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Introduction

Since its creation by Brunn and Minkowski, what has become known as the Brunn-
Minkowski theory has provided powerful machinery to solve a broad variety of inverse
problems with stereological data. The machinery of the Brunn-Minkowski theory includes
mixed volumes (of Minkowski), symmetrization techniques (such as those of Steiner and
Blaschke), isoperimetric inequalities (such as the Brunn-Minkowski, Minkowski, and
Aleksandrov-Fenchel inequalities), integral transforms (such as the Cosine transform),
and important auxiliary bodies associated with these transforms (such as Minkowski’s
projection bodies). Schneider’s recent book [37] on the Brunn-Minkowski theory is the
best available introduction to the subject.

While the Brunn-Minkowski theory has proven to be of enormous value in answering
inverse questions regarding projections of convex bodies onto subspaces, the theory has
been of little value in answering inverse questions with data regarding intersections with
subspaces.

Although the classical Brunn-Minkowski theory has developed rapidly over the last
century, a dual Brunn-Minkowski theory has only begun to emerge during the last twenty
years. The inspiration for such a theory can be traced to the program outlined by
Busemann for the study of Minkowskian geometry. As Busemann has warned, significant
results in Finsler geometry must be preceded by a deeper understanding of the local
structure of Finsler spaces, which is Minkowskian.

In what was to become a highly influential paper in the development of a dual theory,

Busemann and Petty [11] presented a list of problems from the field of Minkowskian ge-



ometry. Busemann and Petty translated these problems into questions regarding convex
bodies in ordinary Euclidean space. Since these problems involved sections (rather than
projections) of convex bodies, the available machinery at the time (the classical Brunn-
Minkowski theory) was of little help in dealing with the questions posed by Busemann
and Petty.

The first problem of the Busemann-Petty list became particularly notorious. It has

in fact become known as the Busemann-Petty problem:

Let K and L be convex bodies in R" that are centrally symmetric about

the origin, and suppose that for all (n — 1)-dimensional subspaces £ of R",

Vaci(K NE) < Vo (LNE).

Does it then follow that V,(K) < V,.(L)?

Here we denote by Vi the volume in R*. Because this was a problem that could
be easily explained to “the man in the street”, the problem received wide exposure.
Hadwiger, Bourgain, Larman, Klee, and Rogers published work on the problem, as did
many others. (See the Bulletin Research Announcement by Gardner [15] for a fairly
complete history of the problem.) The frustration over finding a solution to this easily
stated question exposed the need for a theory that could deal with intersection questions.

The fact that such machinery would have to come from some sort of “dual” theory
became evident when Shephard [39] posed the dual of the Busemann-Petty problem (with
sections replaced by projections). The answer to Shephard’s projection version of the
Busemann-Petty problem was given shortly after Shephard posed the problem. Petty [33]
and Schneider [36] independently used the machinery of the Brunn-Minkowski theory to
show that, with strong symmetry assumptions, this dual of the Busemann-Petty problem
had a positive answer. This later became known as the Petty-Schneider theorem. Petty
and Schneider showed that, in general, the answer to the Shephard question was negative

in all dimensions n > 2.



A first, but critical, step in the development of a dual theory was taken by Buse-
mann himself [7] (See also Schneider [37]). In analogy to Minkowski’s projection bodies,
Busemann introduced new auxiliary bodies which, in today’s terminology, are known as
intersection bodies. With the aid of these bodies Busemann (7, 8] was able to present
the first solution to the isoperimetric problem for Minkowski spaces. The surprise here
was that the solutions turned out to be different from what would be expected based on
Euclidean experience. Busemann [8] (see also [6]) presented a definition of Minkowskian
surface area, and showed that, in a Minkowski space with unit ball M, the solutions
to the isoperimetric problem are bodies that are homothetic to the polar of the inter-
section body of M. This is radically different frora the situation in Euclidean spaces,
where the solutions to the isoperimetric problem are homothetic to the ball. In fact, one
of the major outstanding questions in Minkowskian geometry asks if Euclidean spaces
are characterized (among Minkowski spaces) by the property that the solution of the
isoperimetric problem is the ball of the space.

Unfortunately, two things were to delay the development of a dual theory for another
quarter of a century. First, Busemann referred to his auxiliary bodies as polar Z-bodies.
The name obscured the duality between Busemann’s bodies and Minkowski’s projection
bodies. What was probably even more of a factor in delaying the development of a
dual theory was the fact that Busemann restricted his attention to intersection bodies of
centered (symmetric about the origin) convex bodies. Later, Croft [12] showed that the
intersection bodies of (not necessarily centered) convex bodies are not necessarily conver.
Croft’s work was misinterpreted as indicating that, in order to obtain interesting results,
Busemann’s restriction to centered convex bodies was essential, as well as prophetic.
Centered convex bodies now constituted the “proper” domain of the intersection operator.

As will be seen, the proper setting for a dual Brunn-Minkowski theory must be much
larger than anything Busemann considered. Not only is the class of centered convex
bodies insufficient, but even the class of all convex bodies is inadequate. To obtain results

about centered convex bodies, one is forced to study the intersection bodies of objects



more general than convex bodies. The correct dual analogue of Minkowski addition of
bodies is impossible within the class of convex bodies. The critical importance of choosing
the correct setting for a dual theory will be seen below. In fact, much of this dissertation
is devoted to fixing a proper setting for a dual theory.

A quarter of a century after Busemann discovered (at least for centered convex bod-
ies) the dual analogue of Minkowski’s projection bodies, Lutwak [26] (see also Burago-
Zalgaller (4] and Schneider [37]) discovered the dual analogue of Minkowski’s mixed vol-
umes. He also discovered the dual analogues of the classical mixed volume inequalities
(such as the Aleksandrov-Fenchel and Minkowski mixed volume inequalities). Just as
the classical mixed volumes of Minkowski (and the inequalities between them) proved to
be powerful tools for the study of projection questions, the dual mixed volumes would
play a critical role in later studies of intersection questions.

A good setting for the dual Brunn-Minkowski theory was presented by Lutwak [27).
All of the definitions are now given within the class of star bodies. In this paper a
clear dual analogue is given for Minkowski combinations of bodies. Lutwak extends
Busemann’s definition of intersection bodies to the class of star bodies and obtains (rather
effortlessly) the dual analogue of the Petty-Schneider Theorem.

