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Abstract

We study ways to accelerate greedy coordinate descent in theory and in practice, where “ac-
celerate” refers either to O(1/k?) convergence in theory, in practice, or both. We introduce and
study two algorithms: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated
Greedy Coordinate Descent (AGCD). While ASCD takes greedy steps in the xz-updates and
randomized steps in the z-updates, AGCD is a straightforward extension of standard greedy
coordinate descent that only takes greedy steps. On the theory side, our main results are for
ASCD: we show that ASCD achieves O(1/k?) convergence, and it also achieves accelerated linear
convergence for strongly convex functions. On the empirical side, we observe that both AGCD
and ASCD outperform Accelerated Randomized Coordinate Descent on a variety of instances.
In particular, we note that AGCD significantly outperforms the other accelerated coordinate
descent methods in numerical tests, in spite of a lack of theoretical guarantees for this method.
To complement the empirical study of AGCD, we present a Lyapunov energy function argument
that points to an explanation for why a direct extension of the acceleration proof for AGCD
does not work; and we also introduce a technical condition under which AGCD is guaranteed
to have accelerated convergence. Last of all, we confirm that this technical condition holds in
our empirical study.

1 Introduction: Related Work and Accelerated Coordinate De-
scent Framework

Coordinate descent methods have received much-deserved attention recently due to their capability
for solving large-scale optimization problems (with sparsity) that arise in machine learning appli-
cations and elsewhere. With inexpensive updates at each iteration, coordinate descent algorithms
obtain faster running times than similar full gradient descent algorithms in order to reach the same
near-optimality tolerance; indeed some of these algorithms now comprise the state-of-the-art in
machine learning algorithms for loss minimization.
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Most recent research on coordinate descent has focused on versions of randomized coordinate de-
scent, which can essentially recover the same results (in expectation) as full gradient descent,
including obtaining “accelerated” (i.e., O(1/k?)) convergence guarantees. On the other hand, in
some important machine learning applications, greedy coordinate methods demonstrate superior
numerical performance while also delivering much sparser solutions. For example, greedy coordi-
nate descent is one of the fastest algorithms for the graphical LASSO implemented in DP-GLASSO
[19]. And sequence minimization optimization (SMO) (a variant of greedy coordinate descent)
is widely known as the best solver for kernel SVM [11][24] and is implemented in LIBSVM and
SVMLight.

In general, for smooth convex optimization the standard first-order methods converge at a rate of
O(1/k) (including greedy coordinate descent). In 1983, Nesterov [22] proposed an algorithm that
achieved a rate of O(1/k?) — which can be shown to be the optimal rate achievable by any first-order
method [20]. This method (and other similar methods) is now referred to as Accelerated Gradient
Descent (AGD).

However, there has not been much work on accelerating the standard Greedy Coordinate Descent
(GCD) due to the inherent difficulty in demonstrating O(1/k%) computational guarantees (we
discuss this difficulty further in Section [4.1]). One work that might be close is [26], which updates
the z-sequence using the full gradient and thus should not be considered as a coordinate descent
method in the standard sense. There is a very related concurrent work [15] and we will discuss the
connections to our results in Section [4.1]

In this paper, we study ways to accelerate greedy coordinate descent in theory and in practice.
We introduce and study two algorithms: Accelerated Semi-Greedy Coordinate Descent (ASCD)
and Accelerated Greedy Coordinate Descent (AGCD). While ASCD takes greedy steps in the -
updates and randomized steps in the z-updates, AGCD is a straightforward extension of GCD
that only takes greedy steps. On the theory side, our main results are for ASCD: we show that
ASCD achieves O(1/k?) convergence, and it also achieves accelerated linear convergence when the
objective function is furthermore strongly convex. However, a direct extension of convergence proofs
for ARCD does not work for ASCD due to the different coordinates we use to update x-sequence
and z-sequence. Thus, we present a new proof technique — which shows that a greedy coordinate
step yields better objective function value than a full gradient step with a modified smoothness
condition.

On the empirical side, we first note that in most of our experiments ASCD outperforms Accel-
erated Randomized Coordinate Descent (ARCD) in terms of running time. On the other hand,
we note that AGCD significantly outperforms the other accelerated coordinate descent methods
in all instances, in spite of a lack of theoretical guarantees for this method. To complement the
empirical study of AGCD, we present a Lyapunov energy function argument that points to an
explanation for why a direct extension of the proof for AGCD does not work. This argument
inspires us to introduce a technical condition under which AGCD is guaranteed to converge at an
accelerated rate. Interestingly, we confirm that technical condition holds in a variety of instances
in our empirical study, which in turn justifies our empirical observation that AGCD works very
well in practice.



1.1 Related Work

Coordinate Descent. Coordinate descent methods have a long history in optimization, and
convergence of these methods has been extensively studied in the optimization community in the
1980s-90s, see [4], [17], and [I8]. There are roughly three types of coordinate descent methods de-
pending on how the coordinate is chosen: randomized coordinate descent (RCD), cyclic coordinate
descent (CCD), and greedy coordinate descent (GCD). RCD has received much attention since the
seminal paper of Nesterov [2I]. In RCD, the coordinate is chosen randomly from a certain fixed
distribution. [25] provides an excellent review of theoretical results for RCD. CCD chooses the
coordinate in a cyclic order, see [3] for basic convergence results. More recent results show that
CCD is inferior to RCD in the worst case [28], while it is better than RCD in certain situations
[9]. In GCD, we select the coordinate yielding the largest reduction in the objective function value.
GCD usually delivers better function values at each iteration in practice, though this comes at the
expense of having to compute the full gradient in order to select the gradient coordinate with largest
magnitude. The recent work [23] shows that GCD has faster convergence than RCD in theory, and
also provides several applications in machine learning where the full gradient can be computed
cheaply. A parallel GCD method is proposed in [31] and numerical results show its advantage in
practice.

