE probes: Given a vertex v E V, return deg(v). This probe type is defined for

convenience, and can alternatively be implemented via a binary search using O(log n) NEIGH-

BOR probes.

" ADJACENCY probes: Given an ordered pair (u, v), if v E F(u) then the index i such that v

is the ith neighbor of i. 13 Otherwise, I is returned.

Definition 2.1.4 (LCA for Graph Spanners). An LCA A for graph spanners is a (randomized)

algorithm with the following properties. A has access to the adjacency list oracle OG of the input

graph G, a tape of random bits, and local read-write computation memory. When given an input

(query) edge (u, v) E E, A accesses OG by making probes, then returns yes if (u, v) is in the spanner

H, or returns no otherwise. This answer must only depend on the query (u, v), the graph G, and

the random bits. For a fixed tape of random bits, the answers given by A to all possible edge queries,

must be consistent with one particular sparse spanner.

The main complexity measures of the LCA for graph spanners are the size and stretch of the

output spanner, as well as the probe complexity of the LCA, defined as the maximum number of

probes that the algorithm makes on OG to return an answer for a single input edge. Informally

speaking, imagine m instances of the same LCA, each of which is given an edge of G as a query,

"We do not require IDs to be a bijection V -+ [n] as in most other works on LCAs.
"We remark that the traditional LCA model (e.g., [RTVX11]) does not consider this type of probe, yet

it is common in the oracle access model, especially for dense graphs [KKR04]. We also distinguish our
ADJACENCY probes from the VERTEX-PAIR probes in Chapter 5 that only returns 1 or 0 indicating whether

(u, v) E E(G) or not, without the extra index information.
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while the shared random tape is broadcast to all. Each instance decides if its query edge is in the

subgraph by making probes to OG and inspecting the random tape, but may not communicate

with one another by any means. The LCA succeeds for the input graph G and the random tape

if the collectively-constructed subgraph is a desired spanner. All the algorithms in this chapter are

randomized and, for any input graph, succeed with high probability 1 - 1/nc over the random tape.

Chapter Organization. We start in Section 2.2 by describing our results for 3 and 5 spanners in

general graphs. Next, in Section 2.3 by extending the recent construction of [LL18] to provide 0(k2 )-

spanners for graphs with maximum degree n1 / 12 . For simplicity, we first describe all our randomized

algorithms as using full independence, then in Section 2.4, we explain how these algorithms can be

implemented using a seed of poly-logarithmic number of random bits). Finally, in Section 2.5, we

provide a lower bound result for a simpler task of computing a spanning subgraph with the specified

probes.

Clarification. Throughout we use the term "spanner construction" when describing how to con-

struct our spanners. These construction algorithms are used only to define the unique spanner,
based on which the LCA makes its decisions: we never construct the full, global spanner at any

point.

2.2 LCA for 3 and 5-Spanners

2.2.1 3-spanners

In this section, we give an LCA which constructs 3-spanners with 6(n3/ 2 ) edges using probe com-

plexity 6(n3/ 4 ). In Section 2.2.1.1 we begin by establishing some observations that allow us to "take

care" of different types of edge separately based on the degrees of their endpoints. We turn to the

standard approach for spanner construction in Section 2.2.1.2, where we highlights the challenges

for its LCA implementation. We then introduce our key techniques, multiple centers and neighbor

partitioning respectively in Sections 2.2.1.3 and 2.2.1.4, to handle these issues, and finally establish

our results in Section 2.2.1.5.

2.2.1.1 Overview and edge categorization

Taking care of edges. Consider the simple undirected unweighted input graph G = (V, E). To

construct our LCA for 3-spanners, we classify each edge in E into one or more categories. For

each category, we propose an LCA tailored to effic.iently takes care of edges of that category. More

formally:

Definition 2.2.1 (Subgraphs taking care of edges). For stretch parameter k > 1 and set of edges

E' C E, we say that the subgraph H' C G takes care of E' if for every (u, v) E E', dist(u, v, H') < k.

Observe that if we have a collection of subgraphs Hi's such that every edge in (u, v) E E is

taken care by at least one Hi, then the union H of the Hi's constitute a k-spanner for G: if (u, v)

is omitted, one can still traverse from u to v on H in k steps using edges of the Hi that takes care

of (u, v). This observation suggests a method for constructing the overall LCA as follows.
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Observation 2.2.2 (Spanner construction by combining subgraphs). For a collection of subsets

E1 , ... , E C E where Ue[]Ei E, if Hi is a subgraph of G that takes care of Ei, then H = uje[ ]Hj

is a k-spanner of G. Further, if we have an LCA Ai for computing each Hi (i.e., deciding whether

the query edge (u, v) E Hi and reporting yes or no accordingly), we may construct a final LCA that

runs every Ai and answer yes precisely when at least one of them does so. The performance of our

overall LCA (number of edges, probes, or random bits) can then be bounded by the respective sum

over that of A 's.

Note that Hi may contain edges of E that are not in E, thus it is necessary that the overall

LCA invokes every Ai even if Ai does not take care of the query edge.

Overall LCA for 3-spanners. Our LCA for 3-spanner assigns each edge of E into one or more of

the subsets Eo,, Ehigh, or Esuper based on the degrees of its endpoints, so that ElowUEhighUEsuper

E. Fix a parameter r > 1, and for ease of presentation, let Aiow = nl/r, Ahigh = ni-1/r and

Asuper = nl-1/(2r). As given in the following table, we assign each (u, v) E E into some Ej,
i E {low, high, super}, based on the range of the quantity max{deg(u), deg(v)}. Included also are

the sizes of the created subgraphs Hi and the probe complexities of respective LCAs.

Subset max{deg(u), deg(v)} # Edges Probe Complexity

E10. [1, Aiow] O(n -Aiow) = O(nl+-r) 0(i)

Ehigh [Ahigh, Asuper] 0( Ahigh O(n r log n) O(Asuper log n) = O(n-2r log n)

Esuper [Asuper, n) 0(-7 - )= O(nl+log n) O(Asuperlogn) = O(n1-r log n)

Table 2.2: Edge categorization for the construction of 3-spanners.

In the construction of 3-spanners for general graphs, we choose r = 2 so that Aiow = Ahigh = n1/2

and Asuper = n3/ 4 . Since Alow = Ahigh, we cover the entire range of the quantity

max{deg(u), deg(v)}, and thus have taken care of all edges. Hence, our construction leads

to an LCA for 3-spanner of size 6(n3 / 2 ) using 6(n3 / 4 ) probes as desired. Nonetheless, observe that

Hhigh and Hsuper have less edges as r becomes larger. This entails LCAs with better spanner sizes

for graphs where max{deg(u), deg(v)} ( (Alow, Ahigh) holds for every edge, such as dense graphs

with minimum degree Ahigh.

LCA for Hi0 n: the trivial case. Because vertices of degree at most Ai, have O(n . A1 0w)

O(nl+1/r) incident edges in total, we may afford to keep all these edges, letting Hi0o = (G, Ei0o).

Thus, an LCA simply needs to check the degrees of both endpoints (via DEGREE probes), and

answer yes precisely when both (or in fact, even one) have degrees at most Ai'.

2.2.1.2 The standard clustering approach and obstacles for its LCA adaptation

Our LCA is based on an application of our new technique called the multiple-centers method, mo-

tivated by the clustering approach used for graph thinning, explained momentarily. However we

first remark that, rather than "thinning" the input graph, we construct spanners in an incremental
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fashion. Beginning with an empty graph, we "add" edges from the input graph to our maintained

subgraph, so that this subgraph eventually becomes a spanner. Under this notion, we may conve-

niently bound the size of our spanner by counting the added edges, and prove that the constructed

subgraph is a valid k-spanner by showing that for every discarded edge, there exists a path formed

entirely by the added edges, of length at most k that connects the two endpoints.

We are now ready to describe the global algorithm. Let Hstd be the subgraph constructed via

this "standard" approach, aiming to take care of E(V, V[Af)) for some threshold A; this edge set

includes Ehigh (resp., Esuper) for A = Ahigh (resp-, Asuper). We first choose a random set of vertices

S by adding each vertex v E V to S independently with probability p = E((logn)/A); the vertices

added to S are called centers. It follows by the Chernoff bound that w.h.p., ISI = 0(n/A - logn),
and each vertex of V[A,n) has at least one neighboring center; that is, S forms a hitting set for the

collection {f(v)}V[,n).

Following the standard construction of 3-spanners (e.g., [BS07]), each vertex v E VA,n) chooses

a single arbitrary neighboring center, denoted Ctr(v). Each edge (v, Ctr(v)) is added to Hstd to form

clusters in shape of (possibly overlapping) stars, spending up to n total edges. Let Cist(s) be the set

of vertices in the cluster centered at s, consisting of s and every vertex that chooses s as its center.

Now to connect between clusters, for each pair of vertex u and center s such that there exists an

edge in E from u to some vertex in Clst(s), add one such arbitrary edge to Hstd: keeping a single

edge is sufficient to make u and Cist(s) remain connected, thinning down the number of edges from

potentially n2 to n - ISI. We summarize the process via the following two rules for adding edges

inside and between clusters. It is straightforward to verify that all added edges indeed exist in the

original edge set E, so Hstd is a subgraph of G.

Global construction of Htd. Each v E V is added to S with probability p = E((logn)/A).
(I) for each v E V[A,n), add (v, Ctr(v)) to Hstd
(B) for each u E V and s E S, choose an edge from u to a vertex in Cist(s) (if one exists) and
add it to Hstd.

Figure 2-1: Procedure for the global construction of Hstd.

To see why Hstd takes care of (u, v) E E(V, VNn)), suppose that (u, v) is omitted by this process.

Let s = Ctr(v), then in step (B), some edge (u, w) where w E Cist(s) must have been added to Hstd.

As edges (v, s) and (w, s) are added in step (I), u is connected to v via the path (u, w, s, v) of length

3 (unless w = s, where we have the path (u, w = s, v) of length 2 instead). Thus, Hstd takes care of

(T, V[,ny).

Computing centers in the LCA model. In the LCA model, we do not generate the entire

set S up front. Instead, we may verify whether v E S on-the-fly using v's ID by, e.g., applying a

random map (chosen according to the given random tape) from v's ID to {0, 1} with expectation p.

In fact, this hitting set argument does not require full independence - the discussion on reducing

the amount of random bits is given in Section 2.4, but for now we formalize it as the following

observation.

Observation 2.2.3 (Local Computation of Centers). Let S be a center set obtained by placing each
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vertex into S independently with probability p = ®((log n)/A). W.h.p., S forms a hitting set for the

collection of neighbor sets of all vertices of degree at least A. Further, under the LCA model, we

may check whether v E S locally without making any probes.

2.2.1.3 LCA for Ehigh: the Multiple Centers method

Obstacles for the LCA implementation of the global algorithm. Recall that the task of

our LCA is to decide whether a query edge (u, v) E E belongs to Hstd. Let us focus on the more

sophisticated step (B). To implement (B), we impose a natural priority for choosing which edge we

add to our spanner. Let the neighbor-list of u be {v', ... , Vdeg()} (as specified by G's adjacency
list representation). For a center s, we add (u, v) to Hstd if v' is u's first neighbor that appears

in Cist(s). Equivalently speaking, (u, v) is added in step (B) if and only if v' or Ctr(v') is a new

center, not appearing in any {v, Ctr(v,)}Ji<. Thus, to implement this algorithm, it suffices to check

whether ' is a center and compute Ctr(v ), for every j < i.

However, attempting to evaluate the above condition naYvely introduces two difficulties. Firstly,
if u is an arbitrary vertex, the number of candidates 's we must check is up to deg(u) which can

be linear, so checking all candidates is not a viable option - we will resolve this problem later when

we take care of Esuper, so that the probe complexity becomes sub-linear in the degree. Fortunately

for Ehigh, the number of candidates "i's we must check is at most deg(u) < Asuper, which is lower

than the desired probe complexity, but is so by only a factor of log n. The second difficulty arises

as we must compute Ctr(v ) for each candidate ', but we do not know in advance which of its

neighbors are centers. As the expected size S n F(v')J can be asymptotically much smaller than

deg(v5) and ISj, we have no hope of evaluating Ctr or even discovering a neighboring center using

a logarithmic number of probes, because the orderings of F(v)'s are arbitrary. We address this

second issue through the following multiple centers method.

Multiple Centers. We have established that in order to achieve a better probe complexity for

computing a vertex's center, we must discard the conventional notation of Ctr. Instead, rather than

assigning each vertex a single center, we define multiple centers as follows. Recall that FA,1(v)

denotes the set of the first A neighbors of v in its adjacency list representation.

Definition 2.2.4 (Multiple Centers). For a given integer A E [n], a vertex v with degree at least

A, and center set S, let MltCtrs(v, S,A) = S n FA,1(v) be the (multiple) centers of v with respect

to S and A. When A and S are clear from the context, we abbreviate it to MltCtrs(v). Define also

MItCtrs+(v) = MltCtrs(v) U {v} if v E S, and simply MItCtrs+(v) = MltCtrs(v) otherwise; this is the

set of centers whose clusters contain v.

The observation below shows that this new definition has two main benefits for achieving better

probe complexity: (i) shows that the number of required membership tests s E MItCtrs(v) in (B)

will only increase by a log n factor under this new definition, and (ii) implies that each membership

test for MltCtrs(v) (or, together with Observation 2.2.3, also for MltCtrs+(v)) with only constant

probes.
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Observation 2.2.5 (Multiple Centers Properties). Let S be a center set obtained by placing each

vertex into S independently with probability 0((logn)/A). Then for every v with deg(v) > A:

(i) W.h.p., MtCtrs(v, S, A) contains E(log n) centers (and in particular, MltCtrs(V, S, A) $
0);

(ii) Given a center s E S, then s E MltCtrs(v) if and only if the ADJACENCY probe with

parameter (v, s) returns a value at most A; that is, the center s is among the first A

neighbors of v.

Both observations above also apply to MtCtrs+(v).

M ItCtrs+ (v)
SO(log n)

test for
s E MtCtrs+(w) compute

MltCtrs+(i)

(u, v) E Hhigh? size Asuper

Figure 2-2: Illustration for the local construction of Hhigh.

We apply this definition for A = Ahigh, and modify the construction as follows: for (I), we must

add an edge from each v E V[AhighAsuper to every center in MltCtrs(v), and for (B), we add an edge

from u to a vertex in Cist(s), now updated to Cist(s) = {s} U {v : s E MitCtrs(v)}.

2.2.1.3.1 The LCA for constructing Hhigh We apply MltCtrs instead of Ctr in the clustering

algorithm for Hstd with A = Ahigh. For (B), we add an edge from u to a vertex in Cist(s) =

{s} U {v : s E MltCtrs(v)}. This can be implemented locally by adding edge (u, v') if MItCtrs+(VI) \
Uj<jMtCtrs+(v ) = 0; that is, v' "introduces" some new center to the collection {MItCtrs+(v)}<i.

Given (u, v) G E, the LCA for constructing Hhigh decides whether (u, v) E Hhigh as follows. (See

Fig. 2-2).

Our LCA answers no if no rules apply. Note that for 3-spanners, we may afford to include

all incident edges of centers, thereby simplifying (I) - this simplification will not extend to our

5-spanner construction. We remark that rules we give for LCAs throughout this section are in-

herently unsymmetrical: for example, the (I) rule below does not check for v E MItCtrs(u). These

unsymmetrical rules must also be reapplied with roles of u and v swapped (e.g., as (v, u)) because

edges are undirected.

We now prove its correctness and performance as follows.

Lemma 2.2.6. For 1 < Ahigh < Asuper n, there exists a subgraph Hhigh C G such that w.h.p.:

(i) Hhigh has O(n2 /Ahigh - log n) edges,
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Local construction of Hhigh. Each v E V is added to S with probability p = 0 ((logn)/Ahigh).
(I) If v E V[Ahigh,Asuper] and u E MltCtrs(v), answer yes (DEGREE probe and Observation 2.2.3).
(B) If (u, v) E E(V[,Aupr VAhighAsuper]): (DEGREE probes)

" Compute MItCtrs+(v) by iterating through IAhigh,1(V) (NEIGHBOR probes and Observa-
tion 2.2.3).

" Denote the neighbor-list of u by {v/,. .. , vg}; identify i such that v = 

(ADJACENCY probe).
" For each s E MItCtrs+(v), iterate to check for a vertex w E {v,.... , Vi 1 } such that w E

VAhigh,Asuper] and s E MltCtrs+(w) (DEGREE probe and Observation 2.2.5). Answer yes if
there exists a vertex s where no such w exists.

Figure 2-3: Procedure for the local construction of Hhigh.

(ii) Hhigh takes care of Ehigh; that is, for every (u, v) E Ehigh, dist(u, v, Hhigh) < 3, and

(iii) for a given edge (u, v) E E, one can test if (u, v) E Hhigh by making O(Asuper log n) probes.

Proof. (i) Size. In step (I), by Observation 2.2.5, each vertex is connected to O(logn) centers,

costing O(n log n) total edges. In step (B), we add one edge for each v' [AhighAsuper introducing

a new center. As there are at most ISI centers, we add up to ISI edges for each u, bounding the

number of added edges by O(n - ISI) as well. Since ISI = 0(n/Ahigh - log n) by the Chernoff bound

w.h.p., E(Hhigh) = O(n2 /Ahigh - log n) as desired.

(ii) Stretch. This guarantee follows the argument of Hstd. Suppose that (U, v) E

E(VAsuper], VAhighAsuper]) is omitted, fix some s E MltCtrs+(v) (which exists due to Ob-
servation 2.2.5). Let w be the first neighbor of u whose MItCtrs+(w) contains s, then the edge

(U, w) must have been added to Hhigh in step (B). Edges (s, v) and (s, w) are added in step (I), so

u is connected to v via the path (u, w, s, v) of length 3.

(iii) Probes. Step (I) clearly takes constant probes. For (B), identifying MItCtrs+(v) takes

O(Asuper) probes. Recall by Observation 2.2.3 that IMItCtrs+(v)I = 0(logn). The number of

candidates w we need to check is at most deg(u) < Asuper. Checking w c VAhghsuper and

s E MItCtrs+(w) takes 0(1) probes via Observation 2.2.3 thanks to our multiple centers method.

Thus the probe complexity is e(log n) . Asuper - 0(1) = O(Asuper log n). E

2.2.1.4 LCA for Esuper: the Neighbor Partitioning method

Neighbor Partitioning. Consider now (u, v) E E(V, V[Asupern)) = Esuper. As discussed in Sec-

tion 2.2.1.2, our previous LCA can execute step (B) in sub-linear number of probes only because

we previously had a sub-linear bound on deg(u), but this is not the case for Esuper. Here, we must

design an LCA whose probe complexity is sub-linear in the degrees: exploring the entire neighbor-

hood of u is forbidden. To this end, we will make our rule for adding edges even "more local" and

only explore a consecutive block of neighbors within the neighbor-list via our neighbor partitioning

method.

For Hsuper, we choose a new set of centers S by adding each vertex v E V to S independently

with probability p = 0((logn)/Asuper), then define MltCtrs(v) = S n -,,1 accordingly. As

39



suggested in the preliminaries, we partition the neighbor-list F(u) into 0(deg(u)/Asuper) blocks

of consecutive neighbors, {FAspei(u)}i<e(deg(u)/Aur,), each of size O(Asuper). We modify our
algorithm from that of Hhigh so that we add (u, v) to Hsuper only when v introduces some new

center to the collection {MltCtrs(v')} for v' preceding v within the same block, independent of all

other blocks. More formally, suppose that v is the ith neighbor in the fth block of F(u). Let

FAsuper,(u) = {v ,... ,V e u)}, so v =V je. We add (u,v) to Hsuper if MitCtrs+(vig) \
Uj<jMtCtrs+(vf 3 ) = 0. (See Fig. 2-4 for an illustration).

MltCtrs+(v)
q;-- = O(log n)

S

test for
s C MltCtrs+(w) compute

(ignore other blocks) MltCtrs+(v)

super 0 superp
size Asuper

(u, v) E Hsuper?

#blocks

<I/super

Figure 2-4: Local construction of Hsuper.

Local construction of Hsuper. Each v E V is added to S with probability p = E((log n)/Asuper).
(I) If v E VAuperf) and u E MtCtrs(v), answer yes.
(B) If v E V' j :upern)*

o Compute MItCtrs+(v) by iterating through FAsuper), (v).
* Denote the fth block of F(u) by FAsuperi(u) = { ... , o }; identify , i where

V = Vei/

" For each s E MtCtrs+(v), iterate to check for a vertex w E {v, ... ,vii} such that

w E V[Asuper,n) and s E MtCtrs+(w). Answer yes if there exists a vertex s where no such w
exists.

Figure 2-5: Procedure for the local construction of Hsuper.

Compared to the construction of Hhigh, this process may add up to a factor of n/Asuper redundant

edges, but saves a factor of Asuper/Ahigh in the number of centers: our choices of Asuper and Ahigh
balance these two factors at nl/(2r), so that the total number of edges remain unchanged.

Lemma 2.2.7. For 1 < Asuper n, there exists a subgraph Hsuper C G such that w.h.p.:

(i) Hsuper has O(n 3/Asuper -log n) edges,

(ii) Hsuper takes care of Esu per; that is, for every (u, v) E Esuper, dist(u, V, Hsuper) K 3, and

(iii) for a given edge (u, v) E E, one can test if (u, v) E Hsuper by making O(Asuper log n) probes.
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Proof. (i) Size. Here, in step (B), we add one edge for each vo - V'j.supen) introducing a new

center in the th block. As there are at most ISI centers and E(n/Asuper) blocks, we add up to

E(n|SI/Asuper) edges for each u, bounding the total number of added edges by O(n2IS/Asuper).
Since now ISI = 0(n/Asuper.logn) by the Chernoff bound w.h.p., IE(Hsuper)I = O(n 3 /A uper'log n)
as desired.

(ii) Stretch. This guarantee follows closely from the same argument as that of Hhigh. In fact,
E(Hsuper) includes all the edges that we would have added if we were not to apply our neighbor

partitioning method.

(iii) Probes. Similarly to the analysis of Hhigh, step (I) takes constant probes, step (B) identifies

MItCtrs+(v) using O(Asuper) probes, and IMItCtrs+(v)l = E(logn). Now, by our neighbor parti-

tioning method, the number of candidates w we need to check is reduced to at most the block size,
O(Asuper). Thus the probe complexity is O(Asuper) - E(log n) = O(Asuper log n). El

2.2.1.5 Final 3-spanner results

To obtain an LCA for 3-spanners, we simply apply our LCA for constructing Hi0 , Hhigh and

Hsuper, then answer yes if any of them does so. Applying Lemma 2.2.6-2.2.7 with r = 2 (so that

Aio = Ahigh = n1/2 and Asuper = n3/4), we obtain the following LCA result for 3-spanner in

general graphs.

Theorem 2.2.8. For every n-vertex graph G = (V, E) there exists an LCA for 3-spanner with

0(n3/2 log n) edges and probe complexity 0(n3/4 log n).

Moreover, by simply combining the results only for Hhigh and Hsuper, we obtain an LCA for

3-spanners of smaller sizes for graphs where every edge is incident to a vertex of degree at least

nl-l/r. This includes, in particular, graphs of minimum degree n1-1/r

Theorem 2.2.9. For every r > 1 and n-vertex graph G = (V, E), such that every edge is incident

to a vertex of degree at least n1-1/r, there exists an LCA for 3-spanner with 0(n1+1/r log n) edges

and probe complexity Q(n1-1/(2r) log n).

2.2.2 5-spanners

We now consider LCAs for 5-spanners, aiming for spanners of size 0(n4/3) with probe complexity

5(n5/6). As our construction heavily relies on the structures and tools developed for 3-spanners,

we provide intuition on the modifications and extensions required to turn them into LCAs for 5-

spanners, as well as introduce our new methods in Section 2.2.2.1. Detailed constructions are given

in Section 2.2.2.2-2.2.2.3, leading to our results in Section 2.2.2.4.

2.2.2.1 Overview

We begin by considering cases handled by our 3-spanners: all of our constructions can still be

readily applied. We may afford to set r = 3 to construct subgraphs of size Q(n1+1/r) - 6(n4/3)
with probe complexity 6(n1-1/(2r)) = 6(n'/6 ), but some edges are not taken care of: (u, v) where
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max{deg(u), deg(v)} c (Aiow, Ahigh)- Observe that the construction of Hi0, only generates a sub-

graph of size O(n - Al. ) = Q(nl+l/r) even if one endpoint of the query edge has degree above

Aioi. Applying this modified construction of Hiow, together with the construction of Hsuper (via

Lemma 2.2.7), we have taken care of edges (u, v) c E \ (V(AioA,,per) X V(AIowAsuper)). (Lemma 2.2.6

also applies, but is not needed in our upcoming construction.)

Let Amed = n1/ 2 -1/( 2 r). We will design a subgraph H C G that takes care of the remaining edges

Emed = E(V[meAsuper] I[Amed,Asuper]), satisfying dist(u, v, H) < 5. Since Aiow = Amed = n1/ 3 for

r = 3, this construction, together with the previous cases above, takes care of all edges and yields

a 5-spanner for any general graph G. To take care of EmIed, we consider two different methods.

Cluster partitioning method. First, consider the clustering-based approach (local construction

of Hstd from Section 2.2.1.2), where in step (B), for each pair of vertex u and center s, we add a single

edge from u to some vertex of Cist(s), ensuring that the stretch is 3. Now that stretch 5 is allowed,

we instead consider each pair s, t of centers, then add a single edge between Cist(s) and CIst(t).

Thus, if (u, v) E E(CIst(s), CIst(t)) is omitted, then another edge (u', v') E E(CIst(s), CIst(t)) must

have been kept, providing the path (u, s, u', v', t, v) of length 5 (or less, in case u' = s or v' = t).

For SI = O(n/Amed) clusters, the total number of edges added in step (B) is O((n/Amed) 2 )

o(n+I/r log 2 n) as desired.

Unfortunately for the LCA implementation, choosing the first edge in E(CIst(s), CIst(t)), or even

verifying whether one exists, requires iterating through each pair of vertices from these clusters: this

process takes up to deg(s) - deg(t) ADJACENCY probes, which may not be sub-linear in n. Instead,

similarly to the neighbor partitioning method, we partition each cluster into buckets of size (mostly)

Amed, then add a single edge connecting each pair between these buckets. As the total size of all

clusters is O(n log n) (since each vertex chooses O(log n) centers and hence joins O(log n) clusters),

the total number of buckets is still O(n/Amed).

Another difficulty arises as, unlike neighbors that can be divided into blocks via indices, we must

spend e(deg(s)) probes identifying the entire Cist(s) in order to break it into roughly equal-sized

buckets: as illustrated in Fig. 2-6, the size of CIst(s), and its vertex distribution among F+(s), can

be extremely arbitrary. Hence, this method only provides the desired probe complexity when we

restrict that centers are of degree at most n1-1/(2 r) = Asuper. Consequently, we apply this method

to take care of edges for which both endpoints have plenty of neighbors of degree at most Asuper in

their first block (FAmed,1) of neighbors.

Representative method. Alternatively, we may connect vertices through the existing cluster

structure Hsuper if they have some neighbor of degree at least Asuper. We connect each vertex

V E VAmed,Asuper] to a number of representatives, denoted Reps(v) g F(v)nV[Aspern); representatives

that share some center are already connected via Hsuper. Thus, we may modify step (B) of the local

construction of Hhigh from Section 2.2.1.3, so that we only add (u, v) to our subgraph if, through

its representatives, v introduces a new center. Namely, if (u, v) were omitted, then for a fixed

x E Reps(v) and s E MItCtrs+(x), we must have added the first neighbor w in v's block of F(u),
such that there exists y E Reps(w) with s E MItCtrs+(y), creating a path (u, w, y, s, X, V) of length 5

(or less, if y = s or x = s). See Fig. 2-7 for illustration. The number of edges added in (B) remains

the same as that of Hhigh because we still only add ISI edges per each u, by the same analysis.
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Figure 2-6: Local construction of Hbckt.

The only remaining issue for this approach is designing Reps. To meet the size and probe
complexity requirements, we want IReps(v) I and the number of probes of each operation (computing
or verifying membership of Reps(v)) to be at most poly-logarithmic. To this end, we inspect O(log n)
random neighbors of v, chosen from FAmed,1 (v) for consistency, hoping to find a neighbor of degree at
least Asuper. (These indices of neighbors are chosen as a function of the vertex's ID and the random
bits, so it is consistent throughout the execution of the LCA.) So, to ensure that this approach
succeeds w.h.p., we apply this method to take care of edges for which some endpoint have plenty
of neighbors of degree at least Asuper in their first blocks of neighbors.

Criteria for edges. We aim to take care of edges for which both endpoints are in V[Amed Asuper-
To categorize our edges for the purpose of constructing 5-spanners, we need the following partition
of these vertices.

Definition 2.2.10 (Deserted and Crowded vertices). A vertex v E V[AmedAsuper] is deserted if at
least half of its neighbors in the first block FAmed,1(v) are of degree at most Asuper; i.e., IrAmed,1(v) n
V1,Asuper] I Amed/ 2 . Otherwise, the vertex is crowded.

Let Vdsrt (resp., Vcrwd) be the set of deserted (resp., crowded) vertices in V[medAsuper]. Given
a vertex, we can verify whether it is in any of these sets using O(Amed) probes by checking the
degrees of v and each vertex in JAmed,1(V). We then assign each (u, v) E E into one of the four
cases {low, bckt, rep, super} as given in the table below. It is straightforward to verify that when
Aiow = Amed (namely when we choose r = 3, which also yields the required performance), these
four cases take care of all edges in E. We note that Hrep assumes that Hsuper is included: Erep is
taken care by Hrep U Hsuper, not by Hrep alone.
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Figure 2-7: Local construction of Hrep.

Subset Criteria # Edges Probe Complexity

Elow (U, V) E E(V, 0 (n - Ai,),) = 0(n 1) 0(1)

Ebckt (u, v) E E(Vdsrt, Vdsrt) 0(f o f) -- (n1+ 2 n) O((Asuper + Amed) log n) = O(n log2 n)

Erep (u, v) E Asuper), Vrwd) O(Asue -log n) = O(n'+, log n) O(Asuperlog n) _O n' logn n)

Esuper (u, v) E E(V, V[Asf)) O( S2) =O(nl+r log n) O(Asuper log n) = O(n -r log n)

Table 2.3: Edge categorization for the construction of 5-spanners.

2.2.2.2 LCA for Ebckt: the Cluster Partitioning method

We give the algorithm below, which requires significant clarification as follows.

" Only vertices of degree at most Asuper are chosen to be in S with probability

p = E0 ((logn)/Amed). Since at least half the vertices in lFAmed,1(V) for any v E Vdsrt

have degree smaller than Asuper, Observation 2.2.5 still holds: IMItCtrs+(v)I = e(logn) and

condition s c MltCtrs+(v) requires constant probes to verify.

" In (B), the partitioning of clusters into buckets may be done in a consistent way (regardless of

the given query edge); for instance, create a list of vertices in the cluster, sort them according

to their IDs, divide the list into buckets of size Amed possibly except for the last one. Note

that we partition Clst(s) and CIst(t) separately - we do not combine their elements. Similarly,

once we obtain buckets containing u and v, the order in which we check the adjacency of

U' and v' must be consistent. To this end, define the ID of an edge (u,v) as (ID(u),ID(v)),

where the comparison between edge IDs is lexicographic. Thus, this step only adds the edge
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of minimum ID between the two clusters.

9 We also set the precondition (u, v) E E(V[med,n), V[Amed,n)), and consistently only allow can-

didate pairs (u', v') E E(V[med,n), [Amed,n)), to ensure that the lexicographically first edge

of this exact specification is added if one exists. We do not restrict to Ebckt, which require

both endpoints to be deserted vertices, because checking whether (u', v') E Ebckt would take

E(zAmed) probes instead of constant probes. We restrict to edges whose endpoints have degrees

at least Amed instead of considering the entire E so that MItCtrs+ would be well-defined.

Local construction of Hbckt. Each v E V[1,Auper] is added to S with probability p =

0((log n))/Amed).
(I) If a E MitCtrs+(v) or v E MItCtrs+(u), answer yes.
(B) If (u, v) e E(V[med,n), [AAmed,n))

" Compute MItCtrs+(u) and MItCtrs+(v) by iterating through FAmned,(u) and FAmed,1()-
" For each pair of s E MltCtrs+(u) and t E MltCtrs+(v):

- Partition each of Cist(s) and CIst(t) into buckets of size (mostly) Amed. Denote the
buckets containing u and v by Bucket(u, s) and Bucket(v, t), respectively.

- Iterate through each pair of u' E Bucket(u, s) and v' E Bucket(v, t) and check if (W', v') E
E(V[med,n), V[Amed,n)). Answer yes if the edge of minimum ID found is (u', v') = (u, v).

Figure 2-8: Procedure for the local construction of Hbckt.

Lemma 2.2.11. For 1 < Amed V < Asuper < n, there exists a subgraph Hbckt g G such that

w.h.p.:

(i) Hbckt has O(n2 ,g 2 n) edges,
med

(ii) Hbckt takes care of Ebckt; that is, for every (u, v) E Hbckt, dist(u, v, Hbckt) < 5, and

(iii) for a given edge (u, v) c E, one can test if (u, v) C Hbckt by making O((Asuper +

Amed log2 n) probes.

Proof. (i) Size. In (I) we add IMItCtrs+(v)| = E(logn) edges for each v E Vdsrt, which constitutes to

O(n log n) edges in total. In (B), we add one edge between each pair of buckets. We now compute the

total number of buckets. The total size of clusters EsES IClst(s)I < 1S+ZEVClmedV ) IMltCtrs(v)j =

O(n log n), so there can be up to O((n log n)/Amed) full buckets of size Amed. As buckets are formed

by partitioning ISI clusters, there are up to ISI = ®((n log n)/Amed) remainder buckets of size less

than Amed. Thus, there are E((nlogn)/Amed) buckets, and O(((nlogn)/Amed) 2 ) edges are added

in (B).

(ii) Stretch. Suppose that (u,v) is omitted. Fix centers s E MItCtrs+(u) and t E MItCtrs+(v),
then the lexicographically-first edge (u', v') E E(Bucket(u, s), Bucket(v, t)) must have been added

to Hbckt, forming the path (u, s, ', v', t, v) (or shorter, if there are repeated vertices), yielding

dist(u, v, Hbckt) < 5.

(iii) Probes. Computing MItCtrs+(u) and MItCtrs+(v) takes O(Amed) probes. For each pairs

of centers, we scan through the entire neighbor-lists F(s) and F(t) and collect all vertices in their

respective clusters. This takes O(Asuper) probes each because we restrict to centers of degree at most
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Asuper. Given the clusters, we identify the buckets containing u and v each of size O(Armed). We then

check through candidates (u', v') between these buckets, taking O(Amed) ADJACENCY probes. So,

each pair of centers requires O(Asuper+ Aed) total probes. We repeat the process for IMItCtrs+() I.
IMItCtrs+(v)| = O(log2 n) pairs of centers w.h.p., yielding the claimed probe complexity. E

2.2.2.3 LCA for Erep: the Representative method

We first explain the computation of Reps(v) for v E Vrwd. Using the random bits and the vertex

ID of the parameter v, we sample a set Rv of 6(log n) (not necessarily distinct) values in [Amed] at

random (for details, see Section 2.4). Denote the neighbor-list of v by {x', ... , z'eg(v)}, then define

Reps(v) = {x : i c Rv and deg(x') Asuper}. Then since at least half of the vertices in FAmed,1(

are of degree at least Asuper, w.h.p. Reps(v) y 0. For consistency, we allow the same definition for

Reps(v) for any v E VAmed,n) as well, even if it may result in empty sets of representatives. The

selection of indices Rv can be done without any probes, so computing Reps(v) requires 8(log n)

probes (by checking the degrees of these neighbors), and verifying whether a E Reps(v) requires

0(1) probes (by finding the index of a in F(v) and checking if it is in Rv).
Assume that Hsuper (with stretch 3) is present; we aim to show that Hrep U Hsuper takes care of

Erep (with stretch 5). For convenience, define RepsCtrs+(v) = UxeReps(v)MtCtrs+(x'), the set of

(multiple) centers of any of v's reprsentatives. Observe that by adding (v, x') for every x' E Reps(v),
it yields that dist(v, s, Hrep U Hsuper) < 2 for any s E RepsCtrs+(v).

Consider the query (U, v), and suppose that v = v' is the ith neighbor in u's neighbor-list,

(u) = {v', .. ., ~Veg(u)}. We then add (u, v) to Hrep if and only if v introduces a new center through

some representative; that is, RepsCtrs+(v') \Uj<iRepsCtrs+(v') 0 0. To verify this condition locally,

we first compute RepsCtrs+(v), and for each of {v} 3 <j, Reps(v'). Then, we discard (u, v) if for every

center s E RepsCtrs+(v), there exists x and ' where x E Reps(vj) and s E MItCtrs+(x); the last

condition takes constant probes to verify due to Observation 2.2.5, which is our most economical

choice here. This gives the full LCA for constructing Hrep below.

Local construction of Hrep. Each v E V is added to S with probability p E((log n)/Asuper).

(I) If v E V[AmedAsuper] and u E Reps(v), answer yes.
(B) If u, V E V[AmedAsuper]:

" Compute RepsCtrs+(v).
" Denote the neighbor-list of u by {vj, ... d1 )}; identify i such that v v'.

* For each vertex w E {v'i, ... .,_}, if w E VAme,ASUper], compute Reps(w).

" For each s E RepsCtrs+(v), iterate to check for a vertex y in any of the Reps(w)'s obtained

above, such that s c MtCtrs+(y). Answer yes if there exists a vertex s where no such y
exists.

Figure 2-9: Procedure for the local construction of Hrep.

Lemma 2.2.12. For 1 < Amed < Asuper < n, there exists a subgraph Hrep ; G such that w.h.p.:

(i) Hrep has O(n2/Asuper - log n) edges,

(ii) HrepUHsuper takes care of Erep; that is, for every (u, v) E Erep, dist(u, v, HrepUHsuper) <; 3,

and
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(iii) for a given edge (u, v) E E, one can test if (u, v) E Hrep by making O(Asuper log 3 n) probes.

Proof. (i) Size. W.h.p., in (I) we add at most EV ed IReps(v)l < n-O(logn) = O(nlogn).

Similarly to the analysis of Hhigh, in (B) we add IS= O((n log n)/Asuper) edges per vertex u, so

|E(Hrep)I = O(n 2 / Asuper - log n).

(ii) Stretch. This claim follows from the argument given in the overview, and is similar to the

analysis of Hhigh-

(iii) Probes. Computing RepsCtrs+(v) takes O(log n)- Asuper = O(Asuper log n) (recall that we only

check IAs,,peril of each reprsentative). Note also that IRepsCtrs+(v)I = O(log 2 n) since v has O(log n)

representative, each of which belongs to e(log n) clusters. Computing Reps for each neighbor

W E {v}3 < of u takes O(log n) probes each, which is O(Asuper log n) in total since deg(u) Asuper.
This also introduces up to Asuper - O(log n) representatives in total. Checking whether each of the

O(log 2 n) centers in RepsCtrs+(v) is a center of each of these O(Asuper log n) representative takes,

in total w.h.p., O(Asuper log 3 n) probes. F

2.2.2.4 Final 5-spanner results

To obtain an LCA for 5-spanners, we again invoke all of our LCAs for the four cases. Applying

Lemma 2.2.7, 2.2.11 and 2.2.12, we obtain the following LCA result for 5-spanner in general graphs.

Theorem 2.2.13. For every n-vertex graph G = (V, E) there exists an LCA for 5-spanner with

O(n4 / 3 log 2 n) edges and probe complexity O(n5 / 6 log3 n).

Again, by combining results for larger degrees, we obtain an LCA for 5-spanners with smaller

sizes on graphs with minimum degree at least nl/2-1/(2r).

Theorem 2.2.14. For every r > 1 and n-vertex graph G = (V, E) with minimum degree at least

n1/ 2 -1/( 2r), there exists an LCA for 5-spanner with Q(nl+1/r log 2 n) edges and probe complexity

O(n -1/( 2r) log 3 n).

The proofs in this section do not show that the LCA uses a polylogarithmic number of indepen-

dent random bits. To obtain the main result for 3 and 5-spanner construction, we refer to Section 2.4

for missing details:

Proof of Theorem 2.1.1. The main theorem follows from Theorem 2.2.8 and Theorem 2.2.13, where

the independent random bits assumption are resolved according to Section 2.4. More specifically,
we show the hitting set argument under polylogarithmic number of independent random bits in

Section 2.4.2. El

2.3 LCA for Graphs with Maximum Degree A

In this section, we show our construction of LCAs for low-stretch spanners on graphs of maximum

degree A = O(n 1/12-) with sub-linear probe complexity:
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Theorem 2.3.1. For k > 1, and n-vertex graph with maximum degree A, there exists an LCA

that computes an O(k2 )-spanner H C G with o(n+1/k ) edges and probe complexity C(A4 n 2/1). In

particular, the probe complexity of the algorithm is sublinear for A = 0(n1/1 2 -c).

Our construction is inspired by the recent work on the local construction of sparse spanning

subgraphs of Lenzen and Levi [LL18]. In particular, we extend their construction in two major

aspects. First, we improve upon the stretch factor of the constructed spanner from O(log n - (A +

log n)) down to 0(k 2 ) for any k > 1, thereby removing the dependencies on A and n completely,
at the cost of increasing the number of spanner edges from 0(n) to Q(n1+1/k). Second, we offer an

improved analysis, showing that the number of required independent random bits can be reduced

from linear to only polylogarithmic in n. We remark that the probe complexity in our construction

is largely kept unchanged from that of [LL18].

2.3.1 Overview

We now provide some preliminaries and an outline of our 0(k 2)-spanner construction. Throughout

the main part of this section, we fix two parameters L = 0(n1/ 3 ) and p = 1/L: these values

will show up in contexts as a threshold or a probability involved in various quantities. We only

need to consider k = 0(log n) because, by the size-stretch tradeoff of spanners, any k = Q(log n)

yields a spanner of (roughly) linear size, 6(n1+1/k) = 6(n). We note that LCAs in this section

only make use of the NEIGHBOR probes. We note that the construction in Theorem 2.3.1 only

use NEIGHBOR probes for finding neighbors of vertices; other probe types will only be used in the

extension of our LCA to support larger maximum degree.

Sparse and dense vertices. We first sample a collection S of 0((n log n)/L) = 6(n2/3 ) centers,
which is implemented locally by having each vertex elect itself as a center with probability Pcenter

(ccenter log n)/L for some constant ccenter > 0. In particular, we remark that we never explicitly

enumerate the entire set S, but only rely on the fact that we may locally determine whether a

given vertex v is a center based on its ID and the randomness, without using any probes. Next,
we partition our vertices into sparse and dense vertices with respect to the center set S based on

their distances to the respective closest centers: a vertex v is considered sparse if it is at distance

more than k away from all centers, and it is dense otherwise. By a hitting set argument, if the

kth-neighborhood of v is of size at least L, then it most likely contains a center, making v a dense

vertex. This observation suggests that to verify that a vertex is dense, we do not necessarily need

to find some center in v's potentially large kth-neighborhood: it also suffices to confirm that the

neighborhood itself is large.

Definition 2.3.2 (Sparse and dense). A vertex v is sparse in G if 'k(v, G) n S = 0 and otherwise,
it is dense. Denote the sets of sparse vertices and dense vertices by Vsparse and Vdense, respectively.

We next partition the edge set of G into Esparse = E(V Vsparse) and Edense = E(Vdense, Vdense),

then take care 14 of them by constructing Hsparse C Esparse and Hdense 9 Edense, so that H =

14 As a reminder, to "take care" of an edge (u, v), we ensure that in the constructed spanner, there is a u-v
path whose length is at most the desired stretch factor. See Definition 2.2.1 for its formal definition.
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Hsparse U Hdense gives a spanner for all edges of G. See Table 2.4 for a summary of the properties of

each spanner.

Subset Criteria Spanner Edges # Edges Probe Complexity

Esparse at least one endpoint is sparse Hsparse 0(kn1+1/k) O(A 2 L 2 )

0 
((n) O(A2L2)

Edense both endpoints are dense dense

H(se Q(n' 1+/k log 4 n) 0(p 4 L3 logn)

Table 2.4: Edge categorization for the construction of 0(k2 )-spanners, with respective spanner
sizes and probe complexities.

The outline of the construction is given as follows. For convenience, tables of various probe

complexities for computing Hsparse and Hdense are provided: Table 2.5 (page 52) and Table 2.6

(page 54), respectively.

Taking care of Esparse. (Section 2.3.2.) Attempting to leverage the clustering approach, we need

to partition our vertices based on their distances to S. However, some vertices can be very far from

all centers: connecting them to their respective closest centers would still incur a large stretch factor.

We observe that every sparse vertex v has a small kth-neighborhood: degk(v, G) = I'k(v, G)I = O(L)

(hence the name "sparse"). Thus, we may test whether some vertex v is sparse by simply examining

up to O(L) vertices closest to it, using O(AL) probes. To take care of sparse vertices' incident edges

Esparse, we can then afford to identify the query edge's endpoints' kth-neighborhoods and simulate

a k-round distributed (2k - 1)-spanner algorithm on the subgraph Gsparse = (V, Esparse). We locally

obtain our spanner Hsparse of Gsparse using O(A 2 L2 ) probes.

Partitioning of dense vertices into Voronoi cells. (Section 2.3.3.1) In the subgraph induced

by dense vertices Gdense = (Vdense, Edense), all vertices are at distance at most k from some center.
We partition them into Voronoi cells by connecting each of them to its closest center. We show

that each dense vertex can find its shortest path to its center in O(AL) probes. Building on this

subroutine, we straightforwardly connect vertices within each Voronoi cell to their center via these

shortest paths, forming a Voronoi tree of depth at most k, which in turn bounds the diameter

of every Voronoi cell in our spanner by 2k. In particular, our construction improves upon the

construction of [LL18] that provides a diameter bound of O(A + log n). We denote by H(1) thedense

set of Voronoi tree edges, as each tree spans vertices inside the same Voronoi cell.

Refining Voronoi cells into small clusters. (Section 2.3.3.2) Naturally as our next step, we

would like to consider our Voronoi cells as "supervertices," and connect them via an 0(k)-spanner

with respect to this "supergraph." However, determining the connectivity in this supergraph is

impossible in sub-linear probes, as a Voronoi cell may contain as many as 0(n) vertices. To handle

this issue, we define a local rule based on the subtree sizes of the Voronoi tree, which refines our

Voronoi cells. We show that this rule partitions the dense vertices into O(n/L) clusters of size O(L)

each, such that each vertex can identify its entire cluster using O(A 3L2 ) probes.
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Connecting between Voronoi cells through clusters. (Section 2.3.3.3) We then formalize local

criteria for connecting Voronoi cells (through clusters), forming the set of spanner edges between

clusters, Hd(ese using O(A 4 L 2) probes: the union Hdense = H1)se U Hdnse is the desired spanner

of Gdense. For any omitted edge between clusters, H e contains a path connecting the endpoints'

Voronoi cells that, w.h.p., visits only O(k) other Voronoi cells along the way. Since each Voronoi

cell has a 2k-diameter spanning Voronoi tree in H)e, Hense achieves the desired O(k 2 ) stretch

factor. The rules for choosing Hese are based on marking 0(n 1/3 ) random Voronoi cells along with
the clusters therein, then adding at most Q(nl/k) edges per each pair of cluster and marked cluster,
using a total of 6(n'+1/k) edges. Sections 2.3.3.4-2.3.3.5 formalize these ideas into an efficient LCA,
then show the desired properties of the constructed Hdense and wrap up the proof, respectively.

Reducing the required amount of independent random bits. (Section 2.4) For simplicitly,
our analysis in this section uses a linear number of independent random bits. This assumption for

the above construction is deferred to Section 2.4.3, where we provide an implementation using only

O(log 2 n) independent random bits.

Various extensions. (Section 2.3.4) We extend our construction in two different ways. Firstly,
observe that our probe complexity of C(A 4rn2/ 3 ) is not sub-linear for A = Q(n/ 12 ), so we create a

reduction that supports a larger maximum degree at the cost of using more edges. We construct a

collection of random subgraphs Gi of the input graph G that altogether covers G, then efficiently

simulate the behavior of the oracle for Gi. In particular, each Gi has sufficiently small maximum

degree that the spanner Hi of Gi can be computed using the developed algorithm with sub-linear

probes; in addition, the union of these Hi's forms the desired spanner of G. Here, we obtain an LCA

for constructing O(k2 )-spanners with o(n 4/ 3) edges (e.g., not dominated by our 5-spanner results)
that has sub-linear probe complexity for A = O(n 3/ 8 -,), greatly improving upon the earlier bound

of Q(n1/12-,). Secondly, we also consider weighted graphs and apply a similar approach, but instead

G is partitioned into subgraphs where edges within the same subgraph are of similar weights.

2.3.2 LCA for computing a (2k - 1)-spanner Hsparse for Esparse

Checking if a vertex is sparse or dense. We first propose a variant of the breadth-first search

(BFS) algorithm that, when executed starting from a vertex v, either finds v's center or verifies that

v is sparse. We justify the necessity to employ a different BFS variant from that of the prior works,
namely [LRR16,LL18], as follows. In these prior works, the BFS algorithm explores all vertices in

an entire level of the BFS tree in each step until some center is encountered, and chooses the center

with the lowest ID among them. This distance tie-breaking rule via ID directly ensures that the set

of vertices choosing the same center induces a connected component in G.1 5

We have earlier shown that it suffices to explore L vertices closest to a dense vertex v in order

to discover some center. However, to choose v's center via the above approach, we must explore

the entire last level of the BFS tree in order to apply the tie-breaking rule: this last level may

"If v chooses s at distance d as its center, and another vertex u is at distance d' < d from s, then u must
also choose s because s is the center of minimum ID in ]d(v, G) D Fd'(u, G), and there are no other centers
in Fd- 1 (v, G) D Fd'-1(u, G).
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contain as many as O(AL) vertices. Instead, we aim to further reduce a factor of A from the probe

complexity by designing a BFS algorithm that picks the first center it discovers as v's center: this

center may not be the lowest-ID center in that level. The desired connectivity guarantee does not

trivially follow under this rule, and will be further discussed in Section 2.3.3.1; for now we focus on

Gsparse.