By the early nineties, progress on the the Busemann-Petty problems appeared to be
running out of steam. The work of Bourgain [2, 3] indicated that the techniques used to
obtain negative answers to the Busemann-Petty problem in higher dimensions by Ball
(1] and Giannopoulos [19] (and later Papadimitrakis (32] and Gardner [14]) would be
dramatically less effective as the dimension of the space decreased. Bourgain showed
that these techniques would ultimately fail to provide the answer to the Busemann-Petty
problem in three dimensions. Bourgain’s work clearly demonstrated the need for a new
approach.

Gardner turned to the dual Brunn-Minkowski theory. Using the machinery of the
dual theory, Gardner [14] was able to give a powerful extension of Lutwak’s dual of

the Petty-Schneider Theorem. He showed that the Busemann-Petty problem has an



affirmative answer, in a given dimension, if and only if every strictly convex, sufficiently
smooth, centered, convex body is an intersection body of a star body. This result enabled
Gardner [14] to show that the answer to the Busemann-Petty problem was negative for
all dimensions greater than four.

Gardner’s Theorem clearly demonstrated the critical role that intersection bodies, as
defined by Lutwak, must play in the ultimate answer to the Busemann-Petty question.
With Gardner’s Theorem in hand, Zhang began his investigation of intersection bodies.
Zhang [45] quickly found dual mixed volume characterizations of intersection bodies that
are the analogues of the mixed volume characterizations of projection bodies due to Weil
[41] and Goodey [20]. Zhang [42, 43] then used his characterizations to give a negative
answer to the Busemann-Petty question in four dimensions.

Finally, Gardner [16] used the new intersection bodies to obtain a surprising affirma-
tive answer to the Busemann-Petty problem in three dimensions.

The extension of intersection bodies to star-shaped sets proved to be critical in the
final solution to the Busemann-Petty problem for convez bodies. As Gardner [17, p. 306]

states,

...the work [25] of Hadwiger already contained most of the ingredients
for the solution: the necessary coordinate geometry for bodies of revolution,
inversion of integral equations, and Holder’s inequality. What is missing is the
essential use of star bodies, and the theory of dual mixed volumes; the point
is that the theory of dual mixed volumes, via the dual Aleksandrov-Fenchel

inequality, molds Holder’s inequality into precisely the right form.

Progress in the study of the dual theory is still rapid. Goodey, Fallert and Weil [13]
have shown that just as the projections of projection bodies are projection bodies, central
sections of intersection bodies are intersection bodies.

Unfortunately, there still remain fundamental and foundational problems with the
dual Brunn-Minkowski theory. A rather obvious and glaring problem is its limitation to

bodies that contain the origin. While this appears to present no difficulties in the study
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of centered convex bodies (as in the Busemann-Petty problem), from the viewpoint of
Stereology this is far too restrictive. An extension of the dual theory to star bodies that
do not contain the origin was recently presented by Gardner and Vol¢i¢ [18].

However, there is an even more serious problem with the existing dual theory. One
of the most beautiful and important results of twentieth century convexity is Hadwiger’s
characterization theorem for the elementary mixed volumes (also known as the quermass-
integrals) [24, 34]. This result is of such fundamental importance that any candidate for
a dual theory must possess a dual analogue of Hadwiger’s characterization theorem. As
will be seen below, the dual Brunn-Minkowski theory, as currently understood, is not
sufficiently rich to be able to accommodate a dual of Hadwiger’s theorem.

The purpose of this thesis is two-fold. First, it will be shown that the natural setting
for a dual Brunn-Minkowski theory is larger than that envisioned by previous investi-
gators. In the chapters that follow I present an extension of the dual Brunn-Minkowski
theory to a broad new class of star-shaped sets previously inaccessible to the dual theory.

Second, I present a sequence of classification theorems for measures on star-shaped
sets. Included among these results are classification theorems for continuous measures
that satisfy the conditions of homogeneity, rotation invariance, SL,-invariance, and
monotonicity. These results lead in turn to a characterization theorem for the dual
elementary mixed volumes (dual Quermassintegrals) that gives the dual analogue of
Hadwiger’s characterization of the elementary Minkowski mixed volumes.

Chapter 1 contains a summary of certain results from geometric convexity, the star
analogues of which are developed in the subsequent chapters. Of particular importance
is the new definition of the Hausdorff topology on the set of convex bodies, of which the
dual analogue proves a crucial tool for understanding measures on the class of star-shaped
sets.

Chapter 2 continues with a definition for “L"-stars”, a new class of bodies with which
we work throughout. This is followed by a new definition for the dual Hausdorff topology

on L"-stars (corresponding to the L™ topology on radial functions). Extensions are given

10



for the dual mixed volumes to this larger class of star-shaped sets.

Chapter 3 summarizes some important results and inequalities concerning the dual
mixed volumes, which are extended to the broader context developed in Chapter 2.
Definitions are given for measures (also called star measures) on the lattice of £"-stars.
The elementary properties of this lattice are developed, and the measure structure of
dual mixed volumes is worked out.

A key distinction to be noted in the dual theory is that the origin remains fixed
throughout. Translations are no longer considered. As a result, one is led to study star
measures in terms of their relation to the unit sphere, rather than to all of R*. The
classification of star measures shall require the use of results concerning analysis on the
sphere, especially those concerning the uniqueness of the Haar measure on the unit sphere
and on the Grassmanians. Chapter 4 is devoted to the review of these results.

The three major results of this thesis are Theorems 5.9, 6.11, and 7.3. Chapter 5 is
devoted to the classification of all continuous star measures that are homogeneous with
respect to dilation (see Theorem 5.9). This classification leads in turn to a characteriza-
tion theorem for dual mixed volumes of pairs of £"-stars. These results are then re-cast
in a language similar (and, in some sense, dual) to that used by Goodey and Weil [21],
and by McMullen [30] to classify homogeneous measures on convez sets. I also present a
dual Hadwiger theorem for homogeneous measures that are rotation invariant.

Chapter 6 is concerned with the classification of rotation invariant measures. The
collection of all continuous rotation invariant measures on the £ stars turns out to be
far larger than the collection of measures classified by Hadwiger in the convex case (see
Theorem 6.11). While Hadwiger gave a finite basis for all convex-continuous rigid-motion
measures, the vector space of all star-continuous rotation invariant measures turns out
to have infinite dimension.

Chapter 7 concludes this investigation of star measures with Theorem 7.3, a classifi-
cation of all continuous star measures that are invariant under the action of the group

SL,. This result is especially satisfying: the space of all continuous SL,-invariant stac

11



measures is has only two dimensions, being spanned by the the Euler characteristic and
the usual volume in R".
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Chapter 1

Convexity

In this chapter we summarize results from the classical theory of convexity. Since im-
portant modifications will be made in several of the classical definitions, all readers are
encouraged to read this chapter.