Accelerated Randomized Coordinate Descent. Since Nesterov’s paper on RCD [21] there has
been significant focus on accelerated versions of RCD. In particular, [2I] developed the first acceler-
ated randomized coordinate gradient method for minimizing unconstrained smooth functions. [16]
present a sharper convergence analysis of Nesterov’s method using a randomized estimate sequence
framework. [7] proposed the APPROX (Accelerated, Parallel and PROXimal) coordinate descent
method and obtained an accelerated sublinear convergence rate, and [12] developed an efficient
implementation of ARCD.

1.2 Accelerated Coordinate Descent Framework

Our optimization problem of interest is:
P: f*:= minimum, f(x), (1)

where f(-) : R™ — R is a differentiable convex function.

Definition 1.1. f(:) is coordinate-wise L-smooth for the vector of parameters L := (L1, La, ..., Ly)
if Vf(+) is coordinate-wise Lipschitz continuous for the corresponding coefficients of L, i.e., for all
x € R"™ and h € R it holds that:

IVif(z +hei) = Vif(x)] < Lilh| , i=1,....n, (2)

where V; f(-) denotes the it" coordinate of V f(-) and e; is i unit coordinate vector, fori =1,...,n.

We presume throughout that L; > 0 for ¢ = 1,...,n. Let L denote the diagonal matrix whose
diagonal coefficients correspond to the respective coefficients of L. Let (-,-) denote the standard
coordinate inner product in R", namely (z,y) = > I | z;y;, and let || - ||, denote the ¢, norm for
1 <p<oo. Let (x,y)r := > 1 Liz;y; = (x,Ly) = (Lx,y) denote the L-inner product. Define the



Algorithm 1 Accelerated Coordinate Descent Framework without Strong Convexity

Initialize. Initialize with 20, set 2 +— 2°. Assume f(-) is coordinate-wise L-smooth for known
and given L. Define the sequence {0y} as follows: 6y = 1, and define ) recursively by the

relationship 15291“ = 921 for k=1,2,....
k k—1

At iteration k :
Perform Updates.
Define y* := (1 — ;)zF + 02"

Choose coordinate j} (by some rule)

Compute zFt! .= y* — LleVj%f(yk)ej%
k

Choose coordinate jZ (by some rule)

K+l . k1 k
Compute 2"+ := 2z oo ngf(y Jej2

norm ||z||; := /(x,Lz). Letting L~! denote the inverse of L, we will also use the norm || - ||, -1
defined by [|v[|p-1 == /(v,L~Tv) = /37 | L 2.

Algorithm [Tl presents a generic framework for accelerated coordinate descent methods that is flexible
enough to encompass deterministic as well as randomized methods. One specific case is the standard
Accelerated Randomized Coordinate Descent (ARCD). In this paper we propose and study two
other cases. The first is Accelerated Greedy Coordinate Descent (AGCD), which is a straightforward
extension of greedy coordinate descent to the acceleration framework and which, surprisingly, has
not been previously studied (that we are aware of). The second is a new algorithm which we call
Accelerated Semi-Greedy Coordinate Descent (ASCD) that takes greedy steps in the z-updates
and randomized steps in the z-update.

In the framework of Algorithm [Il we choose a coordinate j,i of the gradient V f(y*) to perform the
update of the z-sequence, and we choose (a possibly different) coordinate j2 of the gradient V f (y*)

to perform the update of the z-sequence. Herein we will study three different rules for choosing the
coordinates j,i and j,% which then define three different specific algorithms:

o ARCD (Accelerated Randomized Coordinate Descent): use the rule
o AGCD (Accelerated Greedy Coordinate Descent): use the rule

Ji = i = argmax J=|Vif(y")] (4)
o ASCD (Accelerated Semi-Greedy Coordinate Descent): use the rule

jé = arg max; \/LL—L|VZf(yk)| (5)
Ji~ Ul n .

4



In ARCD a random coordinate j,i is chosen at each iteration k, and this coordinate is used to
update both the z-sequence and the z-sequence. ARCD is well studied, and is known to have the
following convergence guarantee in expectation (see [7] for details):

B f(*) - f(@)] < @aplla” =211, (6)

where the expectation is on the random variables used to define the first k iterations.

In AGCD we choose the coordinate j,i in a “greedy” fashion, i.e., corresponding to the maximal
(weighted) absolute value coordinate of the the gradient V f(3*). This greedy coordinate is used to
update both the x-sequence and the z-sequence. As far as we know AGCD has not appeared in the
first-order method literature. One reason for this is that while AGCD is the natural accelerated
version of greedy coordinate descent, the standard proof methodologies for establishing acceleration
guarantees (i.e., O(1/k?) convergence) fail for AGCD. Despite this lack of worst-case guarantee,
we show in Section [ that AGCD is extremely effective in numerical experiments on synthetic
linear regression problems as well as on practical logistic regression problems, and dominates other
coordinate descent methods in terms of numerical performance. Furthermore, we observe that
AGCD attains O(1/k?) convergence (or better) on these problems in practice. Thus AGCD is
worthy of significant further study, both computationally as well as theoretically. Indeed, in Section
@ we will present a technical condition that implies O(1/k?) convergence when satisfied, and we
will argue that this condition ought to be satisfied in many settings.

