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ABSTRACT
A new generation of bike-sharing services without docking stations is currently revolutionizing the
traditional bike-sharing market as it dramatically expands around the world. This study aims at
understanding the usage of new dockless bike-sharing services through the lens of Singapore’s prevalent
service. We collected the GPS data of all dockless bikes from one of the largest bike sharing operators in
Singapore for nine consecutive days, for a total of over 14 million records. We adopted spatial
autoregressive models to analyze the spatiotemporal patterns of bike usage during the study period. The
models explored the impact of bike fleet size, surrounding built environment, access to public
transportation, bicycle infrastructure, and weather conditions on the usage of dockless bikes. Larger bike
fleet is associated with higher usage but with diminishing marginal impact. In addition, high land use
mixtures, easy access to public transportation, more supportive cycling facilities, and free-ride promotions
positively impact the usage of dockless bikes. The negative influence of rainfall and high temperatures on
bike utilization is also exhibited. The study also offered some guidance to urban planners, policy makers,
and transportation practitioners who wish to promote bike-sharing service while ensuring its sustainability.
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1. Introduction

The history of bike-sharing programs, as summarized in
DeMaio (2009) and Shaheen, Guzman, and Zhang (2010),
started with a dockless bike-sharing program—the White
Bikes—over half a century ago. The White Bikes were
unlocked, free-of-charge, and for public use. However, the
availability of technology at that time was not able to support
the operation of the system. The program survived for only a
short time, ultimately succumbing to a series of problems in
fleet management, e.g., theft and vandalism. To better manage
shared bikes, docking stations were introduced in the 1990s for
locking, payment, renting, and return of the bikes. This initi-
ated the second generation of bike-sharing programs, based on
coin-deposit systems. However, due to technological con-
straints, there was no time limit for bike use and the cash pay-
ment was anonymous. Thus, bike theft still failed to be fully
addressed, which made the service quite unreliable. With the
rapid development of information technology (IT), a renovated
bike-sharing system, i.e., the third generation of bike sharing,
emerged a few years later. As characterized in Shaheen et al.
(2010), the new IT technology made available cashless pay-
ment, real-name registration, and dynamic pricing schemes,
which enabled the IT-based systems with docking stations to
quickly spread from Europe to Asia Pacific, North America,
and South America.

But one of the barriers that still hindered bike-sharing
services was the ease of access to docking stations (Fishman,
Washington, Haworth, & Mazzei, 2014). To overcome this

barrier, a system can either increase the number of docking sta-
tions or change the program to dockless. Often, limited space
in a city constrains the number of docking stations that can be
installed. In addition, docking stations not only store and lock
the bikes, but they also provide an infrastructure for payment.
Absorbing the advantage of a program with docks, a successful
dockless bike-sharing program may integrate the functions of
docking stations directly into the shared bikes. Two modern
pilot programs along these lines started in Germany in the early
2000s, operated by Call-a-Bike and Nextbike. However, these
programs are not fully dockless: There are still a number of
docking stations installed in the service area.

In 2015, two start-up companies, Ofo and Mobike, initiated an
innovative generation of fully dockless bike-sharing services in
China. This innovation became possible only with the prevalence
of smartphones and cashless mobile payment. The new service
has expanded rapidly since 2016 and later spread to other coun-
tries such as Singapore, the United Kingdom, and the United
States. The new dockless bike-sharing programs integrate mobile
payment and GPS tracking into the system, which greatly
increases the ease of use and management. Bikes report their
locations to the central server through an embedded GPS sensor
and communication module. A customer can easily locate bikes
via a smartphone app. After finding a bike, the customer can
unlock the bike by scanning its QR code or using near field com-
munication (NFC) technology, and the ride starts. All the needed
functionality is integrated into the app. To accommodate custom-
ers, a credit system can also be established.
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The emergence of free-floating, dockless bike-sharing services
revolutionizes the market. The new services make renting and
returning bikes more convenient than ever. The recent dramatic
increase in bike fleet is far beyond the expectations of transporta-
tion and urban planners. According to statistics summarized by
Zhang, Shaheen, and Chen (2014), in February 2012 there were
just over 180,000 third-generation shared bikes in China. In con-
trast, by March 2017, the fleet size of dockless bikes in China had
reached over 4 million, and Shanghai alone had about 450,000
dockless shared bikes (iiMedia Research, 2017). The growth of
dockless bike fleets in China is far beyond the shared bike growth
projected of bike-sharing programs in any other country (Parkes,
Marsden, Shaheen, & Cohen, 2013). In Europe, Nextbike—which
operates dock-based, dockless, and hybrid systems—is one of the
largest bike-sharing companies. But it operates only 5,000 bikes at
700 stations in Berlin, which is considered the largest German
bike-sharing market (Nextbike GMBH, 2016).

Dockless bike-sharing services are significantly different
from traditional ones in many aspects. For instance, since
docking stations are not needed, the subscription and pay-
ment of service can be made via smartphone app. One can
locate the bikes based on the GPS and subscriber identity
modules installed in the bikes. The bikes can be parked in
any places that allows bike parking. The fleet size is not
constrained by the capacity of docking stations as well.
Therefore, understanding the impact of new dockless bike-
sharing systems is a vital need, currently absent from the
literature. The typical fleet size of dockless services is much
larger than that of conventional shared bikes, and free-float-
ing shared bikes greatly improve ease of access. However, if
there are too many bikes in the system while the utilization
of the bikes remains at a low level, such services could be
fiscally unsustainable or potentially harm the urban trans-
port system. The unused bikes may occupy a lot of public
space that could be used for other purposes. Thus, this
study aims at understanding the usage of new dockless
bike-sharing services through the lens of Singapore’s preva-
lent service, based on spatiotemporal analysis and statistical
modeling. We examine the impact of bike fleet size on the
usage of dockless bike sharing service. In addition, the
influence of surrounding built environment, access to public
transportation, bicycle infrastructure, and weather condi-
tions are investigated as well.

The paper is organized as follows. Section 2 elaborates
the data collection and processing methods and the identifi-
cation of valid bike trips. Section 3 presents a descriptive
analysis, which includes the spatiotemporal distributions of
the dockless bike fleet, the fleet’s usage, and the impact of
weather conditions. Spatial autoregressive models are built
in Section 4 to explore potential influential factors, includ-
ing bike fleet size, weather, transportation infrastructure,
and the built environment. The modeling results are pre-
sented and analyzed in Section 5. The final section con-
cludes this paper.

