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Intensity-Modulated Radiation Therapy is the technique of delivering radiation to cancer patients by

using non-uniform radiation fields from selected angles, with the aim of reducing the intensity of the

beams that go through critical structures while reaching the dose prescription in the target volume.

Two decisions are of fundamental importance: to select the beam angles and to compute the intensity

of the beams used to deliver the radiation to the patient. Often, these two decisions are made

separately: first, the treatment planners, on the basis of experience and intuition, decide the orientation

of the beams and then the intensities of the beams are optimized by using an automated software tool.

Automatic beam angle selection (also known as Beam Angle Optimization) is an important problem and

is today often based on human experience. In this context, we face the problem of optimizing both the

decisions, developing an algorithm which automatically selects the beam angles and computes the

beam intensities. We propose a hybrid heuristic method, which combines a simulated annealing

procedure with the knowledge of the gradient. Gradient information is used to quickly find a local

minimum, while simulated annealing allows to search for global minima. As an integral part of this

procedure, the beam intensities are optimized by solving a Linear Programming model. The proposed

method presents a main difference from previous works: it does not require to have on input a set of

candidate beam angles. Indeed, it dynamically explores angles and the only discretization that is

necessary is due to the maximum accuracy that can be achieved by the linear accelerator machine.

Experimental results are performed on phantom and real-life case studies, showing the advantages that

come from our approach.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Intensity-Modulated Radiation Therapy (IMRT) consists of
delivering radiation to cancer patients by modulating the inten-
sities of the rays (beams), which are typically delivered from five
to seven different directions (angles). The tumor shape is analyzed
by the doctor, who outlines the so-called target volume and
decides the prescribed dose that must be delivered to the tumor
cells. Each beam is divided into beamlets, all having the same
direction but which can be assigned different intensities, achieved
by sliding the leaves of a multi-leaf collimator in the beam path
while the beam is on or by using the step and shoot approach
(in which the radiation is off whenever the leaves move). The
ll rights reserved.
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intensities of the beamlets are optimized with the aim of achiev-
ing the prescribed dose requested by the doctor for the target
volume while sparing the organs at risk (OARs).

This technique is increasingly becoming common in the
hospitals and it requires an automated tool which captures many
different features, in order to produce good treatment plans.
Three can be considered as the main phases for building a
planning process (see [11] for a survey on this topic):
�

am
6/
the selection of the number of beams and the directions from
which to deliver the radiation

�
 the selection of the intensities for the beamlets

�
 the selection of a delivery sequence

The aim of the first phase is to find the best selection of radiation
angles. Once the directions have been obtained, the intensities are
determined. While the process of optimizing the intensities is
generally automated, the selection of the beam angles is often
angle optimization in intensity-modulated radiation therapy.
j.cor.2012.06.009
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based on the planners’ experience and on trial-and-error proce-
dures. The last phase focuses on the problem of realizing the
intensity by using a multi-leaf collimator.

In this paper, we address the problem of optimizing the
intensities of the beamlets together with the choice of the angles
from which the beams are delivered. This problem is called Beam
Angle Optimization (BAO) and is a non-convex problem, with
many local minima. Several approaches have been developed for
dealing with the BAO problem, many of which are based on
heuristic methods, due to the difficulty of the problem.

In particular, simulated annealing is often applied to tackle the
problem: see e.g. [2,5,10,25,28]. In these works, sets of directions
are considered: they can be predefined on input or determined in
a first phase of the algorithm that takes into account the quality of
each beam orientation. A set of beam angles are then selected by
using simulated annealing or by combining simulated annealing
and local neighborhood search as in [2].

Genetic algorithms are also used (see e.g. [13,15]), as well as
gradient search (see e.g. [6,22]) and sometimes the two techni-
ques are combined together (see e.g. [19,26]): the genetic algo-
rithm is used to select suitable beam angles and then gradient
search is used to determine the intensity profiles of the beams.
A metaheuristic approach is developed by Zhang et al. [32], in
which computational efficiency is achieved by utilizing high-
throughput computing.

Mixed Integer Programming approaches have also been devel-
oped (see e.g. [7,18,21,23,30,31]): in this case, usually, a set of
candidate beam angles is given on input (or determined in a first
phase of the algorithm), among which the best angles can be
chosen. Branch and cut or branch and bound algorithms are
proposed to solve the problem. Beam angle elimination is also
applied (see e.g. [14,20]). Ehrgott et al. [12] present a mathema-
tical development that provides a unified framework for the
problem and several techniques are compared to demonstrate
how they behave.