ASCD, which we consider to be the new theoretical contribution of this paper, combines the salient
features of AGCD and ARCD. In ASCD we choose the greedy coordinate of the gradient to perform
the z-update, while we choose a random coordinate to perform the z-update. In this way we
achieve the practical advantage of greedy z-updates, while still guaranteeing O(1/k?) convergence
in expectation by virtue of choosing the random coordinate used in the z-update, see Theorem 211
And under strong convexity, ASCD achieves linear convergence as will be shown in Section [3

The paper is organized as follows. In Section B we present the O(1/k?) convergence guarantee
(in expectation) for ASCD. In Section [B] we present an extension of the accelerated coordinate
descent framework to the case of strongly convex functions, and we present the associated linear
convergence guarantee for ASCD under strong convexity. In Section dwe study AGCD; we present
a Lyapunov energy function argument that points to why standard analysis of accelerated gradient
descent methods fails in the analysis of AGCD. In Section .2l we present a technical condition under
which AGCD will achieve O(1/k?) convergence. In Section [l we present results of our numerical
experiments using AGCD and ASCD on synthetic linear regression problems as well as practical
logistic regression problems.

2 Accelerated Semi-Greedy Coordinate Descent (ASCD)

In this section we present our computational guarantee for the Accelerated Semi-Greedy Coordinate
Descent (ASCD) method in the non-strongly convex case. Algorithm [I] with rule (5] presents the
Accelerated Semi-Greedy Coordinate Descent method (ASCD) for the non-strongly convex case.
At each iteration k& the ASCD method choose the greedy coordinate j,i to do the z-update, and
chooses a randomized coordinate j,% ~ U[1l,--- ,n] to do the z-update. Unlike ARCD where the



same randomized coordinate is used in both the xz-update and the z-update —in ASCD j,i is chosen
in a deterministic greedy way, j,i and jz are likely to be different.

At each iteration £ of ASCD the random variable j,% is introduced, and therefore z* depends on
the realization of the random variable

&= 1{d-- Jia} -
For convenience we also define &y := ().

The following theorem presents our computational guarantee for ASCD for the non-strongly convex
case:

Theorem 2.1. Consider the Accelerated Semi-Greedy Coordinate Descent method (Algorithm [1]
with rule (B)). If f(-) is coordinate-wise L-smooth, it holds for all k > 1 that:

% n2€2,7 % n2 ¥
Be, 1) £a)] < Z5=2 o — "1} < g2alla” — ¥} ()
l

In the interest of both clarity and a desire to convey some intuition on proofs of accelerated methods
in general, we will present the proof of Theorem 2. Tl after first establishing some intermediary results
along with some explanatory comments. We start with the “Three-Point Property” of Tseng
[29]. Given a differentiable convex function h(-), the Bregman distance for h(-) is Dy(y,x) =
h(y) — h(x) — (Vh(z),y — x). The Three-Point property can be stated as follows:

Lemma 2.1. (Three-Point Property (Tseng [29])) Let ¢(-) be a convex function, and let
Dy(+,-) be the Bregman distance for h(-). For a given vector z, let

+* o= arg min {6(2) + Da(r, )}
Then
¢(z) + Dp(z,2) > ¢(21) + Dyp(2", 2) + Dp(z,2%)  for all z € R,

with equality holding in the case when ¢(-) is a linear function and h(-) is a quadratic function. O

Also, it follows from elementary integration and the coordinate-wise Lipschitz condition (2]) that

f@+he) < f(@)+h-Vif(x)+ B forallz e R" and h e R . (8)

At each iteration k = 0,1,... of ASCD, notice that zF*! is one step of greedy coordinate descent
from y* in the norm || - ||;. Now define s+1 := y* — LL=1V f(y*), which is a full steepest-descent
step from %* in the norm || - ||,,, . We first show that the greedy coordinate descent step yields a
good objective function value as compared to the quadratic model that yields s**+1.

Lemma 2.2.
F@F < FR) + (VFP), sFT1 = oFy + 2 sF T — R



Proof: )
F@) < FN) - o (Vifh)

IN

FW") = 5V (9)

= fF) + (VFF), sFF1 — yF) + 2)shH — gk 2 |

where the first inequality of (Q)) derives from the smoothness of f(-), and is a simple instance of
[®) using = y*, i = Ji, and h = —Lijévj% f(*). The second inequality of (@) follows from the

definition of jli which yields:

A E AN > GO o L

k+1

The last equality of (@) follows by using the definition of s and rearranging terms. O

Utilizing the interpretation of s¥*1 as a gradient descent step from y* but with a larger smoothness

descriptor (nL as opposed to L), we can invoke the standard proof for accelerated gradient descent
derived in [29] for example. We define tF*1 := 2k — %L_lv f (), or equivalently we can define
th+1 by:

£ = argmin (Vf(5), 2 — 28) + 2z — 3 (10)

(which corresponds to z¥*1 in [29] for standard accelerated gradient descent). Then we have:

Lemma 2.3.