2. The dataset and preprocessing

The dockless bike-sharing system entered the Singaporean
market in February 2017. To examine the usage of bike-sharing

service, previous studies have focused mainly on the capacity
and occupancy of bike-sharing docking stations (O’Brien,
Cheshire, & Batty, 2014). However, those studies’methods pro-
vide limited opportunity for analyzing the mobility patterns of
dockless bikes. New data collection and analysis methods
should be explored. GPS sensors are embedded in dockless
bikes, which allow us to analyze the bikes’ usage through their
spatiotemporal distribution and moving trajectories.1 We col-
lected real-time bike-sharing data from one of the largest dock-
less bike operators in Singapore. The data are fully
anonymous—no user information is associated. The collection
of real-time dockless bike GPS data started on April 25th, 2017,
when the service was still expanding. The data used for the
study ranges from April 26th (one day after the initiation) to
May 4th, 2017, consisting of six workdays, a two-day weekend,
and the Labor Day holiday. The unique 9-digit bike ID and the
real-time GPS location of every available dockless bike in Singa-
pore were continually recorded with a frequency of 5 minutes
on average. The raw outcome contains over 14 million records.
Each record has GPS coordinates of one specific bike and an
observed timestamp. During the time when a bike is rented, the
bike location could not be detected until it is returned. By sort-
ing the GPS locations of each bike chronologically, we can
extract the movements of all bikes in Singapore. However,
some redundant information and errors exist in the raw data,
so we ran a series of preprocessing steps described below.

The first preprocessing step reduces redundant coordinate
information about stationary bikes and cleans up some errors
due to GPS drifting. For example, one kind of GPS drifting
occurs from instabilities in civilian GPS sensors, which can
cause a bike to seemingly teleport from one location to another
before shifting back to exactly the same location. With these
kinds of problems in mind, the preprocessing examines all
sequences of three GPS locations for each bike; if the first loca-
tion is identical to the third, we flag the middle location as
being false data. Finally, we remove all flagged locations. As a
result, if a bike is stationary for a period of time, we keep only
the first and the last coordinates and remove all duplicates in
between. Additionally, the process cleans some of the GPS
drifting errors as well. The specific process is explained in Step
1 of the pseudocode in Appendix A.1.

We then remove some unrealistically short- or long-distance
movement because such movements might not be associated with
an actual cycling activity. For instance, the movement of a bike
over a very short distance could result from a round trip, or it
could be attributed to noncycling causes such as GPS instability,
local bike relocation by bike-sharing operators, etc. On the other
end of the spectrum, aerobic cycling could lead to a long bike trip
of tens of kilometers, but such a movement could also be caused
by maintenance and reallocation of bikes. Therefore, to avoid
these inconclusive events, we further exclude extremely short- and
long-distance trips by devising a strategy based on results from

1Romanillos et al. (2016) have summarized a series of studies using GPS data from
smartphone apps to investigate cycling behaviors. Those studies collected their
GPS data by either recruiting a group of participating cyclists or acquiring data
directly from smartphone app companies (e.g., fitness apps). Nevertheless, these
data are not suitable for studies of bike sharing and do not necessarily reflect
the utilization of bike-sharing services.

INTERNATIONAL JOURNAL OF SUSTAINABLE TRANSPORTATION 687



the household interview travel survey (HITS) of 2012. In all, HITS
provides the travel time and postal codes of the origin and desti-
nation (OD) of 961 valid cycling trips.

To single out overly long trips based on duration, we first
noted that 99.7% (958) of the HITS trips were finished within
one hour. There is a half dollar charge for every 15 minutes of
dockless bike ride. The cost of a one-hour dockless bike rental
(2 dollars) is sufficient to go anywhere in Singapore by public
transit. Taking these two facts into account, we decided to select
only bike trips shorter than one hour.

We also wanted to exclude some trips based on distance
traveled. So, for the HITS data, we geocoded the origin and des-
tination of all cycling trips and calculated the road-network
travel distance using Google Maps Services (more specifically,
the Geocoding and Direction services). The results are summa-
rized in the box plot shown in Figure A1 of Appendix A.2. In
the HITS data, almost all the trips are longer than 150 meters;
the only exceptions are six cycling trips with the same origin
and destination. And trips longer than 7.5 km are identified as
outliers (see Figure A1 in Appendix A.2). Hence, we wanted to
select only those trips between 150 meters and 7.5 km, although
we needed a small modification to apply this rule to the dock-
less bike data. Since the distance calculated between each OD
pair for dockless bikes is a great-circle distance, we scaled down
the reference range from the Google-calculated road-network
distance by about 1.47 (the average ratio between the network
distance and great-circle distance in HITS). We thus selected
only GPS movements with a great-circle distance longer than
100 meters and shorter than 5 kilometers as valid bike trips.

Finally, as dockless bikes are not designed for racing, we
used 15 km/h as a cycling reference speed. If the travel speed
between two locations is more than twice the reference, we
believe that the trips are not valid bike trips.

The complete data filtering procedure is shown in Step 2 of
the pseudocode in Appendix A.1. The bike trips considered in
this paper are thus defined as the processed GPS movements of
the dockless bikes. However, the inherent limitations of the
dockless bike GPS data collected in this study must also be
acknowledged. The bike-sharing company provided the GPS
locations of a bike only when it is idle. No GPS information is
known when the bike is being used. Therefore, the specific
cycling route remains unknown to us. A potential group of
cycling activities—round trips which have same or very simi-
lar origin and destination—may have been removed by the
preprocessing. However, there are very few round trips (0.6%,
or 6 out of 961) reported in the HITS, which suggests that
excluding potential round trips may not affect the validity of
our analysis.

3. Descriptive analysis

3.1. Fleet size and utilization

The everyday fleet size of available bikes during the study
period and the total number of bikes that have ever occurred
in the system (identified using the bikes’ unique 9-digits IDs)
are given in Table 1. The number of available bikes by hour in
each day is shown in Figure A2(1.1) in Appendix A.3. In gen-
eral, since the dockless bike-sharing service was newly

launched, the total fleet size increased rapidly during the study
period. The company was continually introducing new bikes
into the city, and the total number of bikes increases by nearly
3,000 during the study period. Despite of the steady increase of
fleet size, the availability of bikes each day fluctuated. The num-
ber of available bikes surged from 8,217 on April 26th to 9,690
on Labor Day (probably due to a special free-ride promotion);
after the holiday, the number dropped slightly before recover-
ing to over 9,800 at the end of the study period.