We provide our BFS variant as follows. Note that Q denotes a first-in first-out queue, and D

denotes the set of discovered vertices. We say that the BFS algorithm discovers a vertex w when

w is added to D.

BFS variant of a search for centers starting at vertex v
Q.enqueue(v), D.add(v)
while Q is not empty

u +- Q.dequeue
probe for all neighbors F(u, G) of i
for each w c F(u, G) \ D in the increasing order of IDs

Q.enqueue(w), D.add(w) > w is discovered

Figure 2-10: BFS variant for finding centers.

Denote by Dkjv) the set of the first L vertices discovered by the BFS variant, restricting to

vertices at distance at most k from v. (Equivalently speaking, if we adjust the BFS algorithm above

so that it also terminates as soon as we have discovered L vertices or dequeued a vertex at distance

k from v, then Dk (v) would be the set D upon termination.) Note that Dk(v, G) C Fk(v, G), and

the containment is strict when degk(v, G) > L.

BFS probe complexity. Recall that each vertex elects itself as a center with probability Pcenter =

(ccenter log n)/L. We choose a sufficiently large constant ccenter so that, by the hitting set argument,
w.h.p., Dk(v, G) n S # 0 for every v with IDk (v, G)= L. That is, w.h.p., every vertex v with

degk(v, G) > L must be dense. Equivalently:

Observation 2.3.3. W.h.p., for every sparse vertex v, degk(v, G) < L.

This observation leads to a subroutine for verifying whether a vertex v is sparse or dense based

on Dk (v, G):

Claim 2.3.4. v is sparse if and only if both of the following holds: IDk (v, G)I < L and Dk (v, G) n
S =0.

Proof. (Sparse) If v is sparse (Fk(v, G) n S = 0), then by Observation 2.3.3, degk(v, G) < L, so

Dk(v, G) = Fk(v, G) and both conditions follow. (Dense) If v is dense (Jk (v, G) n S # 0), we

assume |Dk(v, G) < L, then Dk(v, G) = k(v, G) and hence Dk(v, G) S =k(v, G) nS # 0. II

To compute Dk (v, G) we must discover (up to) L distinct vertices. Recall that we always probe

for all neighbors of a vertex at a time. Observe that for any positive integer e, among the neighbor

sets of f - 1 vertices in the same connected component of size at least f, at least one must necessarily

contain an th vertex from the component. Inductively, probing for all neighbors of f - 1 vertices
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determine whether v is a center none

compute Dk(v, G), and test whether v E Vsparse or v E Vdense O(AL)

for (u, v) E Esparse, compute lk(u, G) and Fk(v, G) O(A 2 L)

test (u, v) E Esparse whether (u, v) E Hsparse O(A 2 L2 )

Table 2.5: Probe complexities of various subroutines used for computing Hsparse-

during the BFS algorithm must reveal at least f vertices unless the entire component containing v

is exhausted. Hence, we conclude that we only need to probe for all neighbors of L - 1 vertices

during our BFS in order to compute Dk(v, G), requiring O(AL) probes in total.

Local simulation of a distributed spanner algorithm. We construct a (2k - 1)-spanner

Hsparse 9 Esparse via a local simulation of a k-round distributed algorithm for constructing spanners

on the subgraph Gsparse. Since we also want the randomized algorithm to operate on O(log n)-wise

independence random bits, we will use the distributed construction of Baswana-Sen [BS07] with

bounded independence fCPS17]:

Theorem 2.3.5 (From [BS07, CPS17]). There exists a randomized k-round distributed algorithm

for computing a (2k - 1)-spanner H with O(kn1+1/k) edges for the unweighted input graph G. More

specifically, for every (u, v) E H, at the end of the k-round procedure, at least one of the endpoints

u or v (but not necessarily both) has chosen to include (u, v) in H. Moreover, this algorithm only

requires O(logn)-wise independence random bits.

For a query edge (u, v), we first verify that at least one of u or v is sparse; otherwise we handle

it later during the dense case. Without loss of generality, assume that v is sparse. To simulate

the distributed algorithm on Gsparse for vertex v, we first learn its kth-neighborhood pk(v, G), and

collect all the induced edges therein. We then verify every vertex in Fk(v, G) whether it is dense or

sparse, so that we can determine the edges that also appear in Esparse, and simulate the distributed

algorithm as if it is executed on Gsparse accordingly.

According to the description of the distributed algorithm's behavior, for a query edge (u, v),

we need to simulate this algorithm on both u and v, requiring the knowledge of both Fk(u, G)

and Fk(v, G). Since v is sparse and Fk(u, G) g Fk+1(v, G), we have IFk(u, G)I < Irk+1(v, G)
A . Ik (v, G)I < AL by Observation 2.3.3. So, we need O(A 2 L) NEIGHBOR probes to compute

the subgraph of G induced by Fk(u, G) and pk(v, G). We must also test up to O(AL) vertices

to determine whether they are sparse or not, so our simulation process requires O(A 2 L2 ) probes

in total. We conclude the analysis of our LCA for computing Hsparse as the following lemma; see

Table 2.5 for a summary of probe complexities.

Lemma 2.3.6 (Hsparse properties and probe complexity). For any stretch factor k > 1, there exists

an LCA that w.h.p., given an edge (u, v) E E, decides whether (u, v) E Hsparse using probe complexity

O(A 2L 2 ), where Hsparse is a k-spanner of Gsparse with O(kn1+1/k) edges.
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2.3.3 LCA for computing an O(k 2 )-spanner Hdense for Edense

Recall that Vdense V \ Vsparse is the collection of dense vertices characterized as Fk(v, G) n S #
0, and can be verified by computing Dk(v, G) with O(AL) probes. We will now take care of

Edense= E(Vdense, Vdense) by constructing an 0(k 2 )-spanner Hdense g Edense so that H = Hsparse U

Hdense becomes the desired spanner of G. To do so, we follow the general approach of Lenzen

and Levi [LL18] with several keys modifications along the way. Table 2.6 keeps track of the probe

complexities for various useful operations for constructing Hdense.

In the following, we show how to partition the dense vertices into Voronoi cells, and connect

vertices in each cell via a low-depth tree structure in Section 2.3.3.1. We then show how to subdivide

Voronoi cells into clusters of size O(L) in Section 2.3.3.2, and discuss how we connect them into

the desired spanner in Sections 2.3.3.3-2.3.3.5. We denote the set of spanner edges connecting

vertices inside Voronoi cells by H(nse, and edges connecting between clusters by H dSe, so Hdense
dense, dese

Hdense dense.

2.3.3.1 Partitioning of dense vertices into Voronoi cells

We partition the dense vertices into ISI = 0((n log n)/L) = 0(n2/3 log n) Voronoi cells with respect

to centers si E S, where each dense vertex v chooses the first center si that it discovers when

executing the proposed BFS variant. We denote by c(v) the center of v, and Vor(s) the Voronoi cell

centered at s, consisting of all vertices that choose s as its center.

Order of vertex discovery in BFS. Clearly, the vertices are discovered in increasing distance

from v. We claim that the distance ties are broken according to their lexicographically-first shortest

path from v (with respect to vertex IDs). 16 More formally, let ir(v, u) denote the lexicographically-

first shortest path from v to u in G, and br(v,u)I denote its length (namely dist(v,U,G), the

number of edges in the shortest v-u path). We claim that the BFS from v discovers a before

a' if either br (v, u)I < 17r (v, u')1, or 7r (v, u)I = 1r (v, u')I and 7r (v, u) - 7r (v, u'): assuming the

induction hypothesis that vertices at the same distance d from v are discovered (enqueued) in this

lexicographical order, we dequeue them in the same order, then enqueue the neighbors of each vertex

in the order of their IDs, proving the hypothesis for distance d + 1.

Connectedness of each Voronoi cell on G. To prove that every Vor(si) induces a connected

component in G, consider a vertex v and its shortest path 7r(v, c(v)) = (vo = v, vi, . . ., v__1, Vd =

c(v)): we show that all vertices in this path are in Vor(si). Assume the contrary: let u = vi be the

first vertex on 7r(v, c(v)) choosing a different center c(u) via ir(u, c(u)) = (vi = u, vI 1 ,. . . , V_ 1 , V/ =

c(u)); note that br(u, c(u))I = d-i-Z+1 because there is no center in 1?d-1(v, G) D Fd-i(u, G). Then we

have that (vivo+ 1, . . . ,v2) - (vi,vi+,. . . , vd), yielding (vo = v, . . . ,v= uv{f 1 , . . . ,Iv = c(u)) 

7r(v, c(v)), a contradiction.

Construction of depth-k trees spanning Voronoi cells. We straightforwardly connect each v

to its center s = c(v) via the edges of ir(v, s). Observe that due to the lexicographic condition, the

16 Between paths of the same length d, (vo,..., V) - (uo, ... ,a) if, for the minimum index i such that

vi #4 ui, ID(vi) < ID(uj).
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subroutine I probe complexity

verify that V E Vdense, choose c(v), and compute 7r(v, c(v))

verify if a given edge (u, v) is a Voronoi tree edge (i.e., (u, v) C H(ense)

compute all children of v in the Voronoi tree T(c(v)) O(A 2 L)

verify whether v is heavy or light, and determine JT(v)J when v is light O(A 2 L2)

compute the entire cluster containing v O(A 3L2 )
given an entire cluster A, compute c(aA) and E(A,Vor(s)) for any s E c(aA) O(A2 L2 )

test (u, v) E Edense whether (u, v) E Hdense O(pA4 L 3 log n)

Table 2.6: Probe complexities of various subroutines used for computing Hdense. This table

addresses u, V E Vdense, but these probe complexities do not assume that the LCA originally knows
that u and v are dense.

vertex after v on r(v, s) must be the vertex of the minimum ID in F(v, G) n 1FI1(v's)H1(s, G); that

is, each vertex v E Vor(s) has a fixed "next vertex" to reach s. Consequently, the union of edges in

7r(v, s) for every v E Vor(s) forms a tree rooted at s, where every level d contains vertices at distance

exactly d away from s.

Due to the resulting tree structure, we henceforth refer to the constructed subgraphs spanning

the Voronoi cells as Voronoi trees. The union of these trees forms the spanner edge set H(1)se. As

our BFS variant for finding a center terminates after exploring radius k, our Voronoi trees are also

of depth at most k, or diameter at most 2k, as desired. Lastly, by augmenting our proposed BFS

variant to record the BFS tree edges, we can also retrieve the Voronoi tree path r(v, s) using O(AL)

probes. In particular, (u, v) is a Voronoi tree edge if u is on rr(v, c(v)) or v is on r(u, c(u)), implying

the following lemma.

Lemma 2.3.7 (H(I)se properties and probe complexity). There exists a partition of dense vertices

v E Vdense into O((n log n)/L) Voronoi cells {Vor(s)}sES according to their respective first-discovered

centers c(v) under the provided BFS variant. The set of edges HdIse' defined as the collection of

lexicographically-first shortest paths rr(v, c(v)), forms Voronoi trees, each of which spans its corre-

sponding Voronoi cell and has diameter at most 2k. Further, there exists an LCA that w.h.p., given

an edge (u, v) E E, decides whether (u, v) E H(') using O( AL) probes.
dense

2.3.3.2 Refinement of the Voronoi cell partition into clusters

We now further partition the Voronoi cells into clusters, each of size O(L). Our cluster structure

is based on the construction of [LL18] but has two major differences. First, whereas in [LL18]

the Voronoi cells are partitioned into E(An/L) clusters, in our algorithm we need the number of

clusters to be independent of A, and more specifically bounded by 0((n log n)/L). Second, unlike

the clusters in [LL18] that are always connected in G, each of our clusters may not necessarily

induce a connected subgraph of G; they are still connected in the spanner via He)se, namely by

the Voronoi tree of diameter at most 2k.
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Refinement of Voronoi cells into clusters. For s E S, let T(s) denote the Voronoi tree spanning

Vor(s). We extend this notation for non-centers, so that T(v) 9 T(s) denote the subtree of T(s)

rooted at v E Vor(s). For every v E Vor(s), let p(v) denote the parent of v in T(s), and IT(v)I be

the number of vertices in the subtree. We define heavy and light vertices as follows.

Definition 2.3.8 (Heavy and light vertices). A dense vertex v is heavy if |T(v)I > L and otherwise,
it is light.

We are now ready to define the cluster of v E Vor(s) using the heavy and light classification.

(a) s is light: That is, the Voronoi cell containing v, Vor(s), contains at most L vertices. Then,
all vertices in Vor(s) form the cluster centered at s.

(b) v is heavy: Then the cluster of v is the singleton cluster {v}.

(c) s is heavy and v is light: Let u be the first heavy vertex on r(V, s), and W {w : p(w) =

u and w is light} be the set of i's light children on the Voronoi tree. Consistently ordering

the vertices W {w1, ... , wj} (e.g., according to the adjacency-list order from i), we iterate

through these wi's, grouping T(wi)'s into clusters of sizes between L and 2L; the last remaining

cluster is allowed to have size strictly less than L. See Figure 2-11 for an illustration of this

rule.

Clearly each cluster contains at most 2L = O(L) vertices, and any pair of vertices in the same

cluster has a path of length at most 2k on T(s) because they belong to the same Voronoi cell. Next,
we show that the number of clusters resulting from this refinement is not asymptotically larger than

the number of Voronoi cells.

Claim 2.3.9. The number of clusters is 0((n log n)/L) = 0(n2 / 3 log n).

Proof. Recall that there are ISI = 0((n log n)/L) Voronoi cells: this bounds the number of clusters

of type (a). Observe that in any fixed level, among all Voronoi trees, there can be at most n/L

heavy vertices because these heavy vertices' subtrees are disjoint. Since the Voronoi tree has depth

k, there are at most kn/L heavy vertices, bounding the number of clusters of type (b).
We only subdivide the subtrees of heavy vertices into clusters, and within each such subtree, all

clusters, except for at most one, have size at least L. Hence, there can be up to n/L clusters of size

at least L, and kn/L clusters of smaller sizes (one for each heavy parent), establishing the bound for

clusters of type (c). Thus, there are in total at most 0((nlogrn)/L) + (2k+1)n/L = 0((n logn)/L)

clusters (as we only consider k = O(log n)). E

Probe complexity for identifying a vertex's cluster. Recall that via our BFS variant we can

find the center s and the path ir(v, s) for a dense vertex v c Vor(s) using O(AL) probes. We begin

by establishing the probe complexity for deciding whether v is light or heavy. Observe that we can

find all children of v on T(s) using O(A2 L) probes: run the BFS on all neighbors of v, then any w

with center s such that r(w, s) passes through v is a child of v. Using this subroutine, we traverse

the subtree T(v) to compute IT(v) if v is light, or stop after L + 1 and declare that v is heavy. Since

O(L) vertices are investigated, the probe complexity for this process is O(L) . O(A2L) = 0(A2 L2 ).

We can then compute v's cluster as follows. If v is heavy then we have {v} as the cluster of

type (b). Otherwise, we follow the path 7r(v, s) up the Voronoi tree, one vertex at a time, and check
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O heavy vertex s

Q light vertex

cluster

W 3 W2 W3 W 5 W

> L

> L > L

Figure 2-11: Illustration for cluster partitioning rule (c). The interesting part of the Voronoi tree

T(s) is shown: heavy vertices are denoted with double borderlines, and thick edges are edges of
ir(v, s). Shaded areas are clusters: observe that heavy vertices form singleton clusters, while many
clusters do not induce a connected subgraph of T(s). In this example, u is the first heavy ancestor of
v, so we compute all light children W = {wl, .. I w6 } of u, along with their subtree sizes IT(wi)I's.
(For the heavy children, it suffices to only verify that they are heavy.) We group these T(wi)'s into
clusters of sizes in [L, 2L], except possibly for the remainder cluster (T(w5 ) U T(w6 ) in this case).
Here, v's cluster is T(w 3 ) U T(w 4 ).

each vertex's subtree size until we reach some heavy ancestor u of v; if there is no such u then the

entire Vor(s) is the cluster of type (a). During this process of traversing up the Voronoi tree, we also

record every computed subtree size, so that we do not need to revisit any subtree. Hence, finding

the first heavy ancestor u essentially only requires visiting O(L) descendants of u, which only takes
O(A 2 L2 ) probes. Once we detect u, we check each of u's children if it is light, and compute its

subtree size correspondingly. Using this information, we determine all subtrees that form the cluster

of type (c) containing v, as desired. This last case dominates the probe complexity: since we must

check whether each of u's children is heavy or light, our algorithm require A . O(A 2 L 2 ) = O(A 3 L2 )
probes to identify v's entire cluster. The following lemma concludes the properties of the cluster

partitioning of dense vertices.

Lemma 2.3.10 (Probe complexity for computing clusters). There exists a refinement of the Voronoi

cell partition into 0((nlogn)/L) clusters of size O(L) each. Further, there exists an LCA that

w.h.p., given a dense vertex, compute all vertices in the cluster containing v using O(A 3 L2 ) probes.

2.3.3.3 Overview: connecting Voronoi cells

The supergraph intuition. To establish some intuition for connecting the Voronoi cells while

maintaining a low stretch factor, let us imagine constructing an LCA for a supergraph, where each

of the ISI = O(n/L) = 6(n 2/ 3 ) Voronoi cells is a supervertex, and all edges between the same pair
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of Voronoi cells are merged into a single superedge. Leveraging the classic clustering approach, to

compute a spanner on this supergraph, we mark each supervertex independently with probability

p = n-1/3, so roughly O(pn/L) = 6(n1/ 3 ) supervertices are marked. These marked supervertices

now act as the centers in this supergraph.

In the constructed spanner, we keep superedges between adjacent Voronoi cells according to the

following three rules. Rule (1): we keep all superedges incident to a marked supervertex. There are

6(n2 / 3 ) supervertices in total, and 6(n 1/ 3 ) supervertices are marked, contributing to O(n) total

superedges. Rule (2): we can also keep incident superedges of supervertices without any marked

neighbors: if they had more than 6(n 1/ 3 ) neighboring Voronoi cells, then w.h.p., one of them would

have been marked. Lastly, rule (3): for each (not necessarily adjacent) pair of a supervertex a and

a marked supervertex c, we keep a superedge from a to a single common neighbor b* C F(a) n r(c)

- by consistently choosing b* with the lowest ID, for instance. The number of added superedges is

O(n) via the same analysis as that of rule (1).

We claim that connectivity is preserved: consider an omitted superedge (a, b). Since rule (2)

does not keep (a, b), b has some marked neighbor c. By rule (3), there exists some b* G F(a) n F(c)
with lower ID than b, such that (a, b*) is kept by the LCA. Recall that c is marked, so combining

with rule (1), the spanner path (a, b*, c, b) connects a and b, as desired. Thus, an LCA, given a

query (a, b), keeps this superedge if there exists a supervertex c E F(b) where b has the minimum

ID among F(a) n F(c), producing a 3-spanner of the supergraph with 0(n) superedges.

However, such a supergraph-level approach cannot be implemented efficiently under the cluster

refinement in the original input graph. Recall the original graph before the Voronoi cell contraction:

the LCA is only given a vertex (query edge's endpoint) in the Voronoi cell, and we cannot afford to

enumerate all vertices in the entire Voronoi cell (supervertex b) and identify all of its neighboring

Voronoi cells (supervertex c) - finding the Voronoi cell b* of minimum ID is outright impossible in

sub-linear probes. Nonetheless, we construct an LCA based on this approach despite incomplete

information of the supergraph.

Local implementation based on clusters. Employing the developed cluster refinement, as

we mark a Voronoi cell, we also mark the clusters therein. We will show that the number of

clusters (resp., marked clusters), do not significantly increase from the number of Voronoi cells

(resp., marked Voronoi cells); hence, we may still add an edge from every cluster that is (1) marked,
or (2) not adjacent to any marked clusters, to all adjacent Voronoi cells, modularly imitating the

corresponding supergraph rules while still using 0(n) edges. Nonetheless, attempting to implement

rule (3) poses a problem because the LCA can only see the clusters containing the query edge's

endpoints (while keeping the desired probe complexity). From them, we can only find out the

Voronoi cells neighboring these clusters - not all Voronoi cells neighboring to the current Voronoi

cell may be visible to the LCA. Due to this limitation, we cannot implement rule (3) which requires

knowing all of b and c's neighboring Voronoi cells.

To resolve this problem, [LL181 observes that the desired connectivity is still preserved if the

LCA implements a variation of rule (3) that only checks the neighboring Voronoi cells of the queried

cluster in b and a canonical cluster in c. Recall that the LCA must answer "is the superedge (a, b) in

the spanner?" We need to show that a and b are connected under this rule, so if the LCA keeps (a, b)
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then we are done. Otherwise (a, b) is omitted, which implies that there exists a marked Voronoi cell

c and a Voronoi cell b' E IF(a) n r(c) with ID(b') < ID(b), such that there exists a path (b, c, b') in

the spanner thanks to rule (1). Hence, it suffices to show that a and b' are connected in the spanner.

Since the supergraph contains the superedge (a, b') (because b' E F(a)), we will inductively rely on

how the LCA ensures connectivity between a and b' when it handles the query (a, b').

So far, we have only managed to defer the original burden of proving the connectivity between a

and b to the LCA's answer to the question "is the superedge (a, b') in the spanner?" Again, even if b'

indeed has the minimum ID among 1F(a)nr(c), the LCA may not perceive this fact when it cannot see

all of b"s neighboring Voronoi cells, notably c. Still, we have progress: the Voronoi cell b' in question

has a lower ID than b. Thus we may repeat this same argument inductively on the ID of a's neighbor,
which strictly decreases at each step - this argument will eventually terminate (albeit possibly in as

many as E(ISI) steps), establishing the desired connectivity guarantee. Moreover, [LL18] enhances

the LCA further by assigning random ranks on the Voronoi cells instead of using IDs directly,
showing that a's neighbor's rank is halved at each inductive step in expectation, so the stretch of

the constructed spanner (on this supergraph) is, w.h.p., O(log n).

b

~~c *

b*a V1

b**

d

Figure 2-12: Illustration accompanying the example of clusters connection rule (3): Large and
small ovals denote Voronoi cells and clusters; marked Voronoi cells and clusters therein are marked
with stars. Dashed edges are query edges we consider in the example - their labels shows the names
of the endpoints (vertices) inside the clusters they connect.

Illustrated example. Consider Figure 2-12. All solid edges are added by rule (1). We focus on

rule (3), so to prevent an application of rule (2), we add solid grey lines to indicate that all incident

clusters are adjacent to some marked Voronoi cells. Let ID(b) > ID(b') > ID(b*) > ID(d). The
"supergraph-level" Voronoi cell connection rule (3) would add (x, y) and (x', y') because b* and d
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are Voronoi cells of minimum IDs in 1(a) n 17(c) and 17(a) n 17(c'), respectively. Instead, consider
now the cluster connection rule (3).

" Query edge (x', y'): The LCA applies the cluster connection rule (3) w.r.t. c' and keeps (x', y').
" Query edge (u, v): This edge may be omitted because the LCA finds the Voronoi cell b' also

adjacent to c with lower ID than b, so rule (3) w.r.t. c does not keep this edge. The inductive
argument turns to consider (u', v') (not (x, y), even if b* actually has the lowest ID among
F (a) n r(c)).

" Query edge (u', v'): This edge may also be omitted because the LCA cannot reach c from v'
despite the fact that c E F(b); hence it cannot apply rule (3) w.r.t. c. Note that (u', v') is
engaged in another application of rule (3) w.r.t. the (undepicted) other marked endpoint of
the grey edge incident to v's cluster - (u', v') may indeed be kept by this application, and if
not, the inductive argument will continue.

" Query edge (x, y): This edge is kept, but not because b* is the minimum-ID Voronoi cell of
F(a) n 1(c): the LCA exploring the graph from y could not have found c. Instead, it finds
c', but still cannot find d. Apparently, b* becomes the Voronoi cell of minimum ID among
F(a) n 1(c') that it actually finds (here, the only one, in fact). Hence, the LCA applies rule
(3) w.r.t. c' and keeps (x, y).

Reducing the stretch factor. Unlike the scenario of [LL18], we aim for an 0(k2 )-spanner of size
O(n+l/k) (in the original graph); in particular, we are allowed an extra factor of Q(n1/k) in the
number of edges. So, between each pair of a cluster (in Voronoi cell a) and a marked cluster (in
Voronoi cell c), and we add edges from the cluster in a to E(nl+l/) lowest-rank Voronoi cells b,
instead of just the lowest-rank one. This adjustment reduces the ranks in the inductive argument
much more rapidly: w.h.p., the argument terminates in only O(k) steps, yielding an 0(k)-spanner
on this supergraph. Since each Voronoi cell has diameter at most 2k, as we expand back our
supervertices into Voronoi cells, we obtain the desired O(k 2) stretch factor.

2.3.3.4 Implementation details and probe complexity analysis

Marked Voronoi cells and clusters. Recall that we randomly choose a set S of 0((n log n)/L)
centers, and mark each Voronoi cell center independently with probability p = 1/L = n-1 /3 . For
each marked center si, we also mark all the clusters in Vor(si). We claim that the number of marked
clusters is not significantly more than the number of marked centers.

Claim 2.3.11. The number of marked clusters is O((pnlog2 n)/L) = O(n1 /3 lg2 ni)

Proof. Since there are O(nl gn) clusters, then for any value x > 0, there are O(fl n) Voronoi cells

with t E [x, 2x] clusters. So, we have at most O(Pnl gn) marked Voronoi cells with at most 2x
clusters, yielding O(p " gf) such clusters. Applying the argument for O(log n) different values of x

yields Q(Pf 1,g 2
f) total marked clusters. El

Random ranks. We assign each center s E S an independent random rank r(s) c [0, 1) (e.g.,
a random hash function applied to their IDs): these random ranks implicitly impose a random
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ordering of the centers. We sometimes refer to the rank of a Voronoi cell's center simply as the rank

of that Voronoi cell. We remark that in Section 2.4.3, we will show that 0(log n)-independence

random bits suffice for our purpose of choosing centers and assigning random ranks: our algorithm

can be implemented with O(log 2 n) random bits.

Adjacent clusters and Voronoi cells. The following definitions are as in [LL18]. We say that

clusters A and B are adjacent if there exists u E A and v E B which are neighbors. In the same

manner, cluster A is adjacent to Vor(s) if there exists B C Vor(s) such that A and B are adjacent.

For a cluster A, let Vor(A) denote the Voronoi cell containing A. Define the adjacent centers of a

cluster A as c(OA) = {c(v) : '(v) n A # 0} \ {c(A)}. Roughly speaking, this is a partial collection

of neighboring Voronoi cell centers of Vor(A), restricted to those visible to the LCA from A.

Connecting clusters and Voronoi cells. By "connecting" two adjacent subsets of vertices A and

B, we refer to the process of adding the edge of minimum ID in E(A, B) to H (B) where the ID ofdense7

an edge (u, v) E E(A, B) is given by (ID(u), ID(v)). The comparison is lexicographic: first compare

against ID(u), break ties with ID(v).

For every marked cluster C, define the cluster of clusters of C, denoted by C(C), as the set of

all clusters consisting of C and all other clusters which are adjacent to C. A cluster B E C(C) is

participating in C(C) if the edge of minimum ID in E(B, Vor(C)) also belongs to E(B, C). That is,
if we want to connect the cluster B to a certain marked Voronoi cell by choosing the edge (u, v) of

minimum ID (where u E B and v is in that Voronoi cell), then "B is participating in C(C)" means

that, C is the (unique) cluster in the Voronoi cell containing v.

Constructing HBe.. Adjacent clusters are connected in Hdense using the following rules, where

A and B denote the clusters containing the two respective endpoints of the query edges (u, v). It

suffices to apply these rules when u and v belong to different Voronoi cells, c(u) 4 c(v); otherwise

Hense spans them already. Note that these conditions as written are not symmetric: we must also

verify them with the roles of the u and v (e.g., A and B) switched.

Global construction of H(B) for edges between clusters.dense e ewe lses
(1) Every marked cluster is connected to each of its adjacent clusters.
(2) Each cluster B that is not participating in any cluster-of-clusters (i.e., no cell adjacent to B

is marked), is connected to each of its adjacent Voronoi cells.
(3) For each pair of cluster A and marked cluster C, consider the centers of clusters adjacent to

both A and C, namely c(DA) n c(OC). If the rank r(s) of the center s E c(DA) n c(&C) is
among the q = 0(nl/k log n) lowest ranks of centers in c(DA) n c(DC), then A is connected to
Vor(s).

Figure 2-13: Procedure for the global construction of H (B)dense~

The local algorithm and its probe complexity. We now describe the local algorithm that

decides whether a query edge (u, v) E H(Bse. Using the subroutines constructed so far, assume

that the LCA has verified that (u, v) E Edense, identified their centers c(u) y c(v), and computed

the entire respective clusters A and B, using O(A3 L2 ) probes according to Lemma 2.3.10. We then
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verify the global rules of H(B) in a local fashion, answering yes indicating that (I, v) E Hdns ifHdense H(B)e

any of the following condition holds.

Local construction of Hdense for edges between clusters.
(1) A is a marked cluster and (u, v) has the minimum edge ID amongst the edges in E(A, B).

(2) B is not adjacent to any of the marked clusters, and (u, v) has the minimum edge ID among
all edges in E(B, Vor(A)).

(3) There exists a marked cluster C such that all of the following holds:
* B is participating in C(C),
" The rank of c(B) is amongst the q = 0(nl/k log n) lowest ranks in c(DA) n c(C),
" The edge (u, v) has the minimum ID among all the edges in E(A,Vor(B)).

Figure 2-14: Procedure for the local construction of H (B)

As we have already computed the entire clusters A and B, we may verify condition (1) by

checking all incident edges of A for those with the other endpoints in B. For condition (2), we

compute the set c(&A) of Voronoi cell centers c(w) for neighboring vertices w of A; note that

Ic(aA)l < AL. Then we check whether any of them is marked using O(AL) probes each. The edge
of minimum ID in E(A,Vor(B)) is among these O(AL) edges incident to A, allowing us to check

whether (u, v) = E(A, Vor(B)) as well. Overall condition (2) can be verified with O(A 2 L2 ) probes.

For condition (3), we instead consider the neighboring vertices of B and compute their cen-

ters. During the process, we also keep track of the edge of minimum ID in E(B, Vor(si)) of each

encountered marked center si. There are up to AL neighboring Voronoi cells of B in total, but

w.h.p., only O(p - AL - logn) of them are marked. For each marked Vor(si), starting from the

recorded endpoint in there, we compute the entire cluster Ci such that B is participating C(Ci)

using O(A 3 L2 ) probes. Then, we compute the centers' IDs of all neighboring vertices of Ci, namely

c(&C), spending another O(A 2 L2 ) probes for each Ci. Combining with c(oA) computed earlier, we

can deduce if the rank of c(B) is sufficiently low that E(A, Vor(B)) must be added. In total, we

require O(pAL log n) . (O(A 3 L2 ) + O(A 2 L2 )) = O(pA 4 L3 login) probes, as desired:

Lemma 2.3.12 (H (e probe complexity). There exists an LCA that w.h.p., given an edge (u, v) E

E, decides whether (u, v) C H(Bse using probe complexity O(pA 4 L3 log n), where H (B) is as defined

in Section 2.3.3.4.

2.3.3.5 Proof of connectivity, stretch, and size analysis

Stretch and size analysis of Hdense. Denote by GVor the supergraph obtained from G by

merging vertices within each Voronoi tree into a supervertex (e.g., by contracting H(e)se), and by

HVor its subgraph obtained by applying the same operation in the spanner Hdense (e.g., the same

edges as Hdese but joining corresponding supervertices instead). Since we add strictly more edges

than the algorithm of [LL18] does, the connectivity follows by the exact same argument (see Lemma

4 of [LL18]); for completeness, we provide it here (with only slightly modifications). See Fig. 2-15

for an illustration.
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Lemma 2.3.13 (Connectivity by Hcee). HVor preserves the connectivity of the Voronoi cells: if
Vor and Voro are connected in GVor, they remain connected in HVor-

Voro Vor'

Vor, Vor'

Vor A

VorT

BT

Figure 2-15: Illustration for the proof of connectivity and stretch for Hdense: Dashed red edges
show the edges of interest at each inductive step, where the top one joining clusters A and Bo
represents the original query. Solid black edges show the path of length 2T + 1 = 0(k) in HVor
between Vor and Voro.

Proof. Consider clusters A C Vor and B = Bo g Voro such that the edge e of minimum ID in

E(Vor, Voro) is in E(A, Bo). If Bo is not adjacent to any marked cell, then by condition (2) there
is an edge between Vor and Voro in HVor. Hence, we assume that Bo is adjacent to a marked cell
Vor'. Let Co C Vor' be the cluster such that Bo is participating in C(Co).

0I

Let so be the center of Voro. If the rank r(so) is among the q lowest ranks of the centers

c(o9A) n c(,9CO), then e is added to H (B) by condition (3). Otherwise, Voro is connected to Vor'o in
H~ras the edge of minimum ID in E(B, CO) is added to H (B) by condition (1), since Co 9 Vor'

is marked. Let Vori be the cell whose center has the minimum rank in c(aA) n c(aCo), and let
B1 C Vori be the cluster such that the edge of minimum I D in E(A, Vor1) is in E(A, B1). Again by
condition (1), Vori is also connected to Vor' in HVor-

At that point, it suffices to show that Vor is connected to Vori in HVor, where the rank of Vori
is strictly smaller than the rank of Voro. We may proceed with the proof by induction, with the
hypothesis that all Vori's are connected in HVor. Since the ranks of Vori's are strictly decreasing,
the inductive argument halts after T < ISI steps: at this point, A is connected to BT g VorT in
HVor, as desired. El

We next claim that stretch of the our spanner Hdense is 0(k 2), while [LL18] provides a stretch
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factor of 0(log n.(A+log n)). The second factor of O(A log n) has been reduced down to 0(k) thanks

to the new partitioning criteria and algorithms described so far. To remove the remaining factor

of O(log n), we leverage the fact we may add a factor of Q(nl/k log n) more edges to the spanner

Hdense, allowing the ranks in the inductive argument to decrease more rapidly. For simplicity, we

assume now that the ranks of the centers are fully independent. In Section 2.4.3 (Theorem 2.4.5) we

extend the following claim to the case where the ranks of the centers are formed by short random

seed of O(log2 n) bits.

Lemma 2.3.14 (Stretch guarantee by H(se). If the ranks of the centers are assigned independently,
uniformly at random from [0,1), then w.h.p., the stretch of HVor w.r.t. GVor is 0(k).

Proof. The connectivity proof in Lemma 2.3.13 uses an inductive argument, where each step in the

induction, increases the length of the path in GVor by 2. Thus it suffices to show that the induction

of Lemma 2.3.13 halts, w.h.p., after 0(k) steps. In comparison, in Lemma 4 of [LL18], the induction

uses 0(log n) steps and hence the stretch in HVor is also 0(log n).

Observe that while the construction of GVor heavily relies on the IDs of vertices, the rank

assignment of vertices is random and independent of GVor. Again, let A C Vor, B = Bo C Voro be

two adjacent clusters of interest. Folowing the argument of Lemma 2.3.13, at each step i > 0, we

consider Vori which by the inductive hypothesis satisfies the following.

(a) A and Vori are adjacent.

(b) The distance between Voro and Vori in HVor is at most 2i.

(c) The rank of c(Vori) is the minimum rank among those of all centers in the collection {c(DA) n

c((9Cy)}yi.
It is straightforward to verify that these conditions hold for the base case i = 0. For the

inductive step, hypothesis (a) holds because we choose Vori with center si C c(OA) n c(9C2-i), so

Vori is adjacent to Vor. It is also connected to the marked cluster Ci_1, which in turn is connected

to Bi_ 1 in Vori_1 by rule (1), thereby proving condition (b). Lastly, condition (c) follows, because

c(Vori) is the center of minimum rank in the set of centers c(DA)nc(Ci_i), which contains c(Vori_1).

It remains to show that the induction terminates after 0(k) steps with high probability. Let

ri = r(c(Vori)). We claim that in each step, either the process terminates or, w.h.p., chooses a

center of rank ri+I <; ri/nl/. Suppose that the process does not terminate at step i. Observe that

at this point, all ranks ever "revealed" by our algorithm so far are of the centers in condition (c):

no rank lower than ri has been encountered. Then in the beginning of step i, there are at least q
cluster centers in c(&A) n c(DCi) whose ranks are uniformly distributed in [0, ri) (since we assume

that ranks are chosen independently). For each of these q = 9(nl/k log n) unrevealed ranks, the

probability that the rank is at most ri/nl/k is at least n-1/k. By the Chernoff bound we obtain

that, w.h.p., at least one of these ranks turns out to be at most ri/nl/k. Similarly, w.h.p., no center

has rank below 9(1/(n log n)). Thus, the algorithm terminates in logn1/k(nlogin) = 9(k) steps, as

desired. El

Next, we proceed to bounding the the size of H (B)dense~

H(B) Q~p 2 +1/k0Lg 4 n no 2 n
Lemma 2.3.15 (Size of H (e) W.h.p., Hdene contains O(pn + n ) =

0(n'+1/k log 4 n) edges.
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Proof. Recall that there are O((n log n)/L) = O(n 2/ 3 log n) clusters and ((pn log 2 n)/L) =

0(n'/3 log 2 n) marked clusters, bounding the number of edges from condition (1) by

O((pn2 log3 n)/L2 ) - O(n log 3 n). For condition (3), the algorithm adds 0(nI/k log n)

edges for each such pair, which is Q((pn2+1/k log 4 n)/L2 ) = 0(+1/k log 4 n) edges in total. Lastly

for conditon (2), every cluster that is not participating in any cluster of clusters (i.e., not adjacent

to any marked Voronoi cell) w.h.p. has O((log n)/p) = O(n1 /3 log n) adjacent Voronoi cells, because

these cells are independently marked with probability p = n-1 / 3 . (On the other hand, clusters are

not marked independently, so in condition (2) we add one edge from A to every adjacent Voronoi

cell, rather than every adjacent cluster.) Hence, the number of edges added by condition (c) is

O((n log 2 n)/(pL)) = O(n log2 n). E

Putting everything together. Recall that our overall spanner is H = Hsparse U Hdense where

Hdense = H)se U H(') . Combining all results so far in this section, we achieve at our main result,dne dense

Theorem 2.3.1, as follows.

Proof of Theorem 2.3.1. (i) Size. The size of Hsparse, He)se and H(B) are 0(knr+/k), 0(n)
Il lg4deHedense (B)

and 0(nl+l/klog 4 n) due to Lemma 2.3.6, Lemma 2.3.7 (from the fact that Hdense is a forest),
and Lemma 2.3.15, respectively. More precisely, for parameters L and p, we offer a spanner with

0(knr+l/k + pn2 +1/k lg4 n " log2n) edges.

(ii) Stretch. The case of Hsparse taking care of Esparse is immediate by Lemma 2.3.6, hence we

focus on Hdense. The stretch argument follows by Lemma 2.3.14 for H(B) together with the factdense

that in each Voronoi cell we have a Voronoi tree of depth 0(k) in H(ee') by 2.3.7. That is, between

two adjacent Voronoi cells, the spanner has a path of length 0(k) in the Voronoi graph HVor-
Within each Voronoi cell (supervertex in GVor) there exists a path of length 2k connecting any pair

of vertices. Thus, there is a path of length 0(k 2 ) in Hdense between any pair of neighboring dense

vertices.

(iii) Probes. The LCA can verify whether (u, v) E Esparse, and if so, check if (u, v) E Hsparse

using O(AL) probes by Lemma 2.3.6 using O(A 2 L2 ) total probes. Otherwise, Lemma 2.3.7 allows

the LCA to verify whether u and v belongs to the same Voronoi cell, and if so, check whether

(u, v) E H(1)nse using O(A 2 L2 ) probes. Lastly for u and v from different Voronoi cells, the LCA

can check whether (u, v) E H(Bse using O(pA4 L3 logn) probes via Lemma 2.3.12. Substituting

L = n1 / 3 and p = 1/L yields the desired result.

Theorem 2.3.1 implies that there exists an LCA with sub-linear probe complexity for any A =

0(n'/12-E). In fact, we remark that by using the argument of Lemma 2.3.14, we can achieve a

spanner H with 0(n1+1/k + nq) edges with stretch 0(k logq n) = 0((k log n)/ log q). As a reminder,
the theorem above does not show that the LCA uses a polylogarithmic number of independent

random bits. To obtain the main result for 0(k 2 )-spanner construction, we refer to Section 2.4 for

missing details:

Proof of Theorem 2.1.2. The theorem follows from the proof of Theorem 2.3.1 where the indepen-

dent random bits assumption are resolved according to Section 2.4. More specifically, we show the
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hitting set argument under polylogarithmic number of independent random bits in Section 2.4.2,
and the random ranking argument for bounding the stretch factor of HVor in Lemma 2.4.5 (Sec-

tion 2.4.3). E

A summary of the differences between our algorithm and Lenzen-Levi's [LL18J. Our

algorithm can be considered as an extension of [LL18] that provides a trade-off between the stretch

factor and the size of the subgraph. In particular, we show that the stretch factor's dependency on

A and n can be removed completely. We conclude by summarizing several key differences between

our approaches.

* In [LL18], the distinction between dense and sparse vertices depends on a radius f sampled

uniformly at random from a given range that depends on A. In our construction, the radius

is k, the stretch parameter.

" In [LL18], the sparse and dense graphs are vertex disjoint and the parameter f guarantees

that the number of edges between these graphs is small. In contrast, in our construction the

sparse and dense graphs share vertices and in fact, these graphs are only edge-disjoint.

" The BFS algorithm of [LL18] for detecting a center explores an entire level of the BFS tree in

each step, choosing the closest center with minimum ID. We provide a more efficient variant

that explores the neighborhood of one vertex at a time, and chooses the closest center with

lexicographically-first shortest path, improving the probe complexity by a factor of A.

" For the sparse case, [LL18] uses the distributed algorithm of Elkin and Neiman [EN17], whereas

we use the algorithm of Baswana and Sen [BS07] since it has been proved to work with

O(log n)-wise independence [CPS17].

" For the dense case, in [LL18], the radius of the Voronoi cells is f = 0(A + log n) and in our

case, it is k.

" The number of clusters in [LL18] depends on f and A. In our construction, the number of

clusters is 6(n2/ 3 ), each containing 0(n'/3 ) vertices.

" We allow 0(nl/k log n) edges between a cluster and neighboring clusters of a given marked

clusters, whereas [LL18] only adds a single such edge.

" The algorithm of [LL18] uses random seed of size O(A - n2/ 3 ). However, our algorithm only

uses a poly-logarithmic number of random bits.

2.3.4 Extensions

2.3.4.1 Extension to support larger maximum degrees while maintaing sub-linear

probe complexity

Our probe complexity of O(pA 4 L3 ) = O(A 4 n2/ 3 ) is only sub-linear for roughly A = 0(n'/12-,
which is unfortunately quite limited. To bypass this limitation, we consider supporting an input

graph G of larger maximum degree A, at the cost of adding more edges. Nonetheless, recall that

we already have a construction for 5-spanners of general graphs with 6(n4/ 3 ) edges: it is only

reasonable to try to achieve a spanner with less than 5(n4/3) edges for otherwise our results would

be subsumed by that of 5-spanners.
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A natural first attempt would be to modify the parameters L and p so that the total number of

edges, 5(kni1+1/k+pn2k + n) as provided in the proof of Theorem 2.3.1, becomes 6(n4 / 3 ). We un-

avoidably have pL = U(n- 1/ 3 ) due to the third term, then obtain L = O(n9'5) by optimizing with

p = 6(n-1 / 3 /L). By Lemma 2.3.12, we obtain probe complexity of O(pA4 L3 ) 4

which necessarily requires A = 6(n1--6) to be sub-linear. Unfortunately these graphs have

0(n23 / 18 ) - o(n 4/ 3 ) edges to begin with. Hence, achieving any meaningful results requires a new

approach that supports at least A = (n1/3

Here, we provide a different construction that bypasses the limitation above and support max-

imum degree A as large as 0(n3 / 8 -e). In this approach, we construct a collection of t subgraphs

{Gi}LE[t] such that each edge e E E(G) appears in at least one (but not too many) Gi, so that

Uie[t]E(Gi) = E(G). The maximum degree of any Gi in our construction is w.h.p., at most some

parameter s = O(n1/ 12-E), so the LCA developed earlier can compute an O(k2 )-spanner Hi of Gi

using sub-linear probes. The overall LCA can be constructed as follows: for each Gi containing the

query edge e, run our LCA on that G; answer yes if any one of them chooses to include e in its Hi.

ALL-NEIGHBORS probes. Recall that our LCA is allowed access to the oracle that answer probes

about input graph G: denote this oracle by OG. On the other hand, in order to simulate the

developed LCA on the subgraph Gi, we must use this given oracle OG to implement an oracle 0 Gj

for each G. In addition, we also need to find out, for each e E E(G), the collection Gi in which

e E E(Gi).
Observe that, unlike in the constructions of 3 and 5-spanners, we have not been using important

features of NEIGHBOR probes: we have the ability to specify any index i and probe for the ith

neighbor of a vertex v. In doing so, we would obtain not only the desired neighbor u but also the

index j such that v is the jth neighbor of u. Instead, in our LCA for computing O(k2 )-spanners, we

always probe for all neighbors of a vertex each time, and do not make use of the returned indices.

To simplify our analysis, we define the additional ALL-NEIGHBORS probe type that, when given

a vertex v E V, returns the set 1F(v) (in an arbitrary order): this will be the only type of probe we

aim to provide in Oi. It is straightforward to verify the following observation.

Observation 2.3.16. The LCA for computing O(k2 )-spanners according to Theorem 2.3.1 can be

implemented with O(pAL 3 logn) ALL-NEIGHBORS probes.

Collection of low-degree subgraphs covering G. We now provide a method for locally con-

structing a collection of low-degree subgraphs, such that the union of their edge sets is UiE(Gi) =

E(G). Let the desired maximum degree of the subgraphs Gi be s = O(n1 / 12 -), so that our 0(k 2 )_

spanner construction supports these subgraphs. Let t denote the number of subgraphs Gi, and

let q denote the number of NEIGHBOR probes to OG needed to compute an answer to an ALL-

NEIGHBORS probe of Gi (i.e., F(v, G) for a given v). Throughout we assume that both q/s and

A/q are ne(l).

We define each subgraph Gi as follows (note that this construction is independent for each G).

For each v E V, we select a random subset of indices Iv C [deg(v, G)] of size 1Iv = min{q, deg(v, G)}.

Let R, C F(v, G) be the set of neighbors of v whose indices in v's adjacency-list (according to QG)

belong to Iv. Then, (u, v) E E(Gi) if and only if u E R* and v E R'. That is, informally, each
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vertex picks (up to) q random neighbors, and (u, v) is in Gi if a picks v and v picks u. Lastly, let

A(e) = {i e [t] I e c E(Gj)} denote the indices of Gj's where e appears.

By the following lemma, we can implement the ALL-NEIGHBORS oracles 0 Gj using

q = E)(a s/ log n) NEIGHBOR probes to OG, creating t = (A/s) log 2 n total subgraphs.

Lemma 2.3.17. For sufficiently large t = E((A/q) 2 log n), all of the following condition holds:

(i) W.h.p., for every e E E(G), 1 < IA(e)I = O(logn).

(ii) The answer to each ALL-NEIGHBORS probe to Gi can be computed with q NEIGHBOR probes

and q ADJACENCY probes to G.

(iii) W.h.p., each subgraph Gi has maximum degree s = O((q 2 log n)/A), assuming q 2 /A Q(1).
(iv) Each A(e) can be computed using two ADJACENCY probes to G.

Proof. (i) Coverage. Since the probability that (u, v) E E(Gi) is (q/A) 2 , then I{i E [t] e E
E(Gj)}I= 0(logn) in expectation, which w.h.p., implies the desired bound.

(ii) Probe complexity. To find all neighbors of v in G, we probe for the jth neighbor of v for

every j E Iv with NEIGHBOR probes. Recall that an ADJACENCY probe, given (U, v), returns the

index j such that v is the jth neighbor of a (if v E F'(u)). So, for each returned neighbor u, we

apply the ADJACENCY probe with parameter (u, v) to learn the index j' such that v is the j/th
neighbor of u. Hence, (u, v) E E(Gi) if j' E Iu. This process requires III < q NEIGHBOR probes

and ADJACENCY probes.

(iii) Maximum degree. The probability that u E R" and v e R' are each at least q/A, so in

expectation there are (q/A) 2 . A = q2 /A. The desired bound s = 0((q2 log n)/A) holds w.h.p. via

the Chernoff bound when q 2 /A = Q(1), enforcing s = Q(logrn).

(iv) Computing occurrences of e. We simply verify that j E Il and vice versa with two probes.

The LCA must to verify the conditions for all i E [t], but only needs the indices returned from these

two probes. (The running time for this checking process is only additively 0(t), which is 0(A) in

our application.) D

LCA results for larger maximum degree. Combining the result above with the LCA for

computing O(k2 )-spanners, our probe complexity becomes O(ps 3 L3 log n) . q . e(log n): the factor

of q comes from the simulation of ALL-NEIGHBORS probes, whereas the factor of 0(log n) reflects

the fact that we may need to check whether e C Hi for as many as e(logn) subgraphs Gj's. The

size of the resulting spanner H = Uie[t]Hi becomes t times that of the original size, while the

stretch factor remains unchanged). Substituting the proposed values of q and t yields the following

performance guarantee. Note the the probe complexity state in the lemma refers to the primitive

NEIGHBOR probe type provided in our model, not the ALL-NEIGHBORS probe type defined for ease

of presentation.

Lemma 2.3.18 (0(k2 )-spanners for larger A). W.h.p., there exists an LCA for computing

0(k 2 )-spanners with 0 (A (knl+1/k + pn 2 + log4 n + n10g n edges, and probe complexity

0(pA 1/ 2s 7/ 2 L3 log 3/ 2 n), for any s = Q(log n). In particular, for the previously chosen parameters
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L = n1/3 and p = 1/L, our LCA constructs O(k2 )-spanners with O((A/s)nl+l/k log 6 n) edges, and

probe complexity O(A 1 / 2s 7/ 2n 2/ 3 log3/2 n).

Recall that we already have an LCA for computing 5-spanners of general graphs with 6(n4 / 3 )
edges, so it is only reasonable to apply Lemma 2.3.18 while aiming for no larger number of edges.

