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Abstract

We show that an asymptotic property of the determinants of certain matrices whose
entries are finite sums of cotangents with rational arguments is equivalent to the GRH
for odd Dirichlet characters. This is then connected to the existence of certain quantum
modular forms related to Maass Eisenstein series.

1 Introduction andmain results
To answer immediately a question that the reader may be asking, we should say from
the outset that the generalized Riemann hypothesis (henceforth, just GRH) of the title
refers only to the L-series associated with odd real Dirichlet characters and that we do not
aim to prove it, but merely to show its equivalence to an asymptotic statement about the
determinants of certain matrices whose entries cm,n are given by finite sums of cotangents
of rational multiples of π . To answer a second natural question, since it may seem unusual
for an author to contribute to the proceedings volume of a conference partly intended to
celebrate his own birthday, we should also say a few words about the genesis of this joint
paper. Both the definition of the cotangent sums considered and their relation to GRH
were found by the first author and presented in his talk at the conference in question. In
the course of that talk hementioned the homogeneity property c�m,�n = �cm,n, leading the
second author to ask whether the functionC : Q → R defined byC(m/n) = cm,n/nmight
be related to a quantum modular form in the sense of [16]. The answer to this question
turned out to be positive. Furthermore, and unexpectedly, this quantum modular aspect
turned out also to be related to the earlier joint work of the authors [13] on the analogs of
classical period polynomials for Maass waveforms. A glance at the title of the final section
of this paper will show why it seemed natural, and even irresistible, to publish both parts
of the story in these proceedings.
We now describe the main results of the paper in more detail. We denote by

χ (n) =
⎧
⎨

⎩

(−1)(n−1)/2 if n is odd,

0 if n is even,
L(s) = 1 − 1

3s
+ 1

5s
− 1

7s
+ · · · . (1)

the primitive Dirichlet character of conductor 4 and its associated L-series. (In Sect. 5
we will describe the generalization to other odd primitive real Dirichlet characters.) For
positive integersm and n we define a real number cm,n by
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cm,n := 4
π

∑

j, k>0

χ (j)χ (k)
max(j/m, k/n)

, (2)

where the conditionally convergent sum is to be interpreted as the limit for N → ∞ of
the sum over the rectangle 1 ≤ j ≤ mN , 1 ≤ k ≤ nN . These numbers are studied in
more detail in Sect. 2, where we will see that they are algebraic numbers (in fact, algebraic
integers) that can be expressed as finite sums of cotangents of odd multiples of π/4m
or π/4n, a typical example being

c3,4 = cot
( π

12

)
+ cot

(
5π
12

)

+ cot
(
9π
16

)

+ cot
(
13π
16

)

= 6 − 2
√

2 + √
2.

For each N ∈ N we define the two symmetric matrices

CN :=

⎛

⎜
⎜
⎝

c1,1 · · · c1,N
...

. . .
...

cN,1 · · · cN,N

⎞

⎟
⎟
⎠ , ĈN :=

⎛

⎜
⎜
⎜
⎜
⎝

1
CN

...
N

1 · · · N 4N/π

⎞

⎟
⎟
⎟
⎟
⎠
, (3)

which we will show later are positive definite, and define a function R : N → R by

R(N ) := N
det CN
det ĈN

. (4)

The first main result of this paper is then the following.

Theorem 1 The following two statements are equivalent:

(a) The function R(N ) is unbounded.
(b) The L-series L(s) has no zeros in the half-plane σ := �(s) > 1

2 (GRH).

The proof of this theorem will be given in Sect. 3. The direction (a)⇒ (b) is fairly elemen-
tary, while the reverse direction uses functional analysis and techniques coming from old
work of Beurling. The result that we actually prove (Theorem 3 in §3) is in fact stronger
than Theorem 1 in both directions: if GRH holds, then R(N ) is not merely unbounded,
but actually tends to infinity as N → ∞, and if L(s) has a zero ρ with �(ρ) > 1

2 , then the
function R(N ) is bounded by a number depending explicitly on ρ. Of course we believe
that the two statements in Theorem 1 are both true rather than both false, the evidence
being on the one hand the generally held belief in the validity of (b) and on the other hand
the plot of the function R(N ) for N ≤ 100,000 shown in Fig. 1, which suggests that R(N )
tends to infinity and perhaps even grows roughly linearly with logN . (The straight-line fit
shown in the picture is the graph of the function 5.18 logN .)
The second main result concerns the quantum modular nature of certain functions

related to the coefficients cm,n. On the one hand, the numbers cm,n defined by (2) have the
obvious homogeneity property c�m,�n = � cm,n and can be rewritten in the form

cm,n = 4n
π

C
(m
n

)
, C(x) :=

∑

j, k>0
χ (j)χ (k) min

(
x
j
,
1
k

)

(x ∈ Q>0). (5)

On the other hand, by splitting the sums in (2) or (5) into two pieces depending on which
its two arguments realize the “max” or “min,” we obtain the decompositions

cm,n = hm,n + hn,m, C(x) = H (x) + x H
(
1
x

)

, (6)
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Fig. 1 Graph of the function R(N)

Fig. 2 Graph of the function H(x)

where the function H : Q>0 → R and numbers hm,n ∈ R are defined by

H (x) :=
∑∗

0<j≤kx

χ (k)χ (j)
k

, hm,n := 4n
π

H
(m
n

)
. (7)

(Here and later an asterisk on a summation sign means that terms with equality—in this
case, those with j = kx—are to be counted with multiplicity 1/2.) We will show in Sect. 2
that hm,n (or its sumwith 1/2 ifmn is odd) is a sum of cotangents of oddmultiples of π/4n
and hence is an algebraic integer, refining the corresponding properties for cm,n given
above.
We can now come to the quantum modular form property mentioned in the opening

paragraph. The graph of the function H on Q is shown in Fig. 2.
This graph suggests that the function H is only naturally defined on Q and is not well

behaved as a function onR, having a possibly dense set of discontinuities and certainly not
differentiable at generic points. The graph of the function C shown in Fig. 3, on the other
hand, suggests that it is everywhere continuous and possibly even differentiable except
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Fig. 3 Graph of the function C(x)

at rational points with odd numerator and denominator, where it seems to be left and
right differentiable but with a discontinuous derivative. Our second main result, proved
in Sect. 4, refutes the last of these statements and confirms the others.

Theorem 2 The functionH (x) is discontinuousatall rational points xwith oddnumerator
and denominator and is continuous but not left or right differentiable at other rational
points. The function C(x) is continuous everywhere, is not left or right differentiable at
rational points with odd numerator and denominator, but is differentiable at all other
rational points.

The similarity between the continuity and differentiability statements for the two func-
tions H (x) and C(x) in this theorem is not coincidental, since we will see in Sect. 4 that
the derivative of C(x) is equal to H (1/x).
We now discuss the “quantum modular form” aspect of Theorem 2. Note first that the

function H is periodic of period 4 and hence extends to a periodic function on all of Q.
This function is even, so we could also extend H from Q>0 to Q by H (x) := H (|x|).
One might then think of extending C to negative values of the arguments by setting
C(x) = H (x)+ xH (1/x) for all x 
= 0, but if we did that then C(x) for x < 0 would exhibit
oscillatory behavior of the same sort as H (x). Instead, we extend C to all of Q as an even
function, i.e., we set C(x) = C(|x|) for x 
= 0 and extend this by continuity to C(0) = 0.
Then the relationship between C and H becomes

H (x) + |x|H (1/x) = C(x) (x 
= 0). (8)

On theother hand, the 4-periodicity property ofH (x) canbe strengthened to the statement

H (x) + H (x + 2) = π

4
, (9)

saying that up to sign and up to a constantH actually has period 2. Also, sinceH is even, we
can replace the termH (1/x) in (8) byH (−1/x). But the twomatrices S = ( 0 −1

1 0
)
andT 2 =

( 1 2
0 1

)
generate the subgroup �ϑ of index 3 in the full modular group SL(2,Z) = 〈S, T 〉

consisting of matrices congruent to
( 1 0
0 1

)
or

( 0 1
1 0

)
modulo 2 (this is the so-called theta

group, under which the Jacobi theta function ϑ(z) = ∑
n eπ in

2z transforms like a modular
form of weight 1/2), so Eqs. (8) and (9) can be combined to the following statement:
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Corollary The function H : Q → R satisfies the transformation property

ε(γ ) |cx + d|H
(
ax + b
cx + d

)

= H (x) + (continuous function)

for every matrix γ = ( a b
c d

) ∈ �ϑ , where ε : �ϑ → {±1} is the homomorphism sending
both generators

( 1 2
0 1

)
and

( 0 −1
1 0

)
of �ϑ to −1.

