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ABSTRACT

This paper revisits how the restratifying buoyancy fluxw0b0 generated by baroclinic mixed layer instabilities

depends on environmental conditions. The frontal spindown is shown to produce buoyancy fluxes that in-

crease significantly beyond the previously proposed and widely used scaling w0b0 ; fL2H2 (f is the Coriolis

parameter,L is the geostrophic shear, andH is themixed layer depth), irrespective of whether the initial front

is broad or narrow. This increase occurs after the initial phase of the nonlinear evolution, when the baroclinic

eddies grow in size and develop velocities significantly in excess of the scaling assumption V ; LH. Impli-

cations for parameterizing the restratification caused by baroclinic mixed layer instabilities in coarse-

resolution models are discussed.

1. Introduction

Submesoscale baroclinic instabilities are thought to be

an important source of stratification in the surface ocean

(e.g., Haine and Marshall 1998; Boccaletti et al. 2007).

Mixed layer baroclinic instabilities at density fronts slide

dense under light water, a process that tends to flatten

isopycnal surfaces. A positive tendency in stratification is

induced by a positive eddy buoyancy flux w0b0, where w0

and b0 are the vertical velocity and buoyancy anomalies

associated with the instability. The overline is an appro-

priately defined along-front average. Since baroclinic

mixed layer instabilities occur on small horizontal scales of

order 0.1–10km, they are not typically resolved by pres-

ently available global oceanmodels. The eddies’ effects on

stratification and transport must be parameterized.

Fox-Kemper et al. (2008, hereinafter FFH) proposed

to represent the slumping of isopycnals by baroclinic

mixed layer instabilities using an eddy streamfunction,

similar to how the slumping of isopycnals by mesoscale

eddies in the thermocline is often parameterized

(Gent and McWilliams 1990). To set the rate of mixed

layer restratification, FFH proposed a scaling for the

buoyancy flux:

FFH: w0b0 ; fL2H2 , (1)

where f is the Coriolis parameter, L is the geostrophic

shear associated with the lateral buoyancy gradient of

the mixed layer front, and H is the mixed layer depth.

The geostrophic shear is defined as a vertical and along-

front average of the instantaneous geostrophic shear.

FFH considered the restratification by mixed layer

baroclinic instabilities as an initial-value problem: they

tested the scaling (1) in a suite of spindown experiments

of mixed layer fronts. In these experiments, it was as-

sumed that a mixed layer had been created in a lateral

buoyancy front, which in turn had been generated by

mesoscale straining. It was further assumed that the

atmospheric forcing that had created the mixed layer

had subsided and that the mesoscale straining that had

created the front had ceased. The analysis focused on

the subsequent restratification of the mixed layer in

response to baroclinic instability. Such a transient re-

stratification process has been observed at the end of the

winter season, when mixed layer instabilities lead to the

final shoaling of deep mixed layers (e.g., Mahadevan

et al. 2012). The test cases of FFH and Bachman and

Fox-Kemper (2013) suggest that the scaling (1) is optimal

in the sense that there is no or only weak dependence onCorresponding author: Jörn Callies, jcallies@caltech.edu
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other parameters of the initial conditions, such as the

Richardson number.

Considering two cases of frontal spindown, we show

in this paper that the scaling (1) captures the buoyancy

flux produced by baroclinic instabilities only in the ini-

tial phase of the nonlinear evolution. Subsequently, the

buoyancy flux increasingly exceeds the scaling as the

eddies grow in size and eddy velocities exceed the scal-

ing assumption V;LH (cf. Bachman and Fox-Kemper

2013). This transient increase beyond the scaling occurs

both in a front that is much broader than the size of the

developing baroclinic eddies (Fig. 1) and in a front that

is initially narrow and subsequently broadened by the

evolving eddies (Fig. 4), suggesting the increase is in-

dependent of the width of the front. Implications for the

parameterization of baroclinic mixed layer eddies are

discussed in the conclusions.

2. Broad front

In a frontal zone that is much broader than the eddies

generated by baroclinic instability, there is no horizontal

eddy flux divergence, so the mean lateral buoyancy gra-

dient remains unchanged. The parameters in the scaling

(1) therefore remain fixed, and the vertical buoyancy flux

is predicted to be constant.