We shall denote n-dimensional Euclidean space by R®. The symbol $"~! shall denote
the (n — 1)-dimensional unit sphere, centered at the origin. The spherical Lebesgue
measure on S™~! shall be denoted by S. A function f : S""! — R shall be called
measurable if f is a measurable function with respect to S. For p > 1, the £? norm of a

measurable function f on S*~! is defined by the expression:

I, = ([, 4s)".

A measurable function f on $"~? shall be called LP-integrable, or simply L7, if || f||, < oo.

Definition 1.1 A set A C R" is said to be convex, if, for any zo,zy € A and any
t € [0,1], the point (1 —t)zo + tz1 € A. A convex body K C R" is a convez set that is

also compact. Let K™ denote the set of all conver bodies in R™.

A convex body K € K™ is determined uniquely by its support function hg : S"~! —
R, defined by

hi(u) = max{z - u},
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where - denotes the standard inner product on R™. For all K € K", the support function
kg is a continuous function on the unit sphere [37, p. 37]. For all K, L € K", we have

K C L if and only if hx < hy.

Definition 1.2 Given Ky, K,,..., K, € K", and positive real numbers A\, Ay,..., Am,
the Minkowski linear combination K = A\ K; + MK, + ... + A K, ts the conver body

whose support function is given by

he =Y Ajhx,.

=1

It is not hard to show that K consists of all vector sums Ajzy + Az2 + ...+ Az of

points r; € K.

Definition 1.3 Let K, K3, K3,... € K. The sequence {K;}$° converges to the convez
body K in the Hausdorff topology if ||hk, — hk|ln — 0 as j — oo.

This definition differs from the usual description of the Hausdorff topology on K",
in which the support functions of a convergent sequence of bodies must be uniformly
convergent rather than convergent in L". However, Vitale [40] has shown that a sequence
of support functions converges in the £" topology if and only if the sequence converges
uniformly [37, p. 59]. Hence the two definitions are equivalent. The following lemma
gives yet another equivalent description of convergence in K".

For all a > 0, let aB denote the ball of radius «a in R™, centered at the origin. Note
that h,p(u) = a for all u € S™1.

Lemma 1.4 Let K,K,,K,,... € K™. The sequence of support functions hg, converges
uniformly to ki, if and only if, for all € > 0, there exists N > 0 such that

KCK;+eB and K; C K +¢B

foralli> N.

14



Proof: The sequence of support functions hg, converges uniformly to hg if and only if,
for all € > 0, there exists N > 0 such that |hg, — hx| < € whenever : > N. But this
holds if and only if

hK,- <hg+e= hK+cB and hg < hK‘ +e= hK.-+eB

whenever 7 > N. Since hg(u) < hr(u) for all u € S*~! if and only if K C L, the lemma
follows. O
Let K§ denote the class of K € K" such that the origin is contained in the interior of
K. Note that K € KJ if and only if there exists § > 0 such that hg > 6.
If 0 € K, then K is also characterized by its radial function pg. For all u € $"1,
define
pr(u) = max{A > 0: lu € K}.

If K € K§, then there exists € > 0 such that px > €. In this case the function 1/pk is
the support function of another body K* € K3, called the polar body of K [37, p. 33].
The mapping K — K* is a bijective involution; that is, 1/px+« = hg, and so K** = K.

Every convex body K has a volume, denoted by V(K). For computing the volume
of a Minkowski linear combination, we have the following theorem [37, p. 275]. Let [m]

denote the set of natural numbers 1,2,...,m.

Theorem 1.5 If K,,K,,..., K, € K" and A\, )s,..., A > 0, then

V(AIKI +A2K2+"'+’\me)= Z V(Kl'nKizv-le'n)’\ilA"z"'Ain,

1 5025.53..6[7711

where each coefficient V(K; ,K,,,..., K,,) depends only on the bodies K;,,...,K;,. O

n*

Given K1, K3, ..., K, € K", the coeflicient V(K,, K3, ..., K,) is called the Minkowsk:
mized volume of the convex bodies K, K,,...,K,. It is well-known that the mixed
volume V(Ki, K3,...,K,) is a non-negative function in n variables on the set K", is

continuous on K", and is monotonic with respect to the subset partial ordering on X"
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(37, p. 275].
For 0 <i <n and K, L € K", the following shorthand notation is standard:

ViK,L)=V(K,...,K,L,...,L),

where K appears n — ¢ times and L appears i times in the right-hand expression.
Important special cases of the Minkowski mixed volumes are the quermassintegrals or
elementary mired volumes, defined as follows. For all K € K™, the :-th quermassintegral
Wi(K) is given by
Wi(K) = Vi(K, B).

The quermassintegrals are also known as the mean projection measures. Let v; denote
the i-dimensional volume measure on R'. We shall denote by Gr(n,t) the space of all
i-dimensional vector subspaces of R®. The space Gr(n, ) is also known as the Grassman-
nian [31, p. 131]. For all £ € Gr(n,?) and all K € K", we denote by K|{ the orthogonal
projection of the body K onto the vector subspace .

For all K € K",

Ky
Wn—i(K) - ;.- ,/ceGr(n.f)

vi(K1€) dE, (1.1)
where &; denotes the i-dimensional volume of the unit ball in R*, and where the integration
is taken with respect to the rotation invariant probability measure on the Grassmannian
Gr{(n,1) [31, p. 131]. In other words, W,_;(K) is a equal to the mean of the i-dimensional
volumes of the projections of K onto ¢-dimensional vector subspaces £ of R® [37, p. 295].

Two convex bodies K and L are said to be homothetic if there exists a positive real
number a such that L is a translate of aK. If L = aK, then K and L are said to
be dilates. It will be convenient to recall the following inequality for Minkowski mixed

volumes [28]. This inequality follows from a successive application of the Alexandrov-

Fenchel Inequality, followed by Minkowski’s Inequality [37, p. 317].
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Theorem 1.6 Let K,,...,K, € K*. Then
V(Ky,...,K)" 2 V(K,)---V(K,),

with equality if and only if K,,..., K, are homothetic. O

Let A be a collection of subsets of R*. A real-valued function ¢ with domain A is

called a set function. A set function g : K® — R is said to be a measure on K" if
#(KUL)+pu(KNL)=pu(K)+p(l) (1.2)

for all K,L € K™ such that K U L € K" as well. Equation (1.2) is also known as the
incluston-ezclusion principle. More generally, a set function g that satisfies Equation
(1.2) on its domain of definition will be called a measure on its domain.