The average number of trips made per bike and the average
usage time per bike are also listed in Table 1. The distribution
of the average bike trips, travel distance, and travel time per
bike per day can be found in Figure A2 in Appendix A.3. In
general, the utilization of bikes in Singapore is quite low. About
14.3% of the bikes were not used at all during the study period.
The average idle time per bike was about 23.5 hours per day,
while the average number of rides per bike was less than one
per day with under 30 minutes of riding. During the study
period, special promotions were made for the long weekend.
On Saturday (April 29th) and Sunday (April 30th), bike rides
for the first half hour were free of charge and bike rides were
totally gratis during the whole of Labor Day. Therefore, the uti-
lization of bikes during the long weekend was higher than that
in the workdays. On Labor Day, each bike was used about
1.64 times with an average usage time of around 40 minutes.

A detailed temporal distribution of bike trips by hour is plot-
ted in Figure 1(1) below and Figure A2(1.1) in Appendix A.3.
Peak usages are observed around 8 a.m. and 6 p.m. every day.
Usage is in general higher during daytime on weekends and its
trend keeps going up during the observation period. The high-
est usage is seen around 6–8 p.m. on Labor Day when there
was no charge for riding.

Figure 1(2) shows the distribution of average cycling time dur-
ing the study period for each hour of the day. It should be noted
that, since the real-time data was collected with an average time
interval of several minutes, there could be a small variation
between the actual cycling time and the time computed by the dif-
ference of timestamps in the data. Therefore, the real-world travel
time may be slightly shorter than the recorded time. As indicated
in the figure,most trips ended in less than 30minutes with an esti-
mated cost of 1 Singapore dollar. During morning peak hours

Table 1. Fleet size and utilization of dockless bikes during the study period.

Average usage per bike
per day

Date
Total fleet size of

bikes
Available
bikes

Number of
trips

Usage time
(min)

2017-04-26 8,519 8,217 0.65 16.5
2017-04-27 8,918 8,261 0.62 16.0
2017-04-28 9,436 8,639 0.73 20.5
2017-04-29 10,116 9,308 1.14 35.2
2017-04-30 10,323 9,274 1.21 33.6
2017-05-01 10,491 9,690 1.64 40.9
2017-05-02 10,728 9,235 0.93 22.9
2017-05-03 11,002 9,436 1.00 23.1
2017-05-04y 11,346 9,835 0.72 18.1

yNote: The data after 6 p.m. on May 4th is incomplete and are thus excluded from the
analysis. The statistics of average usage per bike during this day may not precisely
reflect the situations for the full 24 hours.
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from 7 to 9 a.m., trips are dominantly commuting journeys (or
stages of commuting journeys), and most trips were 10 to
25 minutes. During the daytime, from 10 a.m. to 4 p.m., bike
travel times became shorter, and most trips ended within
15 minutes. The peak usage ran from 4 to 10 p.m. every day.

Figure 1(3) shows the distribution of the average great-circle dis-
tance of bike usage for each hour. Before 4 p.m., most of the trips
were less than 500 meters (equivalent to a road-network travel dis-
tance of approximately 730 meters, scaled by 1.47). After 4 p.m., the
travel distance became longer. Some long-distance trips had a great-
circle distance of more than 1 km. But even around 6 to 7 p.m.,
when there were more long-time and long-distance trips, most still
had a great-circle distance of less than 3 km. In general, the number
of trips quickly fell off for distances longer than 1 km. As previously
discussed, we set a 5-km great-circle distance as the upper limit. The
figures in Appendix A2 show that, there are almost no additional
bike trips above this limit.

The spatial distribution of available bikes is shown in
Figure 2. The map presents the average number of available
dockless bikes per day during the study period in each 300 by
300-meter fishnet cell. Mass rapid transit (MRT) stations and
the rail network layout are also plotted.2 The bikes were mainly

concentrated in the peripheral residential areas with high popu-
lation density and last-mile travel demand to access to the
MRT. In the central business district (CBD) with dense MRT
stations, the number of dockless bikes was lower than that in
the residential areas mentioned above. The allocation of dock-
less bikes was in general consistent with the last-mile travel
demand for accessing the MRT by bus. (The daily last-mile
travel demand by bus is plotted in Figure A3 in Appendix A.4).

3.2. The impact of weather on bike utilization

The above analysis presents the variation of dockless bike
hourly usage on workdays and on one weekend with a promo-
tion. However, cycling is prone to influence by inclement
weather (Corcoran, Li, Rohde, Charles-Edwards, & Mateo-
Babiano, 2014; Meng, Zhang, Wong, & Au, 2016; Wojan &
Hamrick, 2015). Therefore, to understand the impact of
weather conditions, this work takes into account real-time
weather information during the data collection period. We col-
lected the readings of air temperature and precipitation from
52 meteorological stations in Singapore with a 5-minute fre-
quency through an API provided by the Singapore open data
sharing portal. The statistics are summarized in Figure 3. In
each subfigure, the x-axis is the hour from 0 to 23; the left y-
axis shows the number of bike trips per hour, plotted in bold
black curves; and, the right y-axis illustrates the hourly

Figure 1. Distribution of dockless bike utilization.

Figure 2. Spatial distribution of available bikes in Singapore.

2In this paper, we use MRT to refer to both MRT and LRT (light-rail transit) LRT sys-
tems for simplification.
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precipitation in centimeters (cm) and the average hourly tem-
perature in degrees centigrade (�C). The precipitation is pre-
sented in gray bars, whereas the temperature is drawn in gray
curves.

Singapore consists of a main island with a surrounding
archipelago. It lies at the latitude of 1.35� N. With an equatorial
climate, there is no summer or winter season in the year. The
temperature stays high year-round (around 30�C). Even though
the Singaporean residents are accustomed to hot weather, the
fluctuation of temperature can still influence bike usage. The
temperature increased during the midday, and the number of
bike trips started to increase only when temperature began to
drop during late afternoon.