This corollary tells us precisely that the function H is a quantum modular form in the
sense of [16] (except that there is an absolute value sign here that was not present there).
Recall that a “quantum modular form” is by definition a function on Q that does not
extend nicely to R but which modulo (the restriction from R to Q of) better-behaved
(here, continuous) functions on R transforms like a modular form with respect to some
subgroup of finite index of SL(2,Z) (here the theta group �ϑ ) with some weight (here− 1)
and character (here ε). In Sect. 6 of this paper we will show that the quantum modularity
property of H is related to an actual modular form (specifically, a Maass Eisenstein series
of eigenvalue 1/4) on the group �ϑ .
The authors would like to thank Steven Johnson (MIT) and Alexander Weisse (MPI)

for invaluable help with the numerical aspects of this paper.

2 Properties of the numbers cm,n and hm,n

In this section we give an integral representation for the numbers cm,n that will be used
later both to extend the function C(x) continuously from Q to R and as the key to the
proof in Sect. 3 of the relation between the numbers cm,n and the zeros of the Dirichlet
L-series L(s).Wewill also prove the formulas for cm,n and hm,n as algebraic numbers (finite
sums of cotangents).
The first step is to rewrite the definition of H given in (7) more compactly in the form

H (x) =
∞∑

k=1

χ (k)
k

S(kx) (x ∈ Q), (10)

where S(x) is the function defined on R>0 by

S(x) :=
∑∗

0<j≤x
χ (j). (11)

The function S, like H itself, is periodic of period 4, and we can use this property to
extend it to all of R. (Equivalently, we can extend it by S(−x) = S(x) and S(0) = 0, or
by observing that the summation condition in (11) can be replaced by J < j ≤ x for any
integer J < x divisible by 4, which works for all real x.) The function S is then the step
function given by

S(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 4k + 1 < x < 4k + 3 for some k ∈ Z,

0 if 4k − 1 < x < 4k + 1 for some k ∈ Z,
1
2 if x is an odd integer,

(12)

as pictured in Fig. 4. Note that the sum in (10) converges (conditionally) for x ∈ Q by
summation by parts, because the function χ (k)S(kx) is then an odd periodic function of k
and hence has average value zero, so that the sums

∑K
k=1 χ (k)S(kx) are bounded.

We use the bounded periodic function S to prove the following formula for the cm,n :
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Fig. 4 Graph of the function S(x)

Proposition 1 The numbers cm,n defined by (2) have the integral representation

cm,n = 4
π

∫ ∞

0
S(mt) S(nt)

dt
t2

(m, n ∈ N). (13)

Proof From the definition of S we find
∫ N

0
S(mt) S(nt)

dt
t2

=
∫ N

0

∑∗

0<j≤mt
0<k≤nt

χ (j)χ (k)
dt
t2

=
∑

0<j≤mN
0<k≤nN

(
χ (j)χ (k)

max(j/m, k/n)
− χ (j)χ (k)

N

)

,

and since the second sum is identically zero forN divisible by 4, Eq. (13) follows by letting
N tend to infinity in 4Z. �
Our next result expresses cm,n as a finite sum of algebraic cotangent values indexed by

lattice points in the rectangle [0, m/2] × [0, n/2] satisfying a certain “selection rule.”

Proposition 2 Let m and n be positive integers. Then the number defined by (2) is given
as the following integral linear combination of cotangents of rational multiples of π :

cm,n =
∑

0≤j≤m/2
0≤k≤n/2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cot(πa) − cot(πb) if a := max
(
4j+1
4m , 4k+1

4n

)

< b := min
(
4j+3
4m , 4k+3

4n , 12
)
,

0 if a ≥ b.

Corollary The numbers cm,n are algebraic integers for all m, n > 0.

Using this proposition we can calculate any cm,n in closed form as an algebraic number.
For example, the first 4 × 4 matrix of values [cf. Eq. (3)] is given by

C4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 2 − √
2 2 − √

3 2 − 2
√
2 − √

2
2 − √

2 2
√
2 4 − 2

√
2

2 − √
3

√
2 3 6 − 2

√
2 + √

2
2 − 2

√
2 − √

2 4 − 2
√
2 6 − 2

√
2 + √

2 4

⎞

⎟
⎟
⎟
⎟
⎠
.

Proof Since S(x) is even and periodic of period 4, we can rewrite the integral representa-
tion (13) using Euler’s formula

∑
k∈Z(k + t)−2 = π2/ sin2(π t) as

cm,n = π

∫ 1/2

0
S(4mx) S(4nx)

dx
sin2(πx)

.

But from the definition of S(4mx) and S(4nx) as characteristic functions, it follows that
the restriction of S(4mx)S(4nx) to [0, 12 ] is the characteristic function of the union of all
intervals [a, b] with a < b as given in the proposition. This proves the proposition because
π
∫ b
a csc2(πx) dx = cot(πa)− cot(πb). The corollary then follows because by elementary
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algebraic number theory the number cot(πα) is an algebraic integer for every rational
number α having an even denominator. �
We next give the corresponding formula for the numbers hm,n, which is in fact simpler.

Proposition 3 Let m and n be positive integers. Then the number defined by (7) is given
as the following half-integral linear combination of cotangents of odd multiples of π/4n:

hm,n =
2n−1∑

k=1
χ (k) S

(
km
n

)

cot
(

πk
4n

)

. (14)

Proof Since the summand in (10) is an even function of k , we can rewrite the sum as a sum
over all nonzero integral values of k and then use the periodicity (with period at most 4n)
of the factorχ (k)S(km/n) together with Euler’s formula

∑
n∈Z(x+n)−1 = π cot(πx) (with

the sum being interpreted as a Cauchy principal value) to get

hm,n = 2n
π

∑

k∈Z {0}

χ (k)
k

S
(
km
n

)

= 2n
π

∑

k(mod 4n), k 
=0
χ (k) S

(
km
n

) ∑

r∈Z

1
4nr + k

= 1
2

∑

0<k<4n
χ (k) S

(
km
n

)

cot
(

πk
4n

)

=
∑

0<k<2n
χ (k) S

(
km
n

)

cot
(

πk
4n

)

as claimed. �
Remark One can also deduce the formula for cm,n in Proposition 2 from (14); this is left
as an exercise to the reader. We also observe that the terms on the right-hand side of (14)
(assuming, as we can, that m and n are coprime) are integral multiples of cotangents of
oddmultiples of π/4n, and hence are algebraic integers (in some cyclotomic field), except
for the k = n term if m and n are odd, which is half-integral because then S(km/n) = 1

2
and cot(πk/4n) = 1. Hence hm,n is an algebraic integer unless both m and n are odd,
in which case it equals an algebraic integer plus 1/2, and the sum cm,n = hm,n + hn,m is
always an algebraic integer.

3 The connection with the generalized Riemann hypothesis
In the first subsection of this section we outline the basic strategy for proving Theorem 1.
The easier direction (a)⇒ (b) of this theorem is then proved in Sect. 3.2 and the more
difficult conversedirection inSect. 3.3, using ideas fromtwoclassical papers byA.Beurling.
As already stated in introduction, we will actually prove the following stronger result:

Theorem 3 Let L(s) be the L-series defined in (1) and R(N ) be the function defined in (4).

(a) If L(s) has no zeros with �(s) > 1
2 , then R(N ) tends to infinity as N tends to infinity.