A measure g with domain A is said to be countably additive if, given any sequence

Ay, A,, ... of disjoint sets in A such that A = U2, A; € A,

W(A) = Y- u(A).

=1

For our purposes, a given measure shall not be assumed to satisfy countable additivity
unless this is postulated explicitly.
A measure g on K" is said to be convez-continusus if, for any convergent sequence
K; — K in K",
lim p(K;) = p(K).

A well-known example of a convex-continuous measure on K" is the volume V, or
Lebesgue measure. It turns out that all of the quermassintegrals Wy, W,,..., W, are
convex-continuous measures on K" (see [37, p. 290]).

Let A be a subcollection of the o-ring M™ of all Lebesgue measurable subsets of R"
such that A is closed under the action of the special orthogonal group SO(n). A measure

p on A is said to be rotation invariant if u(¢A) = p(A) for all ¢ € SO(n) and all A € A.

17



Similarly, a measure g is said to be translation invariant if u(y»A) = p(A) for all
translations 3 and all sets A in the domain of g. A measure p is invariant under rigid
motions if p is both translation and rotation invariant.

The following theorem of Hadwiger classifies all convex-continuous measures on K"

that are invariant under rigid motions. The proof is long and difficult (see [24, 34]).

Theorem 1.7 Suppose that u is a convez-continuous measure on K", and that p is
tnvariant under rigid motions. Then there erist co,c1,...,cn € R such that, for all
K e K", i

u(K) = 3 aWi(K).

1=0

In other words, the convex-continuous measures that are invariant under rigid motions
form a real vector space spanned by the quermassintegrals.

Let ¢ > 0. A measure on K™ is homogeneous of degree 1, if u(cA) = c'p(A) for all
¢ > 0. In [30], McMullen proved the following theorem.

Theorem 1.8 Suppose that p is a convez-continuous translation invariant measure on
K™ that is homogeneous of degree n — 1. Then there ezist sequences {L;}3%2, and {M;}32,
in K" such that

u(K) = lim ((K, L;) - Vi(K, M;))

foradl K € K*. O

In [21], Goodey and WEeil give a similar classification for convex-continuous measures that

are homogeneous of degree 1.

Theorem 1.9 Suppose that p is a convez-continuous translation invariant meesure on
K". Then pu is homogeneous of degree 1 if and only if there erist sequences {L;}32, and

{M;}2, in K™ such that, for all § > 0,

W(K) = lim (Vi(L;, K) - Vi(M;, K)

18



untformly for all convez bodies K C 6B. O

In the chapters that follow we shall develop analogues to Hadwiger’s theorem and to
the McMullen-Goodey-Weil results in the context of star-shaped sets.
For a more detailed discussion of convex bodies, Minkowski mixed volumes, and

quermassintegrals, see [37].
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Chapter 2

LN-stars

We begin with a definition.

Definition 2.1 A set A C R" is said to be star-shaped, if the following conditions hold:
e 0 € A.

e For each line £ passing through the origin in R™, the set AN { is a closed interval.

Note that, for every = € A, the line segment connecting = to 0 lies in A. A star-shaped

set A is determined uniquely by its radial function p4 : S*~! — R. For u € S"~1, define
pa(u) = max{A >0: \u € A}.

For example, p,p(u) = a for all u € S*~1. If A and C are star-shaped sets, then A C C
if and only if p4 < pc.

Definition 2.2 Given star-shaped sets Ay, ..., An, and positive real numbers Ay, ..., \,,
the radial linear combination A = A A; ¥ A2F ... FAn A, is the star-shaped set whose

radial function is given by

m
Pa=2_Aipa,.

j=1

20



Given a sequence of star-shaped sets A;, A2, ..., and an integer m > 0, the sets UL, A;

and N2, A; are also star-shaped, having radial functions
PAIU-UAR(Y) = pg[%m.-(u) and pginan--(u) = inf pa, (u). (2.1)

Note that |J72, A; is not necessarily a star-shaped set, for this set may intersect a line
through the origin in an open interval. If, for all lines ¢ tk.rough the origin, the set

N UR, A, is closed, then the radial function of U2, A; is given by the equation:

=1 i=1

PAwAzu-- (1) = max py,(u).

! will determine a star-shaped set, but the set of

Any non-negative function on $™~
all non-negative functions is far too large and contains too many pathologies to suit our

purposes.
Definition 2.3 Letp > 0. A set K C R™ is an LP-star, if the following conditions hold:

o K is star-shaped.

o The radial function px of K is an LP function on S™!.

Two LP-stars K, L are defined to be equal whenever pg = pr almost everywhere on S™~1.

If px is a continuous function on S®~!, then K is called a star body.

Denote by S™ the set of all L"-stars in R*. Denote by S the set of all star bodies
in R*. Both 8™ and S are closed under finite unions, finite intersections, and radial
combinations. It follows from Equation (2.1) that the collection 8™ is also closed under
countable intersections. A star body is an LP-star for all p > 1.

As is well-known, the set of all L™ functions on a measure space X is Cauchy complete.

This motivates the following definition.

Definition 2.4 Let Ky, K, Kj,... € S™. The sequence {K;}{° converges to ihe L"-star
K in the dual Hausdorff topology, also called the star topology, if ||pk, — pk|ln — 0 as
Jj — 0o. The convergence of the sequence {K;}{° to the L™-star K is denoted K; — K.

21



A set function p : 8™ — R is called star-continuous if, for any convergent sequence
K; — K in 8™, we have limj_, pu(K;) = p(K).

This definition disagrees with previous definitions of the topology of S&", in which
uniform convergence of radial functions was required for a sequence of star bodies to
converge [27]. While sufficient when dealing with star bodies, uniform convergence is too
stringent a condition for convergence in the larger class S™.

The dual Hausdorff topology on S™ is the natural analogue of the Hausdorff topology

on the class K™ of convex bodies in R™.

Definition 2.5 A set function p: S® — R is a star measure if
p(KUL)+pu(KNL)=pu(K)+p(L)

forall K,L € 8™,

A star measure need not be countably additive. For z > 0, a star measure p is homoge-
neous of degree i, if u(aA) = a'p(A) for all a > 0.

We will use the terms volume and Lebesque measure interchangeably in reference to
the Lebesgue measure in R®. We will show that every £"-star has a volume. The volume
of an L"-star K will be denoted V(K). In the case where K is also a convex body, this
volume will agree with the volume V(K) mentioned in Chapter 1. Since the volume is a
measure on the Lebesgue measurable subsets of R™ (see [35, p. 50]), its restriction to S™ is
a star measure. Often it will be convenient to express V(K) in terms of polar coordinates
on R™. In order to make sense of this, it will be helpful to review the construction of the

volume measure on the unit sphere $"~!. Some preliminary definitions are required.