Choosing the maximum degree of the subgraphs s = 6(n 24 k+ while keeping L = n

p = n-1/ 3 yields the following result.

Corollary 2.3.19. For positive constants a < 1, 0 < { and sufficiently large k, there exists an LCA
2) ~3-7",-2,8 7 4

for computing O(k2 )-spanners for graphs of maximum degree A = O(n 8 ' with (nd-o)

edges using probe complexity 6(n- ' 3)

In particular, for the regime where the number of spanner edges is lower than that of 5-spanners,
we can compute O(k2 )-spanners for graphs of maximum degree up to A = n3/8-E given sufficiently

large k while maintaining sub-linear probe complexities. This result greatly extends the restriction

of the maximum degree of n1/12 -E supported by the LCA of Theorem 2.3.1. We remark that as the

original graph G contains up to O(An) edges, Corollary 2.3.19 indeed provides non-trivial results

when k is larger then some constant threshold (which may depend on constants a,#).

2.3.4.2 Extension for weighted graphs

We further remark that the "partitioning" of the edge set may be employed for weighted graphs. If

the edge weights are bounded by some number W, there is a simple reduction to the unweighted

setting. Namely, we apply the LCA of Theorem 2.3.1 for unweighted graphs separately for every

weight scale ((1+ E)i, (1 + E)i+1]. As a result, the stretch is increased by a factor of (1 + E) and the

size of the spanner by a factor of log1 + W.

2.4 Bounded Independence

In this section, we show that all our LCA constructions succeed w.h.p. using e(logn)-wise inde-

pendent hash functions which only require E(log2 n) random bits.

2.4.1 Preliminaries

We use the following standard notion of d-wise independent hash functions as in [Vad12]. In

particular, our algorithms use the explicit construction of 7- by [Vad12], with the parameters as

stated in Lemma 2.4.2.

Definition 2.4.1. For N, M, d E N such that d < N, a family of functions W = {h : [N] -+ [M]}

is d-wise independent if for all distinct x1 ,...,xd E [N], the random variables h(xi), ... ,h(x) are

independent and uniformly distributed in [M] when h is chosen randomly from W.

Lemma 2.4.2 (Corollary 3.34 in [Vad12]). For every y, 0, d E N, there is a family of d-wise

independent functions X-,,3 = {h : {0,1} - {0, }} such that choosing a random function from

'H, takes d -max{y, O} random bits, and evaluating a function from W,Q, takes time poly (, 03, d).
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Then, we exploit the following result to show the concentration of d-wise independent random

variables:

Fact 2.4.3 (Theorem 5(111) in [SSS95j). If X is a sum of d-wise independent random variables,

each of which is in the interval [0,1] with p = E(X), then:

" (I) For 6 < 1 and d < L62 Ae 1/3], it holds that Pr[|X - pl 6p] < eLd/ 2i.

" (II) For 6 > 1 and d = [6p, it holds that: Pr[\X - l > 6p] < e-" 3 .

2.4.2 Bounded independence for Section 2.2

Bounded independence for hitting set procedures. Most of our algorithms are based on

the following hitting set procedure. For a given threshold A E [1, n], each vertex flips a coin with

probability p = (clog n)/A of being head and the set of all vertices with head outcome join the set

of centers S. Assuming the outcome of coin flips are fully independent, by the Chernoff bound, the

followings hold w.h.p.:

(HI) There are e(pn) sampled vertices S.

(HII) For each vertex of degree at least A, the number centers among its first A neighbors is

E(log n).

Here we show that to satisfy properties (HI) and (HII), it is sufficient to assume that the outcomes

of the coin flips are d-wise independent. By Lemma 2.4.2, to simulate d-wise independent coin flips

for all vertices, the algorithm only requires t = e(d(log n + log 1/p)) random bits: more precisely,

setting -y = (log n) and 3 = log 1/p (for simplicity, lets assume that log 1/p is an integer), there

exits a family of d-wise independent functions N such that a random function h E W 17 can be

specified by a string of random bits of length t. In other words, each function h C N maps the ID

of each vertex to the outcome of its coin flip according to a coin with bias p. Then, from a string

R of t random bits, the algorithm picks a function hR E N at random to simulate the coin flips of

the vertices accordingly: the outcome of the coin flip of v is head if hR(ID(v)) = 0 (which happens

with probability p) and the coin flips are d-wise independent. Setting d = clog n for some constant

c > 1, we prove the following:

Claim 2.4.4. If the coin flips are d-wise independent then properties (HI) and (HII) holds. Further-

more, the sequence of n d-wise independent coin flips can be simulated using a string of O(log2 n)

random bits.

Proof. As described above, the sequence of n d-wise independent coin flips can be generated from

a d-wise independent function hR E N which is specified by a string of random bits R of size

a(log 2 n).

Let Xi be the event that vertex vi is sampled into S: vi E S, if hR(ID(vi)) = 0. Since for each

vertex v, Pr[h(ID(v)) = 0] = p, E(X) = E(np) > clog n where X := D~= Xi. Using Fact 2.4.3(I),

w.h.p., X = 9(np) and (HI) holds.

"7Note that W = {h : {0, 1 }e(Iog n) {0, 1 }Ilog /P.
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Next we show that (HII) also holds. Consider a vertex v with degree at least A and let FA,i(v) =

[ul, ... ,UA] be the first A neighbors of v. For each uj E FA,i(v), let Yj denote the event that

u3 E S and define Y : 1Yj. Then E(Y) = E(Ap) = e(log n). Hence, by Fact 2.4.3(11), w.h.p.

Y = E(log n). Finally, applying the union bound over all vertices, (HII) follows. E

Construction of representatives in Section 2.2.2.3. The analysis above also extends to the

process of computing Reps. Each crowded vertex chooses values clogn random indices (of its

neighbor-list) in [Amedi, each of which has probability 1/2 of hitting a neighbor of degree at least

Asuper. Let {Zi}ic[ciogn] be indicators for these events and Z denote their sum, then the expected

sum E(Z) > (c/2) log n. Imposing d-wise independence, Fact 2.4.3(I) implies that w.h.p., Z > 0, so

the representative set is non-empty. We apply the union bound to show that Reps(v) $ 0 for every

v E Vcrwd, as desired.

2.4.3 Bounded independence for Section 2.3

To define the = [log n]-bit random rank r(v), we will use a collection of k hash functions (where

k is the stretch parameter). Letting N = [log n/k], each function hi : {0, 1} -+ {0, 1}N is an

O(log n)-wise independent hash function for i E {1, ... , k}.

To do so, we view the rank r(v) as consisting of k blocks, each with N bits. Specifically, let

r(v) = [bi, ... , be] E {0, 1}e and let Ri(v) = [b(i-1)-N, ... , bi.N-1] be the 1th block of N bits in r(v).

For every center v, define

Ri(v) = hi(ID(v)) and r(v) = Ri(v) o R2 (v) o ... o Rk(v)

The collection of these hl,..., hk functions are obtained by a uniform sampling from a family

'W = {h : {0, 1} -+ {0, 1}N} of O(log n)-wise independent hash functions.

Our goal is prove Lemma 2.3.14 using these ranks instead of fully independent random ranks.

Lemma 2.4.5 (Stretch guarantee by H(se). If the ranks of the centers are generated according to

the above construction, then w.h.p., the stretch of HVor w-r.t. GVor is 0(k).

Proof. Note that GVor is independent of the rank assignment. Consider any pair of adjacent cells

Vor, Vori (i.e., neighbors in GVor) and let A C Vor, B C Vori be two adjacent clusters of interest in

these Voronoi cells.

At the beginning all vertices are unrevealed and throughout the process some of them will get

revealed by exposing one N-size block Rj of their rank. Let q = [clogn . nl/k] for some large

enough constant c, as used by our spanner construction algorithm. In each inductive step i, we

either halt or we reveal the ith block Ri(v) in the ranks of at least q oblivious unrevealed centers

v. At that point, we will also reveal the ith block in the rank of all the centers w with Ri(w) 5 0

(where 0 = [0, . . . , 0]).

We now describe this induction process in details. At the beginning of step i > 0, we look at

c(Vori) which by induction assumption satisfies the following.

(a) A and Vori are adjacent.

(b) The distance between Voro and Vori in HVor is at most 2i.
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(c) The rank of c(Vori) is the minimum rank among those of all centers in the collection {c(OA) n

Observe that all vertices whose ranks are revealed are precisely those included in property (c). In

particular, we will show property (c) as a result of two sub-properties:

(ci) The first i blocks in the rank of c(Vori) are all zeros.

(c2) For every center v whose rank is revealed, there is exists j < i such that Rj (v) # 0.

For the base case, at the beginning of step i, all claims hold.

Assume that the claims hold up to the beginning of step i > 1. We will show that either we halt

at that step or that all properties hold at the beginning of step i +1. By property (c2), each revealed

center v at the beginning of step i has at least one non-zero block among the first i blocks of r(v).

Or, in other words, the first i blocks in the ranks of all the unrevealed vertices at the beginning of

step i, are all-zeros.

We may assume that there is a marked cluster Ci such that Bi (the cluster in Vori such that the

edge of minimum ID in E(A, Vori) is in E(A, B2 )) participates in C(Cj) (as otherwise, we halt). If
there are less than q unrevealed centers in c(DA) n c(DCi), then the process terminates: by property

(c), all revealed centers have a strictly larger rank than c(Vori). Otherwise, (i.e., there are at least

q unrevealed centers in c(aA) n c(DCj)), we probe the ith block (using the hash function hi) in
the rank of these q unrevealed centers in c(DA) n c(DCi). We let Vorj+i be a cell with a center

si+1 = c(Vori+i) satisfying that si+1 E c(&A) 0 c(DCi) and Ri(si+i) = 6. If there are several such

centers that satisfy these two conditions, we pick one arbitrarily. We now claim:

Claim 2.4.6. W.h.p., there exists at least one si+I G c(DA) n c(&Cj) such that Rj(sj i) 0.

Proof. Let S' a subset of q unrevealed centers in c(DA) n c(DCs). For every sj E S', let Xj E {0, 1}
be the event that Ri(sj) = 6. Since Ri(sj) = hi(ID(sj)), we have that E(Xj) = 1/ 2 N and E(X) =

q/2N - E(log n) where X = Xtq X3 . Since the Xj variables are 0(log n)-independent, using the

Chernoff bound from Fact 2.4.3(I), we obtain that w.h.p. X > 1 and hence there exists sj E S' that

satisfies the above. The claim follows. E

The proofs of the first two properties remain unchanged. Property (3a) holds by induction and

by the selection of Vori+ 1 . In particular, by induction, all the first i blocks of the rank r(si+i) are

all zeros (as sj+1 is unrevealed at the beginning of step i) and we select si+1 since Ri(si+i) = U-
Property (c2) holds by induction and by the fact that the ith-block in the ranks of all those centers

that got revealed in step i is nonzero. By combining (ci) and (c2), property (c) holds as well since

si+1 has the minimum rank among all those that got revealed so far.

Finally, we claim that w.h.p., the process terminates after 0(k) induction steps. We will show

that by claiming that in every step i, at least a (1 - c' -n-1 /k) fraction of the remaining unrevealed

centers are revealed for some constant c' > 0. Let U be the number of unrevealed centers at the

beginning of step i. Hence, U1 = n. If we did not halt at step i, it means that U > q = Q(log nnl/k).

We now bound the number UZ of unrevealed centers at the beginning of step i whose ith block is all-

zero. The probability of having an all-zero block for a single center is 1/ 2 N and hence in expectation

there are Uj/2N such centers. Since Ui ;> q, and since the ranks are 0(logn)-wise independent,

using Chernoff bound of Fact 2.4.3(I), with get that w.h.p. UZ C [cl - Uj/2N, c 2 - Uj/2N for some
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constants 0 < c1 < c2 . Hence, w.h.p., Ui+1 = Uj - UZ > (1 - c'/2N)U,. Overall, after 0(k)

induction steps, there are at most q unrevealed vertices and at that point we halt. The lemma

follows. D

2.5 Lower Bounds

In this section, we establish lower bounds for the problem of locally constructing a spanner consisting

of an asymptotically sub-linear number of edges from the input graph. Our results largely follows

from the analysis of [KKR04] on the lower bound construction of [LRR14]; a compact version of

this proof is given here for completion.

For simplicity, we assume that each vertex occupies a unique ID from {1, . . . , n}; this assumption

may only strengthen our lower bound. We define an instance of a d-regular graph on n vertices

as a perfect matching between cells of a table of size n x d: a matching between the cells (u, i)

and (v, j) indicates that v is the ith neighbor of u and u is the jth neighbor of v. An edge can be

then expressed as a quadruple (u, i, v, j); note that the endpoints are always interchangeable. For

consistency with this notation, we let the NEIGHBOR probe with parameter (u, i) for i < deg(u)

return (v, j) (instead of only v) - this change can only provide more information to the algorithm.

We say that an instance G and the edge (u, i, v, j) are compatible if G contains (u, i, v, j). Our lower

bounds are established for sufficiently large n -_ 2 mod 4 and odd integer d.

The overall argument. First, we construct two distributions D+ and D- over undi-
(x 'a,yb) (x,a,y,b)

rected d-regular graph instances for x, y E V and a, b E [d]. Any graph instance G+ in the support

of D+a y,) contains the edge (x, a, y, b) such that with high probability, removing this edge does not

disconnect x and y. In particular, D+ b is the uniform distribution over all instances compatible(x,a,y,b)

with (x, a, y, b). On the other hand, any graph instance G- in the support of Dxay,) contains

the edge (x, a, y, b) such that removing this edge disconnects x and y (leaving them in separate

connected components).

We show that when given the query (x, a, y, b), any deterministic LCA ALG that only makes

o(min{v6, }) probes can only distinguish whether the underlying graph is a graph randomly drawn

from D+ o) Do with probability o(1). We prove this claim by defining two processes
(x,a,y,b) (X 'a,y,b)

(y+ and P , which interact with ALG and generate a random subgraph from D+(x,a,y,b) (x,a,y,b) (xa,y,b)

and D(-ay,) respectively. We then argue that for each probe the answers that these two processes

return are nearly identically distributed, and so are their probe-answer histories.

Aiming for an overall success probability of 2/3, ALG must keep the edge (x, a, y, b) in its

spanner with probability j(1 - o(1)) > 1/2. Since an instance in D , is chosen uniformly at3 (x,a,y,b)

random, then for more than half of the instances in the support of D , which are exactly the(x, a, y,b) I

instances compatible with (x, a, y, b), ALG returns yes on query (x, a, y, b). Applying this argument

for all possible edges (quadruples (x, a, y, b)), we obtain that ALG returns yes on at least half of all

compatible instance-query pairs. Consequently, over the uniform distribution over all instances, in

expectation any deterministic algorithm ALG must return yes on more than m/2 edges. Employing

Yao's principle, we conclude that any (randomized) LCA cannot compute a spanning subgraph with

o(m) edges using o(min{Vd, n/d}) probes.
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2.5.1 Analysis of the probe-answer histories

Similarly to the work of [LRR14]. we construct our distributions as follow.

o Distribution D+ Dy is a uniform distribution over all d-regular graph instances,(x ,a,y,b) D(x a, y,b)

conditioned that (x, a, y, b) is in the instance. More precisely, the edges of G in the family is

determined by the following process. Consider a two-dimensional table of size n x d which

is called matching table and is denoted by M. Any perfect matching between cells in this

table corresponds to a graph in D+ Note that the generated graphs are not necessarily(x ,a,y,b)'
simple.

o Distribution D y Let V = Vo U+ VI be a random partition of the vertex set into two(x ,a,y,b)*

equal sets such that x E S and y E T. Now consider two matching tables of each of size

n/2 x d denoted by M and M2 . For a graph G in this family, besides the edge (x, a, y, b), the

rest of edges are determined by choosing a random perfect matching within each of M1 and

M 2 (over the remaining cells). Thus, (x, a, y, b) is the only edge connecting between Mi and

-A 2 .

For brevity we drop the subscript (x, a, y, b) for now as it is clear from the context. For sufficiently

large values of d = Q(1), w.h.p, each instance G from D+ is connected even when (x, y) is removed

(see e.g., [Bol01). On the other hand, removing (x, y) from any G- E D clearly disconnects x

and y. Thus, unless a deterministic algorithm ALG can determine whether it is given (x, a, y, b) of

an instance from D+ or D-, it must return yes on (x, a, y, b) for a (2/3)-fraction of these instances.

For simplicity we assume that ALG has a knowledge of the construction (including the degree d),
and never makes a probe that does not reveal any new information.

Let L denote the number of probes made by the algorithm, and Q denote the set of probes

performed by ALG. Observe that ALG is a deterministic mapping from the probe-answer histories

((q1, ai), - - - , (qt, at)) 4 qt+i for t < C and to {yes, no} for t = L. Each probe qj is either a

NEIGHBOR probe or an ADJACENCY probe.

Next, similarly to [KKR04], we define two processes P+ and P- which interact with an arbitrary

algorithm ALG and respectively construct a random graph from D+ and D-. Defining Dt+ and D-

to be the distribution of the probe-answer histories of the interaction of P+ and P- respectively

with ALG after t probes, we show that if L = o(min{finI, n/d}), then the statistical distance of D+

and D- is o(1). We now give the formal description of PS for s E {+, -}:
" Let RS be the set of all graphs in the support of Ds. Let R' and R be the set of

all graphs in the support of Ds that are compatible (u, v) and (u, i, v, j) respectively. In the

former case, we require at least one matching (u, i', v, j') for some i', j' c [d] between cells in

the rows of u and v in the matching table; however, in the latter case, we only allow a fixed

matching (u, i, v, j). We also write Rs to denote the set of all graphs in the support of D'
(u'v)

that are not compatible with u, v.

* Starting from R' = Rs , for any t > 0, R' denotes the set of all graphs in the support of

D' that are compatible with the first t probes and answers.

- If qt is an ADJACENCY probe of the form (Ut, Vt): We choose whether to add an

edge between u and v with probability IR n l R- 1 I/IR' 1 1. If so, we match a
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pair of cells between the rows of u and v: sample (it, it) = (i, J) with probability

IR V n Rs/ 1 I/|Rs 1I set Rs = R n R8_ 1 , and answer at = it. Otherwise,

we simply set Rs = RS n Rs_ 1 and answer at = _L.
t (Ut ,vt)

- If qt is a NEIGHBOR probe of the form (ut,it): For each v E V and jt C {1,.. ,d}, we

choose a cell to match with (ut, it): sample the answer at = (Vt, jt) with probability

IRU n Rs_ 1|/IR'_1| and set Rs = R' Rs 1 .
o After L probes, return a random graph uniformly sampled from Rs.

Lemma 2.5.1 (Lemma 10 in [KKR041). For any deterministic algorithm ALG, the process Ps

(s E {+, -}) when interacting with ALG, uniformly generates a graph from the support of Dsx,a,y,b).

Next, we show that the probability that ALG can detect an edge with ADJACENCY probe (asking

probe q = (u, v) for which the answer is positive; an edge exists between u and v) after performing

only o(n/d) is small. We can define Rs, the set of all graphs in DS as R' where B is the set

of edges that the graphs in R' must contain (namely, all pairs of cells (u, i, v, j) created in some

previous probes) and D is the set of edges that the graphs in R' must not contain (namely, all pairs

(u, v) disallowed by ADJACENCY probes with negative answer).

Assuming that the algorithm makes L = o(n/d) probes, we.establish the following lemmas

that will be useful in bounding the difference between the distributions of probe-answer histories

generated by the two processes. In particular, assume the number of conditions IBI, ID1 = o(n/d),
and the initial conditions (x, a, y, b) E B and (x, y) D, in the following three lemmas.

|R8 nRs --
Lemma 2.5.2. For every (u, i, v,j) (x, a, y, b), (Uivj) B,D (

B,151

Proof. For process P+, the proof is the same as the proof of the similar statement in Lemma 11

of [KKR04]. Here, we show that the argument holds for P-.

BDB(u,zv) IR 1R.. B B___D_1|R- 0 R-I R- n(ij R-|I R-u n~j R- I| |R-|

1 (i
< 1- O(1) = 0I-
-Q(nd) nd

\R- nR \ I
where the bounds on (uiv'j) and are shown in Claim 2.5.3 and 2.5.4. El

IRiBI IR B VI

R- _ nR-|I
Claim 2.5.3. For every (u, i, v, j) z (x, a, y, b), I(U',2V'j) B < 2

IRBI - nd'

Proof. If u and v belong to different partitions or at least one of them is already matched in B,
then R- =0. Otherwise, let w denote the lower bound on the number of unmatched cells in

the matching table containing rows of u and v in any instance of R-. Recall that the number of
matched cells is bounded by o(nd), so w > nd - 21BI - 1 > (1 - o(1)) -nd. The probability that
cells (u, i) is matched to (v, j) is given by

R- n R-1 1 2

IRBI w- I nd
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for sufficiently large n and d.

Claim 2.5.4. JRI = 0(1).IR DI

Proof. As we consider (u, v) z (x, y), we have

IR- ) n R I I Uj 'jE[d R-,ivj)) n R I Z j-E |[d] nRZvj) R -| 2  2 (d)
IRI IR- -R- - nd n

Then by the union bound,

IR-' | R- n (flr<DI R-)I |IR \ (Ur|DI R;-)I |R;- nR-|B B e B er> 1r B

=1 -- (n). O d = I o(1).

Hence, IRB - 0(1). ER

Recall again the assumption that ALG does not make probes that do not reveal any new in-
formation about the instance. Now, we are ready to formally prove the following claim on the
ADJACENCY probes, that with L = o(n/d) probes, ALG is unlikely to obtain any positive answer.

Lemma 2.5.5. Let ALG be an arbitrary deterministic algorithm interacting with process P (s E

{+, -}) and that has probed o(n/d) times. The probability that ALG detects an edge with an ADJA-
CENCY probe of the form (ut,vt) during the interaction is o(1).

Proof. Consider an arbitrary step t in the interaction of ALG and PS in which the algorithm performs
an ADJACENCY probe. Since, t = o(n/d), by the description of PS and applying Lemma 2.5.2, the

probability that the answer to qt is not I is bounded by:

|R- n Re--1| n R-~11d
< Z d i ) <d2 

.0 ( (d0
R-1| |R- 11 -nd n

Since the total number of probes is o(d/n), by the union bound, the probability that ALG detects
an edge with an ADJACENCY probe during its interaction with PS is o(1). E

Next, we similarly show that if L = o(fi'), ALG is likely to obtain a new vertex from every
NEIGHBOR probe it performs.

Lemma 2.5.6. Let ALG be an arbitrary deterministic algorithm interacting with process 'P' (s E
{+, -}) and that has probed o(V/h) times. With probability 1 - o(1), all NEIGHBOR probes of ALG

receive distinct vertices in their answers.

Proof. Consider step t in the interaction of ALG and 'S and let Vt_1 denote the set of vertices seen
by ALG so far (i.e., participate in some qtf or at/ where t' < t - 1); thus |Vtil < 2t. In what follows
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we bound the probability pt that at (the answer to of the form (ut, it)) corresponds to a vertex v

which belong to V-i.

I UvcVt-jGE a, (R8nti vj) Rs_ 1) 1
Pt IR8 11

R n Ri__1)| 6 2t -d 0
vEVt-,jE[d] IR 1I I( )d}

where the last inequality is implied by Lemma 2.5.2. Hence, if the total number of probes is o(V/ii),

with probability 1 - o(1) the answer to every ADJACENCY probe introduces a new vertex EZ

Next, we prove the main result of this section. Lets Ds denotes the distribution over the probe-

answer histories of t rounds of the interaction of ALG and P'.

Lemma 2.5.7. For any arbitrary deterministic ALG and L = o(min{v', n/d}), the statistical

distance between D+ and D- is o(1).

Proof. Let H be the set of all valid probe-answer histories of length L and let H' C H denote the

set of all histories in which every ADJACENCY probe returns I and no NEIGHBOR probe returns an

already-discovered vertex.

Observe that conditioned on 7r E H', the answers to all ADJACENCY probes by both P- and

P+ are I. Moreover, the answers to each NEIGHBOR probe by both processes are chosen uniformly

at random among all cells from the rows corresponding to the set of all vertices not visited so far,
which is the same for the both processes. That is, DL (7) and DL(7r) are proportional to each other

for every probe-answer history 7r E H. Hence the difference between the probe-answer histories for

7r E H' in both processes are bounded simply by the difference in their total probabilities:

D+(r - (ir) I = DL7r D-(7r) =D+(7r) - D-(7).

7rcn' 7rEnr' 7rEnr' 7EnI\n1 7FEn\nI'

Putting everything together, we bound the difference between the distributions of probe-answer

histories when L = min{fii7, n/d}:

|D+(7r) - D-(ir)| = |D{(7r) - DZ(7r)I + > D+(7r) - D-(7r)I
irEr 7efl' 7rEl\W'

< 2 Di()- > D-(7r)
7rEfl\fl' 7rEn\H'

< 2 D+(7r) + 2 D-(7r) = o(1).

wE\et' lnE\anL

where the last equation follows as a result of Lemma 2.5.5 and Lemma 2.5.6. E
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2.5.2 Establishing the lower bound

Here we show the main lower bound result using the outlined argument. Moreover, our construction

so far allows parallel edges and self-loops which are not handled by our upper bounds; we handle

this issue and establish the lower bound even for simple graphs, restated below.

Theorem 2.1.3 (Lower Bound). Any local randomized LCA that computes, with success probability

at least 2/3, a spanner of the simple m-edge input graph G with o(m) edges, has probe complexity

Q(min{ f , n2 /M}).

Proof. As outlined earlier, for the 1 - o(l) fraction of the instances in D, a deterministic(x,a,y,b)'I

ALG must keep the edge (x, a, y, b) in its spanner with probability 2(1 - o(l)) > 1/2 because,

due to Lemma 2.5.7, with probability 1 - o(l) it cannot distinguish whether the given instance is

from D+ or D- . Since D+ is the uniform distribution over instances compatible

with (x, a, y, b), then for more than half of these instances, ALG returns yes on query (x, a, y, b).

Applying this argument for all (x, a, y, b), we obtain that ALG returns yes on at least half of all

compatible instance-query pairs. Nonetheless, our generated instances in D+y ) often
(X ,a,y,b)' (x ,ay,b)

contains parallel edges and self-loops.

In order to remove these non-simple graphs, as similarly noted in [KKR04], we observe that our

constructed graphs only have 0(d2 ) parallel edges and 0(d) self-loops in expectation. Thus, we

may simply fix each instance by modifying 0(d 2 ) matchings so that all instances become simple

(assuming sufficiently large n and d). Observe that by doing so, the connectivity of the graph

strictly increases: the required condition of D+ that x and y must be connected even when
(x ,a,y,b)

(X, a, y, b) is absent is still upheld. Similarly, for D~ the modifications must still respect the

restriction that no edge other than (x, a, y, b) has endpoints on different tables, so that removing

(X, a, y, b) disconnects them.

Due to similarly arguments as Lemma 2.5.5 and Lemma 2.5.6, the probability that ALG detects

these modifications are o(1), and therefore Lemma 2.5.7 still holds under these changes, as long

as the query to ALG itself is not one of the modified edges. On the other hand, if a modified

edge is given as a query to ALG, then we do not assume anything about the algorithm's answer

for this edge. As the modified edges constitute a fraction of up to 0(d2 )/nd = O(d/n) of the

total number of edges on each instance on average, the fraction of instance-query pairs where ALG

answers yes can be potentially reduced by at most a fraction of 0(d/n): this still leaves a fraction

of (1 - o(1)) - O(A) > 1/2 for sufficiently small d = 0(n). That is, even when restricted to simple

graphs, we still obtain that ALG returns yes on at least half of all compatible instance-query pairs

Over the uniform distribution over all instances, in expectation any deterministic algorithm

ALG must return yes on more than m/2 edges. Employing Yao's principle, we conclude that any

(randomized) LCA cannot compute a spanning subgraph with o(m) edges with success probability

2/3 using o(min{fn, n/d}) probes. Substituting d = 2'm/n yields the desired bound. E
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Chapter 3

Set Cover

3.1 Overview of Set Cover in the Oracle Access Model

Set Cover is a classic combinatorial optimization problem, in which we are given a set (universe) of

n elements U = {ei, - -- , en} and a collection of m sets F = {S1, - - - , Sm}. The goal is to find a set

cover of U, i.e., a collection of sets in F whose union is U, of minimum size. Set Cover is a well-

studied problem with applications in operations research [GW97], information retrieval and data

mining [SG09J, learning theory [KV94], web host analysis fCKT10], and many others. Recently,
this problem and other related coverage problems have gained a lot of attention in the context

of massive data sets, e.g., streaming model [SG09, ER16, DIMV14, HIMV16, CW16, AKL16, MV17,
Assl7, BEM17, IMR+ 17] or map reduce model [KMVV15, MZ15, BEM16.

Although the problem of finding an optimal solution is NP-complete, a natural greedy algorithm

which iteratively picks the "best" remaining set (the set that covers the most number of uncovered

elements) is widely used. The algorithm finds a solution of size at most k ln n where k is the optimum

cover size, and can be implemented to run in time linear in the input size. However, the input size

itself could be as large as E(mn), so for large data sets even reading the input might be infeasible.

This raises a natural question: is it possible to solve minimum set cover in sub-linear time?

This question was previously addressed in [NO08,YYI12], who showed that one can design constant

running-time algorithms by simulating the greedy algorithm, under the assumption that the sets

are of constant size and each element occurs in a constant number of sets. However, those constant-

time algorithms have a few drawbacks: they only provide a mixed multiplicative/additive guarantee

(the output cover size is guaranteed to be at most k - In n + en), the dependence of their running

times on the maximum set size is exponential, and they only output the (approximate) minimum

set cover size, not the cover itself. From a different perspective, [KY14] (building on [GK95])

showed that an 0(1)-approximate solution to the fractional version of the problem can be found in

O(mk 2 + nk2 ) time.1 Combining this algorithm with the randomized rounding technique yields an

O(log n)-approximate solution to Set Cover with the same complexity.

In this work we initiate a systematic study of the complexity of sub-linear time algorithms for set

cover with multiplicative approximation guarantees. Our upper bounds complement the aforemen-

'The method can be further improved to 6(m + nk) (N. Young, personal communication).

79



tioned result of [KY14] by presenting algorithms which are fast when k is large, as well as algorithms

that provide more accurate solutions (even with a constant-factor approximation guarantee) that

use a sub-linear number of probes2 . Equally importantly, we establish nearly matching lower bounds,

some of which even hold for estimating the optimal cover size. Our algorithmic results and lower

bounds are presented in Table 3.1.

Data access model. As in the prior work [NO08,YYI121 on Set Cover, our algorithms and lower

bounds assume that the input can be accessed via the adjacency-list oracle3 . More precisely, the

algorithm has access to the following two oracles:

1. ELTOF: Given a set Si and an index j, the oracle returns the jth element of Si. If j > ISi,

I is returned.

2. SETOF: Given an element ei and an index j, the oracle returns the Jth set containing ei. If

ei appears in less than j sets, I is returned.

This is a natural model, providing a "two-way" connection between the sets and the elements.

Furthermore, for some graph problems modeled by Set Cover (such as Dominating Set or Vertex

Cover), such oracles are essentially equivalent to the aforementioned incident-list model studied

in sub-linear graph algorithms. We also note that the other popular access model employing the

membership oracle, where we can probe whether an element e is contained in a set S, is not suitable

for Set Cover, as it can be easily seen that even checking whether a feasible cover exists requires

Q(mn) time.

3.1.1 Our results

In this work we present algorithms and lower bounds for the Set Cover problem. The results are

summarized in Table 3.1. The NP-hardness of this problem (or even its o(log n)-approximate

version [Fei98, RS97, AMS06, Mos15, DS14) precludes the existence of highly accurate algorithms

with fast running times, while (as we show) it is still possible to design algorithms with sub-linear

probe complexities and low approximation factors. The lower bound proofs hold for the running

time of any algorithm approximation set cover assuming the defined data access model.

We present two algorithms with sub-linear number of probes. First, we show that the streaming

algorithm presented in [HIMV16I can be adapted so that it returns an 0(a)-approximate cover using

O(m(n/k)1 /(a- 1 ) +-nk) probes, which could be quadratically smaller than mn. Second, we present a

simple algorithm which is tailored to the case when the value of k is large. This algorithm computes

an 0(log n)-approximate cover with O(mn/k) time complexity (not just probe complexity). Hence,

by combining it with the algorithm of [KY14], we get an 0(log n)-approximation algorithm that

runs in time 6(m +nmn).

We complement the first result by proving that for low values of k, the required number of

probes is Q(m(n/k)1/( 2a)) even for estimating the size of the optimal cover. This shows that the

first algorithm is essentially optimal for the values of k where the first term in the runtime bound

2 Note that polynomial time algorithm with sub-logarithmic approximation algorithms are unlikely to
exist.

3In the context of graph problems, this model is also known as the incidence-list model, and has been
studied extensively, see e.g., [CRT05, GKK13, BHNT15].
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Problem Approximation Constraints Probe Complexity Section

ap + E a > 2 1 - +nk) 3.2.2

P + E- mn) 3.2.3
Set Cover kE2

a k < n 4m+ 3.6
(log M k

a < 1.01 ~ n
a k n (7) 3.5.2

log m
Cover k < n/2 Q(nk) 3.3

Verification --

Table 3.1: A summary of our algorithms and lower bounds. We use the following notation: k > 1
denotes the size of the optimum cover; a > 1 denotes a parameter that determines the trade-off
between the approximation quality and probe/time complexities; p > 1 denotes the approximation
factor of a "black box" algorithm for set cover used as a subroutine; We assume that a < log n and
m > n.

dominates. Moreover, we prove that even the Cover Verification problem, which is checking whether

a given collection of k sets covers all the elements, would require Q(nk) probes. This provides strong

evidence that the term nk in the first algorithm is unavoidable. Lastly, we complement the second

algorithm, by showing a lower bound of Q(mn/k) if the approximation ratio is a small constant.

3.1.2 Related work

Sublinear algorithms for Set Cover under the oracle model have been previously studied as an

estimation problem; the goal is only to approximate the size of the minimum set cover rather than

constructing one. Nguyen and Onak [NO08] consider Set Cover under the oracle model we employ in

this work, in a specific setting where both the maximum cardinality of sets in T, and the maximum

number of occurrences of an element over all sets, are bounded by some constants s and t; this

allows algorithms whose time and probe complexities are constant, (2(St)4/E)0(2S), containing no

dependency on n or m. They provide an algorithm for estimating the size of the minimum set cover

when, unlike our work, allowing both ln s multiplicative and En additive errors. Their result has

been subsequently improved to (st)0 (,) /E2 by Yoshida et al. [YYI12]. Additionally, the results of

Kuhn et al. [KMW06] on general packing/covering LPs in the distributed LOCAL model, together

with the reduction method of Parnas and Ron [PR07], implies that estimating the optimum set

cover size to within a O(In s)-multiplicative factor (with En additive error) can be performed in

(st)O(log s log t) /E 4 time/probe complexities.

Set Cover can also be considered as a generalization of the Vertex Cover problem. The esti-

mation variant of Vertex Cover under the adjacency-list oracle model has been studied in [PR07,

MR06, ORRR12, YYI12]. Set Cover has been also studied in the sublinear space context, most no-
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tably for the streaming model of computation [SG09, ER16, CW16, AKL16, Ass17,BEM17,IMR+17,

DIMV14,HIMV16]. In this model, there are algorithms that compute approximate set covers with

only multiplicative errors. Our algorithms use some of the ideas introduced in the last two pa-

pers [DIMV14, HIMV16].

3.1.3 Overview of the algorithms

The algorithmic results presented in Section 3.2, use the techniques introduced for the streaming

Set Cover problem by [DIMV14, HIMV16] to get new results in the context of sub-linear time

algorithms for this problem. Two components previously used for the set cover problem in the

context of streaming are Set Sampling and Element Sampling. Assuming the size of the minimum

set cover is k, Set Sampling randomly samples 0(k) sets and adds them to the maintained solution.

This ensures that all the elements that are well represented in the input (i.e., appearing in at least

m/k sets) are covered by the sampled sets. On the other hand, the Element Sampling technique

samples roughly 6(k/6) elements, and finds a set cover for the sampled elements. It can be shown

that the cover for the sampled elements covers a (1 - 6) fraction of the original elements.

Specifically, the first algorithm performs a constant number of iterations. Each iteration uses

element sampling to compute a "partial" cover, removes the elements covered by the sets selected so

far and recurses on the remaining elements. However, making this process work in sub-linear time

(as opposed to sub-linear space) requires new technical development. For example, the algorithm

of [HIMV16] relies on the ability to test membership for a set-element pair, which generally cannot

be efficiently performed in our model.

The second algorithm performs only one round of set sampling, and then identifies the elements

that are not covered by the sampled sets, without performing a full scan of those sets. This is

possible because with high probability only those elements that belong to few input sets are not

covered by the sample sets. Therefore, we can efficiently enumerate all pairs (es, Sj), ej E Sj, for

those elements ej that were not covered by the sampled sets. We then run a black box algorithm

only on the set system induced by those pairs. This approach lets us avoid the nk term present

in the probe and runtime bounds for the first algorithm, which makes the second algorithm highly

efficient for large values of k.

3.1.4 Overview of the lower bounds

The Set Cover lower bound for smaller optimal value k. We establish our lower bound for the

problem of estimating the size of the minimum set cover, by constructing two distributions of set

systems. All systems in the same distribution share the same optimal set cover size, but these sizes

differ by a factor a between the two distributions; thus, the algorithm is required to determine from

which distribution its input set system is drawn, in order to correctly estimate the optimal cover

size. Our distributions are constructed by a novel use of the probabilistic method. Specifically,
we first probabilistically construct a set system called median instance (see Lemma 3.5.6): this

set system has the property that (a) its minimum set cover size is ak and (b) a small number of

changes to the instance reduces the minimum set cover size to k. We set the first distribution to
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be always this median instance. Then, we construct the second distribution by a random process
that performs the changes (depicted in Figure 3-8) resulting in a modified instance. This process
distributes the changes almost uniformly throughout the instance, which implies that the changes
are unlikely to be detected unless the algorithm performs a large number of probes. We believe
that this construction might find applications to lower bounds for other combinatorial optimization

problems.

The Set Cover lower bound for larger optimal value k. Our lower bound for the problem
of computing an approximate set cover leverages the construction above. We create a combined
set system consisting of multiple modified instances all chosen independently at random, allowing

instances with much larger k. By the properties of the random process generating modified instances,
we observe that most of these modified instances have different optimal set cover solution, and that
distinguishing these instances from one another requires many probes. Thus, it is unlikely for the
algorithm to be able to compute an optimal solution to a large fraction of these modified instances,
and therefore it fails to achieve the desired approximation factor for the overall combined instance.

The Cover Verification lower bound for a cover of size k. For Cover Verification, however,
we instead give an explicit construction of the distributions. We first create an underlying set
structure such that initially, the candidate sets contain all but k elements. Then we may swap
in each uncovered element from a non-candidate set. Our set structure is systematically designed
so that each swap only modifies a small fraction of the answers from all possible probes; hence,
each swap is hard to detect without Q(n) probes. The distribution of valid set covers is composed
of instances obtained by swapping in every uncovered element, and that of non-covers is similarly
obtained but leaving one element uncovered.

3.2 Sub-Linear Algorithms for the Set Cover Problem

In this work, we present two different approximation algorithms for Set Cover with sub-linear probe
in the oracle model: smallSetCover and largeSetCover. Both of our algorithms rely on the
techniques from the recent developments on Set Cover in the streaming model. However, adopting
those techniques in the oracle model requires novel insights and technical development.

Throughout the description of our algorithms, we assume that we have access to a black box
subroutine that given the full Set Cover instance (where all members of all sets are revealed), returns
a p-approximate solution4 .

The first algorithm (smallSet Cover) returns a (ap + e) approximate solution of the Set Cover
1

instance using C(!(m() Q-1 + nk)) probes, while the second algorithm (largeSetCover) achieves
an approximation factor of (p + F) using 6(") probes, where k is the size of the minimum set
cover. These algorithms can be combined so that the number of probes of the algorithm becomes
asymptotically the minimum of the two:

Theorem 3.2.1. There exists a randomized algorithm for SetCover in the oracle model that
4 The approximation factor p may take on any value between 1 and E(log n) depending on the computa-

tional model one assumes.
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w.h.p. computes an O(plogrn)-approximate solution and uses O(min{m k logn + nk ,
O(m + nxfi) number of probes.

3.2.1 Preliminaries

Our algorithms use the following two sampling techniques developed for Set Cover in the streaming
model [DIMV14]: Element Sampling and Set Sampling. The first technique, Element Sampling,
states that in order to find a (1 - 6)-cover of U w.h.p., it suffices to solve Set Cover on a subset of
elements of size Q(pkOg m) picked uniformly at random. It shows that we may restrict our attention
to a subproblem with a much smaller number of elements, and our solution to the reduced instance
will still cover a good fraction of the elements in the original instance. The next technique, Set
Sampling, shows that if we pick f sets uniformly at random from F in the solution, then each
element that is not covered by any of picked sets w.h.p. only occurs in 0(1) sets in F; that is,
we are left with a much sparser subproblem to solve. The formal statements of these sampling
techniques are as follows. See [DIMV14] for the proofs.

Lemma 3.2.2 (Element Sampling). Consider an instance of Set Cover on (U, F) whose optimal
cover has size at most k. Let Usmp be a subset of U of size 0 (pklgm chosen uniformly at random,
and let Csmp g F be a p-approximate cover for Usmp. Then, w.h.p. Csmp covers at least (1 - 6)IUI
elements.

Lemma 3.2.3 (Set Sampling). Consider an instance (U, F) of Set Cover. Let Frnd be a collection
of f sets picked uniformly at random. Then, w.h.p. Fnd covers all elements that appear in Q('109')
sets of F.

3.2.2 Efficient algorithm for instances with small optimal value

The algorithm of this section is a modified variant of the streaming algorithm of Set Cover in
[HIMV16] that works in the sublinear probe model. Similarly to the algorithm of [HIMV16], our
algorithm smallSetCover considers different guesses of the value of an optimal solution (e-1 log n
guesses) and performs the core iterative algorithm iterSetCover for all of them in parallel. For
each guess f of the size of an optimal solution, the iterSetCover goes through 1/a iterations and
by applying Element Sampling, guarantees that w.h.p. at the end of each iteration, the number
of uncovered elements reduces by a factor of n--1 /. Hence, after 1/a iterations all elements will
be covered. Furthermore, since the number of sets picked in each iteration is at most f, the final
solution has at most pf sets where p is the performance of the offline block algOfflineSC that
iterSetCover uses to solve the reduced instances constructed by Element Sampling.

Although our general approach in iterSet Cover is similar to the iterative core of the streaming
algorithm of Set Cover, there are challenges that we need to overcome so that it works efficiently
in the probe model. Firstly, the approach of [HIMV16] relies on the ability to test membership
for a set-element pair when executing its set filtering subroutine: given a subset S, the algorithm
of [HIMV16] requires to compute |SnSI which cannot be implemented efficiently in the probe model
(in the worst case, requires mjS| probes). Instead, here we employ the set sampling which w.h.p.
guarantees that the number of sets that contain an (yet uncovered) element is small.
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Next challenge is achieving m(n/k)1/(0- 1) + nk probe bound for computing an a-approximate

solution. As mentioned earlier, both our approach and the algorithm of [HIMV16] need to run'

the algorithm in parallel for different guesses f of the size of an optimal solution. However, since

iterSetCover performs m(n/f)'/(a- 1) + nf probes, if smallSetCover invokes iterSetCover with

guesses in an increasing order then the probe complexity becomes mn1 /(- 1")+nk; on the other hand,
if it invokes iterSetCover with guesses in a decreasing order then the probe complexity becomes

m(n/k)1/(-1)+ inn! To solve this issue, smallSetCover performs in two stages: in the first stage,
it finds a (log n)-estimate of k by invoking iterSet Cover using m + nk probes (assuming guesses are

evaluated in an increasing order) and then in the second rounds it only invokes iterSetCover with

approximation factor a in the smaller O(log n)-approximate region around the (log n)-estimate of k

computed in the first stage. Thus, in our implementation, besides the desired approximation factor,

iterSetCover receives an upper bound and a lower bound on the size of an optimal solution.

Now, we provide a detailed description of iterSet Cover. It receives a, E, 1 and u as its arguments,

and it is guaranteed that the size of an optimal cover of the input instance, k, is in [1, u]. Note that

the algorithm does not know the value of k and the sampling techniques described in Section 3.2.1

rely on k. Therefore, the algorithm needs to find a (1 + e) estimate5 of k denoted as f. This can

be done by trying all powers of (1 + E) in [1, u]. The parameter a denotes the trade-off between

the probe complexity and the approximation guarantee that the algorithm achieves. Moreover, we

assume that the algorithm has access to a p-approximate black box solver of Set Cover.

iterSet Cover first performs Set Sampling to cover all elements that occur in (m/e) sets. Then

it goes through a -2 iterations and in each iteration, it performs Element Sampling with parameter

= ((e/n)'/(a- 1)). By Lemma 3.2.2, after (a - 2) iterations, w.h.p. only f(i)1/(-1) elements

remain uncovered, for which the algorithm finds a cover by invoking the offline set cover solver.

The parameters are set so that all (a - 1) instances that are required to be solved by the offline set

cover solver (the (a - 2) instances costructed by Element Sampling and the final instance) are of

size O(m (n)1/(a-1))
In the rest of this section, we show that smallSetCover w.h.p. returns an almost (pa)-

approximate solution of Set Cover(U, F) with probe complexity O(i(m(n/k) + nk)) where k is

the size of a minimum set cover.

Theorem 3.2.4. The smallSetCover algorithm outputs a (ap + E)-approximate solution of

SetCover(U,F) using 1( 1(m(g)a + nk)) number of probes w.h.p., where k is the size of an

optimal solution of (U, F).

To analyze the performance of smallSetCover, first we need to analyze the procedures invoked

by smallSetCover: iterSetCover and algOfflineSC. The procedure algOfflineSC(S, f) receives

as an input a subset of elements S and an estimate on the size of an optimal cover of S using sets

in F. The algOfflineSC algorithm first determines all occurrences of S in F. Then it invokes a

black box subroutine that returns a cover of size at most p? (if there exists a cover of size f for S)

for the reduced Set Cover instance over S.

Moreover, we assume that all subroutines have access to the ELTOF and SETOF oracles, |Ul
and IFl.

5 The exact estimate that the algorithm works with is a (1 + g) estimate.
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iterSetCover(a, E, 1, u):

> Try all (1 + )-approximate guesses of k

for f E {(1 + ,)' I log 1+ 1 7 i log18+ u}
2p2aep 2cep

do in order:
Solt +- collection of f sets picked

uniformly at random > Set Sampling

Urem +- U \ UrEsoje r > n ELTOF

repeat (a - 2) times

S +- sample of Urem of size O(pf ()a-)
D <- algOfflineSC(S, f)
if D = null then

break > Try the next value of f
sol <- solt U D
Urem Urem \ UrCD r > pn ELTOF

if IUreml < E (n)l/(a-) > Feasibility Test
D +- algOfflineSC(Urem, f)
if D $ null then

solt 4- solt U D
return solt

Figure 3-1: iterSetCover is the main procedure of the smallSetCover algorithm for the
Set Cover problem.

Lemma 3.2.5. Suppose that each e E S appears in O(1) sets of F and lets assume that there exists

a set of f sets in F that covers S. Then algOfflineSC(S, f) returns a cover of size at most pL of S

using Q(mIsI) probes.

Proof. Since each element of S is contained by O(-I) sets in F, the information required to solve

the reduced instance on S can be obtained by (m 1) probes (i.e. O( ) sETOF probe per element

in S). D

Lemma 3.2.6. The cover constructed by the outer loop of iterSetCover(a, 6, 1, u) with the param-

eter f > k, Solt, w.h.p. covers U.

Proof. After picking f sets uniformly at random, by Set Sampling (Lemma 3.2.3), w.h.p. each

element that is not covered by the sampled sets appears in O(-I) sets of F. Next, by Element

Sampling (Lemma 3.2.2 with 6 (,)1 ), at the end of each inner iteration, w.h.p. the number

of uncovered elements decreases by a factor of (j)1/(a-) Thus after at most (a - 2) iterations,

w.h.p. less than f (y)1/(-1) elements remain uncovered. Finally, algOffiineSC is invoked on the

remaining elements; hence, sole w.h.p. covers U.

Next we analyze the probe complexity and the approximation guarantee of iterSetCover. As

we only apply Element Sampling and Set Sampling polynomially many times, all invocations of

the corresponding lemmas during an execution of the algorithm must succeed w.h.p., so we assume

their high probability guarantees for the proofs in rest of this section.
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algOffiineSC(S, f):
.Fs +- 0
for each element e E S do

Fe <- the collection of sets containing e
FS - FS U Fe

D +- solution of size at most p for Set Cover
on (S, Fs) constructed by the black box solver

> If there exists no such cover, then D = null
return D

Figure 3-2: algOffiineSC(S, f) invokes a black box that returns a cover of size at most p (if there
exists a cover of size f for S) for the Set Cover instance that is the projection of F over S.

Lemma 3.2.7. Given that 1 < k < ), w.h.p. iterSetCover(a, e,l,u) finds a (pa + E)-
approximate solution of the input instance using 0 ({(m(f)c-1 + nk)) probes.

Proof. Let fk = (1 + P) be the smallest power of 1 + ' greater than or equal to k.
Note that it is guaranteed that fk E [1, u]. By Lemma 3.2.6, iterSetCover terminates with a guess
value 1 < 4. In the following we compute the probe complexity of the run of iterSetCover with
a parameter 1 < fk.