We test this prediction in a set of simulations in which

the meridional buoyancy gradient2fL (in thermal wind

balance with a zonal current with vertical shear L) is

imposed and remains fixed. Such a frontal-zone setup

FIG. 1. Snapshots of surface buoyancy 2ŷ1 b̂ showing the evolution of the broad front in the widest domain

(L̂5 40). The color scale ranges between 6L̂ from white through blue to black.
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has been used extensively to study quasigeostrophic

baroclinic turbulence (e.g., Bretherton and Karweit

1975; Salmon 1980; Haidvogel and Held 1980; Larichev

andHeld 1995) and submesoscale processes (e.g., Taylor

and Ferrari 2010; Callies and Ferrari 2018). It assumes

an infinite scale separation between the buoyancy gra-

dient and the baroclinic eddies. The other extreme—the

case in which the buoyancy gradient is concentrated

into a narrow front—is examined in the next section.

We work in the nondimensional variables

t̂5 ft , x̂5
fx

LH
, ŷ5

fy

LH
, ẑ5

z

H
, (2)

û5
u

LH
, ŷ5

y

LH
, ŵ5

w

fH
, b̂5

b

L2H
, p̂5

p

L2H2
,

(3)

where u, y, and w are the zonal, meridional, and vertical

velocity components, respectively; b is buoyancy; p is

pressure divided by a reference density; and H is the do-

main depth. The nondimensional background meridional

buoyancy gradient is then 21, and the nondimensional

zonal background shear is 1. The Boussinesq equations for

perturbations from this background flow are

û
t̂
1 ẑû

x̂
1 ŵ1 û � =̂û2 ŷ52p̂

x̂
1D û , (4)

ŷ
t
1 ẑŷ

x̂
1 û � =̂ŷ1 û52p̂

ŷ
1D ŷ , (5)

d2(ŵ
t̂
1 ẑŵ

x̂
1 û � =̂ŵ)5 b̂2 p̂

ẑ
1 d2D ŵ , (6)

b̂
t̂
1 ẑb̂

x̂
2 ŷ1 û � =̂b̂5D b̂, and (7)

=̂ � û5 0, (8)

where DA5Ekhd
2(Ax̂x̂ 1Aŷŷ)1EkyAẑẑ defines the

friction/diffusion operator (different horizontal and

vertical Ekman numbers are allowed; the Prandtl

number is set to one), and d5 f /L is Stone’s (1971)

nonhydrostatic parameter.All perturbations are assumed

to be doubly periodic in the horizontal in a square domain

of zonal andmeridional extent L̂5 fL/LH, whereL is the

dimensional domain width. The vertical boundary con-

ditions are no normal flow (ŵ5 0), no stress on the per-

turbations (ûẑ 5 ŷẑ 5 0), and no buoyancy flux (b̂ẑ 5 0) at

ẑ5 0 and ẑ521. For simplicity, we replace the strongly

stratified thermocline by a solid bottom boundary, a good

approximation as long as the thermocline stratification is

much stronger than the mixed layer one (cf. Garner et al.

1992). There is an implied stress 6Eky at the top and

bottom that maintains the mean flow against dissipation.

For the small Eky of the simulations discussed below,

these implied stresses have a negligible effect on the en-

ergetics of the flow that develops. For a full discussion

of the energetics, see Callies and Ferrari (2018).

The scaling (1) involves only prescribed parameters,

and it takes the nondimensional form

FFH: ŵ0b̂0 ; const . (9)

The along-front average in (1) is equivalent to a domain

average, because the broad-front system is statistically

homogeneous in the horizontal. The overbar in (9) thus

denotes a volume average over the entire domain. Using

theMITgcm (Marshall et al. 1997), we perform a suite of

experiments with a fixed set of these parameters—we

only vary the domain size L̂. The scaling (9) predicts no

dependence on the domain size, as long as the unstable

modes fit into the domain.

We choose d5 1, such that the baroclinic instability is

in the hydrostatic regime (Stone 1971), and we initialize

the flow with b̂ẑ 5Ri5 1 and zero perturbation veloci-

ties. This initial state is stable to symmetric instability,

and the most unstable mode is baroclinic (Stone 1966).

A numerical linear stability analysis yields a wavelength

of l̂5 5:5 for the most unstable mode (Stone 1970,

1971). The instability is kicked off by small random ini-

tial perturbations in b̂ of magnitude 0.25. The horizontal

and vertical Ekman numbers are Ekh 5 6:253 1023 and

Eky 5 1:253 1023. The domain sizes and time steps are

L̂5 5 with Dt̂5 1022, L̂5 10 with Dt̂5 53 1023, L̂5 20

with Dt̂5 2:53 1023, and L̂5 40 with Dt̂5 1:253 1023.