% n62 * n62 %
FE@) < (1= 0) f(@®) + Opf (%) + hl|l2* = 28|13 = St [la* — 12 (11)
Proof. Following from Lemma 2.2, we have
FEMY < fF) (V) s — yF) 4 BIsR T — 3

= F) + O (TS (), 48 = 25) o s it — 202 )

= £+ 0 ((VFF), " — 8+ 2 — H — 2 — o+
(12)

= (1=01) (fWP) +(VFWF), a5 —4F) + 0 (FF) + (VF(YF), 2" — 7))
g o = 2 - g e - e
< (1= 0)F(@%) + O f(a*) + "k |t — 2K — "0k |2 — £hH1)2

where the first equality of () utilizes s¥*t1 — ¢* = 6, (t**1 — 2¥). The second equality of ([IZ)
follows as an application of the Three-Point-Property (Lemma[2T]) together with ({0, where we set



d(z) = (Vf(yF),r—2*) and h(z) = "Te’“HxH% (whereby Dy (z,v) = "Te’“Hx—qu%) The third equality
of (@) is derived from y* = (1 — 6;)x* + ;2% and rearranging the terms. And the last inequality
of ([I2) is an application of the gradient inequality at y* applied to z* and also to z*. O

Notice that t**1 is an all-coordinate update of z¥, and computing t**! can be very expensive.

Instead we will use 2" to replace t**! in (1) by using the equality in the next lemma.
Lemma 2.4.
k k 2 k 2 k
Bl = 25— Blla® — R = Blla” - I - BB [la” - 2] (13)
Proof:
2
Bl — H — Bllat — R = (b 20t —22K), 3 [
2 2
= %Ejﬁ [(zkH — 2k 22* — 2zk>L — szH - zkHL} (14)

2 2
= St =28 - B [la* — 2]

where the first and third equations above are straightforward arithmetic rearrangements, and the
second equation follows from the two easy-to-verify identities t*+1 — 2F = nEjg [zkH — zk] and

E+1 _ k|2 E-+1 k|2
[#551 = 2*] ] = nEj [HZ oz HL] : O
We now have all of the ingredients needed to prove Theorem 211
Proof of Theorem [2.1] Substituting (I3)) into (II)), we obtain:

k k * 207« _k ’03 x _ _k
@) < (1= ) f(@F) + O f (2% + S5 o* = 2FIF = TR B [la” - AE] . (15)
Rearranging and substituting 01 — L e arrive at:
6k+1 ek
2 2
1—0k41 k+1y * n? * k41 1—0y ky * n? || .« _k
g (160 10) + £ 0 = s (161 10) 5 o]
Taking the expectation over the random variables j%, j%, cen ji, it follows that:
1_6 * 2 * 2 — * 2 *
b [ 10 109) 2 -2 < 5 [ 1) ]
Applying the above inequality in a telescoping manner for £k = 1,2,.. ., yields:
-6 # —9 ¥ 2, 2
By [S5 (P — 1 @)] < By [ (£ — £ @) + 5 [l — 2]
_ N 2 . 2
< Bg [5580 (f60) = £ @) + 5 ||lom = 2°|[7]
2 * 0|2
= 2t -u HL :
Note from an induction argument that 6; < H% for all = 0,1,..., whereby the above inequality

rearranges to:

* 2 n * n207_ * n *
Be, (£ = £ @9)] € 2% lo” =2l = 5= fla* =2} < g2 o —ll7, - O




3 Accelerated Coordinate Descent Framework under Strong Con-
vexity

We begin with the definition of strong convexity as developed in [16]:
Definition 3.1. f(-) is u-strongly convexr with respect to || - |1, if for all z,y € R™ it holds that:

fy) > @)+ (Vf(@),y—z)+ 5lly — 2|7 -

Note that u can be viewed as an extension of the condition number of f(-) in the traditional
sense since p is defined relative to the coordinate smoothness coefficients through || - ||z, see [16].
Algorithm 2] presents the generic framework for accelerated coordinate descent methods in the case
when f(-) is p-strongly convex for known p.

Algorithm 2 Accelerated Coordinate Descent Framework (u-strongly convex case)

Initialize. Initialize with 20 = 2°. Assume f(-) is coordinate-wise L-smooth and p-strongly
convex for known and given L and u, and define the parameters a = n]{\’jﬁ and b= % .

At iteration k :
Perform Updates.
Define y* = (1 — a)z* 4 az®

Choose j} (by some rule)
1
Compute zFt! = yF — ijéf(yk)ejé

E_ _a®> _k b .k
Compute u* = 2% T ey

Choose jZ (by some rule)

+1 _ k a 1 k
=ur - a2+anj% ij;%(y )ejz

Compute z*

Just as in the non-strongly convex case, we extend the three algorithms ARCD, AGCD, and ASCD
to the strongly convex case by using the rules @), @), and (@) in Algorithm 2l The following
theorem presents our computational guarantee for ASCD for strongly convex case:

Theorem 3.1. Consider the Accelerated Semi-Greedy Coordinate Descent method for strongly con-
vex case (Algorithm[Q with rule [{))). If f(-) is coordinate-wise L-smooth and p-strongly convez with
respect to || - ||, it holds for all k > 1 that:

B [1a) — £+ 2@ 40l 2] < (1- 25) (P& — 1+ @ + )"~ 3)
(16)

O

We provide a concise proof of Theorem [B.Ilin the Appendix.