Definition 2.8 Let A C R®. The star hull of A is defined to be the set

so(A)={dr:z€ A, 0< )1 <1}
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In other words, so(A) is formed by taking the union of all straight line segments from

the origin to points of A.

Lemma 2.7 Let a > 0. For all A;, A,,... C R",

‘s
s
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-
-
il
-

so(AyUAU...) =) so(A:), and so(A;NA2N...)C[)so(A).

Proof: For all y € R", we have y € so(U2, Ai) if and only if y = Az, where z € U2, A;
and X € [0,1]. But this holds if and only if y = Az, where = € A, for some ¢ € {1,2,...};
i.e. if and only if y € so(A;).

Let y € so(N2, Ai). Then y = Az, where z € N2, Ai and X € [0,1]. In other words,
z € A; for all i > 0, and so y € so(A;) forallz > 0. O

For all a > 0, denote by oS™~! the sphere of radius a, centered at the origin. Similarly,
denote by aB the n-dimensional ball of radius a, centered at the origin. The following

is an important special case of the star hull.

Definition 2.8 Leta > 0, and let A C aS™™! be measurable with respect to the spherical
Lebesgue measure. In this case the star hull so(A) will be called a spherical cone with
base A and height a. A collection of spherical cones Cy,Cy,... is said to be disjoint if,
CiNC; = {0} for each i # 3.

Note that, by definition, a spherical cone always has a measurable base.
The results of Lemma 2.7 may be sharpened in the case where the star hulls in

question are spherical cones with bases in a common sphere aS™~1.

Lemma 2.9 Let a > 0. For all Ay, Ay,... C aS™ !,

so(A U AU...)= D so(A;), and so(A;NA;N...)= ﬁ so( A;).

i=1 =1
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Proof: In the case of the union, this result follows immediately from Lemma 2.7.

Let z € so(AyNA;N...)—{0}. Let v = az/|z|. Thenu € A;NA2N..., and so
u € A; for all 7 > 0. But this holds if and only if z € so(A;) for all : > 0. O

For all A C S™~1, the indicator function 14 : S*~! — R is defined as follows. For all
u € S"71, define 14(u) = 1 if u € A, and define 1 4(u) = 0 otherwise. The indicator 1, is

a measurable function on $™7!, if and only if A is a Lebesgue measurable subset of S™~.

Lemma 2.10 Let a > 0, and let so(A) be the spherical cone with base A C aS™!. Let
A1 =1A={z/a:z € A}. Then p,a) = aly,. It follows that so(A) € S™.

Note that A, is just the radial projection of so(A) — {0} onto S™~1.
Proof: Let u € S"!. If u € A,, then au € A, and so au € so(A). Since so(A) C aB,
it follows that ps,(4)(v) = a. If u ¢ A;, then au € oS! — A. Hence, Au € so(A) if and
only if A =0, and p,o(4)(u) = 0.

Since A is a measurable subset of aS™~!, its projection A, is a measurable subset of
S"-1. It follows that p,o(4) = 14, is a measurable function and that so(A) € §". O

Let A C S"~! be such that so(A) is Lebesgue measurable in R®. The spherical volume

S of A may be expressed as follows:
1_.
S(A) = ;V(so(A)).

It follows from Lemma 2.7, and from the measure properties of V, that S is a countably
additive rotation invariant measure on S"~!. These conditions determine S uniquely up
to a constant factor [31]. It follows that S is equal to the spherical Lebesgue measure.
Thus, if so(A) is a Lebesgue measurable subset of R", then A is a Lebesgue measurable

subset of ™1, and so(A) is a spherical cone.
Definition 2.11 A polycone P is defined to be a finite union of spherical cones.

It follows from Lemma 2.10 that a polycone is also an L"-star.
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Proposition 2.12 Let P be a polycone. Then there ezists a unique collection ay, . .. am >

0 and a unique collection of disjoint measurable sets A, ..., A, CS™ ! such that
PP = Z C!_,'l,qJ .
i=1

Conversely, any linear combination of measurable indicator functions is the radial func-

tion of a polycone.

A finite linear combination of measurable indicator functions is also called a simple
measurable function.
Proof: By the definition of polycone, there exist ay,...,a, > 0 and spherical cones
Ci,...,Cn, with bases o;D; C o;S™"!, such that P = C,U---UC,,. It then follows from
Lemma 2.10 that, for all u € $*,

=m (w)} = max{lp, ()}
pp(u) = max{po,w} = max{lp,u)}

Hence pp takes on values from the set {0, a,@,...,an}. Since each pc, is a measurable
function, so is pp. For each i € [m], let A; = pp'(a;). Then pp = arlg, + -+ anla,,
where the sets A; are measurable and mutually disjoint.

Conversely, suppose that P is a star-shaped set with radial function pp = B1p, +
++++ Bilp,, where 8; > 0 and D; C S™~! is measurable for each ¢ € [k]. Then pp takes
on a finite number of non-zero values; call them ay,...an,. Let A; = pp'(a;) for each
i € [m]. Then pp = a1la, + -+ + aply,,, where the sets A; are mutually disjoint. It
follows that P = Cy U :-- U Cy,, a disjoint union, where C; is the star-shaped set with
radial function a;14; for each i € [m]. By Lemma 2.10, the sets C; are spherical cones.
Hence P is a polycone. O

The set of polycones will prove to be a useful tool for approximating arbitrary £"-

stars. Specifically, we have the following proposition.
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Proposition 2.13 Let K € S™. Then there erists an increasing sequence P, C P, C - --

of polycones such that
lim P, = K

J—+c0

in " and such that pp — px pointwise as well.

Proof: Since pk is an L™ function on $™~!, there exists an increasing sequence of non-
negative simple measurable functions p; on $"~! such that lim;_.. p; = pk, a pointwise
limit of functions [35, p. 15]. By Proposition 2.12, each p; is the radial function of a
polycone P;. Since the p; are increasing, P; C P; whenever ¢ < j.

The decreasing sequence |px — pj|* — 0 pointwise on $"~!. By the monotone

convergence theorem,

lim llpx = pilla = lim ([ 1ok = piI* dS)" =0.