(b) If L(ρ) = 0 for some ρ ∈ C with �(ρ) > 1
2 , then R(N ) satisfies the bound

R(N ) ≤ π

8
|ρ|2

�(ρ) − 1
2

(∀N ≥ 1). (15)

3.1 The square-wave function G and its multiplicative shifts

Set L2 = L2(0, 1) and let ξ be the characteristic function of the interval (0, 1] and G :
R>0 → R the function

G(x) = S(1/x) =
⎧
⎨

⎩

1 if 1
4k+3 < x < 1

4k+1 for some k ∈ Z≥0,

0 otherwise
(16)
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(and G(x) = 1/2 if 1/x is an odd integer, but we are working in L2). Clearly both ξ and G
belong to L2, since they are bounded with support in the interval (0, 1]. On the other
hand, if we identify L2 with the space of square-integrable functions on R>0 that vanish
on (1,∞), then we have bounded operators τa on L2 defined by

τaf (x) = f (x/a) (0 < a ≤ 1, x ∈ R>0)

We set Ga = τaG and for anyD ⊆ R and N ∈ N define subspaces VD and VN of L2 by

VD = 〈Ga|a ∈ D ∩ (0, 1]〉, VN = 〈Gn/N |1 ≤ n ≤ N 〉, (17)

where 〈S〉 denotes the linear span of a subset S of a linear space. Finally, we denote by
d(ξ ,VN ) the L2 distance from ξ ∈ L2 to the subspace VN , viz.

d(ξ ,VN ) = ‖ξ − VN‖ = inf
x∈RN

∥
∥
∥
∥
∥
ξ −

N∑

n=1
xn τn/NG

∥
∥
∥
∥
∥
. (18)

The key connection is then given by the following proposition.

Proposition 4 The distance d(ξ ,VN ) is related to the number R(N ) defined in (4) by

d(ξ ,VN )2 = π/4
R(N )

(N ∈ N). (19)

The proof of this, which is a straightforward computation, will be given in Sect. 3.2. On
the other hand, a quite elementary argument, also given in Sect. 3.2, proves the following

Proposition 5 If L(ρ) = 0 with �(ρ) > 1
2 then d(ξ ,VN )2 ≥ 2�(ρ)−1

|ρ|2 for all N ∈ N .

Together these two results prove statement (b) of Theorem 3. The harder statement (a)
follows from the two following results, proved in Sects. 3.2 and 3.3, respectively.

Proposition 6 The space VD is dense in VR for any setD that is dense in (0, 1).

Proposition 7 If L(s) has no zeros in σ > 1
2 , then VR is dense in L2.

The whole argument is summarized by the following diagram, where the flow of the
double arrows shows that the six boxed statements are mutually equivalent.

GRH ξ ∈ VQ R(N ) is unbounded

VR = L2 VD = L2 (D dense) limN→∞ R(N ) = ∞

Prop. 5 Prop. 4

Prop. 7

Prop. 4Prop. 6

trivial trivial

(The implications labeled “Prop. 4” follow in one direction because each VN is contained
inVQ and in the other because ifR(N ) were bounded for some infinite sequence of integers
{Ni} then the set ∪iVNi would be dense in VR but have a nonzero distance from ξ .)
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3.2 Proof of Propositions 4, 5 and 6

Recall from linear algebra that the distance d(v, V ) from a vector v in a (real) Hilbert space
to a finite-dimensional vector space V with basis {v1, . . . , vN } is given by the formula
d(v, V )2 = det(Ĝ)/ det(G), where G is the N × N Gram matrix with (m, n)-entry 〈vm, vn〉
(scalar product of the basis elements vm and vn) and Ĝ the augmented (N + 1)× (N + 1)
matrix obtained from G by adding a row and column with entries 〈v, vn〉 and a diagonal
entry 〈v, v〉. We apply this to the vector v = ξ ∈ L2 and the space VN defined as above
as the span of the vectors Gn/N ∈ L2 (n = 1, . . . , N ). (Here we mean the real rather than
the complex span, i.e., we work in the real Hilbert space of real-valued square-integrable
functions on (0, 1).)We also denote by V̂N the span ofVN and ξ .Wewill show in amoment
that the vectors Gn/N and ξ are linearly independent, so dim V̂N = dimVN + 1 = N + 1.
We can then compute the entries of the Gram matrices as

〈ξ , ξ 〉 =
∫ 1

0
dx = 1, 〈ξ , Gn/N 〉 =

∫ 1

0
S
( n
Nx

)
dx = n

N
L(1) = πn

4N
[the first is trivial and the second a special case of Eq. (21)] and

〈Gm/N , Gn/N 〉 =
∫ 1

0
S
( m
Nx

)
S
( n
Nx

)
dx = m

N
C
(m
n

)
= π

4N
cm,n

[combine Eqs. (25) and (5)]. Proposition 4 follows.
To find the connection with the L-series L(s) and its complex zeros, we next consider

the “complex monomial functions” ps on (0, 1] defined by

ps(t) = ts−1ξ (t) = ts−1 (0 < t ≤ 1, s ∈ C).

Note the key fact that ps ∈ L2 if and only if σ > 1
2 , and also that for f ∈ L2 and σ > 1

2 , we
have 〈ps, f 〉 = f̃ (s), where f̃ (s) denotes the Mellin transform

f̃ (s) =
∫ ∞

0
f (x) xs−1 dx =

∫ 1

0
f (x) xs−1 dx.

(Herewe are again identifying L2 = L2(0, 1)with the space of functions L2(R>0) supported
on (0, 1].) Then obviously

〈ps, ξ 〉 =
∫ 1

0
xs−1 dx = 1

s
, (20)

and the Mellin transform of Ga is almost equally easy to calculate using (12):

〈ps, Ga〉 =
∫ ∞

0
S
(a
x

)
xs−1 dx = 1

s

∞∑

k=0

(
as

(4k + 1)s
− as

(4k + 3)s

)

= as

s
L(s), (21)

the calculation being valid for all s in�(s) > 0 since the integral then converges absolutely.
One consequence of this is that the functionsGa (0 < a ≤ 1) are all linearly independent,
since if some (finite) linear combination of them vanished then the vanishing of its Mellin
transform would imply that the product of L(s) with a finite Dirichlet series vanished
identically (first for �(s) > 0, and then for all s by analytic continuation). In particular,
the space VN has dimension exactly N . In fact, almost the same argument also shows
that the functions Ga and ξ are linearly independent, since a linear relation among them
would imply that the product of L(s) with a finite Dirichlet series was constant, which
is obviously impossible. It follows that the extended space V̂N spanned by the functions
Gn/N (1 ≤ n ≤ N ) and ξ has dimension N + 1, as claimed above.
The proof of the direction (a)⇒ (b) of Theorem 1 now follows easily. If there exists

ρ with Re (ρ) > 1
2 and L(ρ) = 0 then by (21) we have pρ ⊥ VN for all N . Since VN is
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finite-dimensional, the infimum in Eq. (18) is attained, so that R(N ) is unbounded (and
hence d(ξ ,VN ) has lim inf equal to 0) if and only if there is a sequence of functions
hN ∈ VN converging in L2 to ξ , and this would contradict pρ ⊥ VN for all N since
〈pρ , ξ 〉 = ρ−1 
= 0.
This argument actually proves the stronger statement given in Proposition 5 and in

part (b) of Theorem 3. Indeed, if ρ is a zero of L(s) with �(ρ) > 1
2 , then on the one hand

pρ belongs to L2 as already noted, with L2 norm
∥
∥pρ

∥
∥2 =

∫ 1

0

∣
∣xρ−1∣∣2 dx = 1

2�(ρ) − 1
,

and on the other hand 〈pρ , f 〉 = 0 for any f ∈ VN by virtue of (21). We apply this to
the function f = fN ∈ VN attaining the minimum distance to ξ . Then applying the
Cauchy–Schwarz inequality to the scalar product 〈pρ , ξ − fN 〉 we get [using (20)]

1
|ρ|2 = ∣

∣〈pρ , ξ 〉∣∣2 = ∣
∣〈pρ , ξ − fN 〉∣∣2 ≤ ‖pρ‖2 ‖ξ − fN‖2 = d(ξ ,VN )2

2�(ρ) − 1
,

and (15) now follows immediately from (19).
Finally, we prove Proposition 6 (“density lemma”). We first note that the L2 norm

‖Ga − Gb‖ tends to 0 as a tends to b, since by the calculation 〈Ga,Gb〉 = aC(a/b) given
above (for rational numbers, but true in general by the same argument) we have

‖Ga − Gb‖2 = 〈Ga,Ga〉 + 〈Ga,Gb〉 − 2 〈Ga,Gb〉 = (a + b)C(1) − 2aC(b/a),

which tends to 0 as b → a because C(x) is a continuous function. It follows immediately
that if D is dense in (0, 1) then the vector Ga ∈ L2 for any a < 1 lies in the closure of VD ,
and since VR is spanned by such vectors, this shows that VR = VD as claimed.