In other works, a score function, introduced to measure the
‘‘goodness’’ of each beamlet at a given angle, is used to select
some angles among a set of candidate beam angles (see e.g
[8,24,27,29]). The score function can give preference to beamlets
that can deliver a higher dose to the target without exceeding the
tolerance of the sensitive structures. The overall score of a beam is
calculated as the sum of the scores of all the beamlets belonging
to it. The beam orientations with the highest value are then
selected.

The method that we develop to tackle the BAO problem differs
from previous works for the following reasons. First of all, it does
not require to have on input a set of candidate beam angles:
indeed it dynamically explores angles and the only discretization
that is necessary is due to the maximum accuracy that can be
achieved by the linear accelerator machine. In other words, we
allow to select any angle that can be obtained by the machine.
This is why we present the model with continuous variables
corresponding to the angle selection (the proposed method will
take into account the maximum accuracy of the machine, as
explained in Section 3). In order to model continuous beam angle
space, we perform dose computations at a fine angular spacing
(e.g. D¼ 21): this means that the dose matrix is computed at
360=D angles. The beamlet dose computations are done using
CERR (Computational Environment for Radiotherapy Research, St.
Louis, MO) [9] with QIB (quadratic infinite beam) method, which
uses an algorithm based on [1]. Then we use linear interpola-
tion for obtaining the beamlet dose-influence values at any
continuous angle.

Since the problem appears to be highly non-convex and with
many local minima (as shown e.g. by Bortfeld and Schlegel [5]),
we propose a heuristic hybrid method (HM), which combines a
Please cite this article as: Bertsimas D, et al. A hybrid approach to be
Computers and Operations Research (2012), http://dx.doi.org/10.101
Simulated Annealing procedure (SA) with a Gradient Descent
method (GD). HM consists of an iterative approach: it alternates
few steps of GD for quickly finding a local minimum, with few
steps of SA for jumping out of the local minima and starting to
search in a different part of the solution space. In this way, we
overcome the difficulty of searching over a given power set of
angles by using calculus, i.e. gradient computation (as in [6]) and
by using simulated annealing to avoid being trapped in a local
optimum. We wish to mention that the proposed method does
not address beamlet implementation issues, i.e. how the obtained
solution could be implemented by means of the multi-leaf
collimator. However, note that there is nothing fundamentally
incorrect about using a beamlet based approach, see for example
the work by Jelen et al. [17].

The problem is initially tested for a simple phantom case.
Then, we study a real-life case. In both cases, we compare the
solutions found by HM with the solutions obtained with equis-
paced angles and with the solutions obtained by applying a pure
simulated annealing approach, which is often used for BAO.

The paper is organized as follows. In Section 2 we formally
define the problem, and present a Non-Linear Programming
formulation which takes into account clinical requirements (see
Hong et al. [16]). In Section 3 we describe the heuristic hybrid
approach and in Section 4 we present computational results on a
phantom case and on a real-life case study. Finally, we draw
conclusions in Section 5.
2. Problem description and model formulation

The first step for building a treatment plan consists of out-
lining the shape of the tumor (Clinical Target Volume) and of the
organs at risk. This is done by the doctor, who also decides the
prescribed dose of radiation which is needed in order to kill the
tumor cells. The image of the body of the patient is then
discretized, by building a grid where each point is called voxel.

Usually, the treatment planners choose the directions from
which the beams are delivered. This choice is done manually,
based on previous experience and intuition. Often, the beam
directions are chosen such that they go through the isocentre of
the tumor and are almost equispaced. However, investigating the
simultaneous choice of beam directions and intensities is very
important from a practical point of view, as one might find
solutions which hardly could be found manually. In addition, an
automated decision can reduce the trial-and-error process, and
also find solutions of comparable quality with a smaller number
of used directions, thus reducing the overall treatment time. This
is very important since a long treatment can more likely lead to
inaccurate positions of the patient and consequently to a faulty
delivery of radiation.

Each beam is divided into beamlets, having the same direction
but which can be assigned different intensities. BAO aims at
determining a set of beam angles and the corresponding beamlet
intensities, so that the prescribed dose to the tumor is reached,
while the organs at risk are spared. We focus on the co-planar
treatment, i.e. beam angles are chosen on a circle around a slice of
the body (containing the center of the tumor) of the patient.