Set Sampling component picks 1 sets and then update the set of elements that are not covered
by those sets, Urem, using O(n) ELTOF probes. Next, in each iteration of the inner loop, the
algorithm samples a subset S of size 5 (f(n/fl)/(a-)) from Urem. Recall that, by Set Sampling
(Lemma 3.2.3), each e E S C Urem appears in at most O(m/) sets. Since each element in Urem
appears in 0(m/), algOffiineSC returns a cover D of size at most pt using 6 (m (n/)1/(a-1))SETOF probes (Lemma 3.2.5). By the guarantee of Element Sampling (Lemma 3.2.2), the number
of elements in Urem that are not covered by D is at most (f/n)1 /(a- 1 ) IUrem. Finally, at the end of each
inner loop, the algorithm updates the set of uncovered elements Urem by using 0(nf) ELTOF probes.
The Feasibility Test which is passed w.h.p. for 1 < fk ensures that the final run of algOffiineSC
performs 0(m(n/f) 1/(a- 1 )) SETOF probes. Hence, the total number of probes performed in each
iteration of the outer loop of iterSetCover with parameter 1 < 1 k is 5 (m (n/f)1/(-1) + nf).By Lemma 3.2.6, if 3k < u, then the outer loop of iterSetCover is executed for 1 < f < fk
before it terminates. Thus, the total number of probes made by iterSetCover is:

S O m ( )) +n(1+ ap
i=[log,+ el1

(m (n) log,+ 7 + /(po\ s n b e e (pa)+

(M ()a + nk .

Now, we show that the number of sets returned by iterSet Cover is not more than (aP + E)fk.
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Set Sampling picks f sets and each run of algOfflineSC returns at most pf sets. Thus the size of
the solution returned by iterSetCover is at most (1 + (a - 1)p)fk < (ap + e)k. D

Next, we prove the main theorem of the section.

smallSet Cover(a, E):

sol +- iterSetCover(log n, 1, 1, n)
k' +- soil > Find a p log n estimate of k.
return iterSetCover(a, e, L[ og, [k'(1 + 2)a)

Figure 3-3: The description of the smallSetCover algorithm.

Proof of Theorem 3.2.4. The algorithm smallSetCover first finds a (p log n)-approximate solution
of Set Cover(U, F), sol, with O(m + nk) probes by calling iterSetCover(log n, 1, 1, n). Having
that k < k' = Isoll < (plogn)k, the algorithm calls iterSetCover with a as the approximation
factor and [Lk'/(p log n)], [k'(1 + ' )l] as the range containing k. By Lemma 3.2.7, the second call
to iterSetCover in smallSetCover returns a (ap + E)-approximate solution of Set Cover(U, F)
using the following number of probes:

S m n +nk) = ( m () ' + nk)).
E k/ (p log n) E \k

D

3.2.3 Efficient algorithm for instances with large optimal value

The second algorithm, largeSetCover, works strictly better than smallSetCover for large values
of k (k > v'i). The advantage of largeSetCover is that it does not need to update the set of
uncovered elements at any point and simply avoids the additive nk term in the probe complexity
bound; the result of Section 3.3 suggests that the nk term may be unavoidable if one wishes to
maintain the uncovered elements. Note that the guarantees of largeSetCover is that at the end
of the algorithm, w.h.p. the ground set U is covered.

The algorithm largeSetCover, given in Figure 3-4, first randomly picks e1/3 sets. By Set Sam-
pling (Lemma 3.2.3), w.h.p. every element that occurs in 5(m/(e)) sets of F will be covered by
the picked sets. It then solves the Set Cover instance over the elements that occur in O(m/(Ff))
sets of F by an offline solver of SetCover using 0(m/(e)) probes; note that this set of elements
may include some already covered elements. In order to get the promised probe complexity, large-
SetCover enumerates the guesses f of the size of an optimal set cover in the decreasing order. The
algorithm returns feasible solutions for f > k and once it cannot find a feasible solution for f, it
returns the solution constructed for the previous guess of k, i.e., f(1+E/(3p)). Since largeSetCover
performs Set Sampling for 6(E-') iterations, w.h.p. the total probe complexity of largeSetCover
is O(mn/(ke 2 )). Note that testing whether the number of occurrences of an element is 5(m/(ef))
only requires a single probe, namely SETOF(e, cmgn)

We now prove the desired performance of largeSet Cover.
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Figure 3-4: A (p + E)-approximation algorithm for the Set Cover problem. We assume that the
algorithm has access to ELTOF and SETOF oracles for Set Cover(U, F), as well as JUI and JF .

Lemma 3.2.8. largeSetCover returns a (p + E)-approximate solution of Set Cover(U, F) w.h.p.

Proof. The algorithm largeSetCover tries to construct set covers of decreasing sizes until it fails.

Clearly, if k < f then the black box algorithm finds a cover of size at most pf for any subset of

U, because k sets are sufficient to cover U. In other words, the algorithm does not terminate with

S;> k. Moreover, since the algorithm terminates when f is smaller than k, the size of the set cover

found by largeSetCover is at most ( + p)(1 + ' )f < (f + p)(1 + L)k < (p + e)k. El

Lemma 3.2.9. The number of probes made by largeSetCover is 0(").

Proof. The value of f in any successful iteration of the algorithm is greater than k/(p + 6); otherwise,
the size of the solution constructed by the algorithm is at most (p+ E) f < k which is a contradiction.

Set Sampling guarantees that w.h.p. each uncovered element appears in O(m/ef) sets and thus

the algorithm needs to perform C(_) SETOF probes to construct Frare. Moreover, the number

of required probes in the size test step is 0(n) because we only need one SETOF probe per each

element in U. Thus, the probe complexity of largeSetCover(E) is bounded by

log1 + E

n n+ mn = n + mn) logi+,, n) ( mn)
i=log1+ 6 3pg

0l
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largeSetCover(E):

> Try all (1 + )-approximate gueses of k

for f E 1(1 + 10 < i < log1 + 4n

do in the decreasing order:
rnde <- collection of ( sets picked uniformly3

at random > Set Sampling

-Frare +- 0 > intersection with rare elements

for e E U do

if e appears in < cm log n sets then
t> Size Test: SETOF(e., cm g

Fe <- collection of sets containing e

> O(M) SETOF probes

.Frare <- Frare U Fe, S +- S U{e}
D <- solution of Set Cover(S, Frare) returned
by a p-approximate black box algorithm

if IDI pf then sol +- rndj U D
else return sol

> solution for the previous value of {



3.3 Lower Bound for the Cover Verification Problem

In this section, we give a tight lower bound on a feasibility variant of the Set Cover problem which

we refer to as Cover Verification. In Cover Verification(U, F, Fk), besides a collection of m sets F
and n elements U, we are given indices of k sets Fk C F, and the goal is to determine whether they

are covering the whole universe U or not. We note that, throughout this section, the parameter k
is a candidate for, but not necessarily the value of, the size of the minimum set cover.

A naive approach for this decision problem is to probe all elements in the given k sets and then

check whether they cover U or not; this approach requires O(nk) probes. However, in what follows

we show that this approach is tight and no randomized protocol can decide whether the given k sets

cover the whole universe with probability of success at least 0.9 using o(nk) probes.

Theorem 3.3.1. Any (randomized) algorithm for deciding whether a given k = Q(log n) sets covers

all elements with probability of success at least 0.9, requires Q(nk) probes.

While this lower bound does not directly lead to a lower bound on Set Cover, it suggests that

verifying the feasibility of a solution may even be more costly than finding the approximate solu-

tion itself; any algorithm bypassing this Q(nk) lower bound may not solve Cover Verification as a

subroutine.

We prove our lower bound by designing the Yes and No instances that are hard to distinguish,
such that for a Yes instance, the union of the given k sets is U, while for a No instance, their

union only covers n - 1 elements. Each Yes instance is indistinguishable from a good fraction of
No instances. Thus any algorithm must unavoidably answer incorrectly on half of these fractions,
and fail to reach the desired probability of success.

3.3.1 Underlying set structure

Our instance contains n sets and n elements (so m = n), where the first k sets forms Fk, the
candidate for the set cover we wish to verify. We first consider the incidence matrix representation,
such that the rows represent the sets and the columns represent the elements. We focus on the
first n/k elements, and consider a slab, composing of n/k columns of the incidence matrix. We
define a basic slab as the structure illustrated in Figure 3-5 (for n = 12 and k = 3), where the cell

(i, J) is white if ej E Si, and is gray otherwise. The rows are divided into blocks of size k, where
first block, the probe block, contains the rows whose sets we wish to check for coverage; notice that

only the last element is not covered. More specifically, in a basic slab, the probe block contains

sets S1, .. ., Sn/k, each of which is equal to {ei, ... , el/k1}. The subsequent rows form the swapper

blocks each consisting of n/k sets. The rth swapper block consists of sets S(r+1)n/k+1,- .. , S(r+2)n/k,
each of which is equal to {ei,..., en/} \ {e4}. We perform one swap in this slab. Consider a

parameter (x, y) representing the index of a white cell within the probe block. We exchange the
color of this white cell with the gray cell on the same row, and similarly exchange the same pair of
cells on swapper block y. An example is given in Figure 3-5; the dashed blue rectangle corresponds

to the indices parameterizing possible swaps, and the red squares mark the modified cells. This

modification corresponds to a single swap operation; in this example, choosing the index (3, 2) swaps
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swapper blo

swapper bic

swapper bic

e 1 e 2 e 3 e4

Si

block S2

S3

S4

ck 1 S5

S6

S7

ck 2 S 8

S9

Sio

ck 3 Sil

S12

(a) a basic slab

Figure 3-5: A basic slab and

Si

S2

S3|

S4

S5

S6

S7

58

S9

Sio

Sil

S12

(b) the slab after performing a (3, 2)-swap

an example of a swapping operation.

slab 1 slab 2 slab 3

e 1 e2 e3 e 4 e 5 e6 e7 e 8 e 9 e10 e1 1 e 12

Si

S2

S3

S4

S5

S6

S7

S8

S9

S10

Snl

S12

Figure 3-6: A example structure of a Yes instance; all elements are covered by the first 3 sets.
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(e 2 , e4 ) between S3 and Sq. Observe that there are k x (n/k - 1) = n - k possible swaps on a single

slab, and any single swap allows the probe sets to cover all n/k elements.

Lastly, we may create the full instance by placing all k slabs together, as shown in Figure 3-6,
shifting the elements' indices as necessary. The structure of our sets may be specified solely by the

swaps made on these slabs. We define the structure of our instances as follows.

" For a Yes instance, we make one random swap on each slab. This allows the first k sets to

cover all elements.

" For a No instance, we make one random swap on each slab except for exactly one of them.

In that slab, the last element is not covered by any of the first k sets.

Now, to properly define an instance, we must describe our structure via ELTOF and SETOF. We

first create a temporary instance consisting of k basic slabs, where none of the cells are swapped.

Create ELTOF and SETOF lists by sorting each list in an increasing order of indices. Each instance

from the above construction can then be obtained by applying up to k swaps on this temporary

instance. Figure 3-7 provides a sample realization of a basic slab with ELTOF and SETOF, as well

as a sample result of applying a swap on this basic slab; these correspond to the incidence matrices

in Figure 3-5a and Figure 3-5b, respectively. Such a construction can be extended to include all k

slabs. Observe here that no two distinct swaps modify the same entry; that is, the swaps do not

interfere with one another on these two functions. We also note that many entries do not participate

in any swap.

3.3.2 Proof of Theorem 3.3.1

Observe that according to our instance construction, the algorithm may verify, with a single probe,

whether a certain swap occurs in a certain slab. Namely, it is sufficient to probe an entry of ELTOF

or SETOF that would have been modified by that swap, and check whether it is actually modified or

not. For simplicity, we assume that the algorithm has the knowledge of our construction. Further,

without loss of generality, the algorithm does not make multiple probes about the same swap, or

make a probe that is not corresponding to any swap.

We employ Yao's principle as follows: to prove a lower bound for randomized algorithms, we

show a lower bound for any deterministic algorithm on a fixed distribution of input instances. Let

s = n -k be the number of possible swaps in each slab; assume s = 0(n). We define our distribution

of instances as follows: each of the sk possible Yes instances occurs with probability 1/( 2 sk), and

each of the ksk-1 possible No instances occurs with probability 1/(2ksk-1). Equivalently speaking,

we create a random Yes instance by making one swap on each basic slab. Then we make a coin

flip: with probability 1/2 we pick a random slab and undo the swap on that slab to obtain a No

instance; otherwise we leave it as a Yes instance. To prove by contradiction, assume there exists a

deterministic algorithm that solves the Cover Verification problem over this distribution of instances

with r = o(sk) probes.

Consider the Yes instances portion of the distribution, and observe that we may alternatively

interpret the random process generating them as as follows. For each slab, one of its s possible swaps

is chosen uniformly at random. This condition again follows the scenario considered in Section 3.5.2:

we are given k urns (slabs) of each consisting of s marbles (possible swap locations), and aim to
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Before: ELTOF table for a basic slab After: ELTOF table after applying a swap

ELTOF 1 2 3 ELTOF 1 2 3

Si eI e2  e3  Si el e2  e3

S2  el e2  e3  S2 e 1  e 2  e 3

S3  e 1  e 2  e3  53 ei f e 3

S4 e2 e3 e4 S 4  e2  e3  e4

S5 e2  e3  e4 S5 e2  e3  e4

S6  e2  e3  e4  S6  e2  e3  e4

S7  e 1  e3 e4 S7 el e3 e4

S8 e 1  e3  e4  S 8  el e3  e4

S9 el e3  e4 S 9  e1  e3 C2

SIO el e2  e4  510 eI e2  e4

S1 1  el e2  e4  51 e1  e2  e4

S12 eI e2 e4 S1 2  e1  e2 e4

Before: SETOF table for a basic slab

SETOF 1 2 3 4 5 6 7 8 9

e1  S1 S2  S3  S7  S8 S9  S10  S 1  S 12

e2  S1 S2  S3 S4  S5  S6  S 10  S1 1  S 12

e3  S1 S2 S3 S4  S5  S 6  S 7  S8  S 9

e4 S 4  S5  S6 S7  S 8  S9 S10  S 1  S 12

After: SETOF table after applying a swap

SETOF 1 2 3 4 5 6 7 8 9

e1  S1 S2  S3  S7  S 8  S 9  SIO S 1  S12

e2  S1 S2  S9  S4  S5  S6  S10  S 1  S12

e3 S1 S2  S3 S4  S5  56 S7  S8 S9

e4  S 4  S5  S6  S 7  S8 $ I10 S 1  S 12

Figure 3-7: Tables illustrating the representation of a slab under ELTOF and SETOF before and
after a swap; cells modified by swap(e 2, e4) between S 3 and S9 are highlighted in red.
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draw the red marble (swapped entry) from a large fraction of these urns. Following the proof of

Lemmas 3.5.19-3.5.20, we obtain that if the total number of probes made by the algorithm is less

than (1 - 3)2, then with probability at least 0.99, the algorithm will not see any swaps from at

least k slabs.

Then, consider the corresponding No instances obtained by undoing the swap in one of the slabs

of the Yes instance. Suppose that the deterministic algorithm makes less than (1 - 1), probes,

then for a fraction of 0.99 of all possible tuples T, the output of the Yes instance is the same as

the output of fraction of No instances, namely when the slab containing no swap is one of the jb b

slabs that the algorithm has not detected a swap in the corresponding Yes instance; the algorithm

must answer incorrectly on half of the corresponding weight in our distribution of input instances.

Thus the probability of success for any algorithm with less than (1 - 3)k probes is at most

1 - Pr ITigh -- 2 () (2) b < 0.9,
1 b _ b 2 -b

for a sufficiently small constant b > 3 (e.g. b 4). As s = 0(n) and by Yao's principle, this implies

the lower bound of Q(nk) for the Cover Verification problem.

3.4 Preliminaries for the Lower Bounds

First, we formally specify the representation of the set structures of input instances, which applies

to both Set Cover and Cover Verification.

Our lower bound proofs rely mainly on the construction of instances that are hard to distinguish

by the algorithm. To this end, we define the swap operation that exchanges a pair of elements

between two sets, and how this is implemented in the actual representation.

Definition 3.4.1 (swap operation). Consider two sets S and S'. A swap on S and S' is defined over

two elements e, e' such that e E S \ S' and e' E S'\ S, where S and S' exchange e and e'. Formally,

after performing swap(e, e'), S = (SU{e'}) \{e} and S' = (S'U{e}) \{e'}. As for the representation

via ELTOF and SETOF, each application of swap only modifies 2 entries for each oracle. That is,
if previously e = ELTOF(S, i), S = SETOF(ej), e' = ELTOF(S', i'), and S' = SETOF(e', j'), then

their new values change as follows: e' = ELTOF(S, i), S' = SETOF(e, j), e = ELTOF(S', i'), and

S = SETOF(e',j').

In particular, we extensively use the property that the amount of changes to the oracle's answers

incurred by each swap is minimal. We remark that when we perform multiple swaps on multiple

disjoint set-element pairs, every swap modifies distinct entries and do not interfere with one another.

Lastly, we define the notion of probe-answer history, which is a common tool for establishing

lower bounds for sub-linear algorithms under probe models.

Definition 3.4.2. By probe-answer history, we denote the sequence of probe-answer pairs ((qi, ai),

(q2, a 2 ), . . . , (q ., ar)) recording the communication between the algorithm and the oracles, where each

new probe qi+1 may only depend on the probe-answer pairs (qi, a1),..., (qi, a2 ). In our case, each
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qi represents either a SETOF probe or an ELTOF probe made by the algorithm, and each ai is the

oracle's answer to that respective probe according to the set structure instance.

3.5 Lower Bounds for the Set Cover Problem

In this section, we present lower bounds for Set Cover both for small values of the optimal cover
size k (in Section 3.5.1), and for large values of k (in Section 3.5.2). For low values of k, we prove
the following theorem whose proof is postponed to Section 3.6.

Theorem 3.5.1. For 2 < k < (16 2imo )4-1l and 1 < a < log n, any randomized algorithm that

solves the Set Cover problem with approximation factor a and success probability at least 2/3 requires

Q(m(n/k)-) probes.

Instead, in Section 3.5.1 we focus on the simple setting of this theorem which applies to approx-

imation protocols for distinguishing between instances with minimum set cover sizes 2 and 3, and
show a lower bound of U(mn) (which is tight up to a polylogarithmic factor) for approximation
factor 3/2. This simplification is for the purpose of both clarity and also for the fact that the result
for this case is used in Section 3.5.2 to establish our lower bound for large values of k.

High level idea. Our approach for establishing the lower bound is as follows. First, we construct a
median instance I* for Set Cover, whose minimum set cover size is 3. We then apply a randomized

procedure genModifiedlIst, which slightly modifies the median instance into a new instance
containing a set cover of size 2. Applying Yao's principle, the distribution of the input to the
deterministic algorithm is either I* with probability 1/2, or a modified instance generated thru
genModifiedInst(I*), which is denoted by D(I*), again with probability 1/2. Next, we consider

the execution of the deterministic algorithm. We show that unless the algorithm asks at least Q(mn)

probes, the resulting probe-answer history generated over I* would be the same as those generated
over instances constituting a constant fraction of D(I*), reducing the algorithm's success probability
to below 2/3. More specifically, we will establish the following theorem.

Theorem 3.5.2. Any algorithm that can distinguish whether the input instance is I* or belongs to

D(I*) with probability of success greater than 2/3, requires Q(mn/ log m) probes.

Corollary 3.5.3. For 1 < a < 3/2, and k < 3, any randomized algorithm that approximates by a
factor of a, the size of the optimal cover for the Set Cover problem with success probability at least
2/3 requires Q(mn) probes.

For simplicity, we assume that the algorithm has the knowledge of our construction (which may
only strengthens our lower bounds); this includes I* and D(I*), along with their representation via

ELTOF and SETOF. The objective of the algorithm is simply to distinguish them. Since we are

distinguishing a distribution of instances D(I*) against a single instance 1*, we may individually
upper bound the probability that each probe-answer pair reveals the modified part of the instance,
then apply the union bound directly. However, establishing such a bound requires a certain set of
properties that we obtain through a careful design of 1* and genModifiedlnst. We remark that
our approach shows the hardness of distinguishing instances with with different cover sizes. That
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is, our lower bound on the probe complexity also holds for the problem of approximating the size

of the minimum set cover (without explicitly finding one).

Lastly, in Section 3.5.2 we provide a construction utilizing Theorem 3.5.2 to extend Corol-

lary 3.5.3, establish the following theorem on lower bounds for larger minimum set cover sizes.

Theorem 3.5.4. For any sufficiently small approximation factor a < 1.01 and k = O(m/ log n),
any randomized algorithm that computes an a-approximation to the Set Cover problem with success

probability at least 0.99 requires Q(mn/k) probes.

3.5.1 Lower bound for small optimal value

3.5.1.1 Construction of the Median Instance I*.

Let F be a collection of m sets such that (independently for each set-element pair (S, e)) S contains

e with probability 1 - po, where po = Ogm (note that since we assume log m < n/c for large

enough c, we can assume that po < 1/2). Equivalently, we may consider the incidence matrix of

this instance: each entry is either 0 (indicating e S) with probability po, or 1 (indicating e E S)

otherwise. We write _F ~Il(U,po) denoting the collection of sets obtained from this construction.

Definition 3.5.5 (Median instance). An instance of Set Cover, I, is a median instance if it

satisfies all the following properties.

(a) No two sets cover all the elements. (The size of its minimum set cover is at least 3.)

(b) For any two sets the number of elements not covered by the union of these sets is at most

18 log m.

(c) The intersection of any two sets has size at least n/8.

(d) For any pair of elements e, e', the number of sets S s.t. e e S but e' S is at least m 0gm

(e) For any triple of sets S, S1 and S 2 , I(1 InS2 ) \ S| I 6/n -log m.

(f) For each element, the number of sets that do not contain that element is at most 6m .ogn

Lemma 3.5.6. There exists a median instance I* satisfying all properties from Definition 3.5.5.

In fact, with high probability, an instance drawn from the distribution in which Pr[e G S] = 1 - po
independently at random, satisfies the median properties.

The proof of the lemma follows from standard applications of concentration bounds. Specifically,
it follows from the union bound and Lemmas 3.5.7-3.5.12 below.

Lemma 3.5.7. With probability at least 1 - m-1 over F ~ I(U, po), the size of the minimum set

cover of the instance (T,U) is greater than 2.

Proof. The probability that an element e E U is covered by two sets selected from F is at most:

Pr[e c S 1 U S2 = 1 - = 1 - 9logm
n

Thus, the probability that S1 U S2 covers all elements in U is at most (1-_ 91'm m)fl < m 9 . Applying

the union bound, with probability at least 1 - m-1 the size of optimal set cover is greater than

2. F
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Lemma 3.5.8. Let S1 and S2 be two sets in F where F ~I(U, po). Then with probability at least

1 - m- 1 , U \ (Si U S2)1 < 18 log m.

Proof. For an element e, Pr[e S1 u S2] = p= 9 log m. So, E[|U \ (S1 U S2 )] 9 log m. By Chernoff0 n
bound, Pr[U \ (S1 U S 2 )| > 18 log m] is at most e-9logm/ 3 < m- 3 . Thus with probability at least

1 - m- 1 , for any pair of sets in F, the number of element not covered by their union is at most

18 log m. F

Lemma 3.5.9. Let Si and S2 be two sets in F where F ~I(U,po). Then |S1 n S2 | > n/8 with

probability at least 1 - m- 1 .

Proof. For each element e, it is either covered by both S1, S2 , one of S 1, S2 or none of them. Since

PO < 1/2, the probability that an element is covered by both sets is greater than other cases, i.e.,
Pr [e E S1 n S2] > 1/4. Thus, E[IU\ (Si nS2 ) ] > n/4. By Chernoff bound, Pr[IU\ (S nS2 )1 < n/8]
is exponentially small. Thus with probability at least 1 - m- 1 , the intersection of any pairs of sets

in F is greater than n/8. E

Lemma 3.5.10. Suppose that F ~I-(U, po) and let e, e' be two elements in U. With probability at

least 1 - m- 1, the number of sets S E F such that e E S but e' S is at least m 9ogm

Proof. For each set S, Pr[e E S and e' S] = (1 - po)po > po/ 2 . This implies that the expected

number of S satisfying the condition for e and c' is at least m 9 log M and by Chernoff bound, the

probability that the number of sets containing e but not e' is less than m 91g is exponentially

small. Thus with probability at least 1 - m- 1 property (d) holds for any pair of elements in U. E

Lemma 3.5.11. Suppose that F ~I(U, po) and let S1, S2 and S be sets in F. With probability at

least 1 - n- 1 , I(S, nS2 ) \ Sj I 6/n log m.

Proof. For each element e, Pr[e E (Si n S2 ) \ 5] (1 - po) 2Po < po. This implies that the

expected size of (Si n S 2 ) \ S is less than /9n log m and by Chernoff bound, the probability that

I(Si nS2 ) \ SI > 6/n log m is exponentially small. Thus with probability at least 1 - m- 1 property
(e) holds for any sets Si, S 2 and S in F. El

Lemma 3.5.12. For each element, the number of sets that do not contain the element is at most

6m .n

Proof. For each element e, Prs[e S] = po. This implies that ES(I{S I e ( S}) is less than

m 910g m and by Chernoff bound, the probability that I{S I e S} > 2m 9log m is exponentially

small. Thus with probability at least 1 - m- 1 property (f) holds for any element e E U. E

3.5.1.2 Distribution D(I*) of Modified Instances I' Derived from 1*.

Fix a median instance 1*. We now show that we may perform O(logm) swap operations on 1* so

that the size of the minimum set cover in the modified instance becomes 2. Moreover, its incidence

matrix differs from that of 1* in O(log m) entries. Consequently, the number of probes to ELTOF

and SETOF that induce different answers from those of 1* is also at most O(logm).
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We define D(I*) as the distribution of instances I' generated from a median instance 1* by

genModified~nst(I*) given below in Figure 3-8 as follows. Assume that I* = (U, T). We select

two different sets S1 , S2 from T uniformly at random; we aim to turn these two sets into a set cover.

To do so, we swap out some of the elements in S2 and bring in the uncovered elements. For each

uncovered element e, we pick an element e' E S 2 that is also covered by Si. Next, consider the

candidate set that we may exchange its e with e' E S2 :

Definition 3.5.13 (Candidate set). For any pair of elements e, e', the candidate set of (e, e') are all

sets that contain e but not e'. The collection of candidate sets of (e, e') is denoted by Candidate(e, e').

Note that Candidate(e, e') 4 Candidate(e', e) (in fact, these two collections are disjoint).

genModifiedInst(I* = (U, F)):

.M +- 0
pick two different sets Si, S2 from F

uniformly at random
for each e E U \ (Si U S2) do

pick e' E (Si n S2) \ M uniformly at random

M - M U {e'}
Pick a random set S in Candidate(e, e')
swa p(e, e') between S, S2

Figure 3-8: The procedure of constructing a modified instance of 1*.

We choose a random set S from Candidate(e, e'), and swap e E S with e' E S2 so that S2 now

contains e. We repeatedly apply this process for all initially uncovered e so that eventually Si

and S2 form a set cover. We show that the proposed algorithm, genModifiedlnst, can indeed be

executed without getting stuck.

Lemma 3.5.14. The procedure genModifiedInst is well-defined under the precondition that the

input instance 1* is a median instance.

Proof. To carry out the algorithm, we must ensure that the number of the initially uncovered

elements is at most that of the elements covered by both Si and S2 . This follows from the properties

of median instances (Definition 3.5.5): JU \ (Si U S2 )1 < 18log m by property (b), and that the size

of the intersection of S, and S2 is greater than n/8 by property (c). That is, in our construction

there are sufficiently many possible choices for e' to be matched and swapped with each uncovered

element e. Moreover, by property (d) there are plenty of candidate sets S for performing swap(e, e')

with S2. D

3.5.1.3 Bounding the Probability of Modification.

Let D(I*) denote the distribution of instances generated by genModifiedInst(I*). If an algorithm

were to distinguish between 1* or I' ~ D(I*), it must find some cell in the ELTOF or SETOF tables

that would have been modified by genModifiedInst, to confirm that genModifiedInst is indeed

executed; otherwise it would make wrong decisions half of the time. We will show an additional
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property of this distribution: none of the entries of ELTOF and SETOF are significantly more
likely to be modified during the execution of genModifledlIst. Consequently, no algorithm may
strategically detect the difference between I* or I' with the desired probability, unless the number
of probes is asymptotically the reciprocal of the maximum probability of modification among any
cells.

Define PElt-Set : U x F -+ [0, 1] as the probability that an element is swapped by a set. More
precisely, for an element e C U and a set S C F, if e S in the median instance I*, then
PEt-Set(e, S) = 0; otherwise, it is equal to the probability that S swaps e. We note that these
probabilities are taken over I' D(I*) where I* is a fixed median instance. That is, as per
Figure 3-8, they correspond to the random choices of Si, S2 , the random matching M between
U \ (SI U S2) and Si n S2 , and their random choices of choosing each candidate set S. We bound
the values of PEIt-Set via the following lemma.

Lemma 3.5.15. For any e C U and S C F, PEjt-Set(e, S) < 4800logim where the probability is taken
- mn

over I' - D(I*).

Proof. Let Si, S2 denote the first two sets picked (uniformly at random) from F to construct a
modified instance of I*. For each element e and a set S such that e c S in the basic instance I*,

PEIt-Set(e, S) = Pr[S = S2 - Pr[e c Si n s2

- Pr[e matches to U \ (SI U S2 ) Ie e S nS2]

+ Pr[S {S, S 2}] -Pr[e E S \ (S1 U S2) I e E S]
-Pr[S swaps e with S2 I e E S \ ( U S2)].

where all probabilities are taken over I' D(I*). Next we bound each of the above six terms.
Since we choose the sets S1, S2 randomly, Pr[S = S 2] = 1/M. We bound the second term by 1.
For the third term, since we pick a matching uniformly at random among all possible (maximum)
matchings between U \ (SI U S2 ) and Si n S2 , by symmetry, the probability that a certain element
e c Si n S2 is in the matching is (by properties (b) and (c) of median instances),

IU \ ( u S2) < 18 logrm _ 144 log m
i1 nS21 n/8 n

We bound the fourth term by 1. To compute the fifth term, let de denote the number of sets in
F that do not contain e. By property (f) of median instances, the probability that e E S is in
S \ (SI U S2 ) given that S {S 1 , S2} is at most,

de(de - 1) 36m2 . l _ 721lg m

(m - 1)(m - 2) - M2 /2 n

Finally for the last term, note that by symmetry, each pair of matched elements ee' is picked by
genModifiedInst equiprobably. Thus, for any e C S \ (Si U S2 ), the probability that each element
e' E Si n S2 is matched to e is s . By properties (c)-(e) of median instances, the last term is

99



at most

S Pr [ee' EMJ- 1=|S 2)\3
e'e(sS 2 )\s Candidate(e, e S2) \ S I n S2 | Candidate(e, e')

1 1
< 6 /nlogmm

n/8 m'logm
4

64
m

Therefore,

1 144 log m 72 log m 64 4800log m
PElt-Set (e, S) - . 1 + 1* .

m n n m mn

3.5.1.4 Proof of Theorem 3.5.2.

Now we consider a median instance 1*, and its corresponding family of modified sets D(I*). To

prove the promised lower bound for randomized protocols distinguishing I* and I' - D(I*), we

apply Yao's principle and instead show that no deterministic algorithm A may determine whether

the input is 1* or I' - D(I*) with success probability at least 2/3 using r = o( " ) probes. Recall

that if A's probe-answer history ((qi, al),. .. , (qr, ar)) when executed on I' is the same as that of

I*, then A must unavoidably return a wrong decision for the probability mass corresponding to I'.
We bound the probability of this event as follows.

Lemma 3.5.16. Let Q be the set of probes made by A on I*. Let I' D(I*) where 1* is a given

median instance. Then the probability that A returns different outputs on 1* and I' is at most
4800 log m

Proof of Theorem 3.5.2. If A does not output correctly on I*, the probability of success of A is

less than 1/2; thus, we can assume that A returns the correct answer on 1*. This implies that A
returns an incorrect solution on the fraction of I' 1'(I*) for which A(I*) = A(I'). Now recall

that the distribution in which we apply Yao's principle consists of I* with probability 1/2, and

drawn uniformly at random from D(I*) also with probability 1/2. Then over this distribution, by

Lemma 3.5.16,

1
Pr[A suceeds] < I - Prr'~v(I*)[A(I*) = A(I')]

<I-1 1-4800 log m II
2 mn

I1 2400 logr mQI
2 mn

Thus, if the number of probes made by A is less than 144JUog m, then the probability that A returns

the correct answer over the input distribution is less than 2/3 and the proof is complete. E

100



3.5.2 Lower bound for large optimal value

Our construction of the median instance I* and its associated distribution D(I*) of modified in-

stances also leads to the lower bound of U('") for the problem of computing an approximate

solution to Set Cover. This lower bound matches the performance of our algorithm for large opti-

mal value k and shows that it is tight for some range of value k, albeit it only applies to sufficiently

small approximation factor a < 1.01.

Proof overview. We construct a distribution over compounds: a compound is a Set Cover instance

that consists of t = E(k) smaller instances I,, . ., It, where each of these t instances is either the

median instance 1* or a random modified instance drawn from D(I*). By our construction, a large

majority of our distribution is composed of compounds that contains at least 0.2t modified instances

If such that, any deterministic algorithm A must fail to distinguish Ii from I* when it is only allowed

to make a small number of probes. A deterministic A can safely cover these modified instances with

three sets, incurring a cost (sub-optimality) of 0.2t. Still, A may choose to cover such an 1i with

two sets to reduce its cost, but it then must err on a different compound where Ii is replaced with

I*. We track down the trade-off between the amount of cost that A saves on these compounds by

covering these Ii's with two sets, and the amount of error on other compounds its scheme incurs. A

is allowed a small probability 6 to make errors, which we then use to upper-bound the expected cost

that A may save, and conclude that A still incurs an expected cost of 0.1t overall. We apply Yao's

principle (for algorithms with errors) to obtain that randomized algorithms also incur an expected

cost of 0.05t, on compounds with optimal solution size k E [2t, 3t], yielding the impossibility result

for computing solutions with approximation factor a = k+O.It > 1.01 when given insufficient probes.

3.5.2.1 Overall Lower Bound Argument

Compounds. Consider the median instance I* and its associated distribution D(I*) of modified

instances for Set Cover with n elements and m sets, and let t = 0(k) be a positive integer parameter.

We define a compound 3 = 3(Ii, 12, . . ., It) as a set structure instance consisting of t median or

modified instances I1 12, . . .tI, forming a set structure (Ut, yt) of n' A nt elements and m' A mt

sets, in such a way that each instance 1i occupies separate elements and sets. Since the optimal

solution to each instance 1i is 3 if 1i = 1*, and 2 if I is any modified instance, the optimal solution

for the compound is 2t plus the number of occurrences of the median instance; this optimal objective

value is always 6(k).

Random distribution over compounds. Employing Yao's principle, we construct a distribution

0 of compounds 3(I1,I2,..., It): it will be applied against any deterministic algorithm A for

computing an approximate minimum set cover, which is allowed to err on at most a 6-fraction of

the compounds from the distribution (for some small constant 6 > 0). For each i E [t], we pick

1 = I* with probability c/ (m) where c > 2 is a sufficiently large constant. Otherwise, simply draw a

random modified instance I, ~ D(I*). We aim to show that, in expectation over 0, A must output

a solution that of size 6(t) more than the optimal set cover size of the given instance 3 D.

A frequently leaves many modified instances undetected. Consider an instance 3 containing
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at least 0.95t modified instances. These instances constitute at least a 0.99-fraction of 0: the

expected number of occurrences of the median instance in each compound is only c/ - t =

0(t/m 2 ), so by Markov's inequality, the probablity that there are more than 0.05t median instances

is at most 0(1/m2 ) < 0.01 for large m. We make use of the following useful lemma, whose proof

is deferred to Section 3.5.2.2. In what follow, we say that the algorithm "distinguishes" or "detects

the difference" between 1i and I* if it makes a probe that induces different answers, and thus may

deduce that one of Ii or I* cannot be the input instance. In particular, if I = I* then detecting

the difference between them would be impossible.

Lemma 3.5.17. Fix M C [t] and consider the distribution over compounds 3(I1,..., It) with 1i

D(I*) for i G M and I = I* for i V M. If A makes at most o( ' ) probes to 3, then it may detect

the differences between I* and at least 0.75t of the modified instances {Ii}iEM, with probability at

most 0.01.

We apply this lemma for any |MI > 0.95t (although the statement holds for any M, even

vacuously for IMI < 0.75t). Thus, for 0.99-0.99 > 0.98-fraction of 0, A fails to identify, for at least

0.95t-0.75t = 0.2t modified instances Ii in 3, whether it is a median instance or a modified instance.

Observe that the probe-answer history of A on such 3 would not change if we were to replace any

combination of these 0.2t modified instances by copies of I*. Consequently, if the algorithm were to

correctly cover 3 by using two sets for some of these 1, it must unavoidably err (return a non-cover)

on the compound where these Ii's are replaced by copies of the median instance.

Charging argument. We call a compound 3 tough if A does not err on 3, and A fails to detect

at least 0.2t modified instances; denote by Stough the conditional distribution of 0 restricted to

tough instances. For tough 3, let cost(3) denote the number of modified instances ]i that the

algorithm decides to cover with three sets. That is, for each tough compound 3, cost(3) measures

how far the solution returned by A is, from the optimal set cover size. Then, there are at least

0.2t - cost(3) modified instances Ii that A chooses to cover with only two sets despite not being able

to verify whether 1i = I* or not. Let Rj denote the set of the indices of these modified instances,
so |R:1 = 0.2t - cost(3). By doing so, A then errs on the replaced compound r(3, R3 ), denoting the

compound similar to 3, except that each modified instance Ii for i E R3 is replaced by *. In this

event, we say that the tough compound 3 charges the replaced compound r(3, Rj) via Rf. Recall

that the total error of A is 6: this quantity upper-bounds the total probability masses of charged

instances, which we will then manipulate to obtain a lower bound on EjZ[cost(3)].

Instances must share optimal solutions for R to charge the same replaced instance.

Observe that many tough instances may charge to the same replaced instance: we must handle these

duplicities. First, consider two tough instances 31 = 32 charing the same 3r = r(31 , R) = r(32 , R)

via the same R = R, = R2 . As 31 4 32 but r(3 1 , R) = r(32 , R), these tough instances differ on

some modified instances with indices in R. Nonetheless, the probe-answer histories of A operating

on 31 and 32 must be the same as their instances in R are both indistinguishable from * by the

deterministic A. Since A does not err on tough instances (by definition), both tough 3' and 32

must share the same optimal set cover on every instance in R. Consequently, for each fixed R, only

tough instances that have the same optimal solution for modified instances in R may charge the
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same replaced instance via R.

Charged instance is much heavier than charging instances combined. By our construction

of 3(Ii,..., It) drawn from D, Pr[Ij = 1*] = c/(') for the median instance. On the other hand,

i Pr[I= I= ] < (1 - c/(m)) - (1/(m)) < 1/(m) for modified instances I, . . ., Il sharing the same

optimal set cover, because they are all modified instances constructed to have the two sets chosen by

genModifiedlnst as their optimal set cover: each pair of sets is chosen uniformly with probability

1/("). Thus, the probability that I* is chosen is more than c times the total probability that any

1i is chosen. Generalizing this observation, we consider tough instances 31, 32, , 3Y charging the

same 3 r via R, and bound the difference in probabilities that 3 r and any 3i are drawn. For each

index in R, it is more than c times more likely for 0 to draw the median instance, rather than any

modified instances of a fixed optimal solution. Then, for the replaced compound 3r that A errs,

P(3 r) cLR~= p(33) (where p denotes the probability mass in D, not in tOUgh). In other words,
the probability mass of the replaced instance charged via R is always at least cIRI times the total

probability mass of the charging tough instances.

Bounding the expected cost using 6. In our charging argument by tough instances above, we

only bound the amount of charges on the replaced instances via a fixed R. As there are up to 2t

choices for R, we scale down the total amount charged to a replaced instance by a factor of 2t, so

that Etough j cIR31p(2)/2t lower bounds the total probability mass of the replaced instances that A
errs.

Let us first focus on the conditional distribution otough restricted to tough instances. Recall

that at least a (0.98 - 6)-fraction of the compounds in 0 are tough: A fails to detect differences

between 0.2t modified instances from the median instance with probability 0.98, and among these

compounds, A may err on at most a 6-fraction. So in the conditional distribution Stough over tough

instances, the individual probability mass is scaled-up to ptough(3) < . Thus,
0.98-6 hs

Etough 3 cIR3|pJ) Ztough 3 C IR (0.98 - 6)ptough( 3 ) (0.98 - 6 )Ey oaugh [cIR3I]
2t -2t 2t

As the probability mass above cannot exceed the total allowed error 6, we have

6 . 2t > Ejtough c Rj] > E, 0 tough Co.2t-cost(3) > c0 .2 t-Etough [cost(3)]
0.98- 6 - -- -

where Jensen's inequality is applied in the last step above. So,

t + log 0.86 ( . 1 tlog 96>
Ejtough [cost(3)] > 0.2t - 0.log c.0.- =t 10.98- > 0.11t,

log C logc log c

for sufficiently large c (and m) when choosing 6 = 0.02.

We now return to the expected cost over the entire distribution 3. For simplicity, define cost(3)
0 for any non-tough 3. This yields E3 ,z[cost(3)] > (0.98 -6)E_ough [COSt(3)] > (0.98 -6) -0.11t >
0.1t, establishing the expected cost of any deterministic A with probability of error at most 0.02

over D.
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Establishing the lower bound for randomized algorithms. Lastly, we apply Yao's principle6

to obtain that, for any randomized algorithm with error probability 6/2 = 0.01, its expected cost

under the worst input is at least 1 -0.1t = 0.05t. Recall now that our cost here lower-bounds the sub-

optimality of the computed set cover (that is, the algorithm uses at least cost more sets to cover the

elements than the optimal solution does). Since our input instances have optimal solution k E [2t, 3t]

and the randomized algorithm returns a solution with cost at least 0.05t in expectation, it achieves

an approximation factor of no better than a = k+0.05t > 1.01 with o( ) probes. Theorem 3.5.4

then follows, noting the substitution of our problem size: mt ('/t)(rj/t)t
1gm log(mn/t) k'log m'

3.5.2.2 Proof of Lemma 3.5.17

First, we recall the following result from Lemma 3.5.16 for distinguishing between I* and a random

F ~ D(I*).

Corollary 3.5.18. Let q be the number of probes made by A on i - D(I*) over n elements and

m sets, where 1* is a median instance. Then the probability that A detects a difference between Ii

and I* in one of its probes is at most 4800g 10gm
mn

Marbles and urns. Fix a compound 3(II,..t.I). Let s A 48Omgm' and then consider the

following, entirely different, scenario. Suppose that we have t urns, where each urn contains s

marbles. In the ith urn, in case Is is a modified instance, we put in this urn one red marble and

s - 1 white marbles; otherwise if Ii = 1*, we put in s white marbles. Observe that the probability

of obtaining a red marble by drawing q marbles from a single urn without replacement is exactly

q/s (for q < s). Now, we will relate the probability of drawing red marbles to the probability of

successfully distinguishing instances. We emphasize that we are only comparing the probabilities

of events for the sake of analysis, and we do not imply or suggest any direct analogy between the

events themselves.

Corollary 3.5.18 above bounds the probability that the algorithm successfully distinguishes a

modified instance Ii from I* with 4800qlog m = q/s. Then, the probability of distinguishing betweenmn

I, and 1* using q probes, is bounded from above by the probability of obtaining a red marble after

drawing q marbles from an urn. Consequently, the probability that the algorithm distinguishes 3t/4

instances is bounded from above by the probability of drawing the red marbles from at least 3t/4

urns. Hence, to prove that the event of Lemma 3.5.17 occurs with probability at most 0.01, it is

sufficient to upper-bound the probability that an algorithm obtains 3t/4 red marbles by 0.01.

Consider an instance of t urns; for each urn i c [t] corresponding to a modified instance Ij,

exactly one of its s marbles is red. An algorithm may draw marbles from each urn, one by one

without replacement, for potentially up to s times. By the principle of deferred decisions, the red

marble is equally likely to appear in any of these s draws, independent of the events for other urns.

Thus, we can create a tuple of t random variables T = (TI,... , Tt) such that for each i E [t], T
is chosen uniformly at random from {1,..., s}. The variable T represents the number of draws

required to obtain the red marble in the ith urn; that is, only the T th draw from the ith urn finds

6 Here we use the Monte Carlo version where the algorithm may err, and use cost instead of the time
complexity as our measure of performance. See, e.g., Proposition 2.6 in [MR95] and the description therein.
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the red marble from that urn. In case I is a median instance, we simply set T = s + 1 indicating

that the algorithm never detects any difference as 1i and 1* are the same instance.

We now show the following two lemmas in order to bound the number of red marbles the

algorithm may encounter throughout its execution.

Lemma 3.5.19. Let b > 3 be a fixed constant and define high ={ I T > }. If t > 14b, then

|high| >_ (1 - ')t with probability at least 0.99.

Proof. Let Tow = {1,..., t} \ Thigh. Notice that for the ith urn, Pr[i C '71] < - independently of

other urns, and thus I7Ywl is stochastically dominated by B(t, 1), the binomial distribution with t

trials and success probability -. Applying Chernoff bound, we obtain

2t]~ e t
Pr7 7wo > - e 3b < 0.01.

Hence, Thigh I > t - (1 - ()t with probability at least 0.99, as desired. D

Lemma 3.5.20. If the total number of draws made by the algorithm is less than (1 - then

with probability at least 0.99, the algorithm will not obtain red marbles from at least t urns.

Proof. If the total number of such draws is less than (1 - j) , then the number of draws from at

least urns is less than 1 each. Assume the condition of Lemma 3.5.19: for at least (1 - urns,
Ti > j. That is, the algorithm will not encounter a red marble if it makes less than 1 draws from

such an urn. Then, there are at least t urns with T > 1 from which the algorithm makes less than

draws, and thus does not obtain a red marble. Overall this event holds with probability at least

0.99 due to Lemma 3.5.19. D

We substitute b = 4 and assume sufficiently large t. Suppose that the deterministic algorithm

makes less than (1 -!)t = - probes, then for a fraction of 0.99 of all possible tuples T, there

are t/4 instances I that the algorithm fails to detect their differences from 1*: the probability of

this event is lower-bounded by that of the event where the red marbles from those corresponding

urns i are not drawn. Therefore, the probability that the algorithm makes probes that detect

differences between 1* and more than 3t/4 instances Ii's is bounded by 0.01, concluding our proof

of Lemma 3.5.17.

3.6 Generalized Lower Bounds for the Set Cover Problem

In this section we generalize the approach of Section 3.5 and prove our main lower bound result

(Theorem 3.5.1) for the number of probes required for approximating with factor a the size of an

optimal solution to the Set Cover problem, where the input instance contains m sets, n elements,
and a minimum set cover of size k. The structure of our proof is largely the same as the simplified

case, but the definitions and the details of our analysis will be more complicated. The size of the

minimum set cover of the median instance will instead be at least ak + 1, and genModifiedInst

reduces this down to k. We now aim to prove the following statement which implies the lower bound

in Theorem 3.5.1.
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Theorem 3.6.1. Let k be the size of an optimal solution of 1* such that 1 < a < logn and

2 < k < (16)gm) 1-. Any algorithm that distinguishes whether the input instance is 1* or

belongs to D(I*) with probability of success at least 2/3 requires Q(m(!!)
1 /( 2 ")) probes.

3.6.1 Construction of the median instance 1*

Let F be a collection of m sets such that independently for each set-element pair (S, e), S contains
8(ak2) lg m1/(ak)

e with probability 1 - po, where we modify the probability to po = ( 8nk+)og . We start

by proving some inequalities involving po that will be useful later on, which hold for any k in the

assumed range.

Lemma 3.6.2. For 2 < k < (164gm +1 we have that

(a) po pok/

(b) pk/4 < 1/2,

(c) ( 8ak+2) log r 2'a
(1-po)

2 - n

Proof. Recall as well that a > 1. In the given range of k, we have k 4 " < 6<knogm16kom- 8(cak+2)logm,

because ka > 2. Thus

PO 8(ak + 2) log m k 1 ak _4/k

4n in

Next, rewrite k 4 /k - e k and observe that 4 < j < 1.5. Since e- < 1 - K for any x < 1.5,
___k _ k/4 2ln

1_ 1k / n < 21 kwe have po e k < 1 k Further, PO < e- "A =1/k. Hence po +1- + A T 1,
implying the first statement.

The second statement easily follows as p 1/k < 1/2 since k > 2. For the last statement,

we make use of the first statement:

PO < PO k/2 8(ak + 2) log mc

(1 - po) 2 - (pk/4)2 0 n

which completes the proof of the lemma. E

Next, we give the new, generalized definition of median instances.

Definition 3.6.3 (Median instance). An instance of Set Cover, I = (LI, F), is a median instance

if it satisfies all the following properties.

(a) No ak sets cover all the elements. (The size of its minimum set cover is greater than ak.)
(b) The number of uncovered elements of the union of any k sets is at most 2np .

(c) For any pair of elements e, e', the number of sets S E F s.t. e E S but e' S is at least

(1 - po)pom/2.

(d) For any collection of k sets S1, , Sk, ISk n (S1 U .. . U Sk1)I > (1 - po)(1 -- pok )n/2.

(e) For any collection of k +1 sets S, S1,. , Sk, |(Skn(S1 u.. -USk_1))\S| < 2po(1-po)(1-pk-1)n.
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(f) For each element, the number of sets that do not contain the element is at most (1 + 1I)pom.

Lemma 3.6.4. For k < min{ 7m' (16 i)4+ }, there exists a median instance I* satisfying

all the median properties from Definition 3.6.3. In fact, most of the instances constructed by the

described randomized procedure satisfy the median properties.

Proof. The lemma follows from applying the union bound on the results of Lemmas 3.6.5-3.6.10. D

The proofs of the Lemmas 3.6.5-3.6.10 follow from standard applications of concentration

bounds. We include them here for the sake of completeness.

Lemma 3.6.5. With probability at least 1 - m-2 over ~(U, po), the size of the minimum set

cover of the instance (T, U) is at least ak + 1.

Proof. The probability that an element e C U is covered by a specific collection of ak sets in F
is at most 1 - pa=1 - 8(ak+2) logm. Thus, the probability that the union of the ak sets covers

all elements in U is at most (1- 8(ak+2)1ogm)n < m- 8(ak+2 ). Applying the union bound, with

probability at least 1 - m- 2 the size of an optimal set cover is at least ak + 1. E

Lemma 3.6.6. With probability at least 1 - m- 2 over F I E(U, po), any collection of k sets has at

most 2npo uncovered elements.

Proof. Let Si, - - - , Sk be a collection of k sets from F. For each element e E U, the probability that

e is not covered by the union of the k sets is pk. Thus,

E[U \ (S1 U ... USk) =pon >pkn 8(ak+2)log m.