Rainfall is frequent in Singapore and it sometimes rains
heavily. During the study period, the most observable impact of
rainfall on bike usage occurred during the 5 p.m. hour of April
27th. In a one-hour period, the accumulated precipitation reached
30 cm. The rainfall is associated with a large decline of bike usage
in a time period that normally sees high usage. However, the influ-
ence of heavy rain during off-peak daytime hours (e.g., May 2nd

from 10 a.m. to 12 p.m.; May 4th from 11 a.m. to 1 p.m.) was less
significant than during peak hours. This implies that heavy rain-
fall during peak hours may reduce overall usage of bikes, but in
off-peak periods, precipitation is less influential.

Precipitation in Singapore normally falls for a relatively
short time over a small area, not island-wide. To examine the
spatial impact of precipitation on bike usage, we constructed an
isohyetal precipitation map for the study period based on rain-
fall readings from 52 meteorological stations in Singapore. The
average rainfall in each land cell was interpolated based on an

inverse distance weighted method. The isohyetal map is pre-
sented in Figure 4(1), with the GPS locations of all dockless
bikes plotted as well. Dark gray dots in the map show bikes that
were not used in the hour, whereas red dots indicate bikes that
moved during the period. For comparative purposes, the utili-
zation of bikes in the hour immediately after the rain is also
drawn in Figure 4(2). During the hour of rain, a significant dif-
ference between the areas with precipitation below 4 mm and
the areas with heavier rain can be observed. Areas with heavy
rain showed sporadic bike usage, and areas with light rain had
little bike usage as well. Comparing the two figures, the number
of bike trips more than doubled from 228 to 500 after the rain.
And just after the rain, we see many more bike trips in the area
that had heavy rain. The patterns shown in the figures
strengthen our findings above: During peak hours, the number
of bike trips can be greatly influenced by heavy rainfall.

4. Models

4.1. Impacting factors of bike use

The descriptive analysis shows the potential impacts of the
availability of dockless bikes, weather conditions such as air
temperature and precipitation, and special promotions on the
usage of dockless bikes. In addition, bike usage is also affected
by the built environment—such as supportive cycling facilities,
land use, etc.—and accessibility to transportation infrastruc-
ture. To facilitate further analysis, we divided the study area
into regular grid cells so that different measures could be aggre-
gated into each cell. Then, we modeled the impact of all the

Figure 3. Bike utilization and weather conditions.

690 Y. SHEN ET AL.



aforementioned factors on the usage of dockless bikes in each
spatial unit i (i.e., each 300-by-300 m land cell) at time t as

Bit D f Sit CBEiCTiCCit COtð ÞC rVBit C e (1)

where the variables are designed to capture the impact of the
following aspects:

Bit: the number of dockless bike trips started from land cell i
at time t;

Sit : the supply of dockless bikes in land cell i at time t;
BEi: the built environment factors at land cell i;
Ti: transportation-related factors at land cell i;
Cit: weather conditions (e.g., precipitation) in land cell i at

time t;

Figure 4. Relationship between rainfall and bike utilization.
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Ot: other factors such as temporal factors at time t;
V: a spatial weights matrix;
r: a spatial lag coefficient;
e: an unobserved error term.

Alternatively, if there are omitted variables influencing the
usage of dockless bikes across space, a spatial error model may
fit, as

Bit D f Sit CBEiCTiCCit COtð ÞC e; with eD λVeCm (2)

where the additional variables are:

λ: a spatial error coefficient;
m: an unobserved error term.

The built environment and transportation-related variables
were calculated as follows.

4.2. The impact of the built environment

A considerable body of literature investigates the linkages
between the built environment and travel behavior (Ewing &
Cervero, 2001, 2010). Land use and street configuration are
commonly evaluated in cycling-related studies (Cervero, Sar-
miento, Jacoby, Gomez, & Neiman, 2009; Faghih-Imani, Eluru,
El-Geneidy, Rabbat, & Haq, 2014).

This study used the floor-area ratio (FAR) to indicate land
use densities. Our FAR values were derived from a building
database synthesizing a variety of datasets using the methodol-
ogy proposed by Zhu and Ferreira (2015). We measured the
land use density in four categories: public residential (i.e.,
HDB, named after the Housing and Development Board), pri-
vate residential, commercial, and industrial areas. All the den-
sity measures were aggregated on grid level. The diversity (or
mixture) of land use was also measured in our study through
40,782 point-of-interests (POIs) collected via the Google Place
API. We reclassified the POIs into seven categories (see
Table A1 in Appendix A.5). The Shannon entropy index was
then calculated to represent the level of mixture of land use
(Shannon, 1948) as

HD ¡
X

i

pilognpi (3)

where:

H: the value of entropy ranging between 0 and 1;
pi: the percentage of the ith category of POI;
n: the number of categories.

4.3. The impact of transportation infrastructure

Transportation infrastructure and its accessibility also play a
significant role in promoting cycling. Our model includes
measures for the availability of designated cycling paths, acces-
sibility to bike racks, connectivity of the road network, and dis-
tance to MRT stations.

To capture the availability of cycling paths, we obtained the
length and location of the paths from the land transport
authority (LTA) of Singapore, and those values were summed
in each grid cell. Public bike racks in Singapore are usually

located close to MRT stations. To quantify rack accessibility in
each grid cell, we employed the classic accessibility measure
proposed by Hansen (1959). In particular, we calculated the
accessibility of bike racks in cell i as

AiD
X

j

Sj
Dij

(4)
where:

Sj: the supply of bike racks at land cell j;
Dij: the distance from the centroid of land cell i to bike rack at

cell j.

This formula uses road-network distance instead of Euclid-
ean distance since it more precisely captures the effect of dis-
tance decay, especially when the landscape is extremely
heterogeneous. Since our analysis was conducted on equal-area
cells, we used the number of road intersections in each cell as a
proxy for road connectivity and network design. More road
intersections falling into a cell implies more connectivity and
smaller street blocks. Figure 2 shows that dockless bikes were
mostly distributed along the MRT network. We therefore
assumed that cycling trips were more likely to occur around
MRT stations. Thus, the distance to the nearest MRT station
was also included in the model, calculated as the road-network
distance from the centroid of each cell to nearest MRT station.

