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Abstract A search is presented for decays of Z and Higgs
bosons to a J/ψ meson and a photon, with the subsequent
decay of the J/ψ to μ+μ−. The analysis uses data from
proton-proton collisions with an integrated luminosity of
35.9 fb−1 at

√
s = 13 TeV collected with the CMS detec-

tor at the LHC. The observed limit on the Z → J/ψγ decay
branching fraction, assuming that the J/ψ meson is produced
unpolarized, is 1.4 × 10−6 at 95% confidence level, which
corresponds to a rate higher than expected in the standard
model by a factor of 15. For extreme-polarization scenar-
ios, the observed limit changes from −13.6 to +8.6% with
respect to the unpolarized scenario. The observed upper limit
on the branching fraction for H → J/ψγ where the J/ψ
meson is assumed to be transversely polarized is 7.6×10−4,
a factor of 260 larger than the standard model prediction.
The results for the Higgs boson are combined with previous
data from proton-proton collisions at

√
s = 8 TeV to pro-

duce an observed upper limit on the branching fraction for
H → J/ψγ that is a factor of 220 larger than the standard
model value.

1 Introduction

A new boson with a mass of 125 GeV was observed in
data from the ATLAS and CMS experiments at the CERN
LHC [1–7]. All measurements of the properties of this boson
are consistent with those of the Higgs boson (H) of the stan-
dard model (SM). However, the Yukawa couplings of the
Higgs boson to the first- and second-generation quarks are
currently only weakly constrained. Rare exclusive decays
of the Higgs boson to mesons in association with a pho-
ton can be used to explore such couplings. For example, the
H → J/ψγ decay can probe the Higgs boson coupling to
the charm quark [8]. The corresponding decay, Z → J/ψγ ,
can be used as an experimental benchmark in the search for
H → J/ψγ [9,10], and in checking approaches to factoriza-
tion in quantum chromodynamics (QCD) used to estimate

� e-mail: cms-publication-committee-chair@cern.ch

branching fractions (B) in radiative decays of electroweak
bosons [11].

Both Z and Higgs boson decays receive contributions from
direct and indirect processes. In the direct process, Z and
Higgs bosons couple to charm quarks, and charm quarks then
hadronize to form J/ψ mesons. In the indirect process, the
Z and Higgs bosons decay through quark or W boson loops
to γ γ ∗, and the γ ∗ then converts to a cc resonant state. The
lowest order Feynman diagrams for these decay modes are
shown in Fig. 1. The latest SM calculations of the branching
fractions of both decays, taking into account the interference
between direct and indirect processes, are [12,13]:

BSM(Z → J/ψγ ) = (9.0+1.5
−1.4) × 10−8, (1)

BSM(H → J/ψγ ) = (3.0+0.2
−0.2) × 10−6. (2)

Modified Hcc couplings can arise in certain extensions of the
SM [14]. For example, within the context of effective field
theory, the Hcc coupling may be modified in the presence
of a dimension-six operator, leading to an enhancement of
coupling relative to the SM at the cutoff scale � that can be
as small as 30 TeV. This provides no other signature of new
physics at the LHC. In the two Higgs doublet model with
minimal flavor violation [15,16], the Hcc coupling can be
significantly enhanced by breaking flavor symmetry, while
other couplings are not severely affected. The composite
pseudo-Nambu-Goldstone boson model [17] parametrizes
the coupling by the degree of compositeness and composite-
ness scale. The coupling can be constrained through a direct
experimental search for the composite particles associated
with the charm quark [18].

Deviations from SM predictions for the couplings can
affect the interference terms and result in changes to the
branching fractions. For example, the shift in the branching
fraction for H → J/ψγ can be more than 100% if the Hcc
coupling deviates from its SM value by more than a factor
of 2 [8]. Since this Higgs boson decay is sensitive to the Hcc
coupling, a measurement of the branching fraction can ver-
ify whether the Higgs boson couples to second-generation
quarks with the strength predicted by the SM.
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Fig. 1 Lowest order Feynman diagrams for the Z (or H)→ J/ψγ decay. The left-most diagram shows the direct and the remaining diagrams the
indirect processes

The ATLAS experiment has searched for the decay Z →
J/ψγ in proton-proton (pp) collisions collected at

√
s =

8 TeV [19]. The respective observed and expected upper
limits at 95% confidence level (CL) on the branching frac-
tion were reported to be 2.6 and 2.0+1.0

−0.6 × 10−6, where
the subscript and superscript reflect the range in the 68%
central-quantiles of upper limits assuming a background-
only hypothesis. Searches for the H → J/ψγ decay were
performed by ATLAS and CMS in pp collisions collected at√
s = 8 TeV [19,20]. The respective observed and expected

upper limits in the branching fractions were 1.5 and 1.2+0.6
−0.3×

10−3 from ATLAS, and 1.5 and 1.6+0.8
−0.8 × 10−3 from CMS.