3.3 Proof of Proposition 7

It remains to show that GRH implies that VR = L2.
Let H2 = H2(R) denote the Hardy space of the right half-plane R = {s | �(s) > 1

2 },
that is, the space of all holomorphic functions F (s) onR that are square-integrable on the
lines �(s) = c for all c > 1

2 and with these L2 norms ‖ ‖c bounded in c, and then equipped
with the Hilbert space norm ‖F‖ = sup{‖F‖c | c > 1

2 }. We quote some results from the
standard analysis of these spaces, citing as we go the relevant sections in the books by
Hoffman [11] and Garnett [8] for the details.
The Paley–Wiener theorem [11, pp. 131–132] gives the fact that the Mellin transform

is (up to scalar multiple) an isometry between the spaces L2 and H2. Applying this to the
function G implies that its Mellin transform G̃(s) = L(s)/s lies in the space H2, a fact
which is also easy to see directly from the definition ofH2. Next, we note that if we assume
thatGRHholds, so that G̃(s) has no zeros inR, then the factorization theorem for functions
in the space H2 [11, pp. 132–133] applied to the function G̃(s) gives the implication

L(s) has no zeros in σ > 1
2 =⇒ G̃(s) is an outer function. (22)

Indeed, the factorization theorem represents any element F of H2 as the product of a
“Blaschke product,” a “singular function” and an “outer function.” Here we can omit the
definitions of all three of these since the Blaschke product is defined as a product over the
zeros of F in R and hence is equal to 1 if F has no such zeros, and the singular function
factor is also constant because G̃(s) both continues across the line �(s) = 1

2 and has slow
rate of convergence to zero as s → ∞ on the positive reals (cf. 3.14 in [1] and Chapter II,
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Theorem 6.3, of [8]). This leaves only the outer function factor of G̃(s), and here we can
apply a corollary of a theorem of Beurling on shift-invariant subspaces in H2 ([4], [11,
pp. 99–101]), which tells us that a function F ∈ H2 is outer if and only if the space

W(F ) := C[1/s] F (s) = 〈
s−nF (s) | n ≥ 0

〉

is dense in H2. (Notice that W(F ) is contained in H2 because the definition of the H2

norm implies that ‖s−1F (s)‖H2 ≤ 2‖F‖H2 < ∞ for F ∈ H2, so s−1H2 ⊂ H2 .)
It follows that GRH implies that W(G̃) is dense in H2. We can now apply the inverse

Mellin transform from H2 to L2 to obtain the isometrically equivalent picture in L2. An
easy calculation shows that s−1̃f (s) is the Mellin transform of If for any f ∈ L2, where

If (x) :=
∫ ∞

x
f (t)

dt
t
,

and hence that the spaceW (̃f ) is the Mellin transform of the space

W (f ) := C[I] f = 〈
Inf | n ≥ 0

〉
(f ∈ L2).

It is not actually obvious that I preserves the space L2, but this follows from the Paley–
Wiener theorem togetherwith the fact just shown thatmultiplication by s−1 preservesH2.
A more direct argument is that the operator I is the adjoint A∗ of the averaging operator

Ah(x) = 1
x

∫ x

0
h(t) dt,

as is easily checked, and since A is a bounded operator on L2(0,∞) (cf. [10, Example 5.4,
p. 23]), its adjoint I is also bounded on L2(0,∞). But I also preserves the condition of
having support in (0,1), so it is a bounded operator on L2.
As a consequence implication (22) translates on the L2 side to the statement

L(s) has no zeros in σ > 1
2 =⇒ W (G) is dense in L2. (23)

Proposition 7 is then obtained by applying to f = G the following lemma, in which V(f )
for any f ∈ L2 denotes the span of the multiplicative translates τaf (0 < a ≤ 1).

Lemma For f ∈ L2 we have W (f ) ⊂ V(f ) .
Proof We first note that it suffices just to show that If ∈ V(f ) for all f ∈ L2, because then
Inf ∈ V(f ) for all n ≥ 1 by induction and the remark that g ∈ V(f ) =⇒ V(g) ⊆ V(f ).
Since (W⊥)⊥ = W for all subspacesW , we need to show that

〈h, τaf 〉 = 0 for all a ∈ (0, 1] =⇒ 〈If, h〉 = 0. (24)

But since aτa−1 is the adjoint of τa and A is the adjoint of I , this statement just says that
any function that is orthogonal to all h(ax) with 0 < a ≤ 1 is also orthogonal to Ah, and
this is obvious because Ah(x) = ∫ 1

0 h(ax) da. �

4 Analytic properties of C(x) and H(x)
In this section we study the analytic properties of C(x) and H (x), discussing in particular
the question of their extendability from Q to R (which we answer completely only in the
case ofC(x)) and describing the asymptotic properties in neighborhoods of rational points
needed to establish Theorem 2 and its corollary (quantum modularity). We also discuss
the relation of these two functions to the Dirichlet series L(s). It should be mentioned in
passing that much of the material in this section is similar in spirit to the papers [2,3] of
Bettin and Conrey, with χ replaced by the trivial character and L(s) by the Riemann zeta
function.
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4.1 Sum and integral representations of C(x) and H(x)

Proposition 8 gives a number of formulas for these two functions. However, the word
“function” has a slightly different meaning in the two cases.We have already defined them
both as functions on Q. Part (i) of the proposition says that C extends continuously to R,
and parts (iv) and (v) give further properties of that function. But in the case of H we do
not know to what extent it can be defined as a function on R. (This question is discussed
in Sect. 4.2, though not in great detail since this is not our main interest.) However, it can
certainly be defined as a distribution on R, in fact even as the derivative of a continuous
function, since by integrating (10) we get the absolutely convergent sum representation

∫ x

0
H (x′) dx′ = πx

8
− 1

2

∞∑

k=1

χ (k)
k2

A
(
kx
2

)

for its integral, where A is the periodic continuous function on R defined by A(n + ε) =
(−1)nε for n ∈ Z and |ε| ≤ 1

2 . Parts (ii) and (iii) of the proposition are then to be
interpreted in the sense of distributions, one giving the Fourier expansion of the even
periodic distribution H and the other its relation, already mentioned in introduction,
with the derivative of C .

Proposition 8 (i) The function C(x) extends continuously fromQ to R via the formula

C(x) =
∫ ∞

0
S(t) S(xt)

dt
t2

(x ∈ R). (25)

(ii) The distribution H has the Fourier expansion

H (x) = π

8
− 2

π

∞∑

n=1

χ (n) d(n)
n

cos
(πnx

2

)
, (26)

where d(n) denotes the number of positive divisors of n.
(iii) The function C(x) and the distribution H (x) are related by the equation

C ′(x) = H (1/x) (x > 0). (27)

(iv) The function C(x) is also given by the sum

C(x) = π

8
+ x

∞∑

n=1
χ (n) d(n) J

(πnx
2

)
(x > 0), (28)

where J (x) denotes the modified cosine integral

J (x) = −
∫ ∞

x

cos(t)
t2

dt (x ∈ R>0). (29)

(v) The Mellin transform of C(x) is given by

C̃(s) = − L(−s) L(s + 1)
s (s + 1)

(−1 < σ < 0), (30)

where L(s) is the analytic continuation of the L-series defined in (1).