For increasing domain size, the time step must be

decreased, because larger velocities occur in larger

domains, as described below. The grid spacing is

Dx̂5Dŷ5Dẑ5 0:05 in all cases.

As expected, the instability develops first at the scale

of the most unstable mode in all simulations. Larger

eddies are subsequently energized until they reach the

size of the domain (Fig. 1). This increase in eddy size is

quantified by diagnosing the dominant wavelength l̂0

defined by

2p

l̂
0

5

ð ð
k̂
h
Ŝ(k̂, l̂) dk̂ dl̂ð ð
Ŝ(k̂, l̂) dk̂ dl̂

, (10)

where k̂h 5 (k̂2 1 l̂2)1/2, k̂ and l̂ are the zonal and me-

ridional wavenumbers, Ŝ is the vertically averaged

horizontal buoyancy variance spectrum, and the in-

tegration is over the entire wavenumber space. The

dominant eddy size increases and then saturates at a

value that depends on the domain size (Fig. 2a). The

increase in eddy size is expected for a number of rea-

sons: larger-scale modes reach finite amplitude later,

as they have smaller growth rates; smaller-scale modes

become stable as restratification occurs and the cutoff

scale for the instability increases; and larger eddies can be
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energized through a nonlinear transfer of energy

across scales.

In all simulations, the baroclinic instability eventually

subsides. This is due to the increase in stratification,which

shuts off baroclinic growth by pushing the short-wave

cutoff beyond the domain scale, such that no unstable

mode fits into the domain anymore. The domain size

imposes a limit on the size of the baroclinic eddies. In the

following discussion, we thus focus on the growth phase,

in which the domain size is not a limiting factor and active

baroclinic instability converts potential to kinetic energy.

Irrespective of the processes that energize larger eddies

over the course of this growth phase, the scaling (9) pre-

dicts the vertical buoyancy flux to remain constant once

the eddies have reached finite amplitude. Specifically, the

FFH parameterization predicts

FFH: ŵ0b̂0 5 0:06m(ẑ)5 0:04, (11)

given the vertical profile

m(ẑ)5

"
12 4

�
ẑ1

1

2

�2
#"

11
5

3

�
ẑ1

1

2

�2
#
. (12)

Again, the overbar denotes a volume average over

the domain.

After an initial phase of approximate agreement, the

simulations deviate from this prediction (Fig. 2b). There

is a significant increase beyond the value predicted by (11)

as the eddies grow in size—if their growth is not limited by

the domain size. The increase of the flux is intermittent

and occurs in bursts associated with the eddy growth at

discrete low wavenumbers, but a clear pattern stands out:

growth of the eddy size and eddy kinetic energy (Fig. 2c) is

followed by an increase in buoyancy flux. The maximum

flux is achieved when eddies have reached the domain

scale. As a consequence, there is an increase in maximum

buoyancy flux as the domain size is increased. The increase

beyond the prediction (11) is largest for the largest do-

main. When the size of the eddies reaches the domain

scale, the instability shuts off and ŵ0b̂0 drops to zero.

The increase in eddy size over the course of the

growth phase goes hand in hand with an increase in eddy

velocities (Fig. 2c). The root-mean-square meridional

eddy velocity increases beyond themaximum velocity of

the mean flow, which violates the assumption V̂; 1

made in the derivation of (1) and (9).

The simultaneous increase in buoyancy flux and eddy

velocities beyond their respective scaling is consistent

with the result of Bachman and Fox-Kemper (2013).

They showed that the buoyancy flux can be better cap-

tured if the eddy velocity scale is known as an input to

the flux prediction. The simulations presented here

suggest that this is a significant effect if there is time for

the eddies to grow significantly beyond their initial size.

A buoyancy flux that increases in time leads to accel-

erating restratification, which is clearly visible in the larg-

est domain (Fig. 2d). This acceleration is not captured by

the FFH prediction, which implies a constant increase in

domain-average stratification:

FFH: b̂
ẑt̂
520:06m

ẑẑ
(ẑ)5 0:6: (13)

The disparity in the restratification rate is largest when

eddies have grown largest. For even larger domain sizes,

the stratification rate would likely surpass the prediction

(13) even more dramatically. The domain size de-

pendence is artificial, but it reveals a dependence of the

eddy flux on the evolving eddy size and velocity scale.