4 Accelerated Greedy Coordinate Descent

In this section we discuss accelerated greedy coordinate descent (AGCD), which is Algorithm [II
with rule (@]). In the interest of clarity we limit our discussion to the non-strongly convex case. We
present a Lyapunov function argument which shows why the standard type of proof of accelerated
gradient methods fails for AGCD, and we propose a technical condition under which AGCD is
guaranteed to have an O(1/k?) accelerated convergence rate. Although there are no guarantees
that the technical condition will hold for a given function f(-), we provide intuition as to why the
technical condition ought to hold in most cases.

4.1 Why AGCD fails (in theory)

The mainstream research community’s interest in Nesterov’s accelerated method [22] started around
15 years ago; and yet even today most researchers struggle to find basic intuition as to what is
really going on in accelerated methods. Indeed, Nesterov’s estimation sequence proof technique
seems to work out arithmetically but with little fundamental intuition. There are many recent
work trying to explain this acceleration phenomenon [27][30] [10][I3][8][1] [5]. A line of recent work
has attempted to give a physical explanation of acceleration techniques by studying the continuous-
time interpretation of accelerated gradient descent via dynamical systems, see [27], [30], and [10].
In particular, [27] introduced the continuous-time dynamical system model for accelerated gradient
descent, and presented a convergence analysis using a Lyapunov energy function in the continuous-
time setting. [30] studied discretizations of the continuous-time dynamical system, and also showed
that Nesterov’s estimation sequence analysis is equivalent to the Lyapunov energy function analysis
in the dynamical system in the discrete-time setting. And [I0] presented an energy dissipation
argument from control theory for understanding accelerated gradient descent.

In the discrete-time setting, one can construct a Lyapunov energy function of the form [30]:
By = Ap(f(@) = ) + $lla* = 2M)7 (17)

where Ay, is a parameter sequence with A, ~ O(k?), and one shows that Ej, is non-increasing in k,

thereby yielding:
K L 1
My_ <0 0= .
The proof techniques of acceleration methods such as [22], [29] and [1], as well as the recent proof

techniques for accelerated randomized coordinate descent (such as [21], [16], and [7]) can all be
rewritten in the above form (up to expectation) each with slightly different parameter sequences

{Ax}.

Now let us return to accelerated greedy coordinate descent. Let us assume for simplicity that
Ly =--- = L, (as we can always do rescaling to achieve this condition). Then the greedy coordinate
j,i is chosen as the coordinate of the gradient with the largest magnitude, which corresponds to
the coordinate yielding the greatest guaranteed decrease in the objective function value. However,
in the proof of acceleration using the Lyapunov energy function, one needs to prove a decrease
in B, (I7) instead of a decrease in the objective function value f(z*). The coordinate j,i is not
necessarily the greedy coordinate for decreasing the energy function Ej due to the presence of the

10



second term ||z* — 2*||2 in (7). This explains why the greedy coordinate can fail to decrease Ej,
at least in theory. And because x* is not known when running AGCD, there does not seem to be
any way to find the greedy descent coordinate for the energy function Ej.

That is why in ASCD we use the greedy coordinate to perform the z-update (which corresponds
to the fastest coordinate-wise decrease for the first term in energy function), while we choose a
random coordinate to perform the z-update (which corresponds to the second term in the energy
function); thereby mitigating the above problem in the case of ASCD.

In a concurrent paper [15], the authors develop computational theory for matching pursuit al-
gorithms, which can be viewed as a generalized version of greedy coordinate descent where the
directions do not need to form an orthogonal basis. The paper also develops an accelerated version
of the matching pursuit algorithms, which turns out to be equivalent to the algorithm ASCD dis-
cussed here in the special case where the chosen directions are orthogonal. Although the focus in
[15] and in our paper are different — [I5] is more focused on (accelerated) greedy direction updates
along a certain linear subspace whereas our focus is on when and how one can accelerate greedy
coordinate updates — both of the works share a similar spirit and similar approaches in developing
accelerated greedy methods. Moreover, both works use a decoupling of the coordinate update for
the {z*} sequence (with a greedy rule) and the {z*} sequence (with a randomized rule). In fact,
[15] is consistent with the argument in our paper as to why one cannot accelerate greedy coordinate
descent in general.

4.2 How to make AGCD work (in theory)

Here we propose the following technical condition under which the proof of acceleration of AGCD
can be made to work.

Technical Condition 4.1. There exists a positive constant v and an iteration number K such
that for all k > K it holds that:

k

k
Zeiw ety S DV, - ) (18)

=0 i=0

S

where j; = arg max; \/LL—|VZf(yk)| is the greedy coordinate at iteration i.

One can show that this condition is sufficient to prove an accelerated convergence rate O(1/k?)
for AGCD. Therefore let us take a close look at Technical Condition £l The condition considers
the weighted sum (with weights 9%_ ~ O(i%)) of the inner product of Vf(y*) and 2% — 2*, and
the condition states that the inner product corresponding to the greedy coordinate (the right side
above) is larger than the average of all coordinates in the inner product, by a factor of 4. In the
case of ARCD and ASCD, it is easy to show that Technical Condition [£1] holds automatically up
to expectation, with v = 1.