Proof Formula (25) for x ∈ Q>0 is precisely the statement of Proposition 1 after an
obvious change of variables, and the convergence and continuity of the integral for all x in
R>0 are easy consequences of the facts that S is supported on [1,∞) and is locally constant
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and bounded. To prove (ii), we insert the (standard) Fourier expansion

S(x) = 1
2

− 2
π

∞∑

m=1

χ (m)
m

cos
(πmx

2

)
, (31)

of the even periodic function S(x) into sum (10), combine the double sum into a single
one and use Leibniz’s formula L(1) = π/4. For (iii), we insert (11) into (25) to get

C(x) =
∫ ∞

1

∑

0<k<xt
χ (k) S(t)

dt
t2

=
∞∑

k=1
χ (k)

∫ ∞

k/x

S(t)
t2

dt, (32)

from which Eq. (27) follows immediately by differentiating and using (10). (The easy
justification of these steps in the sense of distributions by integrating against smooth test
functions is left to the reader.) Finally, to prove (iv) we combine (27) and (6) to get

− x2
d
dx

(
C(x)
x

)

= C(x) − x C ′(x) = C(x) − x H
(
1
x

)

= H (x)

and then insert Fourier development (26) and integrate term-by-term. This gives (28) up
to an additive term λx that can be eliminated by noting that C is bounded. Note that the
sum in (28) is uniformly and absolutely convergent since a simple integration-by-parts
argument shows that J (x) = O(x−2) as x → ∞. Finally, for (v) we note first that theMellin
transform S̃(s) := ∫∞

0 S(x) xs−1dx of S is given according to Eq. (21) by S̃(s) = −L(−s)/s
for σ = �(s) < 0, and then use (25) to get

C̃(s) =
∫ ∞

0
S(t)

S̃(s)
ts

dt
t2

= S̃(s) S̃(−s − 1) = − L(−s) L(s + 1)
s (s + 1)

for −1 < σ < 0, as claimed. (The Mellin transform exists in this strip because
C(x) = O(min(|x|, 1)) as an easy consequence of (25).) In particular, C̃(s) extends mero-
morphically to all of C and is invariant under s �→ −s − 1. We also note that by the
well-known functional equation of L(s), Eq. (30) can be written in the alternative form

C̃(s) = − (2/π )s+1�(s) cos(πs/2)
s + 1

L(s + 1)2.

We can then use this to give a second derivation of (28), not making use of the distribu-
tion H , by first applying the Mellin inversion formula to write C(x) as an integral over
a vertical line σ = c with −1 < c < 0 and then shifting the path of integration to the
right, picking up the term π/8 in (28) from the residue at s = 0 and permitting us to use
the convergent Dirichlet series representation L(s)2 = ∑∞

n=1 χ (n)d(n)n−s for σ > 1. (We
omit the details of this calculation.) �

4.2 The function H on the real line

In this subsection we give two one-parameter generalizations ofH (x) and discuss possible
ways to define this function at irrational arguments.
We first generalize the definitions of H (x) and C(x) and the assertions of Proposition 8

to families depending on a complex parameter s. Specifically, we can generalize (10) to

Hs(x) :=
∞∑

k=1

χ (k)
ks

S(kx) (x ∈ R, σ = �(s) > 1), (33)

which now converges absolutely. The same calculation as for H (x) then gives the Fourier
expansion

Hs(x) = L(s)
2

− 2
π

∞∑

n=1

χ (n) σs−1(n)
ns

cos
(πnx

2

)
,
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where L(s) is the Dirichlet L-function defined in (1) and σν is the sum-of-divisors function
σν(n) = ∑

k|n,k>0 kν . Similarly, we define Cs(x) = xsCs(1/x) for all s ∈ C with σ > 0 by

Cs(x) = s
∫ ∞

0
S(t) S(xt)

dt
ts+1 =

∑

j, k>0

χ (j)χ (k)
max(j/x, k)s

, (34)

where the equality of the two expressions is proved by the same calculation as for the
proof of (25). Then Cs(x) and Hs(x) are related by

Cs(x) = Hs(x) + xs Hs

(
1
x

)

, C ′
s(x) = s xs−1Hs

(
1
x

)

(x > 0) (35)

by the same calculations as in the special case s = 1 and one has an expansion like (28) but
with J (x) replaced by − ∫∞

x t−s−1 cos(t) dt. As long as σ > 1 all of the sums and integrals
involved are absolutely convergent and all steps are justified.
A different possible way to regularize H (x) for x ∈ R is to define

H (x) = lim
ε↘0

(
8
π

− 2
π
T (x, ε)

)

, where T (x, ε) =
∞∑

n=1

χ (n) d(n)
n

e−nε cos(nπx/2).

(36)

Using the identity
∑

n>0
d(n)
n

xn = ∑
k>0

1
k
log

(
1

1 − xk

)

and standard trigonometric

identities, we find after a short calculation that

T (x, ε) = 1
2

∞∑

k=1

χ (k)
k

arctan
(
cos(kπx/2)
sinh(kε)

)

.

Both this series and the original one defining T converge exponentially fast for any pos-
itive ε, giving us another possible approach to the analytic properties of the limiting
function H .
Summarizing this discussion, we have at least five potential definitions ofH (x) for x ∈ R:

Definition 1 Define H (x) by series (10), if this sum converges.

Definition 2 Define H (x) by Fourier series (26), if this series converges.

Definition 3 Define H (x) as the limit for s ↘ 1 of series (33), if this limit exists.

Definition 4 Define H (x) as the limit in (36), if this limit exists.

Definition 5 Define H (x) as the limit of H (x′) as x′ ∈ Q tends to x, if this limit exists.

We can then ask—but have not been able to answer—the question whether any or all of
these definitions converge for irrational values of x or, if they do, whether they give the
same value. The last definition is in the sense the strongest one, since any definition of H
on R or a subset of R that agrees with the original definition onQmust coincide with the
value in Definition 5 at any argument x at which this function is continuous. In any case,
we pose the explicit question:

Question Are the five definitions given above convergent and equal to one another for
all irrational values of x, or for all x belonging to some explicit set of measure 1?

It seems reasonable to expect the answer to the second question to be affirmative with the
set ofmeasure 1 being the complement of some set of irrational numbers having extremely
good rational approximations, like the well-known “Brjuno numbers” in dynamics.
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4.3 Asymptotic behavior of H(x) and C(x) near rational points

The results of Sect. 4.1 prove the continuity of C(x), which is part of the statement of
Theorem 2 in Introduction. We now discuss the remaining statements there, concerning
the behavior of C and H near rational points.
We begin by looking numerically at the asymptotic properties of C(x) near x = 1.

Computing the values of C
(
1 ± 1

n
)
for 1 ≤ n ≤ 1000 and using a numerical interpolation

technique that is explained elsewhere (see, e.g., [9]), we find empirically an expansion of
the form

C
(

1 ± 1
n

)

∼ c0 + 1
n

(

−1
4
log n + c±1

)

± c2
n2

+ c3
n3

± c4
n4

+ c5
n5

± · · · (37)

with the first few coefficients having numerical values given by

c0 = C(1) = π

4
, c+1 = c−1 + c0 = −0.23528274848426799887 . . . , c2 = −1

8
,

c3 = 0.058801396529669 . . . , c4 = 1
48

− c3, c5 = 0.01927655829 . . . .

These numerics become clearer if we work with H (x) instead, where we find the simpler
expansion

H
(

1 ± 1
n

)

∼ ±
(
1
4
log n + h±

0 + h2
n2

+ h4
n4

+ · · ·
)

(38)

with no odd powers of 1/n and with coefficients given numerically by

h+
0 = h−

0 + c0 = 0.7706809118817 . . . , h2 = 0.01713472986 . . . ,

h4 = −0.00345272385 . . . ,

which then gives expansion (37) with c±1 = −h∓
0 − 1

4
, c3 = h2 + 1

24
, and more generally

cr = (−1)r
∑

0<i<r/2
( r−1
2i−1

)
h2i for r > 1. Moreover, on calculating the next few values of

h2i numerically to high precision we are able to guess the closed formulas

h±
0 = ±π

8
+ γ

4
+ 1

4
log

8
π
, h2i = (−1)i−1 (22i−1 − 1)2 B2

2i
2i (2i)!