2.1. Clinical model

In this section, we present a Non-Linear Programming for-
mulation of the BAO Problem, which can well capture real-life
requirements, according to what is presented in [16]. In their
work, Hong et al. study a multicriteria optimization approach to
deal with different planning goals. They focus on the study of
pancreatic patients and produce a database of treatment plans
am angle optimization in intensity-modulated radiation therapy.
6/j.cor.2012.06.009
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(Pareto surface); the physician can choose among those plans,
finding a trade-off between different objectives (i.e., deciding
which OAR should receive the lowest dose). In the following we
introduce some notation and describe the clinical model. We refer
the readers to [16] for a more detailed description.

Let S be the number of Volumes of Interest (VOIs), i.e. OARs,
normal tissue (i.e., all the body voxels which do not belong to any
particular structure) and target volumes (i.e. tumor), that need to
be considered in the construction of a treatment plan. Let Vh be
the set of all voxels (considered in the discretized grid) associated
with VOIh (h¼1,y,S), and Nh be the number of voxels in VOIh

(h¼1,y,S). Let LBi be the prescribed dose for each voxel iAVh and
UBi be the maximum dose that can be delivered to any voxel iAVh

(h¼1,y,S). Let B be the set of beamlets, partitioned into subsets
B1 [ � � � [ Bn, where n represents the number of beams, or equiva-
lently the number of angles from which the radiation will be
delivered. Finally, let D be the matrix describing the dose
influence, where each element DijðykÞ, iAVh, jABk, k¼ 1, . . . ,n,
h¼1,y,S, represents the dose delivered to voxel i by a unit
intensity of beamlet j from direction yk. The matrix D is obtained
by running an IMRT beamlet calculation every D degrees, i.e. we
compute the dose matrix at 360=D angles. In order to obtain
the values of the doses for a generic angle, we use linear
interpolation.

We introduce continuous variables xj (jAB), representing the
beamlets intensities, and continuous variables yk (k¼1,y,n),
representing the angles. We introduce for sake of clarity variables
di (linked with equality constraints to variables x), representing
the dose delivered to the voxel i (iAVh, h¼1,y,S).

Usually, a weight is assigned to each voxel in the objective
function and typically the same weight is given to voxels in the
same structure. A high weight is usually given to selected OARs
that must be spared by radiations. However, often the doctor does
not provide a specific weight for each voxel, but rather he
describes how to limit underdosing to the tumor voxels and
overdosing to the OARs. This can be expressed by means of max/
mean functions, min/mean functions and ramp functions that
specify how to penalize the underdosing or overdosing. To this
aim, the VOIs are grouped in different sets, according to the
different objectives and constraints in which they are involved.
Auxiliary continuous variables are introduced for expressing
these objectives and constraints. The objectives and the con-
straints are of three different types (Op and Cp are sets indexing
respectively objectives and constraints of type p¼ f1;2,3gÞ:
1.
P
C

Type 1 (O1 and C1): this type is used for OARs. In objectives O1,
a weighted convex combination (given by parameter
0rahr1) of the maximum dose yh to OAR hAO1 and of the
mean dose 1=Nhð

P
iAVh

diÞ to the same OAR is penalized.
Different non negative weights wh can be chosen for the OARs
considered in this type of objective, in order to give them more
or less importance in the optimization. Based on the value of
ah, we penalize, in the objective function, either the maximum
dose or the mean dose or a convex combination of them. In
constraints C1, the same convex combination of the maximum
dose yh to the OAR and the mean dose 1=Nhð

P
iAVh

diÞ to the
OAR is bounded by parameter gh.
2.
 Type 2 (O2 and C2): this type is used for target volumes (i.e.
tumor). In this case, the minimum dose yh delivered to target h

is taken into account. In objectives O2, a weighted convex
combination (given by parameter 0rahr1) of the minimum
dose yh to the target and the mean dose 1=Nhð