The ATLAS experiment performed similar searches for both
the Z and Higgs boson decays in pp collisions collected at√
s = 13 TeV. The respective observed and expected upper

limits on the branching fractions were 2.3 and 1.1+0.5
−0.3×10−6

for the Z boson decay, and 3.5 and 3.0+1.4
−0.8 × 10−4 for

the Higgs boson decay [21]. The ATLAS experiment also
searched for the H → cc decay in pp → ZH production in
data collected at

√
s = 13 TeV [22], and reported observed

and expected limits on the ratio σ(pp → ZH) ×B(H → cc)
relative to the SM prediction of 110 and 150+80

−40 respectively,
where σ(pp → ZH) × B(H → cc) is the upper limit for the
cross section.

The results presented in this paper are based on pp col-
lisions at

√
s = 13 TeV recorded with the CMS detector,

corresponding to an integrated luminosity of 35.9 fb−1.

2 The CMS detector

A detailed description of the CMS detector, together with
a definition of the coordinate system used and the relevant
kinematic variables, can be found in Ref. [23]. The central
feature of the CMS apparatus is a superconducting solenoid,
13 m in length and 6 m in internal diameter, providing an
axial magnetic field of 3.8 T. Within the solenoid volume are
a silicon pixel and strip tracker, a lead tungstate crystal elec-
tromagnetic calorimeter (ECAL), and a brass and scintillator

hadron calorimeter (HCAL), each composed of a barrel and
two endcap sections. Forward calorimeters extend the pseu-
dorapidity (η) coverage provided by the barrel and endcap
detectors. Muons are detected in gas-ionization chambers
embedded in the steel flux-return yoke outside the solenoid.

The silicon tracker measures charged particles within the
range |η| < 2.5. It consists of 1440 silicon pixel and 15 148
silicon strip detector modules. For non-isolated particles with
transverse momentum, pT, between 1 and 10 GeV and |η| <

1.4, the track resolutions are typically 1.5% in pT and 25–90
(45–150) μm in the transverse (longitudinal) direction [24].

The ECAL consists of 75 848 crystals, which provide
coverage in |η| < 1.479 in the barrel region (EB) and
1.479 < |η| < 3.000 in the two endcap regions (EE). The
preshower detectors, each consisting of two planes of silicon
sensors interleaved with a total of 3X0 of lead are located in
front of the EE [25,26]. In the barrel section of the ECAL, an
energy resolution of about 1% is achieved for unconverted or
late-converting photons in the tens of GeV energy range. The
remaining barrel photons have a resolution of about 1.3% up
to |η| = 1, rising to about 2.5% at |η| = 1.4. In the endcaps,
the resolution of unconverted or late-converting photons is
about 2.5%, while the remaining endcap photons have a res-
olution between 3 and 4% [26].

Muons are measured in the range |η| < 2.4, with detec-
tion planes made using three technologies: drift tubes, cath-
ode strip chambers, and resistive plate chambers. Matching
muons to tracks measured in the silicon tracker results in a
relative pT resolution, for muons with pT up to 100 GeV,
of 1% in the barrel and 3% in the endcaps. The pT resolu-
tion in the barrel is better than 7% for muons with pT up to
1 TeV [27].

A two-tier trigger system selects collision events of inter-
est. The first level (L1) of the CMS trigger system [28], com-
posed of custom hardware processors, uses information from
the calorimeters and muon detectors to select the most inter-
esting events in a fixed time interval of less than 4 µs. The
high-level trigger processor farm further decreases the event
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rate from around 100 kHz to less than 1 kHz, before data stor-
age.

3 Data and simulated samples

The L1 trigger requires the presence of a muon with pT

greater than 5 GeV and an isolated electromagnetic object
with pT greater than 18 GeV. The HLT algorithm requires the
presence of a muon and a photon with pT exceeding 17 and
30 GeV, respectively. No isolation requirement is imposed on
the muons because of the small angular separation expected
between the muons in signal events. No further isolation con-
straint is required for the photon. The trigger efficiency for
events satisfying the selection used in the analysis is deter-
mined using a high-purity (∼ 97%) Z → μμγ control sam-
ple; it is measured to be 82 ± 0.7% in data and 83 ± 0.4% in
simulated events.

Simulated samples of the Z and Higgs boson decays are
used to estimate the expected signal yields and model the
kinematic distributions of signal events. The Z → J/ψγ →
μμγ sample, with mZ = 91.2 GeV [29], is produced with
the pythia 8.226 Monte Carlo (MC) event generator [30,31],
with hadronization and fragmentation using underlying event
tune CUETP8M1 [32]. The parton distribution function
(PDF) set used is NNPDF3.0 [33]. The SM Z boson produc-
tion cross section includes the next-to-next-to-leading order
(NNLO) QCD contributions, and the next-to-leading order
(NLO) electroweak corrections from fewz 3.1 [34] calcu-
lated using the NLO PDF set NNPDF3.0. The Z boson pT is
reweighted to match the NLO calculation [35–37].