π2i (i ≥ 1) (39)

for the coefficients in (38), where γ is Euler’s constant and Bn the nth Bernoulli number.
In fact, it is not difficult to prove (38) [and hence also (37)] with these values of hi by
applying a twisted Euler–Maclaurin formula (giving the asymptotics as ε → 0 of sums
over an interval of χ (n)f (nε) for a smooth function f ) to the closed formula

H
(

1 ± 1
n

)

= 4n
π

∑

0<k<2n
k≡1 (mod 4)

cot
πk
4n

which follows easily from (14), though we will not carry this out here.
The “log n” terms in Eqs. (37) and (38) already show that C(x) is not differentiable at

x = 1 and H (x) is not continuous at x = 1, but from these formulas one might imagine
that the functions C(x)− |x − 1| log(|x − 1|)/4 and H (x)− log(|x − 1|)/4 are C∞ to both
the right and the left of this point. However, this is not the case, because both Eqs. (37)
and (38) are valid only when n is an integer and change in other cases. For instance, if n
tends to infinity inN+ 1

2 rather thanN, thenH (1±1/n) has an expansion of the same form
as (38) and with the same constants h±

0 , but with h2 = π2/576 replaced by −7π2/1152,
h4 = −49π4/1,382,400 replaced by 127π4/2,764,800, etc. This statement, which again
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can be proved using an appropriate twisted version of the Euler–Maclaurin formula, is a
typical phenomenon of quantum modular forms.
If we look at the asymptotics of C(x) and H (x) as x tends to any rational number α

with odd numerator and denominator, then we find a similar behavior, which is not
surprising since any such α is �ϑ -equivalent to 1 and both H and C have transformation
properties, modulo functions with better smoothness properties, under the action of �ϑ .
More precisely, if we write α = a/c with a and c > 0 odd and coprime and complete ( ac )
to a matrix

( a b
c d

) ∈ SL(2,Z), then we find asymptotic expansions

H
(
an + b
cn + d

)

∼ ± log |cn + d|
4c

+
∞∑

i=0

h±
i,α

(cn + d)i
,

C
(
an + b
cn + d

)

∼ C
(a
c

)
± log |cn + d|

4(cn + d)
+

∞∑

i=1

c±i,α
(cn + d)i

as n → ±∞ with n ∈ Z, and similar expansions with other coefficients h±
i,α,β and c±i,α,β if

n → ±∞ with n ∈ Z + β for some fixed rational number β .
Similar statements hold for x tending to rational numbers α with an even numerator or

denominator, but now without the log term, the simplest case being

C
(
1
n

)

∼ π

8n
+ χ (n)

π2

16n2
+ χ (n − 1)

π3

64n3
+ · · ·

+χ (n − k + 1)
4

A2
k
k !

( π

2n

)k+1 + · · ·
where Ak is the number of “up-down” permutations of {1, . . . , k} (permutations π where
π (i) − π (i − 1) has sign (−1)i for all i), which is also equal to the coefficient of xk/k ! in
tan x + sec x. (Note that Ak−1 = (4k − 2k )|Bk |/k for k even, so that the coefficients here
are closely related to those in (39).) The difference between the two cases is due to the
fact that the action of �ϑ on P1(Q) has two orbits (cusps), and comes from the relation
that we will see in the final section between the quantum modularity properties of C and
H and a specific Maass modular form on �ϑ that is exponentially small at the cusp ∞ but
has logarithmic growth at the cusp 1.

5 Generalization to other odd Dirichlet characters
In this section we discuss the changes that are needed when the character defined in (1)
is replaced by an arbitrary odd primitive Dirichlet character. Suppose that D < 0 is the
discriminant of an imaginary quadratic fieldK (or equivalently, thatD is either square-free
and congruent to 1mod 4 or else equal to 4 times a square-free number not congruent to 1
mod 4), and let χ = χD =

(
D
·
)
be the associated Dirichlet character, the case studied up

to now corresponding to K = Q(i) and D = −4. The Dirichlet L-series L(s,χ ) is defined
as

∑
n>0 χ (n)n−s for σ > 1 and by analytic continuation otherwise, and is equal to the

quotient of the Dedekind zeta function of K by the Riemann zeta function. Its value at
s = 1 is well known to be nonzero and given by

L(1,χ ) = π√|D| h
′(D),

where h′(D) is 1/3 or 1/2 if D = −3 or D = −4 and otherwise is the class number of K .
We now define S(x) by the same formula (11) as before, with χ = χD. It is still periodic

(with period |D|) and even and hence bounded, but now has average value h′(D) rather
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Fig. 5 Graphs of the functions S(x) for D = −3 and D = −7

than 1/2 and also no longer takes on only the values 0 and 1, as one sees in the pictures of
the graphs of this function for D = −3 and D = −7 shown in Fig. 5.
We defineH (x) = HD(x) and C(x) = CD(x) for x ∈ Q by the same formulas (8) and (10)

as before, but we define hm,n and cm,n by (5) and (7) with a factor |D|/π instead of 4/π in
order to get integral linear combinations of cotangents. Fourier expansions (26) and (31)
are then replaced by

S(x) = h′(D) −
√|D|

π

∞∑

m=1

χ (m)
m

cos
(
2πmx
|D|

)

, (40)

H (x) = π h′(D)2√|D| −
√|D|

π

∞∑

n=1

χ (n) d(n)
n

cos
(
2πnx
|D|

)

, (41)

and the formula corresponding to (14) now reads

hm,n =
∑

0<k<|D|n/2
χ (k) S

(
km
n

)

cot
(

πk
|D|n

)

(42)

by the same calculations as before. Finally we also define the matrices CN and ĈN exactly
as we did in the special case D = −4 (except for replacing the lower right-hand entry in
ĈN in (3) by |D|N/π ), and then from the scalar product calculations

〈ξ , ξ 〉 = 1, 〈ξ , Ga〉 = L(1) a, 〈Ga,Gb〉 = aC(a/b),

which are proved exactly as before, we deduce the same connection as inTheorems 1 and 3
between the unboundedness of the function R(N ) and the Riemann hypothesis for L(s,χ ).
The only real difference with the caseD = −4 is in the argument for quantummodular-

ity. The functionH (x) onQ is still even and periodic of period |D| (and also anti-periodic
up to a constant with period |D|/2 if D is even), it again has discontinuities at infinitely
many rational points by an argument similar to the one given in Sect. 4.3, and by the
analog of Proposition 8 the function C : Q → R again has a continuous extension to R

and is thereforemuch better behaved analytically thanH (x), as illustrated by the following
graphs of these functions for D = −3 (Figs. 6, 7), which look qualitatively much like their
D = −4 counterparts in Figs. 2 and 3.
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Fig. 6 Graph of the function H(x) for D = −3

Fig. 7 Graph of the function C(x) for D = −3

The difference is that this longer suffices to prove the quantummodularity ofH because
the subgroup of SL(2,Z) generated by the matrices T |D| (or T |D|/2 ifD is even) and S now
no longer has finite index. Instead, we need a statement like the corollary to Theorem 2
with �ϑ replaced by the congruence subgroup �(D) = �0(D) ∪ S�0(D) of SL(2,Z) (or by
�(D/2) ifD is even, which is indeed �ϑ ifD = −4). This statement is given in the following
theorem.

Theorem 4 Let D < 0 and H (x) = ∑
k>0 χD(k)SD(kx)/k be as above. Then the function

Cγ (x) := H (x) − ε(γ ) |cx + d|H
(
ax + b
cx + d

)

(x ∈ Q) (43)

extends continuously to R for all matrices γ = ( a b
c d

) ∈ �(D), where ε : �(D) → {±1} is the
homomorphism mapping �(D) to 1 and S to −1.