P
iAVh

diÞ to the
target is considered. Note that we will use negative weights wh

for the targets, since we maximize such objectives. Also in this
case, different weights can be assigned to different targets,
according to their relevance. Constraints C2 are used to impose
lease cite this article as: Bertsimas D, et al. A hybrid approach to beam
omputers and Operations Research (2012), http://dx.doi.org/10.1016/
a lower bound gh on the convex combination of the minimum
dose and mean dose to be delivered to target h.
3.
 Type 3 (O3 and C3): this type is used both for targets and OARs.
A target dose th is considered for VOI h. Then, a ‘‘V’’ function or
ramp function is defined, where each side of the ‘‘V’’ can have
its own slope (i.e. a generalization of an absolute deviation
from a target dose function). The lower (i.e. left) slope is given
by the parameter sl

h, and the upper (i.e. right) slope by su
h. We

use this function to limit underdosing to a target and over-
dosing to an OAR. The auxiliary variables zi

h are used to track
the upper or lower dose penalties. In objectives O3, we
penalize the weighted mean 1=Nh

P
iAVh

zh
i (over the number

of voxels) underdosing to the targets or overdosing to the
OARs. Again, weights wh depend on the importance that we
give to the VOIs in the corresponding objective. In constraints
C3, we bound the same mean by gh.

The problem formulation reads as follows:

minimize
X

hAO1[O2

wh ahyhþð1�ahÞ1=Nh

X
iAVh

di

0
@

1
A

0
@

1
A

þ
X

hAO3

wh 1=Nh

X
iAVh

zh
i

0
@

1
A ð1Þ

Xn

k ¼ 1

X
jABk

DijðykÞxj ¼ di, iAVh, h¼ 1, . . . ,S ð2Þ

diZLBi, iAVh, h¼ 1, . . . ,S ð3Þ

dirUBi, iAVh, h¼ 1, . . . ,S ð4Þ

xjZ0, jABk, k¼ 1, . . . ,n ð5Þ

0rykr360, k¼ 1, . . . ,n ð6Þ

yhZdi, iAVh, hAO1 [ C1 ð7Þ

yhrdi, iAVh, hAO2 [ C2 ð8Þ

ahyhþð1�ahÞ1=Nh

X
iAVh

dirgh, hAC1 ð9Þ

ahyhþð1�ahÞ1=Nh

X
iAVh

diZgh, hAC2 ð10Þ

zh
i Zsu

hðdi�thÞ, hAO3 [ C3, iAVh ð11Þ

zh
i Zsl

hðth�diÞ, hAO3 [ C3, iAVh ð12Þ

1=Nh

X
iAVh

zh
i rgh, hAC3 ð13Þ

The model presents an objective function that helps to express
the requirements of the doctors, as described above. More pre-
cisely, the objective is to minimize the weighted convex combi-
nation of maximum dose and mean dose delivered to the OARS
(O1), while maximizing the weighted convex combination of the
minimum dose and the mean dose delivered to the targets (O2)
and while penalizing overdosing to the OARs and underdosing to
the target (O3). Thus, depending on the VOIs considered in the
different objectives O1, O2 and O3, the goal can also be to
maximize the dose to the tumor (weights wh are negative in
O2). Constraints (2) express the dose delivered to each voxel:
these constraints are used to derive knowledge on the gradient in
the HM approach (see [6]). Constraints (3) impose to achieve the
prescribed dose for the voxels: in particular, lower bound LBi

corresponds to the prescribed dose for tumor voxel i, and is often
angle optimization in intensity-modulated radiation therapy.
j.cor.2012.06.009

dx.doi.org/10.1016/j.cor.2012.06.009
dx.doi.org/10.1016/j.cor.2012.06.009
dx.doi.org/10.1016/j.cor.2012.06.009


D. Bertsimas et al. / Computers & Operations Research ] (]]]]) ]]]–]]]4
set to zero for voxels belonging to the other VOIs. Constraints (4)
impose a maximum amount of dose for each voxel. Constraints
(5) express the non-negativity of the beamlet intensity variables.
Constraints (6) impose the bounds on the angles. Finally, con-
straints (7)–(13) are used to express the objective function. In
particular, constraints (7) are used to define the maximum dose
yh delivered to VOI (OAR) h belonging objective O1 and/or
constraint C1. Constraints (8) are used to define the minimum
dose yh delivered to VOI (target) h belonging objective O2 and/or
constraint C2. Constraints (9) impose an upper bound gh on the
convex combination of maximum and mean dose delivered to VOI
(OAR) hAC1. Constraints (10) impose a lower bound gh on the
convex combination of minimum and mean dose delivered to VOI
(target) hAC2. Constraints (11) and (12) are used to define the zi

h

variables that track the overdosing to the OARs and underdosing
to targets, respectively. Finally, constraints (13) impose a bound
on the overdosing to the OARs and underdosing to targets
belonging to constraints C3. Note that the dependence of the
doses Dij on the angles makes the problem non-linear.