Hence, P; — K in 8™. O

Note that when K is a star body, the radial function pg is bounded by some a > 0
almost everywhere on S*~!. Hence an increasing (or decreasing) sequence p; of simple
measurable functions may be found that converges to px uniformly [35]. This is no longer
true when K is a star-shaped set with an arbitrary £P radial function.

An important tool in the study of L"-stars is the polar coordinate formula for volume

in R™.

Theorem 2.14 The formula

holds for all K € S™.

Proof: Let A C S™~!. Recall that the radial function p,,4) of the cone so(A) is just

the indicator function 14, which takes the value 1 at points of A, and is zero elsewhere
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on S™ !, Hence,

V(so(A)) = %S(A)

1

= = / 1, dS
n Jgn-1

_ 1 n o 4s

- n Jen-1 pao(A) .

The exponent n in the last integral above appears (and is) unnecessary at this point, but
it will be needed when we generalize this formula to cones with radii different from one.
Now let A C aS§"~. Let A, = 1A, the radial projection of A onto $™!. Note that
so(A) is the L™-star with radial function Pss(a) = aly,.
Since the volume in R" is homogeneous of degree n with respect to dilation, it follows

that

V(so(A)) = V(a-so(A;))
= a"V(so(A))

= Z [ 1,dS

n Jsn-1

1
= — o(4) dS-
12 Jgn—1 Paol4) S

Next let P be a polycone. By Proposition 2.12, the function pp may be expressed

m
pp = Zale,,

j=1

where the sets A; are mutually disjoint. For each j, let C; = so(a;A;). Then by

Lemma 2.10,
pP = z pC’ ‘
Jj=1
Hence,

Pp

m " m n m m
= (ZPC;) = (ZaleJ) = Za}‘]": = EPB,--
] j=1

1=1 =1 =1
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The third equality in the above expression follows from the fact that the sets .4; are
mutually disjoint. This fact also implies that C; N C; = {0} whenever i # j. Using the

formula for the volume of a spherical cone, we may conclude that

m m 1 1
VP =3 V) =Y, [t dS = [ obds
1=

i=1 n

Now suppose that K € §", aand suppose that there exists a > 0 such that pgx < a
almost everywhere on $"~!. Let = a — px. Since n > 0 almost everywhere on S$"~!,
it follows that 7 is the radial function of an £"-star L. By Proposition 2.13, there exists
an increasing sequence of polycones {Q;}2,, with radial functions 5;, such that n; — g
pointwise as ¢ — oo. For all ¢ > 0, let p; = a — 7;. Note that each p; is a simple

measurable function on $*~! such that
pi=a-—-n2a—n=pg

almost everywhere on S®~!. Moreover, the functions p; form a decreasing sequence of
simple measurable functions that converges to px pointwise almost everywhere on $™~!.
For all : > 0, denote by P; the polycone with radial function p;. It then follows from
Equation (2.1) that

K = ﬁ P..

=1
In other words, K is a Lebesgue measurable subset of R"; i.e. the volume of K is defined.

We now apply the monotone convergence theorem to conclude that

vy = v((7)

i=1

= infV(R)
s n
= inf (; foues? "5)

=1 inf p? dS

n Jsn-1 >0
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In other words,

ViK) =3 [ ok 45, (22

provided that there exists a > 0 such that px < a almost everywhere on $"~!.
Finally, let K € S™. Forall j >0, let E; = {u € S"™! : j < px(u) < j +1}. The sets
E; partition $"~! into a countable collection of disjoint measurable subsets. Moreover,

for all j > 0, the function 1g,pk is an L™ function such that
J<1gpk <j+1

Let K; be the L"-star with radial function 1g,pk. Since each Kj is a bounded subset of
R", Equation (2.2) holds for each Kj;. It follows that each K] is a Lebesgue measurable
subset of R®. Moreover, note that K = ;>0 K. Since the volume V is a countably

additive measure on R",

V(K)

iV(Kj)

j—O

= / Pk, @
J_on gn—1 J

where the last equality follows from the monotone convergence theorem.

Hence, the equation

V(K)-—/

1 pK dS.

is valid for all £L"-stars K. O
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We can define analogues to the Minkowski mixed volumes by using radial combina-
tions instead of Minkowski sums [27]. For computing the volume of a radial combination,

we have the following theorem.

Theorem 2.15 If Ky, K,..., K, € 8", and if A\;, g, ..., A > 0 then

VMK FRKF - FdmKn) = Y V(K Koy Ki) X Xy - Ay

11,82,..43n €[m]

where each coefficient V(K; , Ki,,...,K;,) depends only on the bodies K,K,...,K,,.

Given Ky, K3, ..., K, € 8", the coefficient V(Kl, K, ..., K,) given by Theorem 2.15
is called the dual mized volume of K,, K>, ..., K,.
Proof: Let \ K1 +): K2+ -+ ¥An K be a radial combination of £"-stars. The polar

coordinate formula for volume implies that

- ~ -~ 1
VMK 40K+ - -+ A Kp) = — (Mpr, + A2pr, + -+ + Ampk,, ) dS
n Jen-1

1
= - 2 A /s"_, PK, PK, " PK, dS.
$1,824000y t..E[m]
Note that this expression is a homogeneous polynomial in the real variables \;. The coef-

ficient of the A A;; - - - Ai, term depends solely on the L"-stars K;,, K,,..., K;,. Hence,

we set

= 1
V(Kin Kl"n ceey Kin) = ; L"_, PKi, PK,, " ' PK;, dS. (23)

It follows from the integral representation (2.3) that V is well-defined on S™, for the
dual mixed volumes ignore sets of Lebesgue measure zero.
The following corollary is an immediate consequence of the integral representation

(2.3) for dual mixed volumes.
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Corollary 2.18 The dual mized volume V(Ky,K,,...,K,) is a non-negative function
on 8™ in n variables, and is monotonic with respect to the subset partial ordering on S™.

a

In analogy to the quermassintegrals for convex bodies, the dual quermassintegrals W,
of an L-star K are defined as follows. For K € S the i-th dual quermassintegral W;(K)

is given by

Wi(K)=V(K,...,K,B,...,B),

where the £"-star K appears n — i times and the unit bal! B appears i times.
The dual mixed volume V is a real-valued function on 8" in n variables. The following

lemma tells us that V is a continuous function on the collection of £"-stars.

Lemma 2.17 Let K, K; € S" such that K; — K. For all Q,,...,Qn.-1 € S*,
V(Q1,. s Qnor, Ki) — V(Q1y. ., Qno1, K),

as i — 00.

Proof: Let ¢ > 0. Let & = 2{lpq,In lIp@slln - |P@n-i lln- Since K; — K, there exists
m > 0 such that ||pk; — pk||n < § whenever : > m.