The H → J/ψγ → μμγ sample with mH = 125 GeV is
produced with the powheg v2.0 MC event generator [35,36]
and includes gluon-gluon fusion (ggF), vector boson fusion
(VBF), associated vector boson production (VH), and asso-
ciated top quark pair production (ttH). The generator is
interfaced with pythia 8.212 [30,31] for hadronization and
fragmentation with tune CUETP8M1. The PDF set used is
NNPDF3.0. The SM Higgs boson cross section is taken from
the LHC Higgs cross section working group recommenda-
tions [38].

In the SM, the J/ψ meson from the Higgs boson decay
must be fully transversely polarized in helicity frame (λθ =
+1, as described in Ref. [39]), because the Higgs boson has
spin 0, and the photon is transversely polarized. Since the
polarization of the J/ψ meson is not correctly simulated in
the signal samples, a reweighting factor is applied to each
event to emulate the effect of polarization. The reweighting
procedure results in a decrease of the signal acceptance by
7.0%. For the Z boson decay, the helicity of the J/ψ meson
depends on that of the Z boson, which can have multiple
helicity states. The results from the Z boson polarization
measurement [40,41] are not used to constrain the helicity
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Fig. 2 The lowest order Feynman diagrams for the Drell-Yan process
in pp → Z → μμγ . The background exhibits a peak in mμμγ at the Z
boson mass

of the J/ψ meson in this analysis. The nominal results are
obtained using a signal acceptance calculated for the unpo-
larized case. Assuming that the J/ψ is produced with full
transverse or longitudinal polarization (λθ = +1 or −1)
changes the acceptance by −7.8% or +15.6%, respectively.

The Drell-Yan process, pp → Z → μμγ , produces the
same final state as the signal. This process exhibits a peak
at the Z boson mass, mZ, in the three-body invariant mass,
mμμγ , as do the signal events, and it is therefore referred
to as a resonant background. This background is included
when deriving the upper limit on the branching fraction for
Z → J/ψγ . The lowest order Feynman diagrams for the
pp → Z → μμγ process are shown in Fig. 2. The Mad-
Graph5_amc@nlo 2.6.0 matrix element generator [37] is
used to generate a sample of these resonant background
events at leading order with the NNPDF3.0 PDF set, inter-
faced with pythia8.226 for parton showering and hadroniza-
tion with tune CUETP8M1. The photons in these events are
all produced in final-state radiation from the Z → μμ decay,
and therefore the mμμγ distribution peaks at the Z boson
mass without a continuum contribution.

Similarly, the Higgs boson Dalitz decay [42], H →
γ ∗γ → μμγ , is a resonant background to H → J/ψγ

decay. The lowest order Feynman diagrams for the H →
γ ∗γ process are shown in Fig. 3. Samples of the Higgs
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Fig. 3 The lowest order Feynman diagrams for the Higgs boson Dalitz
decay of H → γ ∗γ → μμγ . The background exhibits a peak in mμμγ

at the Higgs boson mass

boson Dalitz decays, produced via ggF, VBF, VH modes
for mH = 125 GeV, are simulated at NLO using the Mad-
Graph5_amc@nlo generator interfaced with pythia 8.212
for parton showering and hadronization. The ttH contribution
is accounted for by scaling the VBF signal to the ttH produc-
tion cross section. The branching fraction for H → γ ∗γ is
obtained from themcfm 7.0.1 program [43]. The other source
of resonant background is the decay of a Higgs boson into two
muons with a photon radiated from one of the muons. After
the event selection, described in Sect. 4, the contribution of
this background is negligible.

There are also background processes that do not give reso-
nant peaks in the three-body invariant mass spectrum. These
are referred to as nonresonant backgrounds. These processes
include: (1) inclusive quarkonium production associated with
either jets or photons where energetic jets can be misiden-
tified as a photon (pp → J/ψ + jets/γ ), (2) the Drell-Yan
process with associated jets (pp → Z/γ ∗+jets), and (3) asso-
ciated photons plus jets production (pp → γ + jets). These
nonresonant backgrounds, which are discussed in Sect. 5, are
modeled using fits to the mμμγ distributions in data.

All generated events are processed through a detailed sim-
ulation of the CMS detector based on Geant4 [44]. Simul-
taneous pp interactions that overlap the event of interest
(pileup) are included in the simulated samples. The distri-
bution of the number of additional pileup interactions per
event in the simulation corresponds to that observed in the
13 TeV data collected in 2016.

4 Event reconstruction and selection

The global event reconstruction (also called particle-flow
event reconstruction [45]) reconstructs and identifies each
individual particle in an event with an optimized combination
of all subdetector information. In this process, the identifi-
cation of the particle type (photon, electron, muon, charged
hadron or neutral hadron) plays an important role in the deter-
mination of the particle direction and energy. Photons (e.g.,
coming from π0 decays or from electron bremsstrahlung) are
identified as ECAL energy clusters not linked to the extrap-
olation to the ECAL of any charged particle trajectory. Elec-
trons are identified as a primary charged particle track with
one or more ECAL energy clusters consistent with the extrap-
olation of this track to the ECAL or with bremsstrahlung
photons emitted as the electron passes through the tracker
material. Muons (e.g., from b-hadron semileptonic decays)
are identified as a track in the central tracker consistent with
either a track or several hits in the muon system, and asso-
ciated with calorimeter deposits compatible with the muon
hypothesis. Charged hadrons are identified as charged par-
ticle tracks that are not identified as electrons or muons.
Finally, neutral hadrons are identified as either HCAL energy
clusters not linked to any charged hadron trajectory or ECAL
and HCAL energy excesses with respect to any expected
charged hadron energy deposit.