This theorem is illustrated for D = −3 and a typical element of �(−3) in Fig. 8.
We will deduce Theorem 4 as a consequence of the following proposition, which is a

generalization to arbitrary elements γ ∈ �(D) of Eq. (32) for D = −4 and γ = S.
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Fig. 8 Graph of Cγ (x) for D = −3, γ = ( 4 −3
3 −2

)

Proposition 9 Let γ =
(
a b
c d

)

∈ �(D) with c 
= 0. Then

Cγ (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H (−d/c) − |c| ε(γ )
∞∑

k=1
χ (k)

∫ ∞

k γ x

S(t) dt
(ct − ak)2

if x < −d/c,

H (−d/c) − |c| ε(γ )
∞∑

k=1
χ (k)

∫ k γ x

−∞
S(t) dt

(ak − ct)2
if x > −d/c.

(44)

To see that this implies the continuity, we note that we can rewrite the right-hand side
by interchanging the summation and integration in the form [generalizing (25)]

Cγ (x) = H (−d/c) − |c| ε(γ )
∫ ∞

−∞
S(t)

⎛

⎝
∑

k>0, kγ x≷ t

χ (k)
(ak − ct)2

⎞

⎠ dt (45)

for x ≷ −d/c. The right-hand side of this formula is continuous because S(t) is piecewise
continuous and bounded and has support in |t| ≥ 1, while the second factor of the
integrand is piecewise continuous and bounded by a constant times t−2, as one sees
easily by partial summation. Another argument is that (44) is equivalent to the equality of
distributions

C ′
γ (x) = − ε(γ ) |c| sgn(x + d/c)

∞∑

k=1
χ (k)

S(k γ x)
k

= − ε(γ ) c sgn(cx + d)H
(
ax + b
cx + d

)

, (46)

[generalizing (27)], and we already know that the distribution H is locally the derivative
of a continuous function.
For the proof of (44)wewill restrict to the casewhen thematrix γ belongs to�(D), which

is sufficient for the proof of Theorem 4 because γ �→ Cγ is a cocycle and we already know
the continuity of Cγ (= C) for the special case γ = S representing the nontrivial coset of
�(D) in �(D). To avoid distracting case distinctions, we consider only the case x+d/c < 0
and γ x > 0. The argument is the same in principle in all other cases, but we are actually
working with ordered tuples of points on the 1-manifold P1(R), on which the group �(D)
acts in an orientation-preserving way, and it is notationally simpler to fix the positions of
the points occurring with respect to the point at infinity, so that we can work onR instead.
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We may also assume (by replacing γ by −γ if necessary, but then remembering that γ

may be congruent to −12 rather than 12 moduloD) that c > 0. Finally, to be able to work
with absolutely convergent sums and to reorder the terms freely, we will replace H (x) by
the function Hs(x) (s > 1) introduced in Sect. 4.2 and Cγ by the corresponding cocycle

Cγ ,s(x) = Hs(x) − ε(γ ) |cx + d|s Hs

(
ax + b
cx + d

)

, (47)

and only set s = 1 at the end. The equation we have to prove then becomes

Cγ ,s(x) = Hs(−d/c) − c s
∞∑

k=1
χ (k)

∫ ∞

k γ x

S(t) dt
(ct − ak)s+1 . (48)

We denote the last term (without the minus sign) by A. Since the variable t in the integral
is always positive (because we are considering the case γ x > 0), we can replace S(t) by its
definition (11) and interchange the summation and integration to getf

A =
∑

k,j>0
χ (j)χ (k)

∫ ∞

max(j,k γ x)

c s dt
(ct − ak)s+1 =

∑

k,j>0

χ (j)χ (k)
max(cj − ak, k/|cx + d|)s

=
∑∗

0<j≤kγ x

χ (j)χ (k)
(k/|cx + d|)s +

∑∗

k>0, j≥kγ x

χ (j)χ (k)
(cj − ak)s

.

In the second sumwe replace the vector
(
j
k

)

by the vector−γ

(
j
k

)

=
(

−aj − bk
−cj − dk

)

. This

does not change the product χ (j)χ (k) because γ is congruent to plus orminus the identity
modulo the period |D| of χ , changes the expression cj − ak in the denominator to k , and
changes the inequalities k > 0, j ≥ kγ x to kx ≤ j < −kd/c (which imply k > 0). Hence

A = |cx + d|s
∞∑

k=1

χ (k)
ks

S(kγ x) +
∞∑

k=1

χ (k)
ks

(S(−kd/c) − S(kx))

= Hs(−d/c) − Cγ ,s(x)
completing the proof of Eq. (48) and hence of the proposition and theorem.

6 Modular forms are everywhere
As one can already see from the examples in the original article [16] where this notion
was introduced, quantummodular forms are sometimes related to actual modular forms.
These modular forms may be either holomorphic or Maass forms, with the quantum
modular form in the latter case being related to the “periods” of Maass forms in the sense
developed in [7,13]. The quantum modular form H (x) that we have been studying in this
paper turns out to be of this latter type, with the associatedMaass formbeing an Eisenstein
series with eigenvalue 1/4 for the hyperbolic Laplace operator. In this final section we
explain how this works, first for the case D = −4 studied in the first four sections of
this paper. In that case the relevant modular group �ϑ is generated by a translation and
an inversion, so that for both the period theory of the Maass form u and the quantum
modularity of H one needs only the functional equation of the associated L-series. Then
at the end we indicate how the quantum modularity of H for general D follows from the
full theory of periods of Maass forms.
We start with the case D = −4, so that χ is the character given by (1). The relevant

modular form here is the Maass Eisenstein series

u(z) = y1/2
∞∑

n=1
χ (n) d(n)K0

(πny
2

)
sin

(πnx
2

)
(z = x + iy ∈ H), (49)
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whereH denotes the upper half-plane and K0 the usual K -Bessel function of order 0. This
is an eigenfunction with eigenvalue 1/4 with respect to the hyperbolic Laplace operator
� = −y2

(
∂2

∂x2 + ∂2

∂y2

)
and is amodular functionwith character ε for the group�ϑ defined

in Sect. 1, meaning that u(γ z) = ε(γ )u(z) for all γ ∈ �ϑ or, more explicitly, that

u(z + 2) = −u(z) = u(−1/z) (z ∈ H). (50)

To see this, we observe that u(z) is proportional to E
( z+1

4 , 12
) − E

( z−1
4 , 12

)
, where E(z, s)

is the usual nonholomorphic Eisenstein series of weight 0 and eigenvalue s(1 − s) for
the Laplace operator with respect to the full modular group �1 = SL(2,Z). (This follows
easily from the well-known Fourier expansion of E(z, 12 ) as a linear combination of the
three functions √y, √y log y and √y

∑
n 
=0 d(n)K0(2π |n|y)e2π inx.) Transformation equa-

tions (50) then follow from the SL(2,Z)-invariance of E(z, 12 ), the first one trivially since
E(z + 1, s) = E(z, s) and the second by using the invariance of E(z, s) under

( 1 0∓4 1
)
to get

E
(−1/z ± 1

4
,
1
2

)

= E
(

(−1/z ± 1)/4
∓4((−1/z ± 1)/4) + 1

,
1
2

)

= E
(
z ∓ 1
4

,
1
2

)

.

We now associate to u(z) the periodic holomorphic function f on C R = H+ ∪ H−

(where H± = {z ∈ C | ±�(z) > 0}) having the same Fourier coefficients as u, i.e.,

f (z) =
∞∑

n=1
χ (n) d(n) q±n/4

(
z ∈ H±, q = e2π iz

)
. (51)

Proposition 10 The period function ψ(z) defined by

ψ(z) = f (z) + 1
z
f
(

−1
z

)

(z ∈ C R) (52)

extends holomorphically from C R to C′ = C (−∞, 0] .