Here is an informal explanation of why Technical Condition 1] ought to hold for most convex
functions and most iterations of AGCD. When k is sufficiently large, the three sequence {z*},
{y*} and {z*} ought to all converge to z* (which always happens in practice though lack of the-
oretical justification), whereby z* is close to ¥*. Thus we can instead consider the inner product

11



(VF(y*),y* — 2*) in ([I8). Notice that for any coordinate j it holds that \yf — x| > L%_\ij(yk)],

and therefore |V, f(y*) - (y§€ —zj)| > L%_|ij(jk)|2. Now the greedy coordinate is chosen by

Ji := arg max; L%_|Vj f(5%)?, and therefore it is reasonably likely that in most cases the greedy co-
ordinate will yield a better product than the average of the components of the inner product.

The above is not a rigorous argument, and we can likely design some worst-case functions for
which Technical Condition A1 fails. But the above argument provides some intuition as to why
the condition ought to hold in most cases, thereby yielding the observed improvement of AGCD
as compared with ARCD that we will shortly present in Section Bl where we also observe that
Technical Condition [4.1] holds empirically on all of our problem instances.

With a slight change in the proof of Theorem 2], we can show the following result:

Theorem 4.1. Consider the Accelerated Greedy Coordinate Descent (Algorithm [l with rule (d)).
If f(-) is coordinate-wise L-smooth and satisfies Technical Condition [{.1) with constant v < 1 and
iteration number K, then it holds for all k > K that:

fa?) = fa*) < Eop|la* — 23 . (19)

We note that if v < 1 (which we always observe in practice), then AGCD will have a better
convergence guarantee than ARCD.

Remark 4.1. The arguments in Section [{.1] and Section also work for strongly convex case,
albeit with suitable minor modifications.

5 Numerical Experiments

5.1 Linear Regression

We consider solving synthetic instances of the linear regression model with least-squares objective
function:

* . o 2

f7 = min £(8) = lly — XBl3
using ASCD, ARCD and AGCD, where the mechanism for generating the data (y,X) and the
algorithm implementation details are described in the supplementary materials. Figure [Il shows
the optimality gap versus time (in seconds) for solving different instances of linear regression with
different condition numbers of the matrix X7 X using ASCD, ARCD and AGCD. In each plot,
the vertical axis is the objective value optimality gap f(8*) — f* in log scale, and the horizontal
axis is the running time in seconds. Each column corresponds to an instance with the prescribed
condition number x of X7 X, where x = 0o means that the minimum eigenvalue of X7 X is 0.
The first row of plots is for Algorithm Framework [I] which is ignorant of any strong convexity
information. The second row of plots is for Algorithm Framework [2, which uses given strong
convexity information. And because the linear regression optimization problem is quadratic, it is
straightforward to compute x as well as the true parameter p for the instances where x > 0. The
last column of the figure corresponds to kK = oo, and in this instance we set u using the smallest
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Algorithm
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Figure 1: Plots showing the optimality gap versus run-time (in seconds) for synthetic linear regression
problems solved by ASCD, ARCD and AGCD.

positive eigenvalue of X7 X, which can be shown to work in theory since all relevant problem
computations are invariant in the nullspace of X.

Here we see in Figure [[lthat AGCD and ASCD consistently have superior performance over ARCD
for both the non-strongly convex case and the strongly convex case, with ASCD performing almost
as well as AGCD in most instances.

We remark that the behavior of any convex function near the optimal solution is similar to the
quadratic function defined by the Hessian at the optimum, and therefore the above numerical
experiments show promise that AGCD and ASCD are likely to outperform ARCD asymptotically
for any twice-differentiable convex function.

5.2 Logistic Regression

Here we consider solving instances of the logistic regression loss minimization problem:

f* = min f(5) =~ > log(1 + exp(—yif ) (20)

RP
pe i=1

using ASCD, ARCD and AGCD, where {z;,y;} is the feature-response pair for the i-th data point
and y; € {—1,1}. Although the loss function f(3) is not in general strongly convex, it is essentially
locally strongly convex around the optimum but with unknown strong convexity parameter . And
although we do not know the local strong convexity parameter i, we can still run the strongly
convex algorithm (Algorithm Framework [2) by assigning a value of i that is hopefully close to the
actual value. Using this strategy, we solved a large number of logistic regression instances from
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Dataset a=10"3 i=10"° i=10""7 a=0

wla

ala

Figure 2: Plots showing the optimality gap versus run-time (in seconds) for the logistic regression instances
wla and ala in LIBSVM, solved by ASCD, ARCD and AGCD.

LIBSVM [6]. Figure 2 shows the optimality gap versus time (in seconds) for solving two of these
instances, namely wla and ala, which were chosen here because the performance of the algorithms
on these two instances is representative of others in LIBSVM. In each plot, the vertical axis is the
objective value optimality gap f(8*) — f* in log scale, and the horizontal axis is the running time
in seconds. Each column corresponds to a different assigned value of the local strong convexity
parameter fi. The right-most column in the figure uses the assignment i = 0, in which case the
algorithms are implemented as in the non-strongly convex case (Algorithm Framework [I).

Here we see in Figure 2l that AGCD always has superior performance as compared to either ASCD
and ARCD. In the relevant range of optimality gaps (< 107%), ASCD typically outperforms ARCD
for smaller values of the assigned strong convexity parameter . However, the performance of
ASCD and ARCD are essentially the same when no strong convexity is presumed.