The high instantaneous luminosity of the LHC results
in multiple pp interactions per bunch crossing. The recon-
structed vertex with the largest value of summed physics-
object p2

T is the primary pp interaction vertex. The physics
objects are the jets, clustered using the anti-kT jet finding
algorithm [46,47] with the tracks assigned to the vertex as
inputs, and the associated missing pT, taken as the negative
vector pT sum of those jets.

123



Eur. Phys. J. C            (2019) 79:94 Page 5 of 27    94 

Photon and electron candidates are reconstructed by sum-
ming and clustering the energy deposits in the ECAL crys-
tals. Groups of these clusters, called superclusters, are com-
bined to recover the bremsstrahlung energy of electrons and
converted photons passing through the tracker. In the end-
caps, preshower energy is added in the region covered by the
preshower (1.65 < |η| < 2.60). The clustering algorithms
result in an almost complete recovery of the energy of pho-
tons.

A multivariate discriminant is used to identify photon
candidates. The inputs to the discriminant are the isolation
variables, the ratio of hadronic energy in the HCAL towers
behind the superclusters to the electromagnetic energy in the
superclusters, and the transverse width of the electromagnetic
shower. A conversion-safe electron veto [26], which requires
no charged-particle track with a hit in the inner layer of the
pixel detector pointing to the photon cluster in the ECAL,
is applied to avoid misidentifying an electron as a converted
photon. Photons are required to be reconstructed within the
region |η| < 2.5, although those in the ECAL transition
region 1.44 < |η| < 1.57 are excluded from the analy-
sis. The efficiency of the photon identification procedure is
measured with Z → ee events using “tag-and-probe” tech-
niques [48], and is between 84–91 (77–94)%, depending on
the transverse energy ET, in the barrel (endcap). The electron
veto efficiencies are measured with Z → μμγ events, where
the photon is produced by final-state radiation, and found to
be 98 (94)% in the barrel (endcap).

Muons are reconstructed by combining information from
the silicon tracker and the muon system [49]. The matching
between the inner and outer tracks proceeds either outside-in,
starting from a track in the muon system, or inside-out, start-
ing from a track in the silicon tracker. In the latter case, tracks
that match track segments in only one or two planes of the
muon system are also included in the analysis to ensure that
very low-pT muons that may not have sufficient energy to
penetrate the entire muon system are retained. Muons recon-
structed only in the muon system are not retained for the
analysis. In order to avoid reconstructing a single muon as
multiple muons, whenever two muons share more than half
of their segments, the one with lower reconstruction qual-
ity is removed. The compatibility with a minimum ionizing
particle signature expected in the calorimeters is taken into
account [50]. Muons with pT > 4 GeV and |η| < 2.4 are
accepted.

To suppress muons originating from in-flight decays of
hadrons, the impact parameter of each muon track, defined
as its distance of closest approach to the primary event vertex
position, is required to be less than 0.5 (1.0) cm in the trans-
verse (longitudinal) plane. In addition, the three-dimensional
impact parameter is required to be less than four times its
uncertainty. A cone of size ΔR =

√
(Δφ)2 + (Δη)2 = 0.3

is constructed around the momentum direction of each muon

candidate, where φ is the azimuthal angle in radians. The rel-
ative isolation variable for the muons is defined by summing
the pT of all photons, charged hadrons, and neutral hadrons
within this cone, correcting for additional underlying event
activity due to pileup events [51], and then dividing by the
muon pT:

Iμ ≡
(∑

pcharged
T

+ max
[
0,

∑
pneutral

T +
∑

pγ
T − pPU

T (μ)
])

/pμ
T ,

(3)

where pPU
T (μ) ≡ 0.5

∑
i p

PU,i
T , and i runs over the momenta

of the charged-hadron particle-flow candidates not originat-
ing from the primary vertex. The

∑
pcharged

T is the scalar pT

sum of charged hadrons originating from the primary event
vertex. The

∑
pneutral

T and
∑

pγ
T are the scalar pT sums of

neutral hadrons and photons, respectively. The requirement
Iμ < 0.35 is imposed on the leading muon to reject muons
from electroweak decays of hadrons within jets or any jets
that punch through the calorimeters mimicking a muon sig-
nature. The angular separation ΔR between the two muons
is small because of their low invariant mass, mμμ, and the
high pT of the J/ψ meson from the decay of the Z or Higgs
boson. Therefore, no isolation requirement is applied to the
subleading muons since they are within the isolation cone
of the leading muon in most events. The momentum of the
subleading muon is excluded from the isolation calculation.
The efficiency of identification is measured in Z → μμ and
J/ψ → μμ events using the tag-and-probe method, and is
94–98 (92–97)% in the barrel (endcap), depending on muon
pT and η. The isolation efficiency, which is pT dependent, is
measured to be 90–100 (92–100)% in the barrel (endcap), and
is consistent with the measurement from Z → μμ events.

