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Abstract

The integrations of communication and physical networks facilitate network moni-
toring, operation and control, advancing the development of Internet of Things, smart
power grids, and other cyber-physical systems. In these integrated networks, one net-
work depends on another in order to be fully functional, leading to interdependence.
The interdependence brings new challenges in the evaluation of network robustness
under failures, and the design of control policies for mitigating failures, since failures
may cascade from one network to another network that depends on it. We develop
new models and analytical tools to study interdependent networks, with a focus on
designing robust interdependent networks that can withstand failures and attacks.

We first model two interdependent networks of arbitrary topologies by layered
graphs, where nodes in the demand layer depend on nodes in the supply layer. We
study the supply node connectivity of the demand layer network: namely, the mini-
mum number of supply node removals that would disconnect the demand network. We
develop algorithms to evaluate the supply node connectivity given arbitrary network
topologies and dependence between networks. We develop dependence assignment al-
gorithms that maximize the supply node connectivity to enhance network robustness.
We then study the robust routing problems: namely, delivering information or com-
modities through paths with high reliability. We develop algorithms to compute the
path failure probability under correlated failures, and obtain the most reliable path
for single-path routing and most reliable pair of paths for diverse routing between
any pair of nodes in a network.

To study the formation and properties of large-scale interdependent networks, we
develop an interdependent random geometric graph (RGG) model. The model repre-
sents two interdependent spatially embedded networks where interdependence exists
between geographically nearby nodes in the two networks. We characterize the emer-
gence of the giant mutual component in two interdependent RGGs as node densities
increase, and obtain analytical bounds and confidence intervals for the percolation
thresholds. This new model and analytical tools provide a framework for robustness
evaluation of large-scale interdependent networks under uniform random node fail-
ures, geographical attacks, and degree-dependent failures that capture non-uniform
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vulnerabilities of network components.
Finally, we consider two applications of interdependent networks. First, we con-

sider interdependent power grid and communication network. We characterize the
impact of communication failures on power grid control, and develop control policies
for power grid frequency regulation and economic dispatch using limited communica-
tion. Second, we consider the robustness of distributed computing networks, where
network flows depend on both communication and computation resources. We study
the network robustness under the failure of network resources and solve network flow
interdiction problems.

Thesis Supervisor: Eytan Modiano
Title: Professor

Thesis Committee Member: Edmund Yeh
Title: Professor

Thesis Committee Member: Saurabh Amin
Title: Associate Professor
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Chapter 1

Introduction

The development of smart cities and cyber-physical systems has brought interde-

pendence between once isolated networks and systems. In interdependent networks,

one network depends on another to be fully functional. Examples include smart power

grids [1,2], transportation networks [3,4], and layered communication networks [5,6].

Failures in one network not only affect the network itself, but also may cascade to

another network that depends on it. For example, in the Italy blackout in 2003, an

initial failure in the power grid led to reduced functionality of the communication

network, which led to further failures in the power grid due to loss of communication

and control [1, 7]. Thus, the robustness of a network relies on both its own topology

and the interdependence between different networks.

Interdependent networks have been extensively studied in the statistical physics

literature based on random graph models since the seminal work of [7]. Nodes in

two random graphs are interdependent, and a node is functional if both itself and

its interdependent node are in the largest component of their respective graphs. If a

positive fraction of nodes are functional as the number of nodes approaches infinity,

the interdependent networks percolate. The condition for percolation is a measure of

the robustness of the interdependent networks. While these models are analytically

tractable, percolation may not be a key indicator for the functionality of infrastructure

networks. For example, a network would lose most of its functionality when a large

fraction of nodes are removed, while the graph still remains percolated.
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A few models have been proposed for specific applications to capture the de-

pendence between networks, such as interdependent power grids and communication

networks [2,8], and IP-over-WDM networks [6,9]. These models consider finite size,

arbitrary network topology, and incorporate dynamics in real-world networks. Instead

of percolation, more realistic metrics are used to capture the robustness of interde-

pendent networks, such as the amount of satisfied power demand, or traffic demand.

These models are able to capture important performance metrics in real-world net-

works, at the cost of more complicated modeling and analysis.

In this thesis, we develop analytically tractable models for interdependent net-

works. We analyze the robustness of interdependent networks, and develop control

policies to mitigate failures and to recover the network functionality. We first develop

a layered graph model that captures interdependence between networks, and study

the connectivity and reliable routing problems under node failures. We then develop

an interdependent random geometric graph model to study properties of large-scale

interdependent networks. Finally, we study two applications of interdependent net-

works - smart power grids and distributed computing networks. We formulate the

dependence between different functions in these networks, and study the robustness

and network performance under failures.

1.1 Literature review

In this section, we review related studies on interdependent networks modeling

and analysis, and network robustness under correlated failures.

Interdependent networks modeling and analysis

Cascading failures in interdependent networks have been extensively studied based

on random graph models [7]. After initial node failures in the first graph, their

interdependent nodes in the second graph fail. Thus, a connected component in

the second graph may become disconnected, and the failures of the disconnected

nodes cascade back to (their interdependent) nodes in the first graph. As a result of
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the cascading failures, removing a small fraction of nodes in the first random graph

potentially destroys the giant components of both graphs. The analytical models and

techniques have been applied to study failures under targeted node attacks [10] and

failures in a network of networks [10, 11].

To model spatially embedded networks, an interdependent lattice model was stud-

ied in [12]. Under this model, geographical attacks may cause significantly more severe

cascading failures than random attacks. Removing nodes in a finite region (i.e., an

infinitely small fraction of nodes) may destroy the infinite clusters in both lattices [13].

The spatial proximity in interdependent networks was studied in [14].

If every node in one network is interdependent with multiple nodes in the other

network, and a node is content to have at least one interdependent node, failures

are less likely to cascade [4,15]. Although the one-to-multiple interdependence exists

in real-world spatially embedded interdependent networks (e.g., a control center can

be supported by the electric power generated by more than one power generator), it

has not been previously studied using spatial graph models. Partial interdependence

(i.e., some nodes do not have to depend on other nodes) also reduces the likelihood

of cascading failures, and was studied in [16,17].

Other works on the robustness of interdependent networks based on network

science models studied different factors that affect the robustness, including inter-

similarity between interdependent nodes [18-20], directed edges that connect nodes

within each network [21], overloading [22], and considerations of functional small com-

ponents [23,24]. In these models, the dynamics of failure cascades were characterized

after initial node failures. The protection of interdependent networks was studied

in [25-27].

Other models have been proposed for interdependent power grids and communica-

tion networks [2,8], which considers power flows governed by physical laws in addition

to connectivity. The interactions between network components and failure cascades

in power grids were studied in [28,29]. The role of communication in mitigating power

grid failures was studied in [30].

Interdependent networks have also been studied in the system reliability literature.

21



Focused on specific applications, most papers study the effects of random failures and

intentional attacks by running simulations on graph topologies representing real-world

networks. For example, the operations of an oil network depend on the power grid [31].

Gas pipeline networks controlled under the Supervisory Control and Data Acquisition

system depend on a secure and connected communication network [32]. Besides

empirical approaches, agent based approaches, system dynamics based approaches,

and input-output models have been used [33]. These studies require large amount

of data of real systems and rely on assumptions on system dynamics. Moreover,

these approaches focus on the interactions between systems and do not consider the

component-level interactions in a system.

Network robustness under correlated failures

In interdependent networks, more than one node in one network may depend

on the same node in another network. Independent node failures in one network

may lead to correlated failures in another network, which complicates the analysis of

network robustness. We review related works on the shared risk group model and

layered communication networks, which tackle failure correlations to evaluate network

performance.

In the shared risk group model [6,34-36], a set of edges or nodes share the same

risk and can be removed by a single failure event. The model is used to study

the robustness in layered communication networks such as IP-over-WDM networks.

Suppose that a demand node has multiple supply nodes, and is content to have at

least one supply node. The interdependent networks can be viewed as a generalized

shared risk group model, given that the occurrences of multiple risks, instead of one

single risk, are required to remove a node in the interdependent networks.

The shared risk group model can be represented by a colored graph (or labeled

graph), in which edges or nodes that share the same risk have the same color (or

label) [36-38]. Complexity results and approximation algorithms have been developed

to compute the minimum number of colors that appear in an edge cut that disconnects

a colored graph [36, 39]. In interdependent networks, we study node failures due to
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the removals of their supply nodes. Thus, our focus is on the node cut in a colored

graph with colored nodes and regular edges. While most results for edge cuts that

separate a pre-specified source-destination pair (i.e., s - t edge cuts) can be naturally

extended to s - t node cuts, the extension is not obvious when the global edge or

node cuts of a graph are considered. Although it is possible to transform a node

cut problem in an undirected graph into an edge cut problem in a directed graph,

the nature and analysis of the problem in a directed graph are different from the

problem in an undirected graph, when global cuts are considered [40,41]. Thus, new

techniques need to be developed to study the global node cuts in a colored graph.

While most studies on the shared risk group model have focused on the evaluation

of robustness metrics of a given network, there have also been previous works that take

a network design approach to optimize the metrics. For example, in optical networks,

where two logical links share the same risk if they are supported by the same physi-

cal link, previous research developed lightpath routing algorithms that maximize the

number of tolerable physical link failures [6,9]. We study the interdependence assign-

ment that maximizes the number of supply node failures that a network can tolerate

(to stay connected). Instead of solving difficult integer programs as in most network

design literature, we apply graph algorithms, e.g., the vertex sampling and graph

partitioning techniques [42, 431, to develop polynomial time algorithms that have

provable performance guarantees. The vertex sampling techniques provide bounds

on the probability that the graph is connected after random node removals. We build

connections between the node removals in a single graph and the node failures in

interdependent networks, and study the connectivity of interdependent networks.

Robust routing problems, such as the problems of computing path failure prob-

ability and computing the most reliable path, have been extensively studied under

correlated failure scenarios. It is difficult to find a path with any performance guar-

antee in general [44]. In the shared risk group model, the most reliable path contains

the smallest number of risks if all risks are equally likely to occur, and can be obtained

by integer programming [35,37,45,46].

In addition to the most reliable path, a backup path can be used to further improve
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reliability, through diverse routing. Diverse routing problems have been studied under

correlated link failures. The correlation between a pair of logical links is obtained

either by measurement [47] or by analysis of the underlay physical topology [48].

Heuristic algorithms have been developed to find multiple reliable paths, and their

performance was evaluated by simulation [47,49,50]. In contrast, we develop diverse

routing algorithms that have provable performance, by explicitly bounding the gap

between the failure probabilities of paths obtained by the algorithm and the optimal

paths.

1.2 Contributions

We developed new models and analytical tools to study interdependent networks,

with a focus on performance evaluation and design of robust interdependent net-

works that can withstand failures and attacks. We develop metrics that measure

the robustness of interdependent networks, by generalizing canonical metrics for the

robustness of a single network. The models are simple enough to allow for the evalu-

ation of the robustness of interdependent networks, and to obtain insights and prin-

ciples for designing robust interdependent networks. We consider two applications

of interdependent networks - smart grid and distributed computing networks. We

develop control policies for power grid under communication failures, and study the

interdiction problems in computing networks, where network flows depend on both

communication and computation resources.

Network connectivity

In Chapter 2, we develop a layered graph model to represent two interdependent

networks, where demand nodes are supported by supply nodes. We add a minimal

ingredient to the classical graph model to capture interdependence, and define supply

node connectivity as a robustness metric for our model, analogous to the widely

accepted cut metric (node connectivity) for the classical graph model. We prove the

complexity, and develop integer programs to evaluate the supply node connectivity,

24



both for a given pair of nodes and for the entire network. Moreover, we propose a

polynomial time algorithm that computes the supply node connectivity for a special

class of problems, based on which we develop an approximation algorithm for the

general problem.

In addition, we study the network design problem of improving the robustness

of interdependent networks by assigning interdependence between two networks. We

propose a simple assignment algorithm that maximizes the supply node connectivity

of an s - t pair, by assigning node-disjoint paths with different supply nodes while

allowing nodes in the same path to have the same supply node. Based on a similar

idea and considering disjoint connected dominating sets, we develop an assignment

algorithm that approximates the optimal global supply node connectivity to within

a polylogarithmic factor. Finally, we propose a random assignment algorithm under

which, with high probability, the global supply node connectivity is within a constant

factor from the optimal in most cases, and at worst is within a logarithmic factor

from the optimal.

Reliable routing

In Chapter 3, we study robust routing problems in interdependent networks, by

characterizing the effects of failures in one network on the other network. Given

that a demand node fails if it loses all of its supply nodes and that a supply node

may support multiple demand nodes, independent supply node failures may lead

to correlated demand node failures. We develop techniques to tackle the failure

correlation, and study robust routing problems in interdependent networks.

We prove the complexity of computing path failure probability in interdependent

networks, and develop a polynomial time randomized approximation scheme to evalu-

ate the path failure probability. We develop algorithms to find the most reliable path

between a pair of nodes for single-path routing. In addition, we study the diverse

routing problem in interdependent networks. We prove the complexity, and develop

approximation algorithms to compute the failure probability of two paths, and to

compute a pair of reliable paths whose failure probability is minimized.
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Percolation of large-scale interdependent networks

In Chapter 4, we propose an interdependent random geometric graph (RGG)

model for two interdependent networks, to study the properties of large-scale inter-

dependent networks. Compared with existing network science models for interdepen-

dent networks, the interdependent RGG model captures the differences in the scales

of two networks as well as the one-to-multiple interdependence in spatially embedded

networks. We derive the first analytical upper bounds on the percolation thresholds

of the interdependent RGGs, above which a positive fraction of nodes are functional.

We obtain 99% confidence intervals for the percolation thresholds, by mapping the

percolation of interdependent RGGs to the percolation of a square lattice where the

probability that a bond in the square lattice is open is evaluated by simulation.

We characterize sufficient conditions for the interdependent RGGs to percolate

under random failures and geographical attacks. In particular, if the node densities

are above any upper bound on the percolation threshold obtained in this chapter,

the interdependent RGGs remain percolated after a geographical attack. This is

in contrast with the cascading failures after a geographical attack, observed in the

interdependent lattice model with one-to-one interdependence.

Finally, we extend our techniques to study models with more general interdepen-

dence requirement (e.g., a node in one network requires more than one supply node

from the other network).

Power grid frequency control with limited communication

In Chapter 5, we study the control for smart grid under failures, as an application

of interdependent networks. Power grid frequency regulation and economic dispatch

is traditionally implemented in a hierarchical architecture, and require communica-

tion to exchange information between generators. We study the impact of loss of

communication on power grid control.

We study the performance of a decentralized integral controller with properly

designed controller gains, which does not require any communication. We quantify the
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gap between the cost under the decentralized control and the minimum possible cost,

and derive conditions for joint frequency regulation and economic dispatch, based on

the DC power flow model. We study the tradeoff between the cost and the convergence

time, by changing the parameters of the controller. We also study the benefit of

reducing the convergence time from communication, and quantify the importance of

each individual communication link. We then extend the control policy to handle

arbitrary convex power generation costs and power generation capacity constraints.

Moreover, we observe that a delayed integral control achieves near-optimal generation

cost using significantly smaller convergence time.

Robustness of distributed computing networks

In Chapter 6, we study the robustness of distributed computing networks, where

network flows are supported by both communication and computation resources. We

define cut metrics, including communication cut, computation cut, and joint commu-

nication and computation cut, to characterize the vulnerability of computing networks

under failures. We develop efficient algorithms to compute the maximum flow and

the minimum computation cut. We prove the complexity for computing the minimum

communication cut and the joint cut, and develop integer programs and approxima-

tion algorithms to evaluate the cuts. Unlike the classical flow network where the

maximum flow equals the minimum cut, in computing networks, there is a gap be-

tween the flow and cut values. We then study network flow interdiction problems

in computing networks, and develop integer linear programs to compute the optimal

interdiction.

Optimal traffic control for distributed computing networks

In the Appendix, we develop routing and scheduling algorithms for traffic flows

in a distributed computing network, where the flows are processed by a chain of

service functions. The control policy achieves the maximum network throughput

by the joint optimization of communication and computation resource allocation,
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and can be adaptive to time-varying resource availability and failures. The policy

is throughput-optimal for any mix of unicast and multicast traffic, and is the first

throughput-optimal policy for non-unicast traffic in distributed computing networks

with both communication and computation constraints. Moreover, the policy yields

substantially lower average packet delay compared with existing control policies.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we present a layered

graph model for interdependent networks, and study network connectivity. In Chap-

ter 3, we study robust routing in interdependent networks based on the same model.

In Chapter 4, we develop an interdependent random geometric graph model to study

large-scale interdependent networks, and derive sufficient conditions for percolation.

In Chapter 5, we study power grid frequency control using limited communication. In

Chapter 6, we analyze the robustness of distributed computing networks and study

flow interdiction problems. We conclude the thesis in Chapter 7. In the Appendix,

we develop a control policy for traffic flows in distributed computing networks, which

achieves the maximum throughput is adaptive to failures of network resources.
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Chapter 2

Connectivity in interdependent

networks

In this chapter, we propose a layered graph model for two interdependent net-

works, and study the impacts of node failures in one network on the other network.

We develop metrics that measure the robustness of interdependent networks, by gen-

eralizing canonical metrics for the robustness of a single network. Moreover, the

model is simple enough to allow for the evaluation of the robustness of interdepen-

dent networks, and allows us to obtain insights and principles for designing robust

interdependent networks.

The rest of the chapter is organized as follows. In Section 2.1, we develop a one-

way dependence model, where a demand network depends on a supply network. This

allows us to deliver key results and intuitions for studying the impacts of node failures

in one network on its interdependent network, using simplified notations and presen-

tations. We study this one-way dependence model in Sections 2.2 and 2.3. In Section

2.2, we evaluate the supply node connectivity of the demand network. In Section 2.3,

we develop algorithms, which assign supply nodes to demand nodes, to maximize the

supply node connectivity. In Section 2.4, we focus on the bidirectional interdepen-

dence model and generalize the above results. Section 2.5 provides simulation results.

Finally, Section 2.6 summarizes this chapter.
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2.1 Model

2.1.1 One-way dependence model

We start by considering a one-way dependence model, where nodes in a demand

network depend on nodes in a supply network. This simplified model allows us to

focus on the impacts of node failures in one network on the other network. Let two

undirected graphs G1 (V1, E1) and G2 (V2 , E2) represent the topologies of the demand

and supply networks, respectively. Each node in the demand network depends on one

or more nodes in the supply network. The dependence is represented by the directed

edges in Fig. 2-1. Every supply node provides substitutional supply to the demand

nodes. A demand node is functional if it is adjacent to at least one supply node.

Figure 2-1 illustrates the failure of a demand node due to the removals of its supply

nodes.

As a more concrete example, we use G1 to represent a communication network

and G2 to represent a power grid. Each node in G, represents a router, and each

node in G2 represents a power station. A router receives power from one or more

power stations, and fails if all of the supporting power stations fail.

G2r
LK~uX 4 4 X L9

Figure 2-1: Failure cascades: demand node 3 fails if both supply nodes 1 and 2 fail.

We aim to characterize the impacts of node removals in the supply network on

the connectivity of the demand network. Recall that (see, e.g. [51]), in a single graph,

a node cut (i.e., vertex cut) is a set of nodes whose removals either disconnect the

graph into more than one connected component, or make the remaining graph trivial
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(where a single node remains). The node connectivity of a graph is the number of

nodes in the smallest node cut. In the one-way dependence model, the connectivity

of the demand network depends not only on its topology G1 (V1, E), but also on

the supply-demand relationship. We define the supply node cut and supply node

connectivity of the demand network as follows.

Definition 2.1. A supply node cut of the demand graph is a set of supply nodes

whose removals induce a node cut in the demand graph. (Mathematically, a supply

node cut of G1 is a set of nodes V C G2 , such that nodes Vd C G1 do not have any

supply nodes other than V, and that Vd contain a node cut of G 1 .)

The supply node connectivity is the number of nodes in the smallest supply node

cut.

The above definition is a generalization of the traditional node cut to include

a superset of a cut. This is necessary because the removals of supply nodes may

not correspond to proper cuts of the demand graph (see Fig. 2-2). Under this

definition, graphs with larger supply node connectivity are more robust under supply

node failures.

Remark. In Fig. 2-2, let every node have a single supply node, and let the red nodes

share the same supply node u E G2 . By removing u, the left graph stays connected

after removing all the three red nodes, while the right graph is disconnected. However,

the left graph is less robust under the removal of supply node u, because the failed

nodes in the left figure include all the failed nodes in the right figure. Thus, "graph

connectivity after supply node removals" does not serve as a good measure for the

robustness of the demand graph when supply nodes fail. This motivates our definition

of supply node cut and supply node connectivity. According to our definition, the

supply node connectivity of the left graph is one.

We study the connectivity of a source-destination pair (s, t) c G1 as a starting

point, which provides insights towards the graph connectivity with simpler analysis.

In a graph, an st node cut is a set of nodes, excluding s and t, whose removals

disconnect s from t. The number of nodes in the smallest s - t node cut is the
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Figure 2-2: Illustration of supply node cut. Let the three red nodes in the left figure
be supported by the same supply node. Removing the supply node leads to the failure
of the three red nodes, which do not form a proper cut but form a superset of a proper
cut (i.e., the red node in the right figure). The supply node is viewed as a supply
node cut.

s - t node connectivity. Analogously, we define s - t supply node cut and s - t supply

node connectivity as follows.

Definition 2.2. An s - t supply node cut is a set of supply nodes whose removals

induce an s - t node cut. (Mathematically, an s - t supply node cut is a set of nodes

Vst C G2, such that nodes Vd" C G, do not have any supply nodes other than Vt,

and that V' contain an s - t node cut.)

The s-t supply node connectivity is the number of nodes in the smallest s-t supply

node cut.

An s - t supply node cut may induce demand node failures V1 t including s and/or

t, since s, t may share the same supply nodes with nodes in the s - t node cut.

However, removing Vj't \ {s, t} must disconnect s from t.

We consider non-adjacent s and t throughout the chapter. Otherwise, if s and t

are adjacent, they are always connected when other nodes are removed, and there is

no node cut that disconnects them.

2.1.2 Transformation to a colored graph

Our model is closely related to the shared risk node group (SRNG) model [36,52].

In the SRNG model, several nodes share the same risk, and can be removed by a

single failure event. In interdependent networks, if every node has one supply node,

then the demand graph becomes exactly the same as the SRNG model, where the
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demand nodes that have the same supply node share the same risk.

The SRNG model can be represented by a colored graph, where the nodes that

have the same color share a common risk. We definel color node cut and s - t color

node cut as follows.

Definition 2.3. Given a colored graph G(V, E, C) with colored nodes V, regular

edges E, and node-color pairs C that represent the color for each node, a color node

cut is a set of colors Cc such that the nodes covered by colors C, contain a node cut

of G.

A minimum color node cut of G is a color node cut Ccmin that has the minimum

number of colors. The number of colors in Ccmin is the value of the minimum color

node cut.

Definition 2.4. Given a colored graph G(V, E, C) with colored nodes V, regular

edges E, node-color pairs C that represent the color for each node, and a pair of

nodes (s, t) E V, a color s - t node cut is a set of colors C5 such that the nodes

covered by colors Ct contain an s - t node cut.

A minimum color s-t node cut is a color s-t node cut Ctin that has the minimum

number of colors. The number of colors in C51in is the value of the minimum color

s - t node cut.

Colored graph provides an intuitive representation of the correlated node failures

by color. If every demand node has a single supply node, then every demand node

has a color that corresponds to its supply node. After the failure of a supply node, a

demand node fails if it has the color that corresponds to the supply node.

In general, a demand node can have multiple supply nodes, and thus the mapping

to a colored graph is not straightforward. We propose Algorithm 2.1 that transforms

the demand network to a colored graph where every node has a single color, and use

Fig. 2-3 to illustrate the algorithm.

'Previous study on colored graphs focused on color edge cuts in colored graphs with colored edges
and regular nodes. Much less is known about the color node cut, a counterpart of color edge cut, in
colored graphs with colored nodes and regular edges. In fact, to the best of our knowledge, there is
no formal definition for color node cut.
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Algorithm 2.1 Transformation from the demand graph G1 to a colored graph G1.

1. If a node vi E G, has n,(vi) supply nodes, nri(vi) copies of vi exist in 01. Each
copy has a color which identifies a supply node. No edge exists between the
copies of vi.

2. If vi and vj are connected by an edge in G 1 , then all the copies of vi are connected
to all the copies of v3 in G 1 .

G,\

Figure 2-3: Illustration of the transformation algorithm.

We study the connectivity of the demand graph based on the colored graph, due

to the following theorem.

Theorem 2.1. There is a one-to-one mapping between a supply node cut in the

demand network and a color node cut in the transformed graph of the demand network.

Proof. Let G1 be the demand graph and G 2 be the supply graph. Let G1 be the

transformed graph of G1 by Algorithm 2.1. The result trivially holds if every demand

node has a single supply node. Next we focus on the case where a demand node has

more than one supply node.

We first prove that given any supply node cut V of G 1, there exists a color node cut

C, of G1 where colors C, correspond to supply nodes V,,. According to the definition

of a supply node cut, the demand nodes in G1 that have no supply nodes other than

V, contain a node cut V1* of G1. By removing V* from G1, either G1 is separated

into at least two components, or a single node v in G1 remains (by the definition of a

node cut for a graph). In the first case, nodes in 0 1 that correspond to V* g G, have

colors in C, and they are removed. Among the remaining nodes, if no edge exists
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between two nodes in G 1 , then there is no edge between their corresponding nodes in

G 1 . Therefore, the remaining nodes in G1 are disconnected after removing the nodes

that correspond to V* and have colors Cc. In the second case, copies of v are the only

remaining nodes in C 1 and they are disconnected. Thus, C, is a color node cut in G,

in both cases.

We then prove that given any color node cut C, of G 1 , there exists a supply node

cut V, of G, where V, corresponds to colors Cc. After removing all (or a subset)

of nodes in G 1 that have colors Cc, either a single node remains in G1, or G, is

separated into multiple connected components. In the first case, at most a single

node remains in G, after removing V, and thus V, is a supply node cut. In the

second case, if every component contains a single node, and the node corresponds

to the same node in G 1 , then at most one node survives in G1 by removing supply

nodes V. On the other hand, if these components correspond to different nodes in

G1 , there must exist two disconnected nodes v1 , v2 E G1, whose copies are in different

components in G 1 . (Recall that, if two nodes are connected in G1, then their copies

are connected in C 1 . If all the remaining nodes in G1 form a connected component,

then their corresponding copies in 01 also form a connected component.) In both

cases, V, is a supply node cut of G 1. E

Moreover, an s - t supply node cut can be represented by a color 9i node cut in

the colored graph, where 9 is any copy of s and t is any copy of t. By considering cuts

that separate (s, t) in G1 and cuts that separate (5, t) in 01, we obtain the following

result by a similar proof to that of Theorem A.1.

Corollary 2.1. There is a one-to-one mapping between a supply node s - t cut in

the demand network and a color 9i node cut in the transformed graph of the demand

network, where 9 is any copy of s and i is any copy of t.

Another corollary is a property of the transformed graph C 1 when every demand

node in G1 has a fixed number n, of supply nodes. If G, has ni nodes and m, edges,

the transformed graph 01 has n1n, nodes and m1 n2 edges. Moreover,
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Corollary 2.2. If every demand node has a fixed number n, of supply nodes, the

following results hold.

If the node connectivity of G1 is k1 , then the node connectivity of G1 is kln.

If the s - t node connectivity is kt (s, t E G1 ), then the 9i node connectivity is

ktn8 , where 9 E 6 1 is any copy of s and i E G1 is any copy of t.

Proof. By assigning n, distinct supply nodes to each node in G1, using a total of

n1n, supply nodes, to remove a node in G1, a distinct set of n, supply nodes must be

removed. Thus, the supply node connectivity of G1 equals the node connectivity of G1

times n,. Moreover, in C1, every node has a distinct color, and the number of colors

in a color node cut equals the number of nodes in the same node cut. Thus, the node

connectivity of C 1 , without considering colors, equals the supply node connectivity

of G1 , because of the one-to-one mapping proved in Theorem A.1. We have therefore

proved that the node connectivity of G 1 is the node connectivity of G1 times n,. The

same relationship holds for s - t node connectivity in G1 and 9i node connectivity in

G 1. E

2.1.3 Notations

We define notations to be used throughout the rest of the chapter. For a finite

set A, the cardinality of A is denoted by JAI. For a colored graph G(V, E, C), the

number of nodes, edges, and colors are denoted by n, m, n,, respectively. The graph

connectivity is denoted by k, and the s - t connectivity is denoted by kt. The

subscript i E {1, 2} denotes the identity of a graph. For example, ni denotes the

number of nodes in G 1. The subscript s denotes supply. For example, n 1 denotes

the number of supply nodes for a node in G1.

We use asymptotic notations in this chapter. Let f(x) > 0 and g(x) > 0 be

two functions. If there exists a constant M and a positive number xO, such that

f(x) < Mg(x) for all x > xO, then f(x) = O(g(x)). Moreover, f(x) Q (g(x))

if g(x) = O(f(x)); f(x) = 0(g(x)) if both f(x) = O(g(x)) and f(x) = (g(x))

f(x) = o(g(x)) if limx., f (x)/g(x) = 0; f(X) = W(g(x)) if g(x) = o(f (x)).
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2.2 Evaluation of the supply node connectivity

In this section, we study the supply node connectivity of the demand network.

As discussed in the previous section, supply node cuts in the demand network are

equivalent to color node cuts in a colored graph. To simplify the presentation, we

consider a colored graph G(V, E, C) throughout this section.

2.2.1 Complexity

We prove that computing both the global minimum color node cut of a graph and

the minimum color s - t node cut are NP-hard. The proof for the complexity of the

minimum color s - t node cut follows a similar approach to that of the minimum

color s - t edge cut in [36]. In contrast, the complexity of the global minimum color

edge cut is unknown. The detailed proofs of Theorems 2.2 and 2.3 can be found in

the Appendix.

Theorem 2.2. Given a colored graph, computing the value of the global minimum

color node cut is NP-hard.

Theorem 2.3. Given a colored graph and a pair of nodes (s, t), computing the value

of the minimum color st node cut is NP-hard.

Given the computational complexity, in the remainder of this section, we first

develop integer programs to compute the exact value of the minimum color cuts, and

then develop polynomial time approximation algorithms.

2.2.2 Exact computation for arbitrary colored graphs

We compute the minimum color s-t node cut using a mixed integer linear program

(MILP). In this formulation, each node has a potential. Connected nodes have the

same potential. The source and the destination are disconnected if they have different

potentials. We note that the classical MILP formulation for computing the minimum

edge cut also uses node potentials to indicate disconnected components after removing

edges [531.
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In the MILP formulation, indicator variable c, denotes whether color r E C is in

the minimum color cut, where C is the set of colors in the colored graph. Indicator

variable y, denotes whether node v E V is a cut node that separates the s - t pair,

and may take value 1 only if the color of v is in the color cut. Note that y, may take

value 0 even if the color of v is in the color cut (constraint (2.4)). This allows the cut

nodes to be a subset of nodes with colors {rlc, = 1} (recall Definition 2.4).

The potential of a node v is denoted by p,. After removing all the cut nodes, the

potentials of nodes in a connected component are the same, guaranteed by constraints

(2.1) under the condition yi = yj = 0. The same constraints guarantee that nodes

adjacent to the cut nodes may have different potentials from the cut nodes, if yi = 1

or yj = 1. The potential of the source is 0, and the potential of the destination is 1,

guaranteed by constraint (2.2). Moreover, constraint (2.3) guarantees that neither s

nor t is a cut node. Thus, the component that contains s and the component that

contains t are separated by an s -t node cut. The objective is to minimize the number

of colors of the cut nodes.

min cr (MILP)
rEC

s.t. -yi - y < pi - p3 y + y, V(i, j)E, (2.1)

Ps 0, Pt = 1, (2.2)

Ys Yt = 0, (2.3)

Yv c, Vr E C, v E {vlr is the color of v}, (2.4)

Pv, y, > 0, Vv E V,

C, E {0, 1}, Vr E C.

Next we compute the global minimum color node cut of a colored graph using

an integer program (IP). The variables c, y, p have the same representations as those

in the above MILP. Recall that a global node cut of a graph either separates the

remaining nodes into disconnected components, or makes the remaining graph trivial.

In the first case, z = 0, and constraint (2.6) guarantees that there is at least one node
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that has potential 1, in addition to all the cut nodes. Constraints (2.5) guarantee that

all the cut nodes have potential 1. Constraint (2.7) guarantees that there is at least

one node that has potential 0. The existence of both potential 0 nodes and potential

1 nodes, excluding the cut nodes, implies that the remaining graph is disconnected.

In the second case, z = 1, and the number of cut nodes is at least IVI - 1, guaranteed

by constraint (2.8). Given that M is sufficiently large (e.g., M = 21VI), if z = 0,

constraint (2.8) is satisfied; if z = 1, constraints (2.6) and (2.7) are satisfied. Thus, a

node cut that satisfies either condition is a feasible solution of the following IP.

min Cr (IP)
rEC

s.t. -Yi - Yj Pi - PY yi + Yj, V(i, j) E E,

pV Y YV, Vv E V, (2.5)

Epv - Yv- 1 -Mz, (2.6)
vEV vEV

pv - IVI + 1 Mz, (2.7)
vEV

yV - IVI + 1 > -M(1 - z), (2.8)
vEV

Yv cr, Vr E C, v E {vjr is the color of v},

Cr,Pv,Yv,ZE{O,1}, VvEVVrEC.

2.2.3 A polynomially solvable case and an approximation al-

gorithm

Although computing the minimum color node cut is NP-hard in general, there are

special instances for which the value can be computed in polynomial time. Let V

denote the nodes in G that have color i. The induced graph of V, denoted by G[V],

consists of V and edges of G that have both ends in V. We prove that if G[V] is

connected for all i, then the minimum color node cuts can be computed in polynomial

time. It is worth noting that these special instances are reasonable representations for
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real-world interdependent networks, where a supply node is likely to support multiple

directly connected nearby demand nodes.

Algorithm 2.2 computes the minimum color s - t node cut in G where G[V4] is

connected Vi, for a non-adjacent (s, t) pair.

Algorithm 2.2 Computation of the minimum color s - t node cut in G where G[V]
is connected Vi.

1. Construct a new graph G' from G as follows. Contract the nodes Vi, which have

the same color i, into a single node ui. Connect ui and uj if and only if there

is at least one edge between V4 and V. Connect s' to {uils is connected to 14},
and connect t' to {uilt is connected to 14}.

2. Compute the minimum s't' node cut in G', in which every node has a distinct

color. The minimum color s - t node cut in G is given by the colors of the s't'

cut nodes in G'.

The following lemma proves the correctness of Algorithm 2.2.

Lemma 2.1. The s't' node connectivity in G' equals the value of the minimum color

st node cut in G, if G[V4j is connected, Vi, and (s, t) are non-adjacent.

Proof. We aim to prove that there is a one-to-one mapping between a color s - t node

cut in G and an s't' node cut in G', from which the result follows.

One direction is simple. Let C be the set of colors that appear in G. For any

s - t color node cut Cs in G, after removing all (or a certain subset) of nodes with

colors in C', there does not exist a sequence of colored nodes that connect s and t.

Two nodes ui, uj are connected in G' only if nodes with color i and nodes with color

j are connected in G. Thus, there does not exist a sequence of nodes with colors in

C \ Cr" that connect s' and t' in G'.

To prove the other direction, consider any s't' node cut in G' and denote it by

Vs''. Let Vs C G be a set of nodes with colors in Ccolor = {ilui E Vs't'}. We aim to

prove that Vst is a superset of an s - t node cut in G.

If Vst does not contain s or t, after removing Vs from G, no edge exists between

the component that contains s and the component that contains t. To see this, note

40



that if no edge exists between ui and uj in G', then no edge exists between any color

i node and any color j node in G.

If V" contains s, we need to prove that Vst \ s is an s - t cut in G. In Step 1 of

Algorithm 2.2, s' is connected to all neighbors N(s') := {uils is connected to Vi} in

G'. After removing V"'', N(s') are either removed or disconnected from t'. Therefore,

the neighbors of s in G are either removed or disconnected from t after removing Vst\s.

The same analysis proves that if Vs contains t, then Vst \ t is an s - t cut in

G. Similarly, if Vst contains both s and t, then V" \ s, t is an s - t cut in G. This

concludes the proof that V" is a superset of an s - t node cut in G. l

Remark. A similar result exists in the computation of the minimum color s - t edge

cut under the condition that all the edges that have the same color are connected [36].

The difference in our problem is that the source or destination may have the same

color as the nodes in a cut. Thus, to prove that a set of colors Cst is a color cut, we

need to prove that removing nodes, excluding s and t, with colors C0 St disconnects s

and t. Thus, the proof has to take care of multiple corner cases.

To compute the global minimum color node cut of a colored graph, it is necessary

to consider two different cases, resulting from the definition of a node cut that allows

the remaining graph to be either disconnected or reduced to a single node. Algorithm

2.3 computes the exact value of the global minimum color node cut of G where G[Vi]

is connected Vi.

We remark that the global minimum color node cut of G can not be computed

by first contracting nodes that have the same color and then computing the global

minimum node cut in the new graph, even if G[V] is connected Vi. We only claim

that the minimum color s - t node cut in G corresponds to the s't' node cut in G'

obtained by Algorithm 2.2, and that the global minimum color node cut of G can be

computed by Algorithm 2.3. Note that the topology of G' depends on the choice of

s and t (see Step 1 of Algorithm 2.2).

The above result can be used to develop an approximation algorithm to compute

the minimum color node cuts in an arbitrary colored graph where the induced graph
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Algorithm 2.3 Computation of the global minimum color node cut of G where G[Vi]
is connected Vi.

1. Compute minimum color s - t node cut C0 t for all non-adjacent s - t pairs in

G by Algorithm 2.2. Let C denote the minimum size Ct over all s - t pairs.

(The cut C, is the minimum color node cut of G that partitions G into more

than one component.)

2. Compute the minimum set of colors C that cover at least n - 1 out of the n

nodes in G. (L e., if there exists a color i that is carried by one node, then C2
include all the colors except color i. If there is no color that is carried by a

single node, then C include all the colors.)