Therefore, if ¢ > m, then

V(Qis...,Qn-1,K) = V(Q1,...,Qn1,K)| = 1

n

1
72 Jonos PO PR lok, — px| dS
1

;;Ilpo, ln - NPQuorlln lloK: — PK I

€
8%

€,

-/S"-l PQ: " PQus (PK; — pk) dS

IN IN A

where the second inequality follows from the Holder inequality [35, p. 63]. It follows that

V is continuous in each variable. O
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In particular, the dual quermassintegrals are star-continuous. This gives added evi-
dence that the class of £"-stars is indeed the class of bodies we are interested in, as we
pursue a study of the dual theory.

In analogy to the mean projection representation (1.1) for quermassintegrals, we have
the following representation [27] for the dual quermassintegrals of a star body K:

W,_i(K)=22

: = -'i'l (] i—1
Ki -/£€Gl'(n.i) vilKn{) df /ens,._, Pi d5'" dE, (2.4)

tk; JeeGr(n,i)

where dS*~! denotes integration with respect to the Lebesgue measure on the (i — 1)-
dimensional unit sphere. In other words, Wn_.-(K ) is equal to the mean of the i-
dimensional volumes v; of the intersections of K with :-dimensional subspaces £ of R".
This is one example of the way in which results in the Brunn-Minkowski theory translate
into results in the theory of dual mixed volumes. In Chapter 5 this result is extended to
the class of L"-stars (see Theorem 5.11).

Two LP-stars K and L are said to be dilates if there exists ¢ > 0 such that px = cpr,
almost everywhere on $"~!; i.e. if K = cL in S™. Just as there are radial analogues for
the Brunn-Minkowski and Alexandrov-Fenchel inequalities for star-shaped sets [27], we

have the following radial analogue for Theorem 1.6.

Theorem 2.18 Let Ky, K>,...,K, € S*. Then
V(K1 Ky, .., K2)" < V(EK)V(K) - V(K,),

with equality if and only if K1, K,, ..., K, are dilates. O

This radial analogue follows from the Holder inequality for integrals [35, p. 63], and
from the integral representation for the dual mixed volumes. Hence, this inequality holds
for all £"-stars.

There is a natural action of the special linear group SL(n) on the class of star-shaped
sets. This action is especially nice when restricted to the special orthogonal group SO(n).

We begin with some preliminary results.
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Proposition 2.19 Let ( : S"! — S™~! be a diffeomorphism, and let E C S™! be q
subset of spherical Lebesgue measure zero. Then S(((E)) =0 as well.

Proof: For all z € R"— {0}, the point r may be expressed in polar coordinates, z = (r, u),
where r = |z| and u = z/|z| € S™}. Define a map ( : R — {0} — R" — {0} by the
equation

{(r,u) = r((u).
Since ( is a diffeomorphism of $*1, { is a diffeomorphism of R" — {0}.
Suppose E C S"~! has spherical Lebesgue measure S(E) = 0. This means that

V(so(FE)) = S(E) =0.

Since ( is a diffeomorphism of the open set R*—{0} in R", it follows that V(((so(E))) = 0
(see [35, p. 153]). From the definitions of ¢ and the measure S, it then follows that

S(¢(E)) = V(so(¢(E)) = V((so(E))) = 0.

a

Proposition 2.20 Let f : S"! — R be an LP function, where p > 1, and let ( :
S"~1 — S§"1 be q diffeomorphism. Then the composed function fo( :S"! — R is

an L? function.

Proof: Suppose that p = 1. Define a set function v on the Borel subsets of S"~! as

follows. For all A C S™~!, define
v(A) = S(¢7'(A)).

Since (™! is a diffeomorphism, (~! maps open sets to open sets and closed sets to closed
sets. Moreover, {(~! commutes with unions and intersections, for (! is a bijective function

on S™~1, It follows that (~! maps Borel sets to Borel sets, and that v is a Borel measure
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on S™~'. If S(A) = 0, then Proposition 2.19 implies that v(A) = 0 as well. In other
words, v is a Borel measure that is absolutely continuous with respect to the invariant
measure S on S"~!. By the Lebesgue-Radon-Nikodym theorem [35, p. 121}, there exists

an L! function g, : S"~! — R, such that

V(A) = /s lag, dS

for all Borel sets A C S"~!. Since v is a non-negative measure, g, > 0.

Meanwhile, suppose that k : S"~! — R is a continuous function. In this case,

/s,.-, hg, dS = smhdv:/s”_,ho(dS:/s”_‘ hJe dS,

where J; is the Jacobian of {. In other words, g, = J;. But J; is a continuous function
on S™!. In particular, J; is bounded on S™~!. Hence, there exists M > 0 such that
0<g <M.

Since f : S"~! — R is an £! function,

= = < .
focas=[ fdv=[ fodS<M[ fdS<oo

sn—1

In other words, f o ( is an L! function.

Next suppose that f is an LP function, where p > 1. Then f? is an £! function. It
follows that f? o { = (f o )P is an L! function, so that fo(is £P. O

For all A C R™ and all ¢ € SL(n), define ¢A = {¢(z) : = € A}.

Proposition 2.21 Let ¢ € SL(n). For all star-shaped sets K, the set ¢K is also star-
shaped. Moreover, for all u € S™!,

1 ¢! (u)
pok(u) = |¢-1(u)|pK (|¢"1(“)|) '
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It follows that ¢K is an LP-star (or a star body) if and only if K is an LP-star (or a star
body). If ¢ € SO(n), then pyrc = px 0 ¢71.

Proof: Since ¢ is linear and bijective, #(0) = 0, and for all lines £ through the origin in
R™, ¢ maps the closed line segment K N ¢ to the closed line segment ¢K N ¢¢. It follows
that @K is star-shaped.

For all u € S},

pex(u) = max{A: \u € ¢K}
= max{): ¢ '(u) € K}

- n1a-1goy (1)
= max{)\:\|¢ (u)'|¢“(u)l € K}
= iy T N WSS € K)

I T ( ¢~ (u) )
671 @)™ \Ig~H(w)l)
It follows that pyk is a continuous function if and only if pg is continuous.

Suppose that K € S™. Let ( : S*~! — $"~! be given by

_ 47 (w)

(W)= 15

Since ( is a diffeomorphism on S$"~!, we may apply Proposition 2.20 to conclude that
pk o is L™. The function 1/|¢~!(u)| is continuous on S®~! and is therefore bounded. It

follows that the function

R 4 ()
por(v) = =y K (|¢-l(u)|) (25)

is an L" function, and that ¢K is an L"-star.