3. Narrow front

The simulations presented by FFH to corroborate

the scaling (1) passed from the broad-front to the

FIG. 2. Broad-front regime time series of (a) the dominant

wavelength l̂0, (b) the buoyancy flux ŵ0b̂0, (c) the root-mean-

square meridional velocity, and (d) the average stratification b̂ẑ for

simulations with different domain sizes. Also shown in (b) and

(d) are the predictions of FFH given by (11) and (13) with an ar-

bitrary intercept (gray lines). Also shown in (c) is the maximum

mean zonal velocity (gray line).
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narrow-front regime: the eddies grew to a size compa-

rable to the initial width of the frontal zone, began to

broaden the front, and started to decrease the mean

lateral buoyancy gradient. If the scaling (1) is applied to

the evolving frontal zone, it predicts the vertical buoy-

ancy flux to rapidly decrease once the narrow-front re-

gime is reached and the mean lateral buoyancy gradient

has started to decrease. We show in this section, how-

ever, that the buoyancy flux in the frontal zone does not

decrease nearly as strongly as required by the scaling.

The narrow-front regime thus also exhibits an increase

of the buoyancy flux beyond the prediction (1) as the

baroclinic eddies grow in size. Eddy velocities again

increasingly exceed the scaling assumption Vf ;LfH as

the front broadens, where Vf and Lf are the evolving

eddy velocity scales and mean zonal shear in the

frontal zone.

We perform a simulation of the spindown of a front

that is initialized to be a few times narrower than the

initial instability scale. We use the same doubly periodic

setup as above, but we choose an initial buoyancy per-

turbation that cancels out the background buoyancy

gradient in the bulk of the domain to confine it to a

narrow front of width L̂f (Fig. 3):

b̂5Ri

�
ẑ1

1

2

�
1 ŷ2

L̂

2
tanh

2ŷ

L̂
f

. (14)

The buoyancy jump across the front is L̂, such that the

buoyancy anomalies at ŷ56L̂/2 very nearly match

(L̂f � L̂) and periodicity is ensured. The initial zonal

flow perturbation is in thermal wind balance,

û
ẑ
5211

L̂

L̂
f

sech22ŷ

L̂
f

, (15)

and we set û5 0 at ẑ521. Both the lateral buoyancy

gradient and the zonal flow are very weak outside the

frontal zone. This setup can be thought of as an infinite

succession of fronts spaced a distance L̂ apart, with the

constraint that all fronts evolve identically. The setup

behaves like one with walls at ŷ56L̂/2, as used by FFH,

as long as there is no flow there.

The most unstable baroclinic mode of a narrow front

is expected to occur around the same wavenumber l̂ as

predicted by Stone (1966) (cf. Juckes 1998), which for small

Richardson numbers and in our nondimensionalization

scales with the frontal shear, l̂’ 4L̂f 5 L̂/L̂f . We thus

set L̂f 5L̂f for an initial frontal width a few times

narrower than the instability scale. We further set the

frontal nonhydrostatic parameter df 5 d/L̂f 5 1, as in

the broad-front case. To get a large separation between

the initial instability scale and the domain size, we

choose L̂5 6400, L̂f 5 80, and d5 80. Since the mixed

layer is weakly stratified, we set Ri 5 1. The horizontal

and vertical Ekman numbers are Ekh 5 6:253 1024 and

Eky 5 6:253 1025. The time step is Dt̂5 1022 and the

grid spacing is Dx̂5Dŷ5 4 and Dẑ5 0:05.

In the frontal zone, where the shear is enhanced

and the local Richardson number is below one, sym-

metric instabilities develop rapidly (Fig. 4a). This

occurs before the baroclinic mode has reached ap-

preciable amplitude, and the frontal zone is rapidly

adjusted to a state of zero potential vorticity (e.g.,

Emanuel 1994; Haine and Marshall 1998; Taylor and

Ferrari 2009). A pulse in the buoyancy flux around

t̂5 15 is associated with this adjustment (Fig. 5a).

Once the stratification has been adjusted in the

frontal zone, the symmetric mode becomes subdom-

inant and the baroclinic mode takes over (cf. Haine

and Marshall 1998).1

FIG. 3. The initial meridional profiles of (a) buoyancy 2ŷ1 b̂

at ẑ521/2 and (b) zonal shear 11 ûẑ for the broad-front

(blue) and narrow-front (red) setups. Note that the anomaly

b̂ vanishes in the broad-front case and is periodic in the narrow-

front case. The unlabeled tick marks on the horizontal axis are

at 6L̂f /2.