3. The minimum color node cut of G is given by the smaller of C. and C.

G[V] is not necessarily connected. To approximate the value of the minimum color

s - t node cut, the algorithm is a slight modification of Algorithm 2.2. Instead of

contracting G[Vi] into a single node, in the new algorithm, each connected component

of G[KI] is contracted into a single node. Let the new graph be G", and connect

s", t" to the nodes contracted by the components in G that are connected to s, t,

respectively. The performance of the algorithm is given by Lemma 2.2.

Lemma 2.2. The s"t" node connectivity in G" is at most q times the value of the

minimum color s - t node cut in G, where q is the maximum number of components

of G[Vj], Vi.

Proof. Given that the induced graph G[Vi] has at most q components, after contract-

ing each component into a node with color i, the number of nodes with color i in G"

is at most q. Let Ct denote a color node cut in G. By a similar reasoning as the

proof of Lemma 2.1, removing nodes with colors Ct disconnects s" from t" in G".

Let c'in denote the value of the minimum color st node cut Ctin in G. The number

of nodes in G" with colors C in is at most Csinq. Moreover, cgi.q is no smaller than

the s"t" node connectivity ks"t". Equivalently, CMin is at least ks""q. El

The global minimum color node cut of G can be approximated to within factor q,

by approximating the minimum color s - t cuts for all non-adjacent s - t pairs and
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taking the minimum size cut, and continuing Steps 2 and 3 of Algorithm 2.3. We con-

clude this section by summarizing the performance of the approximation algorithms.

Theorem 2.4. Given a colored graph G(V, E, C), let V be the set of nodes that have

color i. If there are at most q components in the induced graph G[Vi], Vi, then the

values of the minimum color s - t node cut and the global minimum color node cut

can be approximated to within factor q in O(V| 0-5|E| + IV1 2) and O(|V1 2 .1 E|) time,

respectively. Note that if q = 1 the exact solutions are obtained.

Proof. The fact that the minimum color s - t node cut can be approximated to within

factor q follows from Lemma 2.2. The contraction of connected nodes that have the

same color takes O(1V1 2 ) time, by updating the adjacency matrix representation of

G. Adding s" and t" to G" takes O(IVI) time, by increasing the numbers of rows and

columns of the adjacency matrix by two and adding the new connections. Computing

the minimum node s"t" cut in G" takes O(1V 0 51E) time [511. The total time of

approximating the minimum color s - t node cut is O(V 0-51E + IV2).

The global minimum color node cut of G is the minimum over 1) Cc: the minimum

color node s - t cut Vst, and 2) C: the minimum number of colors that cover at

least n - 1 nodes. Since the value of the minimum color s - t node cut can be

approximated to within factor q, the minimum over all non-adjacent s - t pairs, ICcI,
can also be approximated to within factor q. Moreover, the exact value of IC2 can

be obtained in O(IVI) time. Thus, the global minimum color node cut of G can be

approximated to within factor q. The number of non-adjacent s - t pairs is at most

IV1 2 /2. The contraction of nodes with the same color can be computed once and

reused. Computing the connections between s", t" and the contracted nodes takes

O(IVI) time for each (s", t") pair. Computing the minimum node s"t" cut in G"

takes O(1VI 0-5IEI) time for each (s",t") pair. Thus, the computation of |C.j requires

O(|V1 2 + 1V1051E1!V1 2 + IVIIVI 2) O(1V1 2.5 |E1) time.

We remark that although there are faster algorithms to compute the global min-

imum node cut (e.g., [54]), not all the accelerations can be applied to our problem.

For example, computing (k + 1) IVI pairs of minimum s - t node cut is enough to

43



obtain the global minimum node cut in a graph G, where k is the node connectivity

of G, because at least one node among k +1 nodes does not belong to a minimum cut

and can be a source or destination node. However, this does not hold in our problem,

where the number of nodes covered by a minimum color node cut can be large, and

the s - t node connectivity for E(V1 2) s - t pairs should be evaluated. E

2.3 Maximizing the supply node connectivity

In this section, we develop supply-demand assignment algorithms to maximize

the supply node connectivity of the demand network. Given a fixed demand network

topology, the robustness of the demand network depends on the assignment of supply

nodes for each demand node. For example, if every node in a cut depends on the same

set of supply nodes, then removing these supply nodes could disconnect the demand

network. In contrast, if different nodes in every cut depend on different supply nodes,

then a larger number of supply nodes should be removed to disconnect the demand

network.

For simplicity, in this section, we assume:

1. Every demand node has a fixed number of supply nodes, denoted by n,.

2. Every supply node can support an arbitrary number of demand nodes.

The total number of supply-demand pairs is n1in, where ni is the number of nodes

in the demand network G 1. In Section 2.4, we study the case where the number of

nodes supported by every supply node is fixed as well, and study the interdependence

assignment that maximizes the supply node connectivity of both G1 and G 2.

The supply-demand assignment problem can be stated as follows in the context

of a colored graph. Given a graph G(V, E) and colors C, assign a color ci E C to

each node, such that the value of the minimum color node cut of G (or the minimum

color s - t node cut for s, t E V) is maximized. Graph G is the transformed graph of

the demand graph G1, obtained by Algorithm 2.1, where each node is replicated into

n. nodes.
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Under the first assumption, according to Corollary 2.2, the node connectivity of

G is k = king, where k, is the node connectivity of the demand graph G1. Under

any color assignment, the minimum color node cut of G is at most k. Moreover, the

minimum color node cut of G is upper bounded by nc, the total number of available

colors (i.e., the total number of supply nodes in G2). We aim to assign colors to nodes

in order for the value of the minimum color node cut to be close to min(k, n,). If the

value of the minimum color node cut is min(k, nc)/a under an assignment algorithm

A, then A is an a-approximation algorithm.

2.3.1 Maximizing the s -t supply node connectivity by path-

based assignment

We first propose Algorithm 2.4 that maximizes the value of the minimum color

s - t node cut, which is simple but provides insight towards maximizing the value of

the global minimum color node cut of a graph.

Algorithm 2.4 Path-based Color Assignment.

1. Compute the s - t node connectivity kt. Identify kst node-disjoint s - t paths.

2. Assign the same color to all the nodes in a path. If nc > kst, assign a distinct
color to each path. If nc < kt, assign a distinct color to each of nc paths, and
assign an arbitrary color to each remaining path.

For the k" node-disjoint s - t paths, any pair of paths do not share the same

color if there are sufficient colors (nc kst). Thus, s and t stay connected after

removing fewer than ks colors. On the other hand, if n, < kt, there exist nc paths

with distinct colors, and s and t stay connected after removing fewer than nc colors.

To summarize, the performance of Algorithm 2.4 is given by the following theorem.

Theorem 2.5. The value of the minimum color s - t node cut is min(kst, ne) if the

colors are assigned according to the Path-based Color Assignment algorithm, where

ne is the number of colors and kt is the s - t node connectivity.
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It is worth noting that assigning the same color to multiple nodes in a path does

not reduce the value of the minimum color s - t node cut, compared with assigning

a distinct color to each node. The reason is that, a path is disconnected as long as

at least one node in the path is removed. To generalize, if a set of nodes together

form a "functional group", it is better for nodes in the same group to share the same

risk. In contrast, nodes in different groups should avoid sharing the same risk. We

leverage this idea to maximize the global minimum color cut of a graph.

2.3.2 Maximizing the global supply node connectivity by

CDS-based assignment

In the remainder of this section, we consider the color assignment that maximizes

the global minimum color node cut of a graph. It is helpful to identify the group of

nodes that support graph connectivity, analogous to nodes in a path that support

s - t connectivity. Indeed, nodes in a connected dominating set (CDS) form such a

group. A connected dominating set is a set of nodes S such that the induced graph

G[S] is connected and that every node in G(V, E) either belongs to S or is adjacent

to a node in S. If none of the nodes S are removed, then the graph stays connected

regardless of the number of removed nodes in V \ S. Namely, any subset of nodes

V \ S is not a node cut of the graph.

The natural analog of node-disjoint s - t paths is (node) disjoint CDS, which

support graph connectivity. The failures of nodes in one CDS do not affect another

disjoint CDS, while a survived CDS suffices to keep the graph connected. CDS parti-

tions, which partition nodes of G(V, E) into multiple disjoint CDS, have been studied

in [41-43]. If the node connectivity of G(V, E) is k and G(V, E) has n nodes, then

Q(k/ log 2 n) node-disjoint CDS can be obtained in nearly linear time O(m polylog M),

where m is the number of edges [41,43].

We propose Algorithm 2.5 that assigns colors based on CDS partitions.

The performance of Algorithm 2.5 can be analyzed in a similar approach to that

of Algorithm 2.4. If n_ > kCDs, each CDS has a distinct color, and the graph stays
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Algorithm 2.5 CDS-based Color Assignment.

1. Compute the node connectivity k of G. Identify kCDs = Q(k/ log 2 n) node-

disjoint CDS using the algorithm in [43].

2. Assign the same color to all the nodes in a CDS. If n, > kCDS, assign a distinct

color to each CDS. If n, < kCDS, assign a distinct color to each of n, CDS, and

assign an arbitrary color to each remaining CDS.

connected after removing fewer than kCDS colors. If n, < kCDs, n, CDS have distinct

colors, and the graph stays connected after removing fewer than nc colors. Therefore,

the value of the minimum color node cut is at least min(kCDS, n,). The performance

of Algorithm 2.5 is summarized by the following algorithm.

Theorem 2.6. The value of the minimum color node cut of G is at least min(Q(k/ log 2 n), nc)

if the colors are assigned according to the CDS-based Color Assignment algorithm,

where ne is the number of colors, n is the number of nodes, and k is the node connectiv-

ity of G. The CDS-based Color Assignment algorithm is an O(log 2 n)-approximation

algorithm.

2.3.3 Maximizing the global supply node connectivity by

random assignment

Finally, we study a Random Assignment algorithm. The algorithm is to assign

each node a color randomly with equal probability. The intuition behind the Random

Assignment algorithm is that nodes in a small cut are unlikely to be assigned with

the same color if the number of colors is large. Thus, removing the nodes associated

with a small number of colors is unlikely to disconnect the graph.

In fact, the Random Assignment algorithm has provably good performance. The

analysis relies on the recently studied vertex sampling problem in [43]. We first restate

a sampling theorem in [43] as follows.

Lemma 2.3 (Theorem 6 in [43]). Consider a graph G in which each node is removed

independently with a given probability 1 - p. For 0 < 6 < 1, if the probability that a
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node is not removed satisfies p 3/ log(n/6)/k for a sufficiently large constant /,
then the remaining graph is connected with probability at least 1 - 6, where n is the

number of nodes and k is the node connectivity of G.

This sampling theorem provides a sufficient condition for a graph to be connected

with high probability after its nodes are randomly removed. In particular, we use the

following corollary.

Corollary 2.3. Given a graph G with n nodes and node connectivity k = w(log n), if

each node is removed with up to a constant probability 1 - p < 1, then the remaining

nodes in G are connected with probability 1-6 where 6 = O(ne-ak) for some constant

a.

Proof. Given that the probability p that each node remains in G is at least a con-

stant greater than zero, from Lemma 2.3 we know that the probability 6 that G is

disconnected satisfies the following equation.

k(P/0)2 = log(n/6),

6 = ne-ak

where a = (p/#3) 2 is a constant.

Moreover, since k = w(log n), 6 = ne-ak < n- 1 = o(1). The probability that the

remaining nodes are connected is high. 0

On the other hand, if k = O(logn), 0/3log(n/6)/k > /3 log(n)/k = Q(1). The

condition in Lemma 2.3 cannot be satisfied, unless the hidden constant in k = O(log n)

is large. Thus, the probability that the graph is disconnected after randomly removing

a given fraction of nodes cannot be bounded using this approach. For simplicity, in

the following we focus on graphs where k = w (log n).

In a colored graph G where nodes are randomly colored using a total of n, colors,

removing nodes with colors that belong to a given set of k' colors is equivalent to

removing each node with probability k'/nc. The probability of removing a node is

at most a constant, by restricting k' to be at most (1 - c)nc for a constant e > 0.
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Thus, by Corollary 2.3, the probability that G is disconnected after removing nodes

with a given set of k' colors is small. By a union bound over (n) combinations of k'

colors, the probability punion that G is disconnected after removing nodes with any

set of k' colors can be bounded. If Punion is small, and the remaining nodes form

a CDS with high probability (such that removing any subset of nodes with any k'

colors does not disconnect G), then the value of the minimum color node cut of G is

at least k' + 1 with high probability. We next fill in the details of the proof, and our

approach closely follows the approach of computing node connectivity after random

node sampling in [43].

Theorem 2.7. By assigning a color uniformly at random to each of the n nodes of G,

the value of the minimum color node cut of G is E(min(k, ne)) with high probability,

where ne is the number of colors and k = w(log n) is the node connectivity of G. If,

in addition, k = w(ne), then the value of the minimum color node cut of G is at least

(1 - c)nc with high probability for any constant c > 0.

Proof. We prove the theorem under three cases: i) k = E(nc); ii) k = w(nc); and iii)

k = o(nc). In all of the three cases, k = w(log n).

i) First we consider the case where k = E(nc). For k' < (1 - E)nc, where

c > 0 is a constant, the probability that G is disconnected after removing the nodes

covered by a randomly selected set of k' colors is O(ne-ok), for a constant oe (Corollary

2.3). The total number of k' color combinations among the nc colors is ("ec) < (".k)k'.

Thus, by the union bound, the probability that G is disconnected after removing nodes

with any k' colors is at most Punion-1 = O(ne-ok("g)k'). Let k' = a min(k, nc)/(27) K

(1 - e)nc, where q satisfies q = log ne? = log *("n and is a constant.
( ~ ~ ~ ~ k log min(k,n,) adi osat

log punion-1 log(ne-a ( )k'/

en~
=log n - ak+k' log k'

= log n - ak + a min(k, n,)/2

< log n - ak/2

< - log n,
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for a constant -y > 0. The last inequality follows from k = w(log n). Therefore, the

probability that G is disconnected is at most n-7 = o(1).

The above approach proves that with high probability, removing nodes with any

k' colors does not disconnect G. Before concluding that the value of the minimum

color node cut of G is at least k', we need to prove that removing any subset of nodes

with any k' colors does not disconnect G (recall Definition 2.3 of a color node cut).

A sufficient condition is that the remaining nodes form a dominating set of G.

Since the node connectivity of G is k, the minimum degree of a node in G is at

least k. The probability that all the neighbors of a node are removed is (k'/nc)k. Let

k' < (1 - E)n for a constant e > 0. The probability that there is at least one node

whose neighbors are all removed can be upper bounded using the union bound

Punion-2 = n(k'/nc)k < n(1 - E)k = o(1). (2.9)

The last inequality follows from k = w(log n). With probability 1 - o(1), there

does not exist a node whose neighbors are all removed. Thus, the remaining nodes

form a dominating set.

To conclude, with probability at least 1- Punion-i - Punion-2 = 1 - o(1), the value of

the minimum color node cut of G is at least k' = E(k) if k = e(n,) and k = w(log n).

ii) Next we consider the case where k = w(nc). Let k' = (1 - E)nc.

logpunion- 1  log(ne-ak( e)')

= log n - ak + k'log

< log n - ak + 2k' < -y log n,

for a constant -y. The last inequality holds because k' = o(k) (equivalently, (1 -

E)nc = o(k) and k = w(nc)) and logn = o(k) (equivalently, k = w(logn)). The

value of the minimum color node cut of G is at least (1 - E)nc with probability

1 - Punion-I - Punion-2 = 1 - o(1)-

iii) Finally we consider the case where k = o(nc). Directly using Punion-1
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would incur an O(lognc) gap from the optimal k' (i.e., k' = Q(k/lognc)), because

the number of k' out of n, choices is large and the union bound punion-1 is too weak.

However, it is possible to reduce the number of choices, at the cost of removing a

larger number of nodes. We use the same approach as in [43]. Partition the colors

into 2k' = o(nc) groups. Instead of removing nodes with colors in a selected set of

k' colors, we consider removing nodes with colors in a selected set of k' color groups,

which consists of around n,/2 colors. The probability that each node is removed is

1/2. The probability that G become disconnected is still 6 = 0(ne-ak). The total

number of events (i.e., combinations of k' color groups out of 2k' color groups) is

reduced to (2k') < (2e)k'. For k' = ak/(2log(2e)),

2ek',
log punion-i log(ne-ak( k' )k)

=log n - ak + k'log(2e)

< log n - ak/2 < -- log n,

for a constant '.

Thus, the value of the minimum color node cut of G is at least k' = ak/(2 log(2e))

0(k) with high probability 1 - Punion-3 - Punion-2 = 1 - 0(1).

l

Theorem 2.7 proves that the Random Assignment algorithm is an 0(1)-approximation

algorithm if k = w (log n). If k = 0(log n), under any assignment the minimum color

node cut value is at least one, and the approximation ratio is at most 0(logn).

2.4 Bidirectional interdependence

In the previous sections, we considered a one-way dependence model. In this

section, we extend the results to a bidirectional interdependence model. Let G1 (V, E)

and G2 (V2 , E2 ) denote two interdependent networks. Interdependence edges connect

nodes between two networks, which represent their supply-demand relationship. The

key difference from the one-way dependence model is that the interdependence edges
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are bidirectional (i.e., if node v E G, depends on node u c G2, then u depends on v

as well).

If a node v in G1 fails due to the failures of its supply nodes in G2, then the

failure of v does not lead to further node failures (due to a lack of supply) in G 2 ,

because all the nodes in G2 that depend on v have failed. Otherwise, v would not

have failed in the first place. Therefore, the evaluation of supply node connectivity

in the bidirectional interdependence model follows the same methods as the one-way

dependence model. What remains to be developed is the interdependence assignment

that maximizes the supply node connectivity of both networks.

We assume that there are ni interdependence edges adjacent to each of the ni

nodes in Gi (Vi = {1, 2}). The total number of bidirectional interdependence edges

is nin.1 = n2 n. 2. Under this assumption, a node in Gi is functional if at least one of

its adjacent ni interdependence edges is connected to a remaining node (i.e., a node

that has not been removed) in Gj (Vi, j = {1, 2}, i $ j).

We now give an overview of the bidirectional interdependence assignment algo-

rithms. To extend the CDS-based color assignment to interdependence assignment,

we aim to avoid disjoint CDS sharing the same supply nodes as much as possible,

in both networks. Nodes in G, are partitioned into groups of size n,2 , and nodes in

G2 are partitioned into groups of size n,1 . Interdependence is assigned between each

group in G1 and each group in G2. Consider a group P1 E G 1, and a corresponding

group P2 E G2. Every node vi E P depends on all the nodes in P2, and every node

V2 E P2 depends on all the nodes in P1. The key is to partition nodes in G1 and G2

into groups. The partition is obvious when the number of nodes in each CDS in Gi is

a multiple of noj (Vi, j = {1, 2},i j), in which case disjoint CDS do not share any

supply node. See Fig. 2-4 for an illustration. Otherwise, in general, disjoint CDS may

have to share some supply nodes. As we will prove later, the supply node connectivity

will be reduced by at most a half, compared with the ideal case where disjoint CDS do

not share any supply node. The same analysis applies to the path-based assignment

that maximizes the s - t supply node connectivity, and is omitted.
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G1 G2

CDS' CDS1

CDS 1 C

Figure 2-4: An example of the partition of CDS nodes into groups. Every node in

G1 and G2 has n,1 = 1 and n, 2 = 2 supply nodes, respectively. Each CDS in Gi is
partitioned into two groups of size n 3 (i,j E {1, 2}, i # j). In each graph, nodes that

have the same color are in the same group. Between two graphs, nodes in groups

with the same color are interdependent. The partition achieves the optimal supply
node connectivity: 2 and 4 for G, and G2, respectively.

2.4.1 CDS-based interdependence assignment

We develop an algorithm to partition the nodes in G, into groups of size n,2 , and

to partition the nodes in G2 into groups of size n.,1. A group of size noj is empty if it

contains no node, is full if it contains noj nodes, and is occupied if it contains more

than zero but fewer than nj nodes. If V I/nsj is an integer, we aim to partition Vi into

I VI/In, full groups. Otherwise, if IViI/nj is not an integer, we aim to partition V into

[|ViI/ns.J full groups and one occupied group that contains JVi* = 11 - 11Vi|/n jnj

nodes (Vi, j C {1, 2}, i j), where Vi* denotes the nodes in the occupied group. Since

IV1 /n52= jV2 j/n 1 , the total number of groups are the same in both G, and G2 .

Interdependence is assigned between nodes in two groups, one from each graph.

For each node in Vi \ Vi*, there are ni supply nodes. For each node in Vi*, there are

IVj*J < nei supply nodes. (Multiple interdependence edges exist between some nodes

in Vi* and some nodes in V*). Given that nodes within a group depend on the same

set of supply nodes while different groups of nodes depend on different supply nodes,

we aim to partition nodes into groups such that a large number of groups need to be

removed in order to disconnect all the CDS. Consequently, a large number of supply

nodes need to be removed in order to disconnect all the CDS. The partition of Vi into

[|Vil/ns,] full groups follows Algorithm 2.6. The remaining nodes (if any) form an

occupied group Vi* if IVI/nsj is not an integer.

We denote by h the number of disjoint CDS in Gi. Using the algorithm in [431,
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h = (ki/ log2 n ) disjoint CDS can be computed. If there are extra nodes in V that

do not belong to the h CDS, then these nodes are added to the largest CDS. Note

that adding extra nodes to a CDS still yields a CDS, since these nodes are adjacent

to the nodes in the original CDS.

Algorithm 2.6 Assign nodes Vi into [lVil/nj full groups of size noj.

1. Sort the h disjoint CDS in the ascending order of their sizes. Denote the nodes
in the l-th CDS in Gi by N', 1 = 1, 2,... , h.

2. For 1 from 1 to h, start with an empty group if available, and assign nodes from
N' into the group. Repeat until all nodes are assigned. If there are not enough
empty groups, assign the rest nodes into occupied groups until these groups
become full.

3. The algorithm terminates when the [lVil/njg] groups become full.

The following example illustrates Step 2 of the algorithm. Before assigning N',

there are enough empty groups if the number of empty groups is at least [IN'l/nsjl.

Nodes N' are assigned to [IN'Il/nsj groups, which then become full. If IN'Il/n is

not an integer, the remaining IN'I - [IN'I/nsjjny < nj - 1 nodes are assigned to

another empty group and the group becomes occupied. On the other hand, if there

are nr < [IN11/nsj] empty groups before assigning N', then nns nodes in N' are

assigned to the n, groups. The remaining nodes in N' and nodes in N1+1, . . . , N h are

assigned to the already occupied groups.

The algorithm is further illustrated by Fig. 2-5. Suppose that G, has 12 nodes,

and has three disjoint CDS, consisting of IN11 = 2, IN21 = 4, 1N31 = 6 nodes, respec-

tively, and that n, 2 = 3. Our goal is to assign the 12 nodes in G1 to 4 groups of size

3. Before assigning nodes in N1 , all the four groups are empty. Thus, the two nodes

in N1 can be assigned to an empty group. After the assignment, the group becomes

occupied, illustrated by the left figure in Fig. 2-5. Before assigning nodes in N2 ,

there are three empty groups. The assignment of N 2 uses two groups, one of which

becomes full and the other becomes occupied (groups 2 and 3 in Fig. 2-5). Finally,

when assigning N3 , there is only one empty group, and thus there are not enough
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empty groups to hold all the nodes in N 3 . The last empty group can be assigned

with 3 nodes. The remaining 3 nodes in N 3 are assigned to the occupied groups (i.e.,

groups 1 and

group 1

group 2

group 3

group 4

3 in Fig. 2-5).

N' N'UN 2 N'UN2 U N 3

Figure 2-5: Partition the CDS nodes {N', N2 , N 3} into four groups of size three. The

left, middle, right figures represent the snapshots after assigning nodes in N 1, N 2 , N3

in Step 2 of Algorithm 2.6, respectively.

We prove that disjoint CDS are sufficiently group-disjoint, by characterizing the

number of groups that need to be removed to disconnect all the CDS.

Lemma 2.4. Let Vi be assigned to groups according to Algorithm 2.6. The minimum

number of full groups that need to be removed, in order for each CDS to contain at

least one removed node, is at least min([(h - 1)/2], LIVI/nsgj).

Proof. Let IN'I denote the number of nodes in the l-th CDS of Gi, Vl E {1,... , h}. If

IN'I is a multiple of n8j, Vl E {1,..., h}, then nodes in N"1 are assigned to different

groups from nodes in N2, V11 , 12 E {1,.. . , h}, 11 $ 12. To remove at least one node

from each of the CDS, h full groups need to be removed. In the rest of the proof, we

focus on the case where IN'i is not a multiple of n,8 for some 1 E {1,. . . , h}.

In the first few assignments in Algorithm 2.6 when there are enough empty

groups, nodes in N" are assigned to different groups from nodes in N12, V1 1, 12- E

{1,... , kth}, 1 12. In order to disconnect all the CDS, at least one node should be

removed from each CDS. The removed nodes in CDS N', = 1,..., kth belong to at

least kth distinct groups. Therefore, at least kth groups need to be removed in order to
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disconnect all the CDS. (Note that these groups become full by the end of Algorithm

2.6.)

Determining kt: Consider one CDS N' (1 E {1, ... , kth}). If IN'I/nsj is not an

integer, one group occupied by N' is not full, and the group can still be assigned with

r' < n., - 1 extra nodes. If IN'I/ns, is an integer, then r' = 0. The total number of

extra nodes that can be assigned into these occupied groups is EI k rl kth(nj - 1).

Consider the assignment when there are not enough empty groups to hold all the

nodes in N', Vl = kth + 1, ... ,h.

1) If INkth+11 - nj, then IN'I < ns,,l = 1,...,kth. (Recall that the CDS are

sorted in the ascending order of their sizes.) Nodes in each CDS N' belong to a single

occupied group, I = 1,. . . , kth - Moreover, since there is no empty group available when

assigning nodes in Nkth+1, all the empty groups have been used, and kth = [IVI/nsjJ.

2) If INkth+ I nj + 1, the number of remaining CDS is at most

h - kth < + 1i +1
noj + 1

(kth + 1) (nj - 1)
<_ [ "1+1 kth 1.noj + I

To see this, note that there is no empty group available when assigning nodes in

Uh kth+2N'. Otherwise, all the nodes in Nkth+1 would have been assigned to empty

groups, which contradicts the assumption. Let No C U kth+2N' denote the nodes that

will be assigned to the occupied groups (occupied by nodes in N', 1 E {1,..., kth}-

Let N* C Uh kth+2N' denote the remaining nodes that cannot be assigned to the

[IKI/nsj groups when IVI/ny is not an integer. By definition, NOUN* = Uh kth+2N1.

We know that 1N01 is at most EZk2 r', which is the number of extra nodes that the

occupied groups can fit. Moreover, IN*I is at most IV| - LIV/nsyjnsj < n5 3 - 1.

Therefore, t r' + ni8 - 1 is an upper bound on the number of nodes in Uh kth+2N'.

Since the size of N' (kth +2 < 1 < h) is at least nsj+1, the first term in the summation

is an upper bound on the number of CDS Nkt+ 2 , ... , Nh. The additional one (second

term in the summation) accounts for the CDS Nkth+1.

In summary, given that the total number of CDS h = kth+(h-kth) < kth+(kth+1),
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we obtain kth > (h - 1)/2. Since kth is an integer, kth is at least [(h - 1)/21. I

Given that noi supply nodes need to be removed in order to remove a full group

of nodes of Vi, we have the following result.

Theorem 2.8. Given Gi with ni nodes and node connectivity ki, and that every node

has nei supply nodes, Vi E {1, 2}, assign interdependence between nodes in G1 and the

nodes in G 2 by groups, obtained in Algorithm 2.6. Then, the supply node connectivity

of Gi is Q(min(kinsi/ log 2 ni, n)), Vi, j E {1, 2}, i # j.

Proof. Using the algorithm in [43], h = Q(ki/ log2 ni) disjoint CDS can be found in G.

By Lemma 2.4, the number of full groups that should be removed in order to remove

at least one node from each CDS is min([(h - 1)/2], [ni/n8yJ), Vi,j E {1, 2},i j.

Each group of Vi can be removed by removing n,, supply nodes in Gj. Noting

that h = Q(ki/ log 2 ni) and that ninsi/ns3 = nj, the supply node connectivity of Gi

is Q(min(kini/ log2 ni, nj)), Vi, j E {1, 2},ij. L

We have proved that the CDS-based interdependence assignment algorithm is an

O(log 2 ni)-approximation algorithm in maximizing the supply node connectivity of

G, Vi e {1, 2}.

2.4.2 Random interdependence assignment

We study the random assignment in order to maximize the supply node connec-

tivity of both graphs. The random assignment algorithm is to randomly match n,1

copies of nodes in G, with n, 2 copies of nodes in G 2 , and assign interdependence be-

tween matched nodes. Under the assignment, each of the ni nodes in Gi is supported

by ni nodes in G3 (i, j C {1, 2},i j).

The key difference of the analysis from the random assignment algorithm for the

one-way dependence model is as follows. By randomly removing k' nodes in G2, k'n,2

nodes in the transformed graph of G, (by Algorithm 2.1) are removed. In contrast, in

the one-way dependence model (Section 2.3.3), every node is removed with probability

k'ns 2 /ninsi, and the total number of node removals follows a binomial distribution
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with mean k'n,2. We derive the following lemma that bounds the probability of a

graph being disconnected after a constant fraction of nodes are removed, instead of

each node being removed with a constant probability as in Corollary 2.3.

Lemma 2.5. Given graph G with n nodes and node connectivity k = w(log n), after

randomly removing up to a constant (less than one) fraction of n nodes, the remaining

nodes in G are connected with probability 1-J where 6 = O(ne-'k ) for some constant

Proof. We prove a stronger result that the remaining nodes form a connected dom-

inating set (CDS) with high probability. In particular, we prove for the case where

(1 - e)(1 - p)n nodes are randomly removed, for a constant e < 1 and a constant

p E (0, 1).

Let A(nrm) denote the event that the remaining nodes in G form a CDS after

randomly removing nrm nodes, where nrm is a deterministic value. Since adding extra

nodes to a CDS still yields a CDS, Pr(A(nrm)) is decreasing in nrm.

Consider the case where each node is randomly removed with probability 1 - p E

(0, 1). The number of removed nodes, Nrm, follows a binomial distribution with mean

(1 - p)n. Using the Chernoff bound, for a constant e < 1,

Pr(Nrm < (1 - e)(1 - p)n) < e-(1)nE2 /2

The probability that the remaining nodes in G form a CDS after removing Nm nodes

is:

n

Pr(A(Nrm)) = Pr(A(nrm)) Pr(Nrm = nrm) (2.10)
nrm=O

< Pr(A((1 - E)(1 - p)n)) Pr(Nrm > (1 - e)(1 - p)n)

+ I Pr(Nrm < (1 - e)(1 - p)n) (2.11)

<Pr(A((1 - E)(1 - p)n))(1 - e-(1P-)n 2 /2) + e--(1p)nE 2 /2, (2.12)

where Eq. (3.15) follows from the law of total probability, Eq. (2.11) follows from
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that Pr(A(nrm)) is non-increasing in nrm, and Eq. (2.12) follows from the Chernoff

bound. Thus,

Pr(A(Nm)) - e(1-p)n 2 /2

Pr(A((l - e)(1 - p)n)) 1 - e-(1p)n 2/2

From the proof of Corollary 2.3, we know that by removing Nrm nodes, G is

disconnected with probability at most ne-k, where a is a constant. Moreover, let

k'/nc = 1 - p in Eq. (2.9), the probability that the remaining nodes in G do not form

a dominating set is at most n(1 - p)k. Thus, by the union bound, the probability

that the remaining nodes in G do not form a connected dominating set is at most

1 - Pr(A(Nrm)) < ne~"k + n(1 - p*-

We now bound the probability that the remaining nodes in G form a CDS, after

randomly removing p'n nodes, where p' = (1 - e)(1 - p) is a constant.

Pr(A(Nrm)) - e-(1-p)nc2/2
Pr(A((1 - E)(1 - p)n)) > 1 - e-(1p-)n 2 /2

> Pr(A(Nrm)) - e-(1P-)n
2 /2

>1 - ne-'k -#1 n - A _ e-(1-P)n2/2

Let a' = min(a, - log(1 - p), (1 - p)ne 2/2k). Then ne-ak, n(1 - p)k, e-(1-P)n" 2 /2 <

nea'k. Therefore, Pr(A(p'n)) > 1 - O(ne-c'k). Moreover, since a, p are constants

and n = Q(k), a' is a constant.

Then, following the analysis in Theorem 2.7, and noting Corollary 2.2, we obtain

the following result.

Theorem 2.9. Given Gi with ni nodes and node connectivity ki, if each node in Gi

has ni supply nodes, by randomly matching nj copies of nodes in Gi to nj3 copies

of nodes in Gj, and assigning interdependence between each pair of matched nodes,

then the supply node connectivity of Gi is e(min(kinsi, nj)) with high probability, if

kinsi = w(log(nin9i)), Vi,j E {1,2},i / j. If, in addition, kinsj = w(nj), then
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the supply node connectivity of Gi is at least (1 - E)nj with high probability for any

constant e > 0.

Proof. By Corollary 2.2, the transformed graph (by Algorithm 2.1) OG has ninsi nodes

and node connectivity kinsj Vi E {1, 2}. The number of colors in Gi is the number of

nodes n in Gj, Vi, j E {1, 2}, i $ j. Given Lemma 2.5, the supply node connectivity

of Gi can be computed in the same approach as the proof for Theorem 2.7. E

Thus, the random assignment is an 0(1)-approximation algorithm in maximizing

the supply node connectivity of both G1 and G2 , if kinsj = w(log(ninsi)), Vi E {1, 2}.

If kini = 0(log(ninj)), the approximation ratio is at most 0(log(nin.,)), since the

supply node connectivity is at least one under any assignment, Vi E {1, 2}.

2.5 Numerical results

In this section, we apply the algorithms in the previous sections and provide nu-

merical results. We use MATLAB to generate network topologies and dependence

assignment, and use JuMP [55] to compute the supply node connectivity by call-

ing CPLEX to solve the integer programs in a workstation that has an Intel Xeon

Processor (E5-2687W v3) and 64GB RAM.

The key observations are as follows. First, the supply node connectivity for a

network of reasonable size can be computed using the integer program in a short

time. For example, the results can be obtained within one minute, for a network

that has around 180 nodes and 650 edges. Second, the'assignment algorithms have

good performance even when the value of supply node connectivity is moderate. This

complements the theoretical results that the assignment algorithms are optimal up

to a constant or polylogarithmic factor. The numerical results therefore suggest that

the algorithms are practical in the design of interdependent networks.
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2.5.1 s - t supply node connectivity

We use the XO communication network [56] of 60 nodes as an example of the

demand network, and randomly generate 36 supply nodes (marked as triangles in

Fig. 3-2) within the continental US.

50 Se ttlA

n enver
40 -

30

Miami

20

-120 -110 -100 -90 -80

Figure 2-6: XO network as a demand network, with randomly generated supply
nodes. The x-axis represents longitude degrees (west), and the y-axis represents
latitude degrees (north).

Let each node in the XO network be supported by three nearest supply nodes.

After transforming the network into a colored graph by Algorithm 2.1 and solving the

MILP, we obtain that the supply node connectivity of the s - t pair Seattle-Denver is

5. In contrast, the maximum s - t supply node connectivity is 9, by assigning distinct

supply nodes to each of the three node-disjoint paths (i.e.the path-based assignment

outlined in Algorithm 2.4). As another example, the supply node connectivity of the

s - t pair Seattle-Miami is only 3, because one node in an s - t path has the same set

of three supply nodes as another node in a disjoint s - t path. By assigning distinct

supply nodes to two disjoint paths (Algorithm 2.4), the supply node connectivity of

Seattle-Miami can be increased to 6.
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2.5.2 Global supply node connectivity

If each node in the XO network is supported by its three nearest supply nodes, the

global supply node connectivity is 3. In contrast, if each node is supported by three

randomly chosen supply nodes, the global supply node connectivity can be increased

to 5. It is close to the maximum possible global supply node connectivity 6, given

that the node connectivity of the XO network is two and each node has three supply

nodes. However, the CDS-based assignment (Algorithm 2.5) only guarantees that the

supply node connectivity is at least 3, since there do not exist two disjoint CDS in

the XO network.

2.5.3 Bidirectional interdependence assignment

We implement the bidirectional interdependence assignment algorithms on ran-

domly generated Erdos-Renyi graphs. Let Gi be an Erdos-Renyi graph with ni nodes.

Let the probability that an edge exists between any two nodes be pi. Each node in Gi

has ni supply nodes from Gj. Let ki denote the node connectivity of G. Recall that

the maximum supply node connectivity is km = min(kini, nm) (i, j E {1, 2}, i $ j).

Table 2.1 depicts the supply node connectivity k' of Gi under the CDS-based and

random interdependence assignment algorithms. To obtain the numerical results for

CDS-based interdependence assignment algorithm, instead of using the CDS partition

algorithm in [43], we use a greedy approach to compute the disjoint CDS, which has

good performance for Erdos-Renyi graphs. The results are averaged over 10 instances

for each of the two combinations of interdependent networks: 1) ni = 50, n2 = 75,

P1 = P2 = 0.1; 2) n, = 50, n2 = 75, pi = P2 = 0.2. From the results, we observe

that the (near-linear time) CDS-based and the (linear time) random interdependence

assignment algorithms yields near-optimal supply node connectivity in both graphs.
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Table 2.1: Supply node connectivity ks of random graphs under CDS-based and
random assignments.

ni pi k, ni k'm. kl CDS k' random
50 0.1 1.6 3 4.8 4.8 4.7
50 0.2 3.6 3 10.8 10.2 10.0

n2 P2 k2 In. 2 kma, k2 CDS kg random
75 0.1 2.4 2 4.8 4.6 4.6
75 0.2 7.0 2 14.0 12.4 12.2

2.6 Summary

We studied the robustness of interdependent networks based on a finite-size,

arbitrary-topology graph model. We defined supply node connectivity as a robustness

metric, by generalizing the node connectivity in a single network. We developed inte-

ger programs to compute the supply node connectivity both for an s - t pair and for a

network, and developed approximation algorithms for faster computation. Moreover,

we develop interdependence assignment algorithms to design robust interdependent

networks.