The selection of the parameters used in the model is derived
by the interaction with doctors. They provide the lower bound for
the target dose and the upper bounds for the doses to the OARs. In
addition, since they want to have an insight on what happens
when sparing one OAR with respect to the others, usually a large
weight wh is given in the objective function to an OAR belonging
to O1 or O3 and smaller weights to the other ones. For OARs and
for the target in O3 and C3 the values th for limiting overdosing
and underdosing respectively are determined by the doctors, who
also give an insight on how the shape of ramp function should
look like. Note that doctors provide these values based on
experience.
3. Hybrid method

The hybrid method that we have developed is based on the
combination of a Simulated Annealing procedure with a Gradient
Descent method. The GD allows to quickly find a local minimum.
On the other hand, since the objective function presents many
local minima, SA is used to avoid being trapped in a local
minimum and explore other parts of the solution space. HM
consists of an iterative procedure, which alternates some itera-
tions of GD and some iterations of SA. The gradient information is
obtained as in [6]. In [6], Craft studies local beam angle optimiza-
tion, i.e. how a beam angle set can be refined by using gradient
information. The gradient is derived by using linear programming
duality theory to get the change in the objective function when
matrix D is perturbed, and then by using the known DðyÞ and the
slope dDðyÞ=dy of DðyÞ, with the chain rule to get how f changes
with a change of y (we refer the readers to [6] for further details).

HM starts from a set of n (e.g. 5) equispaced angles ðy1, . . . ,ynÞ.
This choice is because it is reasonable to start with angles that are
not too close to each other. In addition, it is a common approach
to choose angles that are almost equispaced. Thus we use the
starting solution for the comparison of HM. As already mentioned,
the dose influence matrix D is obtained by running an IMRT
beamlet calculation every D degrees i.e. we compute the dose
matrix at 360=D angles. Given the angle choice, the values of the
corresponding entries in the D matrix are computed by linear
interpolation, and the obtained LP-problem is solved to optimality
by means of CPLEX solver. More precisely, in model (1)–(13), Eq.
(2) are replaced by the following equations:

Xn

k ¼ 1

X
jABk

DijðykÞxj ¼ di, iAVh, h¼ 1, . . . ,S ð14Þ

and constraints (6) are removed.
Please cite this article as: Bertsimas D, et al. A hybrid approach to be
Computers and Operations Research (2012), http://dx.doi.org/10.101
Note that DijðykÞ ðiAV , jABk, k¼ 1, . . . ,nÞ are known values. We
solve the LP-model (1), (3)–(5), (7)–(13), (14) to optimality, once
that the angles are fixed (y¼ y). Let xn be the primal optimal
solution of the LP-model and zn be the corresponding optimal
objective value. The algorithm performs KGD iterations of GD. At
each iteration, the LP-problem corresponding to the current set of
angles is solved and the dual solution is used to obtain an
approximation of the gradient rf ðyÞ ¼ ð@f=@y1, . . . ,@f=@ynÞ. As
mentioned, the approximation is computed by means of sensi-
tivity analysis (see [6]). A better approximation for the gradient
can be obtained by applying a finite-difference method as in
(Bertsimas et al. [4]). We use the method presented in [6] due to
its simplicity.

A step g is taken from the current set of angles y along the
direction opposite to the gradient, obtaining the new set of angles,
(g indicates the length of the step). Sometimes this step happens
to be ‘‘too big’’, i.e. the objective function value does not decrease.
This is because of the approximation that we introduce with
linear interpolation. In this case a smaller step (e.g. g=10) is
considered, until the new objective function value decreases or
the step becomes smaller than a threshold g0 (i.e., we have
reached a local minimum). Note that threshold g0 is taken based
on the maximum accuracy provided by the linear accelerator
machine. In case the change of the angles cannot be implemented
by the machine, HM behaves as if it has reached a local minimum.
This process turns out to be more time consuming if D is larger:
indeed, when D is larger, the gradient information is less
trustable (we have the correct information on the dose influence
matrix, computed with IMRT beamlet calculation, at fewer angles)
and g needs to be reduced many times. Thus, if D is strictly larger
than 21, we apply the following alternative method.