1 Symmetric instabilities can be avoided by increasing the initial

stratification to the point that the local Richardson number in the

front is one, which can be achieved by setting Ri 5 6400. That

choice does not qualitatively change any of the results presented in

this section, but it gives a regime that is not relevant for the ocean

mixed layer. The initial stratification is so strong that buoyancy

fluxes associated with baroclinic eddies do not appreciably affect

the stratification.
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As expected, the baroclinic instability occurs initially

at a wavelength of about 360, a few times larger than the

initial frontal width L̂f 5 80 (Fig. 4b). Fully nonlinear

baroclinic eddies subsequently develop and increase in

scale as they flatten the front (Figs. 4c,d). The eddies

increase the frontal scale L̂f , which subsequently is of

the same order as the eddy size (cf. Haine and Marshall

1998; Manucharyan and Timmermans 2013). We stop

the simulation before the eddies fill the domain, at which

point the periodicity of the setup would affect the fur-

ther development of the front. The analysis is restricted

to the period in which the eddies widen the front into

undisturbed fluid.

We diagnose the domain-average buoyancy flux ŵ0b̂0.
After the initial pulse due to symmetric instabilities, this

flux increases as the baroclinic instability grows, and it

subsequently remains roughly constant (Fig. 5a). As

explained in the following, this again implies that the

buoyancy flux in the frontal zone increases beyond what

is predicted by the scaling (1) as the eddies grow in

size and velocities exceed V̂f ;L̂f , where V̂f is the

nondimensional eddy velocity scale in the frontal zone.

Applying the scaling (1) to the frontal zone, that is,

using the frontal-zone geostrophic shear and averaging

over the frontal zone only, yields the prediction

FFH: ŵ0b̂0f ;L̂2
f , (16)

where the overbar with a superscript ‘‘f ’’ denotes a

volume average restricted to the frontal zone, and L̂f

FIG. 4. Snapshots of surface buoyancy 2ŷ1 b̂ showing the evolution of the narrow front. The color scale ranges

between 6L̂ from white through blue to black.
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denotes the evolving meridional buoyancy gradient av-

eraged vertically and over the frontal zone.2 Since the

buoyancy difference L̂ across the front remains fixed,

the buoyancy gradient in the frontal zone of evolving

width L̂f scales like

L̂
f
;

L̂

L̂
f

. (17)

We can relate the frontal-zone average of the buoyancy

flux to its domain average, because the flux is largely

confined to the frontal zone:

ŵ0b̂0 ;
L̂

f

L̂
ŵ0b̂0 f . (18)

The scaling (16) for the buoyancy flux in the frontal zone

then yields the prediction

FFH: ŵ0b̂0 ;
L̂

L̂
f

. (19)

The domain-average buoyancy flux is thus predicted to

decrease like L̂21
f as the front broadens.

We diagnose the frontal width L̂f in our simulation by

fitting a function of the form 2(L̂/2) tanh(2ŷ/L̂f ) to the

vertically and zonally averaged buoyancy field 2ŷ1 b̂.

As expected from the snapshots (Fig. 4), the diagnosed

frontal width increases by over an order of magnitude

from its initial value L̂f 5 80 to a value comparable with

the domain size L̂5 6400 (Fig. 5b). The prediction from

(19) thus amounts to a sharply decreasing domain-

average buoyancy flux, which is inconsistent with the

diagnosed flux (Fig. 5a).

To get a prediction for the magnitude of the domain-

average buoyancy flux, we restore the proportionality

constant in (19):

FFH: ŵ0b̂0 5 0:04
L̂

L̂
f

, (20)

where we integrated the vertical profile in (12) as we did

in (11). With the diagnosed L̂f , the predicted flux

roughly matches the diagnosed flux around t̂5 50, when

the baroclinic eddies first become nonlinear (Fig. 5a).

Subsequently, the diagnosed flux increasingly exceeds

the prediction (20) as the eddies grow larger and the

front wider (Fig. 5a). The increase of the buoyancy flux

beyond the prediction is qualitatively consistent with

that found in the broad-front regime.