Our study extends the shared risk group model, by considering that multiple risks

together lead to the failure of a node. The color assignment algorithms in Section 2.3

can be used as solutions to the less intensively studied design problems for the shared

risk group model, to maximize the number of risks that a network can tolerate.

2.7 Chapter appendix

Proof of Theorem 2.2. The minimum color node cut problem can be reduced from the

vertex cover problem. Given a graph G'(V', E'), the minimum vertex cover problem

aims to select the minimum number of nodes V* C V' such that every edge in E' is

incident to at least one node in V*.

We construct a colored graph G in which the value of the minimum color node

cut equals the size the the minimum vertex cover in G'. Let m' denote the number of

edges in G'. Without loss of generality we assume that m' is even. (Otherwise, one

edge can be added parallel to any existing edge, which does not change the size of
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the minimum vertex cover.) Graph G consists of four cliques of size m' each. Nodes

in every clique are divided into two disjoint sets of size m'/2. Four cliques are joined

into a ring, by matching two disjoint set of m'/2 nodes of a clique to m'/2 nodes in

each of the two adjacent cliques (see Fig. 2-7).

Then, assign colors to nodes in G. Consider two matchings M1 and M2 that

connect two pairs of cliques. There are m' edges in the union of the two matchings.

Each edge (vi, v2 ) in this union corresponds to an edge (v'i, v') in G'. Let each node

in G' have a distinct color, and assign vi (v 2) the same color as v' (v'). Finally, assign

each remaining node in G a distinct color, and these remaining nodes are not adjacent

to matchings edges M1 or M2 . See Fig. 2-7 for an example of G, where m' = 8 and

the number on each node represents

by Fig. 2-8.
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Figure 2-7: In a colored graph G where the number on each node represents its color,
the minimum color node cut is {2, 4, 5}.

By removing at least one node incident to each of the m' matching edges, G

becomes disconnected. In particular, the minimum color node cut of G consists of
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Figure 2-8: The minimum vertex cover in G' is {2, 4, 5}.

a set of colors C, such that all the matching edges M, and M2 are incident to at

least one node that has a color in Cc. The nodes in G' that have colors Cc form the

minimum vertex cover in G', since every edge in G' is adjacent to at least one node

that has a color in Cc. (Note that the minimum color node cut of G has size smaller

than m', because the number of nodes in a cut of G is m' and some nodes have the

same color. Therefore, colors of nodes incident to the other two unlabeled matchings

in Fig. 2-7 cannot be in the minimum color node cut.)

Finally, to see that the reduction can be done in polynomial time, note that G

has 4m' nodes, 2m' 2 edges, and n'+ 2m' colors, where n' and m' are the number of

nodes and edges in G', respectively. This concludes the proof. L

Proof of Theorem 2.3. The minimum color s - t node cut problem can be reduced

from the hitting set problem. Given a universe U of elements, sets Si consisting of

elements in U (i = 1,2, ... ,p), the minimum hitting set problem aims to select a

minimum number of elements from U such that each set Si contains at least one

selected element.

We construct a colored graph in which the minimum color st node cut is identical

to the minimum hitting set. Construct p node-disjoint paths between an st pair, each

of which corresponds to a set Si. If Si has j elements, then its corresponding path has

j nodes with colors that represent the elements in Si. Nodes that correspond to the

same element have the same color. The reduction can clearly be done in polynomial

time. A minimum color st node cut contains a set of colors C,, such that every path

has at least one node with a color in Q". This is exactly the minimum set of elements

such that every set contains at least one such element.
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Figure 2-9: The minimum color s - t node cut is {1}.

We illustrate the reduction by the following example. Consider a hitting set

problem where U = {1,2,3,4,5}, Si = {1,2,5},S2 = {1,3},S3 = {1,4,5}. A

minimum hitting set is {1}. The equivalent minimum color st node cut problem is

represented by Fig. 2-9. E
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Chapter 3

Robust routing in interdependent

networks

In this chapter, we study robust routing problems in interdependent networks.

For an overview of the problems and challenges, it is helpful to consider a simplified

scenario where a demand network depends on a supply network, illustrated by Fig.

3-1. Every node in the demand network is supported by one or more nodes in the

supply network. Thus, nodes in the demand network and nodes in the supply network

can be viewed as demand nodes and supply nodes, respectively. Given that a demand

node fails if it loses all of its supply nodes, supply node failures may lead to correlated

demand node failures, which makes it difficult to route traffic through reliable paths

in the demand network. We develop techniques to tackle the failure correlation.

This simplified one-way dependence exists in current systems. Moreover, the analysis

based on this simplified scenario can be applied to interdependent networks.

In this chapter, we develop an analytically tractable framework to study the fol-

lowing robust routing problems in interdependent networks.

Single-path routing: Compute the probability that a specified path fails. Ob-

tain the most reliable path between a source-destination pair.

Diverse routing: Compute the probability that two specified paths both fail.

Obtain the pair of most reliable paths between a source-destination pair.

The rest of the chapter is organized as follows. In Section 3.1, we state our model
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demand
network

G2

supply
network

Figure 3-1: Every node in the demand network G, is supported by two nodes in the
supply network G2-

for interdependent networks and failures. In Section 3.2, we prove the complexity, and

develop approximation algorithms to compute the path failure probability. In Section

3.3, we develop algorithms to find the most reliable path between a pair of nodes.

In Section 3.4, we study the diverse routing problem in interdependent networks,

and find a pair of reliable paths whose failure probability is minimized. Section 3.5

provides numerical results. Finally, Section 3.6 concludes the chapter.

3.1 Model

We consider a demand network G1 and a supply network G 2 , where every demand

node in G1 depends on one or more supply nodes in G2. We assume that every

supply node provides substitutional supply to the demand nodes, and a demand node

is functioning if it is directly connected to at least one supply node. To study the

impact of node failures in G2 on G1, it is equivalent to study the following model.

Consider a graph G(V, E, SV), where nodes V and edges E are identical to nodes

and edges in G1, and Sv are the supply node sets, each of which is a set of nodes in

G2 that provide supply to a node in V. In this model, each node vi E V is a demand

node, supported by a set of supply nodes Si E Sv, and vi fails if all the nodes in Si

fail. (Note that nodes V may have different number of supply nodes.) Finally, let

s, t E V be a source-destination pair.
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Under the condition that supply nodes fail independently with given probabilities,

and following the convention that s, t do not fail, we study the robust routing problems

in G(V, E, Sv).

Remark. The analysis for this model can be directly applied to interdependent net-

works, as long as the interdependence is bidirectional (i.e., if v E G1 depends on

u E G2 , then u depends on v as well) and failures initially occur in one network. It

suffices to observe that, given a set of failed nodes S C G2, a node v E G fails if and

only if its supply nodes are all in S. Notice that the failure of v does not further lead

to node failures in G2, because all the nodes that v supports, which are exactly the

supply nodes for v due to the bidirectional interdependence, have failed.

3.2 Computing the reliability of a path

If every node has a single supply node, the path failure probability is given by

1 - (1 - p)r, where each supply node fails independently with probability p and the

path is supported by r supply nodes. In contrast, if every node has more than one

supply node, computing the path failure probability becomes #P-hard. The proof

can be found in the Appendix.

Theorem 3.1. Computing the failure probability of a path is #P-hard, if every node

has two or more supply nodes and each supply node fails independently with probability

p.

Although it is #P-hard to compute, the path failure probability can be well

approximated. We apply the solution to the DNF probability problem and propose

an (c, 6)-approximation algorithm based on importance sampling, which approximates

the path failure probability to within a multiplicative factor 1 E with probability at

least 1 - 6.

The DNF probability problem computes the probability that a Disjunctive Normal

Form (DNF) formula is true, when literals are set to be true independently with given

probabilities. A DNF formula is a disjunction of clauses, each of which is a conjunction
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of literals, and takes the following form: (x' A ... A x,) V (x2 A ... A x 2 ) V ... V

(Xy' A ... A x' ). Let v - - v,, be a path in G(V, E, SV). The key observation is

that computing the path failure probability can be formulated by a DNF probability

problem, in which a clause Ci represents a node vi in the path and the literals x'

in clause Ci represent the supply nodes of vi. For completeness, we state Algorithm

3.1 that approximates the path failure probability, by adapting the algorithm that

approximates the DNF probability in [57].

Algorithm 3.1 Estimating the path failure probability based on importance sam-

pling.
Initialization:

1. Given a path {Vi, V2 ,. . . , Vm}, let {ujj = 1,. . . , ns(vj)} denote the set of supply

nodes of vi, where n,(vi) is the number of supply nodes of vi.

Main loop:

2. Among {Vi, V2,. . . , vm}, randomly choose vi with probability

H p(ui)/ E J p(U).
1<j:n.(vi) 1<k<m 1 jinfs(Vk)

If every demand node has an identical number of supply nodes, and the supply

node failure probability p(u.) is identical, then node vi is chosen with probability

1/m.

3. If vi is chosen, set all of its supply nodes {uj1j = 1, . n. , ri(vi)} to be failed. The

other supply nodes are randomly set to be failed with their respective failure

probabilities. Let U denote the set of failed supply nodes.

4. Test whether vi is the first failed node among {v 1 , v2 ,... , Vm}, given that U
fail (and no other supply nodes fail). If true, set I = 1; otherwise, set I = 0.
Repeat the loop for a = 3m ln(2/6)/f 2 iterations.

Result:

5. Count the number of I = 1 and denote the number by b.

An (E, 6)-approximation of the path failure probability is given by
b/a Z1<k<m H1,j5ns(Vk) p(u).

The intuition behind this importance sampling algorithm is as follows. Some

events, although rare, are important in determining the path failure probability, es-
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pecially when the path failure probability is small. The algorithm samples in a space

consisting of important events, each of which is a set of supply node failures U that

lead to the path failure. In this space, the failure of U may appear multiple times,

given that multiple choices of vi in Step 2 may lead to the same U in Step 3. The

algorithm then remove the duplicated U via sampling in Step 4.

To prove the correctness of the algorithm, we take the following two steps. First,

following a similar analysis to [57], we prove that the path failure probability is given

by E[I] Z1<kpm l<j nS(Vk)P(uj), where E[I] is the expectation of I in Step 4 of the

algorithm. Second, by repeating the loop a sufficiently large number of times, E[I1

can be approximated to within factor 1 e with probability at least 1 -6. The details

of the proof can be found in the Appendix.

The advantage of this algorithm over a naive Monte-Carlo algorithm (e.g., by

repeatedly simulating the supply node failure events and counting the fraction of

trials in which the path fails) is that the number of iterations in the naive Monte-

Carlo algorithm is large when the path failure probability is small'. In contrast, by

sampling in a more important space, the number of iterations is reduced. Note that

the only quantity that needs to be estimated in Algorithm 3.1 by simulation is E[I],

and that Pr(I = 1) > 1/m. We conclude this section by the following theorem, whose

proof is in the Appendix.

Theorem 3.2. The path failure probability can be estimated to within a multiplicative

factor 1 e with probability 1 - 6, in time O(m 2n. ln(1/6)/E 2 ), where m is the path

length and n, is the maximum number of supply nodes for a demand node.

Although the failure probability of a specific path can be well approximated by

the importance sampling algorithm, the algorithm hardly gives an intuition for path

properties that characterize a reliable path. In the remainder of this section, we

develop indicators and bounds on the path failure probability, which can be used for

finding the most reliable path.

'If F occurs in b out of a trials, Pr(F) e (1 e)b/a with probability 1 - 6, under the condition
that b = Q(ln(1/6)/E2). The total number of trials a = Q(ln(1/6)/E 2 )/ Pr(F) is large when Pr(F) is
small.
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3.2.1 Small and identical failure probability

Consider a path vi - - - - - v, in G(V, E, Sv). Let F denote the event that all the

supply nodes of vi fail. Let F denote the event that the path fails. Clearly, the path

fails if at least one node vi loses all of its supply nodes (F = Uisi<mF).

By the inclusion-exclusion principle, we have

Pr(F) = 1 Pr(F) - E Pr(Fi, n Fi2)
1<i<m 1 il<i2 m

+ - + (-1)M1 Pr(F1 n F2 ... n Fm). (3.1)

Directly computing the path failure probability is difficult, given that there are (7)
summations in the j-th term of the inclusion-exclusion formula. We first reduce the

number of events in the inclusion-exclusion formula, and then further simplify the

computation under the condition that the supply node failure probability is small

and identical.

To reduce the number of events, some redundant events can be ignored. For

example, if F occurs only if F occurs, then the event F is redundant in determining

F with the knowledge of F. To see this, note that 1) if F occurs, then the path fails

regardless of F; 2) if F does not occur, then F does not occur as well. If the supply

nodes of vj form a subset of the supply nodes of vi, then F is redundant. With an

abuse of language, we call a node vi redundant if F (i.e., the state of vi) is redundant.

With this simplification, we derive the following result.

Let n,(vi) denote the number of distinct supply nodes of vi. Let nm'" = minii<m ns(vi).

After removing the redundant nodes sequentially, let fh- be the number of remaining

nodes that each have n""" supply nodes. The path failure probability can be estimated

by the following theorem.

Theorem 3.3. If every supply node fails independently with probability p < E/m,

then the path failure probability satisfies (1 - )fip" < Pr(F) < (1 + c)ipn"'.

Proof. We first reduce the number of failure events that appear in the inclusion-

exclusion formula by removing the redundant nodes. Note that determining whether
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a node is redundant and removing the redundant node are done sequentially. Thus,

among the set of nodes that have the same supply nodes, one node remains. Let D

denote the nodes in the path excluding the redundant nodes.

First, we consider the first term in Eq. (3.1) that provides an upper bound on

the path failure probability, known as the union bound. Let D1 C D denote the set

of nodes that each have nmi" supply nodes, and let f = ID 1 . The remaining nodes

D2= D \ D1 each have nmi" + 1 or more supply nodes. Thus, the first term of Eq.

(3.1) is at most

Pr(F) finp" " + (m - -n)pp

,min min
< fnp' + ITfn.

for p E/m.

Next, we consider the first two ternis that provide a lower bound on the path

failure probability (c.f.Bonferroni inequalities). For any pair of nodes vj, Vk E D,

the union of their supply node sets contains at least max(n(vj), n,(vk)) + 1 nodes,

because neither supply node set includes the other as a subset. At least ni" + 1

supply nodes have to be removed in order for a pair of nodes in D1 to fail. At least

n"" + 2 supply nodes need to be removed in order for a pair of nodes to fail if at

least one node belongs to D2 . The absolute value of the second term is at most

(Q)pnn+( + Q - (pni+2. A lower bound on Pr(F) is

2 2 2

Pr(F) >?np - +
-m . 7 2 P P s m ' + 2 p p n m j

>p fP - Emp"

for p K c/m. E

For the special case where every node in the path has the same number ns of

distinct supply nodes, let i be the number of nodes, in the path, among which no

pair of nodes share the same set of n, supply nodes. The following stronger result
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can be proved in a similar approach.

Corollary 3.1. If every supply node fails independently with probability p < 2E/ffi,

then the path failure probability satisfies (1 - e)flpns < Pr(F) rhpns.

Proof. If node vi and vo in the path share the same set of supply nodes, then vi and vj

must fail simultaneously, and F = Ui<i<mFi = Uji<jmjjF. Thus, in the calculation

of path failure probability Pr(F), nodes that have the same set of supply nodes can

be represented by a single node.

Let {1, ;V2 , - , Urv} denote the nodes in the path such that the supply nodes of Vi

differ from the supply nodes of Vj by at least one supply node, i = j, fn- < m. The

first term of Eq. (3.1) is fn-p"S, since every node has n, distinct supply nodes and the

probability that a node fails is pfs. Moreover, the union of the supply nodes of vi and

Vj has size at least n, + 1, and the probability that both Vi and Vj fail (because of

their supply nodes' failures) is at most pns+l. The absolute value of the second term

of Eq. (3.1) is at most (')pn+l < rj- 2 pns+1/2 < Emp"., for p < 2e/f. Therefore,

Pr(F) E [(1 - E)fn-p"l, fh-pn.] given that p < 2e/fn-.

Thus, we have obtained the following two reliability indicators for a path. These

combinatorial properties are useful in finding a reliable path, which will be studied

in the next section.

S n: the minimum number of distinct supply nodes for a node in the path.

f n: the number of combinations of n""" supply node failures that lead to the

failure of at least one node in the path.

3.2.2 Arbitrary failure probability

In contrast with the case where supply node failure probability is small and iden-

tical, it is difficult to characterize the reliability of a path by its combinatorial prop-

erties, with limited knowledge of node failure probabilities. Therefore, we obtain

bounds on path failure probability that will be useful in finding a reliable path.
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First, we develop an upper bound on the path failure probability. Let p(vi) be

the failure probability of node vi, under the condition that each of its supply nodes

u3 fails independently with probability p(u'). The path failure probability, under the

condition that the failures of V are positively correlated, is no larger than the path

failure probability by assuming that the failures of V are independent.

Lemma 3.1. The failure probability of a path P where a supply node u' fails inde-

pendently with probability p(u ) is upper bounded by 1 - fj p(1 - p(vi)).

Proof. If nodes vi and Ukvk do not share any supply node, then the event that vi

survives and the event that Ukvk survive are independent. Otherwise, if they share one

or more common supply nodes, the two events are positively correlated. Therefore,

Pr(vi and Uk Vk survive) Pr(vi survives) Pr(Ukvk survive),

and

Pr(vi survives I Uk Vk survive) > 1 - p(vi).

The reliability of a path P = v, - V2 - - - - - Vm is given by

Pr(P survives) = Pr(UkE1{,...,m}Vk survive)

= Pr(vi survives) Pr(v 2 survivesivi survives)

... Pr(vm survivesI UkE{1,...,m-1} Vk survive)

H ( p (Vi)).-
vi eP

Then, we develop a lower bound on the path failure probability. The intuition is

as follows. After replacing a supply node that supports multiple demand nodes by

multiple independent supply nodes with sufficiently small failure probability, the path

failure probability does not increase. In the original graph G(V, E, Sv), consider a

node vi E V. Let U' denote the set of supply nodes of vi, let u' E U' denote one supply

node, let p(u') denote the failure probability of ui, and let nd(uj) denote the number
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of nodes that uj supports. Let )(vi) = ) denote the failure probability of

vi if U' fails independently with probability p(uj) = 1 - (1 - P(uj))1/nd(Uj). A lower

bound on the path failure probability is as follows, whose proof follows a similar

technique in [58] and is in the technical report.

Lemma 3.2. The failure probability of a path P where a supply node u' fails inde-

pendently with probability p(u.) is lower bounded by 1 - H ,,p(1 - P(vi))

Proof. Let U' = Ui<i<mU' denote the set of supply nodes for the nodes in path P.

Let u E Up denote one supply node. Let nd(uj) denote the total number of demand

nodes that u' supports. Let Pj denote the set of nodes in P that are supported by

u and IPI = nd(ui, P) < nd(u). We follow a similar method in [58] to prove the

claim.

Given the realizations of Up \ u' = Us U UF, where Us denote the survived nodes

and UF denote the failed nodes, there are three possibilities. First, each node in P

has at least one survived supply node in Us, and P survives regardless of the state

of u. Second, there exists at least one node in P whose supply nodes are all in UF.

Thus, P fails regardless of the state of u'. Third, P survives if and only if uj survives.

The last case occurs if for some nodes in P, all the other supply nodes have failed

except uj. The probability that P survives is given by 1 -p(uj). By replacing u' with

nd(uj, P) distinct nodes, each of which supports a node in P7 and fails independently

with probability 1 - (1 - p(ui))l/nd(uP, the probability that all the nrd(u, P) nodes
survive is ~(1 _ p(Ui))nd(u>P)/nd(Ui) 1-'i

survive is ( - )i) - p(u'). In this case, each node in Pj' has at

least one survived supply node, and the path P survives.

Thus, by the law of total probability, the probability that P survives never de-

creases after the above replacement.

After repeatedly replacing each supply node that supports multiple demand nodes

by distinct nodes, each of which supports a single demand node and fails indepen-

dently with the specified probability, the demand node failures become independent.

Let (vj) denote the failure probability of a demand node vi after the replacement

of supply nodes. The failure probability of a path can be computed efficiently as
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1 - H,,,(I -(vj)), and is a lower bound on the failure probability of the same path

in the original problem. 0

Let nd denote the maximum number of demand nodes that a supply node supports,

and let n, denote the maximum number of supply nodes for a demand node. The

following lemma bounds the ratio between the upper and lower bounds. Its proof can

be found in the Appendix.

Lemma 3.3. For any path, the ratio of the upper bound on its failure probability

obtained in Lemma 3.1 to the lower bound obtained in Lemma 3.2 is at most (nd)ns.

Proof. We aim to prove

1 - HfA(1 - p(vi)) <
1- H (1 - (v)) - '

given

1 - p(vi) > (1 - p(v,))nn8, (3.2)

which will be proved in Lemma 3.7.

Given p(vj), P(vi) E (0, 1), with Eq. (3.2),

1 -]1 (1 - p(V,)) < 1 - fj (1 - n,9)"2.(33

viEP vi EP

and

0 < f (1 - P(vi)) < 1.

Moreover, let

f() = 1- X"nn - n (1 - ).

Since f(1) = 0 and

f'(x) = n"s(1 -- x"ds) > 0

for 0 < x < 1 and n"s 1, f(x) is an increasing function, and

f(x) < 0,
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for 0 < x < 1 and n"' > 1.

Let x = fJjvEP (1 - P(vi)) E (0, 1), since f(x) < 0, we obtain that

1 - J (1 - (vi))ns < n(1 -J(1- (vi))).
v1 EP VjGP

With Eq. (3.3),

1 - JJ(i -p(vi)) < n"n(1. -J(1-f(v))).
viEP viEP

The claim is proved.

3.3 Finding the most reliable path

In this section, we aim to compute the most reliable path between a source-

destination pair s, t E V in G(V, E, Sv). We first prove that it is NP-hard to approx-

imately compute the most reliable path. We then develop an algorithm to compute

the most reliable path when the supply nodes fail independently with an identically

small probability, and finally develop an approximation algorithm under arbitrary

failure probabilities.

Hardness of approximation: Although the failure probability of any given path

can be approximated to within factor 1 c for any E > 0, it is NP-hard to obtain an

s - t path whose failure probability is less than 1 + e times the optimal for a small e.

The proof can be found in the Appendix.

Theorem 3.4. Computing an s - t path whose failure probability is less than 1 + c

times the failure probability of the most reliable s - t path is NP-hard for e < 1/M,

where m is the maximum path length.

Small and identical failure probability

If every supply node fails independently with an identically small probability, there

are two reliability indicators: nmi" and m. Recall that n"n is the minimum number
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of supply nodes for a node in the path, and that rn is the number of combinations

of nmi" supply node failures that disconnect the path. With the two indicators, the

path failure probability can be approximated to within a multiplicative factor 1 i c

by jp"U, under the condition that p < f/m. Moreover, the indicator ni"' is more

important (and has a higher priority to be optimized) than ?i2. We next develop

algorithms to optimize the two indicators.

Given a graph G(V, E, Sv) and a pair of nodes (s, t), the problem of computing

an s - t path with the maximum nnin" can be formulated as the maximum capacity

path problem, where the capacity of a node equals the number of its distinct supply

nodes and the capacity of a path is the minimum node capacity along the path. The

maximum capacity path can be obtained by a modified Dijkstra's algorithm, and can

be obtained in linear time [59].

However, it is NP-hard to minimize ri, even in the special case where every demand

node has a single supply node. The result follows from the NP-hardness of computing

a path with the minimum colors in a colored graph [37].

We develop an integer program to compute the path P with the minimum MT,

under the condition that nin(P) = min, Ep n,(vi) is maximized. The following pre-

processing reduces the size of the integer program. First, compute k = maxpr nm" (P),

where P is the set of all the s - t paths, using the linear-time maximum capacity path

algorithm. Then, remove all the nodes that have fewer than k distinct supply nodes

and their attached edges, and denote the remaining graph by G'(V', E', SV,). The

removed nodes and edges will not be used by the optimal path. Let V" C V' denote

the nodes among which each has exactly k distinct supply nodes. We aim to find a

path Vp where the number of distinct supply node sets for Vp n V" is minimized.

Let Si denote the set of supply nodes of i E V". Let SVy' denote the union of

these sets. Let xij denote the flow variable which takes a positive value if and only if

edge (i, j) belongs to the selected path. An s - t path is identified by constraint (3.5).

A node i is on the selected path if at least one of xij and xi is positive. Let h(Si)

denote whether removing supply nodes Si disconnects the selected path. If a node i

is on the selected path and has k supply nodes, then h(Si) must be one, guaranteed
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by constraint (3.6). All the other nodes either do not belong to the selected path or

have more than k supply nodes, and their supply node failures are not considered.

The objective minimizes f-n, which is the number of combinations of k supply node

failures that disconnect the path.

min h(Si) (3.4)
SiESV,,

1, if i = S,

s.t. Xij - xji= -1, if i = t, (3.5)
{jI(i)EE'} {.i(j,i)EE'} 0, otherwise.

Sxij + xji < 2h(Si), Vi E V" \s, t, (3.6)
{jIl(ij)EE'} {jI(j,i)EE'}

xij ;> 0, V(i, j) E E',

h(Si) = {0, 11, VS c Svy.

Arbitrary failure probability

If nodes V in a graph G(V, F) fail independently, the probability that a path

survives is the product of the survival probabilities of nodes along the path. The

most reliable path can be obtained by the classical shortest path algorithm, by re-

placing the length of traversing a node fi3 by - ln(1 - p( i)), where p(fi3) is the failure

probability of fi3. It is easy to see that the length of a path P is EiE - ln(1 -

p(O)) = - In ] ,c(1 - p(fi5)). The shortest path has the smallest failure probability

1 - j . p(1 - P(O)).

Compared with the above simple model, the difficulty in obtaining the most

reliable s - t path in interdependent networks is the failure correlations of nodes

V C G(V, E, Sv). The failure probability of a path can no longer be characterized

by 1 - JJHp(1 - p(vi)). Moreover, let s - - - - - vi - - - - - t be the most reliable

s - t path. The sub-path s - - - v may not be the most reliable path between s

and vi. Thus, the label-correction approach in dynamic programming (e.g., Dijkstra's
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algorithm) cannot be used, even though the failure probability of a given path can

be approximated.

Given the bounds obtained in the previous section, we propose Algorithm 3.2 to

compute a path whose failure probability is within (nd)n times the optimal failure

probability. Recall that the bounds on path survival probability are the product of

(original or new) node survival probabilities, which exactly match the path survival

probability in the case of independent node failures.

Algorithm 3.2 An approximation algorithm to compute a reliable s - t path in
G(V, E, Sv).

1. For each vi E V, compute P(vi) as follows. Let uz be a supply node of vi with
failure probability p(uj). If u' supports nd(U) nodes, let P(u) = 1 - (1 -

p(Uj))1/nd(U). Let P(vi) be the failure probability of vi if uj fails independently
with probability P(ui).

2. Compute the most reliable s - t path assuming that vi fails independently
with probability P(vj). The most reliable path can be obtained by a standard
shortest path algorithm (e.g., Dijkstra's algorithm), by letting - ln(1 - f(vj))
be the length of traversing node vi.

Theorem 3.5. The failure probability of the path obtained by Algorithm 3.2 is at

most (nd)n. times the failure probability of the most reliable s - t path under arbitrary

supply node failure probabilities.

Proof. Let the path obtained by Algorithm 3.2 be P' and let the path with the mini-

mum failure probability be P*. Let p(P') and p(P*) denote their failure probabilities.

Moreover, let P(P') and P(P*) denote their failure probabilities by assuming that

each node vi fails independently with probability P(vj). We have p(P') < n"s3(P') 

n'1p(P*) < n'sp(P*), where the first inequality follows from Lemma 3.3 and the last

inequality follows from Lemma 3.2. L

Remark. If n, = 1 and every supply node fails independently with an identically small

probability, our result reduces to the following result in the classical shared risk group

model: The number of risks associated with the shortest path is at most nd times the

number of risks associated with the minimum-risk path [45].

81



3.4 Reliability of a pair of paths

To study diverse routing in interdependent networks, we consider the simplest

case of two s - t paths in this section. Given that computing the failure probability of

a single path is #P hard if every node has more than one supply node, it is also #P

hard to compute the failure probability of two paths2 . To see this, note that if two

paths have the same number of nodes and each node in the first path has identical

supply nodes as its corresponding node in the second path, then the probability that

both paths fail equals the probability that a single path fails. Fortunately, we are

still able to obtain 1 E-approximation of the failure probability in polynomial time.

Small and identical failure probability

A central concept in diverse routing is the disjoint paths or risk disjoint paths

[35-37]. In the classical shared risk group model, if every risk occurs independently

with an identically small probability p = o(1/m2 ), the probability that two paths

fail is E(f(m)p2 ) if they are risk disjoint and E(f(m)p) if they share one or more

risks, where m is the maximum path length and f(m) is a function of m. Thus, risk-

disjointness characterizes the order of the reliability of two paths. In interdependent

networks where every demand node has multiple supply nodes, if nodes in P do not

share any supply nodes with nodes in P2 , then P1 and P2 are risk disjoint. However,

risk-disjointness does not suffice to characterize the reliability of two paths, for the

following two reasons. First, the failure probability of a demand node depends on

the number of supply nodes for it, which is not related to risk-disjointness. Second,

if P1 and P2 share some supply nodes, the failure probability depends further on the

maximum number of supply node failures that the two paths can withstand. To study

the reliability of two paths in interdependent networks, we define d-failure resilient

paths as follows.

2Meanwhile, it is still simple to compute the failure probability of two paths if every node has a
single supply node, by first computing the probability that the first path fail, and then computing
the probability that the second path fail while the first path does not fail (i.e., none of the supply
nodes of the first path fail), both in polynomial time, and summing the two probabilities.
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Definition 3.1. Two paths are d-failure resilient if removing any d supply nodes

would not disconnect both paths.

Remark. In the classical graph model G(V, E), two disjoint paths are 1-failure resilient

while two overlapping paths are 0-failure resilient. In the classical shared risk group

model, two risk disjoint paths are 1-failure resilient while two paths that share risks

are 0-failure resilient. Two paths can never be more than one failure resilient. Thus,

the disjointness or risk-disjointness suffices to characterize (the order of) the reliability

of two paths in these models.

Evaluation of failure probability

Consider two paths P' = s -v1 -v - - v 1 - t, P2 = s-v2- v . _-V- 2 -t

between a pair of nodes (s, t). We study the event that at least one node in P1

and at least one node in P2 both fail. Let Fik denote the event that all the supply

nodes of v1 fail, and let Fk denote the event that the k-th path fails, k E {1, 2}. Then

F'nF2=Ui imi m2 (FilnF?). For simplicity of presentation, let Fboth =FnF2

and Fii = F n F?. Let S- denote the union of supply nodes of v1 and v2.

To decide whether two paths are d-failure resilient, we consider the number of

supply node failures that lead to the event Fi, and denote the number by dij. Then

d = min1<i<mi,1<jim 2 dij - 1. Moreover, let f- be the number of pairs of nodes, one

from each path, such that each pair of nodes in total have d + 1 distinct supply

nodes and any two pairs do not have the same set of d + 1 supply nodes. (I.e., fm

combinations of d + 1 supply node failures each disconnect both paths.) The next

theorem formalizes the connection between the reliability of two paths and d.

Theorem 3.6. If every supply node fails independently with probability p < E/(m1m 2 ),

then the probability that two d-failure resilient paths with lengths M 1 , M 2 both fail sat-

isfies (1 - E)j mpd+1 < Pr(Fboth) < (1 + E)pjpd+l.

Proof. First consider the events Fi% = Fl n F?, 1 i < m1 ,1 j < M2. Let

Sij denote the union of supply nodes of v1 and v?. Then the event Fi occurs if
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and only if all the nodes Sij fail. By a similar argument as the proof of Theo-

rem 3.3, if Sij, is a subset of Sij, then Fi23 occurs only if Fi 3 occurs, and Fgj,

is redundant. In the following we only consider S = {Sij 11 i i 1 , 1 < J

M 2 , none of Sij is a subset of another.}. The cardinality of S at most miM 2 .

By the inclusion-exclusion principle, Pr(Fboth) can be computed as follows.

Pr(Fboth) Pr(S 3 fail)

- Pr(Sill U Si fail)
seij ,s'2i2 es

+ - - - + (- 1)S1-1 Pr(UsjEsSij fail). (3.7)

Since two paths are d-failure disjoint, the number of nodes in Sij is d + 1 for

some i E {1,...,im 1 },j E {1, . ., m 2} while the number of nodes in all the other

Sij is larger than d + 1. Let S C S be the union of the supply node sets, each of

which contains d + 1 nodes, and let f = ISi. The first term in Eq. (3.7) is at most

fnqd+1 + (JSj - in-)qd+2. Therefore,

Pr(Fboth) d+1 + miM 2 qqd+1

:fqd+1 + qd+1

if q 6/(mIm 2 ).

We next consider the supply node failures of two pairs of nodes. Recall that S1

consists of supply node sets that each contain d + 1 nodes. Let S2 = S \ S1 be the

remaining supply node sets that each contain d +2 or more nodes. The union of two

sets Si. U S23 (Sil3 , Si E Si) contains at least d+2 nodes. The union Sil U S

(Si 1 p, Siz 2  E S2, or Si 1j, E Si, Sif 23 E 82) contains at least d+ 3 nodes. The absolute

value of the second term is at most ('-)qd+ 2 + [(mim2) - ()]q 3 . To conclude,

2 2 2

Pr(Fboth) >fqd+i - ( qqd+1 + (mIM2 2 q2qd+1)
2 2/

>iqd+1 _ d8
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if q < e/(mim 2).

Finding the most reliable pair of paths

From Theorem 3.6, we know that the probability that two d-failure resilient paths

both fail is smaller for larger values of d. Moreover, for a fixed d, the failure probability

is proportional to ri, the number of combinations of d + 1 supply node failures that

disconnect both paths. We have obtained two reliability indicators for two paths: d

and in.

Unfortunately, computing the pair of s - t paths that have the maximum d and

the minimum in are both NP-hard, even in the special case where every demand node

has a single supply node. This special case reduces to the classical shared risk group

model. In this special case, d = 1 if there exist two risk-disjoint paths, and d = 0

otherwise. The NP-hardness of determining the existence of two risk-disjoint paths

between an s - t pair has been proved in [35]. Moreover, in this special case, for

two paths that share common supply nodes, fi is the number of overlapping risks

between the two paths (i.e., removing any of the in supply nodes disconnects both

paths). The NP-hardness of the least coupled paths problem, which computes a pair

of paths that share the minimum number of risks in the classical shared risk group

model, has also been proved in [35].

We develop an integer program to compute a pair of s - t paths with the maximum

d in G(V, E, Sv). Let variable xiy denote whether edge (i, j) is part of the k-th path,

and let variable bk denote whether node i is part of the k-th path, k E {1, 2}. Same

as before, let Si denote the supply nodes of node i. Constraints (3.9) guarantee that

two paths are node-disjoint. Notice that these constraints can be dropped if there is

no restriction on the physical disjointness of two paths. Constraints (3.10) guarantee

that at least d + 1 supply nodes need to be removed in order for one node in each

path to fail (i.e., bl = b = 1, i, j E V), where M is a sufficiently large number, e.g.,
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twice the maximum number of supply nodes for a demand node.

max d (3.8)

1, if i = s

s.t. x' - x' = -1, if i= t, k E {1, 2},
{iI(ij)GE} {jIjji)EE} 0, otherwise.

Zxi + i <2bk, Vi E V, k E {1, 2}
{IjI(ij)EE} {jI(j,i)E E}

b + b b 1, Vi E V \ s, t, (3.9)

d + 1 < jSj U Sjj + M(2 - b' - b ), Vi, j E V \8s t, (3.10)

i E {0, 1}, V(i, j) E E, k E {1, 2},

b E {,1}, ViE Vk E {1,2}.

A slightly modified integer program suffices to minimize fii under the condition

that d is maximized. Let h(Si U Sj) denote whether removing the union of supply

nodes for i and j disconnects both paths. Constraints (3.12) guarantee that if i and

j belong to two different paths, i.e., bl = b? = 1, then h(Si U Sj) = 1. Otherwise,

h(Si U Sj) = 0 in the optimal solution. Let a positive value w(ISj U Sjj) denote

its weight, which is a decreasing function of the cardinality ISj U Sj3 . We aim to

minimize the total weights of supply node failures that disconnect two paths. In

order to guarantee that d is maximized, w(l)/w(l + 1) should be sufficiently large for

any integer 1, e.g., 1V12/2. Since there are at most IVI(IVI - 1)/2 pairs of nodes,

larger d is always preferable and has a higher priority to be optimized over in.

min w(|S USjI)h(S2 USj) (3.11)
SiSjESv

1, if i = S,

s.t. X x = -1, if i = t, k E{1, 2},
{jl(i,j)EE} {j|(j,i)EE} 0, otherwise.
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Xij + E i < 2b , Vi c V, k E {1, 2}
{jj(ij)EE} {j(j,i)EE}

b2+b2 <1, Vi E V\st,

h(Si U Sj) ;> b" + bj - 1, ViJ E V \S, t, (3.12)

i E0, 1}, V(i, j) E, k E {1, 2},

h(Si U Sj) e {O, 1}, Vi, j E V.

Arbitrary failure probability

Evaluation of failure probability

We use a similar importance sampling approach to Algorithm 3.1 and formulate

the problem of computing the failure probability of two paths as a DNF probability

problem. A clause Cij represents a pair of nodes vi and v?. Literals in Cij represent

the union of supply nodes of vi and v?. A literal is true if and only if the supply node

that it represents fails, and the probability that the literal is true is the same as the

supply node failure probability. The disjunction of clauses is true if and only if at

least one clause is true, in which case both paths fail because at least one node from

each path fails. The rest of the computation follows the same manner as Algorithm

3.1, by replacing a node in Algorithm 3.1 by a pair of nodes. An (c, 6)-approximation

of the failure probability Pr(Fboth) can be obtained in O(m'min, ln(1/j)/E 2 ) time.