Proof We follow the proof of the corresponding result given inChapter 1 of [13] forMaass
cusp forms on the full modular group �1. (See Theorem on p. 202 of [13], which also gives
a converse statement characterizing cusp forms in terms of holomorphic functions ψ

on C′ satisfying a certain functional equation.) That proof required only the functional
equation of the L-series associated with the Maass cusp form, which worked because
the group �1 is generated by the translation T and the inversion S, and can be applied
here because �ϑ = 〈S, T 2〉 has a similar structure. Our situation is also a little different
because our function u(z) is an Eisenstein series rather than a cusp form, but since Fourier
expansion (49) of u(z) at infinity has no constant term this has no effect on the proof.
The argument in [13] was first to write the L-series of theMaass form u(z) as theMellin

transform of the restriction of u (or of its normal derivative in the case of an odd cusp
form) to the imaginary axis, multiplied by a suitable gamma factor, and to deduce from
this relationship and the S-invariance of u a functional equation for the L-series. One
then observed that the Mellin transforms of the restrictions to the positive or negative
imaginary axis of both the associated periodic holomorphic function f and the associated
period function ψ were also equal, up to different gamma factors, to the same L-series,
and the functional equation of this L-series combined with Mellin inversion then led
to a formula for ψ that applied in all C′ rather than just on C R. Here the first step,
which would require the normal derivative since the restriction of function (49) to iR+
vanishes, can be skipped since the L-series L(u; s) = ∑

χ (n)d(n)n−s is simply the square of
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Dirichlet L-series (1) and hence has a known functional equation. The Mellin transforms
of the restrictions to f and ψ to the positive or negative imaginary axis are then given by

f̃±(s) :=
∫ ∞

0
f (±iy) ys−1 dy = �(s)

(π/2)s
L(s)2 (�(s) > 0),

ψ̃±(s) =
∫ ∞

0
ψ(±iy) ys−1 dy =

∫ ∞

0

(

f (±iy) ∓ i
y
f (±i/y)

)

ys−1 dy

= f̃±(s) ∓ i f̃±(1 − s) = �(s) L(s)2

(π/2)s cos(πs/2)
e∓iπs (0 < �(s) < 1),

where in the last line we have used the functional equation of L(s) and standard identities
for gamma functions. By the Mellin inversion formula we deduce that

ψ(±iy) = 1
2π i

∫

�(s)=c

�(s) L(s)2

(π/2)s cos(πs/2)
(±iy)−s ds (y > 0)

for any c ∈ (0, 1), and analytic continuation from iR {0} to C R then gives the formula

ψ(z) = 1
2π i

∫

�(s)=c

[
�(s) L(s)2

(π/2)s cos(πs/2)

]

z−s ds

for all z ∈ C R . But the factor in square brackets is bounded by a power of s times e−π |s|

for |s| → ∞ on the vertical line c + iR, so the integral on the right-hand side of this
equation is absolutely convergent for all z ∈ C with | arg(z)| < π , i.e., for all z ∈ C′ . �

Wenowshowhow to connect the functions f (z) andψ(z) to the functionsH (x) andC(x),
respectively, and to deduce the continuity of C—and hence the quantum modularity
of H—from Proposition 10 for the period function ψ . The first step is easy, since from
Fourier expansions (51) and (26) and standard integral formulae we find the relation

f (z) .=
∫ ∞

−∞
H (t)

(t − z)2
dt (z ∈ C R)

between the periodic function f (z) and the periodic distribution H (x). (Here and in what
follows the symbol .= denotes equality up to easily computed scalar factors whose values
are irrelevant for the argument.) Replacing t by 1/t in the integral, we obtain

f (z) .=
∫ ∞

−∞
C ′(t)

(1 − tz)2
dt .= z

∫ ∞

−∞
C(t)

(1 − tz)3
dt, (53)

where we have used (27) to get the first equality and integration by parts for the second.
But now replacing t by 1/t and using the functional equation C(t) = |t|C(1/t) we find

1
z
f
(

−1
z

)

= 1
z
f
(
1
z

)
.= − z

∫ ∞

−∞
sgn(t)C(t)
(1 − tz)3

dt (54)

with the same proportionality constant as in (53), and adding these two equations gives
the relation

ψ(z) .= z
∫ 0

−∞
C(t)

(1 − tz)3
dt .= z

∫ 0

−∞
C(t)

(t − z)3
dt (z ∈ C R) (55)

between the period function of the Maass waveform u and the function C(x). This estab-
lishes the desired connection between the continuity of C(x) = H (x) + |x|H (1/x), which
expresses thequantummodularity ofH , andProposition 10,which expresses themodular-
ity of u: in one direction, if we know thatC(x) is continuous (and bounded by min(1, |x|)),
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then (55) immediately gives the analytic continuation of ψ(z) from C R to C′, and con-
versely, the inversion formula for the Stieltjes transform given in [14] lets us invert (55) to
get

C(t) .= t
∫

C
ψ(tz)

1 + z
z

dz, (56)

where C is any contour with endpoints at z = −1 which encloses the origin, so that the
continuity of C is a direct consequence of the holomorphy of ψ in C′.
We observe that the entire discussion given here applies in an essentially unchanged

form to the more general functions Cs andHs discussed in Sect. 4.2, withMaass form (49)
replaced by the form E

( z+1
4 , s2

) − E
( z−1

4 , s2
)
with spectral parameter s/2 instead of 1/2.

Finally, we consider the case when the character χ in (1) is replaced by an arbitrary
primitive odd Dirichlet character χD. Then all of the above calculations still go through:
the function u is defined by Eq. (49) with χ replaced by χD and π/2 by 2π/|D|, which
is again a Maass form (with spectral parameter 1

2 and character ε on the group �(D))
because it is proportional to

∑
r (mod D) χ (r)E

(
z+r
|D| ,

1
2

)
; the associated periodic function f

and period functionψ are defined by (51) (with the newχ andwith qn/4 replaced by qn/|D|)
and (52) (with no change at all); and Proposition 10 remains true with the same proof.
The difference, however, is that this proposition is no longer equivalent to the modularity
of u, but only to its invariance (up to sign) under the transformations S and TD (or TD/2

if D is even), which in general generate a subgroup of �(D) of infinite order, as already
discussed in Sect. 5. To get the full modularity (of this u or any other potential Maass
form on �(D)), we need to generalize Proposition 10 to the statement that for any matrix
γ = ( a b

c d
) ∈ �(D) the function

ψγ (z) = f (z) − ε(γ )
cz + d

f
(
az + b
cz + d

)

extends holomorphically from C R to C (−∞,−d/c] if c > 0 or C [−d/c,∞) if
c < 0. This statement can be proved in several ways and can be linked by a discus-
sion similar to the one above to the continuity property of Cγ (x) stated in Theorem 4.
But the simplest approach is to relate the functions Cγ (x) directly to the invariant dis-
tribution associated with u in the sense developed in [7,12,13]. Specifically, this the-
ory says that an eigenfunction u of � with spectral parameter s and Fourier expan-
sion u(x + iy) = √y

∑
n 
=0 An Ks−1/2(λ|n|y)eiλnx is invariant (possibly with charac-

ter) under the action of a Fuchsian group � if and only if the associated distribution
U (x) = ∑

n 
=0 |n|s−1/2 An eiλnx onP1(R) is invariant (with the samecharacter)with respect
to the group action (U |γ )(x) = |cx+d|−2sU (γ x) for γ = ( a b

c d
) ∈ �. (Here the word “dis-

tribution” must be interpreted correctly, namely, as a functional on the space of test func-
tions φ(x) that are smooth on R and for which |x|−2sφ(1/x) is smooth near x = 0.) In our
case the distributionU associatedwithu is given byU (x) = ∑∞

n=1 χ (n)d(n) sin(2πnx/|D|)
and is related to distribution (41) byU (x) .= H ′(x). But that means that if we differentiate
definition (43) of Cγ (x) to get

C ′
γ (x) = H ′(x) − ε(γ )

|cx + d| H
′(γ x) − ε(γ ) |c| sgn(x + d/c)Hγ x),

then the first two terms on the right cancel and we recover Eq. (46).
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