Signal candidates are selected by applying additional
selection criteria to events containing at least two muons and
one photon. The two muons must have opposite charges and
pT > 20 (4) GeV for the leading (subleading) muon. The
pT requirement for the leading muon is driven by the trigger
threshold. The requirement that the photon has ET > 33 GeV
is also driven by the trigger threshold. The angular separation
of each muon from the photon is required to satisfy ΔR > 1
in order to suppress Drell-Yan background events with final-
state radiation. To ensure that the dimuon J/ψ candidate is
well-separated from the photon, events are required to have
ΔR(μμ, γ ) > 2 and |Δφ(μμ, γ )| > 1.5. Both the photon
and dimuon momenta must satisfy pT/mμμγ > 0.38 (0.28)

for the Z (H) boson decay. This constraint helps to reject the
γ ∗+jet and γ+jet backgrounds, with minimal effect on the
signal efficiency and mμμγ spectrum. Events in which the
mass of the two muons is consistent with the mass of the J/ψ
meson [29], 3.0 < mμμ < 3.2 GeV, are retained. In addition,
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Table 1 The number of observed Z or H boson events, the expected
signal yields, the expected nonresonant background with uncertainties
estimated from the fit (described in Sect. 5), and the expected reso-

nant background (see Sect. 3) contribution in the ranges of 81 or 120
< mμμγ < 101 or 130 GeV, respectively, for the Z or H boson searches

Z → J/ψγ (81 < mμμγ < 101 GeV) H → J/ψγ (120 < mμμγ < 130 GeV)

Category Observed Signal Nonresonant Resonant Category Observed Signal Nonresonant Resonant
data background background data background background

EB high R9 69 0.69 66.9 ± 4.9 2.1

EB low R9 67 0.42 62.6 ± 4.6 1.2 Inclusive 56 0.076 51.0 ± 3.4 0.20

EE 47 0.30 43.0 ± 4.0 1.0

only events with a three-body invariant mass in the range of
70 (100) < mμμγ < 120 (150) GeV are considered in the
Z (H) boson search.

The simulated events are reconstructed using the same
algorithms as the data, but the simulation does not reproduce
the data perfectly. The differences in efficiencies between
data and simulation for trigger, offline object reconstruction,
identification, and isolation are corrected by reweighting the
simulated events with data-to-simulation correction factors.
The scale correction factors are observed to deviate from 1
by less than 2.5%. The energy and momentum resolutions for
muons and photons in simulated events are also corrected to
match those in Z → μμ/ee events in data.

In the Z → J/ψγ search, selected events are classified
into mutually exclusive categories in order to enhance the
sensitivity of the search. The categorization is based on the
η and R9 variables of the photon, where R9 is defined as the
energy sum of 3×3 ECAL crystals centered on the most ener-
getic crystal in the supercluster associated with the photon,
divided by the energy of the supercluster [26]. Photons that
do not convert to an e+e− pair in the detector tend to have
high values of R9 and a threshold of 0.94 is used to classify
reconstructed photons with high R9 (thus with a better reso-
lution) and low R9 (worse resolution). The three categories
are: (1) photon in the barrel region with a high R9 value
(referred to as EB high R9); (2) photon in the barrel region
with low R9 value (referred to as EB low R9); and (3) photon
in the endcap region (referred to as EE). The EE category is
not divided into high/low R9 because there are only a few
events in this category. Events in the H → J/ψγ search are
not divided into categories since the sample size is limited
and the sensitivity is still far from the SM prediction, and
therefore event categorization does not result in a significant
improvement in the expected limit.

Table 1 shows the numbers of observed events in data,
the expected yields from the Z (H) → J/ψγ signals, the
expected nonresonant backgrounds with uncertainties esti-
mated from the fits (described in Sect. 5), and the expected
resonant background contributions in the range of 81 (120) <

mμμγ < 101 (130) GeV for the Z (H) boson search. The

values for the signal yields quoted for the Z boson decay
assume that the J/ψ meson is unpolarized and those for the
Higgs boson decay assume transverse polarization for the
J/ψ meson. In the Z and Higgs boson channels, the num-
bers of events coming from the resonant backgrounds are
large compared with those expected for the signal in the SM.
However, the resonant backgrounds are small compared to
the nonresonant backgrounds and therefore their effect on
the final result is minimal.