Last of all, we attempt to estimate the parameter « that arises in Technical Condition [ZTlfor AGCD
in several of the datasets in SVMLIB. Although for small k, the ratio between Z?:o (,ii(v fyh), 2 —

x*) and Z?:o 7.V S (yl)(z; — ;) can fluctuate widely, this ratio stabilizes after a number of
iterations in all of our numerical tests. From Technical Condition 1], we know that ~ is the upper
bound of such ratio for all £ > K for some large enough value of K. Table [l presents the observed
values of v for all K > K := 5,000. Recalling from Theorem E.1] that the ~ value represents how
much better AGCD can perform compared with ARCD in terms of computational guarantees, we
see from Table [ that AGCD should outperform ARCD for these representative instances — and

indeed this is what we observe in practice in our tests.
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Table 1: Largest observed values of «y for five different datasets in LIBSVM for k£ > K := 5000.

Dataset: | wla | ala | heart | madelon | rcvl
v: 1 0.25 | 0.17 | 0.413 0.24 0.016

A Appendix

A.1 Proof of Theorem [3.1]

In order to prove Theorem 3.1, we first prove the following three lemmas:
Lemma A.1.

2
alla* =287 + ol — oML = (a® +b)lla” — T+ gl 2EI1E

Proof:

2
(a® +0)lla* — ulIF + 55 lly* — 21

* * 2
= (@ +b) (lo*17 — 20", u")r + [W¥12) + 351" - 2113

= (@ + )|l )13 — 2(a*, a®2F + by + S lla? 4 bylR + Syt - R (21)

= (a® +)ll2"||7 — 2(z*, a®2" + by*) L + a?|2*|7 + blly*l1E

= a®|lz* — 2P +blla* - y*lE

where the second equality utilizes uF = agibzk + azi%yk and the other equalities are just mathe-
matical manipulations. O
Lemma A.2. Define tFt! .= uF — aﬁb%L_lvtf(yk), then

k k k k
le* = " = lla* — w7 = nEp |[|la” = 2T — o™ —utlIZ

Proof:
Jo* = 4 = lor =¥ = 20— = 5+ —
= B (2% —ukub — A b — 2R3 (22)
= nBp [[la* — 7 — a* —FIF]
where the second equality is from the relationship of t**1 = ¥ — az‘ib%L_IV f(*) and ¢+ =
uk — ﬁﬁng f (yk)ejg, and the first and third equations are just rearrangement. O
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Lemma A.3.
a? < (1—a)(a®+b).

Proof: Remember that b = % and a > 0, thus the above inequality is equivalent to

a<(l-a)(a+Ls).

Substituting a = nfgﬁ, the above inequality becomes
Vi VE I
W Sy T
VE Vi

IN

We furnish the proof by noting T” - 5. d

__n
n+y/p — n(nty/w)

Proof of Theorem [B.1: Recall that t**1 = uF — az‘lb%L_:lVf(yk), then it is easy to check
that

n n
1 = argmin a(V (), 2 — o) + Sallls — I+ Dbl -y
4
by writing the optimality conditions of the right-hand side.

We have
f@F) = f(yh)

< (VIR af+t —yF) Lkt — k2
1 k 2
= —m <Vj;f(y ))
k
< —LHIVFEMIE
< a(Vf(yF), th Tl — 2k) 4 Za?||ehtt — 0|2

= a(V()a" = ) + Bl — I — fallla® — MR 4 ol — o
bl — I g0l

< a(VFYY), 2" = 25 + gallla® — 281 - a?lla — YT + fbllat — P — S0l — 2

* * * 2
= a(Vf(yF),a* —25) + §(a® +b) (Jla" — ¥} — lla* = *1)17) + 535 v" — 217

* 2 * * 2
= a(VF{y"),z" = 25) + 5 (a® + b) Bpe [lla* — w7 —ll2* — 2] + 5 &5l — 2417

* 2 * * 2 2
< alVFP), 2" = 28 + 5 (@® + 0) B [lla” — ublff — lla* — 2HHE] + 5 g vt - 2

* 2 * 2 2 «
= Vet - )+ 5 (@B — I+ S — ) - e+ DB [l — 23]

* n? * * n? *
= a(Vf(y"),a* =25 + 5 (alla* = 2P +blla* = FII7) — % (a® + b)Eje [l — 2MZ]
(23)
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where the first inequality is due to coordinate-wise smoothness, the first equality utilizes z**! =

k_ L—;Vjé f (yk)ejé, the second inequality follows from the fact that j,i is the greedy coordinate of
k

Vf(y*) in the |- ||,-1 norm, the third inequality follows from the basic inequality [|v[| +[Jw]|%_, >
2(v,w) for all v, w, the second equality is from Three Point Property by noticing
n

t* = argmin a(Vf(y¥), 2z — 2F) + 5
z

n
a?llz = 2*IE + Sbllz = lIE

the third equality follows from Lemma 3.1, and the fourth and sixth equalities each utilize Lemma
3.2.

On the other hand, by strong convexity we have

Fh) = f@) < (V). y" =) — qully” — =¥
= (V") yF =25 + (V") 25 —a®) = gully® — 2%}
= LUVIWP), 2" — b)) + (V) 25 —a%) = quly® — 27| 0
< 2E(fEN) = FR) (VR 2 = at) = gully* -l

where the second equality uses the fact that y* = (1 — a)a* + az* and the last inequality is from
the gradient inequality.