Finding the most reliable pair of paths

It is more difficult to find two paths that have the smallest failure probability.

Recall Theorem 3.6. The failure probability of two paths is E(f(mi, m 2 )pd+1) if

they are d-failure resilient when the supply node failure probability p is small, where

f(mi, M 2 ) is a function of two path lengths. As a corollary of the fact that it is

NP-hard to compute two paths that have the maximum level of resilience d, it is

also NP-hard to compute two paths whose failure probability is within a factor 0Z

from the optimal, where a is any function of the network size. Thus, we develop

the following heuristic. After computing the failure probability P(vi) of a node vi
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in Step 1 of Algorithm 3.2, let - ln(1 - f(vi)) be the length of traversing node vi,

and compute two node disjoint paths with the minimum total lengths. The two

paths can be efficiently obtained using a slightly modified shortest augmenting path

algorithm [60]. The computation is outlined in Algorithm 3.3. The reason for the

graph transformation in Step 1 is to simplify the computation of a residual graph, to

which the shortest augmenting path algorithm can be applied.

Algorithm 3.3 A heuristic to compute a pair of reliable s - t path in G(V, E, SV).

1. Transform G(V, E, SV) with node failure probabilities to a directed graph G'
with edge failure probabilities using the standard approach. (Split every node
v into Vin and vout. Add a directed edge from Vin to Vout, which has length
- ln(1 - f(vi)). Add a directed edge from viout to v 2 in and a directed edge
from V2out to vin, both with zero length, if an edge exists between v, and v2 in
G(V, E, Sv).)

2. Compute the shortest path Pj from sou to tin in G'.

3. Compute the residual graph. Remove all the edges in P1. Add a backward edge
from v' to v' with a negated length if an edge from v' to v' is part of P1.

4. Compute the shortest path P2 from so0 t to tin in the residual graph.

5. Combine Pj and P2 by cycle cancellation. The two paths become node-disjoint
and can be mapped to two paths in G(V, E, SV).

3.5 Numerical results

We study the robust routing problems in the XO backbone communication net-

work with 60 nodes and 75 edges [56], by assuming that the XO nodes are supported

by 36 randomly generated supply nodes within the continental US. The XO network

topology is depicted in Fig. 3-2, and the supply nodes are marked as triangles. The

x-axis represents the longitude and the y-axis represents the latitude. We do not

claim that the XO network needs supply from these randomly generated points, and

we use this example only to provide a visualization of the robust routing problems

using available data.
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Figure 3-2: Topology of the XO network and randomly generated triangle supply
nodes. The most reliable Seattle-Miami path is colored red under the condition that
supply node failure probability is small and identical and every XO node depends on
two nearest supply nodes.

First, we assume that every XO node depends on two nearest supply nodes and

every supply node fails independently with probability 10-2. Since the supply node

failure probability is small and identical, we are able to obtain the most reliable path

and pair of paths by optimizing the reliability indicators using integer programs.

To identify the most reliable path, since nin"(P) = 2 for any path P, we only

need to compute a path with the minimum 7-n using the integer program in Section

3.3. The most reliable path is colored red in Fig. 3-2, for which - = 8. To evaluate

the path failure probability, by Corollary 3.1, setting E = 4 x 10-2, Pr(F) E [7.68 x

10o, 8 x 10-4]. To compare, using Algorithm 3.1, we obtain 7.9686 x 10- 4 as a

(1 0.01)-approximation of the path failure probability with probability 0.99. These

results suggest that the two reliability indicators (nmi", r-i) well characterize the path

failure probability when the supply node failure probability is small and identical.

We compute the most reliable pair of paths connecting Seattle-Miami using the

integer programs in Section 3.4. The two paths are plotted in Fig. 3-3, and they
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are 1-failure resilient (d = 1). The failure probability of both paths is approximately

1.0388 x 10-. In contrast, the most reliable pair of paths connecting Seattle-Denver

are 3-failure resilient and their failure probability is approximately 2.9800 x 10-8.

Thus, the level of resilience well indicates the reliability of two paths.

50 -SeattlA

n~ Dnver
40

30

Miami
20

-120 -110 -100 -90 -80

Figure 3-3: The most reliable pair of paths between Seattle-Miami are colored red,
under the condition that supply node failure probability is small and identical and
every XO node depends on two nearest supply nodes.

Next, we assume that an XO node depends on N, randomly chosen supply nodes,

where N is uniformly chosen among 1, 2, and 3. Let the failure probability of

each supply node be uniformly and independently chosen from [0.005, 0.015]. We use

Algorithm 3.2 to obtain a reliable path connecting Seattle-Miami. Averaged over 10

trials, the path failure probability is approximately 2.1032 x 10-2, while the lower

bound on the failure probability of the most reliable path is 5.2365 x 10-. The

obtained path has failure probability around four times the lower bound. Moreover,

by using the heuristic to find a pair of paths, the paths have average failure probability

3.9732 x 10--3, which improves the reliability of a single path.

We compare the performance of the heuristic (Algorithm 3.3) with the optimal pair

of paths. Since it is difficult to obtain the optimal pair of paths under arbitrary failure
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probabilities, we use the integer program (3.11), under the condition that supply nodes

fail independently with probability 102. If every XO node depends on two nearest

supply nodes, the failure probabilities of two optimal paths and two paths obtained

by the heuristic are approximately 1.0388 x 10-4 and 1.0773 x 10-4, respectively. If

every XO node depends on three nearest supply nodes, the failure probability of two

optimal paths and two paths obtained by the heuristic are approximately 1.0200 x 10-6

and 1.0508 x 10-6, respectively. These experiments validate the performance of our

heuristic algorithm.

Finally, we report the running times of the algorithms, executed in a workstation

that has an Intel Xeon Processor (E5-2687W v3) and 64GB RAM. The integer pro-

grams that find the most reliable path and pair of paths (under small and identical

supply node failure probability) can both be solved within 1 second. The approxima-

tion algorithm to find a reliable path and the heuristic to find a pair of paths (under

arbitrary failure probabilities) can both be solved within 0.1 second. The evaluation

of the failure probability of one path or a pair of paths by Algorithm 3.1 takes sev-

eral minutes, by setting E = 6 = 0.01. Thus, the algorithms (integer programs and

Algorithms 3.2 and 3.3) can be used to find reliable routes in realistic size networks.

3.6 Summary

We studied the robust routing problem in interdependent networks. We developed

approximation algorithms to compute the path failure probability, and identified re-

liability indicators for a path, based on which we develop algorithms to find the

most reliable route in interdependent networks. We also studied diverse routing in

interdependent networks, and developed approximation algorithms to compute the

probability that two paths both fail and to find two reliable paths. Our work extends

the shared risk group models, and provides a new framework to study robust routing

problems in interdependent networks.
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3.7 Chapter appendix

3.7.1 Computational complexity

Proof of Theorem 3.1. The problem of computing the path failure probability can

be reduced from a monotone DNF counting problem. A monotone DNF counting

problem aims to compute the number of satisfying assignments of literals, for a DNF

formula that has no negated literals. The monotone DNF counting problem is #P-

hard, even if every clause contains two literals [61]. (The original paper [61] considers

conjunctive normal form counting, monotone 2-CNF(SAT). It is easy to see the equiv-

alence between the monotone 2-DNF and monotone 2-CNF by applying De Morgan's

law and negating all the literals.)

Given a monotone DNF counting problem, construct a path as follows. Each

node in the path represents a clause, and its supply nodes represent the literals in

the clause. (See Fig. 3-4 for an example.)

demand

supply 4

Figure 3-4: A path constructed from a monotone DNF formula (x1 A x 2 ) V (x 2 A X 3 ) V
(x1 A x 3 ) V (x1 A x 4 ).

If every supply node fails independently with probability 1/2, then the path failure

probability is N/2', where m is the total number of supply nodes (literals), and N is

the number of combinations of supply node failures that lead to the failure of at least

one node, which equals the number of satisfying assignments for the DNF formula.

Thus, the failure probability of a path under p = 1/2 gives an answer to the monotone

DNF counting problem. To conclude, computing the path failure probability is #P-

hard if every node has two or more supply nodes. E

Remark. We further consider the complexity of computing the path reliability, with
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additional restrictions on the maximum number of demand nodes that any supply

node supports. If every supply node supports at most two demand nodes, in addition

to the restriction that every demand node has at most two supply nodes, then the

failure probability can be computed in polynomial time, when every supply node fails

independently with an identical probability. The computation follows from the algo-

rithm in [62], which relates the number of satisfying assignments of a DNF formula,

where each literal appears at most twice and each clause contains two literals, to the

number of independent sets in a graph with node degree at most two. Nevertheless, if

every supply node supports three or more demand nodes, the computation becomes

#P-hard even if every demand node has at most two supply nodes, because counting

the number of independent sets in a graph with node degree three is #P-hard [63].

Proof of Theorem 3.4. We prove that computing such a path is NP-hard even in the

following restricted case. Consider a graph where every node has a single supply

node, and every supply node fails independently with an identically small probability

p = o(1/m 2 ). The failure probability of a path supported by in < m supply nodes is

1 - (1 - p)r" = fp + o(p).

Suppose that the most reliable path is supported by tmin supply nodes and has

failure probability Pmin = MminP + o(p). For e < 1/rn ; 1/hmin, a path with failure

probability strictly smaller than (1 + E)pnin < (7inmin + 1)p + o(p) is supported by

exactly -min supply nodes. Computing a path that is supported by the minimum

number of supply nodes in this example is NP-hard, which is known as the minimum

color path problem in [37]. Therefore, computing a path that has failure probability

within 1 + e times the optimal is NP-hard for e < 1/m. L

3.7.2 Approximating the path failure probability by impor-

tance sampling

In this section, we prove the correctness of Algorithm 3.1 and Theorem 3.2.

Lemma 3.4. The path failure probability is given by E[I] Z1<k<m Hl j:fls(Vk) P(Uj)
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Proof. Let V, denote the set of all supply nodes. Let U denote a set of failed supply

nodes that lead to the failure of at least one of {V 1 , V2, ... , Vm} (i.e., the failure of

the path). Let U = {U1, U2 ,... , UR} denote all the sets of supply node failures that

lead to the failure of the path. Let p(u) denote the failure probability of node u. Let

Pr(exactly U, fail) denote the probability that supply nodes U, fail and all the other

supply nodes V \ U, do not fail. Since the events that U, fail while the others do not

fail are mutually exclusive for different r, the path failure probability is given by

Pr(F) = E Pr(exactly Ur fail)
1<r<R

= E p(u) H (l-p(u)). (3.13)
1<r<R uEUr uEVs\Ur

Let {ujIj = 1,... ,,(vk)} denote the set of supply nodes of Vk. Let mr denote

the number of demand node failures, among {v 1 , v2 , ... , Vm}, if supply nodes U fail.

Then, by summing the failure probabilities of demand nodes p(vk) = njs(vk)a k'),

k = 1, ... , m, the probability that supply nodes Ur fail is counted m, times.

S l p(uk) = m, Pr(exactly Ur fail)
1 ksm 1 jins(vk) 1<r<R

= mr f p(u) fJ (1 - p(u)). (3.14)
1<r<R uEUr UEVs\Ur

We now construct the relationship between the left hand sides of Eq. (3.13) and

Eq. (3.14) using E[I]. In Algorithm 3.1, the value of I in Step 4 depends on both

vi (obtained in Step 2) and U (obtained in Step 3). In the remainder of the proof,

we first compute the probability that a specific U is obtained (in an iteration of the

main loop), and then compute Pr(I = 11U) (i.e., the probability that vi is the first

failed node given that U fail). As a consequence, Pr[I = 1] can be determined using

the law of total probability.

Consider an iteration of the main loop. Let Pr(U,) denote the probability that U

is obtained in Step 3 of Algorithm 3.1. Let r(t), t = 1,. ... , mr denote the indices of
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failed nodes v,(t) among {V 1 , V2,.. ., Vm} if U, fail (m, < m). We have

Pr(Ur) = ( k(
i<tKmr Z1 k<m H1 jjflS(Vk) p(Uj)

x I p(u) (1 - PM) (3.15)
uCUr\{Ur t',1 jsnS(vr(t))} uEV\U(P

z IuUr P(M) H EV\U (1 -PMu)) (3.16)
1<t<Mr E<k<m 111<j! %(Vk) P Ujk

mr HUEU p(u) HU \Ur (1 - p(u)) (317)
Zl<k<m l1<jns(vk) P(Uj)

To see this, note that there are m, choices of {Vr(t) It = 1, --. , Mr} which may lead

to Ur. In Eq. (3.15), the first term (in the product) is the probability of choosing

vr(t) and setting its supply nodes Ur(t) -U, = 1, .. , fls(Vr(t))} to be failed; the

second term is the probability that Ur \ Ut) fail; the last term is the probability that

the remaining supply nodes V, \ Ur do not fail.

Eq. (3.16) implies that Vr(t), t E {1, ... , Mr} contribute equally to the occurrence

of U,. Namely,

Pr(v,(t) has been chosen in Step 21U.)

_ 1<js!an(vt)r(t)

x H p(u) H (1 - p(u)) Pr(U)

uEUr\{U(t),1<jls(vr(t)} uEVs\Ur

=1/M,,

for t E {1, .

Given Ur, the probability that v,(l) has been chosen in Step 2 of Algorithm 3.1 is
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1/m,. Thus, Pr[I = 11U,] = 1/mr. By the law of total probability,

Pr[I = 1] Pr[I = 11U,] Pr(Ur)
1<r<R

EZ1<r<R H uEUr p(u) HuEV\U( 1 
- p(u))

Z1<k<m F1<jnS(vk) PMu3

Since I is an indicator variable, E[I] = Pr(I = 1).

E[I] S p(uk)
1<k<m 1<jns(v,)

= E H p(u) H (1 - p(u))
1<r RuEUr UEV.\Ur

= Pr(F).

Next, we prove that E[I] can be estimated accurately within 3m ln(2/6)/6 2 itera-

tions.

Lemma 3.5.

Pr E[I] b/a :EE[I] < 6,

where a = 3m ln(2/6)/e 2 is the number of iterations of the main loop of Algorithm

3.1, b is the number of observations of I = 1, and 0 < c < 1. Namely, by repeating

a = 3m ln(2/6)/e 2 times, one obtains an (e, 6)-approximation of E[I].

Proof. The proof is based on the Chernoff inequality and is a standard result in

estimation theory. From the proof of Lemma 3.4, we know that Pr(I = 1IUr) =

1/m' > 1/m for all Ur. Thus, Pr(I = 1) > 1/m. To estimate E[I within 1 E

accuracy (0 < E < 1), let the number of trials be a = 3mln(2/6)/E2

Pr E I - E E[I] > e 5 E[I]
(1<i<a 1<i<a 1<i<a

< exp(- -li~ [j ) + exp( 62 3~~ [i
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< 2 exp(- ) 
2 exp(- )

<6

Proof of Theorem 3.2. Consider an iteration of the main loop of Algorithm 3.1. In

Step 2, obtaining vi takes O(mn) time. In Step 3, obtaining U takes O(mn,) time,

because the total number of supply nodes is at most O(mn,). In Step 4, testing

whether vi is the first failed node under the failure of U takes O(mn,) time, given

that checking whether a node fail takes O(n,) time and there are at most m nodes in

the path.

Since 3m ln(2/6)/e 2 iterations are sufficient, the total running time of Algorithm

3.1 is O(m2 n, ln(1/6)/e2). 0

3.7.3 Bounds on path failure probability

Lemma 3.6.

1 - (1 - P1p 2 )"' < [1 - (1 - P1)][1 - (1 -P2)],

for P1, P2 E (, 1), a, 3 (0,1].

Proof. Let

g(x) (1 -- )7 - (1 -x),

for x E [0, 1), 7 E (0, 1].

By taking the derivatives,

g'(x) = -y(1 - )1 +

9"(x) =7(7 - 1)1 ),-
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Since g(0) = 0, according to the mean value theorem,

g(x)= g'(O),

where 0 < x < x < 1. Substituting g(x) and g'( ),

(1 - X), - (1 - 'YX)
1 - (1 - X)'

1 - (1 - X)7

= 7x - g'()X

= -Yx(1 - )--1. (3.18)

Given g"(x) < 0 for x, -y E (0, 1), g(x) is strictly concave for x, -y E (0, 1).

0 < X1 < X 2 < 1,

For

g(x 2 ) < 9(0) + g(xi) - g(0)
X1

g(x2)/X 2 < g(xl)/x.

Given that g(xI) = g'( 1 )X 1 , g(x 2 ) = g'( 2 )x 2 , 0 < 1 < X1 , 0 < 2 < x 2 , and that

g'(x) is decreasing in x, we have 1 < 2- If y = 1, then g(x) = g'(x) = 0 for x E [0, 1).

Clearly, there also exist 1 < 2 such that g(xi) =g'( 1 )X 1 , g(x 2 ) = 9'(2)X2-

Applying Eq. (3.18),

[ -(1 -P1)O'][1 -(1 - P2)"]

= ap1 (l - ?/1)"-1 /p2(1 -q2)

= ~pp2(1- 77) (1 -2

for 0 < T11 < Pi, 0 < 'q2 < P2, and

1 - (1 - PiP2)"' = O4pip2(1 - 773)"3-,

for 0 < 173 < PIP2. Moreover, rq3 < min(7 1 ,7r2 ), because PlP2 min(pi, p 2 ).
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Given 0 < a, 3 1,

(1 - r/) -- r2

> (1Y- -3)

3(1 - r)ci+3-2

where the first inequality follows from the fact that hi(x) (1 - x)a is decreasing in

X if X E (0, 1) and a E (0, 1], and the last inequality follows from

a(1 - ) < 1 -,37

a+03-2 < a/3-1,

and h2 (x) = (1 - r3)x is decreasing in x for r/3 E (0, 1).

Therefore,

1-(1 - PiP2)c"3 < [1 - (I - PI)O'][1 -(1 -P2)"I-

Lemma 3.7.

1 -p(vi) > (1 - AV))",

where P(vi) is defined before Lemma 3.2.

Proof. For n = 1, every node has a single supply node. Let u be the supply node of

vi. Since 1 - p(ui) (1 - J(Ui))"l for any supply node uj, the result trivially holds.

We next focus on the case where n, > 2. Recall that p(vi) = H[ p(uk) and
uj 3

P(vi)= J7 ui(u-) (i.e., a demand node fails if and only if all of its supply nodes fail),
S3

where ui are the supply nodes of vi.

Consider two supply nodes of vi and let p(U') and p(u') be their failure proba-

bilities. Moreover, (u') and P(u') satisfy p(u') 1 - (1 - p(ui))/"d and P(u') >

1 - (1 - p(ui))1/nd.
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Then,

1 - p(ui)p(ui) < 1 - [(1 - (1 - p(Ui))/ld)

(1 - (1 - p(Ui))l/"d)]

< (1 - p(ui)p(ui))1/n",

where the last inequality follows from Eq. (3.19), by letting pi = p(ui),p2 =

p(u'), a,)3 = 1/nd, which we proved in Lemma 3.6.

1- (1 PiP2)" ' [1 - (1 -Pi)a][1 - (1 - P2)0], (3.19)

for p1 , p 2 E (0, 1), c,,3 E (0, 1].

Consider the third supply node of vi which has failure probability p(u'). We have

f(ui) 1-(1-p(ui))/"d. Moreover, notice that P(u')P(u') d .

By letting pi = p(ui)p(Ui), p 2 = p(u'), a = 1/nd, f = 1/nd in Eq. 3.19, we have

1 - k(z)(u)i(u ) (1 -1/"3

By repeating the process until all the supply nodes of vi are considered, and let

ns(vi) < n. denote the number of supply nodes of vi, we have

1 - P(vi) (1 - p(vi))1/ndns(-)

(- _P(Vi)) 1/n d
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Chapter 4

Robustness of interdependent

random geometric networks

Previous chapters developed a layered graph model to represent arbitrary topolo-

gies of interdependent networks. In this chapter, we develop an interdependent ran-

dom geometric graph (RGG) model to study the properties of large-scale interdepen-

dent networks. In this model, nearby nodes are connected by edges, which represent

the topology of many physical networks. We study the conditions under which a pos-

itive fraction of nodes are functional in interdependent RGGs as the number of nodes

approaches infinity. In this case, the interdependent RGGs percolate. We extend per-

colation theory to interdependent RGGs, and study the robustness of interdependent

RGGs under random and geographical node failures.

The rest of the chapter is organized as follows. We state the model and prelim-

inaries in Section 4.1. We derive analytical upper bounds on percolation thresholds

in Section 4.2, and obtain confidence intervals for percolation thresholds in Section

4.3. In Section 4.4, we study the robustness of interdependent RGGs under random

failures and geographical attacks. In Section 4.5, we extend the techniques to study

graphs with more general interdependence. Section 4.6 concludes the chapter.
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4.1 Model

4.1.1 Preliminaries on RGG and percolation

An RGG in a two-dimensional square consists of nodes generated by a Poisson

point process and links connecting nodes within a given connection distance [64].

Let G(A, d, a2 ) denote an RGG with node density A and connection distance d in

an a x a square. The studies on RGG focus on the regime where the expected

number of nodes n = Aa2 is large. We first present some preliminaries which are

useful for developing our model. The giant component of an RGG is a connected

component that contains e(n) nodes. A node belongs to the giant component with

a positive probability E(n)/n if the giant component exists. For a given connection

distance, the percolation threshold is a node density above which a node belongs to

the giant component with a positive probability (i.e., a giant component exists) and

below which the probability is zero (i.e., no giant component exists). By scaling,

if the percolation threshold is A* under connection distance d, then the percolation

threshold is A*c2 under connection distance d/c. Therefore, without loss of generality,

in this chapter, we study the percolation thresholds represented by node densities,

for given connection distances.

The RGG is closely related to the Poisson boolean model [65], where nodes are

generated by a Poisson point process on an infinite plane. Let G(A, d) denote a Poisson

boolean model with node density A and connection distance d. The difference between

G(A, d) and G(A, d, a2 ) is that the number of nodes in G(A, d) is infinite while the

expected number of nodes in G(A, d, a2 ) is large but finite. The Poisson boolean model

can be viewed as a limit of the RGG as the number of nodes approaches infinity. The

percolation threshold of G(A, d) under a given d is defined as the node density above

which a node belongs to the infinite component with a positive probability and below

which the probability is zero. It has been shown that a node belongs to the infinite

component with a positive probability if and only if an infinite component exists, and

thus the percolation of G(A, d) can be equivalently defined as the existence of the

infinite component [65]. Moreover, the percolation threshold of G(A, d) is identical

102



with the percolation threshold of G(A, d, a2 ) [64,66.

4.1.2 Interdependent RGGs

Two interdependent networks are modeled by two RGGs G1 (A,, dj, a2 ) and G 2(A2 , d2, a2)

on the same a x a square. A node in one graph is interdependent with all the nodes

in the other graph within the interdependent distance ddep. See Fig. 4-1 for an il-

lustration. Nodes in one graph are supply nodes for nodes in the other graph within

ddep. The physical interpretation of supply can be either electric power or informa-

tion that is essential for proper operation. A node can receive supply from nearby

nodes within the interdependent distance. Larger interdependent distance leads to

more robust interdependent networks. The geographical nature of interdependence is

observed in physical networks [1, 12].

G2 e

Figure 4-1: Two interdependent RGGs with interdependent distance dep.

Most analysis in this chapter is given in the context of two interdependent Pois-

son boolean models GlntDep = (G1 (A, di), G 2(A2, d2 ), ddep), which is the limit of two

interdependent RGGs as the numbers of nodes in both graphs approach infinity.

We define a mutual component and an infinite mutual component in GjntDep, in

the same way as one defines a connected component and an infinite component in

G(A, d).

Definition 4.1. Let Vio denote nodes in a connected component in Gi(Ai, di), Vi E

{1, 2}. If each node in Vi C V has at least one supply node in V g VP0 within ddep,
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Vi, j E {1, 2}, i # j, then nodes V and V2 form a mutual component of GIntDep -

If, in addition, V contains an infinite number of nodes, Vi E {1, 2}, then V and

V2 form an infinite mutual component.

A mutual component can be viewed as an autonomous system in the sense that

nodes in a mutual component have supply nodes in the same mutual component, and

in each graph, nodes that belong to a mutual component are connected regardless of

the existence of nodes outside the mutual component. Note that a node can receive

supply from any of its supply nodes in the same mutual component, and thus is

content if it has at least one supply node. Nodes in an infinite mutual component are

functional, since they constitute two large connected interdependent networks and can

perform a given network function (e.g., data communication or power transmission

to a large number of clients). This definition of functional is consistent with previous

research on interdependent networks based on random graph models [7].

For a fixed ddep, if an infinite mutual component exists in GlntDep = (G1 (A, di), G 2 (A2 , d2 ), ddep),

then an infinite mutual component exists in GIntDep = (G 1(A, di), G2 (A 2 , d2 ), ddep),

where A' > A 1 . This can be explained by coupling G' with G, as follows. By removing

each node in G' independently with probability 1 - A,/A', the density of the remain-

ing nodes in G' is A,, and an infinite mutual component exists in the interdependent

graphs that consist of G 2 and the graph formed by the remaining nodes in G. Since

adding nodes to a graph does not disconnect any mutual component, an infinite mu-

tual component exists in GIntDep = (G 1 (A', di), G 2 (A 2 , d2 ), ddep). By the same analysis,

an infinite mutual component also exists in G'ntoep = (G1(Aj, d), G 2 (A', d2 ), ddep), if

A' > A2 .

We define a percolation threshold of GIntDep as follows.

Definition 4.2. A pair of node densities (A*, A*) is a percolation threshold of GIntDep,

given connection distances di, d2 and the interdependent distance ddep, if an infinite

mutual component exists in GIntDep for A, > A* and A2 > A*, and no infinite mutual

component exists otherwise.

For fixed di, d2 and ddep, there may exist multiple percolation thresholds. We
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show that, in most cases, the larger the node density is in one graph, the smaller the

required node density is in the other graph in order for the infinite mutual component

to exist. This is in contrast with the situation for a single graph G(A, d) where there

is a unique percolation threshold A* for a fixed d.

There is a non-trivial phase transition in GIntDep. If Ai is smaller than the percola-

tion threshold of a single graph Gi(Ai, di), there is no infinite component in Gi(Ai, di),

and therefore there is no infinite mutual component in GntDep. Thus, A* > 0,

Vi E { 1, 2}. As we will see in the next section, there exist percolation thresholds

A* < oo, Vi E {1, 2}, which concludes the non-trivial phase transition.

Given that the conditions for the percolation of a random geometric graph Gi(Ai, di, a2)

and a Poisson boolean model Gi(Ai, di) are the same, the above definitions can be

naturally extended to interdependent RGGs. Consider nodes V1 g G 1 (A,, dl, a2 ) and

V2 C G2 (A 2 , d2 , a2 ) that form a mutual component. If V contains e(ni) nodes, where

ni = Aia 2, Vi E {1, 2}, then V and V2 form a giant mutual component in interdepen-

dent RGGs. The percolation of interdependent RGGs is defined as the existence of a

giant mutual component. In the rest of the chapter, we sometimes use Gi to denote

both Gi(Ai, di, a2) and Gi(Ai, di). The model that it refers to will be clear from the

context.

4.1.3 Related work

In the interdependent networks literature, the model which is closest to ours is

the interdependent lattice model, first proposed in [67] and further studied in [12,13].

In the lattice model, nodes in a network are represented by the open sites (nodes) of

a square lattice, where every site is open independently with probability p. Network

links are represented by the bonds (edges) between adjacent open sites. Every node

in one lattice is interdependent with one randomly chosen node within distance rd

in the other lattice. The distance rd indicates the geographical proximity of the

interdependence. The percolation threshold of the interdependent lattice model is

characterized as a function of rd, assuming the same p in both lattices [67]. Percolation

of the model where some nodes do not need to have supply nodes was studied in [12].
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The analysis relies on quantities estimated by simulation and extrapolation, such as

the fraction of nodes in the infinite component of a lattice for any fixed p, which cannot

be computed rigorously. In contrast, we study the percolation of the interdependent

RGG model using a mathematically rigorous approach.

The percolation of a single RGG (or a Poisson boolean model) has been studied in

the previous literature [65,68,69]. The techniques employed therein involves inferring

the percolation of the continuous model from the percolation of a discrete lattice

model. The key is obtaining a lattice whose percolation condition is known and is

related to the percolation of the original model, by discretization. The study of the

percolation conditions of discrete lattice models can be found in [70,71]. We extend

the previous techniques to discretize GlntDep, and obtain bounds on the percolation

thresholds.

4.2 Analytical upper bounds on percolation thresh-

olds

In this section, we study sufficient conditions for the percolation of GIntDep. We

provide closed-form formulas for (A 1 , A 2 ), which depend on dj, d2 , ddep, such that there

exists an infinite mutual component in GIntDep = (G 1 (A 1 , di), G 2 (A 2 , d2 ), ddep). The

formulas provide guidelines for node densities in deploying physical interdependent

networks, in order for a large number of nodes to be connected.

In GIntDep, nodes in the infinite mutual component are viewed as functional while

all the other nodes are not. Thus, a node is functional only if it is in the infinite

component of its own graph, and it depends on at least one node in the infinite

component of the other graph. For any node b1 in G1 , although the number of nodes

in G2 within the interdependent distance from b1 follows a Poisson distribution, the

number of functional nodes is hard to calculate, since the probability that a node

in G 2 is in the infinite component is unknown. Moreover, the nodes in the infinite

component of G2 are clustered, and thus the thinning of the nodes in G1 due to a lack
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of supply nodes in G2 is inhomogeneous. To overcome these difficulties, we consider

the percolation of two graphs jointly, instead of studying the percolation of one graph

with reduced node density due to a lack of supply nodes.

We now give an overview of our approach. We develop mapping techniques (dis-

cretizations) to characterize the percolation of GIntDep by the percolation of a discrete

model. Mappings from a model whose percolation threshold is unknown to a model

with known percolation threshold are commonly employed in the study of continuum

percolation. For example, one can study the percolation threshold of the Poisson

boolean model G(A, d) by mapping it to a triangle lattice and relating the state of

a site in the triangle lattice to the point process of G(A, d). By the mapping, the

percolation of the triangle lattice implies the percolation of G(A, d). Consequently,

an upper bound on the percolation threshold of G(A, d) is given by A for which the

triangle lattice percolates, a known quantity [65,68]. In general, more than one map-

ping can be applied, and the key is to find a mapping that gives a good (smaller)

upper bound. Following this idea, we propose different mappings that fit different

conditions to obtain upper bounds on the percolation thresholds of GIntDep-

In the rest of this section, we first study an example, in which the connection

distances of the two graphs are the same, to understand the tradeoff between the two

node densities in order for GlntDep to percolate. We then develop two upper bounds

on the percolation thresholds. The first bound is tighter when the ratio of the two

connection distances is small, and is obtained by mapping GIntDep to a square lattice

with independent bond open probabilities. The second bound is tighter when the

ratio of the two connection distances is large, and is obtained by mapping GlntDep to

a square lattice with correlated bond open probabilities.

4.2.1 A motivating example

To see the impact of varying the node density in one graph on the minimum node

density in the other graph in order for GIntDep to percolate, consider an example where

d, = d2= 2ddep. We apply a mapping similar to what is used to obtain an upper

bound on the percolation threshold of G(A, d) in [68], to obtain upper bounds on the
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percolation thresholds of GhntDep.

Consider a triangle lattice where each site is surrounded by a cell. The lattice

bond length is determined such that any two points in adjacent cells have distance

smaller than 2r, where 2r = dl. The boundary of the cell consists of arcs of radius

r centered at the middle of the bonds in the triangle lattice. See Fig. 4-2 for an

illustration. The area of the cell is A = 0.8227r2 . A site in the triangle lattice is

either open or closed. If the probability that a site is open is strictly larger than 1/2,

open sites form an infinite component, and the triangle lattice percolates [68].

Figure 4-2: A cell that contains a site in a triangle lattice.

To study the percolation of GLntDep, we declare a site in the triangle lattice to be

open if there is at least one node in its cell from G, and at least one node in its cell

from G2 . If the triangle lattice percolates, then GIntDep also percolates. To see this,

consider two adjacent open sites in the triangle lattice. Nodes from Gi in the two

adjacent cells that contain the two open sites are connected, because they are within

distance di = 2r (Vi E {1, 2}). If the open sites in the triangle lattice form an infinite

component, then nodes from Gi in the corresponding cells form an infinite component

Vi (Vi C {1, 2}). Moreover, given that any pair of nodes in a cell are within distance

r < ddep, each node in Vi has at least one supply node in Vj within the same cell

(Vi, j E {1, 2},i j).

Since 1 - e-AiA is the probability that there is at least one node in the cell from

Gi and the point processes in G1 and G2 are independent, an upper bound on the

108



percolation thresholds of GIntDep is given by (A,, A 2 ) satisfying

(1 - e-_1A)(1 - e-A2A) = 1/2.

If Ai is large, the percolation threshold A* approaches the threshold of a single

graph G. Intuitively, if Aj is above the percolation threshold of G, disks of radius

dj/2 centered at nodes in G form a connected infinite-size region. Since Ai is large,

nodes in Gi in this region are connected and form an infinite component. Moreover,

since ddep = dj/2, all the nodes in this region have supply nodes, and they form an

infinite mutual component.

The above upper bounds on percolation thresholds are still valid if ddep > di/2,

because each node can depend on a larger set of nodes by increasing ddep and it is

easier for GIntDep to percolate under the same node densities and connection distances.

However, if ddep < di/2, the bond length of the triangle lattice should be adjusted to

r = ddep in order for any pair of nodes in a cell to be within ddep. The percolation

threshold curve' (A1 , A2) would shift upward. Intuitively, if ddep decreases, the node

density in one network should increase to provide enough supply for the other network.

4.2.2 Small ratio d2/d

Given GIntDep = (G 1 (A,, di), G 2 (A 2 , d2 ), ddep), without loss of generality we assume

that d, < d2 . Moreover, we assume that ddep > max(di/2, d2 /2) = d2/2 (see the

remark at the end of the section for comments on this assumption). Let c = [d 2/d 1 J =

max{c : d2 /d 1 > c, c E N}. For small c, we study the percolation of GIntDep by

mapping it to an independent bond percolation of a square lattice, and prove the

following result.

Theorem 4.1. If (A,, A2) satisfies

(1 - e-Ad /8)c(l -A2c
2d2/8) > 1/2,

then GIntDp = (G1 (A,, d1 ), G2 (A2, d2), dde) percolates, where c = [d2 /d 1 J, d1 < d2 ,
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and ddep d2/2.

Theorem 4.1 provides a sufficient condition for the percolation of GIntDep. For

node densities that satisfy the inequality, an infinite mutual component exists in

GntDep. For the deployment of interdependent networks, if the node densities in

the two networks are sufficiently large (characterized by Theorem 4.1), then a large

number of nodes in the interdependent networks are functional.

Proof of Theorem 4.1. We first construct a square lattice as follows. Partition the

plane into small squares of side length s = di/2v/2. A large square consists of c x c

small squares and has side length cs. The diagonals of the large squares form the

bonds of a square lattice L, illustrated by the thick line segments in Fig. 4-3.

The state of a bond in L is determined by the point process of GIntDep in the large

square that contains the bond. A bond (vI, v 2 ) is open if the following conditions are

both satisfied.

1. There is at least one node from G1 in each of the two small squares that contain

the ends (v 1 and v2 ) of the bond, and they are connected through nodes from

G 1, all within the large square of side length cs.

2. There is at least one node from G2 in the large square that contains the bond.

The first condition is satisfied if there exists a sequence of adjacent small squares,

each of which contains at least one node in G1 , from the small square that contains

v, to the small square that contains v2 . (Each small square is adjacent to its eight

immediate neighbors.) In the example of Fig. 4-3, these sequences include 3-5-7,

3-2-4-7, and 3-6-8-7.

To obtain a closed-form formula, instead of computing the exact probability, we

compute a lower bound on the probability that the first condition is satisfied. The

probability is lower bounded by the probability that the c small squares that intersect

the bond each contain at least one node from G1, given by

Pi (1 - e- 1/8)c.

110



1 2 jv 0S

4 6

78 9

~HJ
cs d2 /212

V 3

I_ N ~I/ 1 1s = d/2vr/Z

Figure 4-3: Mapping to a square lattice for c = 3.

The probability that the second condition is satisfied is

p2 = 1-e-\2C /8

Given that the two Poisson point processes in G1 and G 2 are independent, the

probability that a bond is open is P1P2.

It remains to prove that the percolation of L implies the percolation of GlntDep-

Consider two adjacent open bonds (vI, v 2), (v 2 , v 3) in L. Let S1 and S2 denote the

two adjacent large squares of side length cs that contain the two open bonds. Let S'

and S2 denote two adjacent small squares of side length s that contains v2 , within S,

and S2 , respectively. See Fig. 4-3 for an illustration. Since (v1 , v 2 ), (v 2 , v3 ) are open,

under the second condition, nodes of G 2 exist in S, and S2 and they are connected,

because they are within distance 2x/2cs < d2 . Under the first condition, nodes of G1

form a connected path from the small square (within S1, marked as 7 in Fig. 4-3)

containing v, to S', and another path from the small square (within S2 ) containing

v3 to S2. Moreover, the two paths are joined, because any pair of nodes in S' and S2

are within distance 2x/2s = di. Given that any pair of nodes within a large square

have distance at most \/Mcs d2 /2 < ddep, all the nodes have at least one supply

node inside the large square that contains an open bond. To conclude, if the open
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bonds in L form an infinite component, then the nodes in GlntDep form an infinite

mutual component.

The event that a bond is open depends on the point processes in the large square

that contains the bond, and is independent of whether any other bonds are open.

As long as the probability that a bond is open, P1P2, is larger than 1/2, which is the

threshold for independent bond percolation in a square lattice [71], GintDep percolates.

0

The bound can be made tighter for any given c = Ld2/d 11, by computing more

precisely the probability that the first condition is satisfied. We provide an example

to illustrate the computation of an improved upper bound.