4.4. Descriptive statistics

For each hour from April 26th to May 4th, our data includes the
dockless bike trips in each land cell that had available bikes. In
all, there were over 460,000 observations, so to reduce the heavy
computational burden in the statistic model, we took into
account only the bike trips from 7a.m. to 10 p.m. (the period
when most trips occurred). We further aggregated data by par-
titioning the period into five three-hour groups. The data after
6 p.m. on May 4th are missing and therefore excluded from
modeling. Descriptive statistics are shown in Table 2. The num-
ber of hourly bike trips, which is the dependent variable, is the
average number of bike trips per hour in each land cell during
the three-hour period. Similarly, the hourly available dockless
bike fleet is the average number of dockless bikes in each land
cell during the same period.

5. Results and analysis

A primary goal of this study was to investigate the impact of
dockless bike fleet size on the usage of bikes. Toward this end,
we tested whether the marginal utility of bike usage decreases
when fleet size increases by regressing on two models: Model
(1) uses the original bike fleet size as an explanatory variable,
andModel (2) takes the square root of it.

5.1. Goodness-of-fit for the models

To test which spatial regression model has the better fit, we used
the spatial dependence of our data based on the diagnostic process
of (robust) Lagrange Multiplier tests (Anselin, 2005). The spatial
weights matrix was defined as the inverse distance between 5-km
neighborhoods. The modeling results are listed in Table 3, with
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different manipulations of the explanatory variables (i.e., the
dockless bike fleet size or the square root of it) and spatial struc-
tures (i.e., a linear regression or spatial autoregressive model). The
goodness-of-fit values of the four models are all presented.

The diagnostic results for spatial dependence suggest a spa-
tial lag structure. The goodness-of-fit values of all models are
over 0.2. Thus, considering the large sample size with over
100,000 observations, both models present a decent overall fit.
The results also show that the inclusion of spatial structure cap-
tures more variations of the model (as seen in R2 of Table 3).
Additionally, in both models, the spatial pseudo R2 values,
which are a relatively less optimistic assessment of the model fit
(Anselin & Rey, 2014), provide a slightly better overall fit than
the corresponding linear regression models.

5.2. Fleet size

The coefficients of fleet size are positive and significant in all
models. This implies that the usage of dockless bikes is strongly
associated with the number of available bikes—i.e., on average,
with more available bikes in the system, more trips will occur.

In the two models, Model (1) implies that the impact of
dockless bike fleet size on the usage of bikes is linear—i.e., a
given additional number of bikes put into the system at any
point promotes a constant volume of new bike trips, while
Model (2) assumes that the marginal return of additional bike
trips declines with increasing fleet size, or more specifically, a
larger fleet size is still associated with more bike trips, but for a
given number of new bikes, the number of additional bike trips
declines as the fleet size increases. As a result, Model (2), which
uses the square root of fleet size, fits better than Model (1): In
particular, when moving from Model (1) to Model (2), the
goodness-of-fit values (i.e., pseudo R2) increase from 0.207 to
0.224 with the linear structure, and from 0.253 to 0.258 with
the spatial lag structure. The superiority of Model (2) means
that as more bikes are put into the city, the additional effect of
each new bike on bike usage diminishes. Based on the specific
results for Model (2) with spatial lag, increasing the number of
available bikes per cell from none to 10 will induce an average
of 0.7 trips per hour. However, when the fleet size grows from
100 to 110, the average may decrease to as low as 0.1.

In terms of the other variables, the modeling results are
quite consistent. Thus, in the following analysis, we focus on
Model (2).

5.3. Built environment

Public residential density which is negatively associated with
bike usage may imply that there are too many bikes allocated in
HDB areas. Because of oversupply, the utilization rate is much
lower than average. Some empirical evidence for this phenome-
non is presented in Table A2 in Appendix A.6. In addition,
public housing is usually located in high accessibility area that
may counterbalance a potentially high demand of bike usage.
This negative impact of public residential density is thus shown
in our model.

The impact of private residential density on the usage of
dockless bikes is positive but not significant in the model. The
coefficients hint that, to some degree, the supply of bike-shar-
ing services for residents living in private residential area is
lower than its actual demand. In areas with high commercial
land use density, the usage of dockless bikes is high as well,
which might be due to the high occurrence of last-mile trips in
commercial areas. In areas with high industrial land use den-
sity, the usage of dockless bikes is low. For land use mixture in
our study, an entropy value of 1 means extreme diversity of
land use—a perfectly even distribution of all seven categories of
POIs in one land cell—whereas a value of 0 indicates the least
diversity or extreme homogeneity of land use—only one cate-
gory of POIs in the cell. Positive coefficients of entropy mean
that a higher level of land use mixture is associated with more
dockless bike usage, controlling for all other variables.

5.4. Other factors

The effect of road intersections is positive but only significant at
90% confident interval with spatial lag. Cycling facilities, such
as longer cycling paths and more accessible bike racks for park-
ing, positively influence the usage of dockless bikes. The usage
of dockless bikes is most concentrated around MRT stations,
which is validated by the coefficient of the distance to MRT sta-
tion. This suggests that dockless bike-sharing programs may

Table 2. Descriptive statistics.

Name of variables Mean Std. dev. Minimum Maximum

Hourly dockless bike trips 0.26 0.52 0.00 10.33
Hourly available dockless bike fleet 4.14 4.89 1.00 90.00
Length of cycling path (km) 0.02 0.09 0.00 0.93
Accessibility to bike racks 1.53 2.02 0.51 95.16
FAR of public residence 0.51 0.70 0.00 6.70
FAR of private residence 0.21 0.39 0.00 3.86
FAR of commercial building 0.10 0.32 0.00 4.56
FAR of industrial building 0.10 0.34 0.00 4.77
Shannon entropy 0.36 0.28 0.00 0.89
Number of road intersections 8.00 5.68 0.00 40.00
Distance to MRT station (km) 1.46 1.07 0.02 14.70
Number of bus stops 1.49 1.30 0.00 8.00
Distance to the CBD (km) 13.21 5.93 0.12 28.33
Accumulated precipitation (cm) 0.09 0.23 0.00 5.20
Average temperature (�C) 29.06 1.32 24.85 33.71

Note: Std. dev. D Standard deviation; FAR D Floor-area ratio.
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facilitate last-mile connection to the MRT. In areas with more
bus stops, the usage of bikes is also higher.

The coefficient of rainfall is consistent with the descriptive
analysis presented above. Adverse weather conditions nega-
tively influence the usage of bikes. The number of bike trips is
greatly reduced in heavy rainfall. In addition, if the weather is
too hot, i.e., with a temperature above 31�C, fewer people are
likely to use bikes.