By Chernoff bound,

Pr [U \ (Si U ... U Sk) 2 pOn] < e- -(k+ 2 )logm 3 <-

Thus with probability at least 1 - m- 2, for any collection of k sets in F, the nnumber of uncovered

elements by the union of the sets is at most 2pn. D

Lemma 3.6.7. Suppose that F ~ I(U, po) and let e, e' be two elements in U. Given
/ 1

k < (16a )gm 4"1 , with probability at least 1 - m-2, the number of sets S C F such that e E S
but e' $ S is at least mpo(1 - po)/ 2 .

Proof. For each set S, Pr[e C S and e' V S] = (1 - po)po. This implies that the expected number

of such sets S satisfying the condition for e and e' is

po(1- po)m > po . pk/ 4 m > Pakn = 8(ak + 2) logm

by Lemma 3.6.2 and m > n. By Chernoff bound, the probability that the number of sets containing

e but not e' is less than mpo(1 - po)/ 2 is at most

e PO(PO)- -(cek+2)logm <m-ak-2.
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Thus with probability at least 1 - m- 2 property (c) holds for any pair of elements in U. E

Lemma 3.6.8. Suppose that F - I(U,po) and let SI,. , Sk be k different sets in F. Given
1

k < ( 16a1ogm) "+, with probability at least 1-m- 2, ISkO(su... 1USk1)I (po)(1_Pk-1)n/2.

Proof. For each element e, Pr[e E Sk n (SI U U Sk-1)= (1 - po)(1 - p 1 ). This implies that

the expected size of Sk n (Si U - U Sk_1) is

(1 -po)(i -p- 1 )n >pk/4 . k/4 . n -Pkn = 8(ak + 2) log m.

by Lemma 3.6.2. By Chernoff bound, the probability that ISk n (Si U ... U Sk-1)I (1 -po)(I -

p0 k-1)n/2 is at most

8 (<p-o) e- (ak+2) log m < M -ak-2.

Thus with probability at least 1 - m- 2 property (d) holds for any sets - , Sk in F. E

Lemma 3.6.9. Suppose that F ~ I(U,po) and let S1,. ,Sk and S be k + 1 different sets in

F. Given k < n 4gm , with probability at least 1 - m 2  ( .. O U

2po(i - po)(i - p-)n.

Proof. For each element e, Pr[e E (Sk n (S1 U ... U Sk-1)) \ 5] Po(I - Po)( - pk- 1). Then,

IE((Sk n (Si U ... U Sk-1)) \ SI) = po(I - po)(i - p-I )n

PO k/4 k/4
0 0

= 8(ak + 2) log m

by Lemma 3.6.2. By Chernoff bound, the probability that I(Sk n (Si U ... U Sk-1)) \ SI 2po(i -

po)(1 - pk )n is

k-1
PO(l-PO)(1-P 0 )n -ck2 2~-

e 3 < e-2(ak+2) log m < m-2ak-4

Thus with probability at least 1 - m- 2 property (e) holds for any sets SI, - , Sk and S in F. E

Lemma 3.6.10. Given that k 6aig) 4 a+l , for each element, the number of sets that do not

contain the element is at most (1 + k)pom.

Proof. First, note that k < ( 1 6 g4c1 - 27m as m > n and a > 1.

Next, for each element e, Prs-T[e S] = po. This implies that Es(I{S I e S}) = pom. By
- npg

Chernoff bound, the probability that I{S Ie S}j I (1+)pom is at most e 3k2 . Now if k > log n,

then po > 1/e and thus this probability would be at most exp(-) r- 3 for any k < 27nm-
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Otherwise, we have that the above probability is at most exp(- - ak) < exp(- -1/k) < m-

given m n and sufficiently large n. Thus with probability at least 1 - m- 2 property (f) holds for

any element e E U.

3.6.2 Distribution D(I*) of the modified instances derived from I*

Fix a median instance I*. We now show that we may perform O(n1-1/aki/Q) swap operations

on I* so that the size of the minimum set cover in the modified instance becomes k. So, the

number of probes to ELTOF and SETOF that induce different answers from those of I* is at most

O(ni-1/ki/a). We define D(I*) as the distribution of instances I' that is generated from a median

instance I* by genModifiedlnst(I*) given below in Figure 3-9. The main difference from the

simplified version are that we now select k different sets to turn them into a set cover, and the

swaps may only occur between Sk and the candidates.

genModifiedInst(I* - (U, F)):

M <- 0
pick k different sets SI,--- Sk from T

uniformly at random
for each e E U \ (Si U - U Sk) do

pick e' E (Sk O (S1 U ... U Sk-1)) \ M
uniformly at random

M <- M U {ee'}
pick a random set S in Candidate(e, e')
swap(e, e') between S, Sk

Figure 3-9: The procedure of constructing a modified instance of I*.

Lemma 3.6.11. The procedure genModifiedInst is well-defined under the precondition that the

input instance I* is a median instance.

Proof. To carry out the algorithm, we must ensure that the number of the initially uncovered

elements is at most that of the elements covered by both Sk and some other set from SI, ... , Sk_1.

Since I* is a median instance, by properties (b) and (d) from Definition 3.6.3, these values satisfy

JU \ (Si U - - - U Sk)I <; 2pkn and ISk f (Si U ... U Sk_) 1 (1 - po)(1 - p-)i)n/2, respectively. By
Lemma 3.6.2, pO' _ 1/2. Using this and Lemma 3.6.2 again,

(1 - po)(i - pk 1 )n/2 P n/2 o p4/2n/2 > 2pkn.

That is, in our construction there are sufficiently many possible choices for e' to be matched and

swapped with each uncovered element e. Moreover, since I* is a median instance, ICandidate(e, e')I >

(1 - po)pom/2 (by property (c)), and there are plenty of candidates for each swap. E

3.6.2.1 Bounding the Probability of Modification

Similarly to the simplified case, define PEjt-Set : U x F - [0, 1] as the probability that an element

is swapped by a set, and upper bound it via the following lemma.

109



Lemma 3.6.12. For any e E U and S E F, PElt-set(e, S) < 64pk where the probability is taken
-(1-po)

2 M

over the random choices of I' - D(I*).

Proof. Let SI, ... , Sk denote the first k sets picked (uniformly at random) from F to construct a

modified instance of I*. For each element e and a set S such that e E S in the basic instance I*,

PElt-Set(e, 5) = Pr = Sk -Pr[e E Ui[k-1]Si e G Sk]

- Pr[e matches to U \ (UEk] S) e E Sk n (UiE[k-1] S)]

+ Pr[S {S1, .. . , Sk}] - Pr[e G S \ (Uie[kSi) e E S]

- Pr[S swaps e with Sk I e E S \ (SI U .- U Sk)],

where all probabilities are taken over I' - D(I*). Next we bound each of the above six terms.

Clearly, since we choose the sets Si, -- - , Sk randomly, Pr[S = Sk] = 1/m. We bound the second

term by 1. Next, by properties (b) and (d) of median instances, the third term is at most

U \ (Uie[k] Si)j 2pkn 4p

ISk n (UiE[k_1]Si)I - (1 - po)(i - pk-l2 - (1 -

We bound the fourth term by 1. Let de denote the number of sets in F that do not contain e. Using

property (f) of median instances, the fifth term is at most

de(de - 1) ..-. (de - k + 1) de k (1 + 1/kk)pom < e2 k

(m - 1)(m - 2) ... (m -k) - -m(I -1) -(1- ) - 0

Finally for the last term, note that by symmetry, each pair of matched elements ee' is picked by

genModifiedInst equiprobably. Thus, for any e E S \ (Si U -.. U Sk), the probability that each

element e' E Sk n (A1 U ... U Sk-i) is matched to e is ISkn(suuSk-1 . By properties (c)-(e) of
median instances, the last term is at most

Pr [ee' E M] - Pr [(S, Sk) swaps (e, e')]
e' (Skn((iE)k-)Si\)\S

nSk A (UiE[k_1 Si)I ICandidate(e, e')I

< 2po(1 - Po) (I - pk- 1)n 1 1
(1 - po)(1 - po- 1 )n/2 po(l - po)m/ 2

8
- (1 - po)m'
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PEt-Set(e, S) <
1 4p2 8
m1 po)+ ( - po)m

4pk 6opk0 + 0
(1 - po) 2  (1 _ po)m

64pk

(1 -po) 2m

DI

3.6.3 Proof of Theorem 3.6.1

The remaining part of our proof follows that of the simplified version almost exactly.

Proof of Theorem 3.6.1. Applying the same argument as that of Lemma 3.5.16, we derive that the

probability that A returns different outputs on I* and I' is at most

IQI
Pr([A(I*) 7 A(I')] < Pr [a nsj (qt) 7 a nsp (qt)]

t= 1

IQI
< ) PElt-Set(e(qt), S(qt))

t=1

< 64p Q
m(1 - pO)2

via the result of Lemma 3.6.12. Then, over the distribution in which we applied Yao's lemma, we

have

Pr[A succeeds] <
1
2 PrI/~D(I*)[A(I*) = A(I')]

1 (
<---2l

64pk
- QI

m(1 -po) 2

I 32p Q
-+ 0
2 m(1 - po) 2

1 32 (8(ka + 2) log m
2 m n

1
IQI

where the last inequality follows from Lemma 3.6.2. Thus, if the number of probes made by A is

less than ( (k+_) logm)1/(2), then the probability that A returns the correct answer over the

input distribution is less than 2/3 and the proof is complete. E
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Chapter 4

Fractional Set Cover

4.1 Overview of Fractional Set Cover in the Streaming Model

Recall that in the Set Cover problem, the goal is to find the minimum size set cover of U, i.e.,
a collection of sets in T whose union is U: the input consists of a set (universe) of n elements

U = {e1, - - - , en} and a collection of m sets T = {S,, - - - , Sm}. The LP relaxation of Set Cover

(called SetCover-LP) is also well-studied. It is a continuous relaxation of the problem where each
set S E F can be selected "fractionally", i.e., assigned a number xs from [0, 1], such that for each
element e its "fractional coverage" Es:ees xs is at least 1, and the sum ES xs is minimized.

A natural ln n-approximation greedy algorithm of Set Cover, which in each iteration picks the
best remaining set, is widely used and known to be the best possible under P $ NP [LY94, Fei98,
RS97, AMS06, Mos15, DS14]. However, the greedy algorithm is sequential in nature and does not
perform efficiently in the standard models developed for massive data analysis; in particular, in
the streaming model. In streaming Set Cover [SG09], the ground set U is stored in the memory,
the sets S1, -- - , Sm are stored consecutively in a read-only repository and the algorithm can only
access the sets by performing sequential scans (or passes) over the repository. Moreover, the amount
of (read-write) memory available to the algorithm is much smaller than the input size (which can
be as large as mn). The objective is to design a space-efficient algorithm that returns a (nearly)-
optimal feasible cover of U after performing only a few passes over the data. Streaming Set Cover
has witnessed a lot of developments in recent years, and tight upper and lower bounds are known,
in both low space [ER16, CW16] and low approximation [DIMV14, HIMV16, AKL16, BEM17, Ass17]
regimes.

Despite the above developments, the results for the fractional variant of the problem are still
unsatisfactory. To the best of our knowledge, it is not known whether there exists an efficient and
accurate algorithm for this problem that uses only a logarithmic (or even a poly logarithmic) number

of passes. This state of affairs is perhaps surprising, given the many recent developments on fast LP
solvers [KY14, Youl4, LS14, A015b, AOl5a, WRM16]. To the best of our knowledge, the only prior
results on streaming Packing/Covering LPs were presented in paper [AG131, which studied the LP

relaxation of Maximum Matching.
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4.1.1 Our results

In this work, we present the first (1 + )-approximation algorithm for the fractional Set Cover in the

streaming model with constant number of passes. Our algorithm performs p passes over the data

stream and uses 0(mno0 pe) + n) memory space to return a (1+ E) approximate solution of the LP

relaxation of SetCover for positive parameter e < 1/2.

We emphasize that similarly to the previous work on variants of Set Cover in streaming setting,
our result also holds for the edge arrival stream in which the pair of (Si, ej) (edges) are stored in

the read-only repository and all elements of a set are not necessarily stored consecutively.

4.1.2 Related work

Set Cover Problem. The Set Cover problem was first studied in the streaming model in [SG09],
which presented an 0(log n)-approximation algorithm in 0(log n) passes and using 0(n) space.

This approximation factor and the number of passes can be improved to 0(log n) by adapting the

greedy algorithm thresholding idea presented in [CKW1O] . In the low space regime (O(n) space),
Emek and Rosen [ER16] designed a deterministic single pass algorithm that achieves an O(Fn)-

approximation. This is provably the best guarantee that one can hope for in a single pass even

considering randomized algorithms. Later Chakrabarti and Wirth [CW16] generalized this result

and provided a tight trade-off bounds for Set Cover in multiple passes. More precisely, they gave an

0(pn/(P+1))-approximate algorithm in p-passes using 6(n) space and proved that this is the best

possible approximation ratio up to a factor of poly(p) in p passes and 0(n) space.

A different line of work started by Demaine et al. [DIMV14] focused on designing a "low" ap-

proximation algorithm (between E(1) and 9(log n)) in the smallest possible amount of space. In

contrast to the results in the 0(n) space regime, [DIMV14] showed that randomness is necessary:

any constant pass deterministic algorithm requires Q(mn) space to achieve constant approximation

guarantee. Further, they provided a Q(4P log n)-approximation algorithm that makes 0(4P) passes

and uses O(mn /P + n). Later Har-Peled et al. [HIMV16] improved the algorithm to a 2p-pass

O(p log n)-approximation with memory space 0(mnl/P + n) 1 . The result was further improved

by Bateni et al. where they designed a p-pass algorithm that returns a (1 + e) log n-approximate

solution using mne(l/P) memory [BEM17].

As for the lower bounds, Assadi et al. [AKL16] presented a lower bound of Q(mn/a) memory

for any single pass streaming algorithm that computes a a-approxime solution. For the problem

of estimating the size of an optimal solution they prove Q(mn/a2 ) memory lower bound. For

both settings, they complement the results with matching tight upper bounds. Very recently,
Assadi [Assl7] proved a lower bound for streaming algorithms with multiple passes which is tight

up to polylog factors: any a-approximation algorithm for Set Cover requires Q(mnl/a) space, even

if it is allowed polylog(n) passes over the stream, and even if the sets are arriving in a random order

in the stream. Further, [Ass17] provided the matching upper bound: a (2a + 1)-pass algorithm

that computes a (a + E)-approximate solution in O(M'/a + L) memory (assuming exponential

'In streaming model, space complexity is of interest and one can assume exponentital computation power.
In this case the algorithms of [DIMV 14, HIMV 16] save a factor of log n in the approximation ratio.
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computational resource).

Max Cover Problem. The first result on streaming Max k-Cover showed how to compute a (1/4)-

approximate solution in one pass using O(kn) space [SG09]. It was improved by Badanidiyuru

et al. [BMKK14] to a (1/2 - E)-approximation algorithm that requires O(n/e) space. Moreover,
their algorithm works for a more general problem of Submodular Maximization with cardinality

constraints. This result was later generalized for the problem of non-monotone submodular maxi-

mization under constraints beyond cardinality [CGQ15]. Recently, McGregor and Vu [MV17] and

Bateni et al. [BEM17] independently obtained single pass (1- 1/e -e)-approximation with O(m/E 2)
space. On the lower bound side, [MV17] showed a lower bound of U(m) for constant pass algo-

rithm whose approximation is better than (1 - 1/e). Moreover, [Ass17] proved that any streaming

(1 - E)-approximation algorithm of Max k-Cover in polylog(n) passes requires Q(m/E2 ) space even

on random order streams and the case k = 0(1). This bound is also complemented by the O(rmk/E2 )
and O(m/E3 ) algorithms of [BEM17, MV17]. For more detailed survey of the results on streaming

Max k-Cover refer to [BEM17, MV17, Ass17].

Covering/Packing LPs. The study of LPs in streaming model was first discussed in the work of

Ahn and Guha [AG13] where they used multiplicative weights update (MWU) based techniques to

solve the LP relaxation of Maximum (Weighted) Matching problem. They used the fact that MWU

returns a near optimal fractional solution with small size support: first they solve the fractional

matching problem, then solve the actual matching only considering the edges in the support of the

returned fractional solution.

Our algorithm is also based on the MWU method, which is one of the main key techniques

in designing fast approximation algorithms for Covering and Packing LPs [PST95, You95, GK07,
AHK12]. We note that the MWU method has been previously studied in the context of streaming

and distributed algorithms, leading to efficient algorithms for a wide range of graph optimization

problems AG13,BGM14,AG15].
For a related problem, covering integer LP (covering ILP), Assadi et al. [AKL16] designed a one-

pass streaming algorithm that estimates the optimal solution of {min c T x I ATx > b, x C {0, 1}}
within a factor of a using ( . bmax +m+n bmax) where bmax denotes the largest entry of b. In

this problem, they assume that columns of A, constriants, are given one by one in the stream.

In a different regime, [DKM05] studied approximating the feasibility LP in streaming model

with additive approximation. Their algorithm performs two passes and is most efficient when the

input is dense.

4.1.3 Our techniques

Preprocessing. Let k denote the value of the optimal solution. The algorithm starts by picking a

uniform fractional vector (each entry of value 0(h)) which covers all frequently occurring elements

(those appearing in Q(g) sets), and updates the uncovered elements in one pass. This step con-

siderably reduces the memory usage as the uncovered elements have now lower occurrence (roughly

'). Note that we do not need to assume the knowledge of the correct value k: in parallel we try

all powers of (1 + E), denoting our guess by f.
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Multiplicative Weight Update. To cover the remaining elements, we employ the MWU frame-

work and show how to implement it in the streaming setting. In each iteration of MWU, we have

a probability distribution p corresponding to the constraints (elements) and we need to satisfy the

average covering constraint. More precisely, we need an oracle that assigns values to xs for each

set S so that ES psxs > 1 subject to lxii1 < f, where ps is the sum of probabilities of the elements

in the set S. Then, the algorithm needs to update p according to the amount each element has

been covered by the oracle's solution. The simple greedy realization of the oracle can be imple-

mented in the streaming setting efficiently by computing all ps while reading the stream in one

pass, then choosing the heaviest set (i.e., the set with largest ps) and setting its xs to e. This

approach works, except that the number of rounds T required by the MWU framework is large. In

fact, T = Q(~ 2  ), where 0 is the width parameter (the maximum amount an oracle solution may

over-cover an element), which is 6(f) in this naive realization. Next, we show how to decrease T in

two steps.

Step 1. A first hope would be that there is a more efficient implementation of the oracle which

gives a better width parameter. Nonetheless, no matter how the oracle is implemented, if all sets

in T contain a fixed element e, then the width is inevitably Q(t). This observation implies that we

need to work with a different set system that has small width, but at the same time, it has the same

objective value as of the optimal solution. Consequently, we consider the extended set system where

we replace F with all subsets of the sets in F. This extended system preserves the optimality, and

under this system we may avoid over-covering elements and obtain T = O(log n) (for constant E).
In order to turn a solution in our set system into a solution in the extended set system with small

width, we need to remove the repeated elements from the sets in the solution so that every covered

element appears exactly once, and thereby getting constant width. However, as a side effect, this

reduces the total weight of the solution (EsZ,.1 psxs), and thus the average covering constraint

might not be satisfied anymore. In fact, we need to come up with a guarantee that, on one hand, is

preserved under the pruning step, and on the other hand, implies that the solution has large enough

total weight

Therefore, to fulfill the average constraint under the pruning step, the oracle must instead solve

the maximum coverage problem: given a budget, choose sets to cover the largest (fractional) amount

of elements. We first show that this problem can be solved approximately via the MWU framework

using the simple oracle that picks the heaviest set, but this MWU algorithm still requires T passes

over the data. To improve the number of passes, we perform element sampling and apply the MWU

algorithm to find an approximate maximum coverage of a small number of sampled elements, whose

subproblem can be stored in memory. Fortunately, while the number of fractional solutions to

maximum coverage is unbounded, by exploiting the structure of the solutions returned by the MWU

method, we can limit the number of plausible solutions of this oracle and approximately solve the

average constraint, thereby reducing the space usage to 0(m) for a O(on )-pass algorithm.

Step 2. To further reduce the number of required passes, we observe that the weights of the

constraints change slowly. Thus, in a single pass, we can sample the elements for multiple rounds in

advance, and then perform rejection (sub-)sampling to obtain an unbiased set of samples for each

subsequent round. This will lead to a streaming algorithm with p passes and mnO(1/P) space.

116



Extension. We also extend our result to handle general covering LPs. More specifically, in the

LP relaxation of Set Cover, maximize cTx subject to Ax > b and x > 0, A has entries from {0, 1}
whereas entries of b and c are all ones. If the non-zero entries instead belong to a range [1, M], we

increase the number of sampled elements by poly(M) to handle discrepancies between coefficients,
leading to a poly(M)-multiplicative overhead in the space usage.

4.2 MWU Framework for Fractional Set Cover Streaming Algo-
rithm

In this section, we present a basic streaming algorithm that computes a (1 +e)-approximate solution

of the LP-relaxation of Set Cover for any E > 0 via the MWU framework. We will, in the next

section, improve it into an efficient algorithm that achieves the claimed O(p) passes and O(mrtl/P)

space complexity.

SetCover-LP ((Input: U, F))

minimize Y S
SEF

subject to E S > 1 Ve E U
S:eES

XS > 0 VS G F

Figure 4-1: LP relaxation of Set Cover.

Let U and F be the ground set of elements and the collection of sets, respectively, and recall

that IUI n and IFI = m. Let x E R' be a vector indexed by the sets in F, where xs denotes the

value assigned to the set S. Our goal is to compute an approximate solution to the LP in Figure 4-1.

Throughout the analysis we assume E < 1/2, and ignore the case where some element never appears

in any set, as it is easy to detect in a single pass that no cover is valid. For ease of reading, we write

O and e to hide polylog(m, n, }) factors.

Outline of the algorithm. Let k denote the optimal objective value, and 0 < e < 1/2 be a

parameter. The outline of the algorithm is shown in fracSetCover (Figure 4-2). This algorithm

makes calls to the subroutine feasibilityTest, that given a parameter f, with high probability,
either returns a solution of objective value at most (1 + E/3)f, or detects that the optimal objective

value exceeds f. Consequently, we may search for the right value of f by considering all values in

{(1 + E/3)i 1 0 < i < log1 +,/ 3 n}. As for some value of f it holds that k < f < k(1 + E/3), we obtain
a solution of size (1 + e/3)f < (1 + E/3)(1 + e/3)k < (1 + e)k which gives an approximation factor

(1 + e). This whole process of searching for k increases the space complexity of the algorithm by at

most a multiplicative factor of log1+,/ 3 n ~ 3log n

The feasibilityTest subroutine employs the multiplicative weights update method (MWU)

which is described next.
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fracSetCover(E):

> Finds a feasible (1 ,)-approximate solution in O(hoW) iterations
for f E {(1 + E/3)i 10 < i < logl+,/ 3 n} do in parallel: xe <- feasibilityTest(, E/3)

return xe* where * +- min{C : xt is not INFEASIBLE}

Figure 4-2: fracSetCover returns a (1 + E)-approximate solution of SetCover-LP, where fea-
sibilityTest is an algorithm that returns a solution of objective value at most (1 + E/3)f when
i > k.

4.2.1 Preliminaries of the MWU method for solving covering LPs

In the following, we describe the MWU framework. The claims presented here are standard results

of the MWU method. For more details, see e.g. Section 3 of [AHK12]. Note that we introduce the

general LP notation as it simplifies the presentation later on.

Let Ax > b be a set of linear constraints, and let P {x E R' : x > 0} be the polytope of the

non-negative orthant. For a given error parameter 0 < 3 < 1, we would like to solve an approximate

version of the feasibility problem by doing one of the following:

" Compute x E P such that Aik - bi > - for every constraint i.

" Correctly report that the system Ax > b has no solution in P.

The MWU method solves this problem assuming the existence of the following oracle that takes a

distribution p over the constraints and finds a solution x that satisfies the constraints on average

over p.

Definition 4.2.1. Let > > 1 be a width parameter and 0 < 3 < 1 be an error parameter. A

(1, q)-bounded (/3)-approximate oracle is an algorithm that takes as input a distribution p and

does one of the following:

" Returns a solution R G P satisfying

- pTAR > pTb - 0/3, and

- Aik - bi E [-1, 0] for every constraint i.

" Correctly reports that the inequality pT Ax > pT b has no solution in P.

The MWU algorithm for solving covering LPs involves T rounds. It maintains the (non-negative)

weight of each constraint in Ax > b, which measures how much it has been satisfied by the solutions

chosen so far. Let w' denote the weight vector at the beginning of round t, and initialize the weights

to w 1 A 1. Then, for rounds t = 1, ... , T, define the probability vector pt proportional to those

weights wt, and use the oracle above to find a solution xt. If the oracle reports that the system

pTAx > pTb is infeasible, the MWU algorithm also reports that the original system Ax > b is

infeasible, and terminates. Otherwise, define the cost vector incurred by xt as mt A (Ax - b),
then update the weights so that w+ 1 A u4(1 - /m /6) and proceed to the next round. Finally, the

algorithm returns the average solution x = I T xt.
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The MWU theorem (e.g., Theorem 3.5 of [AHK12]) shows that T = 0(j0") is sufficient to
correctly solve the problem, yielding Aik - bi > -3 for every constraint, where n is the number of
constraints. In particular, the algorithm requires T calls to the oracle.

Theorem 4.2.2 (MWU Theorem [AHK12]). For every 0 < 3 < 1, # > 1 the MWU algorithm either
solves the Feasibility-Covering-LP problem up to an additive error of 3 (i.e., solves Aix - bi ->
for every i) or correctly reports that the LP is infeasible, making only O( olog) calls to a (1, $)-
bounded //3-approximate oracle of the LP.

4.2.2 Streaming MWU-based algorithm for Fractional Set Cover

Setting up our MWU algorithm. As described in the overview, we wish to solve, as a subroutine,
the decision variant of SetCover-LP known as Feasibility-SC-LP given in Figure 4-3a, where the
parameter f serves as the guess for the optimal objective value.

Feasibility-SC-LP ((Input: U, .F, f))
Feasibility-Covering-LP ((Input: A, b, c, f))

Scx _<f (objective value)

E S > I Ve E U Ax > b (covering)
S:eES 

X 
> 0 (non-negativity)

xs >0 VScY
(b) LP relaxation of the Feasibility Covering problem.

(a) LP relaxation of Feasibility Set Cover.

Figure 4-3: LP relaxations of the feasibility variant of set cover and general covering problems.

To follow the conventional notation for solving LPs in the MWU framework, consider the more
standard form of covering LPs denoted as Feasibility-Covering-LP given in Figure 4-3b. For our
purpose, Anxm is the element-set incidence matrix indexed by U x F; that is, Ae,s = 1 if e E S, and
Ae,s = 0 otherwise. The vectors b and c are both all-ones vectors indexed by U and F, respectively.
We emphasize that, unconventionally for our system Ax > b, there are n constraints (i.e. elements)
and m variables (i.e. sets).

Employing the MWU approach for solving covering LPs, we define the polytope

P {x E Rm c~x < f and x > 0}.

Observe that by applying the MWU algorithm to this polytope P and constraints Ax > b, we
obtain a solution x E Pj such that Ae (be13 = 1 = be, where Ae denotes the row of A
corresponding to e. This yields a (1 + O(E))-approximate solution for 3 = O(e).

Unfortunately, we cannot implement the MWU algorithm on the full input under our streaming
context. Therefore, the main challenge is to implement the following two subtasks of the MWU
algorithm in the streaming settings. First, we need to design an oracle that solves the average
constraint in the streaming setting. Moreover, we need to be able to efficiently update the weights
for the subsequent rounds.
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Covering the common elements. Before we proceed to applying the MWU framework, we add

a simple first step to our implementation of feasibilityTest (Figure 4-4) that will greatly reduce

the amount of sapce required in implementing the MWU algorithm. This can be interpreted as

the fractional version of Set Sampling described in [DIMV14. In our subroutine, we partition the

elements into the common elements that occur more frequently, which will be covered if we simply

choose a uniform vector solution, and the rare elements that occur less frequently, for which we

perform the MWU algorithm to compute a good solution. In one pass we can find all frequently

occurring elements by counting the number of sets containing each element. The amount of required

space to perform this task is O(nlog m).

we call an element that appears in at least M sets common, and we call it rare otherwise, where
a = E(e). Since we are aiming for a (1 + e)-approximation, we can define xcmn as a vector whose

all entries are 2. The total cost of xcmn is at and all common elements are covered by xcmn. Thus,
throughout the algorithm we may restrict our attention to the rare elements.

Our goal now is to construct an efficient MWU-based algorithm, which finds a solution x""

covering the rare elements, with objective value at most 1 < (1 + E - a)f. We note that our

implementation does not explicitly maintain the weight vector w' described in Section 4.2.1, but

instead updates (and normalizes) its probability vector pt in every round.

4.2.3 First attempt: simple oracle and large width

A greedy solution for the oracle. We implement the oracle for MWU algorithm such that

0 = f, and thus requiring 0(flogn/02 ) iterations (Theorem 4.2.2). In each iteration, we need an

oracle that finds some solution x E Pf satisfying pT Ax > pT b - 0/3, or decides that no solution

in P satisfies pT Ax > pTb.

Observe that pTAx is maximized when we place value f on xs* where S* achieves the maxi-

mum value ps - EsPe Further, for our application, b = 1 So pTb = 1. Our implementation

heavySetOracle of oracle given in Figure 4-5 below is a deterministic greedy algorithm that

finds a solution based on this observation. As Aex < |lxii1 < f, heavySetOracle implements a

(1, f)-bounded (//3)-approximate oracle. Therefore, the implementation of feasibilityTest with

heavySetOracle computes a solution of objective value at most (a + -) < (1 + )f when f > k

as promised.

Finally, we track the space usage which concludes the complexities of the current version of our

algorithm: it only stores vectors of length m or n, whose entries each requires a logarithmic number

of bits, yielding the following theorem.

Theorem 4.2.3. There exists a streaming algorithm that w.h.p. returns a (1 + E)-approximate

fractional solution of SetCover-LP(U, F) in 0(*1'2 -n) passes and using O(m + n) memory for any

positive e < 1/2. The algorithm works in both set arrival and edge arrival streams.

The presented algorithm suffers from large number of passes over the input. In particular,

we are interested in solving the fractional Set Cover in constant number of passes using sublinear

space. To this end, we first reduce the required number of rounds in MWU by a more complicated

implementation of oracle.
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feasibilityTest(e, e):

, <3 3 , pcurr 1,mxl > The initial prob. vector for the MWU algorithm on U

> Compute a cover of common elements in one pass
Xcmn _1 . lmx ,7 freq <-- 0,,x i

for each set S in the stream do
for each element e E S do

freq, +- freq, + 1
if e appears in more than - sets (i.e. freqe > E) then > Common element

peurr +_ 0
curr ,curr ipr curent po.vcoPcrr 4 pcurr represents the c prob. vector

xtotal - OmxI

> MWU algorithm for covering rare elements
repeat T times

try x +- oracle(pcurr fe, F)
total tota

x -X + X
> In one pass, update p according to x
Z +- Onxi
for each set S in the stream do

for each element e E S do

Ze +- Ze + XS
if (pcurr)TZ < 1 - #/3 then > Detect infeasible solutions returned by oracle

report INFEASIBLE
pcurr +- updateProb(pcurr, z)

rr total
xrare t > Scaled up the solution to cover rare elements
L ~ (1-)3 )T

return xcmn + xrare

Figure 4-4: A generic implementation of feasibilityTest. Its performance depend on the imple-
mentations of oracle, updateProb. We will investigate different implementations of oracle in the
gray box.

4.3 Max Cover Problem and its Application to Width Reduction

In this section, we improve the described algorithm in the previous section and prove the following
result.

Theorem 4.3.1. There exists a streaming algorithm that w.h.p. returns a (1 + e)-approximate
fractional solution of SetCover-LP(U, F) in p passes and uses O(mnO(1/E) + n) memory for any
2 < p < polylog(n) and 0 < e < 1/2.

streams.
The algorithm works in both set arrival and edge arrival

Recall that in implementing oracle, we must find a solution x of total size |lx|1i K f with a
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heavySetOracle(p, , .F):

Compute ps for every S E F while reading the set system > either from stream or memory
S* <- argmaxscjps

if ps < (1 - 0/3)/f then report INFEASIBLE
x +- Onx1, XS - f
return x

Figure 4-5: heavySetOracle computes ps of every set given the set system in a stream or stored
memory, then returns the solution x that optimally places value f on the corresponding entry. It
reports INFEASIBLE if there is no sufficiently good solution, concluding that the set system is
infeasible.

sufficiently large weight pT Ax. Our previous implementation chooses only one good entry xs and

places its entire budget f on this entry. As the width of the solution is roughly the maximum amount

an element is over-covered by x, this implementation induces a width of f. In this section, we design

an oracle that returns a solution in which the budget is distributed more evenly among the entries of

x to reduce the width. To this end, we design an implementation of oracle of the MWU approach

based on the Max f-Cover problem (whose precise definition will be given shortly). The solution to

our Max f-Cover aids in reducing the width of our oracle solution to a constant, so the required

number of rounds of the MWU algorithm decreases to 0(1-9), independent of f. Note that, if the

objective value of an optimal solution of Set Cover(U, F) is f, then a solution of width o(e) may not

exist, as shown in Lemma 4.3.2. This observation implies that we need to work with a different set

system. Besides having small width, an optimal solution of the Set Cover instance on the new set

system should have the same objective value of the optimal solution of Set Cover(u, F).

Lemma 4.3.2. There exists a set system in which, under the direct application of the MWU frame-

work in computing a (1 + e)-approximate solution, induces width # = Q(k), where k is the optimal

objective value. Moreover, the exists a set system in which the approach from the previous section

(which handles the frequent and rare elements differently) has width # = 0(n) = 0( fm/e).

Proof. For the first claim, we consider an arbitrary set system, then modify it by adding a common

element e to all sets. Recall that the MWU framework returns an average of the solutions from all

rounds. Thus there must exist a round where the oracle returns a solution x of size lixJJ1 = 0(k).

For the added element e, this solution has ZS:eES xS = ESET XS = 6(k), inducing width # = Q(k).

For the second claim, consider the following set system with k = m/E and n = 2k + 1. For

i = 1,..., k, let Si = {ei ,ek+ i ,e2k+1}, whereas the remaining m - k sets are arbitrary subsets

of {el,...,ek}. Observe that ek+i is contained only in Si, so xsi = 1 in any valid set cover.

Consequently the solution x where xS, = - = XSk = 1 and XSk+1 =.. = XS 2k+l = 0 forms the

unique (fractional) minimum set cover of size k = Fm/s. Next, recall that an element is considered

rarely occurring if it appears in at most M > M sets. As ek+1, ... , e2k each only occurs once, and

e2k+1 only appears in k = / = E sets, these k + 1 elements are deemed rare and thus handled

by the MWU framework.

The solution computed by the MWU framework satisfies Es:eES xS ; 1 - for every e, and

in particular, for each e E {ek+1, ... , e2k}. Therefore, the average solution places a total weight
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Figure 4-6: LP relaxation of weighted Max k-Cover.

of at least (1 - 3) - E(k) on xs, . . . , xs, so there must exist a round that places at least the

same total weight on these sets. However, these k sets all contain e2k+1, yielding ES:e 2 k+SXS >

(1 - 13) - 0(k) = Q(k), implying a width of Q(k) = Q(Vr/c). E

Extended Set System. First, we consider the extended set system (U, F), where F is the collection

containing all subsets of sets in F; that is,

F 6 {R : R C S for some S E F}.

It is straightforward to see that the optimal objective value of Set Cover over (U, F) is equal to that

of (U, F): we only add subsets of the original sets to create F, and we may replace any subset from

F in our solution with its original set in F. Moreover, we may prune any collection of sets from F

into a collection from f of the same cardinality so that, this pruned collection not only covers the

same elements, but also each of these elements is covered exactly once. This extended set system is

defined for the sake of analysis only: we will never explicitly handle an exponential number of sets

throughout our algorithm.

We define f-cover as a collection of sets of total weight f. Although the pruning of an f-cover

reduces the width, the total weight pTAx of the solution will decrease. Thus, we consider the

weighted constraint of the form

EZ(pe min{, E xS}) 1;
eeU \S:eES /

that is, we can only gain the value Pe without any multiplicity larger than 1. The problem of

maximizing the left hand side is known as the weighted max coverage problem: for a parameter f,
find an f-cover such that the total value pe's of the covered elements is maximized.
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4.3.1 The Maximum Coverage problem

In the design of our algorithm, we consider the weighted Max k-Cover problem, which is closely
related to Set Cover. Extending upon the brief description given earlier, we fully specify the LP
relaxation of this problem. In the weighted Max k-Cover(U, F, f, p), given a ground set of elements
U, a collection of sets F over the ground set, a budget parameter f, and a weight vector p, the
goal is to return f sets in F whose weighted coverage, the total weight of all covered elements, is
maximized. Moreover, since we are aiming for a fractional solution of Set Cover, we consider the
LP relaxation of weighted Max k-Cover, MaxCover-LP (see Figure 4-6); in this LP relaxation, ze
denotes the fractional amount that an element is covered, and hence is capped at 1.

As an intermediate goal, we aim to compute an approximate solution of MaxCover-LP, given
that the optimal solution covers all elements in the ground set, or to correctly detect that no solution
has weighted coverage of more than (1 - e). In our application, the vector p is always a probability
vector: p > 0 and EU,,pe = 1. We make the following useful observation.

Observation 4.3.3. Let k be the value of an optimal solution of SetCover-LP(U, F) and let p
be an arbitrary probability vector over the ground set. Then there exists a fractional solution of
MaxCover-LP(U, F, f, p) whose weighted coverage is one if f > k.

-integral near optimal solution of MaxCover-LP. Our plan is to solve MaxCover-LP over
a randomly projected set system, and argue that with high probability this will result in a valid
oracle. Such an argument requires an application of the union bound over the set of solutions,
which is generally of unbounded size. To this end, we consider a more restrictive domain of 6-
integral solutions: this domain has bounded size, but is still guaranteed to contain a sufficiently
good solution.

Definition 4.3.4 (6-integral solution). A fractional solution x'x1 of an LP is 6-integral if - x is
an integral vector. That is, for each i E [n], xi = vi6 where each vi is an integer.

Next we claim that maxCoverOracle given in Figure 4-7 below, which is the MWU algorithm
with heavySetOracle for solving MaxCover-LP, results in a 6-integral solution.

Lemma 4.3.5. Consider a MaxCover-LP with the optimal objective value OPT (where the weights
of elements form a probability vector). There exists a (g)-integral solution of MaxCover-LP
whose objective value is at least (1 - &mc)OPT. In particular, if an optimal solution covers all
elements U (f > k), maxCoverOracle returns a solution whose weighted coverage is at least
1 - emc in polynomial time.

Proof. Let (x*, z*) denote the optimal solution of value OPT to MaxCover-LP, which implies that

I|x*I11 ; e and Ax* > z*. Consider the following covering LP: minimize |lx|i subject to Ax > z*
and x > 0. Clearly there exists an optimal solution of objective value f, namely x*. This covering
LP may be solved via the MWU framework. In particular, we may use the oracle that picks one
set S with maximum weight (as maintained in the MWU framework) and places its entire budget
on xs. For an accurate guess f' = 6(f) of the optimal value, this algorithm returns an average
of T = e(Q-f9s2!) = E( l ) oracle solutions. Observe that the outputted solution x is of theMC EMC
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form xS = -= vS6 where vs is the number of rounds in which S is chosen by the oracle, and

= o= = 0( 6mi). In other words, x is (Em)-integral. By Theorem 4.2.2, x satisfies
Ax > (1 - EMc)z*. Then in MaxCover-LP, the solution (x, (1 - EMc)z*) yields coverage at least

P'((1- EMc)z*) = (1 - EMc)pTz* = (1 - EMc)OPT. E

maxCoverOracle(U, F, f):

x +- MWU solution of Set Cover LP relaxation implemented with heavySetOracle
return x

Figure 4-7: maxCoverOracle returns a fractional f-cover with weighted coverage at least 1 - #/3
w.h.p. if f > k. It provides no guarantee on its behavior if f < k.

Pruning a fractional f-cover. In our analysis, we aim to solve the Set Cover problem under the
extended set system. We claim that any solution x with coverage z in the actual set system may
be turned into a pruned solution X' in the extended set system that provides the same coverage z,
but satisfies the strict equality ZEf eg z = z.. Since ze < 1, the pruned solution satisfies the
condition for an oracle with width one. We give an algorithm prune for pruning x into k below
(Figure 4-8) and show the desired property in Lemma 4.3.6.

prune(x):

k + 
0 fixi, z + Onxi > Maintain the pruned solution and its coverage amount

for each S E F do
S <- S

while xS > 0 do
r - min(xs, mineE (1 - ze)) > Weight to be moved from Xs to
xs -xs - r, x +- x + r > Move weight to the pruned solution
for each e E S do ze <- ze + r > Update coverage accordingly

S+-S\{eE S:ze=1} > R.emovee with ze=1 from S
return z

Figure 4-8: The prune subroutine lifts a solution in F to a solution in f with the same MaxCover-
LP objective value and width 1. The subroutine returns z, the amount by which members of F
cover each element. The actual pruned solution X may be computed but has no further use in our
algorithm and thus not returned.

Lemma 4.3.6. A fractional -cover x of (U, F) can be converted, in polynomial time, to a
fractional f-cover k of (U, F) such that for each element e, its coverage ze = Z X E eE X8 =
min(Es:ees xs, 1).

Proof. Consider the algorithm prune in Figure 4-8. As we pick a valid amount r < xs to move
from xS to X' at each step, k must be an f-cover (in the extended set system) when prune finishes.
Observe that if ZS:eES xs < 1 then e will never be removed from any S, SO ze is increased by xs
for every S, and thus ze = ZS:eES Xs. Otherwise, the condition r < 1 - ze ensures that ze stops
increasing precisely when it reaches 1. Each S takes up to n + 1 rounds in the while loop as one
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element e E S is removed at the end of each round. There are at most m sets, so the algorithm

must terminate (in polynomial time).

We note that in Section 4.3.5, we need to adjust prune to instead achieves the condition

ze = min(Aex, 1) where entries of A are arbitrary non-negative values. We simply make the

following modifications: choose r <- min(xs, mineg "e) and update ze <- ze + r - Ae,S, and the

same proof follows. D

Remark that to update the weights in the MWU framework, it is sufficient to have the coverage

s ef:eEs , which are the Ze's returned by prune; the actual solution X is not necessary. Observe

further that our MWU algorithm can still use x instead of k as its solution because x has no worse

coverage than k in every iteration, and so does the final, average solution. Lastly, notice that the

coverage z returned by prune has the simple formula ze = min(Es:ees xs, 1). That is, we introduce

prune to show an existence of x, but will never run prune in our algorithm. Note also that, in

order to update the weights in the MWU framework, it is sufficient to know the vector z, which has

a simple formula given in the lemma above. The actual solution k is not necessary.

4.3.2 Sampling-based oracle for Fractional Max Coverage

In the previous section, we simply needed to compute the values ps's in order to construct a solution

for the oracle. Here as we aim to bound the width of oracle, our new task is to find a fractional

f-cover x whose weighted coverage is at least 1 - ,3/3. The element sampling technique, which is

also known from prior work in streaming Set Cover and Max k-Cover, is to sample a few elements

and solve the problem over the sampled elements only. Then, by applying the union bound over all

possible candidate solutions, it is shown that w.h.p. a nearly optimal cover of the sampled elements

also covers a large fraction of the whole ground set. This argument applies to the aforementioned

problems precisely because there are standard ways of bounding the number of all integral candidate

solutions (e.g. f-covers).

However, in the fractional setting, there are infinitely many solutions. Consequently, we employ

the notion of 6-integral solutions where the number of such solutions is bounded. In Lemma 4.3.6,
we showed that there always exists a 6-integral solution to MaxCover-LP whose coverage is at

least a (1 - EMc)-fraction of an optimal solution. Moreover, the number of all possible solutions is

bounded by the number of ways to divide the budget f into 1/6 equal parts of value 6 and distribute

them (possibly with repetition) among m entries:

Observation 4.3.7. The number of feasible 6-integral solutions to MaxCover-LP(U, F, f, p) is

O(m'/6 ) for any multiple i of 6.

Next, we design our algorithm using the element sampling technique: we show that a (1 - 0/3)-

approximate solution of MaxCover-LP can be computed using the projection of all sets in F over

a set of elements of size ) picked according to p. For every fractional solution (x, z)

and subset of elements V C U, let Cv(x) ZeEVPeze denote the coverage of elements in V where

ze = min(1, Es:es xs). We may omit the subscript V in CV if V = U.
The following lemma, which is essentially an extension of the Element Sampling lemma

of [DIMV14] for our application, MaxCover-LP, shows that a (1 - eMc)-approximate f-cover
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over a set of sampled elements of size 6(f log n log mn/74 ) w.h.p. has a weighted coverage of at
least (1 - 2-)(1 - EMc) if there exists a fractional f-cover whose coverage is 1. Thus, choosing
EMC = Y = 3/9 yields the desired guarantee for maxCoverOracle, leading to the performance
given in Theorem 4.3.9.

Lemma 4.3.8. Let eMC and -y be parameters. Consider the MaxCover-LP(U, F, f, p) with optimal
solution of value OPT, and let L be a multi-set of s = E(f log nlog(mn)/7 4 ) elements sampled
independently at random according to the probability vector p. Let x" be a (1 - EMC)-approximate

(!) -integral i-cover over the sampled elements. Then with high probability, C(x"so) > (1 -
2y)(1 - EMc)OPT.

Proof. Consider the MaxCover-LP(U, F, f, p) with optimal solution (xOPT, zOPT) of value OPT,
and let x" be a (1 - EMc)-approximate E(-2)-integral f-cover over the sampled elements and
zS*1 be its corresponding coverage vector. Denote the sampled elements with L = { 1, - , ds}.
Observe that by defining each Xi as a random variable that takes the value z9PT with probability
pa, and 0 otherwise, the expected value of X = Z 1Xi is

S

E[X] = E[Xi] = s pe _ ZOPT = s. C(xOPT) = s - OPT.
i=1 eEU

Let r = s(1 - -y)OPT. Since Xi E [0, 1], by applying Chernoff bound on X, we obtain

Pr [CC(xOPT) < r] = Pr[X < (1 -- y)E[X]]
y

2
E[X Olog(mn) log n/y

2
) lgn-2< e- 3 e 3 = (mn)-(eion/Y 2 )

Therefore, since x"l is a (1 - EMc)-approximate solution of MaxCover-LP(L, F, t, p), with proba-
bility 1 - (mn)-(elogf/ 2 ), we have CC(xsol) > (1 - EMc)r.

Next, by a similar approach, we show that for any fractional solution x, if CL(x) > C1 (x OPT)
then with probability 1 - (inn) "('ogn/y 2), C(x) > (Qii)(I - eMc)OPT. Consider a fractional
f-cover (x, z) whose coverage is less than (l)(1 - eMc)OPT. Let Y denote a random vari-
able that takes value ze, with probability p6,, and define Y = Zl- Yi. Then, E[Yj] = C(x) <

( I) - FMc)OPT. For ease of analysis, let each Yi E [0, 1] be an auxiliary random variable
that stochastically dominates Yj with expectation E[Y] = (Q-) (1 - EMc)OPT, and Y = Y'
which stochastically dominates Y with expectation E[Y] = s- ( (1- eMC)OPT -(e . We
then have

Pr[Crc(x) > (1 - EMc)r] = Pr[Y > (1 - EMc)r] = Pr[Y > (1 + -)E[Y]]

<Pr [Y> (1+ -})E[Y]] <e- ] < (mn)( n 2 )

using the fact that ( (1 - eMc) = E(1) for our interested range of parameters. Thus,

Pr [C(x) (I + )(I - EMc)OPT and CL(x) > (1 - EMc)r] (mn)-f(t log n/72)
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In other words, except with probability (mn)-(e log n/y
2 ), a chosen solution x that offers at least

as good empirical coverage over L as xOPT (namely x"so) does have actual coverage of at least
(i )(1 - EMC)OPT.

Since the total number of E(-2L)-integral f-covers is Q(ME logn/ 2 ) (Observation 4.3.7), applying
union bound, with probability at least

1 - O(m logn/y2 ) (mn)-Q(e/log n/-2  1
poly(mn)

a (1- EMc)-approximate E(i )-integral solution of Max k-Cover(L, F, i, p) has weighted coverage
of at least

S )(1 - eMc)OPT > (1 - 2-y)(I - EMC)OPT

over U. D

Theorem 4.3.9. There exists a streaming algorithm that w.h.p. returns a (1 + E)-approximate
fractional solution of SetCover-LP(U, F) in O(logn/E 2 ) passes and uses O(m/E6 + n) memory for
any -positive E < 1/2. The algorithm works in both set arrival and edge arrival streams.

Proof. The algorithm clearly requires E(T) passes to simulate the MWU algorithm. The required
amount of memory, besides 6(n) for counting elements, is dominated by the projected set system.
In each pass over the stream, we sample E(f log mn log n/E4 ) elements, and since they are rarely
occurring, each is contained in at most 6(1) sets. Finally, we run log1+E(,) n = O(log n/E) instances
of the MWU algorithm in parallel to compute a (1 + c)-approximate solution. In total, our space
complexity is (flog mn log n/E4 ) - E( ) - O(log n/E) = (m/E6 ).

4.3.3 Final step: running several MWU rounds together

We complete our result by further reducing the number of passes at the expense of increasing the
required amount of memory, yielding our full algorithm fastFeasibilityTest in Figure 4-9. More
precisely, aiming for a p-pass algorithm, we show how to execute R A ) = e(i ) rounds of the

MWU algorithm in a single pass. We show that this task may be accomplished with a multiplicative
factor of f - E(log mn) increase in memory usage, where f A ne(1/(p/))

Advance sampling. Consider a sequence of R consecutive rounds i = 1,..., R. In order to imple-
ment the MWU algorithm for these rounds, we need (multi-)sets of sampled elements L1,...,LR
according to probabilities pi,... ,R, respectively (where p' is the probability corresponding to
round i). Since the probabilities of subsequent rounds are not known in advance, we circumvent
this problem by choosing these sets Li's with probabilities according to p1 , but the number of sam-
ples in each set will be ILi I = s -f -E(log mn) instead of s. Then, once p' is revealed, we sub-sample
the elements from Li to obtain L' as follow: for a (copy of) sampled element 8 z Li, add 6 to L
with probability -. ,; otherwise, simply discard it. Note that it is still left to be shown that thep~f
probability above is indeed at most 1.