By rearranging (24]), we obtain
P — 1) < (10— a) (FG4) — 1) + al VIR, ¢ — o) — Spallt a3 . (25)

Notice that b = £ and a? < (1 —a)(a® +b) following from Lemma 3.3. Thus summing up (23)) and

23) leads to
By [f541) = f(a*) + % (0 + )24 — 23]
< (1-a) (f(ah) = f@) + Ha?llF - a7} (26)
< (1-a) (f@N) = f@) + 5 @@+ 0l —a7]3) |

which furnishes the proof using a telescoping series. O

B More Material on the Numerical Experiments

B.1 Implementation Detail
To be consistent with the notation in statistics and machine learning we use p to denote the

dimension of the variables in the optimization problems describing linear and logistic regression.
Then the per-iteration computation cost of AGCD and ASCD is dominated by three computations:
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(i) p-dimensional vector operations (such as in computing y* using 2* and 2*), (ii) computation
of the gradient Vf(-), and (iii) computation of the maximum (weighted) magnitude coordinate
of the gradient Vf(-). [12] proposed an efficient way to avoid (i) by changing variables. Distinct
from the dual approaches discussed in [12], [14], and [2], here we only consider the primal problem
in the regime n > p, and therefore the cost of (ii) dominates the cost of (i) in these cases. For
this reason in our numerical experiments we use the simple implementation of ARCD proposed by
Nesterov [21] and which we adopt for AGCD and ASCD as well. We note that both the randomized
methods and the greedy methods can take advantage of the efficient calculations proposed in [12]
as well.

For the linear regression experiments we focused on synthetic problem instances with different
condition numbers x of the matrix X7 X and where X is dense. In this case the cost for computation
(i) is O(p). And by taking advantage of the coordinate update structure, we can implement (ii)
in O(p) operations by pre-computing and storing X7 X in memory, see [21] and [14] for further
details. The cost of (iii) is simply O(p).

The data (X,y) for the linear regression problems is generated as follows. For a given number
of samples n and problem dimension p (in the experiments we used n = 200 and p = 100), we
generate a standard Gaussian random matrix X € RP*" with each entry drawn ~ N(0,1). In
order to generate the design matrix X with fixed condition number &, we first decompose of X as
X = UTDV. Then we rescale the diagonal matrix D of singular values linearly to D such that

the smallest singular value of D is ﬁ and the largest singular value of D is 1. We then compute

the final design matrix X = U7 DV and therefore the condition number of X7 X becomes x. We
generate the response vector y using the linear model y ~ N (X 8%, 02), with true model 8* chosen
randomly by a Gaussian distribution as well. For the cases with finite x, we are able to compute the
strong convexity parameter u exactly because the objective function is quadratic, and we use that
1 to implement our Algorithm Framework for strongly convex problems (Algorithm Framework 2).
When k = 0o, we instead use the smallest positive eigenvalue of X7 X to compute p.

For the logistic regression experiments, the cost of (ii) at each iteration of AGCD and ASCD can
be much larger than O(p) because there is no easy way to update the full gradient V f(-). For these

problems we have
1

n

VF(B) = ——XTw(p) (27)

where X is the sample matrix with z; composing the i-th row, and w(f); := m Notice
that calculating w(3) can be done using a rank 1-update with cost O(n). But calculating the matrix-
vector product XTw(B3) will cost O(np), which dominates the cost of (i) and/or (iii). However, in

the case when X is a sparse matrix with density p, the cost can be decreased to O(pnp).

B.2 Comparing the Algorithms using Running Time and the Number of Iter-
ations

Figure [3] shows the optimality gap versus running time (seconds) in the left plot and and versus
the number of iterations in the right plot, logistic regression problem using the dataset madelon in
LIBSVM [6], with i = 10~7. Here we see that AGCD and ASCD are vastly superior to ARCD in
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Figure 3: Plots showing the optimality gap versus run-time (in seconds) on the left and versus the number
of iterations on the right, for the logistic regression instance madelon with i = 10~7, solved by ASCD,

ARCD and AGCD.
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Figure 4: Plots showing the optimality gap versus run-time (in seconds) for the logistic regression instance
madelon with i = 107%, solved by ASCD, GCD and AGCD.

term of the number of iterations, but not nearly as much in terms of running time, because one
iteration of AGCD or ASCD can be more expensive than an iteration of ARCD.

B.3 Comparing Accelerated Method with Non-Accelerated Method

Figure [] shows the optimality gap versus running time (seconds) with GCD, ASCD and AGCD for
logistic regression problem using the dataset madelon in LIBSVM [6], with i = 1075. Here we see
that ASCD and AGCD are superior to non-accelerated GCD.

B.4 Numerical Results for Logistic Regression with Other Datasets

We present numerical results for logistic regression problems for several other datasets in LIBSVM
solved by ASCD, ARCD and AGCD in Figure Bl Here we see that AGCD always has superior
performance as compared to ASCD and ARCD, and ASCD outperforms ARCD in most of the

cases.
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Figure 5: Plots showing the optimality gap versus run-time (in seconds) for some other logistic regression
instances in LIBSVM, solved by ASCD, ARCD and AGCD.
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