As for the other factors, the promotion of free rides on
Labour Day led to more bike trips. More bike trips were also
observed during the weekend3 and in the late afternoon. The
impact of the spatial related factor may be insignificant because
the effects are already captured by the spatial lag structure,
such as the distance to the CBD, in our model.

6. Discussion and conclusion

Dockless bike-sharing is an emerging shared mobility service. It
revolutionizes traditional docked bike-sharing services. Dock-
ing stations are built earlier to regulate customers’ behavior
and facilitate payment. Now, the functions of docking stations
have been integrated into a smartphone App with scanning QR
code (or NFC) for payment and GPS sensors are embedded in
bikes for fleet tracking and management.

Dockless bike service offers scholars unprecedented access to
large-scale ridership data. It provides new opportunities for
data analysis in investigating cycling behaviors. In docked bike-
sharing, cycling trips are largely constrained by docking sta-
tions. Origins and destinations of cycling trips are biased
toward locations around the stations. Thus, bike usage and
movement pattern we observed from a docked system may not
match real travel demand unless stations are deployed in a very
high-density configuration, which however is not the case for

Table 3. Modeling results.

Model (1) Model (2)

Linear Spatial Lag Linear Spatial Lag

Constant ¡0.005 (¡0.79) ¡0.072 (¡11.40)* ¡0.236 (¡37.99)* ¡0.272 (¡42.99)*
Supply
Available dockless bike fleet 0.039 (117.17)* 0.036 (110.39)* n.a. n.a.
Square root of dockless bike fleet n.a. n.a. 0.236 (127.22)* 0.225 (118.77)*

Cycling facilities
Length of cycling path (in km) 0.310 (17.59)* 0.264 (15.37)* 0.295 (16.96)* 0.264 (15.42)*

Accessibility to bike racks (£ 102) 0.462 (6.30)* 0.383 (5.38)* 0.419 (5.78)* 0.366 (5.16)*

Density
FAR of public residence ¡0.005 (¡1.86)� ¡0.004 (¡1.71)� ¡0.033 (¡12.48)* ¡0.031 (¡11.94)*
FAR of private residence 0.006 (1.48) 0.010 (2.59)y 0.001 (0.23) 0.004 (1.06)
FAR of commercial buildings 0.067 (13.88)* 0.062 (13.18)* 0.064 (13.23)* 0.060 (12.79)*

FAR of industry buildings ¡0.036 (¡8.15)* ¡0.028 (¡6.47)* ¡0.027 (¡6.07)* ¡0.022 (¡4.97)*
Diversity
Shannon entropy 0.043 (7.59)* 0.049 (8.94)* 0.023 (4.14)* 0.029 (5.25)*

Design
Number of road intersections (£ 103) 0.201 (0.66) 0.820 (2.79)y 0.046 (0.15) 0.493 (1.68)�

Access to public transportation
Distance to MRT stations (in km) ¡0.055 (¡34.90)* ¡0.037 (¡22.32)* ¡0.043 (¡27.92)* ¡0.031 (¡19.25)*
Number of bus stops 0.009 (7.59)* 0.011 (9.29)* 0.005 (3.81)* 0.006 (5.17)*

Weather conditions
Accumulated precipitation (in cm) ¡0.122 (¡18.71)* ¡0.043 (¡6.25)* ¡0.121 (¡18.73)* ¡0.065 (¡ 9.47)*

Temperature over 31�C (d) ¡0.022 (¡3.57)* ¡0.012 (¡1.92)� ¡0.024 (¡3.90)* ¡0.016 (¡2.71)y
Temporal and other factors
Unlimited free ride promotion (d) 0.100 (18.96)* 0.040 (7.89)* 0.099 (18.84)* 0.056 (12.00)*

Weekend and holiday (d) 0.081 (22.06)* 0.025 (5.42)* 0.080 (22.00)* 0.040 (6.35)*

Late afternoon (4 to 7 p.m.) (d) 0.086 (23.13)* 0.031 (4.47)* 0.086 (23.28)* 0.047 (49.05)*

Spatial factors
Distance to the CBD (in km, £ 102) 0.708 (24.18)* ¡0.024 (¡0.62) 0.520 (17.79)* 0.013 (0.35)
Spatial lag coefficient n.a. 0.617 (27.30)* n.a. 0.438 (20.06)*

Summary of statistics
Number of observations 100,122 100,122 100,122 100,122
(Pseudo) R2 0.207 0.253 0.224 0.258
Adjusted (pseudo) R2 0.207 n.a. 0.223 n.a.
Spatial pseudo R2 n.a. 0.207 n.a. 0.224

Diagnostics for spatial dependence with p-value in parentheses
Lagrange multiplier (lag) 20,575.84* n.a. 17,033.79* n.a.
Robust Lagrange multiplier (lag) 309.77* n.a. 175.92* n.a.
Lagrange multiplier (error) 29,128.17* n.a. 27,341.36* n.a.
Robust Lagrange multiplier (error) 8,862.11* n.a. 10,483.49* n.a.

Note: n.a. D not applicable; FAR D Floor-area ratio;
(d)dummy variable.
�< 0.001.
y< 0.01.
< 0.05.
�< 0.1.

3There were also 30-minute free ride promotions during the weekend.
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most of dock based systems around the world. Now, GPS track-
ing from dockless bikes can help capture more accurate trip
records. And, as its fleet size is no longer limited by station
capacity, it can be easily expanded into a large fleet size. This
will serve more unmet travel demands and potentially improve
our observation of human mobility. In addition, data availabil-
ity of detailed GPS records can benefit many other parties.
Operators can use these GPS records to assist in rebalancing.
Users can benefit from knowing where bikes are available.
Transportation planners, by aggregating cycling trips, can iden-
tify mismatches of cycling demand and infrastructure supply.

This work pioneers the study of dockless bike-sharing pro-
grams based on real-time GPS data. We investigate the usage of
over 10,000 dockless bikes in Singapore during a nine-day
period with more than 1.5 million observations. In the paper,
we elaborate the two-step data mining methodology for GPS
data, and we provide a visualization of the spatiotemporal dis-
tributions of the dockless bike usage in Singapore during the
study period. We also relate bike usage to weather conditions,
e.g. precipitation and temperature, during the same period.