We similarly diagnose a transient increase in the

eddy velocities in the frontal zone beyond the scaling

assumption

FFH: V̂
f
;L̂

f
;

L̂

L̂
f

. (21)

Given this assumption and the fact that nonzero ve-

locities are largely confined to the frontal zone, the

domain-average eddy velocity scale V̂ is predicted to be

constant,

FFH: V̂;
L̂

f

L̂
V̂

f
; 1: (22)

In violation of the assumption (21), the diagnosed domain-

average root-mean-square meridional velocity instead

significantly increases over the course of the simulation

(Fig. 5c). Like in the broad-front regime, eddy velocities

thus show a transient increase beyond the scaling as-

sumption V̂f ;L̂f .

It should be noted that if the scaling (19) is to be used

in a parameterization, the frontal width L̂f must be

specified. The implementation of Fox-Kemper et al. (2011,

hereinafter FK11) is based on (19), but the mixed layer

deformation radius is substituted for the frontal width. This

changes the scaling behavior compared to (19) with the

actual frontal width L̂f , the consequences of which are

discussed in the appendix.

FIG. 5. Narrow-front regime time series of (a) the domain-averaged

buoyancy flux ŵ0b̂0, (b) the diagnosed frontal width L̂f , and (c) the

domain-average root-mean-square meridional velocity.

2We follow Fox-Kemper and Ferrari (2008) in using the time-

evolving buoyancy gradient, averaged vertically and over the

frontal zone—not the initial value of Lf.
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4. Discussion

The numerical experiments presented here suggest

that the buoyancy flux w0b0 increases beyond (1) as the

baroclinic eddies evolve after they have first reached

finite amplitude. This increase appears to be due to the

increase in eddy velocities beyond the scaling assump-

tion V; LH. The spindown of broad and narrow fronts

exhibits the same behavior with respect to the scaling.

The tests performed by FFH and Fox-Kemper and

Ferrari (2008) did not reveal the increase of the re-

stratification rate beyond scaling (1). Two reasons ap-

pear to explain this result: first, the simulations spent

limited time in the broad-front regime, as explained

below, so the increase in w0b0 was modest, and second,

the diagnostics used in these papers did not reveal the

decrease of the vertically averaged buoyancy gradient in

the narrow-front regime, so the constancy of w0b0 in this

regime was possibly misinterpreted as consistent with

the scaling (cf. Fig. 5).

The simulations of FFH and Fox-Kemper and Ferrari

(2008) were initialized (in their reference setup) with a

front that had a width 4 times larger than the instability

scale. There was thus limited scope for the eddies to

grow in size and for w0b0 to increase before the system

transitioned to the narrow-front regime. While modest,

inconsistencies with the scaling do appear in the broad-

front regime. In the comparison of Fox-Kemper and

Ferrari (2008) between the evolution of a parameterized

front with a full three-dimensional front, the restratify-

ing streamfunction of the full simulation was about twice

that of the parameterized version toward the end of the

broad-front regime, signifying an increasing w0b0 in the

full simulation (Fig. 3 of Fox-Kemper and Ferrari 2008).

The increasing streamfunction in the full simulation

led to accelerating restratification not captured by

the parameterization, but only over a limited time

interval (Fig. 5 of Fox-Kemper and Ferrari 2008).

These inconsistencies would have become much

more apparent had the front been broader initially

(cf. Fig. 2d).

As the simulations of FFH and Fox-Kemper and

Ferrari (2008) entered into the narrow-front regime, the

averagew0b0 stopped increasing (cf. Fig. 5a). As discussed

above, this constancy of the flux was inconsistent with

the scaling (1), because the bulk buoyancy gradient de-

creased as the frontal zone broadened. FFH and Fox-

Kemper and Ferrari (2008), however, restricted their

diagnosis of the buoyancy gradient to locations in the

horizontal and vertical that had a large gradient, thus

neglecting regions of weak gradient above and below

the front, which would have contributed to a bulk, ver-

tically averaged gradient. This appears to have led to

the diagnosis of a buoyancy gradient that was roughly

constant in time (equal to the initial gradient) and, when

inserted into scaling (1), gave a prediction that was

consistent with the approximately constant averagew0b0.
This was the result of ignoring two effects in the scaling:

the progressive decrease in the bulk buoyancy gradient

and the concomitant increase in the velocity scale be-

yond LfH.