The overall signal efficiency, including kinematic accep-
tance, trigger, object reconstruction, identification, and isola-
tion efficiencies for the J/ψγ → μμγ final state, is approx-
imately 14 (22)% for the Z (H) boson signal, respectively.
The total signal efficiency for the Z boson decay is 13% if
the J/ψ meson is fully transversely polarized and 16% if it
is fully longitudinally polarized. The difference between the
efficiency for the Z boson and that for the Higgs boson arises
from the differences in the pT spectra for the muons and the
photon in the two cases. These differences are due to the
difference between the Z boson and Higgs boson masses.

Figures 4 and 5 show the dimuon invariant mass and pho-
ton ET distributions for both Z and Higgs boson searches with
events from all categories included. The number of events in
the distributions from signal events is set to 40 (750) times the
SM predicted yield for the Z (H) boson decay. The number
of events in distributions in the resonant background samples
is normalized to 5 (150) times the expected yield. The peak
at the J/ψ mass in data shows that real J/ψ candidates are
reconstructed and selected. These events come from inclusive
quarkonium production; no simulation is available for this
analysis so they cannot be included in the distributions. The
background from Z → μμγ events, for which a proper sim-
ulation exists, is much smaller than from inclusive quarko-
nium production, and it is scaled to make it visible. Figure 6
shows the distribution of the proper decay time t , defined
as (mμμ/pμμ

T )Lxy, where Lxy is the distance between the
primary event vertex and the common vertex of the muons
in the transverse plane, for both Z and Higgs boson decays.
These distributions are normalized to the number of selected
events in data. The negative values come from the fact that
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Fig. 4 Themμμ distributions in the Z (upper) and Higgs (lower) boson
searches. The number of events in the distributions from signal events
is set to respective factors of 40 and 750 larger than the SM values for
the predicted yields for Z and H boson decays. The number of events
in distributions in the resonant background samples is normalized to 5
and 150 multiples in the expected yields

Lxy is defined either to be positive or negative. The positive
(negative) value indicates that the angle between the Lxy vec-

tor and the vector of pJ/ψ
T is smaller (larger) than π/2. The

distributions suggest that the J/ψ candidates reconstructed in
data, like the signal events, are produced promptly at the pp
interaction point, rather than coming from displaced heavy
hadron decays.
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Fig. 5 The photon ET distributions in the Z (upper) and Higgs (lower)
boson searches. The number of events in the distributions from signal
events is set to factors of 40 and 750 those of the SM predicted yields for
the Z and H boson decays, respectively. The number of events in distri-
butions in the resonant background samples is normalized to respective
factors of 5 and 150 larger than the expected yields

5 Background and signal modeling

The subdominant, resonant backgrounds are estimated from
the simulated samples, while the continuum background for
each category for both the Z and Higgs boson decays is esti-
mated and modeled using data by fitting a parametric func-
tion to the mμμγ distribution. An unbinned maximum like-
lihood fit is performed over the range 70 (100) < mμμγ <

120 (150) GeV for the Z (H) → J/ψγ search. The true form
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Fig. 6 The proper decay time, t, distributions in the Z (upper) and
Higgs (lower) boson searches. Distributions in simulated events are
normalized to the number of selected events in data. The distributions
suggest that the J/ψ candidates reconstructed in data, just as signal
events, are produced promptly at the pp interaction point, and not from
displaced heavy-hadron decays

of the background mμμγ distribution is unknown and mis-
modeling of the background by the distribution obtained from
the fit in data could lead to a bias in the analysis. The pro-
cedure used to study the bias introduced by the choice of
function is described below.

Four families of functions are tested as potential
parametrizations of the background: Bernstein polynomials,
exponentials, power laws, and Laurent form polynomials.
In the first step, one of the functions among the four fami-

lies is chosen to fit the mμμγ distribution observed in data.
Pseudo-events are randomly generated by using the resulting
fit as a background model to simulate possible experiment
results. Here, the order of the background function required
to describe the data for each of the families is determined
by increasing the number of parameters until an additional
increase does not result in a significant improvement in the
quality of the fit to the observed data. The improvement is
quantified by the differences in the negative log-likelihood
between fits with two consecutive orders of the same fam-
ily of functions given the increment of the number of free
parameters between two functions.

Signal events with signal strength μgen are introduced
when generating the pseudo-events. The value μgen = 1
corresponds to injecting 1 times the signal yield expected
from the SM on top of the sum of resonant and nonresonant
background. A fit is made to the distribution using one of the
functions in the four families combined with a signal model,
where the normalization of the signal in this step is allowed
to be negative. This procedure is repeated 5000 times and for
each of the functions, and it is expected that ideally on aver-
age the signal strength predicted by the fit μfit will be equal
to μgen. The deviation of the mean fitted signal strength μfit

from μgen in pseudo-events is used to quantify the potential
bias. The criterion for the bias to be negligible is that the
deviation must be at least five times smaller than the statis-
tical uncertainty on μfit. In other words, the distribution of
the pull values, defined as (μfit − μgen)/σfit, calculated from
each pseudo-event should have a mean value of less than 0.2.
This requirement implies and ensures that the uncertainty
in the frequentist coverage, defined as the fraction of experi-
ments where the true value is contained within the confidence
interval, is negligible.