The paper presents a spatial autoregressive model that we
implemented to explore the impacts of fleet size, built environ-
ment, and weather conditions on the usage of dockless bike-shar-
ing services. The results indicate that dockless bike fleet is
positively associated with bike usage. However, as the fleet size
grows, the marginal impact decreases, i.e., with larger fleet size,
each new bike may induce fewer new trips. The built environment
plays an import role as well. Higher land use density of commer-
cial areas, more diverse economic activities, and smaller street
blocks positively influence the usage of dockless bikes. Supportive
cycling facilities and better transportation infrastructure also
encourage bike usage. Rainfall and hot weather could, not surpris-
ingly, reduce bike usage. Finally, the spatial lag coefficient of our
model shows that dockless bike usage is spatially autocorrelated
which means adjacent land cells of one cell with high bike usage
also tend to exhibit high usage and vice versa.

Altogether, to effectively promote usage of dockless bikes, a
straightforward solution is to make more dockless bikes avail-
able. And for dockless bike service, it is much easier to increase
fleet size than traditional dock based system. This is what the
bike-sharing operators have done in many cities, with a rapid
fleet expansion aiding the emergence of the new service,
although we suspect their main interests are to squeeze compet-
itors out of the market rather than to promote usage. Neverthe-
less, such growth is not sustainable since public space and road
resources are limited. We cannot keep introducing more bikes
into the city. Besides, the utilization level per bike is low while
the marginal benefit is decreasing as well.

Overall, this study advances our understanding of the new
bike-sharing service, and the findings lead to practical guidance
for transportation planning and urban management in the
deployment of dockless bikes.

� The fleet size of dockless bike should be highly regulated,
taking into the consideration of the capacity and manage-
ment of urban public space. Oversupply of bike fleet may
hurt its economic sustainability, occupy much public
space, and cause visual pollution.

� The bicycle infrastructure needs to match with the
demand of bike trips. More cycling facilities, including

dedicated cycling paths and accessible bike racks, are
needed. The potential locations of new cycling paths and
bike racks can be based on an analysis of the spatial distri-
bution of bike usage. Besides, owing to the tropical cli-
mate, Singapore rains frequently and sometimes heavily.
The shelters, similar to the covered sidewalks, can also be
built above the most heavily used cycling paths to facili-
tate cycling, which could also potentially benefit other
active travel modes, e.g., walking, scooter (kick scooter or
electronic version of it, not the motorcycle like Vespa).

� Rebalance strategy needs to consider temporal variation
of bike usage, and the demand and supply for shared
bikes in areas of different land uses, e.g., public/private
residential and commercial areas. The system may likely
reach equilibrium without rebalancing, but this equilib-
rium is likely to be far from optimal with lots of unmet
demand.

� High bike usage is observed near MRT stations and bus
stops, which might imply bike-sharing serves lots last-
mile trips. Thus, integrating dockless bike service with
public transportation, possibly through smart payment,
shall be considered. It has a great potential to increase
bike usage.

� The positive effect of a heterogeneous land use mixture
indicates that planning urban areas with more diverse
economic activities can also be beneficial.

� The impact of free ride promotions shows the “power of
free.” If a service improves the general social welfare,
some financial support or subsidies from governing
authorities can be considered, because it helps foster clean
and energy-efficient travel mode and hence reduce the
environmental impact of transportation.

The study can be further improved with more data from
other sources. For instance, the filter of invalid GPS data is
based on HITS-referenced thresholds due to the absence of
GPS information during cycling. Some potential long-distance
and long-time dockless bikes trips are thus filtered out. Cyclists’
information is unknown in our study, which makes analyzing
cycling behaviors of different demographics impossible. Solving
these problems would require GPS and other data about cycling
routes from bike-sharing operators or additional surveys of
dockless bike riders. Also, it is the early stage of dockless bike-
sharing service in Singapore, the customers’ behavior might
change as the service matures. And since the data used for this
work only cover a 9-days period, it is possible that some
extreme weather conditions are not captured in our observa-
tion. Future studies shall consider analyzing behavior changes
with data collected over a longer period.

Past studies have looked into traditional bike-sharing programs
by considering various topics from bike-sharing usage, barriers to
bike-share programs, modal shifting between bike sharing and
other transportation modes, bike fleet management, business
models, product-service system design, etc. These areas and others
provide several promising paths for future research on dockless
bike sharing, particularly by using big data and information tech-
nologies, as in our study. Here, we list some potential future
research directions as an extension of past work:

� Comparison of bike-sharing system. As dockless bike-shar-
ing enters the market, it will co-exist with the old docking
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systems for a while. Some studies have compared bike
sharing systems in different cities (O’Brien et al., 2014; L.
Zhang, Zhang, Duan, & Bryde, 2015). But these systems
are mainly third-generation IT-based systems. More com-
parative studies could be made to compare dockless bike-
sharing program with traditional dock based ones, and
also private bike trips. The comparison can focus on
usage rate, user motivation, user preferences, and demo-
graphics of bike users.

� Barriers and facilitators to dockless bike-sharing. Barriers and
facilitators may change in the new type of bike-sharing ser-
vice. Previous studies have identified barriers of docked
bike-sharing (Fishman et al., 2014). Some of them, such as
poor accessibility to docking stations and lengthy sign-up
process, are considered as main barriers, but will no longer
be evident in dockless bike-sharing. Re-identifying top bar-
riers can help improve the usage of bike-sharing.

� Synergy with public transportation. Integrating bike shar-
ing with public transportation has been shown to
strengthen the benefits of both modes (Fishman, Wash-
ington, & Haworth, 2013). Ridership data of dockless
bikes provide accurate origins and destinations of bike
trips. Data-mining their collocation with metro stations
or bus stops can deepen our understanding about to
which extent it facilitates first- or last-mile connection to
public transportation. This can be further enhanced with
a comparative analysis of public transportation usage
between the time periods before and after deployment of
dockless bike service.

� Mode substitution and impacts to other motorized travel
modes. Bike sharing is considered as a sustainable transport
option that could help reduce car usage. Some studies find
it improves transit connect and leads to more public trans-
portation usage (Martin & Shaheen, 2014; S. Shaheen, Mar-
tin, & Cohen, 2013) while others suspect its efficiency of
reducing motor vehicle usage if truck usage for rebalancing
is counted (Fishman et al., 2014). How effective could the
new dockless bike-sharing service improve transit usage
and reduce car usage need future studies to evaluate.