Since each e was originally sampled with probability pl, then in L', the probability that a
sampled element 8 = e is exactly p'/f. By having f - E(log mn) times the originally required
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number of samples s in the first place, in expectation we still have E[IL'I] = Li E
ff(s.- f - (log mn))) s -e(log mm). Due to the e(log mm) factor, by the Chernoff bound, we

conclude that with w.h.p. IL'JI > s. Thus, we have a sufficient number of elements sampled with
probability according to p' to apply Lemma 4.3.8, as needed.

Change in probabilities. As noted above, we must show that the probability that we sub-sample
each element is at most 1; that is, pi/p' < f = ne(1/(P,3)) for every element e and every round
i = 1,..., R. We bound the multiplicative difference between the probabilities of two consecutive
rounds as follows.

Lemma 4.3.10. Let p and p' be the probability of elements before and after an update. Then for
every element e, p' (1 + O(f3))pe.

4.3.4 Proof of Lemma 4.3.10

Proof. Recall the weight update formula w'+ 1 
- ( (XW-be)) for the MWU framework, where

A n represents the membership matrix corresponding to the extended set system (U, F). In our
case, the desired coverage amount is be = 1. By construction, we have Ae = ze < 1; therefore, our
width is # 1, and -1 < A3 - be 5 0. That is, the weight of each element cannot decrease, but
may increase by at most a multiplicative factor of 1 + 3/6, before normalization. Thus even after
normalization no weight may increase by more than a factor of 1 + 3/6 = 1 + 0('3). El

Therefore, after R = 0(1  ) rounds, the probability of any element may increase by at most

a factor of (1 + 0(3)) p 2 ) < e(PO) - ne(/(P,3 )) = f, as desired. This concludes the proof of
Theorem 4.3.1.

Implementation details. We make a few remarks about the implementation given in Figure 4-
9. First, even though we perform all sampling in advance, the decisions of maxCoverOracle
do not depend on any Li of later rounds, and updateProb is entirely deterministic: there is no
dependency issue between rounds. Next, we only need to perform updateProb on the sampled
elements L = Li U ... U LR during the current R rounds. We therefore denote the probabilities
with a different vector qi over the sampled elements L only. Probabilities of elements outside L
are not required by maxCoverOracle during these rounds, but we simply need to spend one more
pass after executing R rounds of MWU to aggregate the new probability vector p over all (rare)
elements. Similarly, since maxCoverOracle does not have the ability to verify, during the MWU
algorithm, that each solution xi returned by the oracle indeed provides a sufficient coverage, we
check all of them during this additional pass. Lastly, we again remark that this algorithm operates
on the extended set system: the solution x returned by maxCoverOracle has at least the same
coverage as X. While X is not explicitly computed, its coverage vector z can be computed exactly.

4.3.5 Extension to general covering LPs

We remark that our MWU-based algorithm can be extended to solve a more general class of covering
LPs. Consider the problem of finding a vector x that minimizes cTx subject to constraints Ax > b
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fast FeasibilityTest (f, E):

",# <- C, pcurr _- xi )> The initial prob. vector for the MWU algorithm on U3 M

Compute a cover of common elements in one pass > See Fig. 4-4's feasibilityTest block

Xtotal _ Omx1

> MWU algorithm for covering rare elements
repeat p times

- E)(' ) _0 > Number of MWU iterations performed together

c> In one pass, projects all sets in F over the collections of samples i.
sample C1 , .... , CR according to pCurr each of size fne(1/(/3)) poly(log mn)

L <- Cj U - - - U CR, FT +- 0 > C is a set whereas EI, .. ., CR are multi-sets
for each set S in the stream do FE <- FT U {S n L}
> Each pass simulates R rounds of MWU
for each e E C do qe - pcurr > Project p"7 1 ] to ql Ix1 over sampled elements

qi - E-

for each round i = 1,...,R do

C'- sample each elt e E Li with probab. -q/,--> > Rejection Sampling
qie/(PO)) ea

xi <- maxCoverOracle(L', L, f) > w.h.p. C(x) > 1 - 3/3 when ( > k
> In no additional pass, updates probab. q over sampled elts according to xi
z <- 0 ,icx1 > Compute coverage over sampled elements
for each element-set pair e E S where S E Tc do ze +- min(ze + Xi, 1)
qi+l ÷- updateProb(qi, z) > Only update weights of elements in C

> In one pass, updates probatb. prr over all (rare) elts according to x ,....x

z, ... , IzR +- Onxi > Compute coverage over all (rare) elements
for each element-set pair e E S in the stream do

for each round i = 1, . . . , R do z <- min(zi + Xi,1)

for each round i = 1,...,R do
if (Pcurr)Tzi < 1 - #/3 then > Detect infeasible solutions

report INFEASIBLE
xtotal _ total + X Pcurr - updateProb(pcurr, zi) > Perform actual updates

ra re Xtotal
xr (- > Scaled up the solution to cover rare elements

return xcmn + xrare

Figure 4-9: An efficient implementation of feasibilityTest which performs in p passes and con-

sumes O(mn0 (E) + n) space.

and x > 0. In terms of the Set Cover problem, Aes > 0 indicates the multiplicity of an element e

in the set S, be > 0 denotes the number of times we wish e to be covered, and cs > 0 denotes the

cost per unit for the set S. Now define

L min Ae,s
(e,S):Ae,s$o beCS

and U - max Ae's
(e,S) becs
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Then, we may modify our algorithm to obtain the following result.

Theorem 4.3.11. There exists a streaming algorithm that w.h.p. returns a (1 + E)-approximate
fractional solution to general covering LPs in p passes and using 6(- - no(po + n) memory for

any 3 < p < polylog(n), where parameters L and U are defined above. The algorithm works in both

set arrival and edge arrival streams.

Proof. We modify our algorithm and provide an argument of its correctness as follows. First,

observe that we can convert the input LP into an equivalent LP with all entries be = cS= 1 by

simply replacing each Ae,s with A". Namely, let the new parameters be A', b' and c', and we

consider the variable x' where x' = csxs. It is straightforward to verify that c'Tx' = cTx and

A'ex' =Ax reducing the LP into the desired case. Thus, we may afford to record b and c, so that

each value may be computed on-the-fly. Henceforth we assume that all entries be = cS 1

and Ae,s - {0} U [L, U]. Observe as well that the optimal objective value k may be in the expanded

range [1/U, n/L], so the number of guesses must be increased from log' to log(nU/L)

Next consider the process for covering the rare elements. We instead use a uniform solution

xcmn aL . 1. Observe that if an element occurs in at least L sets, then Aexcmn = Es:eCs Ae,s -

> m L - Q = 1. That is, we must adjust our definition so that an element is considered

common if it appears in at least m sets. Consequently, whenever we perform element sampling,

the required amount of memory to store information of each element increases by a factor of 1/L.

Next consider Lemma 4.3.5, where we show an existence of integral solutions via the MWU

algorithm with a greedy oracle. As the greedy implementation chooses a set S and places the

entire budget f on xs, the amount of coverage Ae,sxs may be as large as W as Ae,s is no longer

bounded by 1. Thus this application of the MWU algorithm has width # = 0(CU) and requires

T = 0 (UlOgfl) rounds. Consequently, its solution becomes E(4) = E(J{ )-integral. As noted

in Observation 4.3.7, the number of potential solutions from the greedy oracle increases by a power

of U. Then, in Lemma 4.3.8, we must reduce the error probability of each solution by the same

power. We increase the number of samples s by a factor of U to account for this change, increasing

the required amount of memory by the same factor.

As in the previous case, any solution x may always be pruned so that the width is reduced to

1: our algorithm prune still works as long as the entries of A are non-negative (Lemma 4.3.6).

Therefore, the fact that entries of A may take on values other than 0 or 1 does not affect the

number of rounds (or passes) of our overall application of the MWU framework. Thus, we may

handle general covering LPs using a factor of O(U/L) larger memory within the same number of

passes. In particular, if the non-zero entries of the input are bounded in the range [1, M], this

introduces a factor of 0(U/L) < 6(M 3 ) overhead in memory usage. E

4.4 Overview of Fractional Set Cover in the Oracle Access Model

We now revisit the oracle access model and consider the Fractional Set Cover problem. As previously

mentioned, the fractional variant can be approximated up to a factor arbitrarily close to 1, using

an algorithm that runs in nearly-linear time. In particular, [KY14], via a reduction to an algorithm

131



from [GK95], showed that an 0(1)-approximate solution to the fractional version of the problem can

be found in O(mk 2 + nk 2 ) probe complexity. The latter paper employs the "randomized fictitious

play" technique for approximately solving a two-player zero-sum game, that could be viewed as a

randomized variant of the MWU method. We re-emphasize that the algorithm of IKY14 can be

further improved to 0(m + nk)2 , which is currently the best known algorithm for thlis problem.

4.4.1 Our results and techniques

In this work, we show two algorithms which offer tradeoffs between the probe complexity and

the running time. Both algorithms employ MWU framework [AHK12], which iteratively identifies

unsatisfied constraints and re-calibrates their "importance". The algorithms differ in the way the

constraint checking procedure is implemented. The first algorithm implements each constraint

checking round separately by using random sampling. This bounds the running time (and the

probe complexity) by the product of the number of rounds and the number of samples taken in each

round, which is O(,k +nk)

To reduce the probe complexity, the second algorithm relies on the key observation that the

distribution from which the random samples are taken changes very little from round to round.

This makes it possible to (re-)use random samples in several rounds. However, the updates to the

distribution can be adaptive, i.e., they depend on the outcome of the random sampling process in

the previous rounds. This makes it impossible to guarantee the correctness of the algorithm by

employing a simple union bound. To overcome this challenge, we cast our algorithm in the adaptive

data analysis framework of [DFH+ 15, BNS+16], which handles the dependencies by utilizing only

a limited amount of information about the samples in each round. To the best of our knowledge

this is the first application of the framework to the design of sub-linear algorithms. We show that

this approach significantly reduces the probe complexity (by roughly a factor of v\/7), at the price

of increasing the running time by (roughly) the same factor. Note that the running times of both

algorithms are sub-linear in the input size for low values of k.

We partially complement the aforementioned upper bounds by showing that for small values

of k, the probe complexity of any algorithm for fractional set cover must depend linearly on both

m and n. Unlike the integral case where the lower bound construction employs the probabilistic

method, the lower bound construction of the fractional case is more explicit. A new key idea of this

lower bound construction is that, we leverage the LP duality to prove that the constructed instances

have large minimum fractional set cover, by providing large solutions to the dual packing LPs.

Finally, we also show a variant of the algorithm which is most efficient when k is large. Our

algorithmic results and lower bounds are presented in Table 4.1. While we may not accomplish the

state-of-the-art algorithm in this work, we demonstrate an interesting framework for designing and

improving algorithms based on the MWU method that makes a meaningful connection to the field

of adaptive data analysis. We expect that this technique may find its applications in other contexts,

especially in improving the complexities of MWU-based algorithms.
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Table 4.1: A summary of our algorithms and lower bounds for computing an (1 + c)-approximate
solution to Fractional Set Cover, where k denote the optimal value. For the lower bound, c is
assumed to be a sufficiently small constant.

4.5 Sub-Linear Algorithms for the Fractional Set Cover Problem

In this section, we present a sublinear-time algorithm that computes a (1 + E)-approximate solution

of the LP-relaxation of Set Cover for any F > 0. We retain our notation from the streaming setting.

Overview of the algorithms. Let k denote the optimal objective value, and E > 0 be a parameter.

Our approach combines two algorithms that are efficient for different values of k. Both algorithms

first pick a fractional vector that covers frequently occurring (which will be defined precisely shortly)

elements; one can interpret this step as the fractional version of Set Sampling described in more

details in Section 3.2.1. The two algorithms handle the remaining elements differently.

For the first algorithm, smallFracCover, we create a subroutine feasibilityTest-Small based

on the multiplicative weights update method (MWU) such that, given a parameter f, with high

probability, either returns a solution of objective value at most (1 + e/3)f, or detects that the

optimal objective exceeds f. Consequently, we may search for the right value f in two steps. First

we consider values i in an increasing power of 2 until we find a value f yielding a valid solution.

Then we perform a binary search between f/2 and f for O(log 1/E) iterations to obtain a (1 + E/3)-

approximation to the value of k, which results in a (1+6)-approximate solution overall. This overall

algorithm is described as smaliFracCover in Figure 4-10.

Assuming that the complexities of feasibilityTest-Small are upper bounded by those of the

execution with the largest value of t (which is 6(k)), the whole process of searching k increases

our asymptotic complexities by at most a multiplicative factor of log k + log 1/E. The details

of feasibilityTest-Small is given in Section 4.5.1. The main challenge of this approach lies in

designing the oracle for the MWU framework and updating weights using only a sub-linear number

of probes. To this end, we employ recent results in adaptive data analysis from [BNS+16].

To handle the case where f is large, we propose the simpler second algorithm, largeFracCover,

using a subroutine feasibilityTest-Large, which is very much the same as the algorithm described

in Section 3.2.3, offering a similar guarantee to the MWU based approach, but requires O(mn/f)

probes. Now the complexity is inversely proportional to f. Thus in the first step we consider f

133

Probe Complexity Extra Running Time Section

0mv"X_ n (rn __3/2) 4.5.1.1
69/2 62E1/

mk + nk 4.5.1.3
E5 2 ) ____

mn) ( m+n) 4.5.2

(n + m) 4.6



smallFracCover(E):

> Find a feasible 2-approximate solution in O(log A) iterations
for f E {2' 10 < i < log n} do in the increasing order:

try x +-- feasibilityTest-Small(f, E/3)
if feasibilityTest-Small(f, e/3) reports INFEASIBLE then continue
else xbest +- x and break

L - f/2, H <-- f
> Binary search for a (1 + E/3)-approximation using log 1/ more iterations
repeat E(log 1/e) iterations

try x +- feasibilityTest-Snall( LH, E13)
if feasibilityTest-Small(LH, E/3) reports INFEASIBLE then L - L H
elsexbest - x H & L+H

return xbest

Figure 4-10: smallFracCover returns a (1 + E)-approximate solution of SetCover-LP, where
feasibilityTest-Small is an algorithm that returns a solution of objective value at most (1 + e/3)f
when f > k.

in the decreasing order, before applying binary search to compute a (1 + E)-approximate solution,
as described in Section 4.5.2. We may combine the two algorithms by running them in parallel,
answering the probes for the algorithms alternatively, until one algorithm returns an answer. The

result is an algorithm with probe complexity O(min{mv?- + nk, mn/k}) = (nv/- + mrni).

4.5.1 Efficient algorithm for instances with small optimal value

Our algorithm follows the same general framework of the streaming setting. First, we begin by
creating xcmn that covers the common elements. Next, we must construct an efficient MWU-

based algorithm, which finds a solution xrare covering the rare elements, with objective value at

most < (I + 6 - a)f. To do so, consider the MWU algorithm applied with q0 = i, which

requires 8(f log n/#32) iterations (Theorem 4.2.2). In each iteration, we need an oracle that finds

some solution x E P satisfying pTAx > pTb - /3, or decides that no solution in Pt satisfies

pTAx > pTb. We make the following useful observation.

Lemma 4.5.1. Define ps Zecs pe, the total probability of elements in S. Assume b = 1. The

constraint pT Ax > pT b -- /3 has a solution in P if ps (1 - 3/3)/f for some S E F. Conversely,

if ps < 1/f for all S E F then the constraint pT Ax > pTb has no solution in Pt.

Proof. Observe that ps = (PTA)s and pTb = 1. Clearly, this constraint PTAx > pTb - //3 =

1 - /3/3 can be solved greedily, by simply choosing a set S with ps 13/3 and assign xs = 1-/3

(and xs' = 0 for all other sets S'). On the other hand, if ps < 1/f for all sets, then increasing any

entry of x by some positive amount may increase the value of pTAx by strictly less than 1/ per
unit amount. Thus, for any x E P, pTAx < 1 = pTb. E

Our implementation of feasibilityTest-Small will make use of the solution suggested in this

lemma. We note that our implementation does not explicitly maintain the weight vector wl de-
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scribed in Section 4.5.1, but instead updates (and normalizes) its probability vector pt in every
round.

4.5.1.1 First attempt: Independent sampling approach

We would like to find a set with large ps without using a large number of probes. Observe that if we
sample an element according to the distribution p, then the probability that we obtain an element
e E S is exactly EeESPe = ps. Thus, by sampling 6(f/,3 2 ) elements, via the Chernoff bound, we
will be able to detect a set with sufficiently large ps or decide that none exists. For T = f/-'/#2)
rounds of the MWU framework, this approach would require 0(f2/34) samples.

In Figure 4-11, feasibilityTest-IS, we provide the implementation of feasibilityTest-Small
with a fresh set of samples for each round of MWU. This sampling-based oracle is implemented
as heavySet in Figure 4-12. Observe that this implementation is considerably more complicated
than the heavySetOracle counterpart since we do not have access to the all the values ps. By
an application of the Chernoff bound as outlined above, the following lemma may be proved for
heavySet:

Lemma 4.5.2. Consider the execution of heavySet with probability distribution p, and let S be
the set returned by the subroutine. If ps < (1 - 0/3)/e, then w.h.p. maxs*y-Tps* <

We omit the proof as it is essentially a simpler version of the proof of Lemma 4.5.7. In other
words, w.h.p., upon verifying ps, heavySet implements a (1, f)-bounded //3-approximate ora-
cle for the polytope Pt, the linear system Ax > b and probability distribution p. Therefore,
feasibilityTest-IS computes a solution of objective value at most (a + )f < (1 + )f when
t > k (recall that heavySet is invoked by feasibilityTest-IS with parameter E/3). Our process
smallFracCover eventually computes a value f satisfying k < t < (1 + j)k; hence, we obtain a
(1 + j)(1 + {) < (1 + e)-approximate solution to SetCover-LP.

Our subroutine heavySet performs E( 02") rounds of sampling, each of which takes 0(-)
SETOF probes by the guarantee of xcmn. As heavySet returns exactly one set, feasibilityTest-
IS requires n ELTOF probes to compute VAL and update the probability vector pcurr. Thus,
the probe complexity of each MWU round is 0(mlogmn + n). The subroutine feasibilityTest-

IS makes n SETOF probes to detect common elements, and makes E(,-i-) calls to heavySet,
giving a total probe complexity of n + Q(m o af +n).- 8A2!) = O(g + 4). We only execute
feasibilityTest-IS with f = 0(k), so the probe complexity of smallSetCover for invoking each
feasibilityTest-IS is at most 0(",k + n) per iteration. Since smallSetCover increases the overall
complexities by only a factor of log k + log 1/e, our overall probe complexity is still asymptotically
(log k + log ) (m + k) = )(mk+ n).

Assuming that each probe takes constant time, the processing time of the algorithm is dominated
by its probe complexity as well, constituting the following claim.

Theorem 4.5.3. For any constant e > 0, smallSetCover computes a (1 +e)-approximate solution
to SetCover-LP with O(m + k) probes and processing time, with high probability.

Now, we move on to our second implementation of feasibilityTest-Small that achieves more
efficient probe complexity, by making use of the recent developments in adaptive data analysis.
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feasibilityTest-IS(i, E):

a, <-- > Approximation parameters for covering common and rare elements

xcmn ÷_ ixi > x>cmn is the solution covering all common elementsm
pcurr <- Omxi > Compute the initial probability vector for the MWU algorithm on rare elements

for each e E U do

if e appears in less than - sets then > Single SETOF probe

curr
curr P cur il hn

pW >p crr will henceforth represent the current probability vector

xtotal m- X1 Maintain the cumulative solution from the MWU algorithm

repeat T = 6(t', ') times

try S +- heavySet(pcurr, e, ,/3) > Ask the oracle to find a set S with prr > 1-/ 3

VAL <-- Esp"" > Compute VAL =pSUe exactly, requiring up to n ELTOF probes

if VAL < 1-f/3 then report INFEASIBLE > Update the maintained cumulative solution

xtotal totaf +
for each e E S do > Update the current probability vector

pcurr +_ (1 - 0(1-1))/(1 + 1) . pcurr

curr pcurr

xrare _ xOT > Solution from the MWU method, scaled up to cover rare elements

return xcmn + xrare

Figure 4-11: feasibilityTest-IS is an implementation of feasibilityTest-Small that uses a new
set of independent samples in each round of MWU.

heavySet(p, f, ):
> Approximate the total probability of elements in each set, ps
c <- Omxl 1> cs counts the number of samples that are also in S
repeat r = E( log mn) times

sample an element e according to the probability distribution p
for each S E e > O(m) SETOF probes

CS <- CS + 1
return argmax 5sycs > E[cs] = r .Ps

Figure 4-12: heavySet returns a set maximizing cs, its approximation for r - ps. With high
probability, it correctly finds a set S satisfying ps 1-f/ 3 when there exists some set S* satisfying

ps* The number of samples required is r = O( ).

4.5.1.2 Preliminaries of Adaptive Data Analysis

At a high level, we will implement the MWU algorithm in a probe-efficient way by taking samples

from the probability distribution p. To make the algorithm as probe-efficient as possible, we want to

actually reuse the samples across multiple rounds of the MWU algorithm, but doing so introduces

dependencies between the samples and p that make standard probabilistic analysis impossible. To

address this, we will use results from adaptive data analysis, specifically the recent work of [BNS+16].

Consider a data set D, which is a sequence of data points (di, ... , dN), where each di is sampled

independently from a distribution D representing the population, i.e. D ~ DN. There is also an
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analyst A who does not know D. This analyst asks a sequence of K probes qi,... , qK about D.
Most importantly, A may choose his probes adaptively based on the previous probe-answer pairs.

The goal is to create a mechanism M that, given D as an input, approximately answers the analysts

probes, while minimizing the number of samples N. The analyst may be completely adversarial,
and may be designed to learn about D, and adversarially force M to eventually return an inaccurate

answer by asking specifically for some aspect of D that is not well-represented by D. We remark

that in our setting, the analyst also knows D.
For our application, we consider optimization probes. Each probe q is specified by a function

f (d, 4'), and asks for a parameter 4 from a set of parameters T that maximizes the expected value

of f(-, 4') evaluated on a random d ~ D. We denote this objective by f(D; 4') A Ed-D[f(d; 0)]. We
focus on the case where f(., 4') is a predicate function taking values from {0, 1} for every 4 E T.
That is, we wish to find a parameter 4 E T such that the predicate f(d; 4) holds for the largest
fraction of data points d from the population D. We also define f(D; 4) - - Zi> f(di; 4), the
empirical fraction of data points from D for which the predicate f(di; 4) holds. We expect f(D; ')
to be an accurate estimator for f(D; 4) when N is sufficiently large.

We require that M returns a parameter 4 with certain accuracy compared to the optimal

parameter 4*. We define the error with respect to the population D as

errD(j, 4) ED_,N [maX f(D; 4*)1 - EDVN [(D; ')].
.9*Exp D

Since EDDN maxO*ep f(D;4*) max,*eG EDDN [f(D; 4*)], we also have that

err"(f, 4) > max EDDN [f(D; *) - ED N [f(D; 4').

Moreover, recall that for the family of probes we consider, EDDN [f(D; V))] = EdD [f(d; 4)].
Hence,

err'(f, 4) > max EdD [f (d; 4*)] - Ed-D [f (d; 4)].

We now state the theorem we will use in our construction of the approximate oracle. Let the
sequence of probes and answers between the analyst A and the mechanism M be denoted by
--1 --K 1
f , ... , f and 4', ... , 4 K, respectively. Without loss of generality, A is deterministic.

Theorem 4.5.4 (Corollary 6.4 of [BNS+16]). Let IF be a finite set of parameters and F be the set

of functions of the form f(D; 4) = i=1 f(di; ) taking values from [0,1]. Then there exists a

mechanism M such that

Pr max err,) < 0. 1 > I -

where the probability is taken over random data points D - DN given to M as well as M 's ran-

domness, for K adaptively chosen probes from F, where

N = 0 (VK_ - log |T| . log3/2(1
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Moreover, the running time of M is dominated by O((K + log(-)) T 1@) total evaluations of function

fi corresponding to the probes 7'.

4.5.1.3 Second Algorithm: reusing the samples

One idea for reducing the number of required samples is to reuse our samples throughout many

rounds. Because the algorithm chooses its solution and updates the probabilities according to

these random samples, our next probe which asks for a set with large ps with respect to the new

probabilities is adaptive. This dependency influences the accuracy of the answer to this next probe,

and thus we cannot directly reuse our samples this way.

To circumvent this issue, we make use of the adaptive data analysis. We simulate our oracle

via an interaction between an analyst A (our algorithm) and a mechanism M. Namely, M takes

samples which consist of elements drawn from p, and A asks M to suggest a set with large ps. The

mechanism M strategically obfuscates its suggested set S, but as long as it is accurate enough, we

can verify S and use it to construct a solution for the approximate oracle. Our algorithm forwards

the data set (samples) to the mechanism without ever inspecting it, and the obfuscation made by

M prevents the algorithm from learning the data set. Consequently, M can continue to provide

accurate suggestions throughout a number of rounds, even in the presence of adaptive probes. For

the mechanism we are using (in Theorem 4.5.4), M takes roughly v/K rounds' worth of data points,

but can reuse the samples and give accurate answers for up to K rounds.

Simulating changing probabilities. The immediate issue that arises from this approach is that

our distribution p for the MWU algorithm changes in every iteration. To resolve this issue, A

must somehow tailor its probe to M in such a way that M's answer reflects the probability for the

current iteration p', not the probability p used to generate the data points for M. In particular, in

the sampling and counting scheme suggested above, the contribution of each occurrence of e should

not be equal, but instead scaled proportionally to p'/pe. For this approach to work, p'/pe must not

increase by a large amount, or we would not have enough samples of these elements. Similarly to

the streaming setting, we show that this is indeed the case through the following lemma.3

Lemma 4.5.5. Let p and p' be the probability of elements before and after an update, such that the

solution from the oracle x is of the form xs = 1-3/3 for some set S with ps >1-/, and xs, = 0

for all other sets S'. Then for every element e, p' < (1 + I)Pe.

Proof. Before normalization, the probability of each e E S is multiplied by a factor of

#(Ae,sxs - be) ( - 1) >-=1- >1-
626e 6IpsJ

since Ae,s = 1, xs = 1/3 and 3 < 1 by assumption. On the other hand, the probability of each
PSI

e' S is multiplied by a factor of

( Ae,,sxs - be') +
1- =1-

3If we set xs = , then this lemma does not necessarily hold.
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since Ae',s = 0. The original total probability of e E S is ps and that of e' S is 1 - ps, so the

total probability before normalization is at least

(/ # /3ps /3
2 ps-+ 1+- (l-ps)=- >1--

Ups U 6f - U

since ps < 1. Therefore, the probability of any element after normalization is increased from its

original probability by at most a factor of

+ )(1- 0)1<I+7

since 3 < l and f > 1. E

The inequality (1 + ) < e (Euler's number)4 immediately yields the following corollary.

Corollary 4.5.6. After iterations of the MWU algorithm, the probability of an element may only

increase by at most a constant multiplicative factor e.

Setting up the analyst-mechanism interaction. Now we are ready to elaborate on our second

implementation of the feasibilityTest-SnSmall, feasibilityTest-RS in Figure 4-13. As suggested

by Corollary 4.5.6, we divide the T rounds of the MWU algorithm into epochs of f/ rounds each;

within each epoch the probability of any element increases by at most a constant factor. At the

beginning of each epoch, we create a mechanism M using the samples drawn from pmech, which

is the same as the probability pcurr of the current iteration. We pack our samples into s-tuples,

each of which is considered a data point, where s = 0(e/0 2 ). That is, each data point has the

format d = ( i, ... , ,), and is drawn independently from D = (pmech)s. The total number of data

points in our data set is N = E( polylog(m, n, i)), and thus the number of samples required is

N. S = 6(f 3 / 2 //3 5/ 2 ). Our goal is to find a set with large ps, so in this case, the parameter T '

we aim to choose is simply a set S C T.
curr ,mech

We design the predicate fP"P '" for evaluating a data point d with respect to parameter S.

Intuitively, this predicate represents d's opinion whether d supports the claim that pcurr > v or not.

We first define an unbiased estimator for pcurr as follows. Let

Pcurr m mech'p~,r
q ''''(d; S) - 1(si) ec

i1ei

where 1s(6j) is the indicator function for the condition 6i S. Then, we set fpcurr Pmechv(d; S) = 1 if

qPur Pmech (d; S) > v, and set it to 0 otherwise. Note that the factor pcrr/pech is used to rebalanceei e2
the contribution of each sample, simulating the distribution pcurr using the samples from pmech.

Subsequently, both fp currPmech v(D; S) and pc'rrpmh(D; S) are defined on the data set and the

population, respectively, as given in Section 4.5.1.2. These two functions represent the fractions of

data points in D and D that support the claim that pS" > v.

4We consistently write Euler's number e in this font so that it is distinguishable from an element e.
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feasibilityTest-RS(f, e):

a, # <- i > Approximation parameters for covering common and rare elements

Xcmn _ -mx1 > Xcmn is the solution covering all common elementsm
pCurr <- Omx > Compute the initial probability vector for the MWU algorithm on rare elements

for each e E U do

if e appears in less than - sets then > Single SETOF probe
pcurr 4_ 1

pCurr _ pcur r cr will henceforth represent the current probability vector

xtotal +- Omx1 > Maintain the cumulative solution from the MWU algorithm

repeat T' = e(lo'n) times > We divide T = O( e ) rounds into T' = 8(' ) epochs

pmech pcurr > pmech is the probability distribution of samples given to the mechanism

let D (pmech)s where s = E( ) > Distribution of s-tuples of elements from pmech

draw D ~ DNwhere N = E( polylog(m, n, j)) > D contains 5( 1) elements in total

probe for all sets containing elements in D > "( t ) SETOF probes

create mechanism MD on the data set D

repeat 1/ times > Perform each round of the MWU algorithm
mech curr 1--0/6

probe MD on function f P ' for an answer S > MD suggests a set S

VAL< Sp" > Compute VAL = pu" exactly, requiring up to n ELTOF probes

if VAL < 13/ 3 then report INFEASIBLE
Aotal total 1-,3 3

XS +- t + VAL > Update the maintained cumulative solution

for each e E S do > Update the current probability vector

p urr <- (1 - 6 - )/(
1 + () -plurr

pcurriI

Xrare xtotal > Solution from the MWU method, scaled up to cover rare elements

return xcmn + xrare

Figure 4-13: feasibilityTest-RS is an implementation of feasibilityTest-Small that saves on
the total number of samples by reusing them for several rounds of MWU.

A rather unanimous suggestion. Recall that each data point d consists of s samples from

Pmech. Intuitively, if we assume that pcurr and pmech are similar, then for a sufficiently large s, each

data point should be able to provide a rather accurate estimation of purr. Consequently, we could

expect the data points to be almost unanimous whether they support the claim that p"urr > v or

not. We formalize this intuition for the case where pcurr and pmech are within the same epoch, via

the following lemma.

Lemma 4.5.7. Let pcurr and pmech be probabilities of elements according to our MWU algorithm,

where purr occurs at most O/ iterations after pmech. If each data point d consists of s independent

samples from pmech where s > 1352 , then:
[fcurr mech, l-,1/6

(a) If pcurr > 1/f, then Edv[f P e (d; )] 0.9.
[ curr 1Pmech, 1-13/6

(b) If pcurr < (I - /3)/f, then EdD [fPca e1 (d; S)] ; 0.1.

Proof. Consider the first statement. It is sufficient to show that with probability at least 0.9, a

S dcurr'pmech 
1-,3/6random data point d - D satisfies fP (d; S) = 1. In other words, the data point
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d = (8, . . ., e) supports the claim that paurr > 1--3/6 because its approximated value

Spcurr 1-/3/6
qp p mech (d; S) = 1 s(>) Pe > - '

S~ pAech-i=1 ei

To apply the Chernoff bound, we define a random variable Y = s(sj) mech and Y = Yi =
epi

-.qPcurrpmech (d; S). Observe that Y E [0, 1] because pgurr < e prech within the same epoch. Moreover,

since each 6i is drawn independently from pmech,

curr curr

E[Y] = s(sj),. ec? mech urr - PS
ip lmech i e E e

and E[Y] = L > by assumption. Then,

crmch1 -p3/6 Fe 1 -36 ( i\sl
Pr qPcurrP mech(d; S) < = Pr - Y < = Pr Y < 1 - 0) S]

ISf I 1 6 ef

< Pr Y < 1 - 0) EfY] eE[Y] 6 2 ;7.

The probability above is bounded by 0.1 when s> 451
- /2

Now consider the second statement; we need to show that with probability at most 0.1, a random

data point d ~ D satisfies qPu'Pmech (d; S) > 1-f3/6Define Y's and Y in the same fashion as the first

case. Since each Yi E [0, 1] and E[Y] = r < - /3 we can define a different random variable Y

that stochastically dominates Y while satisfying Y' E [0, 1] and 1d/2 < E[Y] < 1/3 (Namely, if

E[Y] < 1-3/2 then move some of its probability mass in its probability density function to a higher

value in [0, 1].) Consequently Y' = E'_1 Y/ stochastically dominates Y, and E[Y'] > 0/2)s

Using a similar concentration analysis,

Pr qpcurrPmech (d; S) > = Pr [eY > 1-/6] Pr -Y/ >

=Pr Y' > I - 0) Pr Y' > 1 + -) E[Y']
6 ef_

The probability above is bounded by 0.1 when s> 13521 D

Putting it all together. We finally apply Theorem 4.5.4 from adaptive data analysis to conclude

the correctness of our simulation of the approximate oracle.

Lemma 4.5.8. The probe-answer interaction between the analyst A (our algorithm) and the mech-

anism MD where D is the data set with N = U(//3) data points of s-tuples of elements drawn

from pmech, simulates a (1, f) -bounded //3-approximate oracle with respect to the probability pu

in the same epoch as Pmech, with high probability over the entire execution of the algorithm.
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Proof. First, it is easy to verify that if we can find a set S with pu" > (1 - 0/3)/e, then our

solution from Lemma 4.5.1 satisfies the (1, f)-bounded and 3/3-approximate conditions required by

the oracle. As justified by Lemma 4.5.1, it is sufficient to show that at least one of the following

cases holds: MD returns a set S satisfying pSr (1 - 0/3)/f, or for every set S, pcurr < 1/j.

Let us apply Theorem 4.5.4 with number of parameters I' = m (because IF = F in our case),
number of probes K = e (number of rounds per epoch), and 6 = 1/poly(m, n, j) (overall error

probability). Then, for every probe-answer pair (f, S) during the entire execution of the algorithm,
errD (7, S) < 0.1 holds with high probability. That is,

max EdoD[f(d; S*)] - Ed--D [f(d; S)] < 0.1.
S* EY

First, suppose that there exists a set S' such that p"rr > 1/f; in this case we need MD to return
cu rr mech 1-43/6

a set S with purr ; (1--3/3)/f. Since prr > 1/f, by Lemma 4.5.7a, Ed-D [f 'P e (d; S')] >
curr mech 1-43/6 1

0.9 and thus maxs*EF Edv [fpP e/ (d; S*)J > 0.9 as well. Then for the answer S returned

by MD,

[ curr pmech' 1-43/6 [f curr pmech' 1-13/6

Ed-Dof e (d; S)] > max EdD[fc P e (d; S*)] - 0.1 > 0.8.
S* EF

Thus, by Lemma 4.5.7b, purr (1 -

Similarly, now suppose that for the answer S returned by MD, purr < (1-0/3)/f. In this case we
curr mech l-,3/6

must show that pgU rr < I/f for every S' E F. By Lemma 4.5.7b, Ed,-D [f e- (d; S)] 0.1.

We then have

Pcurr, mech, 1-13/6 [ curr 1Pmech, 1-13/6
max Ed,-D [f e (d; S*)] < Ed,-D (d; )] +0.1 <0.2.
S* ETF

curr mech 1-13/6
This implies that for every set S' E F, Ed-D[fp "P (d; S)] < 0.2. Thus pcurr < 1/f by

Lemma 4.5.7a. El

By applying Theorem 4.2.2 to Lemma 4.5.8 above, we have shown that either we return the

solution xrare with objective value at most 1,' or the constraint Ax > b has no solution in Pe.

Probe complexity. The probe complexity can be derived straightforwardly from the pseudocode.

In each epoch of our feasibilityTest-RS algorithm, we draw O( 3/2) elements and probe for all

sets containing them. Since these are rare elements, each of the sampled elements requires O(M)
SETOF probes. Over T' = 6(1) epochs, 6( 7 ) SETOF probes are required.

In each round, once we choose a set S, we need to make 0(n) ELTOF probes to learn all of

its elements in order to compute ps as well as to update the solution and probabilities. Over

T = e(#) rounds, O(nf) ELTOF probes are required. Altogether, for a guess f of the optimal

objective value, the probe complexity for feasibilityTest-RS is 5( % + n2). The probe complexity

of smallFracCover with feasibilityTest-RS implementation of feasibilityTest-Small becomes

0(log k + log ) - ), as concluded in the theorem below. This probe

complexity is O(mvk + nk) for constant E > 0.
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Time complexity. The time complexity of feasibilityTest-RS is mostly asymptotically domi-
nated by its probe complexity, except for the time spent simulating the mechanism. Within each
epoch, the mechanism's running time is dominated by 0(v) evaluations of the function f. Since
we have full knowledge about the set structure of the sampled elements, we can create a hash table
so that checking the membership (whether e C S) takes constant time. Thus each evaluation of f
takes O(s) = O(j) time. The total running time for the mechanism over the entire execution of

feasibilityTest-RS becomes o O(') - O(-) = .(M).

However, suppose that we evaluate f on a data point d for every set S as we probe for the sets
containing the elements in d, then we store the results. In this case, the running time is simply

-O(s) = 6(m), which is more efficient in an amortized perspective. Thus the running time for

evaluating f on all data points in each epoch takes 0(M7) time, which is (M9/2) over the entire
execution.

We conclude the result of smallFracCover via the following theorem.

Theorem 4.5.9. For any constant E > 0, smallFracCover computes a (1+E) -approximate solution
to SetCover-LP with O( + ) probes and + %) time with high probability.

4.5.1.4 Extension to general covering LPs

Similarly to the streaming setting, we remark that our MWU-based algorithm can be extended
to solve a more general class of covering LPs. Consider the problem of finding a vector x that
minimizes cTx subject to constraints Ax > b and x > 0. In terms of the Set Cover problem,
Aes > 0 indicates the multiplicity of an element e in the set S, be > 0 denotes the number of times
we wish e to be covered, and cs > 0 denotes the cost per unit for the set S. We may modify our
model so that the algorithm is readily given full information on vectors b and c. Moreover, each
SETOF and ELTOF probe, in addition to returning a set or an element, also returns the multiplicity
Ae,s > 0 corresponding to the relationship e E S (whereas Ae,s = 0 is interpreted as e S and will
not be returned by the oracle).

Now define
Ae,S ___S

L min and U = max A
(e,S):Ae,s#o becs (e,S) becs

Then, we may modify our algorithm to obtain the following result.

Corollary 4.5.10. For any constant E > 0, there exist variations of smallFracCover that compute
a (1 +e)-approximate solution to general covering LPs with high probability, each of which providing
the following respective asymptotic guarantees:

(a) 0( m@ + -jf) probes and time,
(b) mk 2 2  + n probes and mk3 U5 2 + nk) time,E9 /2 L 611/2Lme,

(c) U kU2 + !f) probes and time, and

(d) ( 2 /2 + ) probes and E( mk5 1 2 U/ 2 + n) time.

Note that for conditions (c)-(d), 0 hides a factor of log 1/L.

In our result, conditions (a), (b) are accomplished by modifying the method for covering the

common elements, whereas conditions (c), (d) are obtained by applying the MWU framework on
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all elements. We provide the latter two results for two reasons. First, they only depend logarith-

mically on 1/L; this allows us to reasonably compare our results with other previous approaches

such as that of [KY14] which also have no dependence on L. Second, we will soon discuss the

extension to (set) packing LPs, where partitioning elements into common elements and rare ele-

ments do not reduce the complexities. Conditions (a), (c) are derived from the simpler algorithm

feasibilityTest-IS, whereas conditions (b), (d) are derived from the adaptive data analysis ap-

proach feasibilityTest-RS. We now provide a description for all the required modifications to

obtain these algorithms.

General formulas for complexities. First, recall that For feasibilityTest-IS, the probe and

time complexities are both

# rounds

x (# elements/round x # SETOF probes/element + # ELTOF probes/round),

where "elements" are the elements we need to sample. For feasibilityTest-RS, the probe complexity

is

# epochs x (# points/epoch x # elements/point x # SETOF probes/element

+ # rounds/epoch x # ELTOF probes/round),

whereas its time complexity is

# rounds x (# points/epoch x # elements/point x # SETOF probes/element

+ # ELTOF probes/round),

where "points" are the data points for the mechanism. Note that the first term of the time complexity

represents the fact that for each round the number of points on which we need to evaluate f is

(# points/epoch).

Normalizing b and c. First, observe that we can convert the input LP into an equivalent LP with

all entries be and cs to 1 by simply replacing each Ae,s with A, which is in the range {0} U [L, U].be S

This operation can be done by the algorithm; namely, since it knows b and c, it can replace each

value Ae,s on-the-fly when this value is returned by the SETOF or ELTOF oracles.

Handling the rare elements. Next consider the process for covering the rare elements. If we do

not cover the rare elements separately but instead cover them during our MWU algorithm, then

for each sample, we may need to make as many as m SETOF probes for sets containing it. That is,

(# SETOF probes/element) is bounded by m.

Now suppose that we instead use a uniform solution xcmn = . 1. Observe that if an elementm
occurs in at least ' sets, then

Aex Ae,sC> m L--=1.
m afL m

S:eES
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In other words, we must adjust our definition so that an element is considered rare if it appears in
at least ' sets. Consequently, we must set (# SETOF probes/element) to .

Modifying the number of rounds. Consider now the MWU algorithm. In each iteration, we
again create an approximate oracle that picks a set S of probability ps 1-)3/3, then choose af
solution x with xs = 1-)3/3 < f. Consequently, Aex - be = A 1,s - /3 - 1 E [-1, eU - 1]. Thus,PS -PS

the width of our algorithm is now p = EU, and we need to increase the number of rounds by a factor
of U to (# rounds) = T = E(P) ")

For feasibilityTest-RS, we note that as p increase, the (additive) change in probabilities be-
tween rounds also decreases by a factor of U. That is, the probability pe of any element increases only
by a factor of 1+ 2; we now have (# rounds/epoch) = K = = L rounds, but (# epochs) = T'
0(1 0') remains unchanged. Due to the increased number of rounds per epoch, we must also increase
the number of data points given to the mechanism: (# points/epoch) = N = N(V ) =( k U/#).

Fixing the sampling process. We generalize the probability of a set to ps Sees peAe,s so
that ps = (pTA)s still holds. To obtain the desired guarantee, for each sample e, we probe for
every S containing e, but only add Ae,s/U to our unbiased estimator for ps. To apply the Chernoff
bound, we need U times the original number of samples; as a result, the number of samples in each
round of feasibilityTest-IS must be increased to (# points/epoch) = 6(').

For feasibilityTest-RS, this means each data point must contain (# points/epoch) = s =

O(f#) samples. We note that in the analysis, the unbiased estimator becomes

S curr

qurr,'Pmech PduASPcr~eh(d; S)~ 8Zs(i)p~cheS

i=1ei

and the variable Y for applying the Chernoff bound must be modified to

=i ls(ei) -
A U p ?""h

Pei

to ensure that Yi E [0, 1].

Finally, once we plug each term into our complexity formulas for each algorithm, Corollary 4.5.10
follows from the fact that we only run our algorithm for solving the feasibility problem with guesses
f = O(k), and up to 0(log(nU/L) + log(1/e)) iterations are required in total.

4.5.1.5 Extension to set packing LPs

In this section, we consider the dual problem of Fractional Set Cover called Fractional Set Packing,
and outline how we may solve this problem using a similar approach. Consider the same set system
(U, .F). We aim to compute a vector y E R where each value ye is the weight of an element e,
under the packing constraints ZeEs ye K 1 restricting the total weight of elements of any set to
at most 1, and the non-negativity constraints ye > 0. The goal is to maximize the total weight

eeU ye. This problem is restated as SetPacking-LP in Figure 4-14a.
We may again describe Fractional Set Packing in its matrix form: maximize bTy subject to
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A Ty c and y > 0. This matrix form represents a more general packing problem, but for simplicity

we only restrict our attention to the case where every entry Ae,s E {0, 1} and be, Cs = 1; its

generalization may be performed in the same fashion as accomplished in Section 4.5.1.4. Due to the

nature of the Set Packing problem, we do not have a method for dealing with common elements (or

large sets) in the same fashion we did for Set Cover; hence, we must solve the whole system via the

MWU framework.

SetPacking-LP ((Input: U, F))
Feasibility-Packing-LP ((Input: Anxm, b, C, ))

maximize Ye
ecU b y f (objective value)

subject to EYe < 1 VS E F A Ty < c (packing)
eES y 0 (non-negativity)

Ye > 0 Ve E U
(b) LP relaxation of the Feasibility Packing problem.

(a) LP relaxation of the Set Packing problem.

Figure 4-14: LP relaxations of the set packing problem, and the feasibility variant for general
packing problems.

Modifying feasibilityTest-IS for packing. To apply the MWU approach, we again consider

its feasibility variant, Feasibility-Packing-LP in Figure 4-14b. In this case, we define our polytope

P A {y E R : y > 0 and bTy > f}, and aim to solve qTATy < qTc = 1 in each oracle call,
where q is the probability vector proportional to the constraints' weights (which now corresponds

to the sets, not elements). More specifically, we must find some y E Pf satisfying qTATy < 1 + #3
whenever qT A Ty < 1 has a solution in Pi.

Then, the oracle needs to find an element e such that q, A Zs:eCs s = (qT AT)e , so that

we may construct a solution y where ye = f and Ye' = 0 for all other elements e'. (In contrast to

covering, we look for an element with low q, for packing.) To approximate qe, we need to sample

O(f/3 2) sets to compute qe with the desired accuracy; each set requires 0(n) ELTOF probes for

checking its elements. Once an element is chosen, 0(m) SETOF probes are required to compute qe

and update the probabilities qs for the next round. It is straightforward to verify that the width

of the algorithm is still p = f. Then, using the same analysis, we obtain an algorithm similar to

feasibilityTest-IS that finds an approximation to SetPacking-LP using

# rounds x (# sets/round x # ELTOF probes/set + # SETOF probes/round)

~ ) ~( ) ) n2 m)

probes and running tivae per iteration of feasibility checking (corresponding to each guess i), result-

ing in O( 2 + ) overall complexities. Unlike feasibilityTest-IS, the dependencies on m and n
are swapped since our linear constraints now correspond to AT, and the first term is multiplied by

a factor of ek due to the fact that we solve the whole system with the MWU approach.

Modifying feasibilityTest-RS for packing. For feasibilityTest-RS, the required modification
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is very similar to the case of feasibilityTest-IS. It is also trivial to verify that the probability
qs does not increase by more than a factor of (1 + ), and therefore the number of rounds per
epoch and the number of sets in a data point need not be changed. This yields an algorithm with

("k3/2 + !) probes and 6(512 + k) time.
We conclude our results for Fractional Set Packing below.

Corollary 4.5.11. For any constant E > 0, there exist variations of smallFracCover that compute
a (1 + E)-approximate solution to set packing LPs with high probability, each of which providing the
following respective asymptotic guarantees:

(a) 0( 2 + -k) probes and time, by modifying feasibilityTest-IS, and

(b) (/2 + ') probes and 5(n2 + 1) time, by modifying feasibilityTest-RS.

4.5.2 Efficient algorithm for instances with large optimal value

Note that MWU-based approach performs well when k is small. In this section, we complement
our result by giving a simple algorithm whose probe complexity becomes better as k increases. As
described earlier we pick the vector xcmn whose all entries are i. The total cost of the vector is
at and the elements that are not covered by xcm" appear in at most E sets. By probeing the
sets containing all uncovered elements, we can fully construct a reduced instance of SetCover-LP
over uncovered elements using O(') probes. Moreover, we can apply the following result of
Koufogiannakis and Young [KY14] to upper bound the required running time for constructing a
(1 + #)-approximate solution with only an additive overhead of 0("+t) to the time complexity.

Theorem 4.5.12 (Theorem 3 of [KY14]). For mixed/packing covering, there is a (1 + 3)-
approximation algorithms running in time O( (n+m) log NZ + NZ) where NZ denotes the number of
non-zero entries in the linear program.

Since the size of the reduced SetCover-LP instance is O('), by Theorem 4.5.12, a (1 + 3)-
approximate solution can be computed in time 0("+n + g). Using this result, we give our
implementation largeFracCover in Figure 4-15 and analyze its correctness and complexities below.

Theorem 4.5.13. For any constant e > 0, largeFracCover computes a (1 + e)-approximate
solution to SetCover-LP with 6( ) probes and 6("+n + !) time with high probability.