The polynomial background function satisfies the bias
requirement. An order-three polynomial function is used
for each category in the Z boson search, and an order-two
polynomial function is used in the Higgs boson search. The
mμμγ distribution and background model for each category
is shown in Fig. 7.

The signal model for each case is obtained from an
unbinned maximum likelihood fit to the mμμγ distributions
of the corresponding sample of simulated events. In the Z
boson search, a double-sided Crystal Ball function [52] is
used. A Crystal Ball function plus a Gaussian with the same
mean value is used in the Higgs boson search.

6 Results

The distributions in mμμγ observed in the data are in
agreement with the SM expectation of the background-only
hypothesis. The results are used to derive upper limits on
the branching fractions, B(Z → J/ψγ ) and B(H → J/ψγ ).

123



Eur. Phys. J. C            (2019) 79:94 Page 9 of 27    94 

 (GeV)γμμm
70 75 80 85 90 95 100 105 110 115 120

E
ve

nt
s 

/ 2
 G

eV

0

5

10

15

20

25

30
CMS

γμμ→γψJ/→Z  (13TeV)-12016 35.9 fb

 category
9

EB high R

Data

50×Expected signal

Non-resonant background model

5×Expected resonant background

 (GeV)γμμm
70 75 80 85 90 95 100 105 110 115 120

E
ve

nt
s 

/ 2
 G

eV

0

5

10

15

20

25

30
CMS

γμμ→γψJ/→Z  (13TeV)-12016 35.9 fb

 category9EB low R

Data

50×Expected signal

Non-resonant background model

5×Expected resonant background

 (GeV)γμμm
70 75 80 85 90 95 100 105 110 115 120

E
ve

nt
s 

/ 2
 G

eV

0

2

4

6

8

10

12

14

16

18 CMS

γμμ→γψJ/→Z  (13TeV)-12016 35.9 fb

EE category

Data

50×Expected signal

Non-resonant background model

5×Expected resonant background

 (GeV)γμμm
100 105 110 115 120 125 130 135 140 145 150

E
ve

nt
s 

/ 2
 G

eV

0

10

20

30

40

50

60 CMS

γμμ→γψJ/→H  (13TeV)-12016 35.9 fb

Inclusive category

Data

250×Expected signal

Non-resonant background model

20×Expected resonant background

Fig. 7 Fits to nonresonant background using lowest-order unbiased
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(top left), the EB low R9 category (top right), the EE category (bottom
left), as well as the H → J/ψγ channel (bottom right)

The exclusion limits are evaluated using the modified fre-
quentist approach, CLs, taking the profile likelihood as a test
statistic [53–56]. An unbinned evaluation of the likelihood is
performed.

Systematic uncertainties in the expected number of sig-
nal events and in the signal model used in the fit come from
the imperfect simulation of the detector and uncertainties
in the theoretical prediction for the signal production. They
are evaluated by varying contributing sources within their
corresponding uncertainties and propagating the uncertain-
ties to the signal yields or shapes in simulated signal sam-
ples. The sources of the uncertainties and their magnitudes
are summarized in Table 2. The uncertainties are classified
into two types, one affecting the predicted signal yields and
the other affecting the shapes of the signal models. The first
type includes the uncertainties in the luminosity measure-
ment [57], the pileup modeling in the simulations, the cor-

rections applied to the simulated events in order to com-
pensate for differences in trigger, object reconstruction, and
identification efficiencies, and the theoretical uncertainties.
The theoretical uncertainties come from the effects of the
PDF choice on the signal cross section [33,38,58], the lack
of higher-order calculations for the cross-section [59–63],
and the prediction of the decay branching fractions [64]. The
second type arises from the uncertainties in the momentum
(energy) scale and resolution for muons (photons). These
uncertainties are incorporated into the signal models by vary-
ing the momentum (energy) scale and resolution and intro-
ducing the effects on the mean and width of the Gaussian
component of the signal models as shape nuisance parame-
ters in the estimation of the limits.

The systematic uncertainties associated with the resonant
background processes are evaluated with the methods used
for the signal samples. The continuum background prediction
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Table 2 Systematic
uncertainties in both the
searches for Z → J/ψγ and
H → J/ψγ . In the Z → J/ψγ

search, the uncertainties are
averaged over all categories.
The numbers for uncertainties in
the integrated luminosity,
theoretical uncertainties,
detector simulation and
reconstruction correspond to the
changes in the expected number
of signal and resonant
background events. The
numbers for the uncertainties in
the signal model correspond to
the effect on the mean and width
of the Gaussian component of
the signal models resulting from
the object momentum
resolutions