� Management and rebalancing. There is also potential
future research from a management point of view. Man-
agement issues include finding the optimal bike distribu-
tion, which is influenced by local supply and demand. But
since docking stations are not required in new programs,
the overall management, optimization, and rebalancing of
free-floating bikes could be entirely different from the
previous experience in bike fleet management with dock-
ing stations. For example, rebalancing of dock-based sys-
tems only need to consider pickup-and-delivery in
stations (Dell’Amico, Hadjicostantinou, Iori, & Novellani,
2014). Dockless bikes can be parked anywhere that is legal
to park, which potentially makes rebalancing a more
complicated issue.

� Business models. Earlier studies (S. A. Shaheen et al., 2010;
L. Zhang et al., 2015) have analyzed advantages and dis-
advantages of existing business models. As the new dock-
less bike-sharing services emerge, new models of
provision may also continue to experience growth. Now,
new bike-sharing companies are expanding very quickly

and creating their own business models. The objectives of
these dockless bike companies and urban transport
authorities are not always aligned, so that whether or
what regulation is necessary is a direction for future stud-
ies. For instance, when there are a number of bike-sharing
operators competing in the market, tragedy of the com-
mons could happen that will lead to an oversupply of
dockless bikes. Hence, the behavior of operators should
be regulated, and the design of appropriate regulation
guidelines for dockless bike-sharing riders and operators
should be discussed.

� Safety and legislation. Cycling also involves safety concerns
that are revealed as a big barrier to people’s decision-mak-
ing in shifting to cycling trips (Fishman et al., 2014). How
to improve road safety from a legislation perspective is,
thus, worth investigation. In China and Singapore, helmets
are not mandatory. In other areas, such as parts of the US,
wearing helmet is compulsory when cycling, particularly
for children. Such regulations may be a barrier to bike-shar-
ing services as introduced in previous studies. Additional
legislation to ensure the safety of dockless bike riders in
other ways can also be explored along with the impact of
these regulations on the usage of dockless bikes.

� Urban design and planning. Dockless bike service usually
comes with large fleet size. As bikes could now be parked
freely across the city, occupying much public space could
potentially induce conflicts in urban management. Also,
cyclists may need to compete for road space with motor-
ized vehicles. These will trigger dialogues among users,
operators, and legislators. The discussions about new
urban design with better accommodation for bikes and
more cycling paths are expected to be made. In addition,
studies on regulation of fleet size and spatial configuration
of parking space with dockless bike sharing should be
conducted as well.
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Appendix A. Supplementary materials

A.1. Pseudocode

A.2. Statistics of bike trips from HITS

Figure A1 shows the distance distribution of cycling trips from
Household Interview Travel Survey (HITS) of 2012. HITS is a
comprehensive transportation demand survey in Singapore
that includes about 10,000 households. The trip distance was
calculated based on Google Map Distance API. A box plot of
all distances is presented in Figure A1 (1), revealing the major-
ity of trips fall into a distance range between 150 meters to 7.5
kilometers. Further, Figure A1 (2) shows a distance distribution
in this specific range.

A.3. Dockless bike usage

Figure A2 shows the usage of dockless bikes from different
angles. Number of available bikes each hour and circadian
usage pattern is presented in Figure A2 (1.1). The histogram of

number of average trips per bike per day is shown in Figure A2
(1.2), from which we can conclude that most bikes are used less
than 2 times per day. Figure A2 (2.1) and (2.2) display the his-
tograms of average travel distance and of average travel time
respectively.

A.4. Last mile travel by bus in Singapore

Due to the restricted control on auto ownership, people in Sin-
gapore largely rely on public transit, i.e., bus and MRT. The
last-mile travel demand is quantified as the number of bus trips
connecting to the MRT stations, including that of bus trips
before accessing to and after egressing from the MRT stations.
The travel demand is calculated based on the public transit
smart card data in August 2013 (the whole month) provided by
the LTA, with over 175 million records. The results are aggre-
gated from bus stops to the 300 £ 300-meter land cells, plotted
in Figure A3.

A.5. Classification of POIs

A.6. Usage of dockless bikes in different land use

# Step 1. Data Cleaning of bike records (unmoved, GPS drifting)
input:

bikes a list of (bike)
bike a list of (i, timestamp, location)
is_removable a list of flag

for each bike in all bikes:
for each timestamp i:

if location i D D location iC2 (unmoved or GPS drifting):
label iC1 in is_removable

clear records labeled in is_removable
return:

bikes after cleaning
# Step 2. Filter and calculation of bike utilization
input:

bikes_od a list of (bike_od)
bike_od a list of OD pairs (origin i, destination i)
total_count the number of all bikes

for each bike_od in all bikes_od:
total_time 0
moved_time 0
for each OD pair i:

calculate great-circle_distance between origin and destination
calculate time_elapse between origin and destination
calculate speed based great-circle_distance and time_elapse
total_timeC D time_elapse
if great-circle_distance is within a certain range…

and time_elapse is within a certain range…
and speed is smaller than a predefined threshold:

moved_count CC
moved_time C D time_elapse

utilizationC D moved_time / total_time
return:

trips made per bike
utilization per bike

Table A1. Classification of POIs.

Number Category Examples

1 Company and small
business

Accounting services, banks, health service,
travel agency, laundry

2 Government,
organizations,
institutions

Church, city hall, embassy, museum, police,
post office, university, school

3 Entertainments Art gallery, bar, beauty salon, casino, gym,
hair care, movie theater, spa

4 Hotels Lodging, hotels
5 Retail Bakery, book store, department store, gas

station, supermarket, liquor store,
shopping mall

6 Restaurant Caf�e, food, restaurant
7 Transportations Airport, bus stations, subway stations, taxi

stand, train stations

Table A2. Usage of dockless bikes in different land use.

Average bike
trips

Average fleet
size

Average usage
ratio

Public residence land
use

0.34 5.50 6.12%

Private residence land
use

0.23 3.47 6.61%

Commercial land use 0.26 3.66 7.12%
Industrial land use 0.17 3.30 5.26%
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Figure A1. Bike trips from HITS.

Figure A2. Distribution of bike usage.
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Figure A3. Distribution of daily last-mile bus travel demand.
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