Proof. To detect the rare elements, at most one SETOF probe per element is required; in total, n
probes are sufficient for this task. Then largeFracCover probes the sets containing rare elements
(at most - SETOF probes per rare element); the total number of probes made by the algorithm is
O('). As feasibilityTest-Large verifies that the value of the solution returned by the SetCover-
LP solver is at most (1 +#8)f, the algorithm will always return a feasible solution with objective value
at most (a+(1+O))f < (1+e/3)f (recall that feasibilityTest-Large is invoked by largeFracCover
with parameter e/3). Via the search in largeFracCover, we obtain an approximation f satisfying
k < f < (1 +E/3)k. Since we only invoke feasibilityTest-Large with f = Q(k), the total number of
probes is bounded by O(log n +log 1/E) times the complexity of each iteration of feasibilityTest-
Large, yielding the overall probe complexity of 0(').
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largeFracCover(E):

> Find a feasible 2-approxiniate solution in O(log t) iterations

for f E {2 0 < i < log n} do in the decreasing order:
try x <- feasibilityTest-Large(f, e/3)
if feasibilityTest-Large(f, E/3) reports INFEASIBLE then break
else xbest <- x and continue

L <- f, H <- 2
> Binary search for a (1 + E/3)-approximation using log 1/, more iterations
repeat e(log 1/E) iterations

try x <- feasibilityTest-Large (LH, H13)
if feasibilityTest-Large( LH, E/3) reports INFEASIBLE then L <- L+H2 2
else xbest - x, H - L+H

return xbest

feasibilityTest-Large(f, e):

a, # -- > Approximation parameters for covering common and rare elements

xcmn 2- . 1 mx1 > xcmn is the solution covering all common elements

Urare - 0 > Compute the rare elements, which are not covered by xcmn

for each e E U do

if e appears in less than - sets then > Single SETOF probe
let Fe be the collection of sets containing e > O(' ) SETOF probes
Urare _ arare Ue }, yrare +_ jrare U Fe

xrare +- (1 + #)-approximate solution of SetCover-LP (Urare, yrare) returned by [KY14
if Ilxrarell 5 (1 + /)f then return xcmn + xrare
else report INFEASIBLE

Figure 4-15: largeFracCover returns a (1 + e)-approximate solution of SetCover-LP, where
feasibilityTest-Large is an algorithm that returns a solution of objective value at most (1 + e/3)f
when ;> k.

By Theorem 4.5.12, there exists a (1 + /)-approximate SetCover-LP solver that runs in

((n+m log NZ + NZ); thus, a (1 + /)-approximate solution of the reduced SetCover-LP instance can

be computed in 0("+- + "). Therefore the total runtime of largeFracCover is O("n + n). E

We again remark that largeFracCover may handle general covering LPs by setting xcmn - ae.
m

1, which increases the number of probes per rare element to O( m ) SETOF probes. Consequently

NZ may be as large as '. This yields the following corollary.

Corollary 4.5.14. For any constant E > 0, there exist a variation of largeFracCover that

computes a (1 + F)-approximate solution to general packing LPs with Q(mnigU) probes and

(m+n)logU + mn OgU ) time with high probability.

4.6 Lower Bounds for the Fractional Set Cover Problem

In this section, we present our lower bounds for solving Set Cover LPs when E < 1. The analysis

for our lower bound proofs are sufficiently similar to that of in the (integral) Set Cover problem
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in Section 3.3, so we focus on describing the constructions and bounding their optimal objective

values.

4.6.1 Construction of basic blocks

Let q > 3 be a parameter. Consider a set system (U, F) of size JUI = JFl = 2q. We partition

U = {ei, - - - , e2q} into two disjoint equal-sized sets Uleft = {ei, ... , eqj and Uright = {eq+1, - ,e2q}.

The collection JF consists of 2q sets Si, -. - , S2q such that

U \ {er, er+q}, r < q
r Uleft \ {er-q}, r > q

The set system (U, F) is called a basic block. An example basic block with q = 4 is given in

Figure 4-16a. It is straightforward to check that each set in {si... , Sq} has size exactly 2(q - 1),

each set in {Sq+1, ' - - , S2q} has size q - 1, each element e E Uleft appears in exactly 2(q - 1) sets,
and each element e E Uright appears in exactly q - 1 sets.

Next we define swapped blocks. Consider integers 1 < i, j < q such i f j. In a basic block (U, F),

observe that ei E Sq+j but ei Si, while eq+j E Si but eq+j S 5 q+j- The swapped block (U, F('J))

is constructed by applying the swap operation between eq+j E Si and ei E Sq+j on the basic block.

More formally, the set system of the swapped block (U, F(2=J) { , .- - , S )}) is defined as

follows:

Sr, r {i, q + j}

r = (Sr U {eI}) \ {eq+j}, ri.

(Sr U {eq+j}) \ {e2}, r = q + j

An example swapped block (U, F(1 3 )) for q = 4 is given in Figure 4-16b. Observe that all sets

other than Si and Sq+j remain unchanged, while Si, Sq+j only swap one pair of elements eq+j, ei.

Moreover, for each pair (i, j) such that i j we can construct a distinct swapped block; this pair

of parameters fully specifies all possible swapped blocks resulting from a basic block. Following the

same argument from Section 3.3 for Cover Verification, each swapped block only differs in exactly

two answers of each SETOF and ELTOF oracles from those of its corresponding basic block, and no

two distinct swapped blocks modify any same oracle answer.

4.6.2 Main construction

In this section, using the basic blocks and the swap operations defined in the previous section (see

Figure 4-16), we construct two families of instances for the lower bound argument. The underlying

instance consists of E x n basic blocks, each of size 2q x 2q. Then we perform a series of swap

operations on some of the blocks in the structure to obtain our families of Yes instances and No

instances.

First consider an m x n matrix which consists of ! x n basic blocks. More precisely, the set
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Uleft Uright Uleft Uright

el e2 e3 e4 e5 e6 e 7 e8  el e2 e3 e4 e5 e6 e7 e8
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(a) A basic block (U, F) (b) A swapped block (U, F(1 ,3 ))

Figure 4-16: A basic block (U, F) and an example of a swap operation for q = 4. Recall that the
cell corresponding to the pair (e, S) is white if e E S and is shaded if e S.

( -l M-1
system (U = U 2qo Uc, JF = U 2q Fr) is constructed so that each of (Uc = {e2cq+1,...,(2c+2)q}, Fr =
{S2rq+1, , S(2r+2)q}) where 0 < r < and 0 < c < ! forms a basic block of size 2q x 2q, as

shown in Figure 4-17.

Next we define the No family and the Yes family of instances with respect to this underlying

structure.

UO U1

el e2 e3 e4 e5 e 6 e7 e8 e9 elo ell e 12

Si

S2

F0 3Fo 3
S4

S6

S7

S8

F, 89
10

Sil

S12

Figure 4-17: An underlying set system of basic blocks, with q = 3 and m = n= 2 2q.
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No instances. Pick a uniformly random column (of blocks) 0 < c < - and a uniformly random pair

(i, j) (such that 1 < i, j < q and i z j). Then, replace every basic block of column c by a swapped
block with parameter (i, j). More formally, for each 0 < r < ', we replace the basic block (U,, Fr)

with the swapped block (Uc, F$.2J)). Note that the indices i, j are with respect to the elements and

sets in the corresponding basic block. That is, the swap occurs between e(2c+1)q+j E S2rq+i and

e2cq+i E S(2r+1)q+j. An example can be found in Figure 4-18a.

Yes instances. For each No instance with parameter (c, i, j), create a Yes instance by undoing

one of the swaps performed on a uniform random row r. In other words, we can specify each Yes

instance with parameters (r, c, i, j) which indicate that all basic blocks in column c except the one

in row r are replaced with the swapped block defined with parameters i and j. An example of this

construction can be found in Figure 4-18b.

4.6.3 Bounding the optimal objective values

We now establish useful bounds on the optimal objective value for the instances in our constructed

families. We remark that these bounds are given in terms of q; they are independent of m and n.

Lemma 4.6.1. The optimal value of the Yes instance with block size 2q is at most q

Proof. For all Yes instances, there exists a row consisted entirely of basic (not swapped) blocks. Let

us denote the index of this row by r. Observe that every element belongs to all but one set from

the collection {S2rq+i, ... , S(2r+1)q}. Thus, the fractional set cover x, such that Sq+i = q 1 for

1 < i < q and 0 for all remaining sets, covers this Yes instance. (As an example, consider setting
sI=zs2 = = in Figure 4-18b.) This solution x has objective value q , which upper-bounds

the optimal solution.

Lemma 4.6.2. The optimal value of the No instance with block size 2q is at least q-1q-2'

Proof. To prove a lower bound on the optimal value for the fractional set cover of any No instance,
we construct a feasible solution of the dual program of its SetCover-LP with value . Then, byq-2
weak duality we conclude that the optimal objective value for the SetCover-LP of the No instance

is at least ". The dual problem, given in Figure 4-19, is a packing problem: the objective is to
assign a value y, to each element e so that the total value of elements within any set is at most 1,
while maximizing the total value assigned to all elements.

By the construction of No instances, there exists a column c where all blocks undergo the same

swap specified by (i,j). Let Uft = {e2cq+1, - - - , e(c+1q} and U h {e(2c+1)q+1, , e(2c+2)q}

(analogously to the partition within a basic block). Set the value ye = q for each element

e E ght \ {e(2c+1)q+j}, and ye = 0 for all remaining elements. (As an example, consider setting

Yen = Ye12 = 1 in Figure 4-18a.) By our construction, every set contains at most q - 2 elements

of U\ght \ {e2cq+q+j}; thus, all packing constraints of the dual program over the No instance are

satisfied. Moreover, the total value of the constructed solution y is .q-2 E
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(a) A No instance with parameter (1, 1, 3)
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(b) A Yes instance with parameter (0, 1, 1, 3)

Figure 4-18: A No instance and a Yes instance from the constructed families.
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Figure 4-19: LP relaxation of the dual of Set Cover problem.

4.6.4 Establishing lower bounds

To prove the lower bound for randomized protocols, applying Yao's principle, we instead show a

lower bound for any deterministic algorithm on a fixed distribution of input instances. We define

the distribution D of instances as follows: each of n(q-1) possible Yes instances has probability
q

2mn(q-1), and each of the possible n(q - 1) No instances has probability 2n(q-1) We may also
equivalently describe the process for generating a random instance as follows. First, pick a tuple

(c, i, j) uniformly at random, and create a No instance according to this parameter. Then, with

probability 1/2, we pick a random row r and undo the swap performed on the block located at

column c and row r to obtain a Yes instance corresponding to the parameter (r, c, i, j).
As similarly argued in Section 3.3, we may characterize each probe as a unique parameter

(r c, i, j) if it instigates different answers from the basic block (U,, Fr) and the swapped block

(Uc, F( ')). Observe that the algorithm may only detect a swap if it correctly specifies the triplet

(c, i, j), and may only detect the difference between the Yes instance and the corresponding No
instance if it correctly specifies the 4-tuple (r, c, i, j).

First, we show that any deterministic (1 + O('))-approximation algorithm of SetCover-LP

over this distribution requires Q(nq) probes. Then we provide another lower bound showing that

any deterministic (1 + O('))-approximation algorithm of the problem over this same distribution

also requires Q(LI) probes. Because these lower bounds are established from same distribution, we

achieve the combined lower bound of Q(nq + E) probes.

0(nq) lower bound. Here we provide the algorithm with a stronger oracle. Once the algorithm

makes a probe corresponding to (c, i, j), it receives the values of all ELTOF and SETOF probes

corresponding to (r, c, i,j) for all values of 0 < r < !.

Lemma 4.6.3. If a deterministic algorithm makes at most n probes on the input from distribution

D, then its probability of success is less than 2/3.

Proof. Since the algorithm is deterministic, as long as it detects no swap, its probe-answer history

must be the same no matter whether the input is from the No family or the Yes family. Thus the

algorithm must return the same answer. Suppose that the algorithm makes less than 2 probes.
5

Then for all instances in D whose swaps are specified with the n(q - 1) - L ;> n(q - 1) triplets

(c, i, j) that are not probed (which constitute at least- fraction of D), the algorithm must not

see any swap and return the same answer. Moreover, by the described process for constructing
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instances of D, it is straightforward to see that in expectation, exactly half of these instances are

Yes instances, and the remaining half are No instances. Since the algorithm returns the same answer

for this fraction of D, its answer is incorrect for I fraction of D. Thus the success probability

of the algorithm is at most 1 - 7/20 < 2/3. D

Lemma 4.6.4. For E < 1, any (randomized) (1 + E)-approximation algorithm of SetCover-LP with

probability of success at least 2/3 requires Q( ' ) probes.

Proof. By Lemma 4.6.1, the value of an optimal solution of SetCover-LP over Yes instances is

at most q, whereas by Lemma 4.6.2, the value of an optimal solution of SetCover-LP over No

instances is at least L. Moreover, Lemma 4.6.3 shows that in order to distinguish between Yes

and No instances with success probability at least 2/3, Q(nq) probes are required. Hence, setting

q = and applying Yao's principle, completes our proof. D

Q(g) lower bound. Similarly, we provide the algorithm with a different type of stronger oracle.

Once the algorithm makes a probe corresponding to r, it receives the values of all ELTOF and

SETOF probes corresponding to (r, C, i, j) for all values of 1 < i, j < q, i f j and 0 < c < 2.

Lemma 4.6.5. If a deterministic algorithm makes less than 1 probes on the input from distribution

D, then its probability of success is less than 2/3.

Proof. Suppose that the Yes instance is specified by the parameter (r, c, i, j). If the algorithm does

not make any probe corresponding to the row r, the answers it receives from the oracle will be

the same: no swaps anywhere except for those corresponding to (c, i, j). Since the algorithm is

deterministic, it must return the same answer. Suppose that the algorithm makes less than 1

probes. Then for all instances in D whose swaps are specified with the g - i values r that are not
q Sq

probed (which constitutes 4 fraction of D), the algorithm must return the same value no matter5

whether they are Yes instances or No instances. Thus, it must answer incorrectly for 2 fraction of

D, yielding the success probability of at most 1- <2 .

We omit the proof of the next lemma since it closely resembles that of Lemma 4.6.4 but instead

makes use of Lemma 4.6.5.

Lemma 4.6.6. For E < 1, any (randomized) (1+ E)-approximation algorithm of SetCover-LP with

probability of success at least 2/3 requires Q(m%/E) probes.

Combining Lemma 4.6.4 and Lemma 4.6.6, we obtain the following lower bound for probe com-

plexity of approximating SetCover-LP. For constant e and k, this result shows that our algorithm

smallSetCover is tight (up to polylogarithmic factors).

Theorem 4.6.7. For E < 1, any (randomized) (1 + E)-approximation algorithm of SetCover-LP

with probability of success at least 2/3 requires Q(' + mxfi) probes.

We remark that we may again apply the reduction from Section 3.5.2, by constructing compounds

of independent SetCover-LP instances and thereby increasing the optimal value of the LP. This yields

the following result.
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Corollary 4.6.8. For sufficiently small positive constant E, any (randomized) (1+E) -approximation

algorithm of SetCover-LP with probability of success at least 2/3 requires Q(fl+") probes, where k

is the size of the optimal objective value of SetCover-LP.
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Chapter 5

Local-Access Generators for Random

Graphs

5.1 Overview

The problem of computing local information of huge random objects was pioneered in [GGN03,
GGN10]. Further work of [NN07] considers the generation of sparse random G(n, p) graphs from the

Erd6s-R6nyi model [ER60], with p = O(poly(log n)/n), which answers poly(log n) ALL-NEIGHBORS

probes, listing the neighbors of probed vertices. While these generators use polylogarithmic re-

sources over their entire execution, they generate graphs that are only guaranteed to appear random

to algorithms that inspect a limited portion of the generated graph.

In [ELMR17], the authors construct an oracle for the generation of recursive trees, and BA

preferential attachment graphs. Unlike [NN07], their implementation allows for an arbitrary number

of probes. This result is particularly interesting - although the graphs in this model are generated via

a sequential process, the oracle is able to locally generate arbitrary portions of it and answer probes

in polylogarithmic time. Though preferential attachment graphs are sparse, they contain vertices of

high degree, thus [ELMR17] provides access to the adjacency list through NEXT-NEIGHBOR probes.

In this work, we construct oracles that allow probes to both the adjacency matrix and adjacency

list representation of a basic class of random graph families, without generating the entire graph at

the onset. Our oracles provide VERTEX-PAIR, NEXT-NEIGHBOR, and RANDOM-NEIGHBOR probes1

for graphs with independent edge probabilities, that is, when each edge is chosen as an indepen-

dent Bernoulli random variable. Using this framework, we construct the first efficient local-access

generators for undirected graph models, supporting all three types of probes using O(poly(log n))

time, space, and random bits per probe (with high probability), under assumptions on the ability to

compute certain values pertaining to consecutive edge probabilities. In particular, our construction

yields local-access generators for the Erd6s-Renyi G(n, p) model (for all values of p), and the Stochas-

tic Block model with random community assignment (while introducing linear dependencies on the

1VERTEX-PAIR(u, v) returns whether u and v are adjacent, NEXT-NEIGHBOR(v) returns the neighbor of v
with lowest ID that has not been returned by any previous NEXT-NEIGHBOR(v) call yet (until none is left),
and RANDOM-NEIGHBOR(v) returns a uniform random neighbor of v (if v is not isolated).
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number of communities). As in [ELMR17] (and unlike the generators in [GGN03, GGN10, NN07]),
our techniques allow unlimited probes.

While VERTEX-PAIR and NEXT-NEIGHBOR probes, as well as ALL-NEIGHBORS probes for sparse

graphs, have been considered in the prior works of [ELMR17, GGN03, GGN10, NN07], we provide

the first implementation (to the best of our knowledge) of RANDOM-NEIGHBOR probes, which do

not follow trivially from the ALL-NEIGHBOR probes in non-sparse graphs. Such probes are useful, for

instance, for sub-linear algorithms that employ random walk processes. RANDOM-NEIGHBOR probes

present particularly interesting challenges, since as we note in Section 5.1.1.1, (1) our implementation

does not resort to explicitly sampling the degree of any vertex in order to generate a random

neighbor, and (2) RANDOM-NEIGHBOR probes affect the conditional probabilities of the remaining

neighbors in a non-trivial manner. The former issue arises as sampling the degree of the probe

vertex, we suspect, is not viable for sub-linear generators: this quantity alone imposes dependence

on the existence of all of its potential incident edges. Hence, our generator needs to return a

random neighbor with probability reciprocal to the probe vertex's degree, without the knowledge

of this quantity itself. For the latter issue, even without committing to the degrees, answers to

RANDOM-NEIGHBOR probes still affect the conditional probabilities of the remaining adjacencies in

a global and non-trivial manner - that is, from the point of view of the agent interacting with the

generator. The generator, however, must somehow maintain and leverage its additional internal

knowledge of the partially-generated graph, to keep its computation tractable throughout the entire

graph generation process.

We then consider local-access generators for directed graphs in Kleinberg's Small World model.

In this case, the probabilities are based on distances in a 2-dimensional grid. Using a modified version

of our previous sampling procedure, we present such a generator supporting ALL-NEIGHBORS probes

in O(poly(log n)) time, space and random bits per probe (since such graphs are sparse, the other

probes follow directly).

5.1.1 Our results and techniques

We begin by stating our formalization of local-access generators (Section 5.2.1) inspired by that of

[ELMR17] (see also [ELMR16] for the original definition). Our work provides local-access generators

for various basic classes of graphs described in the following, with VERTEX-PAIR, NEXT-NEIGHBOR,
and RANDOM-NEIGHBOR probes. In all of our results, each probe is processed using poly(log n)

time, random bits, and additional space, with no initialization overhead. These guarantees hold

even in the case of adversarial probes. Our bounds assume constant computation time for each

arithmetic operation with O(log n)-bit precision. Each of our generators constructs a random graph

drawn from a distribution that is 1/ poly(n)-close to the desired distribution in the LI-distance.2

5.1.1.1 Undirected Graphs

In Section 5.3 we construct local access generators for the generic class of undirected graphs with

independent edge probabilities , where pu,v denote the probability that there is an edge

2The L1 -distance between two probability distributions p and q over domain D is defined as 11p - q =

ZxED Ip(x) - q(x)l. We say that p and q are E-close if |p - qJ1 < 6.
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between u and v. Throughout, we identify our vertices via their unique IDs from 1 to n, namely

V = [n]. We assume that we can compute various values pertaining to consecutive edge probabilities

for the class of graphs, as detailed below. We then show that such values can be computed for graphs

generated according to the Erd6s-Renyi G(n, p) model and the Stochastic Block model.

Next-Neighbor Probes. We note that the next neighbor of a vertex can be found trivially by

generating consecutive entries of the adjacency matrix, but for small edge probabilities pu,, = o(1)
this implementation can be too slow. In our algorithms, we achieve speed-up by sampling multiple

neighbor values at once for a given vertex u when assuming access to the oracle that computes
"skip" probabilities F(v, a, b) = ]1=a(1 - Pvu), where F(v, a, b) is the probability that v has no

neighbors in the range [a, b]. We later show that it is possible to compute this quantity efficiently

for the G(n,p) and Stochastic block models.

A main difficulty in our setup, as compared to [ELMR17, arises from the fact that our graph

is undirected, and thus we must design a data structure that "informs" all (potentially 0(n)) non-

neighbors once we decide on the probe vertex's next neighbor. More concretely, if u' is sampled as

the next neighbor of v after its previous neighbor u, we must maintain consistency in subsequent

steps by ensuring that none of the vertices in the range (u, u') return v as a neighbor. The method

given in [ELMR17] handles the preferential attachment graphs which are generated in an incremental

process, where each new vertex arrives sequentially and connects itself to an existing vertex, forming

a rooted tree structure. However, our update requires a more sophisticated data structure as we

must later support RANDOM-NEIGHBOR probes, where we generate neighbors (and non-neighbors)

at random locations.

Random-Neighbor Probes. We provide efficient RANDOM-NEIGHBOR probes. The ability to do

so is surprising. First, note that after performing a RANDOM-NEIGHBOR probe, all other conditional

probabilities will be affected in a non-trivial way.3 Second, we can sample a RANDOM-NEIGHBOR

with the correct probability 1/ deg(v), even though we do not sample or know the degree of the

vertex.

We formulate a bucketing approach (Section 5.3.3) which samples multiple consecutive edges at

once, in such a way that the conditional probabilities of the unsampled edges remain independent

and "well-behaved" during subsequent probes. For each vertex v, we divide the vertex set into

consecutive ranges (buckets), so that each bucket contains, in expectation, roughly the same number

of neighbors J6=a Pvu. The subroutine of NEXT-NEIGHBOR may be applied to sample the neighbors

within a bucket in expected constant time. Then, one may obtain a random neighbor of v by picking

a random neighbor from a random bucket; probabilities of picking any neighbors may be normalized

to the uniform distribution via rejection sampling. This bucketing approach also naturally leads to

our data structure that requires constant space for each bucket and for each edge, using r(n + m)

overall memory.

We now consider the application of our construction above to actual random graph models, where

we must realize the assumption that u -a(1 -Pu) and E6-a Pv can be computed efficiently. This

3 Consider a G(n, p) graph with small p, say p = 1/V/i, such that vertices will have O(#) neighbors
with high probability. After 6((fi) RANDOM-NEIGHBOR probes, we will have uncovered all the neighbors

(w.h.p.), so that the conditional probability of the remaining E(n) edges should now be close to zero.

159



holds trivially for the G(n, p) model via closed-form formulas, but requires an additional back-end

data structure for the Stochastic Block models.

Erdds-R6nyi. In Section 5.4.1, we apply our construction to random G(n, p) graphs for arbitrary p,
and obtain VERTEX-PAIR, NEXT-NEIGHBOR, and RANDOM-NEIGHBOR probes, using polylogarithmic

resources (time, space and random bits) per probe. We remark that, while Q(n+m) = Q(pn2 ) time

and space is clearly necessary to generate and represent a full random graph, our implementation

supports local-access via all three types of probes, and yet can generate a full graph in 6(n + m)

time and space (Corollary 5.4.2), which is tight up to polylogarithmic factors.

Stochastic Block Model. We generalize our construction to the Stochastic Block Model. In

this model, the vertex set is partitioned into r communities {C1, ... , C,}. The probability that an

edge exists between u E Ci and v E Cj, is pi,j, given an r x r matrix P. As communities in the

observed data are generally unknown a priori, and significant research has been devoted to designing

efficient algorithm for community detection and recovery, we aim to construct generators where the

community assignment of vertices are independently sampled from some given distribution R.

Our approach is, as before, to sample for the next neighbor or a random neighbor directly, al-

though our result does not simply follow closed-form formulas, as the probabilities for the potential

edges now depend on the communities of endpoints. To handle this issue, we observe that it is suffi-

cient to efficiently count the number of vertices of each community in any range of contiguous vertex

indices. We then design a data structure extending a construction of [GGN10], which maintain these

counts for ranges of vertices, and "sample" the partition of their counts only on an as-needed basis.

This extension results in an efficient technique to sample counts from the multivariate hypergeomet-

rc distribution (Section 5.4.2.1): this sampling procedure may be of independent interest. For r

communities, this yields an implementation with O(r - poly(log n)) overhead in required resources

for each operation.

5.1.1.2 Directed Graphs

Lastly, we consider Kleinberg's Small World model [KleOO,MN04] in Section 5.5. While Small-World

models are proposed to capture properties of observed data such as small shortest-path distances

and large clustering coefficients [WS98], this important special case of Kleinberg's model, defined on

two-dimensional grids, demonstrates underlying geographical structures of networks. The vertices

are aligned on a x V/nT grid, and the edge probabilities are a function of a two-dimensional

distance metric. Since the degree of each vertex in this model is O(log n) with high probability, we

design generators supporting ALL-NEIGHBOR probes.

5.1.2 Additional related work

Random graph models. The Erd6s-R6nyi model, given in [ER60], is one of the most simple theo-

retical random graph model, yet more specialized models are required to capture properties of real-

world data. The Stochastic Block model (or the planted partition model) was proposed in [HLL83]

originally for modeling social networks; nonetheless, it has proven to be an useful general statistical

model in numerous fields, including recommender systems [LSY03,SC11], medicine [SPT+01], social
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networks [For10, NWS02], molecular biology [CY06, MPN+99], genetics [CAT16, JTZ04, CSC+07],
and image segmentation [SMOO]. Canonical problems for this model are the community detec-

tion and community recovery problems: some recent works include [CRV15,MNS15,AS15, ABH16];

see e.g., [Abbl8] for survey of recent results. The study of Small-World networks is originated

in [WS98] has frequently been observed, and proven to be important for the modeling of many real

world graphs such as social networks [DMW03, TM67], brain neurons [BB06], among many others.

Kleinberg's model on the simple lattice topology (as considered in this chapter) imposes a geograph-

ical that allows navigations, yielding important results such as routing algorithms (decentralized

search) [KleOO,MN04]. See also e.g., [NewOO] and Chapter 20 of [EK10].

Generation of random graphs. The problem of local-access implementation of random graphs

has been considered in the aforementioned work [GGN03,NN07, ELMR17], as well as in [MRVX12]

that locally generates out-going edges on bipartite graphs while minimizing the maximum in-degree.

The problem of generating full graph instances for random graph models have been frequently

considered in many models of computations, such as sequential algorithms [MKI+03,BB05,NLKB11,
MH11], and the parallel computation model [AK17].

Probe models. In the study of sub-linear time graph algorithms where reading the entire input

is infeasible, it is necessary to specify how the algorithm may access the input graph, normally by

defining the type of probes that the algorithm may ask about the input graph; the allowed types of

probes can greatly affect the performance of the algorithms. While NEXT-NEIGHBOR probe is only

recently considered in [ELMR17j, there are other probe models providing a neighbor of a vertex,
such as asking for an entry in the adjacency-list representation [GR02], or traversing to a random

neighbor [BK10]. On the other hand, the VERTEX-PAIR probe is common in the study of dense

graphs as accessing the adjacency matrix representation [GGR98]. The ALL-NEIGHBORS probe has

recently been explicitly considered in local algorithms [FPV18].

5.2 Preliminaries

For clarity, we first describe the model of local-access generators, with focus on the undirected case;

we explain the directed case within their own section.

5.2.1 Local-access generators

We consider the problem of locally generating random graphs G = (V, E) drawn from the desired

families of simple unweighted graphs, undirected or directed. We denote the number of vertices

n = IVI, and refer to each vertex simply via its unique ID from [n]. For undirected G, the set of

neighbors of v E V is defined as 1(v) and its degree is defined as deg(v) = IF(v)I. Inspired by the

model of [ELMR17] (formally described in [ELMR16]), we propose our adaptation of local-access

generators as follows.

Definition 5.2.1. A local-access generator of a random graph G sampled from a distribution D, is

a data structure that provides access to G by answering various types of supported probes, while

satisfying the following:
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" Consistency. The responses of the local-access generator to all probes throughout the entire

execution must be consistent with a single graph G.

" Distribution equivalence. The random graph G generated by the generator must be sampled

from some distribution D' that is e-close to the desired distribution D in the L1 -distance.4 In

this work we focus on supporting c = n-C for any desired constant c > 0. As for RANDOM-

NEIGHBOR(V), the distribution from which a neighbor is returned must be E-close to the uniform

distribution over neighbors of v with respect to the sampled random graph G (with probability

1 - nc for each probe).

" Performance. The resources, consisting of (1) computation time, (2) additional random bits

required, and (3) additional space required, in order to compute an answer to a single probe

and update the data structure, must be sub-linear, preferably poly(log n). In the majority of

this work, we aim to satisfy these conditions with high probability (for each probe), but we also

further consider different trade-offs for deterministic and amortized guarantees in Section 5.6

and Section 5.7.

In particular, we allow probes to be made adversarially and non-deterministically. The adversary

has full knowledge of the generator's behavior and its past random bits.

Supported Probes. For undirected graphs, we consider probes of the following forms.

" NEXT-NEIGHBOR(v): The generator returns the neighbor of v with the lowest ID that has not

been returned during the execution of the generator so far. If all neighbors of a have already

been returned, the generator returns n + 1.

" RANDOM-NEIGHBOR(v): The generator returns a neighbor of v uniformly at random (with

probability 1/ deg(v) each). If v is isolated, _L is returned.

" VERTEX-PAIR(u, v): The generator returns 1 or 0, indicating whether {u, v} E E or not.

Differences from the oracle access model in Chapter 2. We remark the following differences

compared to the oracle access model employed by the LCAs in Chapter 2. First, we represent vertices

via their unique IDs in [n], whereas LCAs in Chaper 2 do not rely on this assumption. Second,
we explicitly exclude the DEGREE probes due to the discussed difficulties. Third, because we do

not have an explicit adjacency-list representation of the generated graphs, the VERTEX-PAIR(u, v)

probe, unlike the ADJACENCY probe with parameter (u, v), does not return the index i indicating

that v is the ith neighbor of u.

5.2.2 Random graph models

Erd6s-R6nyi Model. We consider the G(n, p) model: each edge {u, v} exists independently with

probability p E [0, 1]. Note that p is not assumed to be constant, but may be a function of n.
4 Previous works on graph generators such as [BB05, ELMR17] do not consider errors (or additional re-

source requirements) resulting from the use of finite-precision arithmetic, and hence provide identical equiv-
alence (where E = 0). Our definition, however, handles these issues explicitly, under reasonable assumptions
on the computation model.
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Stochastic Block Model. This model is a generalization of the Erdcs-R6nyi Model. The vertex

set V is partitioned into r communities C1, ... , Cr. The probability that the edge {u, v} exists

is pij when u E Ci and v E Ci, where the probabilities are given as an r x r symmetric matrix

P = [Pij]i,j[r]. We assume that we are given explicitly the distribution R over the communities,
and each vertex is assigned its community according to R independently at random. We remark that

our algorithm also supports the alternative specification where the community sizes (ICi,..., Cr I)
are given instead, where the assignment of vertices V into these communities is chosen uniformly

at random.

Small-World Model. In this model, each vertex is identified via its 2D coordinate v = (vx, vY) E
[ v]2. Define the Manhattan distance as dist(u, v) = lux - vxl + luy - v.1, and the probability

that each directed edge (u, v) exists is c/(dist(u, v)) 2 . Here, c is an indicator of the number of long

range directed edges present at each vertex. A common choice for c is given by normalizing the

distribution so that there is exactly one directed edge emerging from each vertex (c = 0(1/ log n)).

We will however support a range of values of c = log E(1) n. While not explicitly specified in

the original model description of [KleOO], we assume that the probability is rounded down to 1 if

c/(dist (u, v)) 2 > 1.

Since the Small-World model generates relatively sparse graphs, we support an ALL-
NEIGHBORS(v) probe which returns the entire list of out-neighbors of v.

5.2.3 Miscellaneous

Arithmetic operations. Let N be a sufficiently large number of bits required to maintain a mul-

tiplicative error of at most a 1 factor over poly(n) elementary computations (+, -, -, 7, exp).5poly(n)

We assume that each elementary operation on words of size N bits can be performed in constant

time. Likewise, a random N-bit integer can be acquired in constant time. We assume that the

input is also given with N-bit precision.

Sampling via a CDF. Consider a probability distribution X over O(n) consecutive integers, whose

cumulative distribution function (CDF) for can be computed with at most n-C additive error for

constant c. Using O(log n) CDF evaluations, one can sample from a distribution that is poI(n) -close

to X in Li-distance. 6

5.3 Local-Access Generators for Random Undirected Graphs

In this section, we provide an efficient implementation of local-access generators for random undi-

rected graphs when the probabilities p,, = IP[{u, v} E E] are given. More specifically, we assume

that we can efficiently compute: (1) the probability that there is no edge between a vertex u and a

'In our application of exp, we only compute ab for b E Z+ and 0 <a < 1 + E(), where ab =0(1). For
this, N = O(log n) bits are sufficient to achieve the desired accuracy, namely an additive error of n-'.

6Generate a random N-bit number r, and binary-search for the smallest domain element x where P[X <
X) > r.
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range of consecutive vertices from [a, b], namely Hb -(1 pv,u), and (2) the sum of the edge proba-

bilities (i.e., the expected number of edges) between u and vertices from [a, b], namely %-aPv,u . In

Section 5.4, we provide subroutines for computing these for the Erd6s-R6nyi model and the Stochas-

tic Block model with randomly-assigned communities. We also begin by assuming perfect-precision

arithmetic, until Section 5.3.5 where we to relax this assumption to N = e(log n)-bit precision.

First, we propose a simple implementation of our generator in Section 5.3.1 that sequentially

fills out the adjacency matrix; while we do not focus on its efficiency, we establish some basic

concepts for further analysis in this section. Next, we improve our subroutine for NEXT-NEIGHBOR

probes in Section 5.3.2; this algorithm samples for the next candidate of the next neighbor in a more

direct manner to speed-up the process. Extending this construction to support RANDOM-NEIGHBOR

probes, we obtain our main algorithm in Section 5.3.3 via the bucketing technique; partition the

vertex set into contiguous ranges to normalize the expected number of neighbors in each bucket.

The subroutine that samples for neighbors within a bucket, along with the remaining analysis of

the algorithm, is given later in Section 5.3.4.

We remark that throughout this chapter, for convenient, we generally index our algorithms

via the corresponding figure numbers. For example, Algorithm 5-1 refers to the algorithm with

pseudocode provided in Figure 5-1.

5.3.1 NaYve Generator with an explicit adjacency matrix

Each entry A[u][v] occupies exactly one of following three states: A[u][vi = 1 or 0 if the generator

has determined that {u, v} E E or {u, v} E, respectively, and A[u][v] = 4 if whether {u, v} E E

or not will be determined by future random choices. Aside from A, our generator also maintains the

vector last, where last[v] records the neighbor of v returned in the last call NEXT-NEIGHBOR(v), or

0 if no such call has been invoked. This definition of last was introduced in [ELMR171. All cells of

A and last are initialized to 0 and 0, respectively. We refer to Algorithm 5-1 for its straightforward

implemention, but highlight some notations and useful observations here.

Characterizing random choices via Xu,)'s. Algorithm 5-1 updates the cell A[u][v] = 4 to the

value of the Bernoulli random variable (RV) X,,, ~ Bern(p,) (i.e., flip a coin with bias pu,) only

when it needs to decide whether {u, v} E E. For the sake of analysis, we will frequently consider

the entire table of RVs Xu,, being sampled up-front (i.e., flip all coins), and the algorithm simply

"uncovers" these variables instead of making coin-flips. Thus, every cell A[u][v] is originally #, but

will eventually take the value Xu,, once the graph generation is complete.

Sampling from 1F(v) uniformly without knowing v's degree. Consider a RANDOM-

NEIGHBOR(v) probe. We create a pool R of vertices, draw from this pool one-by-one, until we find

a neighbor of u. Then, for any fixed table Xu,,, the probability that a vertex u E 1F(v) is returned

is simply the probability that, in the sequence of vertices drawn from the pool R, u appears first

among all neighbors in F(v). Hence, we sample each u E r(v) with probability 1/ deg(v), even

without knowing the specific value of deg(v).

Capturing the state of the partially-generated graph with A. Under the presence of

RANDOM-NEIGHBOR probes, the probability distribution of the random graphs conditioned on the
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Figure 5-1: Na~ive generator

past probes and answers can be very complex: for instance, the number of repeated returned neigh-

bors of v reveals information about deg(v) = uV Xu,v, which imposes dependencies on as many

as 0(n) variables. Our generator, on the other hand, records the neighbors and also non-neighbors

not revealed by its answers, yet surprisingly this internal information fully captures the state of

the partially-generated graph. This suggests that we should design generators that maintain A as

done in Algorithm 5-1, but in a more implicit and efficient fashion in order to achieve the desired

complexities. Another benefit of this approach is that any analysis can be performed on the simple

representation A rather than any complicated data structure we may employ.

Obstacles for maintaining A. There are two problems in the current approach. Firstly, the

algorithm only finds a neighbor, for a RANDOM-NEIGHBOR or NEXT-NEIGHBOR probe, with prob-

ability pu,,, which requires too many iterations: for G(n,p) this requires 1/p iterations, which is

already infeasible for p = o(1/ poly(log n)). Secondly, the algorithm may generate a large number

of non-neighbors in the process, possibly in random or arbitrary locations.

5.3.2 Improved NEXT-NEIGHBOR probes via run-of-O's sampling

We now speed-up our NEXT-NEIGHBOR(v) procedure by attempting to sample for the first index

u > last[v] of Xvu = 1, from a sequence of Bernoulli RVs {Xv,u}u>1ast[v]. To do so, we sample a
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VERTEX-PAIR(u, v)
if A[u[v] = then

draw Xu - Bern(pu,v)
AIV] [u], A [u][IV] +-- Xu, v

return A[u][v]

NEXT-NEIGHBOR(v)

for u <- last[v] + 1 to n do
if VERTEX-PAIR(v, u) = 1 then

last [v] +- u
return U

last[v] <- n + 1
return n +I1

RANDOM-NEIGHBOR(u, v)
R -V
repeat

sample it E R u.a.r.
if VERTEX-PAIR(v, u) = 1 then

return U
else

R +- R \ {u}
until R = 0
return L



consecutive "run" of O's with probability llu=1ast[vl+1(1 -Pv,u) (probability that (last[v], u'] contains

no neighbors of v), which can be computed efficiently by our assumption. The problem is that,

some entries A[v][u]'s in this run may have already been determined (to be 1 or 0) by probes

NEXT-NEIGHBOR(u) for u > last[v]. To this end, we give a succinct data structure that determines

the value of A[v][u], and more generally, captures the state of A, in Section 5.3.2.1. Using this data

structure, we ensure that our sampled run does not skip over any 1. Next, for the sampled index u

of the first occurrence of 1, we check against this data structure to see if A[v] [u] is already assigned

to 0, in which case we re-sample for a new candidate u' > u. Section 5.3.2.2 discusses the subtlety

of this issue.

While this sampling process has been used in [ELMR17], we include the full description here,

as it will become a building block for further sections, as well as clarifying some implementation

differences, particularly in our succinct data structure for representing A. Since we aim to support

arbitrary edge probabilities (resulting in either dense or sparse graphs), this warrants a new method

for bounding the number of re-sampling iterations of this process. In particular, we show (in

Section 5.6) that O(log n) iterations suffice with high probability even if the probes are adversarial,

and that this method may be extended to support VERTEX-PAIR probes. Lastly, we use this section

to highlight its limitation: why this approach alone cannot handle RANDOM-NEIGHBOR probes.

5.3.2.1 Data structure

From the definition of X,,,, NEXT-NEIGHBOR(v) is given by min(u > last[v] : X,,u= 1} (or

n + 1 if no satisfying u exists). Let P, = {u : A[v][u] = 1} be the set of known neighbors of

v, and wv = min{(P n (last[v], n]) U {n + 1}} be its first known neighbor not yet reported by a

NEXT-NEIGHBOR(v) probe, or equivalently, the next occurrence of 1 in v's row on A after last[v].

Note that wv = n + 1 denotes that there is no known neighbor of v after last[v]. Consequently,

A[v][] E {, 0} for all u E (last[v], wv), So NEXT-NEIGHBOR(v) is either the index u of the first

occurrence of Xvu = 1 in this range, or w, if no such index exists.

We keep track of last[v] in a dictionary, where the key-value pair (v, last[v]) is stored only when

last[v] y 0: this removes any initialization overhead. Each P, is maintained as an ordered set,
which is also only instantiated when it becomes non-empty. We maintain Pv simply by adding u to

v if a call NEXT-NEIGHBOR(v) returns u, and vice versa.

As discussed in the previous section, we cannot maintain A explicitly, as updating it requires

replacing up to 0(n) #'s to O's for a single NEXT-NEIGHBOR probe in the worst case. Instead, we

argue that last and Pv's provide a succinct representation of A via the following observation. We

say that Xu,v is decided if A[u] [v] = #, and call it undecided otherwise.

Lemma 5.3.1. The data structures last and Pv's together provide a succinct representation of

A when only NEXT-NEIGHBOR probes are allowed. That is, A[v][u] = 1 precisely when u E Pv.

Otherwise, A[v][u] = 0 when u < last[v] or v < last[u]. In all other cases, A[v][u] = #.

Proof. The condition for A[v][u] = 1 clearly holds by constuction. Otherwise, observe that A[v][u]
becomes decided (its value changes from # to 0) precisely during the first call of NEXT-NEIGHBOR(v)

that returns a value u' > u which thereby sets last[v] to u' yielding u < last[v], or vice versa. E
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5.3.2.2 Probes and Updates

We now provide our generator (Algorithm 5-2), and discuss the correctness of its sampling process.
The argument here is rather subtle and relies on viewing the random process as an "uncovering"

process on the table of RVs Xu,,'s. Algorithm 5-2 considers the following experiment for sampling the
next neighbor of v in the range (last [v], w,). Suppose that we generate a sequence of wv - last [v] - 1
independent coin-tosses, where the ith coin C,, corresponding to u = last[v] + i has bias pv,u,
regardless of whether X,,'s are decided or not. Then, we use the sequence (Cv,u) to assign values to

undecided random variable Xo,,. The crucial observation here is that the decided random variables

XVU = 0 do not need coin-flips, and the corresponding coin result Cv,u can simply be discarded.
Thus, we need to generate coin-flips up until we encounter some u satisfying both Cv,= 1 and
A[v][u] =

NEXT-NEIGHBOR(v)

S <- Pv n(last [v], n])
w, +-- min{S U {n + 1}}
repeat

sample F - F(v, u, w,)
u <-- F

until u = wv or lastu] < v
if u = wV then

Pv <- Pv U {U}
Pu <- Pu U {v}

last[v] <- u
return u

Figure 5-2: NEXT-NEIGHBOR procedure

Let F(v, a, b) denote the probability distribution of the occurrence u of the first coin-flip Cv,u = 1
among the neighbors in (a, b). More specifically, F ~ F(v, a, b) represents the event that Cv,a+1

= C,F-1 = 0 and Cv,F = 1, which happens with probability P[F f] = ] 1 (1 -P,)Pv,f.

For convenience, let F = b denote the event where all Cvu = 0. Our algorithm samples F ~

F(v, last [v], w,) to find the first occurrence of Cv,F1 = 1, then samples F2 - F(v, F1 , wv) to find the

second occurrence C=,F2 = 1, and so on. These values {F} are iterated as u in Algorithm 5-2. We
repeat until we find u such that A[v][u] = #. Note that once the process terminates at some u, we

make no implications on the results of any uninspected coin-flips after Cv,u.

Obstacles for extending beyond Next-Neighbor probes. There are two main issues that

prevent this method from supporting RANDOM-NEIGHBOR probes. Firstly, while one might con-

sider applying NEXT-NEIGHBOR from some random location a to find the minimum u' > u where

A[v][u'] = 1, the probability of choosing u' will depend on the probabilities pv,u's, and is generally

not uniform. While a rejection sampling method may be applied to balance out the probabilities of

choosing neighbors, these arbitrary pv,u's may distribute the neighbors rather unevenly: some small

contiguous locations may contain so many neighbors that the rejection sampling approach requires

too many iterations to obtain a single uniform neighbor.
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Secondly, in developing Algorithm 5-2, we observe that last [v] and Pv together provide a succinct

representation of A[vi[u] = 0 only for contiguous cells A[v][u] where u < last[v] or v < last[u].

Unfortunately, in order to extend our construction to support RANDOM-NEIGHBOR probes, we must

unavoidably assign A[v][u] to 0 in random locations beyond last[v] or last[u], which cannot be

captured by the current data structure. More specifically, to speed-up the sampling process for

small pv,u's, we must generate many random non-neighbors at once, but we cannot afford to spend

time linear in the number of created O's to update our data structure. We remedy these issues via

the following bucketing approach.

5.3.3 Final generator via the bucketing approach

We now resolve both of the above issues via the bucketing approach, allowing our generator to

support all remaining types of probes. We begin this section by focusing first on RANDOM-NEIGHBOR

probes. we divide the neighbors of v into buckets B = {B '1, B ... }, so that each bucket

contains, in expectation, roughly the same number of neighbors of v. We may then implement

RANDOM-NEIGHBOR(v) by randomly selecting a bucket B(, fill in entries A[v][u] for u C with

l's and O's, then report a random neighbor from this bucket. As the bucket size may be too large,
instead of using a linear scan, we will use the NEXT-NEIGHBOR subroutine from Algorithm 5-2.

Since the number of iterations required by this subroutine is roughly proportional to the number of

neighbors, we choose to allocate a constant number of neighbors in expectation to each bucket.

Nonetheless, as the actual number of neighbors appearing in each bucket may be different, we

balance out these discrepancies by performing rejection sampling, again without the knowledge of

deg(v) (Section 5.3.1). Leveraging the fact that the maximum number of neighbors in any bucket

is O(log n), we show not only that the probability of success in the rejection sampling process is at

least 1/ poly(log n), but the number of iterations required by NEXT-NEIGHBOR is also bounded by

poly(log n), achieving the overall desired complexities. Here in this section, we will extensively rely

on the assumption that the expected number of neighbors for consecutive vertices, =, can

be computed efficiently.

5.3.3.1 Partitioning into buckets

We pick some sufficiently large constant L, and assign the vertex u to the E>_ pvi/L th bucket

of v. Essentially, each bucket is a contiguous range of vertices, where the total probability of

vertices being neighbors of v is mostly between L - 1 and L + 1 (for example, for G(n,p) each

bucket contains approximately L/p neighbors). Define F(2(v) = 1(v) n B(P, the actual neighbors

appearing in bucket B(). By construction, L - 1 < E[IF(' (v)1] < L + 1 for every bucket (except for

i Bv I where the lower bound may fail).

Via this property, we show that with high probability, all the bucket sizes IF( (v)l are at most

O(L log n) and at least 2/3 fraction of the buckets are non-empty.

Lemma 5.3.2. With high probability, the number of neighbors in every bucket, IF()(v)f, is at most

0 (L log n).
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Proof. Fix a bucket BV, and consider the Bernoulli RVs {X,}eB(i) The expected number of

neighbors in this bucket is E [IF( (v)|] = E [XB(,) xV,] < L + 1. Via the Chernoff bound,

P [IF( (v)I > (1 + 3c log n) - L] < e 3 = n-

for any constant c > 0. E

Lemma 5.3.3. With high probability, for every v such that |BvI = Q(logn), at least a fraction of

2/3 of the buckets {B }iC[BvI| are non-empty.

Proof. For i < IBv|, since E [IF(')(v)I] = E [ZB) Xv,u > L - 1, we bound the probability that

BV is empty:

P[Bv is empty] ME (1 - pv,u) < e uEB) < e- c

for any arbitrary small constant c given sufficienty large constant L. Let T be the indicator for the

event that B is not empty, so E[T] > 1 - c. By the Chernoff bound, the probability that less

than IBvI/3 buckets are non-empty is

P [ Ti < IBv] < " Ti < IB2-1I 5 ee(IBvl) -

as IBvI = Q(logrn) by assumption. D

5.3.3.2 Filling a bucket

We consider buckets to be in two possible states - filled or unfilled. Initially, all buckets are considered

unfilled. In our algorithm we will maintain, for each bucket BV , the set P(') of known neighbors of

a in bucket BV ; this is a refinement of the set Pv in Section 5.3.2. We define the behaviors of the

procedure FILL(v, i) as follows. When invoked on an unfilled bucket BV , FILL(v, i) performs the

following tasks:

" decide whether each vertex u E Bv is a neighbor of v (implicitly setting A[v][u] to 1 or 0)

unless Xv, is already decided; in other words, update PVi to FMO(v)

* mark B) as filled.

For the sake of presentation, we postpone our description of the implementation of FILL to Sec-

tion 5.3.4. For now, let us use FILL as a black-box operation.

5.3.3.3 Putting it all together: Random-Neighbor probes

Consider Algorithm 5-3 for generating a random neighbor via rejection sampling, in a rather similar

overall framework as the simple implementation in Section 5.3.1. For simplicity, throughout the

analysis, we assume |Bv| = Q(logn); otherwise, invoke FILL(V,i) for all i E [|IBI] to obtain the
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entire neighbor list F(v). This does not affect the analysis because we will bound the (expected)

number of calls that Algorithm 5-3 makes to FILL by O(logrn).

RANDOM-NEIGHBOR(v)

R - [IBv|]
repeat

sample i E R uniformly at random

if B2, is not filled then
FILL (v, i)

if IPFI > 0 then

with probability M

sample u E P(') uniformly at random
return a

else

R +- R \ {i}
until R = 0
return _

Figure 5-3: Bucketing generator

To obtain a random neighbor, we first choose a bucket B}P uniformly at random. If the bucket

is not filled, we invoke FILL(v, i) and fill it. Then, we accept the sampled bucket for generating our

random neighbor with probability proportional to MP|. More specifically, let M = e(logn) be

the upper bound on the maximum number of neighbors in any bucket, as derived in Lemma 5.3.2;

we accept this bucket with probability Pi) J/M, which does not exceed 1 with high probability.

(We also remove i from the pool precisely when P(') 0, before proceeding to the next iteration -

the else statement is coupled with the if directly above it.) If we choose to accept this bucket, we

return a random neighbor from Pk). Otherwise, reject and repeat the process again.

Since the returned value is always a member of P(0, a valid neighbor is always returned. Further,
i is removed from R only if Bv) does not contain any neighbors. So, if v has any neighbor,
RANDOM-NEIGHBOR does not return -. We now proceed to showing the correctness of the algorithm

and bound the number of iterations required.