Source Z → J/ψγ channel H → J/ψγ channel

Signal Resonant Signal Resonant
background background

Integrated luminosity 2.5%

Theoretical uncertainties

Signal cross section (scale) 3.5% 5.0% +4.6% − 6.7%

Signal cross section (PDF) 1.7% 5.0% 3.2%

Branching fraction – 5.0% – 6.0%

Detector simulation, reconstruction

Pileup weight 0.8% 1.8% 0.7% 1.6%

Trigger 4.0% 4.0% 3.9% 4.0%

Muon ident./Isolation 3.0% 3.4% 2.0% 2.5%

Photon identification 1.1% 1.1% 1.2% 1.2%

Electron veto 1.1% 1.1% 1.0% 1.0%

Signal model

mμμγ scale 0.06% – 0.1% –

mμμγ resolution 1.0% – 4.8% –

Table 3 Limits for Z and H decays to J/ψ− > μμ final states. Shown
in the second and third columns are the observed and expected limits
for cross sections and branching fractions, with the upper and lower
bounds in the expected 68% CL intervals shown, respectively, as super-

scripts and subscripts. The third column presents the Z decay branching
fractions when the J/ψ is assumed to be produced with λθ = +1 or −1,
in the helicity frame

Channel Polarization σ (fb) at 95% CL B(Z (H) → J/ψγ ) at 95% CL B(Z (H)→J/ψγ )
BSM(Z (H)→J/ψγ )

Z → J/ψγ Unpolarized 4.6 (5.3+2.3
−1.6) 1.4 (1.6+0.7

−0.5) × 10−6 15 (18)

Transverse 5.0 (5.9+2.5
−1.7) 1.5 (1.7+0.7

−0.5) × 10−6 16 (19)

H → J/ψγ Longitudinal 3.9 (4.6+2.0
−1.4) 1.2 (1.4+0.6

−0.4) × 10−6 13 (15)

Transverse 2.5 (1.7+0.8
−0.5) 7.6 (5.2+2.4

−1.6) × 10−4 260 (170)

is derived solely from data, so only statistical uncertainties
are considered, which are translated into the uncertainties in
each parameter of the fit function. The bias study mentioned
in the previous section is performed to ensure that the bias
from the choice of the background function is negligible.
Hence, no additional systematic uncertainty is assigned to
that background estimate.

The observed and median expected exclusion limits on
the production cross sections and branching fractions at 95%
confidence level (CL) for the Z and Higgs boson searches
are summarized in Table 3. With the assumption that the
J/ψ meson is unpolarized, the observed upper limit on the
branching fraction of Z → J/ψγ is 1.4 × 10−6, whereas the
median expected upper limit is 1.6+0.7

−0.5 × 10−6 with the 68%
CL interval indicated by the subscript and superscript. The
observed and median expected limits correspond to 15 and 18
times the SM prediction, respectively. Extreme polarization
scenarios give rise to variations from −13.6(−13.5)%, for a
fully longitudinally polarized J/ψ , to +8.6 (+8.2)%, for a fully
transversely polarized J/ψ meson, in the observed (expected)

branching fraction. The observed upper limit on the branch-
ing fraction of H → J/ψγ is 7.6 × 10−4, and the median
expected upper limit is 5.2+2.4

−1.6 × 10−4. The observed and
median expected limits correspond to 260 and 170 times the
SM prediction. For the Higgs boson decay, the J/ψ is assumed
to be fully transversely polarized. The overall impact of sys-
tematic uncertainties in the final results is negligible.

The results from our H → J/ψγ analysis are combined
with the results from a similar search performed by the CMS
Collaboration using pp collision data at

√
s = 8 TeV, corre-

sponding to an integrated luminosity of 19.7 fb−1 [20]. The
combination results in an upper limit corresponding to 220
(160) times the SM prediction. The uncertainties are assumed
either uncorrelated or correlated; the difference in the result
is negligible.

7 Summary

A search is performed for decays of the standard model (SM)
Z and Higgs bosons into a J/ψ meson and a photon, with the
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J/ψ meson subsequently decaying into μ+μ−. The data are
from pp collisions at

√
s = 13 TeV, corresponding to an

integrated luminosity of 35.9 fb−1. No excess is observed
above the measured background. The observed and expected
exclusion limits at 95% confidence level (CL) on the branch-
ing fraction of the Z boson decay in the unpolarized case
are B(Z → J/ψγ ) < 1.4 and 1.6+0.7

−0.5 × 10−6, correspond-
ing to factors of 15 and 18 greater than the SM prediction.
The 68% CL range in the confidence interval is shown as the
subscript and superscript. Extreme polarization possibilities
give rise to changes from −13.6 and −13.5% for a longi-
tudinally polarized J/ψ meson, to +8.6 and +8.2%, for a
transversely polarized J/ψ meson, in the respective observed
and expected branching fractions. The 95% CL limit on the
branching fraction of the Higgs boson are B(H → J/ψγ ) <

7.6 and 5.2+2.4
−1.6 × 10−4, corresponding to factors of 260 and

170 times the SM value. The results for the Higgs boson
channel are combined with previous CMS data from proton-
proton collisions at

√
s = 8 TeV to produce observed and

expected upper limits on the branching fraction for the decay
H → J/ψγ of factors of 220 and 160 larger than the SM
predictions.
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