Example: Consider an example where d, = 1, d2 = 2 ddep = 3. The probability

that there is at least one node from G2 in the large square of side length 3/2V2 is

P2 = 1 - e-A/S-

The probability that a small square of side length 1/2v2 contains at least one

node from G1 is ps = 1 - e-A/. The probability that the first condition is satisfied is

Pi = ps + (1 Ps)P+ (1 p5)pi -(1 p)p, (4.1)

obtained by considering all the sequences of adjacent small squares. For node densities

(A,, A 2) that satisfy PIP2 > 1/2, GIntDep percolates. Since pi computed by Eq. (4.1)

is larger than p3 for any fixed p8, the bound on A2 is smaller for any fixed A.

4.2.3 Large ratio d2 /di

In the mapping from GntDep to the square lattice L, the condition for a bond to

be open becomes overly restrictive as d2 /di increases. A path crossing the two large

squares that contain two adjacent bonds does not have to cross the small squares

that contain the common end of the two bonds. In the following theorem, we give

another upper bound on the percolation threshold of GIntDep. This result provides an

alternative sufficient condition for the existence of an infinite mutual component in
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GlntDep. This upper bound is tighter than the bound in Theorem 4.1 for larger values

of d2/d 1 .

Theorem 4.2. If (A,, A2) satisfies

1 -(m + 1)e"1o3(1P)][ 1- --(2m + 1)em1o3(p) p' > 0.8639,3 11 3

then GIntDep (G1 (A,, d1 ), G2(A2 , d2 ), ddep) percolates, where p = 1 - e-Ali/8 , p' -

1 - e-2D2 A2, D = min(d2/xVii,ddep/v'5), m = [2D/d 1 J, d1 <; d2, and ddep > d2/2.

This upper bound is obtained by mapping GntDep to a dependent bond percolation

model LD. The mapping from the Poisson boolean model G(A, d) to LD was first

proposed in [69] to study the percolation threshold of G(A, d), and later applied to

the study of a random geometric graph under non-uniform node removals [72]. We

briefly describe the method in the previous literature that uses LD to study the

percolation of G(A, d), and then prove Theorem 4.2 based on a similar method.

1-dependent bond percolation model LD

In the standard bond percolation model on a square lattice L, the event that

a bond is open is independent of the event that any other bond is open. If in a

square lattice LD, the event that a bond is open may depend on the event that its

adjacent bond is open, but is independent of the event that any non-adjacent bond is

open, then LD is a 1-dependent bond percolation model on a square lattice. With the

additional restriction that each bond is open with an identical probability, an upper

bound on the percolation threshold of LD is 0.8639 [69].

The 1-dependent bond percolation model LD can be used to study the percolation

of G' where the points are generated by homogeneous Poisson point processes. To

construct a mapping from G' to LD, consider two adjacent D x D squares S1 and S2

and let R be the rectangle formed by the two squares. A bond (vi, v2 ) that connects

the centers of S, and S2 is associated with R. Figure 4-4 illustrates the square lattice

formed by the bonds, represented by thick line segments.
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Figure 4-4: Square lattice LD formed by the bonds (vi, vj).

Lemma 4.1. Let the state of a bond (vI, v2 ) be determined by the homogeneous Pois-

son point processes of G' inside R, and the conditions for a bond to be open be identical

for all bonds. Then the bonds form a 1-dependent bond percolation model LD with

identical bond open probabilities.

Proof. The event that a bond is open is not independent of the event that its adjacent

bond is open, since the two events both depend on the point process in an overlapping

square. However, the event that a bond is open is independent of the event that any

non-adjacent bond is open, since their associated rectangles do not overlap and the

point processes in the two rectangles are independent.

Moreover, a Poisson point process is invariant under translation and rotation.

Given that the points in G' are generated by homogeneous Poisson point processes

and the conditions for a bond to be open are identical, the probability that a bond

is open is identical for all bonds. 1:1

By properly setting the conditions for a bond to be open, the percolation of LD

can imply the percolation of G'. We first look at an example in [71] that studies the

percolation of G(A, d), and then extend the technique to study GIntDep-

Example [711: Let a bond be open if a path in G(A, d) crosses1 R' horizontally

'A path crosses a rectangle R' = [x 1 , x21 x [yi, Y21 horizontally if the path consists of a sequence
of connected nodes v1, v2 ,..., Vn_1, Vn, and v2, ... , Vn-1 are in R', x(vi) 5 x1, x(vn) ;> X2, yI 5
y(vI), y(Vn) 5 y2, where x(vi) is the x-coordinate of vi and y(vi) is the y-coordinate of vi. A path
crosses a rectangle vertically is defined analogously.
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and another path in G(A, d) crosses S' vertically, where R' is a (2D - 2d) x (D - 2d)

rectangle that has the same center as R, and S' is a (D - 2d) x (D - 2d) square that

has the same center as S 1 . The reason for considering R' and S' is that the existence

of the two crossing paths over R' and S' is determined by the point process within

R, while the existence of links within distance d from the boundaries (and thus the

crossings over R) may depend on nodes outside R.

If two adjacent bonds are open, the paths in G(A, d) in the two rectangles are

joined. To see this, note that in Fig. 4-5, if the black and blue bonds (same di-

rection) are both open, the crossings 1 and 2 intersect. If the black and red bonds

(perpendicular) are both open, the crossings 1 and 3 intersect.

- :-D
S2

Sl R'

.--..---------- I

Figure 4-5: Crossings over rectangles associated with two adjacent open bonds are
joined.

If the square lattice LD percolates, open bonds form an infinite component. Paths

in G(A, d) across the rectangles associated with the open bonds are connected and

form an infinite component. Therefore, a node density above which LD percolates is

an upper bound on the percolation threshold of G(A, d).

Proof of Theorem 4.2

We map GIntDep to LD by letting a bond in LD be open if the following three

conditions are satisfied in its associated rectangle R = S1 U S2 . The size of the

rectangle satisfies D = min(d2 /v/Ti, ddep/V5) ;> d2 /2V5 .
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1. A path from G, crosses R' horizontally, where R' is a (2D - 2d,) x (D - 2di)

rectangle that has the same center as R.

2. A path from G, crosses S' vertically, where S' is a (D - 2di) x (D - 2d,) square

that has the same center as S 1 .

3. There is at least one node from G2 in R.

To see that the percolation of LD implies the percolation of GIntDep, consider any

two adjacent open bonds in LD- In the two rectangles associated with the bonds, 1)

paths from G1 that cross one rectangle are joined with paths from G1 that cross the

other rectangle; 2) at least two nodes from G2, one in each rectangle, are connected

by a link in G2, because any two nodes in adjacent rectangles are within distance

VYUD < d2 ; 3) every node in Gi has at least one supply node in Gj inside the

rectangle (Vi, j E {1, 2}, i # j), in which the distance between two nodes is no larger

than v/ED < ddep.

If the probability P123 that a bond is open is above 0.8639, then LD percolates

and GLntDep also percolates. An upper bound on the percolation threshold of GIntDep

is a pair of node densities (A 1 , A 2 ) that yields P123 > 0.8639. In the remainder of the

proof, we compute P123 as a function of (A 1 , A 2 ).

To determine the probability that the first and the second conditions are satisfied,

we consider a discrete square lattice represented by Fig. 4-6. Bonds of length d 1/2

form a square lattice L' in a finite md1 x mdi/2 region, where m = [2D/di]. Let

a bond in L' be open if there is at least one node from G, in the d 1/2V/ x di/2x/Z

square that contains the bond (the small square that has dashed boundaries in the

figure), which occurs with probability p = 1 - e--A d/8. It is clear that if the open

bonds form a horizontal crossing 2 over L', then nodes in G, form a horizontal crossing

path over R'.

Let px (kin, in, p) denote the probability that there exists a horizontal crossing

2 A horizontal crossing of open bonds over a rectangle R' = [x1 , x 2 ] x [yi, y21 consists of a sequence
of adjacent open bonds in the rectangle such that at least one bond has an endpoint with x-coordinate
x1 and at least one bond has an endpoint with x-coordinate x2 . A vertical crossing of open bonds
is defined analogously.
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Figure 4-6: Mapping the crossing in G1 to the crossing in a square lattice L'.

over the km x m square lattice L' given that each bond is open independently with

probability p. A lower bound on p,(km, m, p), Eq. (4.2), can be derived by a standard

technique in percolation theory (e.g., an extension of Proposition 2 in [73]).

4
pX(km, m, p) > 1 - -(km + 1)emlog 3 (1-p) (4.2)

3

The probability that the crossing exists is close to 1 if m is large and p > 2/3.

Finally, the probability that the first condition is satisfied is pi px(2m, m, p).

The probability that the second condition is satisfied is P2 px(, M, p). Given that

the existence of the two crossings are positively correlated, by the FKG inequality [71],

the probability that both conditions are satisfied is lower bounded by:

P12 >-piP2 -px(2m, m, p)px(m, m, p).

The probability that there is at least one node from G 2 in R (i.e., the third

condition is satisfied) is p3 = 1 - e~2D%. Given that the point processes in G1 and

G2 are independent, the probability that a bond is open is P123 = P12P3. As long as

P123 > 0.8639, GIntDep percolates. This completes the proof.

An example of two RGGs with large d2 /di

We study two interdependent RGGs G1 and G2 , which have a finite number

of nodes, in order to quantify d2/di as a function of the number of nodes in the
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graph. If d2 = Q(di log n1 ), and daep d2/2, then m = Q(log ni), where ni is

the expected number of nodes in G1. As ni approaches infinity, the probability

pX(km, m, p) approaches 1 if p > 2/3, by Eq. (4.2).

Applying Theorem 4.2, by solving p = (1- e-Al1/8) = 2/3, and p3 = 1-e2D 2 A2 -

0.8639, we obtain an upper bound on percolation threshold A, = 8.789/d2, 2 =

19.94/d2. The bounds suggest that if the ratio between the connection distances of

two RGGs is very large, the node density in one RGG may not affect the minimum

node density in the other RGG in order for the giant mutual component to exist in

the interdependent RGGs.

We conjecture that as long as the node density of each individual RGG is above the

percolation threshold of the single graph, then the interdependent RGGs percolate,

if di < d2 and ddep = (1 + E)d2 /2 for c > 0. This can be intuitively explained as

below. Let V denote the nodes in the giant component of a single graph G2 without

considering the interdependence. Disks of radius d2 /2 centered at nodes in V are

connected. Disks of radius ddep > d2/2 centered at nodes in V are also connected,

and this region contains nodes in G1 that have functional supply nodes. Each disk of

radius ddep is so large compared with dl, that the probability that there is a crossing

formed by connected nodes in G1 along any direction across the disk approaches

one'. Moreover, the disks of radius ddep have overlaps with width and height at least

cd2 > dl, which are sufficiently large to join the paths in G1 across two overlapping

disks. Thus, a giant component of G1 exists near the giant component of G2 . Nodes

in the two components are interdependent and form a giant mutual component.

4.2.4 Numerical results

We verify the bounds in Theorem 4.1 by simulating GIntDep in a 10 x 10 square.

Table 4.1 illustrates the fraction of nodes from Gi that belong to the largest mutual

component, denoted by fi, (Vi E {1, 2}). The fractions are averaged over 5 instances

3 1f nodes are generated by a Poisson point process with density above the percolation threshold,
the probability that there is a horizontal path across a k1 x 1 rectangle approaches one for any k as
1 -+ oc [65].
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of simulations for each combination of (A1, A2 , di, d2, ddep) that satisfies the condition

in Theorem 4.1. To verify the bounds in Theorem 4.2, we simulate GIntDep in a

30 x 30 square (to simulate a sufficiently large G2 under small node densities). Table

4.2 illustrates the average fraction of nodes in the largest mutual component, for

(A, ,A2 di, d2, ddep) given by Theorem 4.2. We observe that most nodes in G1 and G2

belong to the largest mutual component, which implies that GLntDep percolates.

Table 4.1: Fraction of
Theorem 4.1

nodes in the largest mutual component under the condition of

Table 4.2: Fraction ol
Theorem 4.2

A, A2  di d2 ddep f1 f2

15 1.54 1 3 1.5 1.00 1.00
20 0.92 1 3 1.5 0.99 1.00
25 0.75 1 3 1.5 0.98 1.00
15 2.39 1 2 1 0.99 1.00
20 1.80 1 2 1 1.00 1.00
25 1.58 1 2 1 0.97 1.00

nodes in the largest mutual component

A, A2  d1 d2 ddep f1 f2

16 0.190 1 10 7.07 1.00 1.00
17 0.123 1 10 7.07 1.00 1.00
25 0.100 1 10 7.07 1.00 1.00
17 0.385 1 8 5.66 1.00 1.00
18 0.207 1 8 5.66 1.00 1.00
25 0.156 1 8 5.66 0.99 1.00

inder the condition of

Remark: We have assumed that ddep > max(di/2, d2/2) = d2/2 throughout this

section. To see that this is a reasonable assumption, note that nodes in G, that have

at least one functional supply node are restricted in the region Rdep, where RdeP is

the union of disks with radius ddep centered at nodes in the infinite component of

G2. If Rdep is fragmented, it is not likely for disks of radius d1/2 < d2/2 centered

at random locations within Rdep to overlap, and it is not likely that a functional

infinite component will exist in G1, unless the node density in G, is large. Therefore,

the interdependent distance ddep should be large enough so that Rdep is a connected

region, to avoid a large minimum node density in GI. The region Rdep can be made

119



larger by increasing either A 2 or ddep. Setting ddep d2 /2 avoids increasing A 2 high

above the percolation threshold of G 2 , in order for Rdp to be connected. In Section

4.3, we develop a more general approach that does not require this assumption.

4.3 Confidence intervals for percolation thresholds

In this section, we compute confidence intervals for percolation thresholds. The

confidence intervals provide interval estimates for the percolation thresholds. If the

node densities in GlntDep are below the lower confidence bounds, then there does not

exist an infinite mutual component in GntDep with high confidence. On the other

hand, if the node densities are above the upper confidence bounds, then there exists

an infinite mutual component in GntDep with high confidence. Compared with the

analytical upper bounds in Section 4.2, the numerical upper confidence bounds are

much tighter. Moreover, the techniques in this section apply to GIntDep with general

d1, d27 ddep-

The mapping to compute confidence intervals is related to the mapping from

GlntDep to the 1-dependent bond percolation model LD in Section 4.2.3. Both map-

pings satisfy the following properties: 1) the percolation of LD implies the percolation

of GlntDep; 2) the event that determines the state of a bond depends only on the point

process within its associated rectangle, thus preserving the 1-dependent property. The

probability that the event occurs can be computed or bounded analytically in the pre-

vious section. In contrast, in this section, we consider events whose probabilities are

larger under the same point processes but can only be evaluated by simulation. Since

the events that we consider in this section are more likely to occur under the same

point processes, the mappings yield tighter bounds.

Our mappings from GIntDep to LD extend the mappings from G(A, d) to LD pro-

posed in [69]. For completeness, we first briefly summarize the mappings in [69] that

compute upper and lower bounds on the percolation threshold of G(A, d).

Upper bound for G(A, d) [69]: Recall Fig. 4-4. The event that a bond (v1 , v 2 ) E LD

is open is determined by the point process of G(A, d) in the rectangle R = Si U S2,
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where Si and S2 are squares. Let V denote the largest component formed by the

points of G(A, d) in Si. If V is the unique largest component in Si (Vi E {1, 2}) and

V1 and V2 are connected, then the bond is open. Otherwise, the bond is closed.

If LD percolates, open bonds form an infinite component. As a result, the largest

components in the squares that intersect the open bonds are connected in G(A, d)

and they form an infinite component. Therefore, a node density A, above which

the probability that a bond is open is larger than 0.8639, is an upper bound on the

percolation threshold of G(A, d).

Lower bound for G(A, d) /69]: Let the connection process of G(A, d) be the union

of nodes and links in G(A, d). Let the complement of the connection process be the

union of the empty space that does not intersect nodes or links. If the complement

of the connection process form a connected infinite region, then all the connected

components in G(A, d) have finite sizes and G(A, d) does not percolate [69,74]. Con-

sider the complement of the connection process in rectangle R. Let a bond (in LD)

associated with rectangle R be open if the complement process forms a horizontal

crossing 4 over the rectangle R' and a vertical crossing over the square S'. Recall that

rectangle R' is the (2D - 2d) x (D - 2d) rectangle that has the same center as R, and

square S' is the (D - 2d) x (D - 2d) square that has the same center as Si, the left

square in R. For example, in Fig. 4-7, the two crossings that do not intersect any

nodes or links are plotted.

If LD percolates, the complement process forms an infinite region and G(A, d)

does not percolate. To conclude, a node density, under which the probability that

the complement process forms the two crossings is above 0.8639, is a lower bound on

the percolation threshold for G(A, d).

4The complement of a connection process forms a horizontal crossing over a rectangle if a curve in
the rectangle touches the left and right boundaries of the rectangle and the curve does not intersect
any nodes or links. The vertical crossing of the complement process is defined analogously.
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Figure 4-7: The horizontal and vertical crossings from the complement of the con-
nection process over the rectangle.

4.3.1 Upper bounds for GIntDep

In G(A, d), the largest connected component that contains a node b can be com-

puted efficiently by contracting the links (or using a breadth-first-search) starting

from b. Two components are connected and form one component if there exists two

nodes within distance d, one in each component. We next extend these notions to

GIntDep -

Let G, and G2 denote the two graphs in GntDep. Let b1 E G, and b2 E G 2

denote two nodes within the interdependent distance ddep. Algorithm 4.1 computes

the largest mutual component M(bi, b2 ) that contains b1 and b2 . The correctness

follows from the definition of mutual component.

Algorithm 4.1 Computing the largest mutual component that contains two specified
nodes bi E Gi within ddep (Vi E {1, 2).

1. Find all the nodes V0 (bi) that are connected to bi (either directly or through a
sequence of links) in Gi (Vi E {1, 2}).

2. Remove nodes in V'0(bi) that do not have any supply nodes in VP?(b.) (Vi, j E
{1, 2}, i $ j). Among the remaining nodes, find the nodes V 1(bi) C Vi 0(bi) that
are connected to bi (Vi E {1, 2}).

3. Repeat step 2 until Xk+1(bi) =k(bi) (Vi E {1,2}). Let M(bi, b2 ) = Vik(bi) U
V2k (b 2 ).

Two mutual components M = V1UV2 and M = V1 UV 2 form one mutual component
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if and only if V and Vi are connected in Gi (Vi E {1, 2}). The necessity of the

condition is obvious. To see that this condition is sufficient, note that every node

in the connected component formed by Vi and 1i has at least one supply node that

belongs to the connected component formed by V and Vs (Vi, j E {1, 2}, i / j). The

condition can be generalized naturally for more than two mutual components to form

one mutual component.

The method of obtaining an upper bound on the percolation threshold of G(A, d)

can be modified to obtain an upper bound on the percolation threshold of GntDep,

by declaring a bond to be open if the unique largest mutual components in the two

adjacent D x D squares S, and S2 are connected. However, computing the largest

mutual component of GlntDep in Si is not as straightforward as computing the largest

component of G(A, d) in Si. In G(A, d), a node belongs to exactly one (maximal)

connected component. All the components can be obtained by contracting the links,

and the largest component can be obtained by comparing the sizes of the components.

However, in GjntDep, a node may belong to multiple mutual components. For example,

let b1 and b 2 be two isolated nodes in G 1 , and let b3 and b4 be two connected nodes in

G 2. If both b, and b2 are within the interdependent distance from b 3 and b4 , {bi, b3 , b4 }

and {b 2 , b3 , b4 } are two mutual components. An algorithm that computes the largest

mutual component of GlntDep in a square 1) selects a pair of nodes, one from each

graph, and computes the largest mutual component that contains the two nodes by

Algorithm 4.1, and then 2) chooses the largest mutual component over all pairs of

nodes in the square within the interdependent distance. Thus, it requires much more

computation than finding the largest component of G(A, d) in a square.

Instead of optimizing the algorithm and obtaining the largest mutual component

in square S, a mutual component Mgedy(S) can be computed by Algorithm 4.2.

This algorithm has good performance in finding a large mutual component when the

square size is large. In particular, if the square had infinite size, this algorithm would

find an infinite mutual component if one exists.

Let a bond (v 1 , v2 ) in LD be open if the two components Mgeedy(S1 ) and Mreedy(S 2 )

form one mutual component. Since Mgredy (S,) is unique in any square Si, a connected
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Algorithm 4.2 An algorithm that greedily computes a mutual component Mgreedy(S)
in region S.

1. Find the largest connected component VIQ(S) in Gi(S), where Gi(S) consists
of the nodes and links of Gi in region S. If there is more than one largest
connected component, apply any deterministic tie-breaking rule (e.g., choose
the component that contains a nodes with the smallest x-coordinate).

2. Remove nodes in V 0(S) that do not have supply nodes in VP0(S) (Vi, j E
{1, 2}, i 7 j). Find the largest connected component V'(S) formed by the
remaining nodes in V 0(S) (Vi E {1, 2}), and apply the same tie-breaking rule.

3. Repeat step 2 until Vk+1(S) Vk(S) (Vi E {1, 2}). Let Mgreedy(S) yk(S) u
Vt (S).

component in LD implies that {M *(dY(Sj)} form one mutual component in GlntDep,

where Si are the squares that intersect the open bonds in the connected component

in LD. If the probability that a bond is open is larger than 0.8639, LD percolates and

GntDep also percolates.

An alternative condition for a bond to be open is that nodes in Mfge (R) form

a horizontal crossing over rectangle R' and a vertical crossing over square S' in both

graphs (recall Fig. 4-5 and the condition for two mutual components to form one

mutual component). In order for the existence of the two crossings to only depend

on the point processes in R, in the definition of the (2D - 2d) x (D - 2d) rectangle

R' and the (D - 2d) x (D - 2d) square S', d = max(di, d2) + ddep.

An upper bound on the percolation threshold can be obtained by either approach.

The smaller bound obtained by the two approaches is a better upper bound on the

percolation threshold for GntDep-

4.3.2 Lower bounds for GlntDep

In GlntDep, the connection process consists of nodes and links in mutual compo-

nents. To avoid the heavy computation of mutual components, we study another
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model in which the connection process Pi of Gi in the new model dominates5 the con-

nection process Pi of Gi in GIntDep (Vi E {1, 2}). As a consequence, the complement of

the connection process Pic of Gi in the new model is dominated by Pfc (Vi E {1, 2}). If

Pfc percolates, then Pfc percolates and P does not percolate (i.e., all the components

in Pi have finite sizes). If either P or P2 does not percolate, then GIntDep does not

percolate. Thus, node densities under which at least one of Pf and PF percolates are

lower bounds on the percolation thresholds of GntDep.

The new model can be viewed to have a relaxed supply requirement. In this

model, every node (as opposed to nodes in the same mutual component) is viewed

as a valid supply node for nodes in the other graph. A node bi in Gi is removed

if and only if there is no node in Gj within the interdependent distance ddep from

bi (Vi, j E {1, 2}, i f j). After all such nodes are removed, the remaining nodes

in Gi are connected if their distances are within the connection distance di. The

computation of the connection process Pi is efficient and avoids the computation of

mutual components in GlntDep through multiple iterations.

The connection process A, in the new model dominates Pi in the original model

GlntDep- On the one hand, for any realization, all the links in P are present in P,

because all the nodes in a mutual component have supply nodes, and links between

these nodes are present in the new model as well. On the other hand, in the new

model, nodes in a connected component 1K in Gi may depend on nodes in multiple

components in Gj. In contrast, in GntDep, the nodes in V may be divided into several

mutual components, and links do not exist between two disjoint mutual components.

An algorithm that computes a lower bound on the percolation threshold of GlntDep

is as follows. First, compute the connection process P in the new model. Next, in the

2D x D rectangle R, consider the complement of the connection process Pc. Let pi

denote the probability that there is a horizontal crossing over R' and a vertical crossing

over S' in the complement process PC, where R' and S' are the same as before. A

lower bound on the percolation threshold of GIntDep is given by node densities under

'One connection process dominates another if the nodes and links in the first process form a
superset of the nodes and links in the second process, for any realization of Gi.
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which max(p1,p 2 ) > 0.8639.

4.3.3 Confidence intervals

The probability that a bond is open can be represented by an integral that depends

on the point processes in the rectangle R. However, direct calculation of the integral

is intractable; so instead the integral is evaluated by simulation. In every trial of

the simulation, nodes in G1 and G2 are randomly generated by the Poisson point

processes with densities A 1 and A2 , respectively. The events that a bond is open are

independent in different trials. Let the probability that a bond is open be p given

(A 1 , A 2 ). The probability that a bond is closed in k out of N trials follows a binomial

distribution. The interval [0.8639, 1] is a 99.5% confidence interval [75] for p, given

that N = 100 and k = 5. If k < 5, p E [0.8639, 1] with a higher confidence. This

suggests that if k < 5, with 99.5% confidence, p > 0.8639 and the 1-dependent bond

percolation model LD percolates given (A 1, A 2).

Based on this method, with 99.5% confidence, an upper bound on the percolation

threshold of GlntDep can be obtained by declaring a bond to be open using the method

in Section 4.3.1, and a lower bound can be obtained by declaring a bond to be

open using the method in Section 4.3.2. For a fixed A*, a 99% confidence interval

for A* is given by the interval between the upper and lower bounds. Confidence

intervals for different percolation thresholds can be obtained by changing the value

of A* and repeating the computation. We make a similar remark as in [69]. The

confidence intervals are rigorous, and the only uncertainty is caused by the stochastic

point processes in the 2D x D rectangle. This is in contrast with the confidence

intervals obtained by estimating whether GhntDep percolates based on extrapolating

the observations of simulations in a finite region (which is usually not very large

because of limited computational power).
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4.3.4 Numerical results

The simulation-based confidence intervals are much tighter than the analytical

bounds. Given that di = d2 = 2 ddep = 1, and A* = 2, the upper and lower bounds

on At are 2.25 and 1.80, respectively, both with 99.5% confidence. In contrast, even

if A -+ 00, the analytical upper bound on A* is no less than 3.372, which is the best

available analytical upper bound for a single G1 [68]. Confidence intervals for the

percolation thresholds are plotted in Fig. 4-8, where the intervals between bars are

99% confidence intervals.
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Figure 4-8: The 99% confidence intervals for percolation thresholds of GjntDep with
different connection distances.

To verify the confidence intervals, we simulate GIntDep within a 20 x 20 square,

for dl = d2 = 2 ddep = 1. Nodes in the largest mutual component are colored black,

while the remaining nodes are colored blue. In Fig. 4-9, the node densities are at the

upper confidence bound (A = 2.25, A2 = 2.00), and there exists a mutual component

that consists of a large fraction of nodes. In Fig. 4-10, the node densities are at the

lower confidence bound (A, = 1.80, A2 = 2.00), and the size of the largest mutual

component is small.

We next study the impact of interdependent distance ddep on the percolation

thresholds. Given dj, d2 , A*, a smaller dep leads to a higher A*, since the probability

that a node in G1 has at least one supply nodes from G2 decreases for a smaller
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A= 2.25, A2 2.00, di d2 = 2ddep -

ddep. The effect is more significant when the number of nodes in G2 is small. This is

consistent with Fig. 4-11, where the increase of A* is more significant as ddep decreases

when A* is small.

The confidence intervals confirm that the reduced node density due to a lack of

supply nodes is not sufficient to characterize the percolation of one of the interde-

pendent graphs. The average density of nodes in G1 that have at least one node

within ddep in G2 is A1 = Aj(1 - e-A2dlep), given that e -A2pde is the probability

that there is no node in G2 within a disk area 7rddep- If A 1.8, with 99% con-

fidence, A* E [2.03, 2.72] when ddep = 0.5, and A* E [7.50,11.20] when ddep= 0.25.

We observe that the ranges of A* are different: A* E [1.54, 2.06] when ddep = 0.5,

and A* E [2.23, 3.33] when ddep = 0.25. Intuitively, nodes in G1 that have at least

one supply nodes are clustered around the nodes in G2, smaller ddep leads to a more

clustered point process. The critical node density of a clustered point process is not

the same as the critical node density of the homogeneous Poisson point process for

percolation. More detailed study on the percolation of a clustered point process can

be found in [76].
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Figure 4-10: The largest mutual component for A = 1.80, A2 = 2.00, di = d2
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4.4 Robustness of interdependent RGGs under ran-

dom and geographical failures

Removing nodes independently at random with the same probability in one graph

is equivalent to reducing the node density of the Poisson point process. To study the

robustness of GIntDep under random failures, the first step is to obtain the upper and

lower bounds on percolation thresholds. With the bounds, we can determine which

graph is able to resist more random node removals, by comparing the gap between

the node density Ai and the percolation threshold A* given A (i, j E {1, 2}, i $ .).

The graph that can resist a smaller fraction of node removals is the bottleneck for

the robustness of GIntDep. Moreover, we are able to compute the maximum fraction

of nodes that can be randomly removed from two graphs while guaranteeing GIntDep

to be percolated.

We next show that GIntDep still percolates after a geographical attack that removes

nodes in a finite connected region, if the node densities of the two graphs before

the attack are above any upper bound on the percolation thresholds obtained in this

chapter (either analytical or simulation-based). Recall that we obtained upper bounds

on the percolation thresholds of GIntDep by mapping the percolation of GIntDep to
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Figure 4-11: The 99% Confidence intervals for percolation thresholds of two GIntDep
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either the independent bond percolation on a square lattice L or the 1-dependent

bond percolation on a square lattice LD- Under both mappings, the event that a

bond e is open is entirely determined by the point processes in a finite region Re that

contains the bond. After removing nodes of GIntDep in a connected finite geographical

region, the state of a bond e may change from open to closed only if Re intersects

the attack region. Let Rf be the union of Re that intersects the attack region. The

region Rf is also a connected finite region. As long as L or LD still percolates after

setting bonds in Rf to be closed, GIntDep percolates.

Results from the percolation theory indeed indicate that setting all the bonds in

a finite region Rf to be closed does not affect the percolation of L or LD. For any

percolated L, the probability that there exists a horizontal crossing of open bonds

over a k1 x 1 rectangle approaches 1 for any integer k > 1, as 1 -+ oo (Lemma 8 on

Page 64 of [71]). The percolation of L (after setting all bonds in Rf to be closed) is

justified by the fact that the connected open bonds across rectangles form a square

annulus that does not intersect Rf (shown in Fig. 4-12), which is a standard approach

to prove the percolation of L [71]. Moreover, the percolation of LD after all bonds in

RJ are set closed can be proved in the same approach, by noting that the probability

that open bonds of LD form a horizontal crossing over a rectangle approaches 1 as

the rectangle size increases to infinity [69].
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If the k1 x 1 rectangle is large but finite, the probability that a horizontal crossing

formed by open bonds exists is close to 1 if L or LD percolates. Therefore, the

same analysis demonstrates the robustness of two finite interdependent RGGs under

a geographical attack that removes the nodes in a disk region of size 3a2 , where

0 < # < 1.

Rf

Figure 4-12: Open bonds form a connected path across rectangles around Rf.

The robustness of interdependent RGGs under geographical failures is illustrated

in Fig. 4-13. Nodes and links in the giant mutual component are colored black. The

interdependent RGGs still percolate after all the nodes in a disk region are removed.

This is in contrast with the cascading failures observed in [13] in the interdependent

lattice model after an initial disk attack. One reason may be that every node can

have more than one supply node in our model, while every node has only one supply

node in [13]. The multiple localized interdependence helps the interdependent RGGs

to resist geographical attacks.

4.5 Extensions to more general interdependence

In the previous sections, we studied a model where every node in Gi is content to

have at least one supply node in Gj in the same mutual component (Vi, j E {1, 2}, i 

j). The techniques can be extended to study models where every node in G must

have at least K supply nodes from G to receive enough supply, where K can be

either a constant or a random variable (Vi, j E {1, 2}, i : j). We briefly discuss
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the extensions to models with more general supply requirement using the example in

Section 4.2.1, where d, = d2 = 2 ddep.

4.5.1 Deterministic supply requirement

The extension is straightforward if Ki is a constant, Vi C {1, 2}. By the same

discretization technique, the state of a site in the triangle lattice is determined by the

point processes in a cell of area A (recall Fig. 4-2). Declare a site to be open if there

are at least Ki nodes from Gi in the cell that contains the site (Vi, j E {1, 2}, i j).

For each open site, every node from Gi in the cell has at least Kj supply nodes from

G in the same cell, satisfying the supply requirement. Following the same analysis

as that in Section 4.2.1, the percolation of the triangle lattice implies the percolation

of GlntDep-

For a Poisson point process of density Aj, the probability that there are at least

Kj nodes in a cell of area A is 1 - K j(AjA)le -AA/l!. An upper bound on the

percolation thresholds is given by (A,, A 2 ) that satisfies:

K--1 (AA)l eA1A1 K2 - (1A)le-A2A 1
1- 0 1- 01- l=0 . L=0(A !
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4.5.2 Random supply requirement

Some extra work is necessary if Ki is a random variable, 3i E {1, 2}. For simplicity,

we first consider the case where K1 > 1 is a constant and K2 is a discrete random

variable with a cumulative distribution function FK2 (x), x E N. Furthermore, we

assume that the number of supply nodes needed by every node in G, is independent.

After the discretization, a site in the triangle lattice is open if the following two

conditions are satisfied for at least one integer-valued k2 > 1.

1. There are exactly k 2 nodes from G2 in the cell.

2. There are at least K1 nodes from G1 in the cell, each of which needs no more

than k2 supply nodes.

If both conditions are satisfied, at least K1 nodes from G1 and the k2 nodes from G2

each have enough supply. It is easy to see that the percolation of the triangle lattice

still implies the percolation of GntDep-

Next we compute the probability that the two conditions are satisfied. The prob-

ability that there are k2 nodes from G2 in the cell is:

Pr(N2 = k2 ) = (A2A)k2e-A2A/k 2 !.

The probability that there are 1 nodes from G1 in the cell is:

Pr(N = 1) = (AA)le-AA/l!

The probability that a node in G, needs no more than k 2 supply nodes is FK2 (k2 )-

Since the number of supply nodes needed by every node in G, is independent, the

probability that at least K1 out of the 1 nodes in G, each need no more than k2 supply

nodes is:

Pr(K K1) k2 |N1 = 1)

[FK2 ( 2 [1 -- FK2 2 1-t
t=K1
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for K1 < 1, and Pr(K K1) < k21N1 = 1) = 0 for K1 > 1. By the law of total probability,

for a given k2, the probability that there exist at least K1 nodes from G, in the cell

that each need no more than k2 supply nodes is:

Pr(KK1) < k 2 ) = Pr(N1 = 1) Pr(K2K1) < = 1).
1>K 1

Since the events that there are exactly k2 nodes from G2 in the cell are mutually

exclusive for distinct values of k2, by the law of total probability, the probability that

both conditions are satisfied is:

P12 = Z Pr(N2 = k2 ) Pr(K(K,) < k 2).
k2 >1

Any (A,, A2 ) that satisfies P12 ;> 1/2 is an upper bound on the percolation threshold

of GntDep-

Finally, we consider the case where both K1 and K2 are discrete random variables.

Suppose that Ni nodes from Gi are in the cell of area A. If there exist integers

kg < Ni, such that at least k* nodes from Gi each need no more than k' supply

nodes, then the k' nodes from Gi all have enough supply (Vi, j E {1, 2}, i $ j).
However, it is difficult to obtain a clean formula of the probability that (k*, k*) exists

(to satisfy the condition). The events that (k*, k*) exists are not mutually exclusive for

distinct values of k* and k*. While it is possible to compute this probability using the

inclusion-exclusion formula, the computation is expensive, since the number of choices

of (k*, k*) can be large and each term in the inclusion-exclusion formula requires the

computation of order statistics.

A practical approach to estimate the probability that nodes have enough supply

is by simulation. In each trial of the simulation, Ni nodes are randomly generated

in area A, where Ni follows a Poisson distribution of rate AjA (Vi e {1, 2}). Then,

each of the Ni nodes is tagged with a realization of the random variable Kj, which

indicates the number of required supply nodes (Vi, j E {1, 2}, i # j). Let I indicate

whether there exist (k*, k*) such that at least k* nodes among the Ni nodes all have
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tags no more than k* (Vi, j C {1, 2}, i # j). The value of I can be computed by

Algorithm 4.3.

Algorithm 4.3 An algorithm that determines whether nodes have enough supply.
Initialization:
Sort the Ni realizations of the random variable K in the ascending order. Let K(t, t =
1,.. ,Ni be the sorted list (Vi, j E {1, 2}, i # J). Let t =t2 1.
Main loop:

while I is not determined do
t' <-- K (1, It' +- K(".

if t' < t1 and -2 < t 2 then
I <- 1.

end if
if t' > N or t' > N2 then

I <-0.
end if
tj i +- max(ti, t, t2 +- max(t2, t'2)-

end while

We now prove the correctness of Algorithm 4.3. For easy presentation, the Ni

nodes are referred to as nodes in Gi (Vi E {1, 2}). Initially, among the nodes in G,

the algorithm chooses one node that needs the smallest number of supply nodes. To

support this node, at least t = K 1 ) nodes need to be in G. If t' < 1 and t' 1,

one node from G1 and one node from G2 suffice to support each other. Otherwise, if

t' > 1 at least t' nodes need to be in G. The t' nodes must be supported by K(

nodes from G. If Kt) is larger than the total number of nodes in Gi, then there are

not enough supporting nodes in Gi and I = 0. If K4t2) < t' and Kt < t', then i

nodes from G1 support t' nodes from G2 , and vise versa. Note that t' and t' never

decrease in the iterations, and at least one of them strictly increases in an iteration

where I is not determined. If there exists at least one pair (k*, k*), the algorithm

terminates with I = 1 at the smallest pair for both coordinates, which can be shown

by contradiction. If no such pair (k*, k*) exists, the algorithm terminates with I = 0.