Lemma 5.3.4. Algorithm 5-3 returns a uniformly random neighbor of vertex v.

Proof. It suffices to find the probability that a neighbor u E 17(v) is returned, in a single iteration.

During an iteration, consider a vertex u c P, : we compute the probability that u is accepted.

The probability that i is picked is 1/IRI, the probability that BI is accepted is JP, I/M, and

the probability that u is chosen among is 1/P(01. Hence, the overall probability of returning u is

1/(IRIM), which is independent of u. So, each vertex is returned with the same probability. D

Lemma 5.3.5. Algorithm 5-3 terminates in ((log n) iterations in expectation, or O(log2 n) itera-

tions with high probability.

Proof. The probability that some vertex from PvS2) is accepted in an iteration is at least 1/(IRIM).

From Lemma 5.3.3, (1/3)-fraction of the buckets are non-empty (with high probability), so the
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probability of choosing a non-empty bucket is at least 1/3. Further, M = 0(log n) by Lemma 5.3.2.
Hence, the success probability of each iteration is at least 1/(3M) = Q(1/ log n). Thus, the number

of iterations required is O(log 2 n) with high probability. El

5.3.4 Implementation of the FILL function

FILL(v, i)

(a, b) <- B
repeat

sample u - F(v, a, b)

Bu <- bucket containing v

if B is not filled then
PM <- Me u

p 0~) 0 )
P <- Pu U {v}

a <- u
until a > b

mark B as filled

Figure 5-4: FILL procedure

Lastly, we describe the implementation of the FILL procedure, employing the approach of skip-

ping non-neighbors. We aim to simulate the following process: perform coin-tosses Cvu with prob-
ability pv,u for every u E B and update A[v][u]'s according to these coin-flips unless they are

decided (i.e., A[v][u] # #). We directly generate a sequence of u's where the coins Co,, = 1, then

add a to Pv and vice versa if Xvu has not previously been decided. Thus, once B( is filled, we will

obtain pv - F()(v) as desired.

As discussed in Section 5.3.2, while we have recorded all occurrences of A[v][u] = 1 in PM, we

need and efficient way of checking whether A[v][u] = 0 or 0. In Algorithm 5-2, last serves this

purpose by showing that A[v][u] for all u < last[v] are decided as shown in Lemma 5.3.1. Here

instead, with our bucket structure, we maintain a single bit marking whether each bucket is filled or

unfilled: a filled bucket implies that A[v][u] for all u C BI) are decided. The bucket structure along

with mark bits, unlike last, are capable of handling intermittent ranges of intervals, namely buckets,
which is sufficient for our purpose, as shown in the following lemma. This yields the implementation

Algorithm 5-4 for the FILL procedure fulfilling the requirement previously given in Section 5.3.3.2.

Lemma 5.3.6. The data structures PV) 's and the bucket marking bits together provide a succinct

representation of A as long as modifications to A are performed solely by the FILL operation in

Algorithm 5-4. In particular, let u E B and v E B . Then, A[v][u] = 1 if and only if u E P(i)
Otherwise, A[v][u] = 0 when at least one of BM or B is marked as filled. In all remaining cases,
A[v][u] = #.

Proof. The condition for A[v][u] = 1 still holds by constuction. Otherwise, observe that A[v][U]
becomes decided precisely during a FILL(v, i) or a FILL(u, j) operation, which thereby marks one of

the corresponding buckets as filled. 0
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Note that Pi 's, maintained by our generator, are initially empty but may not still be empty at

the beginning of the FILL function call. These P) 's are again instantiated and stored in a dictionary

once they become non-empty. Further, observe that the coin-flips are simulated independently of

the state of P(', so the number of iterations of Algorithm 5-4 is the same as the number of coins

CVU = 1 which is, in expectation, a constant (namely E>eZB() PvU = 1] ZueB') Pv,u < L + 1).

We have completed the description of our implementation of RANDOM-NEIGHBOR. As Algo-

rithm 5-4 requires poly(log n) resources per call with high probability, combining with Lemma 5.3.5,
we obtain the desired polylogarithmic resource bound for RANDOM-NEIGHBOR. More formally, by

tracking the resource required by Algorithm 5-4 we obtain the following lemma; note that "addi-

tional space" refers to the enduring memory that the generator must allocate and keep even after

the execution, not its computation memory. The log n factors in our complexities are required to

perform binary-search for the range of B}J, or for the value u from the CDF of F(u, a, b), and to

maintain the ordered sets P4) and P(A.

Lemma 5.3.7. Each execution of Algorithm 5-4 (the FILL operation) on an unfilled bucket B , in

expectation:

* terminates within 0(1) iterations (of its repeat loop);

* computes O(log n) quantities of Huc[a,b (1 - Pv,u ) and Eue[a,b] Pv,u each;

* aside from the above computations, uses O(logn) time, 0(1) random N-bit words, and 0(1)

additional space.

Observe that the number of iterations required by Algorithm 5-4 only depends on its random

coin-flips and independent of the state of the algorithm. Combining with Lemma 5.3.5, we finally

obtain polylogarithimc resource bound for our implementation of RANDOM-NEIGHBOR.

Corollary 5.3.8. Each execution of Algorithm 5-3 (the RANDOM-NEIGHBOR probe), with high prob-

ability,

" terminates within O(log2 n) iterations (of its repeat loop);

* computes O(log3 n) quantities of HuE[a,b] (1 - Pv,u) and Eu[a,b] Pv,u each;

" aside from the above computations, uses O(log 3 n) time, O(log 2 n) random N-bit words, and

O(log 2 n) additional space.

Extension to other probe types. We now extend our algorithm to support remaining probes.

" VERTEX-PAIR(u, v): We simply need to make sure that Lemma 5.3.6 holds, so we first apply

FILL(u, j) on bucket B2j) containing v (if needed), then answer accordingly.

" NEXT-NEIGHBOR(v): We maintain last, and keep invoking FILL until we find a neighbor.

Recall that the probability that a particular bucket is empty is a constant (Lemma 5.3.3).

Then with high probability, there exists no w(log n) consecutive empty buckets Bv's for any

vertex v, and thus NEXT-NEIGHBOR only invokes up to 0(log n) calls to FILL.

We summarize the results so far with through the following theorem.

Theorem 5.3.9. Under the assumption of
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1. perfect-precision arithmetic, including the generation of random real numbers in [0,1)
2. the quantities ba(1 -Pv,u) and Zb=aPvu of the random graph family can be computed with

perfect precision in logarithmic time, space and random bits,

there exists a local-access generator for the random graph family that supports RANDOM-NEIGHBOR,

VERTEX-PAIR and NEXT-NEIGHBOR probes that uses polylogarithmic running time, additional space,

and random words per probe with high probability.

5.3.5 Removing the perfect-precision arithmetic assumption

In this section we remove the prefect-precision arithmetic assumption. Instead, we only assume that

it is possible to compute HAia(1 - Pv,u) and Z Pvu to N-bit precision, as well as drawing a

random N-bit word, using polylogarithmic resources. Here we will focus on proving that the family

of the random graph we generate via our procedures is statistically close to that of the desired

distribution. The main technicality of this lemma arises from the fact that, not only the generator

is randomized, but the agent interacting with the generator may choose his probes arbitrarily (or

adversarially): our proof must handle any sequence of random choices the generator makes, and

any sequence of probes the agent may make.

Observe that the distribution of the graphs constructed by our generator is governed entirely

by the samples u drawn from F(v, a, b) in Algorithm 5-4. By our assumption, the CDF of any

F(v, a, b) can be efficiently computed from H a(1 - p,u), and thus sampling with error in

the Li-distance requires a random N-bit word and a binary-search in O(log(b - a + 1)) = O(log n)

iterations. Using this crucial fact, we prove our lemma that removes the perfect-precision arithmetic

assumption.

Lemma 5.3.10. If Algorithm 5-4 (the FILL operation) is repeatedly invoked to construct a graph

G by drawing the value u for at most S times in total, each of which comes from some distribution

F'(v, a, b) that is c-close in L1 -distance to the correct distribution F(v, a, b) that perfectly generates the

desired distribution G over all graphs, then the distribution G' of the generated graph G is (eS)-close

to G in the L1 -distance.

Proof. For simplicity, assume that the algorithm generates the graph to completion according to

a sequence of up to n2 distinct buckets B = (B , B ,2)...), where each B specifies the

unfilled bucket in which any probe instigates a FILL function call. Define an internal state of our

generator as the triplet s = (k, u, A), representing that the algorithm is currently processing the

kth FILL, in the iteration (the repeat loop of Algorithm 5-4) with value u, and have generated A

so far. Let tA denote the terminal state after processing all probes and having generated the graph

GA represented by A. We note that A is used here in the analysis but not explicitly maintained;

further, it reflects the changes in every iteration: as u is updated during each iteration of FILL, the

cells A[v][u'] = # for u' < u (within that bucket) that has been skipped are also updated to 0.

Let S denote the set of all (internal and terminal) states. For each state s, the generator samples

u from the corresponding F'(v, a, b) where F(v, a, b) - F'(v, a, b)1 < e = 1 , then moves to a
- poly(n)'

new state achording to u. In other words, there is an induced pair of collection of distributions

over the states: (T, T') where T = {Ts}scs, T' = {T'}ses, such that T,(s') and T'(s') denote the
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probability that the algorithm advances from s to s' by using a sample from the correct F(v, a, b)

and from the approximated F'(v, a, b), respectively. Consequently, JIT8 - T'Ili I c for every s E S.

The generator begins with the initial (internal) state so = (1, 0, AO) where all cells of AO are

O's, goes through at most S = 0(n3 ) other states (as there are up to n2 values of k and 0(n) values

of u), and reach some terminal state tA, generating the entire graph in the process. Let 7r = (s0 =

so, s I,..., s 7) = tA) for some A denote a sequence ("path") of up to S+1 states the algorithm

proceeds through, where f(-r) denote the number of transitions it undergoes. For simplicity, let

TtA(tA) = 1, and TA(s) =0 for all state s # tA, so that the terminal state can be repeated and

we may assume f(7r) = S for every 7r. Then, for the correct transition probabilities described as T,
each 7r occurs with probability q(7r) = j[ Ts,, (si), and thus G(GA) = q(r).

Let -T"""i = {T""}sES where Tm'"(s') = min{T,(s'), T'(s')}, and note that each Tm'" is not

necessarily a probability distribution. Then, 1,, Tmi"(s') = 1 -- Ts - T'Ii > 1 - e. Define

q', qmin, G'(GA), Gmin(GA) analogously, and observe that qmin(7) < min{q(7r), q'(r)} for every w, so

Gmin(GA) min{G(GA), G'(GA)} for every GA as well. In other words, qmn(7) lower bounds the

probability that the algorithm, drawing samples from the correct distributions or the approximated

distributions, proceeds through states of 7r; consequently, Gin(GA) lower bounds the probability

that the algorithm generates the graph GA.
Next, consider the probability that the algorithm proceeds through the prefix 7ri = (s", ... , sT)

of r. Observe that for i > 1,

q"(7ri) (7ri1) -T" (sr) = "
7r 7r S's~ 7r:s' =S S

>3Tmin(S') . 3 qmn f(7qi-) > (1 E qrn) ,,1)
s/ S irsl 1 I = 7

Roughly speaking, at least a factor of 1 - c of the "agreement" between the distributions over states

according to T and T' is necessarily conserved after a single sampling process. As E, qmin(ro) = 1

because the algorithm begins with so = (1, 0, AO), by an inductive argument we have EZ qmin(7)

E q""(7rs) > (1 - e)S> 1 - ES. Hence, EGA min{G(GA), G'(GA) I ZE G'i"(GA) > 1 -'ES,
implying that JIG - G'hhi < eS, as desired. In particular, by substituting e = I and S = 0(n3),
we have shown that Algorithm 5-4 only creates a error in the L1 -distance. D

We remark that RANDOM-NEIGHBOR probes also require that the returned edge is drawn from

a distribution that is close to a uniform one, but this requirement applies only per probe rather

then over the entire execution of the generator. Hence, the error due to the selection of a random

neighbor may be handled separately from the error for generating the random graph; its guarantee

follows straightforwardly from a similar analysis.

5.4 Applications to Erdos-Renyi Model and Stochastic Block Model

In this section we demonstrate the application of our techniques to two well known, and widely

studied models of randon graphs. That is, as required by Theorem 5.3.9, we must provide a method
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for computing the quantities H.-a(1 - pv,u) and .,ap,,u of the desired random graph families

in logarithmic time, space and random bits. Our first implementation focuses on the well known

Erd6s-R6nyi model - G(n, p): in this case, pv,, = p is uniform and our quantities admit closed-form

formulas.

Next, we focus on the Stochastic Block model with randomly-assigned communities. Our im-

plementation assigns each vertex to a community in {C1,..., Cj identically and independently at

random, according to some given distribution R over the communities. We formulate a method of

sampling community assignments locally. This essentially allows us to sample from the multivariate

hypergeometric distribution, using poly(log n) random bits, which may be of independent interest.

We remark that, as our first step, we sample for the number of vertices of each community. That

is, our construction can alternatively support the community assignment where the number of ver-

tices of each community is given, under the assumption that the partition of the vertex set into

communities is chosen uniformly at random.

Refer to Section 5.2.2 for specifications of our random graph models. We also construct local-

access generators for these models with deterministic guarantees in Section 5.7.

5.4.1 Erd6s-R6nyi model

As pv, = p for all edges {u, v} in the Erd6s-R6nyi G(n, p) model, we have the closed-form formulas

H%'a(1 - Pv,u) = (1 - p)ba+1 and p, = (b - a + l)p, which can be computed in constant

time according to our assumption, yielding the following corollary.

Corollary 5.4.1. The final algorithm in Section 5.3 locally generates a random graph from the

Erd6s-Rinyi G(n, p) model using 0(log3 n) time, O(log2 n) random N-bit words, and 0(log 2 n)

additional space per probe with high probability.

We remark that there exists an alternative approach that picks F ~ F(v, a, b) directly via a

closed-form formula a + fl10U) 1 where U is drawn uniformly from [0, 1), rather than binary-

searching for U in its CDF. Such an approach may save some poly(log n) factors in the resources,
given the prefect-precision arithmetic assumption. This usage of the log function requires Q(n)-bit

precision, which is not applicable to our computation model.

While we are able to generate our random graph on-the-fly supporting all three types of probes,
our construction still only requires 0(m + n) space (N-bit words) in total at any state; that is, we

keep 0(n) words for last, 0(1) words per neighbor in Pv's, and one marking bit for each bucket

(where there can be up to m + n buckets in total). Hence, our memory usage is nearly optimal for

the G(n,p) model:

Corollary 5.4.2. The final algorithm in Section 5.3 can generate a complete random graph from

the Erd6s-Rfnyi G(n,p) model using overall 9(n+m) time, random bits and space, which is 6(pn2 )
in expectation. This is optimal up to O(poly(log n)) factors.

5.4.2 Stochastic Bock Model

For the Stochastic Block model, each vertex is assigned to some community Ci, i E [r]. By

partitioning the product by communities, we may rewrite the desired formulas, for v E Ci, as
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=a(1i - Pvou) = %=1-(1 -- i~)|[a~b]flC and -a Pvu = > 1|[a, b] n C| -pij. Thus, it is suffi-

cient to design a data structure, or a generator, that draws a community assignment for the vertex

set according to the given distribution R. This data structure should be able to efficiently count

the number of occurrences of vertices of each community in any contiguous range, namely the value

I[a, b] fl CI for each j E [r]. To this end, we use the following lemma, yielding the generator for the

Stochastic Block model that uses O(r poly(log n)) resources per probe.

Theorem 5.4.3. There exists a data structure (generator) that samples a community for each

vertex independently at random from R with ) error in the LI-distance, and supports probes

that ask for the number of occurrences of vertices of each community in any contiguous range, us-

ing O(r poly(log n)) time, random N-bit words and additional space per probe (in the worst case).

Further, this data structure may be implemented in such a way that requires no overhead for initial-

ization.

Corollary 5.4.4. The final algorithm in Section 5.3 generates a random graph from the Stochastic

Block model with randomly-assigned communities using O(r poly(log n)) time, random N-bit words,
and additional space per probe with high probability.

We provide the full details of the construction in the following Section 5.4.2.1. Our construction

extends upon a similar generator in the work of [GGN1O] which only supports r = 2. Our overall

data structure is a balanced binary tree, where the root corresponds to the entire range of indices

{1, ... , n}, and the children of each vertex corresponds to each half of the parent's range. Each

node 7 holds the number of vertices of each community in its range. The tree initially contains only

the root, with the number of vertices of each community sampled according to the multinomial

distribution8 (for n samples (vertices) from the probability distribution R). The children are only

generated top-down on an as-needed basis according to the given probes. The technical difficulties

arise when generating the children, where one needs to sample "half" of the counts of the parent from

the correct marginal distribution. To this end, we show how to sample such a count as described

in the statement below. Namely, we provide an algorithm for sampling from the multivariate

hypergeometric distribution.

5.4.2.1 Sampling from the Multivariate Hypergeometric Distribution

Consider the following random experiment. Suppose that we have an urn containing B < n mar-

bles (representing vertices), each occupies one of the r possible colors (representing communities)

represented by an integer from [r]. The number of marbles of each color in the urn is known: there

are Ck indistinguishable marbles of color k E [r], where C1 + - - - + C = B. Consider the process

of drawing f < B marbles from this urn without replacement. We would like to sample how many

marbles of each color we draw.

7For clarity, "vertex" is only used in the generated graph, and "node" is only used in the internal data
structures of the generator.

8See e.g., section 3.4.1 of [Knu98]
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More formally, let C = (ci, . .. , c,), then we would like to (approximately) sample a vector SC

of r non-negative integers such that

Pr[SC = (si,.. .,sr)] = ( .
(C1+C2+ --+c

where the distribution is supported by all vectors satisfying sk E {O, ..0 , Ck} for all k e [r] and

= Sk = f. This distribution is referred to as the multivariate hypergeometric distribution.

The sample SC above may be generated easily by simulating the drawing process, but this may

take Q(f) iterations, which have linear dependency in n in the worst case: f = 0(B) = 0(n).

Instead, we aim to generate such a sample in O(r poly(log n)) time with high probability. We first

make use of the following procedure from [GGN10].

Lemma 5.4.5. Suppose that there are T marbles of color 1 and B - T marbles of color 2 in an urn,
where B < n is even. There exists an algorithm that samples (s1, S2), the number of marbles of each

color appearing when drawing B/2 marbles from the urn without replacement, in O(poly(log n)) time

and random words. Specifically, the probability of sampling a specific pair (si, S2) where s1+s2 = T

is approximately (B/2 ) (T-s)/(T) with error of at most n-C for any constant c > 0.

In other words, the claim here only applies to the two-color case, where we sample the number

of marbles when drawing exactly half of the marbles from the entire urn (r = 2 and f = B/2). First

we generalize this claim to handle any desired number of drawn marbles f (while keeping r = 2).

Lemma 5.4.6. Given C1 marbles of color 1 and C2 = B - C1 marbles of color 2, there exists

an algorithm that samples (s1, s 2 ), the number of marbles of each color appearing when drawing 1

marbles from the urn without replacement, in O(poly(log n)) time and random words.

Proof. For the base case where B = 1, we trivially have S? = C and SC = 0. Otherwise, for even

B, we apply the following procedure.

" If f < B/2, generate C' = SC using Lemma 5.4.5.B/2 uigLma545

- If f = B/2 then we are done.

- Else, for f < B/2 we recursively generate Si'.

" Else, for f > B/2, we generate SC' as above, then output C - SC'

On the other hand, for odd B, we simply simulate drawing a single random marble from the urn

before applying the above procedure on the remaining B - 1 marbles in the urn. That is, this

process halves the domain size B in each step, requiring log B iterations to sample SC. E

Lastly we generalize to support larger r.

Theorem 5.4.7. Given B marbles of r different colors, such that there are Ci marbles of color i,
there exists an algorithm that samples (s12,s - , sr), the number of marbles of each color appearing

when drawing I marbles from the urn without replacement, in O(r - poly(logrn)) time and random

words.
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Proof. Observe that we may reduce r > 2 to the two-color case by sampling the number of marbles of

the first color, collapsing the rest of the colors together. Namely, define a pair C = (Ci, C2 +- - -+Cr),

then generate SP = (si, S2 + ... + Sr) via the above procedure. At this point we have obtained the

first entry si of the desired S?. So it remains to generate the number of marbles of each color from

the remaining r - 1 colors in f - si remaining draws. In total, we may generate SC by performing

r iterations of the two-colored case. The error in the LI-distance may be established similarly to

the proof of Lemma 5.3.10.

5.4.2.2 Data structure

We now show that Theorem 5.4.7 may be used in order to create the following data structure.

Recall that R denote the given distribution over integers [r] (namely, the random distribution

of communities for each vertex). Our data structure generates and maintains random variables

X1,..., Xn, each of which is drawn independently at random from R: Xi denotes the community

of vertex i. Then given a pair (i, j), it returns the vector C(i, j) = (ci,.. ., cr) where Ck counts the

number of variables Xi,..., Xj that takes on the value k. Note that we may also find out Xi by

probeing for (i, i) and take the corresponding index.

We maintain a complete binary tree whose leaves corresponds to indices from [n]. Each node

represents a range and stores the vector C for the corresponding range. The root represents the entire

range [n], which is then halved in each level. Initially the root samples C(1, n) from the multinomial

distribution according to R (see e.g., Section 3.4.1 of [Knu98]). Then, the children are generated

on-the-fly using the lemma above. Thus, each probe can be processed within 0(r poly(log n)) time,
yielding Theorem 5.4.3. Then, by embedding the information stored by the data structure into the

state (as in the proof of Lemma 5.3.10), we obtain the desired Corollary 5.4.4.

5.5 Local-Access Generators for Random Directed Graphs

In this section, we consider Kleinberg's Small-World model [KleOO,MN04] where the probability that

a directed edge (u, v) exists is min{c/(dist(u, v)) 2 , 1}. Here, dist(u, v) is the Manhattan distance

between u and v on a Vn x \n grid. We begin with the case where c = 1, then generalize to

different values of c = logie(1)(n). We aim to support ALL-NEIGHBORS probes using poly(logn)

resources. This returns the entire list of out-neighbors of v.

Refer to Section 5.2.2 for specifications of this random graph model.

5.5.1 Generator for c = 1

Observe that since the graphs we consider here are directed, the answers to the ALL-NEIGHBOR

probes are all independent: each vertex may determine its out-neighbors independently. Given a

vertex v, we consider a partition of all the other vertices of the graph into sets {1,IF,...} by

distance: Fv = {u : dist(v, u) = k} contains all vertices at a distance k from vertex v. Observe

that |Fv < 4k = 0(k). Then, the expected number of edges from v to vertices in Fv is therefore

|171-1/k2 = 0(1/k). Hence, the expected degree of v is at most n2(-1) 0(1/k) = O(log n). It is

straightforward to verify that this bound holds with high probability (use Hoeffding's inequality).
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Since the degree of v is small, in this model we can afford to perform ALL-NEIGHBORS probes instead

of NEXT-NEIGHBOR probes using an additional poly(log n) resources.

Nonetheless, internally in our generator, we sample for our neighbors one-by-one similarly to how

we process NEXT-NEIGHBOR probes. We perform our sampling in two phases. In the first phase, we

sample a distance d, such that the next neighbor closest to v is at distance d. We maintain last[v]
to be the last sampled distance. In the second phase, we sample all neighbors of v at distance d,
under the assumption that there must be at least one such neighbor. For simplicity, we sample

these neighbors as if there are full 4d vertices at distance d from v: some sampled neighbors may

lie outside our n x \/nT grid, which are simply discarded. As the running time of our generator is

proportional to the number of generated neighbors, then by the bound on the number of neighbors,

this assumption does not asymptotically worsen the performance of the generator.

5.5.1.1 Phase 1: Sample the distance D

Let a = last[v] + 1, and let D(a) to denote the probability distribution of the distance where the

next closest neighbor of v is located, or I if there is no neighbor at distance at most 2(V"ni - 1).

That is, if D ~ D(a) is drawn, then we proceed to Phase 2 to sample all neighbors at distance D.

We repeat the process by sampling the next distance from D(a + D) and so on until we obtain -,
at which point we return our answers and terminate.

To sample the next distance, we perform a binary search: we must evaluate the CDF of D(a).

The CDF is given by IF[D < d] where D ~ D(a), the probability that there is some neighbor at

distance at most d. As usual, we compute the probability of the negation: there is no neighbor at

distance at most d. Recall that each distance i has exactly 1F'J = 4i vertices, and the probability of

a vertex u e 17 is not a neighbor is exactly 1 - 1/i 2 . So, the probability that there is no neighbor

at distance i is (1 - 1/i2) 4 i. Thus, for D ~ D(a) and d < 2(v/ii - 1),

P[D < d] 1 - ( - = f- ( (i + ) 1 (f I - a (d1-fd)
i=a Pi=a

where the product enjoys telescoping as the denominator (i2)4i cancels with (i2)4(i-1) and (12)4(i+1)

in the numerators of the previous and the next term, respectively. This gives us a closed form for

the CDF, which we can compute with 2-N additive error in constant time (by our computation

model assumption). Thus, we may sample for the distance D ~ D(a) with O(logn) time and one

random N-bit word.

5.5.1.2 Phase 2: Sampling neighbors at distance D

After sampling a distance D, we now have to sample all the neighbors at distance D. We label the

vertices in F' with unique indices in {1, ... , 4D}. Note that now each of the 4D vertices in F' is

a neighbor with probability 1/D 2 . However, by Phase 1, this is conditioned on the fact that there

is at least one neighbor among the vertices in IF', which may be difficult to sample when 1/D2 is

very small. We can emulate this naYvely by repeatedly sampling a "block", composing of the 4D

vertices in F, by deciding whether each vertex is a neighbor of v with uniform probability 1/D 2
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(i.e., 4D identical independent Bernoulli trials), and then discarding the entire block if it contains

no neighbor. We repeat this process until we finally sample one block that contains at least one

neighbor, and use this block as our output.

For the purpose of making the sampling process more efficient, we view this process differently.

Let us imagine that we are given an infinite sequence of independent Bernoulli variables, each with

bias 1/D2 . We then divide the sequence into contiguous blocks of length 4D each. Our task is to

find the first occurrence of success (a neighbor), then report the whole block hosting this variable.

This first occurrence of a successful Bernoulli trial is given by sampling from the geometric

distribution, X ~ Geo(1/D 2 ). Since the vertices in each block are labeled by 1, . . . , 4D, then this

first occurrence has label X' = X mod 4D. By sampling X - Geo(1/D 2 ), the first X' Bernoulli

variables of this block is also implicitly determined. Namely, the vertices of labels 1,..., X' - 1

are non-neighbors, and that of label X' is a neighbor. The sampling for the remaining 4D - X'

vertices can then be performed in the same fashion we sample for next neighbors in the G(n, p)

case: repeatedly find the next neighbor by sampling from Geo(l/D 2 ), until the index of the next

neighbor falls beyond this block.

Thus at this point, we have sampled all neighbors in 171. We can then update last[v] <- D

and continue the process of larger distances. Sampling each neighbor takes O(log n) time and one

random N-bit word; the resources spent sampling the distances is also bounded by that of the

neighbors. As there are O(logn) neighbors with high probability, we obtain the following theorem.

Theorem 5.5.1. There exists an algorithm that generates a random graph from Kleinberg's Small

World model, where probability of including each directed edge (u,v) in the graph is 1/(dist(u, v)) 2

where dist denote the Manhattan distance, using O(log 2 n) time and random N-bit words per ALL-

NEIGHBORS probe with high probability.

5.5.2 Generator for c # 1

Observe that to support different values of c in the probability function c/(dist(u, v)) 2, we do not

have a closed-form formula for computing the CDF for Phase 1, whereas the process for Phase

2 remains unchanged. To handle the change in the probability distribution Phase 1, we consider

the following, more general problem. Suppose that we have a process P that, one-by-one, provide

occurrences of successes from the sequence of independent Bernoulli trials with success probabilities

(PI, P2,...). We show how to construct a process PC that provide occurrences of successes from

Bernoulli trials with success probabilities (c - P1i, c -p2, ... ) (truncated down to 1 as needed). For our

application, we assume that c is given in N-bit precision, there are 0(n) Bernoulli trials, and we

aim for an error of 1 in the LI-distance.
poly(n)

5.5.2.1 Case c < 1

We use rejection sampling in order to construct a new Bernoulli process.

Lemma 5.5.2. Given a process P outputting the indices of successful Bernoulli trials with bias (pi),
there exists a process PC outputting the indices of successful Bernoulli trials with bias (c . pi) where

c < 1, using one additional N-bit word overhead for each answer of P.
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Proof. Consider the following rejection sampling process to generating the Bernoulli trials. In
addition to each Bernoulli variable Xi with bias pi, we sample another coin-flip Ci with bias c. Set

Yi = Xi - Ci, then IP[Y = 1] = P[Xi = 1] -P[Ci] = c -pi, as desired. That is, we keep a success of a
Bernoulli trial with probability c, or reject it with probability 1 - c.

Now, we are already given the process P that "handles" Xi's, generating a sequence of indices i
with Xi = 1. The new process PC then only needs to handle the Ci's. Namely, for each i reported

as success by P, PC flips a coin Ci to see if it should also report i, or discard it. As a result, PC can
generate the indices of successful Bernoulli trials using only one random N-bit word overhead for
each answer from P. D

Applying this reduction to the distance sampling in Phase 1, we obtain the following corollary.

Corollary 5.5.3. There exists an algorithm that generates a random graph from Kleinberg's Small

World model with edge probabilities c/(dist(u, v)) 2 where c < 1, using O(log 2 n) time and random

N-bit words per ALL-NEIGHBORS probe with high probability.

5.5.2.2 Case c > 1

Since we aim to sample with larger probabilities, we instead consider making k - c independent
copies of each process P, where k > 1 is a positive integer. Intuitively, we hope that the probability

that one of these process returns an index i will be at least c -pi, so that we may perform rejection
sampling to decide whether to keep i or not. Unfortunately such a process cannot handle the case

where c-pi is large, notably when c-pi > 1 is truncated down to 1, while there is always a possibility
that none of the processes return i.

Lemma 5.5.4. Let k > 1 be a constant integer. Given a process P outputting the indices of
successful Bernoulli trials with bias (pi), there exists a process Pc outputting the indices of successful

Bernoulli trials with bias (min{c.pi, 1}) where c > 1 and c-pi < I-I for every i, using one additional

N-bit word overhead for each answer of k - c independent copies of P.

Proof. By applying the following form of Bernoulli's inequality, we have

kkc <k -c -pi ck - c -A k - c -pi
1 + (k c - 1) -pi 1 +k-c-pi -pi - 1 + (k - 1)

That is, the probability that at least one of the generators report an index i is 1 - (1 -p,)k'c > C -p
as required. Then, the process PC simply reports i with probability (c-pi)/(1 - (1 -p)k c) or discard
i otherwise. Again, we only require N-bit of precision for each computation, and thus one random

N-bit word suffices. F

In Phase 1, we may apply this reduction only when the condition c pi ; 1 -- is satisfied.
- k

For lower value of pi = 1/D 2 , namely for distance D < Vc/(1 - 1/k) = O(g'r), we may afford

to sample the Bernoulli trials one-by-one as c is poly(logn). We also note that the degree of each

vertex is clearly bounded by O(log n) with high probability, as its expectation is scaled up by at
most a factor of c. Thus, we obtain the following corollary.
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Corollary 5.5.5. There exists an algorithm that generates a random graph from Kleinberg's Small

World model with edge probabilities c/(dist(u, v)) 2 where c = poly(log n), using O(log 2 n) time and

random N-bit words per ALL-NEIGHBORS probe with high probability.

5.6 Further Analysis and Extensions of Algorithm 5-2

5.6.1 Performance guarantee

This section is devoted to showing the following lemma that bounds the required resources per

probe of Algorithm 5-2. We note that we only require efficient computation of Hlu[a,b](I - Pv,u)

(and not Euea,b]Pv,u), and that for the G(n, p) model, the resources required for such computation

is asymptotically negligible.

Theorem 5.6.1. Each execution of Algorithm 5-2 (the NEXT-NEIGHBOR probe), with high proba-

bility,

* terminates within O(log n) iterations (of its repeat loop);

* computes O(log2 n) quantities of HuE[a,b] (1 - Pv,u);
" aside from the above computations, uses O(log2 n) time, O(log n) random N-bit words, and

O(log n) additional space.

Proof. We focus on the number of iterations as the remaining results follow trivially. This proof is

rather involved and thus is divided into several steps.

Specifying random choices. The performance of the algorithm depends on not only the random

variables Xvu's, but also the unused coins Cvu's. We characterize the two collections of Bernoulli

variables {Xvu} and {Yu} that cover all random choices made by Algorithm 5-2 as follows.

" Each Xvu (same as Xu,v) represents the result for the first coin-toss corresponding to cells

A[v][u] and A[u][v], which is the coin-toss obtained when X, becomes decided: either CVu

during a NEXT-NEIGHBOR(v) call when A[v][u] = 0, or Cvu during a NEXT-NEIGHBOR(u) call

when A[u] [v] = #, whichever occurs first. This description of Xvu respects our invariant that,
if the generation process is executed to completion, we will have A[v] [u] = Xv,u in all entries.

" Each Yu represents the result for the second coin-toss corresponding to cell A[v][u], which

is the coin-toss Cvu obtained during a NEXT-NEIGHBOR(v) call when Xvu is already decided.

In other words, {Y,}'s are the coin-tosses that should have been skipped but still performed

in Algorithm 5-2 (if they have indeed been generated). Unlike the previous case, Y,u and Yu,,

are two independent random variables: they may be generated during a NEXT-NEIGHBOR(v)

call and a NEXT-NEIGHBOR(u) call, respectively.

As mentioned earlier, we allow any sequence of probabilities pv,u in our proof. The success proba-

bilities of these indicators are therefore given by IP[Xv,u = 1] = P[Yv,u = 11 = pvu.

Characterizing iterations. Suppose that we compute NEXT-NEIGHBOR(v) and obtain an answer

u. Then XvIast[v]+1 = - - - = Xvu_1 = 0 as none of u' E (last[v], u) is a neighbor of v. The vertices
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considered in the loop of Algorithm 5-2 that do not result in the answer u, are u' C (last [v], u)
satisfying A[v][u'] = 0 and Yu= 1; we call the iteration corresponding to such a u' a failed
iteration. Observe that if Xvu= 0 but is undecided (A[v][u'] = ), then the iteration is not
failed, even if Y, = 1 (in which case, Xvu, takes the value of Cos, while Yu, is never used).

Thus we assume the worst-case scenario where all Xvu, are revealed: A[v][u'] = Xvu, = 0 for all
U' C (last[v], u). The number of failed iterations in this case stochastically dominates those in all

other cases. 9

Then, the upper bound on the number of failed iterations of a call NEXT-NEIGHBOR(v) is given

by the maximum number of cells Yo,2, = 1 of u' E (last[v], u), over any a E (last[v], n] satisfying
Xv,last[v]+1 = *.. = Xvu = 0. Informally, we are asking "of all consecutive cells of O's in a single row

of {Xv,u}-table, what is the largest number of cells of 1's in the corresponding cells of {Y,u}-table?"

Bounding the number of iterations required for a fixed pair (v, last[v]). We now proceed

to bounding the number of iterations required over a sampled pair of {Xo,} and {Yu}, from any
probability distribution. For simplicity we renumber our indices and drop the index (v, last [v]) as fol-
lows. Let p1, . . . , pL E [0, 1] denote the probabilities corresponding to the cells A [v][last [v]+ 1 ... n]

(where L = n - last[v]), then let X1 , .. ,XL and Y1 , ... , YL be the random variables corresponding

to the same cells on A.

For i = 1, ... I L, define the random variable Zi in terms of Xi and Y so that

* Z, = 2 if Xi = 0 and Y= 1, which occurs with probability pi(l - pi).
This represents the event where i is not a neighbor, and the iteration fails.

* Zi = 1 if Xi = Yi = 0, which occurs with probability (1 - p,)2

This represents the event where i is not a neighbor, and the iteration does not fail.

" Zi = 0 if X, = 1, which occurs with probability pi.

This represents the event where i is a neighbor.

For f E [L], define the random variable M := Fl> Zi, and M0 = 1 for convenience. If Xi = 1
for some i E [1, f], then Zi = 0 and M = 0. Otherwise, log Me counts the number of indices i E ]
with Y = 1, the number of failed iterations. Therefore, log(maxeeco,...,L} M) gives the number of

failed iterations this NEXT-NEIGHBOR(v) call.

To bound Me, observe that for any f E [L], E[Ze] = 2p( - p,) + (1 - p,) 2  p2  1

regardless of the probability pe E [0, 1]. Then, E[Mj] = E[f Z] H_ 1 E[Zi] 1 because Ze's

are all independent. By Markov's inequality, for any (integer) r > 0, Pr[log M > r] = Pr[M >
2'] < 2--. By the union bound, the probability that more than r failed iterations are encountered

is Pr[log(maxfEf0,...,L} Me) > r] < L - 2-r < n - - .

Establishing the overall performance guarantee. So far we have deduced that, for each pair

of a vertex v and its last[v], the probability that the call NEXT-NEIGHBOR(v) encounters more than

r failed iterations is less that n 2 -r, which is at most n-c-2 for any desired constant c by choosing a

9There exists an adversary who can enforce this worst case. Namely, an adversary that first makes NEXT-
NEIGHBOR probes to learn all neighbors of every vertex except for v, thereby filling out the whole A in
the process. The claimed worst case then occurs as this adversary now repeatedly makes NEXT-NEIGHBOR
probes on v. In particular, a committee of n adversaries, each of which is tasked to perform this series of
calls corresponding to each v, can always expose this worst case.
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sufficiently large r = 0(log n). As Algorithm 5-2 may need to support up to 0(n 2) NEXT-NEIGHBOR

calls, one corresponding to each pair (v, last[v]), the probability that it ever encounters more than

O(log n) failed iterations to answer a single NEXT-NEIGHBOR probe is at most n-C. That is, with

high probability, O(log n) iterations are required per NEXT-NEIGHBOR call, which concludes the

proof of Theorem 5.6.1. El

5.6.2 Supporting VERTEX-PAIR probes

We extend our generator (Algorithm 5-2) to support the VERTEX-PAIR probes: given a pair of

vertices (U, v), decide whether there exists an edge {u, v} in the generated graph. To answer a

VERTEX-PAIR probe, we must first check whether the value Xuv for {u, v} has already been assigned,

in which case we answer accordingly. Otherwise, we must make a coin-flip with the corresponding

bias pu,v to assign Xu,v, deciding whether {u, v} exists in the generated graph. If we maintained

the full A as done in the naive Algorithm 5-1, we would have been able to simply set A[a][v] and

A[v][u] to this new value. However, our more efficient Algorithm 5-2 that represents A compactly

via last and Pv's cannot record arbitrary modifications to A.

Observe that if we were to apply the trivial implementation of VERTEX-PAIR in Algorithm 5-1,
then by Lemma 5.3.1, last and Pv's will only fail capture the state A[v][u] = 0 when u > last[v] and

v > last[u]. Fortunately, unlike NEXT-NEIGHBOR probes, a VERTEX-PAIR probe can only set one

cell A[v][u] to 0 per probe, and thus we may afford to store these changes explicitly.10 To this end,

we define the set Q = {{u, v} : Xu,v is assigned to 0 during a VERTEX-PAIR probe}, maintained as

a hash table. Updating Q during VERTEX-PAIR probes is trivial: we simply add {u, v} to Q before

we finish processing the probe if we set A[u][v] = 0. Conversely, we need to add u to Pv and add v

to Pu if the VERTEX-PAIR probe sets A[u][v] = 1 as usual, yielding the following observation. It is

straightforward to verify that each VERTEX-PAIR probe requires O(log n) time, 0(1) random N-bit

word, and 0(1) additional space per probe.

Lemma 5.6.2. The data structures last, Pv's and Q together provide a succinct representation

of A when NEXT-NEIGHBOR probes (modified Algorithm 5-2) and VERTEX-PAIR probes (modified

Algorithm 5-1) are allowed. In particular, A[v][u] = 1 if and only if u E P,. Otherwise, A[v][u] = 0

if u < last[v], v < last[u], or {v, u} C Q. In all remaining cases, A[v] [u] = .

We now explain other necessary changes to Algorithm 5-2. In the implementation of NEXT-

NEIGHBOR, an iteration is not failed when the chosen X,,u is still undecided: A[v][u] must still be

#. Since X,, may also be assigned to 0 via a VERTEX-PAIR(V, u) probe, we must also consider an

iteration where {v, u} E Q failed. That is, we now require one additional condition {v, u} Q for

termination (which only takes 0(1) time to verify per iteration). As for the analysis, aside from

handling the fact that Xv,u may also become decided during a VERTEX-PAIR call, and allowing the

states of the algorithm to support VERTEX-PAIR probes, all of the remaining analysis for correctness

and performance guarantee still holds.

'0 The disadvantage of this approach is that the generator may allocate more than 6(m) space over the
entire graph generation process, if VERTEX-PAIR probes generate many of these O's.
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Therefore, we have established that our augmentation to Algorithm 5-2 still maintains all of

its (asymptotic) performance guarantees for NEXT-NEIGHBOR probes, and supports VERTEX-PAIR

probes with complexities as specified above, concluding the following corollary. We remark that, as

we do not aim to support RANDOM-NEIGHBOR probes, this simple algorithm here provides significant

improvement over the performance of RANDOM-NEIGHBOR probes (given in Corollary 5.3.8).

Corollary 5.6.3. Algorithm 5-2 can be modified to allow an implementation of VERTEX-PAIR probe

as explained above, such that the resource usages per probe still asymptotically follow those of The-

orem 5.6.1.

5.7 Alternative Generator with Deterministic Performance Guar-
antee

In this section, we construct data structures that allow us to sample for the next neighbor directly

by considering only the cells A[v][u] = # in the Erd6s-Renyi model and the Stochastic Block

model. This provides poly(log n) worst-case performance guarantee for generators supporting only

the NEXT-NEIGHBOR probes. We may again extend this data structure to support VERTEX-PAIR

probes, however, at the cost of providing poly(log n) amortized performance guarantee instead.

In what follows, we first focus on the G(n,p) model, starting with NEXT-NEIGHBOR probes

(Section 5.7.1) then extend to VERTEX-PAIR probes (Section 5.7.2. We then explain how this result

may be generalized to support the Stochastic Block model with random community assignment in

Section 5.7.3.

5.7.1 Data structure for NEXT-NEIGHBOR probes for G(n,p)

Figure 5-5: Alternative generator

Recall that NEXT-NEIGHBOR(v) is given by min{u > last[v] : Xvu = 1} (or n+ 1 if no satisfying
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u exists). To aid in computing this quantity, we define:

Kv = {u E (last[v],rn] : A[v][u] = 1},

WV = min K, or n + 1 if Kv = 0,

Tv = {u E (last [v], wv) : A [v][u] = l }.

The ordered set Kv is only defined for ease of presentation within this section: it is equivalent to

(last [v], n] n Po, recording the known neighbors of v after last[v] (i.e., those that have not been

returned as an answer by any NEXT-NEIGHBOR(v) probe yet). The quantity wv remains unchanged

but is simply restated in terms of Kv. Tv specifies the list of candidates a for NEXT-NEIGHBOR(v)

with A[v][u] = #; in particular, all candidates u's, such that the corresponding RVs Xv, = 0 are

decided, are explicitly excluded from Tv.

Unlike the approach of Algorithm 5-2 that simulates coin-flips even for decided XV,"'s, here we

only flip undecided coins for the indices in Tv: we have ITv I Bernoulli trials to simulate. Let F be the

random variable denoting the first index of a successful trial out of ITv I coin-flips, or ITv I+1 if all fail;

denote the distribution of F by ExactF(p, TI). The CDF of F is given by P[F = f] = 1 - (1 - p)f

for f < JTI (i.e., there is some success trial in the first f trials), and P[F = JTvI + 1] = 1. Thus,
we must design a data structure that can compute wv, compute ITvI, find the Fth minimum value

in Tv, and update A[v][u] for the F lowest values u E Tv accordingly.

Let k = [log n]. We create a range tree, where each node itself contains a balanced binary search

tree (BBST), storing last values of its corresponding range. Formally, for i E [0, n/2j) and j E [0, k],
the ith node of the jth level of the range tree, stores last[v for every v E (i - 2 k-j, (i + 1) - 2k-j

Denote the range tree by R, and each BBST corresponding to the range [a, b] by B[a,b]. We say
that the range [a, b] is canonical if it corresponds to a range of some B[ab] in R.

Again, to allow fast initialization, we make the following adjustments from the given formal-

ization above: (1) values last[v] = 0 are never stored in any B[a,b], and (2) each B[ab] is created

on-the-fly during the first occasion it becomes non-empty. Further, we augment each B[a,b] so that

each of its node maintains the size of the subtree rooted at that node: this allows us to count, in

O(log n) time, the number of entries in B[ab] that is no smaller than a given threshold.

Observe that each v is included in exactly one B[a,b] per level in R, so k + 1 = O(log n) copies

of last[v] are stored throughout R. Moreover, by the property of range trees, any interval can be

decomposed into a disjoint union of O(log n) canonical ranges. From these properties we implement

the data structure R to support the following operations. (Note that R is initially an empty tree,
so initialization is trivial.)

" COUNT(v): compute ITvI.

We break (last[v], wv) into O(log n) disjoint canonical ranges [ai, bi]'s each corresponding to

some B[ai,bi], then compute t[ai,bi] = I Eu - [ai, bi] : last[u] < v}|, and return Zi t[ai,biJ. The

value t[aibi] is obtained by counting the entries of B[aib2,] that is at least v, then subtract it

from bi - ai + 1; we cannot count entries less than v because last[u] = 0 are not stored.

* PICK(v, F): find the Fth minimum value in Tv (assuming F < |Tv |).
We again break (last[v], wv) into O(log n) canonical ranges [ai, bi]'s, compute t[ai,bi]'s, and
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identify the canonical range [a*, b*] containing the ith smallest element (i.e., [ai, bi] with the

smallest b satisfying Z& ~ t[a3 ,bj] > F assuming ranges are sorted). Binary-search in [a*, b*] to

find exactly the ith smallest element of T. This is ccomplished by traversing R starting from

the range [a*, b*] down to a leaf, at each step computing the children's T[a,b]'s and deciding

which child's range contains the desired element.

* UPDATE(v, i): simulate coin-flips, assigning Xv, <- 1, and Xvu <- 0 for u' c (last [v], u) OTv.

This is done implicitly by handling the change last[v] +- u: for each BBST B[a,b) where

v E [a, b], remove the old value of last[v] and insert u instead.

It is straightforward to verify that all operations require at most O(log2 n) time and O(log n)

additional space per call. The overall implementation is given in Algorithm 5-5, using the same

asymptotic time and additional space. Recall also that sampling F - ExactF(p, t) requires O(log n)

time and one N-bit random word for the G(n, p) model.

5.7.2 Data structure for VERTEX-PAIR probes for G(n, p)

Recall that we define Q in Algorithm 5-2 as the set of pairs (u, v) where Xuv is assigned to 0 during

a VERTEX-PAIR probe, allowing us to check for modifications of A not captured by last[v] and K,.

Here in Algorithm 5-5, rather than checking, we need to be able to count such entries. Thus, we

instead create a BBST Q' for each v defined as:

Q= {u : u > last[v], v > last[u] and Xs,, is assigned to 0 during a VERTEX-PAIR probe}.

This definition differs from that of Q in Section 5.6.2 in two aspects. First, we ensure that each

A[v][u] = 0 is recorded by either last (via Lemma 5.3.1) or Q', (explicitly), but not both. In

particular, if u were to stay in Q', when last[v] increases beyond u, we would have double-counted

these entries 0 not only recorded by Q' but also implied by last[v] and Kv. By having a BBST

for each Q',, we can compute the number of O's that must be excluded from Tv, which cannot be

determined via last[v] and K, alone: we subtract these from any counting process done in the data

structure R.

Second, we maintain Q', separately for each v as an ordered set, so that we may identify non-

neighbors of v within a specific range - this allows us to remove non-neighbors in specific range,
ensuring that the first aspect holds. More specifically, when we increase last[v], we must go through

the data structure Q', and remove all u < last [v], and for each such u, also remove v from Q' . There

can be as many as linear number of such u, but the number of removals is trivially bounded by the

number of insertions, yielding an amortized time performance guarantee in the following theorem.

Aside from the deterministic guarantee, unsurprisingly, the required amount of random words for

this algorithm is lower than that of the algorithm from Section 5.6 (given in Theorem 5.6.1 and

Corollary 5.6.3).

Theorem 5.7.1. Consider the Erdjs-Rinyi G(n,p) model. For NEXT-NEIGHBOR probes only, Al-

gorithm 5-5 is a generator that answers each probe using O(log 2 n) time, O(log n) additional space,
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and one N-bit random word. For NEXT-NEIGHBOR and VERTEX PAIR probes, an extension of Al-

gorithm 5-5 answers each probe using O(log2 n) amortized time, O(log n) additional space, and one

N-bit random word.

5.7.3 Data structure for the stochastic block model

We employ the data structure for generating and counting the number of vertices of each community

in a specified range from Section 5.4.2. We create r different copies of the data structure R and

Q one for each community, so that we may implement the required operations separately for each

color, including using the COUNT subroutine to sample F - ExactF via the corresponding CDF,
and picking the next neighbor according to F. Recall that since we do not store last[v] = 0 in R,
and we only add an entry to Kv, P, or Q', after drawing the corresponding X,,, the communities

of the endpoints, which cover all elements stored in these data structures, must have already been

determined. Thus, we obtain the following corollary for the Stochastic Block model.

Corollary 5.7.2. Consider the Stochastic Block model with randomly-assigned communities.

For NEXT-NEIGHBOR probes only, Algorithm 5-5 is a generator that answers each probe using

O(r poly(log n)) time, random words, and additional space per probe (in the worst case). For NEXT-

NEIGHBOR and VERTEX-PAIR probes, Algorithm 5-5 answers each probe using O(r poly(logn))

amortized time, O(r poly(logrn)) random words, and O(r poly(logn)) additional space per probe

additional space, and one N-bit random word.
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