While the scaling (1) does not capture the transient

increase of the buoyancy flux, it does approximately

match the flux in the initial phase of the nonlinear

evolution. The results of FFH and Bachman and Fox-

Kemper (2013) suggest that for this initial phase, there

is no or only weak dependence of the flux on other

parameters of the initial conditions, that is, on Ri

and d. Scaling (1) should thus be considered accurate

for the initial phase of the evolution, and it only fails

thereafter.

5. Conclusions

The transient increase beyond scaling (1) in the spin-

down of both broad and narrow fronts raises the question

of how and whether initial-value problems can inform the

parameterization of mixed layer restratification. Is it

appropriate to think of the restratification by mixed

layer baroclinic instabilities as a set of initial-value

problems initialized once storms have passed over and

have mixed the upper ocean? Does atmospherically

forced mixed layer turbulence reset the state of the

upper ocean when the next storm passes? If that is

the case, (1) can provide an accurate scaling for the

buoyancy flux in the initial phase of the nonlinear evo-

lution, which probably is long enough to cover the

period between mixing events occurring every few days.

In Callies and Ferrari (2018), however, we showed

that submesoscale eddies are remarkably resilient to the

presence of atmospherically forced small-scale turbu-

lence in the mixed layer. This resilience suggests that

submesoscale eddies can survive the passage of a storm,

such that the release of available potential energy in

deep winter mixed layers can continually energize the

submesoscale range. In such a scenario, mixed layer

eddies equilibrate with mesoscale eddies through non-

linear energy exchange across scales and energy fluxes

into the thermocline (Sasaki et al. 2014; Callies et al.

2016). The results of this paper suggest that it is unlikely

that the buoyancy flux produced by baroclinic mixed

layer eddies in such an equilibrium is captured by scaling

(1), because it only applies to the initial phase of the

nonlinear spindown of a mixed layer front. Whether the

long-term behavior of the spindown problem explored in

this paper ismore representative of such an equilibrium is
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equally unclear, but it adds to our overall understanding

of baroclinic restratification.

To properly address these questions, one has to un-

derstand the interaction between mesoscale eddies and

baroclinic mixed layer instabilities, with a representa-

tion of small-scale mixed layer turbulence that does not

unduly damp out baroclinic mixed layer eddies.3 The

cascade dynamics discussed in Callies et al. (2016) may

offer a path forward, suggesting a scenario in which

the conversion from mean to eddy available potential

energy in the mixed layer, which is achieved by re-

solvable mesoscale eddies, can be related to the un-

resolved vertical buoyancy flux due to baroclinic mixed

layer eddies, because the eddy available potential en-

ergy cascades down to scales around the mixed layer

deformation radius, where it is converted into kinetic

energy by w0b0 (cf. Larichev and Held 1995). The dy-

namics considered in Callies et al. (2016) were quasi-

geostrophic and thus neglected any impact of mixed

layer instabilities on the stratification, so the mixed

layer was artificially kept fixed. The evolution of the

mixed layer in the presence of mesoscale and sub-

mesoscale eddies as well as atmospheric forcing re-

quires further study.

The transient increase of the buoyancy flux in

spindown experiments suggests that an equilibrated

submesoscale eddy field may achieve much larger

restratification rates than expected from scaling (1) and

the small proportionality constant inferred from spin-

down experiments (FFH). The realistically forced nu-

merical simulations of Capet et al. (2008), which had a

grid spacing fine enough to allow the development of

baroclinic mixed layer instabilities, did produce buoy-

ancy fluxes much larger than those predicted. It remains

open, however, whether the resolution of these simu-

lations was high enough to faithfully capture baroclinic

mixed layer instabilities and whether the parameter-

ized representation of atmospherically forced small-

scale turbulence interacted with submesoscale eddies

in a realistic way.

It is clear that an advective restratification akin to

the Gent and McWilliams (1990) parameterization

of mesoscale eddies is needed in coarse-resolution

models in order to capture the effect of mixed layer

eddies. Despite the questions emerging from the

test cases presented here, the parameterization of

FFH has improved the representation of upper-ocean

properties in such models (FK11; Gent et al. 2011).

Answering some of the remaining questions may

improve our estimate for the restratification rate.

It can thus be hoped that understanding and captur-

ing the buoyancy flux in a broader set of circum-

stances will help further decrease biases in global

ocean models.

Acknowledgments. Jean-Michel Campin is thanked

for assistance in implementing the MITgcm modifi-

cations necessary to prescribe a background flow.

Discussions with Baylor Fox-Kemper are gratefully

acknowledged. Funding came from NSF Grant OCE-

1233832.