Given (A,, A2 ), by repeating a sufficiently large number of trials, the probability

that I = 1 can be estimated within a small multiplicative error with high confidence

using Monte Carlo simulation. As long as this probability is at least 1/2, GIntDep

percolates with high confidence.
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4.6 Summary

We developed an interdependent RGG model for interdependent spatially embed-

ded networks. We obtained analytical upper bounds and confidence intervals for the

percolation thresholds. The percolation thresholds of two interdependent RGGs form

a curve, which shows the tradeoff between the two node densities in order for the

interdependent RGGs to percolate. The curve can be used to study the robustness of

interdependent RGGs to random failures. Moreover, if the node densities are above

any upper bound on the percolation thresholds obtained in this chapter, then the

interdependent RGGs remain percolated after a geographical attack. Finally, we ex-

tended the techniques to models with more general interdependence. The study of

percolation thresholds can be used to design robust interdependent networks.
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Chapter 5

Power grid frequency control using

limited communication

Smart grid is one of the most important applications of interdependent networks.

Communication network collects measurement data in power grid for the control

center, and delivers control messages to power generators. Loss of communication

leads to inefficient control on the power grid, and can lead to cascading failures

and blackouts. In this chapter, we study power grid frequency control using limited

communication.

The integrations of renewable energy resources increase the fluctuations of power

supply. To balance the power supply and demand, power generations are controlled

using primary, secondary, and tertiary controls under different time scales. The pri-

mary control at a power generator, droop control, responds to power flow perturba-

tions within milliseconds to seconds, and re-balances the power supply and demand

at the cost of non-zero frequency deviation. The secondary control, Automatic Gen-

eration Control (AGC), adjusts generator setpoints to recover the nominal frequency

in seconds to minutes. The tertiary control, economic dispatch, minimizes the to-

tal power generation cost by scheduling an operating point for each generator, and

operates in minutes to an hour.

Communication is essential for frequency regulation and economic dispatch. Both

the AGC and the economic dispatch are traditionally implemented using centralized
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control. The control center gathers information from all generators and loads, and

computes setpoints for generators to adjust to disturbances. Both the information

aggregation and setpoints delivery require communication between the control center

and controllable nodes.

There have been recent advancement in developing distributed and decentralized

frequency control techniques [77-79]. Motivated by the need to adapt to more frequent

power fluctuations and faster response, some of these controllers require communica-

tion between neighbor nodes, to achieve the objectives of frequency control for power

grids with renewable integrations.

There are two major categories of distributed and decentralized frequency control -

primal-dual controller and integral controller. By formulating the frequency control as

a convex optimization problem, a primal-dual algorithm was developed in [80] for joint

frequency regulation and economic dispatch. The primal-dual controller was extended

to handle power transmission line thermal limits and inter-area flow constraints in [81].

By considering frequency regulation and economic dispatch in different time scales,

a primal-dual controller under stochastic power demand was developed in [82]. For

these primal-dual controllers, communication between adjacent nodes is required to

transmit Lagrangian multipliers. Communication between a group of nodes (not

necessarily adjacent nodes) is needed to handle more complicated constraints (e.g.,

inter-area flows).

Integral controller utilizes local frequency deviation information to adjust the

controllable power generation or load [78, 83, 84]. In general, a decentralized inte-

gral controller is able to recover the nominal frequency based on local measurement,

but unable to achieve the optimal operating point where the cost is minimized. By

communicating marginal generation costs between nearby controllable nodes, the dis-

tributed averaging-based integral control achieves both the frequency regulation and

economic dispatch, if all the controllable nodes are connected by a communication

network [84].

Economic dispatch or power sharing can be be achieved by a decentralized droop

control, under specific droop coefficients [78,85]. The frequency deviation serves as
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a common reference for the power sharing among all generators. The work closest to

ours is the study of a decentralized leaky integral control in [86]. The leaky integral

control can achieve both power sharing and arbitrarily small frequency deviation in

the steady state. In contrast, we study an integral control that recovers the nominal

frequency.

Although either frequency regulation or economic dispatch can be achieved by

decentralized control [78,84], communication is required to achieve both objectives.

Loss of communication may lead to sub-optimal control. Using power line measure-

ment, a control policy was developed in [87] to withstand any single communication

link failure. The impact of communication network topology on power grid control

has been studied in [88,89].

In this chapter, we study the performance of a decentralized integral controller

with properly designed controller gains, for minimizing the adjustable power genera-

tion cost. We quantify the gap between the cost under the decentralized control and

the minimum possible cost, and derive conditions for joint frequency regulation and

economic dispatch, based on the DC power flow model. We study the tradeoff be-

tween the cost and the convergence time, by changing the parameters of the controller.

We also study the effectiveness of communication on reducing the convergence time,

and quantify the importance of each individual communication link in a distributed

control that require information exchange between neighbors. The method can be

generalized to handle arbitrary convex power generation costs and power generation

capacity constraints. Moreover, we observe that a delayed integral control scheme

achieves near-optimal generation cost using significantly smaller convergence time.

The rest of the chapter is organized as follows. In Section 5.1, we describe the

system model. In Section 5.2, we describe the decentralized integral control scheme

and study its performance. In Section 5.3, we study the integral control scheme aided

by communication between nodes, and characterize the importance of each individual

communication link. In Section 5.4, we extend the integral control to handle arbitrary

convex costs and generation capacity constraints, and develop a delayed control policy.

Section 5.5 presents simulation results. Section 5.6 concludes the chapter.
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5.1 Model

The power grid is modeled by a connected graph G(V, E), which has n = IVj nodes

and m = |El edges. Each node represents a bus, which is connected to a generator

or a load. Each edge represents a power transmission line. Let VG C V denote

the generators and VL C V denote the loads. We assume that lines are lossless

and denote the susceptance of power line (j, k) by Bik. We consider an arbitrary

orientation of power lines. A positive power flow on a power line indicates a flow in

the same orientation as the power line, and a negative power flow indicates a flow in

the opposite orientation. Bus voltages are normalized to 1 pu (per unit).

Let wj denote the frequency deviation from the nominal frequency at bus j. Let 9)

denote the phase angle with respect to the rotating framework of nominal frequency

(i.e., 93 (t) = (0, + 27r - 60Hz - t) mod 27r). Let pj denote the unadjustable power

generation or load, and let uj denote the controllable power generation or load, which

take a positive value for net generation and a negative value for net load. Before

disturbance, uj = 0, Vj E V. We consider a DC power flow model. The power

dynamics at a generator, which has moment of inertia MI and droop coefficient Dj,

follow the swing equation

Mi L; = -D7Wi + p3 + ui- B k( - 0), Vj E VG. (5.1)
keV

The power dynamics at a load, which has a linear frequency-dependent load coefficient

Dj, follow the equation

0=-Dwj+p+uj- :B(Oj--k), VjEVL. (5.2)
kEV

We study the frequency regulation and economic dispatch problems after a power

flow perturbation. The objective of frequency regulation is to recover the nominal

frequency at all locations. The objective of economic dispatch is to minimize the total

cost of adjustable generation and load. For simplicity, we consider the minimization
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of the sum of quadratic cost functions, where a3 is the cost coefficient at j.

min 2ysy juj (5.3)

s.t. Pj + Uj - >kEVBjk(Oj - Ok) = 0, j v. (5.4)

The power balance constraints Eq. (5.4) guarantee frequency recovery. This can be

verified by noticing w = 0 and & = 0 in Eqs. (5.1) and (5.2) if Eq. (5.4) holds in the

steady state.

The marginal cost of power generation is the rate of change in cost by increasing

the net generation. In the optimal solution, the marginal costs of power generation

are identical at all locations (d(aju /2)/ duj = ajuj = akuk, Vj, k E V). We ignore the

thermal limits of power lines and generation capacities of generators for simplicity. In

Section 5.4, we generalize the methods to minimize arbitrary convex functions, and

consider generator capacity constraints.

5.2 Decentralized integral control

Throughout this chapter, we study the control after a perturbation of power gen-

eration or load. We assume that the initial power flows are balanced (Egp = 0).

After a perturbation of generation or load, by controlling the adjustable power u,

iEV(P + u) = 0 holds in the steady state. We aim to develop a control policy that

achieves both frequency regulation and economic dispatch, by properly setting the

adjustable power while adhering to the power flow dynamics Eqs. (5.1) and (5.2).

A decentralized frequency integral controller Eq. (5.5) was studied in [84]. The

controller measures the local frequency deviation w, and adjusts u according to the

measurement. It has been shown in [84] that the controller converges to the steady-

state and recovers the nominal frequency for any K > 0, due to the negative feedback

loop. We show that by properly setting Kj, the controller achieves near-optimal
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economic dispatch.

ny -K w, Vj E V. (5.5)

We prove the following theorem.

Theorem 5.1. For Kj = h/aj, the steady-state cost under the decentralized control

is at most 4(Ap) 2nh/(bA 2 ) more than the optimal cost, where Ap is the initial power

change at any bus, A 2 is the algebraic connectivity of the unweighted graph G, h > 0,

and b is the minimum absolute value of the power line susceptance.

Remark 1. The decentralized control achieves frequency regulation and near-optimal

economic dispatch, if Kj = h/a, h > 0, and either of the two conditions are satisfied:

1) the absolute values of power line susceptances are large.

2) h is small.

Remark 2. By setting h small, the gap 4(Ap)2nh/(bA 2 ) becomes small. However, the

convergence time increases, because the controller gain in Eq. (5.5) is small. There is

a tradeoff between the cost and the convergence time. In Section 5.3, we study the

effects of communication in reducing the convergence time.

Remark 3. Previous work [78] studied a method for economic dispatch using de-

centralized droop control, by properly setting the droop coefficients. There exists a

non-zero frequency deviation in the steady state, and the common frequency devia-

tion at all buses serves as a reference for power sharing or cost minimization. Our

methods are significantly different from [78]. Instead of using global consensus infor-

mation (i.e., frequency deviation), we study the properties of power flows in steady

state, and utilize the invariance Eq. (5.7) to design the controller gains to minimize

the cost.

In the rest of the section, we first present the intuition and preliminaries for the

performance analysis of the decentralized controller, and then provide the proof of

the theorem.
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5.2.1 Preliminary and intuition

Let C be the network incidence matrix, which has n rows and m columns. Suppose

that the l-th edge is oriented from node j to node k. Then Cj = 1 and Ck =-1.

Let B be an m x m diagonal matrix, whose l-th diagonal represents the susceptance

of the l-th power line. Let 00 denote the initial phase angles before the perturbation,

and let 0 denote the phase angles in the steady state after the perturbation. In the

steady states, the frequency stays fixed at the nominal frequency (w = c = 0), and

the power flows are balanced at each bus.

p0 = CBCTOO; p + u =CBCTO.

Subtracting the two equations,

CBCT( -00) = p + u -pO. (5.6)

The phase angle difference is given by Lemma 5.1.

Lemma 5.1. The difference of phase angles 0-0 can be determined up to a constant

shift. I.e.,

6 - 00 = (CBCT)+(p _ pO + u) + c1.x 1 , (5.7)

where (CBCT)+ denotes the pseudo-inverse of CBCT.

Proof. For a connected graph G(V, E), C has rank n - 1. Since B is diagonal and

positive definite, the graph Laplacian matrix CBCT has rank n - 1. The nullspace

of CBCT has dimension 1 and is spanned by the vector 1nx1. To prove that 0 - 90

given by Eq. (5.7) is the solution to Eq. (5.6), it suffices to verify that

(CBCT)(CBCT)+(p _ pO + U) p - p0 + u. (5.8)

Using linear algebra techniques,

1
(CBCT)(CBCT)+ = I - J, (5.9)

n
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where I is an n x n identity matrix, and J is an n x n matrix with all one elements.

See Lemma 3 in [90] for a proof for unweighted graph Laplacian. The same techniques

can be used to prove the weighted graph Laplacian in Eq. (5.9).

Since the power flows are balanced in the steady states, EVc ip- Eeyv(p +

uj) = 0. Therefore, J(p - p + u) = 0. Since I(p - p + u) = p - p0 + u, we have

proved Eq. (5.8).

Let K be an n x n diagonal matrix whose j-th diagonal equals Kj. Given the

control policy Eq. (5.5), in the steady state, the amount of adjustable power is given

by

u = -K( - 0 0 ). (5.10)

If Kj = h/a, then ajuj = h(60-0j). If the diagonals of B are large, (CBCT)+(p_

p 0 +u) is small and 0-00 is almost equal to c1x 1. The marginal costs at all generators

ajuj are almost the same, thus achieving the near-optimal economic dispatch.

5.2.2 Proof of Theorem 5.1

We consider a power perturbation at node k and denote the amount of power

change by Ap. Without loss of generality, we assume that Ap < 0 (i.e., load increase

or generation decrease). After the change, the frequency drops below the nominal

frequency and u > 0. In the steady state after the change, EEV u3 = -Ap. The L1

norm of the vector p-p +u is at most Ei'v |p3 -p+ J I = EZjC1jA uj+IAP+uk|

2jApj. Suppose that the absolute value of every element of (CBCT)+ is at most M.

Then, the absolute value of every element in (CBCT)+(ppo+u) is at most 2MIAp.

Therefore,

(Oi - 00) - (Oj - 09)1 < 4MIAp|, Vi, j E V.

The difference of the marginal costs at i and j is at most

aiui - ajuji = hJ(O - 00) - (Oj - 0)

< 4hMAp
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Since the marginal costs differ by at most 4hMIAp, and the marginal cost at each

node is an increasing function in the generation amount, the cost saving in dispatching

one unit power generation to a different node is at most 4hMIAp. The total amount

of adjustable generation is >3 = lApi. Therefore, the generation cost under the

control Eq. (5.5) is at most 4hM(Ap)2 higher than the optimal generation cost.

Next we bound M. By spectral decomposition, the symmetric matrix CBCT =

UDUT, where U is an orthonormal matrix and D is a diagonal matrix. The diagonals

of D are the eigenvalues of CBCT. Let A' denote the set of eigenvalues. Let vi be

the i-th column of D.
n

CBCT = A'vivT.
i= 1

Moreover, the graph Laplacian matrix CBCT is positive semi-definite and has

rank n - 1, which has the smallest eigenvalue A' = 0 and n - 1 positive eigenvalues.

The pseudo-inverse of CBCT is given by

n

(CBCT )+ = Z(1/A')vivT.
i=2

Let L = CCT be the Laplacian of the unweighted graph G. The second smallest

eigenvalue is the algebraic connectivity of G, and is given by

y TLy (.1
A 2 = min{ Tyy $ 0, 1 1xnY = 0}. (5.11)

Let b be the smallest susceptance. CBCT = bL + L'. The matrix L' can be viewed

as the Laplacian of the weighted graph where edge (j, k) has a weight Bjk - b > 0,

and is positive semi-definite. The second smallest eigenvalue of CBCT is bounded by

Eq. (5.15). The vector y* in Eq. (5.13) is the vector that achieves the minimum in

Eq. (5.12). Inequality (5.14) follows from that L' is positive semi-definite. Inequality

(5.15) follows from Eq. (5.11).

yTCBCTy

= min{ Y ly 0, 11xny 0} (5.12)

145



y*T (bL + L')y* (5.13)
yy*Ty

y*TbLy*
> (5.14)

y *Ty*

> bA 2. (5.15)

Since | vi|i2 = 1, the absolute value of every element in vivT is at most 1. The

absolute value of every element in (CBCT)+ is at most M < Zi= 2 (1/A') < n/(bA 2 ).

Therefore, the generation cost under the controller is at most 4(Ap) 2nh/(bA 2) higher

than the optimal generation cost.

5.3 Distributed control under partial communica-

tion

In the previous section, we studied an integral controller that adjusts controllable

power based on local measurement and does not require any communication. In this

section, we study the benefit of communication in power grid control. Communication

is useful to exchange the marginal cost information between the controllable nodes.

It reduces the convergence time of the control, by eliminating the need to use a small

controller gain for economic dispatch.

Consider a communication network G'(V', E'), where V' = V denotes the buses

in the power grid, and E' denotes the communication links. It has been shown that

by exchanging the marginal costs between neighbors, a distributed averaging-based

integral control can achieve both frequency regulation and economic dispatch, if G'

is connected [84]. In this section, we develop a control policy under the failures of

communication links, and identify important communication links on the control.

Let E* denote the minimum set of links that are parallel to power lines and merge

the disjoint communication components into a connected graph. Let V* denote the

nodes adjacent to E*. Notice that E* and V* are non-empty if and only if G'(V', E')

is disconnected. See Fig. 5-1 for an illustration.

We study the performance of the control policy given by Eqs. (5.16) and (5.17),
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--- - communication link

power transmission line

Figure 5-1: Illustration of communication components. Links E* = {(i, j), (k, l)}
connect three disjoint communication components. Nodes V* = {i, j, k, 1} are their
adjacent nodes.

where K, = h/a. The integral control in Section 5.2 is applied to nodes V* (i.e.,

Eq. 5.16). However, for nodes that are connected by communication links, i.e., V\V*,

the distributed averaging controller of [84] is used, and nearby nodes exchange the

marginal costs ajuj. In the steady state, auj - akuk for j and k in the same

communication component, by the analysis in [84]. The key is to bound the gap

between the marginal costs in different components.

nt = -Kpwj, Vj E V*,

ini = -Kpj -E(aju( - ajk), Vj E V \ V*.
(j,k)E

(5.16)

(5.17)

For simplicity, we assume that the communication network initially has the same

topology as the power grid. Suppose that the communication link between i and j

fails, and i and j are separated in two communication components. Then, i, j c V*.

By the analysis in Section 5.2, ajui and ajuj are given by h(9O - Oi) and h(OP - 9,),

respectively.

By left-multiplying both sides of Eq. (5.7) by BCT, Eq. (5.18) holds regardless of

the control policy on u. Let the i-th diagonal of the diagonal matrix D be Di = VBi,
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which satisfies B = DDT.

BCT(6 -60) = BCT(CBCT)+(p + U _ pO). (5.18)

BCT ( -00) = D(CD)+(p +u - po).

Let y denote the m x 1 vector D(CD)+(p + u - p0 ). Recall that C is an adjacency

matrix with Ci= 1 and C = -1 if the l-th edge is oriented from i to j. The

susceptance of the power line that connects i and j is the l-th diagonal value B1. We

obtain

(9i - 00) - (03 - 9 ) = y1/B1 .

If B, is large, then I(0i - 00) - (63 - 0j)I is small. Recall Eq. (5.10). Under

the integral control Eq. (5.16), the gap between the marginal costs at i and j (i.e.,

laiui - ajuj|) is small. Intuitively, given a bounded power flow on the power line

B(0, - Oj), if the susceptance B, is large, the difference between phase angles 0i - 03

is small. Therefore, the difference of phase angles 9i - 0' is close to 6 - Oj, which

indicates a small gap in the marginal costs at nodes i and j.

To conclude, under the control policy given by Eqs. (5.16) and (5.17), the failure

of a communication link has less severe impacts if its associated power line has a large

susceptance, which will be further verified using simulation.

5.4 Variations of the integral control

In this section, we extend the the decentralized control in Section 5.2 to han-

dle arbitrary convex costs for adjustable power and generator capacity constraints.

Moreover, we study the benefit of delayed control on minimizing the total costs.
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5.4.1 Arbitrary convex costs and generator capacity con-

straints

Let fj(u) denote the cost of increasing the generation (or decreasing the load) by

u at node j. We assume that f,(u) is strictly convex and differentiable, and attains

the minimum at fj (0) = 0, Vj E V. The derivative gj (u) = fj(u) is monotonically

increasing, and the inverse gjl(v) is well defined.

We study a control policy given by Eqs. (5.19) and (5.20).

i = -hwj, Vj E V. (5.19)

u =g 1 (vi), Vj E V. (5.20)

The controller gain h is positive and identical at all nodes. For the special case of

quadratic cost fj(uj) = aju2/2, gj(uj) = ajuj, the control is equivalent to Eq. (5.5)

with Kj = h/a,.

The controller measures the local frequency deviation wj, and then adjusts a

virtual price v3 . The virtual price serves as a reference for the controllable power

generation. The marginal cost of power generation at node j is vj, guaranteed by

Eq. (5.20).

If the power line susceptances are large, or the controller gain h is small, the

virtual prices v and the marginal costs at different controllable nodes are close. Thus,

the total cost is approximately minimized. More precisely,

Corollary 5.1. For a strictly convex and differentiable cost fj(u) that attains the

minimum at fj(0) = 0, Vj E V, the steady-state cost under the decentralized control

(5.19) and (5.20) is at most 4(Ap)2 nh/(bA2 ) more than the optimal cost, where Ap is

the initial power change at a bus, A2 is the algebraic connectivity of unweighted graph

G, h > 0, and b is the minimum absolute value of the power line susceptance.

Proof. The function gj(uj) = fj(u,) denotes the rate of cost change at node j as the

amount of net adjustable generation increases. We aim to prove that the difference
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of the marginal costs at i and j is

f (u) - fj(u)= hI(9 - O) - (6 - j)J, (5.21)

where 0 are the phase angles before perturbation and 0 are the phase angles in the

steady state after the perturbation. The rest of the proof follows from the proof of

Theorem 5.1.

Under Eq. (5.19), v3 = -h(Oj - Oj). We obtain

iv-vjI hI(9i-9')-(9j-O')I.

Since fj(u) is strictly convex and differentiable, gj(u) = fj(u) is monotonically in-

creasing, and is a bijection function. According to Eq. (5.20),

fj(u,) = 9j(uj) = vj, VJ G V.

Therefore, we have proved Eq. (5.21).

To handle the power generation capacity constraints, it suffices to replace Eq. (5.20)

by the following equation.

uj = max(c, 7min(c , g-'(v)), Vj E V,

where [ci, cj] is range of controllable net generation at node j. Under the same

analysis, the total cost is approximately minimized, and the frequency is recovered

to the nominal frequency in the steady state, as long as it is feasible to balance the

power generation and load under the capacity constraints.

5.4.2 Delayed control

The integral of frequency deviation is utilized at each controllable node to serve

as a reference for the marginal cost of adjustable power. In previous sections, we

studied conditions for the references to be nearly identical at all locations in order
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for economic dispatch. Next, we study a controller that only adjusts the controllable

power using frequency deviation information after a timeout period T, given by Eqs.

(5.22) and (5.23).

in (t) = 0, t < TVj E V. (5.22)

=tj(t) -Kpwj, t > TVj E V. (5.23)

The intuition is that, after some time T without any control on u, the frequency

deviations at all nodes become almost identical. The deviations could serve as refer-

ences to adjust u. In the numerical result section, we observe significant cost savings

by the delayed control, at similar convergence time compared with the original inte-

gral control.

5.5 Numerical results

In this section, we verify the performance of the controllers using a simple example

with 10 nodes and 10 edges. The network topology (Fig. 5-2) and the data are

identical to those in [87]. We study the control after a perturbation of 5 units load

increase at node 3. The minimum sum of quadratic costs shown in Eq. (5.3) is 23.27.

For completeness, the data are presented below.

For 10 nodes (white numbers indicate node ID),

Inertia M = {0.01, 0.02, 0.01, 0.1, 0.05, 0.8, 0.05, 1, 0.1, 0.01}.

Initial power p = {1, 5, -2, 6, -5, -10, -4, 8, 5, -4}.

Droop coefficient D = {0.33, 1.67, 0.67, 2.00, 1.67, 3.33, 1.33, 2.67, 1.67, 1.33}.

Cost coefficient a = {20, 20, 200, 200, 10, 20,14, 18, 10, 20}.

For 10 power lines (black numbers indicate line ID),

Susceptance B = {1.00, 0.50, 0.33,1.00, 0.20, 0.25, 0.17, 1.00, 0.11, 1.00}.

151



10

9

8
7

2

4
6

1 3 
5

Figure 5-2: Topology of the power grid.

5.5.1 Cost vs. controller gain and power line susceptance

We evaluate the total costs in the steady state after the perturbation, for different

values of controller gains. The costs are compared in Fig. 5-3. We observe that as h

decreases, the cost under the integral control Eq. (5.5) approaches the optimal cost.

The near-linear dependence on h matches the predictions in Theorem 5.1.

40
cost under the integral controllerr
optimal cost

35-

030-

25

20
0 0.2 0.4 0.6 0.8 1

h

Figure 5-3: Cost decreases as the controller gain decreases.

By dividing all line susceptances by the values in the x-axis, the cost decreases

and follows the same curve as Fig. 5-3. This can be explained analytically. From Eq.
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(5.10), we obtain

0 - 00 = -K- 1 u.

Moreover,

p+u-P = (CBCT)(0 - 00).

Therefore,

(I + CBCT K-1)u = p0 - p,

where I is the identity matrix. Since C(aB)CTK-1 = CBCT (K/e)-1 = aCBCTK-1,

the adjustable power u are identical under 1) power line susceptance aB and con-

troller gain h; 2) power line susceptance B and controller gain h/a, for any positive

scaler a.

5.5.2 Reducing convergence time using communication

We study the role of communication on reducing the convergence time to reach the

steady state while guaranteeing a low cost. We consider a connected communication

network that has the same topology as the power grid. Figure 5-4 illustrates the

change of adjustable power at all nodes as time increases, under the control Eqs.

(5.16) and (5.17). The four figures correspond to the scenario where there is no

communication link failure, links {2, 4} failure, links {2, 4, 9} failure, and all links

failure, respectively.

The cost under the control with a connected communication network (Figs. 5-4a)

is 23.27, with convergence time around 200 seconds under h = 1. The costs for the

other scenarios under communication link failures are set to be around 24.43, which

is 5% higher than the optimal cost. In order to achieve the target cost, h is set to

be 1/1.7, 1/8.5, 1/9.8, respectively, and the convergence times are around 250, 600,

and 750 seconds, respectively, for Figs. 5-4b, 5-4c, and 5-4d. We observe that the

convergence time increases as there are more communication link failures, in order to

guarantee the same target cost.
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5.5.3 Importance of each individual communication link

We verify that the failures of communication links have more significant impact

on the cost, if the corresponding power lines have small susceptances. For h = 1, we

study the control Eqs. (5.16) and (5.17) under three communication link failures. In

the left figure, nodes adjacent to links (1, 2), (2, 5) are controlled by Eq. (5.16). The

corresponding power lines have larger susceptances 0.5 and 1. In the right figure,

nodes adjacent to links (4, 5), (7, 8) are controlled by Eq. (5.16). The corresponding

power lines have smaller susceptances 0.2 and 0.1. The total costs in the steady states

are 26.17 and 34.36, for the left and right figures, respectively. We observe that the

cost is higher if communication fails between nodes connected by power lines with
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smaller susceptances.
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41O
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Figure 5-5: Communication link failures.

5.5.4 Delayed control

We study the performance of delayed control Eqs. (5.22) and (5.23). By fixing

h = 1, in Fig. 5-6, the adjustable power generation under the control without delay

(T = 0) is illustrated by the left figure, with total cost 39.11. The control with

delay T = 30 seconds is illustrated by the right figure with total cost 27.50. The

convergence times are close (differ by 30 seconds), while the cost under the delayed

control is 30% lower than the cost under the control without delay.

1

0.5

1.5 r

0.51

0
0 100

Time(s)
200

0 -
0 100

Time(s)
200

Figure 5-6: Delayed control (left: T = 0, right: T = 30 s).
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5.5.5 General convex cost function

We evaluate the performance of the control Eqs. (5.19) and (5.20), for a cubic

cost function fj(uj) = ajtuj31/3. The optimal cost is 8.84. The costs obtained by the

decentralized integral controller for controller gains h are illustrated in Fig. 5-7. The

curve is similar to the curve in Fig. 5-3 for a quadratic cost. The results show that

the integral control can be applied to arbitrary convex cost function.

0

25

20

15

10

5L5
0 0.2 0.4 0.6

h
0.8 1

Figure 5-7: Cost for the control under a cubic cost function.

5.6 Summary

We studied a decentralized integral control for joint frequency regulation and

economic dispatch. We derived conditions for the control to achieve near-optimal

cost, and observed a tradeoff between the cost and the convergence time. We studied

the role of communication in reducing the convergence time. Moreover, we extend the

control to handle arbitrary convex costs and power generation capacity constraints.

Numerical results show that a delayed control reduces the cost significantly with

similar convergence time.
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Chapter 6

Robustness of distributed

computing networks

Cloud computing has been growing rapidly in recent years. For example, over one

millon servers have been deployed for Amazon Web Service, which generates billions

of revenue each year and grew by over 40 percent in revenue in 2018. Cloud networks,

and computing networks in general, facilitate agile, reliable and cost effective imple-

mentations for a variety of applications. The robustness of computing networks is

essential for web access, online database, video streaming, among other applications

deployed in the cloud.

Network flows in computing networks rely on both communication resources for

transmission and computation resources for processing. The unavailability of either

type of resources may lead to the failure of supporting network flows. In this chapter,

we study the robustness of computing networks under the failures of network resources

and flow interdiction problems.

The amount of flows supported by a computing network depends on network

topology and the allocation of computation resources. The problem of maximizing

flow by allocating computation resources was studied in [91, 92]. Under stochastic

traffic arrivals, routing and scheduling algorithms were developed in [93,94] to support

the maximum flow rates in a computing network.

Network flow interdiction problems have been extensively studied in the previ-
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ous literature. The problem of minimizing the maximum flow by removing network

links within a budget is strongly NP-hard. Integer linear programs were developed

to compute the optimal interdiction [95]. Approximation hardness results and a

2(n - 1)-approximation algorithm was developed in [96]. A pseudoapproximation al-

gorithm based on linear programming relaxation was developed in [97]. NP-hardness

result and a polynomial time approximation scheme were developed for network flow

interdiction on planer graphs [98,99].

In a traditional flow network, the maximum flow between a source-destination

(s - t) pair equals the minimum cut, which is the minimum-capacity link removals

that disconnect the s - t pair [100). In a computing network, we show that there is

a non-zero gap between the maximum flow and the minimum cut. The gap implies

that a flow may require more communication resources compared with a flow in a

traditional communication network, since a flow in a computing network need to be

transmitted to computation nodes for processing before delivered to the destination.

The main contributions of this chapter are as follows. We develop a model for a

computing network, and formulate cut metrics to study its robustness. We develop ef-

ficient algorithms to compute the maximum flow supported by a computing network.

We prove the complexity of computing the minimum cuts, and developed integer

linear programs and approximation algorithms to compute the minimum cuts. More-

over, we formulate a maximum flow interdiction problem, where the objective is to

minimize flow by removing communication and computation resources within a given

budget, and develop an integer linear program to compute the optimal interdiction.

The rest of this chapter is organized as follows. In Section 6.1, we introduce the

model for a distributed computing network, and define cut metrics to evaluate the

network robustness. In Section 6.2, we develop algorithms to evaluate the maximum

flow and minimum cuts. In Section 6.3, we formulate and solve a budgeted maxi-

mum flow interdiction problem. Section 6.4 provides numerical results. Section 6.5

summarizes the chapter.
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6.1 Model

In this section, we develop a model for a distributed computing network, and

define metrics for the evaluation of network robustness.

A distributed computing network is modeled by a directed graph G(V, E), where

V denotes the set of routers and computation nodes, and E denotes the set of com-

munication links. Computation nodes can process and forward flows, while routers

can only forward flows. Let p., denote the processing capacity at node u. Let pi

denote the transmission capacity at link (u, v).

Unlike the traditional data network where flows require minimal fixed computation

tasks such as routing table lookup and checksum, flows in the distributed computing

network can require vastly different computation resources, and hence computation

capacities at servers (as well as communication bandwidth) are essential to process

traffic. The classical robustness metric such as minimum cut is not able to capture

the robustness of such a computing network. We extend classical flow and cut metrics

to computing networks, to characterize the need to incorporate both communication

and computation resources in network operation.

We first define computation path which supports both the processing and the

delivery of data packets in the network.

Definition 6.1. A computation path (P, w) from a source s to a destination t is

characterized by a sequence of connected edges and nodes P that start at s and end

at t, and includes a computation node w E P.

Network flows are transmitted and processed by computation paths. In order to

reduce the flow carried by a computation path to zero, either any communication link

or the computation resource in the path should be removed. Note that we consider

the removal of computation resources without removing the node, i.e., the node can

still forward packets without processing them.

In general, there are multiple computation paths from a source to a destination.

To interdict the flow, a combination of communication and computation resources

can be removed. We next define cuts that measure the connectivity of a pair of nodes
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in a computing network.

Definition 6.2. A communication cut is a set of communication links E, such that

the flow is reduced to zero after removing Ec.

Definition 6.3. A computation cut is a set of computation nodes V such that the

flow is reduced to zero after removing the computation resources at V.

Definition 6.4. A joint communication and computation cut (abbr. joint cut) is a

set of communication links E, and computation nodes Vc such that the flow is reduced

to zero after removing Ec and computation resources at V.

We illustrate these cuts using an example in Fig. 6-1, where computation nodes

are illustrated by squares. Edges {(u 1 , v1), (u 2 , v2 )} form a communication cut, since

s and t are disconnected after removing these two edges. Nodes {U, u2 , u3 , u4} form

a computation cut, since no flow can be processed after removing the computation

resources at the four computation nodes. The union of edge {(U1, u2 )} and nodes

{U 3 , u4} is a joint cut, since the upper path is disconnected after removing edge

(ui, u2 ), and the lower path cannot process flow after removing the computation

resources at nodes {U 3 , U4}.

S t

Figure 6-1: Illustration of cuts.

To simplify the analysis for network robustness, we assume that every unit flow

requires the same amount of communication and computation resources. The iden-

tical resource requirement of flows can be justified by the statistical multiplexing of

individual flows in networks, although individual flows for different applications may

have different resource requirements. For example, video streaming is communication
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intensive, while search is computation intensive. By normalizing units, we further as-

sume that every unit flow requires one unit computation resource for processing, and

outputs one unit processed flow. Under this assumption, one unit flow on a compu-

tation path occupies one unit communication resource at every link along the path,

and a total of one unit computation resource at one or more computation nodes along

the path. Moreover, we ignore flow scaling due to processing.

Before developing algorithms to evaluate the maximum flow and the minimum

cuts, we prove the complexity of computing the cut metrics. First, we show the hard-

ness of evaluating the minimum communication cut, whose proof is in the Appendix.

Lemma 6.1. Computing the minimum communication cut for an s - t pair is NP-

hard, if there is more than one computation node.

Lemma 6.1 implies that computing the minimum joint cut is NP-hard, since the

minimum communication cut can be viewed as a special case of the minimum joint

cut when the computation resources are abundant at all nodes.

Theorem 6.1. Computing the minimum joint communication and computation cut

for an s - t pair is NP-hard, if there is more than one computation node.

6.2 Computation of max-flow and min-cuts

In this section, we study the computation of the maximum flow and minimum cuts

for a source-destination pair. We develop polynomial-time algorithms to evaluate the

maximum flow and the minimum computation cut, and integer programs to evaluate

the minimum communication cut and the minimum joint cut. In Section 6.2.1, we

develop mathematical programs to evaluate the maximum flow and the minimum cut

using path-based formulation, which is intuitive but has an exponential number of

variables or constraints. In Section 6.2.2, we develop a layered graph representation

to simplify their computations, and develop mathematical programs of polynomial

sizes. Finally, in Section 6.2.3, we study the gap between the maximum flow and the

minimum cut.
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6.2.1 Path-based formulations

We first develop mathematical programs to compute the maximum flow and min-

imum cuts using path-based formulations. Although the formulations have an expo-

nential number of variables or constraints, they illustrate the connections between

flow and cuts in a computing network and those in a classical flow network.

We formulate a linear program to compute the maximum flow in a computing

network. Let P denote the set of s - t paths. Let xp,, denote the amount of flow

transmitted through path P and processed at a computation node w E P. The

maximum flow can be computed by the following linear program.

max XP, (6.1)
PEP,wEP

SAt. E P~W _< puv, V(u, v) E: E, (6.2)
PEP,WEP:(u,v)EP

E X p ! , Vw E V, (6.3)
PEP:wEP

XP,>,0, VPEP,wEP.

The communication capacity constraints are guaranteed by (6.2), and the compu-

tation capacity constraints are guaranteed by (6.3), by restricting the total amount

of flow that is transmitted by a link or processed at a computation node.

We then develop an integer program to evaluate the minimum joint communica-

tion and computation cut using the path-based formulation. Indicator variable yv

represents whether link (u, v) is removed. Indicator variable yw represents whether

the computation resource at node w is removed. Constraint (6.5) guarantees that

for each path, either one of the link is removed, or all the computation resources are

removed.

min 5 1viyu + p [ywYw (6.4)

(u,v)EE wEV
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s.t. Z yu + Yw > 1, VP EP, w E P (6.5)

(u,v)EP

YU E {,1}, V(u, v) E E

Yw E {o, 1}, Vw G V.

A minimum communication cut can be obtained by the same integer program

(6.4), by setting y, = 0, Vw E V. A minimum computation cut can be obtained by

setting yv = 0, V(u, v) E E.

The number of paths |P can be exponential in the size of the network. Both the

linear program (6.1) and the integer program (6.4) has exponential sizes. Compared

with the classical maximum flow and minimum cut formulations, the main difference

is that a computation path in the computing network depends on a computation

node in addition to a sequence of connected links. The coupling of constraints by the

computation nodes brings challenges to the evaluation of the metrics.

6.2.2 Layered graph formulations

We then develop a layered graph representation to simplify the evaluation of flow

and cuts. Based on the layered graph, in Sections 6.2.2 and 6.2.2, we develop modified

mathematical programs with a polynomial number of variables and constraints to

evaluate the maximum flow and the minimum cuts, respectively.

We consider a two-layer graph, where every layer has the same topology as the

original graph. An edge connects the two copies of each computation node across

the two layers. Unprocessed flows are transmitted thought links in the upper layer

G(V, E), while processed flows are transmitted in the lower layer G'(V', E'). Flows

across the two layers represent processing at computation nodes. For example, in Fig.

6-2, a flow is transmitted through (s, u), processed at u, and then transmitted through

(u, v) and (v, t). In the layered graph, unprocessed flow is transmitted through (s, u)

in the upper layer, then transmitted through (u, u'), which represents the processing

at u, and finally transmitted through (u', v') and (v', t') in the lower layer. Every

flow from s to t and processed at computation nodes in the original graph can be
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represented by a flow from s to t' in the layered graph.

Lemma 6.2. Let S be an s - t cut in the computing network. In the layered graph,

removing edges S' = {(u,v),(u',v')j(u,v) c S} U {(w,w')|w E S} disconnects s and

t'.

Proof. We prove by contradiction. Suppose that a path P exists between s and t' in

the layered graph after removing S'. The path P contains a link from the upper layer

to the lower layer, denoted by (a, a'). There is a path P from s to a in the upper

layer, and a path P2 from a' to t' in the lower layer. Let P2 = {(u, v)I(u', v') E P2}.