If € SO(n), then ¢ preserves length, so that |¢~!(u)| = |u| = 1. It follows from
(2.5) that pyx(u)  ok(47'(u)). O
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Chapter 3

The Measure Structure of Dual

Mixed Volumes

Recall that the quermassintegrals on R" satisfy the properties of a measure, when con-
sidered as functions on the set of convex bodies [29, 37]. In this chapter we investigate
the analogous measure properties of the dual mixed volumes.

First let us state a theorem that generalizes the claim above. Given L"-stars K and
Q, recall that
V‘(K’Q) = V(K""’K’Q"" 1Q)’

where K appears n — ¢ times and @ appears i times in the right-hand expression.

Proposition 3.1 Let Q € S™ be fized. The function on S™
K — Vi(K,Q)

satisfies the properties of a star measure. Moreover, this measure is continuous on S™.

Proof: Recall that, for all K, L € S™ and all u € S™!, we have pxyr(u) = max{pk(u), pr(u)}
and pxnr(u) = min{pk(u), pr(u)}. Hence, for all u € $*~! and all k > 0,

phor(¥) + Piar(u) = max{px(u), pr(u)}* + min{px(u), pr(u)}*

36



= p(u) + pi(u).

It follows that

Y, X/ 1 n—i 1 n—i i
V(KUL,Q)+Vi(KNL,Q) 7 Jsnos PKULPQ dS + ;/sn_, PKnLPg 45
1 n—t n—i ()
=5 s"_,(A"Kul. + PKnL)Pg dS
_ l/ ( n-i+ n-i) (] dsS
i Pk TPL )PQ

= Vi(K,Q)+ Vi(L,Q).

Hence, V;(K,Q) is a star measure in the variable K (see Definition 2.5). It follows
from Lemma 2.17 and from the integral representation (2.3) for dual mixed volumes that

.uis measure is star-continuous with respect to K (and, for that matter, with respect to

Q as well). O
We will denote by V.-(*, Q) the star measure on S™ given by the map

K —s Vi(K,Q).

The radial sum operation + also satisfies inclusion-exclusion, as well as various dis-

tributive laws.

Proposition 3.2 For all K,L € S*,

(KUL)¥(KNL)=K¥L.

Proof: For all u € S™"!,

pur(3) + prnr(u) = max{pk(u),pr(u)} + min{pk(u), pr(u)}
= pk(u) + p(u).
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Proposition 3.3 For all K,L,Q € S",

(KUL)¥Q = (K+Q) U (L+Q).

Proof: For all u € S,

pruL(u) + pe(u) = max{px(u),pr(u)} + po(u)
= max{px(u) + pe(u), pr(u) + p(u)}

= Pkiquriq)(t)-
a

Proposition 3.4 For all K,L,Q € S™,

(KNL)¥Q = (K+Q)N (L+Q).

Proof: Given u € $*1,

praL(u) + po(u) = min{pk(u),pr(u)} + po(u)
= min{px(u) + pq(u), pr(u) + pg(u)}

= PkiQniq)(¥)-

An important question now arises concerning the conditions one must place on the

(fixed) body Q so that the star measure V;(*,Q) will be rotation invariant.
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Theorem 3.5 Leti € [n]. Let Q € S*. The star measure Vi(*,Q) is rotation invariant
if and only if Q is a ball; that is, if and only if there ezists c € R such that V;(x, Q) = cW,.

Proof: Let ¢ € SO(n). From Theorem 2.18 it follows that

V(4Q.4Q,...,4Q.Q....,Q)
V($Q)"V(Q)
V).

Vi(4Q,Q)"

v

Meanwhile, rotation invariance implies that f/.-(¢Q,Q) = Vi(Q,Q) = V(Q). The above
inequality becomes an equality. It then follows from the equality conditions of Theo-
rem 2.18 that ¢Q is a dilate of Q. Since ¢ preserves volume, ¢Q) = Q. Hence psq = pg
almost everywhere. Recall from Proposition 2.21 that pgg = pg o ¢~*. It follows that,
for each ¢ € SO(n), pg 0 ¢~! = pg almost everywhere on S™~1.

Two continuous functions are equal almost everywhere if and only if they are identical.

Hence,

Peo ™! = pq

for all ¢ € SO(n).

Let up € S™ 1. For any u € S™!, there exists a rotation ¢, € SO(n) such that
#u(u) = uo. It follows that pg(u) = pg o ¢u(u) = pg(uo). Hence pgq is a constant, and so
@ must be a ball. O

This theorem is unsatisfactory, for one must assume that @ € S”. In fact, the theorem
holds in much greater generality, provided only that pg is an L™ function on S™~! (see

Theorem 4.5).
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Chapter 4

Measures on the Unit Sphere

The dual mixed volumes supply us with a cornucopia of measures on the lattice of £"-
stars. Our goal is to classify all such measures, or as many as we can. In the next
chapter we will proceed with the classification of star measures that are homogeneous
with respect to dilation of £L™-stars. Such measures are closely related to measures on
the unit sphere S"~1. These measures are the subject of the present chapter.

Of especial significance is the following theorem ([31].

Theorem 4.1 Let u be a countably additive Borel measure on the unit sphere S*~!, such
that p is invariant under the action of the special orthogonal group SO(n). Then there
ezists k € R such that p = kS.

Here S denotes the Lebesgue measure on S"~!. Before reviewing the proof of this
theorem, let us briefly discuss the action of SO(n) on S"~!. Let no be a fixed point in

$"~1, the north pole. Define a map ¥ : SO(n) — S™~! by the equation

¥(4) = é(no)-

We are mapping each rotation to the image of the north pole under that rotation. The
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stabilizer of the north pole ny,
Stab(no) = {¢ € SO(n) : ¢(no) = no},

is isomorphic to SO(n — 1), that subgroup being the set of rotations of the equator
$"~2 C $™~1. Moreover, for any ¢ € SO(n) and any 5 € Stab(n),

¥(4n) = ¢ 0n(no) = ¢(no) = ¥(¢).

Since the action of SO(n) on $"~! is continuous, being the restriction of the action SO(n)
on R", it follows that ¥ induces a homeomorphism

= S0(n)
¥ SO(n - 1)

—_— S"-‘.

Note that %%‘@ﬁ is not a group, but merely a quotient space. The result is a represen-
tation of the sphere $"~! as a homogeneous space of the topological group SO(n).

An integral p on $S"~! is defined to be a linear functional on the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>