APPENDIX

FK11 Applied to the Narrow-Front Case

In their implementation of the scaling (1) as a

parameterization in coarse-resolution ocean models,

FK11 had to relate the buoyancy gradient on the un-

resolved frontal scale to the buoyancy gradient on the

coarse grid scale. They argued that for a collection of

fronts that produces a buoyancy spectrum falling off

steeply beyond a defined frontal scale Lf, the applica-

tion of (1) yields the gridbox average

FFH: w0b0 ;
L

L
f

fL2H2 , (A1)

where L is the size of the coarse grid box, which we

identify with our domain size, and L is the geostrophic

shear on the scale of the coarse grid. This expression is

equivalent to the narrow-front scaling (19), which we

derived by applying (1) to the frontal zone and relating

the frontal-zone average to the domain average.

To turn the expression (A1) into a parameterization,

FK11 had to specify the frontal width Lf. They noted

that observations suggest that buoyancy spectra start

falling off steeply around the mixed layer deformation

radiusLd 5 b1/2
z H/f , suggesting a frontal widthLf5Ld. In

nondimensional variables, this substitution yields the

prediction

FK11: ŵ0b̂0 5 0:04
L̂

L̂
d

, (A2)

where the nondimensional deformation radius is L̂d 5
fLd/LH and we integrated over the vertical profile.

3 Bachman and Taylor (2016) considered the equilibration of

baroclinic eddies by vertical diffusion. In such an equilibrium, the

vertical buoyancy flux exceeds (11) by about an order of magni-

tude, which is not inconsistent with the transient increase found in

our test cases. Vertical diffusion, however, unlikely equilibrates

mixed layer eddies in the real ocean (cf. Callies and Ferrari 2018),

so our discussion here focuses instead on energy exchange across

scales and into the thermocline.
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Since the deformation radius does not necessarily match

the actual frontal width, this reinterpretation of (1)

yields a different scaling behavior.

In our narrow-front simulation, the domain-average

deformation radius L̂d does not match the width of the

frontal zone (Fig. 6a). At all times, the deformation ra-

dius is at least an order of magnitude smaller than the

diagnosed frontal width L̂f . Nevertheless, using it in

(A2) drastically overpredicts the actual buoyancy flux

(Fig. 6b).

This drastic overprediction is somewhat disconcert-

ing, because it suggests that the FK11 parameterization

might give restratification rates that are much too strong

in situations resembling our test case. The parameter

regime of our test case does not seem irrelevant for the

real ocean’s mixed layer, but it is quite an idealized case.

The fact that the frontal width does not match the de-

formation radius in our simulation, while it does appear

to match it in observations, means this result should be

taken with a grain of salt. More realistic simulations are

needed, in which the fronts are generated internally and

mesoscale strain is present (see section 5).

The domain-average deformation radius depends on

the stratification outside the front, which is not neces-

sarily expected to affect the buoyancy fluxes within the

frontal zone. A more sensible substitute for the frontal

width in (A2) might thus be the deformation radius

within the frontal zone. We diagnose the frontal defor-

mation from the simulation as (L̂/L̂f )
1/2
L̂d, assuming

the domain-average stratification is dominated by the

frontal zone. This frontal deformation radius, however,

is not a good predictor for the frontal width either

(Fig. 6a). Once the baroclinic instability has reached

finite amplitude, the frontal deformation radius be-

comes roughly constant at a value around L̂1/2 5 80. This

is expected, because the horizontal buoyancy difference

across the front L̂ is turned into a vertical buoyancy

difference in the frontal zone.

The constancy of the frontal deformation radius thus

does not capture the actual increase in the width of the

frontal zone (Fig. 6a). Using the frontal instead of the

domain-average deformation radius in (A2), however,

does correctly predict a buoyancy flux that is roughly

constant in time once the baroclinic instability has

reached finite amplitude (Fig. 6b). The magnitude of the

predicted flux is too large by a factor of about four.

Whether this offset is systematic cannot be evaluated

by a single simulation and should be checked by varying

the parameters of the problem (initial L̂f , Ri, and d).

If (A2), with L̂d replaced by the frontal deformation

radius, does turn out to be a good predictor for the

domain-average buoyancy flux of a narrow front, it still

remains unclear how that prediction could be used in a

parameterization. One would have to relate the frontal

deformation radius to grid-scale variables to yield a

closed expression.
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