Since none of the edges P U P2 belong to cut S', none of the edges in P U P2 belong

to cut S.

In the computing network, there is a path P from s to a, and a path P2 from a

to t. Moreover, the computation resource at a is not removed, since (a, a') remains.

The path (P1 U P2 , a) is a computation path from s to t, which contradicts with the

fact that S be an s - t cut.

S t S

S' ti

Figure 6-2: Flows in the original and layered graphs.
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Evaluation of maximum flow

Flow conservation holds in the layered graph, since communication and computa-

tion units are normalized and flow scalings are ignored. The maximum flow that can

be delivered from s to t while processed can be represented by a flow in the layered

graph from s to t'. The difference of a flow in the layered graph from the classical

network flow is that the sum of flows on the two copies of a link should not exceed

the transmission capacity. Let E = E U E' U (t', s) denote the union of the set of

edges in the layered graph and an edge from t' to s that has an infinite capacity. Let

V = V U V' denote the set of nodes in the layered graph. Let f, denote the amount of

flow on link e. The maximum flow from s to t' can be computed using the following

linear program.

max LIS

s.t. S fU - fVW = 0, VV E V, (6.6)
uEY:(u,v)EZ wEV:(v,w)EZ

fW, < A,,, Vw E V, (6.7)

fUV + fU'Iv < PUr, V(U, v) cz E , (6.8)

fUV >_ 0, fUrt, >_ 0, V(U, V) E E,

feW' > 0, Vw E V.

Flow conservation constraints are guaranteed by (6.6). Computation capacity con-

straints are guaranteed by (6.7) for each computation node. Communication capacity

constraints are guaranteed by (6.8) for each communication link. The linear program

has O(IEI) variables and O(IE) constraints, which has a significantly smaller size

compared with the path-based linear program formulation. To conclude, the maxi-

mum flow can be computed by the linear program in polynomial time.
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Evaluation of minimum cuts

Recall that an s - t flow can be interdicted by removing either communication

or computation resources, or a combination of both. We first develop an integer

program to compute the minimum joint communication and computation cut, which

can be easily modified to compute the minimum communication cut and the minimum

computation cut. The formulation is based on disconnecting s and t' in the layered

graph, which equivalently reduces the s - t flow to zero in the original graph by

Lemma 6.2.

Let y, indicate whether link (u, v) is removed. Let z, indicate whether the

computation resource at node w is removed. Let p, be the potential of a node, where

potential never decreases along a connected path, guaranteed by constraints (6.10),

(6.11), and (6.12) when y, = 0 and z., = 0. However, disconnected nodes may have

different potentials, guaranteed by the same constraints when yuv = 1 or z., = 1.

Constraint (6.13) guarantees that s has higher potential than t'. If all the constraints

are satisfied, s and t' are disconnected, since the potential cannot decrease through

a connected path. The cut include the communication links where yu, = 1 and

computation nodes where z, = 1. Notice that if link (u, v) is removed, no flow can

pass through either (u, v) or (u', v').

min 1PtyJU, + E PwYW (6.9)

(u,v)EE wIEV

s.t. PV Pu + Yuv 0, V(u, v) E E, (6.10)

PV -Pu' + Yuv > 0, V(u, v) C E, (6.11)

-Pw+Pw'+Yw , VWGV (6.12)

Ps - Pt' > 1, (6.13)

Yuv E {0, 1}, V(u, v) EE,

yw E {0, 1}, Vw E V.
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To obtain the minimum computation cut, it suffices to set yv = 0 for all (u, v) c

E, and then compute the optimal solution to the integer program. The pathes from

s to t' are disconnected by removing computation resources, represented by the links

across two layers of graphs. To obtain the minimum communication cut, it suffices

to set z, = 0 for all w E V, and then compute the optimal solution to the integer

program.

Since it is inefficient t.o compute the optimal solution of an integer program, we

next develop a polynomial time algorithm for evaluating the minimum computation

cut, and approximation algorithms for evaluating the minimum communication cut

and the joint cut.

Minimum computation cut: Since a flow needs to be processed by computation

nodes along the paths from the source to the destination, removing all the compu-

tation resources along s - t paths is sufficient and necessary to reduce the flow to

zero. Such computation resources can be identified by computing the intersection

of the set of nodes reachable from the source and the set of nodes that can reach

the destination. Both sets can be computed by depth first search. The algorithm is

summarized as follows, with time complexity O(El).

Algorithm 6.1 Algorithm for evaluating the minimum computation cut for an s -
t pair

1. Find the set of nodes V such that there exists at least one path from s to every
node in V,.

2. Find the set of nodes Vt such that there exists at least one path from every node
in Vt to t.

3. The minimum computation cut for the st pair is V, n vt.

Minimum communication cut: If there is a single computation node u, then the

minimum communication cut is the minimum of 1) the minimum cut that disconnects

s and u, and 2) the minimum cut that disconnects u and t.

However, if there is more than one computation node, computing the minimum

communication cut is NP-hard (Lemma 6.1). Besides the integer program (6.9),
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we develop a 2-approximation algorithm, which outputs a communication cut whose

value is at most twice the minimum communication cut.

Algorithm 6.2 Approximation algorithm for the minimum communication cut for
an s - t pair

1. Construct a layered graph. Assign an arbitrarily high cost to every link across
two layers. Assign p, cost to links (u, v) and (u', v').

2. Compute a minimum cut C that separates s and t'.

3. The communication cut include links {(u, v)|(u, v) c C or (u', v') E C}.

Theorem 6.2. The communication cut obtained by Algorithm 6.2 is at most twice

the minimum communication cut.

Proof. Let S* be the minimum s - t communication cut, which has value w. By

Lemma 6.2, in the layered graph, removing edges S' = {(u, v), (u', v')I(u, v) E S*

disconnects s and t'. The cost of S' in the layered graph is at most 2w.

The minimum communication cut C obtained by Algorithm 6.2 has value at most

2w, since C is the minimum cut in the layered graph and is no larger than S'. The

cost of removing links L = {(u, v)I(u, v) E C or (u', v') E C} is no more than the cost

of removing C. Therefore, the value of L is at most twice the value of the minimum

communication cut. 0

Minimum joint communication and computation cut: Algorithm 6.2 can be mod-

ified to compute a joint cut whose value is at most twice the minimum joint cut. In

the first step of Algorithm 6.2, instead of assigning an arbitrarily high cost to links

across two layers, p, cost is assigned to link (w, w'). Using a similar proof to the

proof of Theorem 6.2, we obtain the performance of the modified algorithm.

Theorem 6.3. The joint communication and computation cut obtained by the mod-

ified algorithm is at most twice the minimum joint cut.
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6.2.3 Relationship between max-flow and min-cuts

The classical max-flow min-cut theorem states that the maximum amount of flow

from s to t equals the value of the minimum cut that separates s and t. In a com-

puting network, we study the connections between flow and various types of cuts.

Since either communication or computation can be the bottleneck to support a flow,

the gap between the maximum flow and the minimum communication cut or the

minimum computation cut can be unbounded. For example, Fig. 6-3 illustrates that

the gap between the minimum communication cut and the maximum flow can grow

arbitrarily large as the communication bandwidth increases while the computation

units stay the same, where the numbers adjacent to links and nodes represent the

communication capacity and computation capacity, respectively. Similarly, Fig. 6-4

illustrates that the gap between the minimum computation cut and the maximum

flow can be arbitrarily large.

10 1 10 1 10

Figure 6-3: Gap between the maximum flow and minimum communication cut: max-

imum flow = 2, minimum communication cut = 10.

1 10 1 10 1

Figure 6-4: Gap between the maximum flow and minimum computation cut: maxi-

mum flow = 1, minimum computation cut = 20.

Since the joint communication and computation cut include pure communication

cut and pure computation cut as special cases, the minimum joint cut is at most the

smaller of the two pure cuts. In Fig. 6-3, the minimum joint cut is 2, by removing

the two units computation resources, while in Fig. 6-4, the minimum joint cut is 1,

by removing either of the two communication links. Note that the joint cut can be

smaller than both pure cuts. For example, consider two paths in parallel between s
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and t, illustrated by Figs. 6-3 and 6-4, respectively. The minimum joint cut is 3,

while the minimum communication cut is 11 and the minimum computation cut is

22.

The following theorem bounds the gap between the maximum flow and the mini-

mum joint cut.

Theorem 6.4. The minimum joint communication and computation cut is at most

twice the maximum flow between a source-destination pair.

Proof. In the layered graph, the sum of flows on two copies of a communication link

should not exceed the capacity of the link. By relaxing the capacity constraints, and

restricting that the flow on each copy of the link should not exceed the capacity of the

link, we obtain a modified layered graph. Since the sum of flows in the two copies of a

link is at most twice the link capacity, the capacity constraints in the original graph

are satisfied by reducing the flow by half in the modified layered graph. Therefore,

the maximum flow in the modified layered graph is at most twice the maximum flow

in the original graph.

The minimum cut in the modified layered graph is the same as the maximum flow

in the modified layered graph. The minimum joint cut in the original graph is at

most the minimum cut in the modified layered graph, since removing two copies of a

link incurs double cost in the modified layered graph and a single cost in the original

graph. Therefore, the minimum joint cut in the original graph is at most twice the

maximum flow in the original graph. E

The gap is shown to be tight by the example in Fig. 6-5. In this computing net-

work, each link has capacity 2. Node v is the only computation node with processing

capacity 2. The maximum s - t flow is 1, while the minimum s - t joint cut is 2.

6.3 Flow interdiction

In this section, we study a network flow interdiction problem in a computing

network. The objective is to minimize the flow by removing communication links and
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Figure 6-5: Gap between the
- 1, minimum joint cut = 2.

2

-- --------

2
S t

maximum flow and minimum joint cut: maximum flow

computation resources using a given budget. We formulate mathematical programs

to compute an optimal interdiction strategy that minimizes the maximum s - t flow

in the general case.

Using linear programming duality, the maximum flow is equivalent to the min-

imum cut without integrality constraints. Let z., indicate whether link (u, v) is

removed. Let z,, indicate whether the computation resource at node w is removed.

Let cuv denote the cost of removing link (u, v). Let c. denote the cost of removing

the computation resource at node w. Let B denote the interdiction budget. The ob-

jective (6.14) minimizes the maximum flow after interdiction. The budget constraint

is guaranteed by Eq. (6.15). The detailed derivation of this formulation is in the

Appendix.

(6.14)min E PUV13UV + E P5O.
(u,v)EE wEV

s.t. pv - pu +uv + zuv > 0, V(u,v) c E

Pv, - Pu + uV + Zuv 0, V(u,v) E E

-pW+p '+3W+z 0, VwEV

P, - Pt' >1

5 cUZUV+ E cwzw < B,

(u,v)EE wEV

0 O3 < 1, zU E{G, 1}, V(u, ) E E,
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O / 1' ,zWEf{O,1}, VwEV.

Network flow interdiction problem is NP-hard in general even for the classical

flow network. Clearly, the interdiction problem for a computing network is also

NP-hard, since it includes the classical interdiction problem as a special case. The

problem becomes tractable for the classical flow network when the interdiction cost

equals link capacity, and fractional interdiction is allowed. The optimal solution is to

compute the minimum cut and remove full or partial links in the cut. However, such

an algorithm would not work for a computing network, since the maximum flow no

longer equals the minimum cut, and removing two links with the identical capacity

in an s - t cut may reduce the maximum s - t flow by different values.

6.4 Numerical results

In this section, we provides numerical examples based on the Abilene network

topology to illustrate the network robustness by applying our algorithms to evaluate

the robustness metrics. Since we study directed graphs throughout the chapter, we

consider two directed links (in both directions) parallel to each link in Fig. 6-6.

1S2 3 

4
7

Figure 6-6: Abilene network topology.
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6.4.1 Max-flow and min-cuts

The maximum flow equals the minimum computation cut if computation resource

is the bottleneck to support a network flow. Suppose that each directed link has

transmission capacity 1, and that each of nodes 6 and 11 has processing capacity

0.5. The maximum flow between each pair of nodes is 1, which matches the value of

minimum computation cut (i.e., removing both computation resources at 6 and 11).

There is a non-zero gap between the maximum flow and the minimum communi-

cation cut if communication resource is the bottleneck. Suppose that each processing

capacity of nodes 6 and 11 is increased to 5. The minimum cut for s = 8, t = 7 is 3,

while the maximum flow is 2.5. The flow can be decomposed as follows. One unit flow

is transmitted through 8 -6 -5 -7 and processed at 6. One unit flow is transmitted

through 8 -9 -11 - 10 -7 and processed at 11. Half unit flow is transmitted through

8-7-5-6-8-7 (or 8- 7- 10- 11 -9-8- 7) and processed at 6 (or 11). Part

of the flow has to traverse the same link 8 - 7 twice, once before processing and once

after processing.

In the above two examples, the minimum joint cut equals the minimum of the pure

communication cut and pure computation cut. By setting the processing capacity of

nodes 6 and 11 to be 5 and 0.5, respectively, for s = 8, t = 7, the minimum joint

cut is 2.5, smaller than both the minimum communication cut 3 and the minimum

computation cut 5.5. In this example, the maximum s - t flow is 2.25. One feasible

decomposition of the flow is one unit flow through 8 - 6 - 5 - 7 processed at 6,

half unit flow through 8 - 9 - 11 - 10 - 7 processed at 11, half unit flow through

8 - 9 - 11 - 10 - 7 - 5 - 6 - 9 - 8 - 7 processed at 6, and 0.25 unit flow through

8 - 7 - 5 - 6 - 9 - 8 - 7 processed at 6.

6.4.2 Flow interdiction

We then study flow interdiction using randomly generated capacities, in order

to illustrate the properties of network flow interdiction and discuss instances with

different levels of interdiction difficulty. For simplicity, the capacity of each link
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is independently and uniformly chosen from (0, 1). The capacity of each node is

independently and uniformly chosen from (0, 0.1).

First, we consider the network flow interdiction problem where the cost of in-

terdiction equals the capacity. For s = 1, t = 2, the values of flows after optimal

interdictions are represented by Fig. 6-7a. The curve is smooth, because computa-

tion resource is the bottleneck for the flow from node 1 to node 2 and computation

capacity has finer granularity due to the small random number generations range. For

s = 1, t = 10, the values of flows after optimal interdictions are represented by Fig.

6-7b. The curve is non-smooth, because communication resource is the bottleneck for

the flow from node 1 to node 10 and the cost of removing a link is relatively high. The

steps in the curve illustrates that the interdiction problem has the same nature as

the knapsack problem where the knapsack size represents the budget and item sizes

represent link capacities.

Then, we consider interdiction costs that are independent of the capacities. The

cost of removing each link is independently and uniformly chosen from (0, 1). The cost

of removing the computation resource at each node is independently and uniformly

chosen from (0,0.1). For s = 1, t = 2, the values of flows after optimal interdictions

are represented by Fig. 6-7c. The curve is steeper for small budgets compared with

Fig. 6-7a, since it is possible to remove large computation resource at small cost due

to the independence between cost and capacity. For s = 1, t = 10, the values of flows

after optimal interdictions are represented by Fig. 6-7d.

6.5 Summary

We studied the robustness of distributed computing networks where flows require

communication and computation resources to be transmitted and processed. We de-

fined cut metrics to evaluate network robustness under the failures of communication

and computation resources. We developed algorithms to evaluate the max-flow and

the min-cuts, and showed a non-zero gap between them. Moreover, we developed al-

gorithms for optimal flow interdiction by removing communication and computation
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6.6 Chapter appendix

6.6.1 Computational complexity

Proof of Lemma 6.1. We first prove that obtaining the minimum s - t communication

cut is NP-hard if there are two computation nodes, by a reduction from exact cover by

3-sets. The reduction follows a similar proof in [101] that shows multicut is NP-hard.

The exact cover by 3-sets problems is as follows. Given a set X of 3q elements,

and a collection C of 3-element subsets of X, is there a subset K C C, such that

every element in X appears in exactly one member of K?
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We construct a graph from an instance of the exact cover by 3-sets problem. For

each 3-set ci E C, there is a path si -+ ui -+ vi -+ t, from si to t1 . The capacities of

links (si, ui), (ui, vi), (vi, t1 ) are k, 2, 1, respectively. For each element x E X, there is

a path from s2 to t2 . The path contains an edge (ui, vi) if the 3-set si contains x. All

the other edges in the path from s 2 to t2 have capacity k, except the edges (ui, vi).

Finally, the source node s is connected to each of s, and S2 through a link of

capacity k. Each of the two nodes t, and t2 is connected to the destination t through

a link of capacity k. The only two computation nodes are s 2 and ti.

Suppose the links adjacent to s and t are not removed. In order for a computation

path to connect s and t, either si is connected to ti, or S2 is connected to both ti

and t2 . If there exists an exact cover K C C for X, a cut S, can be constructed as

follows. The edge (ui, vi) is in the cut if si E K. The edge (vj, ti) is in the cut if

sj V K. The value of the cut S, is 2q+ (m - q) = m+ q, where m = ICI. This is the

minimum cut that separates s, and ti, and s2 and {ti, t2 }, for k > 2m. Therefore, Sc

is the minimum communication cut that disconnect all computation paths from s to

t.

To conclude, the minimum communication s - t cut is m + q if and only if there

exist exact cover by 3-sets for X. The reduction can be done in polynomial time,

since there are O(q + m) edges and vertices. The computation of the minimum

communication s - t cut is NP-hard.

We illustrate the reduction using an example. Consider an exact cover by 3-sets

problem where X = {1, 2, 3,4,56}, C = {c = {1, 2,3},c 2 = {1, 2,4}, c3 = {3, 5, 6}}.

In this example, m = 3, q = 2. There exist an exact cover K = {c 2 , c3 } for X. The

corresponding computing network is shown by Fig. 6-8. The path si -4 u2 -* V -+ ti

corresponds to the 3-set ci, Vi E {1, 2, 3}. The path s2 -4 U 1 -4 V1 -4 U 2 -4 V2 -4 t2

corresponds to elements 1 and 2 that appear in ci and c 2 . The path S2 -+ U 1 -4

V1 -+ U 3 -+ V 3 -4 t 2 corresponds to element 3 that appears in ci and c3 . The

path S2 - u 2 -- v2 -+ t 2 corresponds to element 4 that appears in c 2 . The path

S2 -+ u3 -+ v 3 -+ t 2 corresponds to elements 5 and 6 that appear in c3 . The thick edges

each have capacity k. The numbers adjacent to the other edges indicate their capacity.
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The red edges {(U 2 , v2 ), (u3 , v3 ), (v 1, t1 )} illustrate the minimum computation cut.

The value of the minimum computation cut is 5 = m + q.

S S1

1 U2 U3

S2 2 2

V1 V2 V3

t1 t

Figure 6-8: Reduction from exact cover by 3-sets to minimum communication cut.

6.6.2 Correctness of the integer linear program for flow in-

terdiction

We prove the correctness of the integer linear program formulation for flow inter-

diction. The dual of the maximum flow (linear program (6.1)) is equivalent to the

minimum cut (integer program (6.4)) without integrality constraints. Let zu, indi-

cate whether link (u, v) is removed. Let zv indicate whether the computation resource

at node w is removed. The maximum flow after removing links where zu, = 1 and

computation resources at nodes where zv = 1 is represented by Eq. (6.16). The math-

ematical program (6.16) computes the maximum flow after the optimal interdiction

with budget B.

min P ii(1 - ZUV)yUV + S: (1 - Zw)Yw (6.16)

(u,v)EE wEV

s.t. PV PU + Yuv > 0, V(u, v) E E,

PV' - Pu' + Yuv > 0, V(u, v) E E, (6.17)
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-P +pw+yw ?O, VwGV,

Ps - Pt' > 1,

Z CUVZUV + E cKz < B,
(u,V)EE wEV

0 <y-, 1, zuC E {0, 1}, V(u, v) E E,

O < yw 1,z E {0,1}, Vw E V.

Since z,, and z, are binary, the objective can be equivalently represented by Eq.

(6.18), by adding constraints Eqs. (6.19), (6.20), (6.21), (6.22). To see this, note that

if ZuV = 0, ILuvfUV I-puvYUV. In the optimal solution to the integer linear program

(6.18), pu*v/, = puy*, since puv > 0. If zuv = 1, yu, - zu, < 0, and puv/*3, = 0 in

the optimal solution. In both cases, 3*v < 1. Therefore, the objective (1 - zu,)yuv

can be transformed to p3,ouv. Similarly, the objective (1 - zw)y,, can be transformed

to . The objective Eq. (6.18) exactly matches the objective Eq. (6.16).

min E PUtOU3 + E P.O. (6.18)

(u,V)EE wEV

s.t. PV Pu + YuV > 0, V(u, v) E E,

PV'- PU' + YU > 0, V(u,v) EE,

-Pw+Pw+YwO , VwEV,

Ps - Pt' > 1,

S cUnzUV + E cmz_ B,

(u,V)EE wEV

UV > yu - ZUv, -V(u, v) E E, (6.19)

Ow > Yw - Zw, VV E V, (6.20)

0 < 3uv < 1, V(u, v) E E, (6.21)

0 i Ow 3 1, Vw E V, (6.22)

0 yuV 1, zuV C {0, 1}, V(u, v) E E,
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0 < y" < 1, z" {o, 1}, Vw E V.

Finally, we show that the integer linear program (6.18) has the same optimal solu-

tion, if the constraints (6.19) and (6.20) are replaced by equality constraints.Suppose

that in an optimal solution, y*, - z*, > 0. Then , = y*, - z*, holds in the optimal

solution. If y*, - z*, < 0, y*, can be increased to z*, without violating any constraint

and achieves the same cost, where f*, = 0. Therefore, the constraint (6.19) can be

replaced by an equality constraint. The same analysis holds for replacing constraint

(6.20) by an equality constraint. By replacing Yuv = )3U + zU, in all the constraints,

we obtain the integer linear programming formulation (6.14).

Remark. The network flow interdiction problem in the classical communication net-

work was formulated as an integer linear program in [95]. We follow a similar ap-

proach that use linear programming duality to transform a minimax problem to a

minimization problem. The key difference is that the classical minimum cut poly-

tope is integral, and thus it is possible to restrict values of pv, yuv to be binary in [95].

However, the polytope of Integer program (6.9) is not integral. Thus, pv, yu, may take

fractional values, which complicates our analysis and makes it non-trivial to extend

this formulation to study fractional interdiction problems where a fraction of link or

node capacity can be removed.
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Chapter 7

Concluding remarks

In this thesis, we developed theories on interdependent networks modeling, anal-

ysis, and control, and studied their applications to smart grid and edge cloud com-

puting. The new models and analytical tools can be applied to design robust interde-

pendent networks that can withstand failures and attacks, enabling the deployment

and operation of future large-scale reliable cyber-physical systems.

In Chapter 2, we developed a layered graph model to represent interdependent net-

works with arbitrary topology and dependence. We defined supply node connectivity

as a robustness metric for interdependent networks, developed algorithms to evaluate

the connectivity, and interdependence assignment algorithms to maximize the con-

nectivity. We extended graph algorithms and performance metrics to interdependent

networks, to analyze the network robustness under failures.

In Chapter 3, we studied robust routing in interdependent networks. We developed

approximation algorithms to evaluate the path failure probability under correlated

node failures, and developed algorithms to compute the most reliable path. We also

studied diverse routing, which significantly improves the routing reliability over single-

path routing. The routing algorithms can be used to reliably transmit information

or commodities through interdependent networks.

In Chapter 4, we developed an interdependent random geometric graph (RGG)

model for large-scale interdependent networks. We derived the first analytical bounds

on percolation thresholds of interdependent RGGs, and obtain 99% confidence inter-
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vals for the percolation thresholds. As the first study on percolation of interde-

pendent spatial network models using a mathematically rigorous approach, this new

model and analytical tools provide a framework for robustness evaluation of inter-

dependent networks under uniform random node failures, geographical attacks, and

degree-dependent failures that capture non-uniform vulnerabilities of network com-

ponents.

In Chapter 5, we studied power grid frequency control with limited communication

in smart grids, which is an application of interdependent networks. A decentralized

integral controller, with properly designed controller grains, achieves both frequency

regulation and near-optimal economic dispatch without communication. We studied

the benefit of communication in reducing the convergence time of the control, and

quantify the importance of each individual communication link. This chapter serves

as an example of the control of interdependent networks under failures.

In Chapter 6, we studied network flow interdiction problems in distributed com-

puting networks, where flows require both communication and computation resources.

We defined cut metrics that characterize the network vulnerability under the failure

of network resources. We develop algorithms to compute the maximum flow and the

minimum cuts in a computing network, and optimal interdiction to minimize the flow

using a given budget.

Finally, we comment on future research topics in interdependent networks. We

developed simple and analytically tractable models to capture key properties of in-

terdependent networks. The models can be extended to characterize heterogeneity in

network structure and dependence. For example, key nodes for network connectiv-

ity, such as nodes in a small network cut, can be supported by more supply nodes

to enhance their reliability. The amount of interdependence can be characterized in

finer granularity, where some nodes require a larger number of supply nodes to be

functional. The intermediate functional states between fully functional and failure

enrich model representability. The network structure for dependence (e.g., supply

nodes should include at least one node from each component) can be further studied.

In summary, the future interdependent networks require the joint optimization of in-
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tra and inter connections of networks, which motivates a rich class of network design

problems.

The continued growth of cyber-physical systems and the increasing role of com-

munication in system monitoring and control make it an exciting time to study the

interdependence between systems and networks. The importance of identifying the

vulnerability and reinforcing interdependent networks is signified by the trend of

large-scale deployment of cyber-physical systems. Future works include developing

protection techniques for interdependent networks, including augmentation and rein-

forcement for both dependence and connectivity, to contribute to the operation and

maintenance of highly reliable interdependent networks.
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Appendix A

Optimal control of distributed

computing networks with

mixed-cast traffic flows

In the appendix, we present a dynamic routing and scheduling policy for cloud

networks, where traffic flows are processed by a chain of service functions. The

dependencies between service functions arise in applications such as video streaming

and virtual reality, where the input of one function is the output of another function.

We develop stochastic control policies for packets to be processed by the functions,

and delivered from sources to destinations.

Distributed cloud (computing) networks, tasked with both packet transmission

and processing, require the joint optimization of communication and computation

resources. Given that internet traffic is increasingly a diverse mix of unicast and

multicast flows, we address the design of throughput-optimal dynamic packet pro-

cessing and routing policies for mixed-cast (unicast and multicast) service chains in

distributed computing networks. Our proposed control policy handles flow scaling, a

prominent characteristic of traffic flows in distributed computing networks, where a

flow may expand or shrink due to service function processing.

We develop a dynamic control policy that determines both routes and processing

locations for packets upon their arrival at a distributed computing network. The

185



proposed policy, referred to as Universal Computing Network Control (UCNC), guar-

antees that packets i) are processed by a specified chain of service functions, ii) follow

cycle-free routes between consecutive functions, and iii) are delivered to their cor-

responding set of destinations via proper packet duplications. UCNC is shown to

be throughput-optimal for any mix of unicast and multicast traffic, and is the first

throughput-optimal policy for non-unicast traffic in distributed computing networks

with both communication and computation constraints. Moreover, simulation results

suggest that UCNC yields substantially lower average packet delay compared with

existing control policies for unicast traffic.

The rest of the chapter is organized as follows. We introduce the model in Sec-

tion A.1, and characterize the capacity region in Section A.2. In Section A.3, we

develop a routing policy to stabilize a virtual queuing system. In Section A.4, we

prove that the same routing policy, along with a proper packet scheduling policy,

is throughput-optimal for the associated computing network. Section A.5 presents

numerical simulations. Section A.6 presents extensions. Section A.7 summarizes the

chapter.

A.1 Model

In this section, we present models for distributed computing networks, service

function chains, and mixed-cast traffic.

A.1.1 Computing network model

We consider a distributed computing network modeled as a directed graph g =

(V, E) with n I IVI nodes and m = IEI links. A node may represent a router,

which can forward packets to neighboring nodes, or a distributed computing location,

which, in addition, can host service functions for flow processing. When network flows

go through a service function at a computation node, they consume computation

resources (e.g.CPUs). We denote by p the processing capacity of node u E V. A

link represents a network connection between two nodes. When network flows go
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through a link, they consume communication resources (e.g.bandwidth). We denote

by M,, the transmission capacity of link (u, v) E C.

A.1.2 Service model

A service # E <D is described by a chain of MO functions (#, i), i E {1,..., M0}.

Each function (0, i) is characterized by its computation requirement r(Od), indicat-

ing that r(+4) computation resource units are required to process a unit input flow.

Function (0, i) is also characterized by a flow scaling factor , indicating that the

average flow rate at the output of function (#, i) is ((,) times the average input

flow rate. We assume function (0, i) is available at a subset of computation nodes

i(Os) C V. A flow that requires service 0 must be processed by the functions (0,i),

i {1,.. .,M }in order.

Figure A-1 illustrates an example of a service function chain for video streaming.

The first function in the chain is a firewall, with computation requirement r(0,) = 0.1

and flow scaling 6(4,1) = 1. The second function in the chain is a transcoding function,

with computation requirement r(0,2 ) = 2 and flow scaling (02) = 0.8. The numbers

above the links indicate the flow rates at each stage of the service chain, and the

numbers above the functions indicate the computation rates required to process the

incoming flow.

1 0.1 1 2 0.8

SFirewall Tansc1j!oding1

(#,1) (#2)

Figure A-1: An illustration of a service function chain with different function com-
putation requirements and flow scaling.

A.1.3 Traffic model

A commodity-(c, 0) flow is specified by a source node sc, a set of destination nodes

DC, and a service #. Packets of commodity-(c, 0) flow enter the network at s, and exit
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the network for consumption at D, after being processed by the service functions in

#. A flow is unicast if Dc contains a single node in V, denoted by dc, and is multicast if

Dc contains more than one node in V. We denote by (C, <D) the set of all commodities.

We consider a time slotted system with slots normalized to integral units t E

{0, 1, 2, .. .}. We denote by A(c,O) (t) the number of exogenous arrivals of commodity-

(c, 4) packets at node sc during time slot t, and by A(c) its expected value, referred

to as the average arrival rate, where we assume that A(cO) (t) is independently and

identically distributed (i.i.d.) across time slots. The vector A = {A(c,+), (c, 0) E

(C, <D)} characterizes the arrival rates to the network.

A.2 Policy space and capacity region

We address the mixed-cast service chain control problem, where both unicast and

multicast packets must be processed by a specified chain of service functions before

being delivered to their associated destinations. The goal is to develop a control policy

that maximizes network throughput under both communication and computation

constraints.

We first transform the original problem that has both communication and compu-

tation constraints into a network flow problem in a graph that only has link capacity

constraints. The transformation simplifies the representation of a flow. We then limit

the routing policy space without reducing the capacity region. Finally, we characterize

the network capacity region.

A.2.1 Transformation to a layered graph

Following the approach of [102], we model the flow of packets through a service

chain via a layered graph, with one layer per stage of the service chain. Let G O)

(G()ep, ... , M )), with edge set g('O) and vertex set (), denote the layered graph

associated with service chain #. Each layer G("") is an exact copy of the original

graph GIntDep, used to represent the routing of packets at stage i of service #, i.e.the

routing of packets that have been processed by the first i functions of service #. Let
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u(O,') denote the copy of node u in G(gp,, and edge (u(+,0, v(+,0) the copy of link

(u, v) in G*;QeP. Across adjacent layers, a directed edge from u(O4-0 to u(,0' for all

u E .(fj) is used to represent the computation of function (0, i). See Fig. A-2 for an

example of the layered graph.

Proposition A.1. There is a one-to-one mapping between a flow from s(,) to

V(q,MO) in G(De, and a flow from s to D processed by q in GIntDep

Proof. Let a flow be processed by function (4, i) at node u E V(4,O C V. Then, by con-

struction of the layered graph, an equivalent flow must traverse link (u(O"'-'), u(#,i)) E

E(). Similarly, let a flow that has been processed by the first i functions of service k

traverse link (u, v) E E. Then, an equivalent flow must traverse link (u(,), v(O,')) E

E(M). Under this mapping, every flow processed by 0 in GntDep corresponds to a flow

in G and vice versa. l

We now state generalized flow conservations laws in the layered graph that readily

apply to the original graph by Proposition A.1.

Let futoiooi denote the flow rate on link (u(ki), v(Oi)), i. e.the rate of stage-i

packets on link (u, v), where a stage-i packet is a packet that has been processed

by the first i functions in q, and not by functions (0, i + 1), . . ., (q, MO). Similarly,

fui,-1>,i, denotes the flow rate on link (u(+a-'), u(+,')), i.e.the computation rate at

node u for processing stage-(i - 1) packets into stage-i packets via function (q, i).

We first focus on unicast traffic, where no packet duplication is required.' Note

that due to non-unit computation requirements and flow scalings, traditional flow

conservation does not hold even for unicast traffic. For a given node u(",) E GO")IntDep'

the following generalized flow conservation law holds:

fV3 i)~i + rk~ ~(,

'Packet duplication is different from flow scaling. Flow scaling is a result of service function
processing. An expanded flow, which is a function output, contains different packets. Packet dupli-
cation makes identical copies of a packet, which may be forwarded along different routes to reach
different destinations.
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s(#,0) d0,0)

u GCN") v('0)

s d

G V U

Figure A-2: The left figure is the original graph GIntDep, where u is the only compu-
tation node for the single function in q. A dummy node up and connections to u are
added to illustrate the availability of service function processing at node u. The right
figure is the layered graph G(O)eP

- 'iZo i + r fk(i'l)UO+1 (A.1)

In the case of multicast traffic, packet duplication is necessary for a packet to reach

multiple destinations. Packet duplications can happen at any stage of a service chain.

Suppose that a stage-i packet is duplicated. Then, all the copies must be processed

by functions (, i+1),. . ., (#, MO) before reaching destinations in D. Equivalently, in

the layered graph GO), if a packet is duplicated at a node in G('p) then all the

copies need to travel through the links that cross the remaining MO - i layers before

reaching a node in D(,,M). The generalized flow conservation and packet duplication

law states that generalized flow conservation (A.1) holds at the nodes where there is

no packet duplication.

Given the flow rates in the layered graph and the mapping of Proposition A.1, the

flow rates in the original graph can be easily derived. The communication rate on

link (u, v) E GntDep, computed as the sum over the flow rates on links (u(O,%), v(Of')),
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VO E 4D, i E {, ... , M4}, and the computation rate at node u E GIntDep, computed

as the sum over the flow rates on links (u(0'- 1), U(O'i)), Vq E <, i {1, ., M0} are

subject to communication and computation capacity constraints:

4E'@,iE{,..,M4}
q5E' ~ -1',ie{1.M t~}

A.2.2 Policy space

An admissible policy r for the mixed-cast service chain control problem consists

of two actions at every time slot t.

1. Route selection: For a commodity-(c, #) packet that originates at sc and is

destined for De, choose a set of links E(c,O) C (O) , and assign a number of

packets 2 on each link that satisfies the generalized conservation law for unicast

traffic and the generalized conservation and duplication law for multicast traffic.

2. Packet scheduling: Transmit packets through every link in S according to a

schedule that respects capacity constraints.

The set of all admissible policies is denoted by H. The set H includes policies that

may use past and future arrival and control information.

Let p(cO),7(t) denote the packets that are originated at sc, processed by #, and

delivered to every node in D, under policy ir up to time t. Let R(c',),'(t) - IP(cI,1(M)I

denote the number of such packets. The number of packets received by a node in

D, is at least ]MO ,(4i)R(cO)'(t) due to flow scaling. We characterize the network

throughput using arrival rates. A policy 7r supports an arrival rate vector A if

lim inf ()= A') V(c, #) E (C, 4b), w.p. 1. (A.2)
t-aoo t

2Recall that a commodity-(c, <) input packet can be expanded to multiple packets due to flow
scaling and packet duplication.
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The network layer capacity region is the set of all supportable arrival rates.

A(GIntDep, C,1) = {A E R1 : :7r E II supporting A} (A.3)

We next restrict the set of admissible routes without reducing the capacity region.

A route is efficient if every packet never visits the same node in G5Dep more than

once. For example, if there is no flow scaling, a unicast packet is transmitted through

a path from the source to the destination, without cycles, and a multicast packet is

transmitted and duplicated through a tree that connects the source and the set of

destinations. It suffices to consider efficient routes, by Lemma A.1, whose proof is in

Appendix A.8.1.

Lemma A.1. Any arrival rate A in the capacity region can be supported by a policy

that only uses efficient routes.

Moreover, we further restrict the route of a unicast packet to be a service chain

path, and the route of a multicast packet to be a service chain Steiner tree, without

reducing the capacity region. Note that under flow scaling, one commodity-(c, #)
packet that originates at s, is scaled to pj ,j) packets at stage-(i -1). To process

them, function (0, i) requires X(O,0 - r(i) 4j J) computation resource units, and

outputs W(0,0 - j 1 ((ki) packets. Let w(0,0) =&, - 1.

Definition A.1. A commodity-(c, 0) unicast packet is routed over a service chain

path T(c,O), if

1. T(c,") is a path from s?(00) to dP.'Mo) in G(Dep

2. (4) packets are routed over a link in T(c,15) that belongs to G(6,i)

3. x(4,) packets are routed over a link in T(c,4) that connects G(OQ) and G("),.

It is easy to verify that the generalized flow conservation law holds in a service

chain path. Clearly, a service chain path is an efficient route, since every node in

G(Dep is visited only once by the same packet. However, an efficient route does
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S(O'O) d(0,0) S(O/'O) d00
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Figure A-3: The left figure illustrates a service chain path, and the right figure
illustrates an alternative efficient route that is not a service chain path. The number
adjacent to a link indicates the number of packets on the link. Scaling factors: x(0,1) =

3; w(0,1) = 2.

not have to be a service chain path. If a packet is expanded into two packets via

intermediate service processing, the two packets can take different paths without

violating route efficiency. For example, in Fig. A-3, the left figure illustrates a service

chain path, while the right figure illustrates an efficient route that is not a service

chain path.

Definition A.2. A commodity-(c, 0) multicast packet is routed over a service chain

Steiner tree T(c,O) if

1. T(c,O) is a Steiner tree (arborescence) that is rooted at s' and connected to

D ) in G()Dep

2. w(O,') packets are routed over a link in T(cO) that belongs to G(5";

3. x(O') packets are routed over a link in T(c,k) that connects G and G(ep.

If a packet is routed over a service chain Steiner tree T(c,5), then packet duplica-

tions occur at every node that has more than one outgoing edge in T(c,O). The number
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of packet duplications at a node equals its number of outgoing edges in T(c,O) minus

one. The generalized flow conservation holds at all other nodes.

We conclude this section with Theorem A.1, whose proof is in Appendix A.8.1.

Theorem A.1. There exists a policy that chooses a convex combination of service

chain paths for each incoming unicast packet, and a convex combination of service

chain Steiner trees for each incoming multicast packet, to support any arrival rate A

in the capacity region.

Due to Theorem A.1, in the following, we restrict our attention to routing policies

that use service chain paths or service chain Steiner trees to route incoming packets,

without reducing network throughput.

A.2.3 Capacity region

For any arrival rate A E A(GlntDep, C, #), there exists an admissible policy r that

takes restricted routes and supports A. Let T(c) denote the set of all service chain

paths (or Steiner trees) for commodity-(c, #) packets. By taking the time average

over the actions of 7r, for each commodity (c, #), there exists a randomized flow

decomposition and routing on Tc"'). Let A c, be the average (arrival) flow rate of

commodity-(c, #) packets over T c*') E T(c,O)

A(C') = (A V(c, #) E (C, 1). (A.4)
T ')(c )

Moreover, flows should satisfy communication and computation capacity con-

straints. Commodity-(c, #) flow contributes a rate w(Od)A"*) on communication

link (u, v) if (u(4O'), v(OPi)) E T(c ') and a rate of x(Oi)A c*) on computation node

u if (u(44-1), u(44)) E T c, Let S., = {(k, i c, ) : (U010 7 V(01) E Tkc, T ') E

T(c,4) i E {,... , M}, (c, #) E (C, 1)} denote the set of commodities that use link

(u, v). LetSa = {(k, i, c, #) : (u('i-1), u(+0)) C T "* T c, E TC"') 1 E {1, ... . M0}, (c, #) E

(C, 4))} denote the set of commodities that use node u. The communication and com-

putation capacity constraints are represented by (A.5) and (A.6), respectively.
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W(,i')A(c0') <A p, V(u, v) E E, (A.5)
(k,i,c,-O)ESuv

x( 'i)A() I I,, Vu E V. (A.6)
(k,i,c,4)ES.

To conclude, the capacity region is characterized by the arrival rates A = {A(c,)

(c, 0) C (C, 4))} that satisfy constraints (A.4), (A.5), and (A.6).

A.3 Dynamic routing in a virtual system

In this section, we study a virtual queueing system for a distributed computing

network, whose simplified dynamics allows us to develop a dynamic routing algorithm

that guarantees that the average arrival rate at a virtual link is no more than its service

rate. We then formalize the connection between the virtual and physical systems in

Section A.4.

We consider a virtual queueing system {Q(t), V(u, v) E .} and {Q (t), Vu E V}

for network GlntDep. We then define virtual queues for the links in the layered graphs

G Dep, VO E 4 such that the queue length of the communication links (u(O,'), v('),

VO E 4D, i E {0,..., Mp} is equal to Q u(t) for all t, and the queue length of the

computation links (U(Oi-), u(O,)), VO E D, i c {1, ... , M4} is equal to Qu(t) for all t.

In contrast to the physical system, in which packets travel through the links in

its route sequentially, in the virtual system, a packet immediately enters the virtual

queues of all the links in its route, upon arrival at the network. The number of

packets that arrive at the communication queue Q.u at time t, denoted by Auv(t), is

the sum of the number of packets routed on (u(O,'), v(O,')), VO E 4, i E {0, ... , M4}

at time t. Similarly, the number of packets Au(t) that arrive at the computation

queue QC at time t is the sum of the number of packets routed on (u(O,--), u(00),

Vq E 4 ', i C {1,..., M4 } at time t. The value Auv(t) indicates the total number of

packets that will be transmitted through link (U, v), in order to serve the packets (and
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their associated packets after processing) that arrive at time t, based on the routing

decision. The value A,(t) indicates the total amount of computation that node u will

use to process these packets. The departure rate of the packets in Qu, is equal to the

transmission capacity of link (u, v), p,,, and the departure rate of the packets in QU

is equal to the processing capacity of node u, pa.

We study the queueing dynamics under a policy that routes all the packets that

belong to the same commodity and arrive at the same time, through a service chain

path or service chain Steiner tree. Let A(cO)(t) be the number of commodity-(c, #)

packets that arrive at the network at time t. Let T(c,), denote the path or tree

chosen under policy 7r at time t. Let A$4c'*(t) denote the number of packets that

arrive at the virtual communication queue (u, v) at time t. Recall that w(1,) and

x(O,' were defined before Definition A.1 in Section A.2.

A(j)'(t) = w(Oi)A(c,4)(t). (A.7)
(U (O,',)) ETVc,),7r

Let A('*7'(t) denote the number of packets that arrive at the virtual computation

queue at u at time t.

Ag'43''(t) = (O,')AC(t). (A.8)

(u4i1),u(O,i)) ET(c,O),7r

The virtual queue lengths Qu,(t) and Qu(t) evolve according to the following

recursion, where (a)+ = max(a, 0).

QUV(t + 1) = Quv(t) + Abjl' (t)- ,
~~~jv~L)(c,4)E(C,+)

QU(t + 1) = (t) + Af')'(t) - P) .

Dynamic routing policy r*: When A(cO) (t) packets arrive at time t, policy 7r*
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chooses a route T(c,O),* by minimizing

= zA( '+(t)Z( (t) { (,v( 01T

(u ,W( ,1U())EE()

+ ( (4Q()1{( ( u(0) 0E T(C O)} (A.9)
(+ 41s(')(t)1fuOi1 (l) zTCOI A9

Let the length of link (uO), v(4,)) be w(Ok')Quv(t), and the length of link (u(,'-), u(O,'))

be x(O,')Qu(t). For unicast traffic, the optimal path is the shortest path from s(0) to

d(4,M4). For multicast traffic, the optimal tree is the minimum Steiner tree from s(6,O)

to E(OMW).

Policy 7r* stabilizes the virtual system for any arrival rate in the interior of the

capacity region.

Theorem A.2. Under routing policy lr*, the virtual queue process {Q(t)}t>o is strongly

stable for any arrival rate that is in the interior of the capacity region. I.e.

lim sup4I ( 5 EQuv(t) + EQu(t) < 0.
T-+cao T _ L uve E

The proof of Theorem A.2 is based on Lyapunov drift analysis and can be found

in Appendix A.8.2. The queue stability implies that the arrival rate at each virtual

queue is no more than its service rate.

A.4 Control of the physical network

In this section, we formalize the connection between the virtual system and the

physical system, and develop a throughput-optimal control policy for a distributed

computing network. Recall that an admissible policy consists of two actions at every

time slot: 1) route selection, 2) packet scheduling.

The route selection for an incoming packet to the network is identical to the route
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selection 7r* in the virtual system. Suppose that a packet is served (i. e.both processed

by all the service functions and delivered to the destination) by the network. The

amount of traffic that the packet contributes to a physical queue Q, (or Q,) is the

same as the amount of traffic that it contributes to the virtual queue Qu, (or Qu).

Strong stability of virtual queues implies that the average arrival rate is at most the

service rate of each virtual queue under lr*. Therefore, by applying the same routing

policy to the physical system, the average arrival rate (or offered load) is at most the

service rate for each physical queue. The statement is made precise in the proof of

Theorem A.3.

A packet scheduling policy chooses a packet to transmit over a link or to process at

a node, when there are more than one packet awaiting service. It was proved in [103,

104] that an extended nearest-to-origin (ENTO) policy guarantees queue stability, as

long as the average arrival rate is no more than the service rate at each queue. The

ENTO policy gives higher priority to packets that have traveled a smaller number

of hops (i.e.closer to their origins). A duplicated packet (in multicast) inherits the

hop count of the original packet. In the proof of Theorem A.3, we show that this

policy guarantees the stability of physical queues even with flow scaling (i. e.one packet

processed by a first queue may enter a second queue in the form of multiple packets).

The resulting routing and scheduling policy, referred to as Universal Computing

Network Control (UCNC), is summarized in Algorithm A.1.

In Step 2, a commodity-(c, 0) packet enters the physical network and will be

transmitted and processed in GIntDep according to T(c,O),* C G")D by the mapping

in Proposition A.1. To implement the algorithm, the packet stores T(c,$),'*. At time

slot t' > t, if it has been processed by the first i functions and is at node u, then

it enters the physical queue for link (u, v) if (u(1,i), v(O,')) c T(c,4),"*. It enters the

computation queue at node u if (u(O'), u(04+ 1)) E T(c,O),'*. The packet is duplicated

(for multicast) if u(O,) has more than one outgoing edge in T(c),w*.

Theorem A.3. Under UCNC, all physical queues are rate stable for any arrival rate
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Algorithm A.1 Universal Computing Network Control (UCNC).

Initialization: QUV(0) = QU() = 0, V(u, v) E &, u E V.

At each time slot t:

1. Preprocessing. For an incoming commodity-(c, #) packet, construct a layered

graph Gl tDep. Let the cost of link (u(4 ,), v(O,')) be w(,')Q.,(t), and the cost of

link (u(4,''), u(4,I)) be x(4,)Qu(t).

2. Route Selection (7r*). Compute a minimum-cost route T(c,4),7* for a
commodity-(c, 4) incoming packet. The packet will follow T(c,O),r* for trans-
mission and processing.

3. Packet Scheduling (ENTO). Each physical link transmits packets and each
computation node processes packets according to the ENTO policy.

4. Virtual Queues Update.

Qu(t + 1) = (Qu(t) + ( A **(t) - pu) .

(c,)e(C,)

QU(t + 1) =(C~u(t) + ZA(c,),7r*(t

in the interior of the capacity region. I.e.

QUV (t)lim =0, W.p. 1, V(U, V) E E;
t-+00 t

lim Q( = 0, w.p. 1, Vu E V.
t-oo t

The proof can be found in Appendix A.8.3 and consists of two parts. The first part

is to prove that the average arrival rate is no more than the service rate of every link

and every computation node. The second part is to prove that under this condition,

the physical queues are stable under the ENTO policy. Using standard queue stability

analysis (e.g. [103]), we conclude that the policy is throughput-optimal.
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A.5 Simulation results

In this section, we evaluate the performance of UCNC in a distributed computing

network based on the Abilene network topology in Fig. A-4. For simplicity, we assume

that each link is bidirectional and has unit transmission capacity in each direction.

We evaluate the performance of UCNC for unicast traffic in Section A.5.1, and for

multicast traffic in Section A.5.2. In Sections A.5.1 and A.5.2, we consider a small

number of commodities, and assume that nodes 3 and 8 have unit computation ca-

pacity and that all the other nodes have zero computation capacity. In Section A.5.3,

we consider a larger number of commodities with a mix of unicast and multicast.

For unicast traffic, we compare UCNC with the backpressure-based algorithm

in [93]. While both algorithms are throughput-optimal, UCNC yields much shorter

packet delay. We also compare UCNC with heuristic policies such as choosing the

closest server to process the service functions, and observe that the heuristic poli-

cies are not always throughput-optimal. This demonstrates the importance of joint

optimization of communication and computation resources.

For multicast traffic, we illustrate the performance of UCNC, and compare the

capacity region under multicast traffic with the capacity region when multicast flows

are treated as multiple unicast flows. Numerical results indicate the ability to deliver

higher rates when multicast traffic can be served via proper packet duplications, as

opposed to creating independent copies for each destination. This confirms the im-

portance of the first throughput-optimal algorithm for multicast traffic in distributed

computing networks.

We compare different policies using the average delay metric. Note that we did not

claim any theoretical delay guarantee of UCNC (other than o(t) delay with probability

1 due to Little's law and Theorem A.3). Nevertheless, the delay metric is important

for quality of service. Moreover, queue lengths can be inferred from delay information.

Small delays indicate short queue lengths and therefore stable queues. Thus, we can

infer the capacity region under different policies using delay information.
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A.5.1 Unicast traffic

Comparison with backpressure-based algorithm

We consider two commodities of unicast traffic. The first commodity originates

at node 1 and is destined for node 11. The second commodity originates at node

4 and is destined for node 7. Packets in both commodities are processed by two

functions in a service chain. Let A, and A2 denote the expected arrival rates of the

two commodities, respectively. Ignoring all the scalings ( = r = 1), the computation

resource constraints are tight to support A, + A2 = 1. Thus, the capacity region is

A, + A2 < 1. Figure A-5 compares the average packet delays under UCNC and the

backpressure-based algorithm, for different arrival rates that satisfy A, = A2. We

observe that the average packet delays under UCNC are significantly lower than the

delays under the backpressure-based algorithm.

Comparison with nearest-to-destination service function placement

We compare the performance of UCNC with the heuristic of placing the service

functions in the computation node that is nearest to the destination. For a fair

comparison, the processing capacity of a single node should be sufficient. We consider

a single unicast commodity from node 2 to node 7. The service chain # has a single

function (0, 1) with flow scaling factor ((,) = 1/3 and computation requirement

r(OM = 1/3. The heuristic policy routes the packets from node 2 to node 8, which

is the closest computation node to node 7, processes the packets at node 8, and

routes the processed packets from node 8 to node 7. The average packet delays under

both algorithms are compared in Fig. A-6. Due to communication constraints, the

maximum rate that UCNC can support is A = 3, while the maximum rate that the

heuristic policy can support is A = 2. The heuristic policy fails to be throughput-

optimal when there is flow scaling (shrinkage) due to processing. This demonstrates

the importance of jointly optimizing communication and computation resources.
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Figure A-4: Abilene network topology.

Comparison with nearest-to-source service function placement

Placing a service function at the nearest-to-source computation node may decrease

the supportable service rate, when there is flow expansion. We consider a single

commodity from node 2 to node 7. The service chain 0 has a single function (#, 1) with

flow scaling factor &(,') = 3 and computation requirement r(",') = 1. The heuristic

policy routes the packets from node 2 to node 3, which is the closest computation

node to the source, processes the packets at node 3, and then routes the processed

packets from node 3 to node 7. The maximum flow rate from node 3 to node 7 is two.

Thus, the maximum supportable service rate is A = 2/3, which expands to a flow

of rate two after processing. In contrast, illustrated in Fig. A-7, UCNC is able to

support a service rate A = 1. This, again, demonstrates the need to jointly optimize

communication and computation resources.

A.5.2 Multicast traffic

We next study a multicast flow from node 1 to nodes 7 and 11. Suppose that

the service chain has two functions and that all the scaling factors , r are one. The

optimal policy is to process the packets at both nodes 3 and 8, and then duplicate the

processed packets and route them to the two destinations. The maximum supportable

service rate is A = 1 for both destinations. In contrast, if the multicast flow is treated

as two unicast flows, then the sum of the service rates to both destinations is one.
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Figure A-5: Comparison of average packet delay under UCNC and the delay under
the backpressure algorithm.
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Figure A-6: Comparison of average packet delay under UCNC and the nearest-to-
destination service function placement heuristic.
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Figure A-7: Comparison of average packet delay under UCNC and the nearest-to-
source service function placement heuristic.

Thus, multicasting improves the performance of the distributed computing network.

As shown in Fig. A-8, UCNC is throughput-optimal for multicast traffic, and the

average packet delays are small.

A.5.3 Large scale simulation

We evaluate the performance of UCNC under a large number of commodities.

We consider three service chains <) = {41, q 2 , 03 }. Services #1, q 2 have two functions

each, and 03 has three functions. The scaling factors , r are chosen independently

from a uniform distribution in [0.5, 2]. Each service chain processes four unicast flows

and two multicast flows, where the source and the destination(s) of each flow are

randomly chosen among all nodes that are at least two hops away. Thus, there are

a total of 18 commodities. Each function can be computed at four randomly chosen

computation nodes, each of which has unit capacity.

The average packet delays under the 18 mixed-cast commodities are shown in Fig.

A-9, where all commodities have identical arrival rate A. We observe that UCNC is

able to support rate A = 0.12. In contrast, when each multicast flow is treated as
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Figure A-8: Average packet delay of multicast traffic and when multicast is treated
as multiple unicast traffic.

multiple unicast flows, for a total of 24 commodities, the maximum supportable rate is

around A = 0.09. This demonstrates the importance of optimal control for multicast

traffic. The average packet delays under the backpressure-based algorithm, with

multicast flows treated as multiple unicast flows, are over 1000 for A E [0.01, 0.09],

substantially higher than under UCNC, and hence ommitted in the figure.

Finally, we also evaluated the performance of an algorithm that uses the routing

policy ir* and the First-In-First-Out (FIFO) scheduling policy for the physical queues.

Numerical results demonstrate that the average packet delays are close to the delays

under the ENTO scheduling policy, and are omitted for brevity. Thus, for practi-

cal purpose of dynamic control in distributed computing networks, FIFO scheduling

policy could also be used.

205



400 -

-E- unicast

-*-mixed-cast
300 -

200-

100 -

0
0 0.02 0.04 0.06 0.08 0.1

X
Figure A-9: Average packet delay of mixed-cast traffic and when multicast is treated
as multiple unicast traffic.

A.6 Extensions

A.6.1 Undirected network

In an undirected network where the sum of transmission rates in both directions

over a link is limited by the link capacity, the virtual queue updates should be modified

while all the other steps in the algorithm remain the same.

Each undirected link (u, v) is associated with a virtual queue. A packet contributes

an arrival to the queue if it plans to travel either from u to v, or from v to u. With this

modified queue evolution, under the routing policy 7r*, which routes a unicast packet

over a shortest path and routes a multicast packet over a minimum Steiner tree, all the

virtual queues are strongly stable for any arrival rate in the interior of the capacity

region. Thus, the sum of the average packet arrival rates to a link through both

directions is no more than the transmission capacity of the link. ENTO scheduling

policy still guarantees the stability of physical queues when the link is undirected.

Thus, the same routing and scheduling policy, with modified queue evolutions, is

throughput-optimal.
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A.6.2 Network throughput under approximate routing

The computation overhead will be reduced by allowing approximation in route

selection. Consider a routing policy 7ra that finds a path for a unicast packet and a

Steiner tree for a multicast packet whose cost is at most a > 1 times the minimum

cost. The routing policy 7ra and the ENTO scheduling policy are able to support

arrival rate vector A/a, where A is in the interior of the stability region.

The proof follows a similar approach, by comparing the Lyapunov drift under 7r'

with the (scaled) drift under a randomized policy that supports A/a.

A.6.3 Broadcast and anycast traffic

The broadcast traffic is a special case of the multicast traffic, where the destination

nodes of a commodity include all the nodes in V. At each time t, for a commodity-

(c, #) packet, the routing policy lr* computes a minimum Steiner tree that is rooted

at s (,o and connected to V(0,MO).

For anycast traffic, where a commodity-(c, #) packet is originated at s, and des-

tined for any node in Dc, a dummy node d' is added in G(O'DM). Links of zeroIntDep

cost are added from D.4,M) , ) The routing policy ir* computes a shortest

path from s.t'O to d'

A.6.4 Location-dependent computation requirements

UCNC can be extended to handle the problem where a service function (#, i) may

have different computation resource requirements at different computation nodes. For

route selection, the cost of an edge (u(+,'-), u(+,)) at time t is modified to x0 ()

where Q.(t) is the virtual queue length of u and xld'0 = r I Jj~_Z(Oij. The ru'0

denotes the computation resource requirement to process each unit of input flow by

function (#, i) at node u.
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A.7 Summary

We characterized the capacity region and developed the first throughput-optimal

control policy (UCNC) for unicast and multicast traffic in a distributed computing

network. UCNC handles both communication and computation constraints, flow

scaling through service function chains, and packet duplications. Simulation results

suggest that UCNC has superior performance compared with existing algorithms.

A.8 Proof of theorems

A.8.1 Restricted routes do not reduce the capacity region

Proof of Lemma A.1: We prove that, any packet that can be transmitted from

the source to the destination(s) by time t under a policy ir that uses arbitrary routes,

can also be transmitted from the source to the destination(s) by time t under a policy

7r' that only uses efficient routes. Then, by Eq. (A.2), any rate A that is supported

by 7r can also be supported by 7r'. By Eq. (A.3), any rate in the capacity region can

be supported by a policy that only uses efficient routes.

Consider a policy 7r that transmits the same packet to a node in G Dep more

than once. For unicast traffic, where there is no packet duplication, the packet travels

through one or more cycles. Moreover, each cycle must be in one layer of G(Dep and

the packet can not be processed while traveling through the cycle, since there is no

edge from G OCj to G f;2e) for i < j. Construct a policy 7r' that removes all the

cycles and transmission schedules on the cycle links. Any packet that arrives at a

node (e.g.the destination) by time t under ir can also arrive at the same node by time

t under 7r'.

For multicast traffic, if a packet visits the same node u ) E G(Dep more than

once under policy ir, then there are two possibilities.

1. The packet travels through one or more cycles in G(6).

2. A packet is duplicated at another node v and more than one copy has traveled
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Figure A-10: Micro packets in an efficient route. The sizes of a micro packet on a link
in G(" , link (u(,0), u(+,1)), and a link in G(O"e) are 1/6, 1/2, and 1/3, respectively.i IntDep' k (t'ke),
Scaling factors: x(0,1 = 3; w(,1) = 2.

through some links and reached u(",).

To construct a policy 7r' that only uses efficient routes, we handle the first case in

the same manner as the unicast case. L e., remove all the cycles and the transmission

schedules of the packet on the cycles. For the second case, policy 7r' only keeps the

routing and scheduling of the packet that first arrives at u(O,), and removes all the

duplications that arrive later. If the packet needs to be transmitted through more

than one outgoing link from u(+,Z) under 7r, then duplications occur at uOZ) and the

duplicated copies follow the same routes and schedules as 7r.

It is easy to check that the time that a packet visits a node under 7r' is the first

time that the packet visits the node under ir. By repeating the process until no packet

visits the same node more than once, the policy 7r' only uses efficient routes.

Remark: If all scaling factors w, x are one, then an efficient route for a unicast

packet is a path from the source to the destination. An efficient route for a multicast

packet is a Steiner tree from the source to the destinations.

Proof of Theorem A.1: If w(0, ) x(4,i = 1, V E <D, i E{ .. . , M0}, the theorem
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follows immediately from Lemma A.1. Next we study arbitrary (rational) scaling

factors. We divide a packet into micro packets, and represent the routes of a packet

by the composition of paths (or Steiner trees) of micro packets. 3

Unicast traffic: Consider a policy ir' that chooses an efficient route Ep for a

unicast packet of commodity (c, #). We assume that a rational number of packets are

routed in each link. A micro packet is designed such that it changes size as it travels

through the layered graph. Let w(,')/z be the size of the micro packet on a link in

G O). Let x(O')/z be the size of the micro packet on a link that connects G

and Gtep. The choice of z satisfies the following two constraints.

1. All the links in Ep carry an integer number of micro packets.

2. Every packet is divided to an integer number of micro packets. 4

Fig. A-10 illustrates the decomposition into micro packets.

Due to the generalized flow conservation law for unicast traffic and the choice of

micro packet sizes, the total number of incoming micro packets to a node equals the

total number of outgoing micro packets from a node. In other words, every outgoing

micro packet can be associated with an incoming micro packet, and they can be

viewed to have the same identity. The links that carry micro packets with the same

identity form a path. Since the routing is efficient, the path is acyclic. The route E,

can be viewed as a convex combination of service chain paths. More precisely, let Pk

be the number of micro packets with different identities that travel through a path

T '). Let T(c,) be the set of paths from s( 'O) to d The number of packets

that travel through a link (u()'), v(O')) is

W'Pk 1{(u(O,), v(0')) E TC }.

3The decomposition into micro packets is mostly useful for the analysis of multicast flow and can
be bypassed in the analysis of unicast flow. However, we choose to use the decomposition for both
unicast and multicast flows, for a unified treatment of the two cases.

4The second constraint is necessary only for multicast flows.
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The number of packets that travel through a link (u(O'- 1 ), u(,")) is

Remark: Two micro packets with different identities are distinct (i. e.they carry

different information). Micro packets that have the same identity can be viewed

to carry the same (raw) information. More specifically, we assume that a function

(0, i) takes a micro packet as an input and then outputs a micro packet with the

same identity. Equivalently, in G when a micro packet travels through a linkIntDep'

in GI(te', a link that connects G -', and G(n; , and a link in G it has the

same identity with possibly different sizes on the three links. In Fig. A-10, each color

represents an identity.

Multicast traffic: The sizes of a micro packet are determined in the same manner

as in the unicast case. Consider a node where there is no packet duplication. The total

number of incoming micro packets equals the total number of outgoing micro packets,

and every outgoing micro packet can be associated with an incoming micro packet.

Both have the same identity. Consider a node where some packets P are duplicated.

All the micro packets that are contained in P are duplicated as well. A duplication

of a micro packet inherit the same identity as the original micro packet. Every micro

packet follows the same route as the packet that contains the micro packet. The

key observation is that a micro packet is never split under this construction, because

all the links carry an integer number of micro packets and every packet contains an

integer number of micro packets. Due to the efficient routing assumption, the micro

packets that have the same identity never visit the same node in G5Dep more than

once. Thus, the route of the micro packets that have the same identity form a service

chain Steiner tree. The multicast flow can be viewed as a convex combination of

service chain Steiner trees.
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A.8.2 Stability of the virtual queues

Proof of Theorem A.2: We consider a quadratic Lyapunov function L(Q(t)) =

Z(u,v)EE Q o(t) + ZueV Q2(t). The following inequality holds for all Q.

Q2(t + 1) < (Q(t) + A(c,-),-(t) _ I)2

< Q2 (t) + (A(cO),7 gt))2 + p2

+ 2Q(t)A(O)'7(t) - 2Q(t)p.

Let A,7r(t) = Z(c,)E(o) A$2e''(t); A,"(t) = E(c)E(C,+) A$''7)''(t). The Lyapupov

drift A7(t) is upper bounded by

Ar(t) = E(L(Q(t + 1)) - L(Q(t)) Q(t))

< B + 2 E QU(t) E(A," (t)IQ(t)) -

(u,v)EE

+2E Qu(t) E(A (t)jQ(t)) - pu

(A.10)

where

B = ( E(A A"(t))2 +/t

(u,v)E\

+ +" 2

< S E E (w(oi)) 2 E(A(c,+)(t)) 2

(u,v)E& (c,O)E(C,) iE {O.M4}

+ ((,i))2 E(A(C) (t))2
uEV (c,O)E(C,) iE{1,. Mo}

+ E + p.

(u,v)ES uEV

For finite second moment of exogenous arrivals E(A(',) (t)) 2 and finite scaling factors,

B is finite.
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We next prove that the drift A'(t) is negative for sufficiently large Q(t), by com-

paring A (t) with the drift of a randomized policy. For any X in the interior of the

capacity region, there exists c > 0 such that (1 + E)X c A(GIntDep, C, 4D). The rate

A = (1+E)X satisfies the constraints (A.4), (A.5) and (A.6). Let A(c') = (1 +E)C'),
, ,

Vk) ,~

(1 + E)A(C, )=(1 + E)( ,C), V(c, #) E (C, OP),

0(1i)(1 + E)AIC"') PUL, V(u, v) E ,
(k,i,C,O)ESuv

(k,i,c,4)ES,

Vu C V.

The randomized policy routes each incoming commodity-(c, 4) packet along T"c'*) c

with probability cC')/A(c,4), c, . The expected arrival rates to Qu, and Qu
at every time t are

EA rand _

EA rand _

ES

5 x(x,i)ES c,) / + )

Recall Eq. (A.9). Upon the arrival of A(c',)(t) commodity-(c,

7r* chooses a route T(c'),'* that achieves the minimum

#) packets, policy

mn ( Q((t)A J'Nt) + E Qu(t)A(t).
(u,V)EE uEV

The randomized policy randomly chooses T c") E -(c') which has an equal or larger

weight. Conditional on queue lengths Q(t), taking expectation over the random

variable A(c,O)(t) and the random actions in the randomized policy,

(uv t ) (A),O,&Qu,(t)E( j;)'(t) 1((t))

(U'V)EE
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+ Qu(t)E(A e '7'(t) Q(t))
UEV

< Qu,(t)E(A c,4*),rand

(u,v)GE

+( Q~t)(Ac,),rand+ p s f (t) IQ))
UEV

Summing over all commodity packets, for each link (u, v),

E1
(cE(A(cCA),ran

(C,O)E(C,4))

Similar equalities hold for E(A"* (t)IQ(t)) and E(Arand(t)IQ(t)). Therefore, we obtain

SQuv(t )E ( A7"* (t) I Q(t
(u,v)EE

( E Quv(t)E(Arand |
(U'v)CE

)) + Z Qu(t)E(A U* (t)1Q(t) )
uEV

+S Qu(t)E(Arand(t)IQ(t)).
tEV

The action of the randomized policy does not depend on the queue length Q(t).

Therefore, E(Arand(t)IQ(t)) = EArand(t) and E(A rand(t)IQ(t)) = EA and(t). Let E' =

min(puv, pu). The drift of policy 7r* can be upper bounded by

A 7 * (t) B + 2 E Quv(t)
(Uv)eE

+ 2E Qu(t) E(A "* (t)IQ(t)) -
UEV

<B + 2 E QUv(t)
(u,v)EE

<B

(A nd(t) -

\EU 
u

+ 2 Qu(t) EArand _

- 2c'( QUv(t)+ZQU(t) .
\ (u,v)EE UEV/
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Taking expectation over the virtual queue lengths Q(t),

EL(Q(t + 1)) - EL(Q(t)) < B

- 2E' ( ( EQ,(t) +E E,(t)l. (A.11)
\(U'V)EEF UEV

Summing Eq. (A.11) from t = 0, ... , T - 1, and noting that L(Q(T)) > 0,

L(Q(0)) = 0, we obtain

1EQuv(t)+ EQ (t) B .

t=7 (UV)ES UEV

By taking limsup on both sides, we have proved that all the queues are strongly

stable.

A.8.3 Stability of the physical queues

Before the proof, we first discuss the the intuitions on what makes a queue unsta-

ble and why the extended nearest-to-origin (ENTO) scheduling policy stabilizes the

queue. Consider external packets arriving at a network, each of which has a specified

path to travel. If the rate of external arrivals that will use link e is no more than

the service rate of e, the only cause of instability of the queue at e is the variation of

packet delays before reaching e. The packets may take different paths and experience

different queueing delays. Within some time period, the actual arrival rate to e can

be higher than the service rate of e. The rate increase can be viewed as the contri-

bution from the old packets in other queues (in contrast with the fresh packets that

just arrived). The ENTO policy gives a higher priority to a packet that has traveled

a smaller number of hops. Thus, few packets that have traveled a small number of

hops are queued. These packets do not contribute much to the actual arrival rate to

a subsequent queue. Thus, few packets that have traveled a slightly more number of

hops are queued, because the only old packets that have higher priorities are those

packets that have traveled a small number of hops. By induction, not many packets
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are in each queue, regardless of the number of hops that they have traveled, and thus

the queues are stable.

In the following, we first show that, within any time interval, the packets that

arrive at the network do not contribute to a physical link e much more traffic than

what can be transmitted through e. Then we prove that ENTO stabilizes the queue.

The first proof is identical to [103]. The second proof is similar, but takes care of flow

scaling and cyclic routes.

Average arrival rate is no more than the service rate for every physical

queue

For simplicity, we augment each computation node in the original graph GlntDep

by a self-loop that represents the computation queue. We denote the set of all links

and self-loops by E.

Since the virtual queues are strongly stable under policy ir* (Theorem A.2), all

the virtual queues are rate stable (Lemma 1 in [103]).

lim Qt = 0, V(u, v) E , w.p. 1.
t-+oo t

Almost surely for any sample path w E Q (i.e.a realization of random arrivals),

Ae(w;to,t) ; Se(w;to,t)+Fe(w;t), e E, (A.12)

where Ae(w; to, t) = -' A"* (w; -r) is the total number of packets that arrive at

virtual queue Qe during time [to, t) under policy lr* and sample path w; S,(w; to, t) =

t Pe = (t-tO)Pe is the total number of packets that can be served by e; Fe(w; t) =

o(t) (i.e.limt,÷, Fe(w; t)/t = 0). Eq. (A.12) implies that the average arrival rate to

the virtual queue Qe is no more than the service rate of e.

Next, we relate the arrival rate at a virtual queue to the arrival rate at a physical

queue. Since the routing policy for the physical system is identical to the routing

policy r* for the virtual system, the exogenous packets that arrive at the network at
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time t contribute a total of Ae(to, t) packets to e during the course of their service in

the physical system. (Recall that a packet with a scaled size enters a virtual queue

of a link immediately if the link is part of its route.)

ENTO stabilizes the physical queues

We aim to prove that ENTO stabilizes the physical queues for any sample path

w that satisfies Eq. (A.12). In particular, we aim to prove

I Q, ; 0)lim = 0, Ve E S. (A.13)
t-+oo t

Then, ENTO stabilizes the physical queues almost surely because Eq. (A.12) holds

for almost all sample paths.

lim Qe(t) 0, w.p. 1, Ve E .
t-+oo t

For simplicity of presentation, we drop the w in the notations and focus on one

sample path. It has been shown in [103 that there exists a non-decreasing non-

negative function M(t) = o(t) such that

Ae(to, t) Se(to, t) + M(t), Ve E &, to t. (A.14)

We introduce a few new notations. A hop-k packet is a packet that has traveled k

hops from the origin. The processing at a computation node is also considered as one

hop. A duplication of a packet inherits the hop of the original packet. The packets

entering the network during [to, t) contribute to e a total of Ae(to, t) packets. Among

these packets, A k(to, t) packets use e as their (k + 1)-th hop, and they are hop-k

packets whiling waiting to cross e. Let M" = maxo MO + 1 denote the maximum

number of functions in any service chain plus one. The maximum number of hops

that a packet travels under the routing policy 7r* is nM", where n is the number of
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nodes in GIntDep. By definition,

nM"-1

Ae~t~t )= ( k (to, t).
k=O

Let

mx max(W(O,j) , X(O,5))
OE(D,O<i<j<.M4 min~WO, X(O'i))

denote the maximum aggregated scaling factor. L e.each packet that departs one link

contributes to at most -y packets to any subsequent link in G(Dep. Note that the

value Ae(to, t) has taken the scalings into consideration, i.e.Eqs. (A.7) and (A.8).

Let Qe(t) denote the physical queue length at e at time t. Let Q'(t) denote the

number of hop-k packets in the queue at e at time t. Let Qk(t) =Ee, Q' denote

the total number of hop-k packets in the network at time t. We prove by induction

that Qk(t) = o(t) for all k E {0,... , nMmax - 1}.

Base step k = 0: Let to < t be the largest time at which no hop-0 packet were

waiting to cross a specified link e. If no such time exists, to = 0. During [to, t), at

most A?(to, t) < Ae(to, t) S,(to, t) + M(t) hop-0 packets arrived at e, by Eq. (A.14).

Moreover, e is constantly transmitting hop-0 packets, for a total of S,(to, t) packets,

because hop-0 packets have the highest priority and there are always hop-0 packets

waiting to cross e by the choice of to. Therefore,

Q (t) < Se(to,t) + M (t) - Se(to,t) = M(t).

There are at most in = |1 + VI physical queues. Therefore, Q0 (t) irtM(t). Let

B0 (t) = mn-M(t) = o(t). Note that B0 (t) is non-decreasing in t.

Induction step: Suppose that Qj(t) < Bj(t) for all 0 < j < k, where Bi(t) = o(t)

is non-decreasing. We aim to prove that Qk(t) < Bk(t), for a non-decreasing Bk(t) =

o(t). Let to be the largest time at which no hop-k packets were waiting to cross a

specified link e. Let to = 0 if no such time exists.

The new packets that arrive at the network during [to, t) contributes at most

A'(to, t) hop-k packets to e by time t. The old packets that were already in the
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network by time to contributes to e at most ^y Eo<j<k Bi(to) hop-k packets, because

each of the EO<j k Bi(to) old packets of hop fewer than k contributes at most -y hop-

k packets to e. Note that the old packets of hop more than k never become hop-k

packets again.

Next we bound the number of packets of hop fewer than k that are transmitted

through e during [to, t). The new packets that arrive at the network during [to, t)

contribute to e at most EOj<k Ai(to, t) packets of hop fewer than k. Each old packet

contributes at most -y hop-j packets (0 < j < k). Thus, the total number of packets

of hop fewer than k contributed by one old packet is at most -yk. For a total of

k Bi (to) old packets, at most "yk Z0 <* k Bi (to) packets of hop fewer than k

travel through e during [to, t).

The link is consistently processing packets of hop no more than k during [to, t),

by the choice of to. The packets that have hop fewer than k have a higher priority

than the hop-k packets. Thus, the number of hop-k packets that are processed by e

is at least max(0, Se(tot) - Zo A (tot) - 'yk Eo< kB(to))

The number of hop-k packets at queue e at time t is at most

Qk(t) A Ak (to, t) +7 Bi (to)
O<j<k

- (Se(to,t) - E Ai(to,t) - yk E Bi(to))
Og j<k Og j<k

< 1 (k + 1) ] Bi(to)+ M(t).
Ogj<k

Let Bk(t) = -1(k + 1) Eo 3 <k Bi(t) + M(t). Since M(t) and Bj(t) are non-

decreasing in t for 0 < j < k, Be(t) is a non-decreasing function and B,(t) >

y(k + 1) Eo Bi(to) + M(t). We have Qk(t) < Bk(t). Since Bi(t) = o(t) for

0 < j < k and M(t) = o(t), we have Bk(t) = o(t). Let Bk(t) - Zeeg Bi(t) = nB|(t).

It is easy to check that Bk(t) = o(t) is a non-decreasing function.

We have proved that Qk(t) = o(t) for all k. Then, the sum of all queue lengths

ZeEs Qe(t) = Ek Qk(t) = o(t). Therefore, all the physical queues are stable, and

Eq. (A.13) holds.
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