If the 2-norm of the gradient is less than a given threshold (e.g.
1.25 in our tests), then the gradient information is neglected (the
set of angles does not change). Otherwise, a change of d degrees is
applied from the current set of angles y along the direction
opposite to the gradient. It may happen that the absolute value
of some components of the gradient is very big and leads to a very
big change in the angles (this can happen if D is large and the
gradient information is not very precise). Since we want to
perform a local search using the gradient information, we decide
the following approach:
�

am
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if the absolute value of a component of the gradient is at least
10, then we change the corresponding angle by d¼ 21,

�
 otherwise, if the absolute value of a component of the gradient

is at least 1, then we change the corresponding angle by d¼ 11,

�
 otherwise if the absolute value of a component of the gradient

is at least 0.1, then we change the corresponding angle by
d¼ dmin degrees (where dmin corresponds to the smallest
change in degrees that can be achieved by the linear accel-
erator machine).

This means that we consider each component of the gradient and
update the corresponding angle, according to the absolute value
of this component. The best choice for these threshold values is
likely to be case specific, but it seems reasonable to suspect that a
set of values that works well for one patient of a certain disease
type will work for other patients of the same type. The fact that
the same set works well for vastly different objective function
weightings, see Fig. 10, is encouraging.

We change the angles only if the 2-norm is larger than the
given threshold: indeed, if the 2-norm is small, it is likely that the
gradient step does not lead to a relevant improvement of the
solution. In addition, the computing time for the LP solution is
dominant in HM, with respect to the other steps. Thus, we avoid
spending time for computing the LP solution if the expected
angle optimization in intensity-modulated radiation therapy.
j.cor.2012.06.009
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improvement might not be significant. For the same reason, we
follow the described rule for updating the angles, according to the
absolute values of the components of the gradient. This helps to
perform a local search around the solution, without moving from
each current angle to a new angle that differs more than 21 from
it. Note that both approaches avoid changes of the angles if they
are not of practical relevance or achievability, due to the accuracy
of the linear accelerator machine.

After KGD iterations of GD, the algorithm performs KSA itera-
tions of SA, in order to escape from the local minimum. At each
iteration l, ðl¼ 1, . . . ,KSAÞ, a new set of angles is generated starting
from the previous one ynew

¼ yold
þrna, where:
�

H
be

en

P
C

ynew
¼ ðynew

1 , . . . ,ynew
n Þ is the new set of angles,
�
 yold
¼ ðyold

1 , . . . ,yold
n Þ is the previous set of angles (i.e., when l¼1,

it is the set of angles obtained in the last gradient descent
iteration),

�
 r¼ ðr1, . . . ,rnÞ is a set of random numbers with Gaussian

distribution (with mean 0 and standard deviation 1),

�
 a is a parameter for the step size.
ybrid Method
gin

initialize the set of angles with equispaced angles: θ̄ = ( θ̄1, . . . , θ̄n );

create the LP-problem corresponding to the set of angles θ̄;

solve it and obtain x * and z *;

repeat
repeat

gradient descent

untilKGD iterations have been executed;

repeat
simulated annealing

until K SA iterations have been executed;

until time limit is reached;

d.

Fig. 1. General structure of the hybrid method.

Gradient Descent Method
begin

k := 1; � k := �̄; γ := γ̄ ; z *0 = ∞ ; γ0 := γ
repeat

compute the gradient of f at the cur

take a step γ in the direction opposi
of angles �k ;

create and solve the LP-problem cor

obtain x *k and z *k ;

while (γ > γ0)

if (z *k < z *(k − 1) ) break (we hav
ing to �k , which becomes the n

reduce the step: γ := γ/ 10

take a step γ in the direction op
set of angles θk ;

create and solve the LP-problem

obtain x *k and z *k ;
end
�̄ := �k ; k := k + 1; γ := γ̄ ;

until (k = K GD);

end.

Fig. 2. General structure of the
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The random numbers are chosen to be Gaussian distributed,
because this allows to locally explore the neighborhood of yold, i.e.

we focus ‘‘nearby’’ the old set of angles but occasionally allow to
jump further. The step size a is chosen such that the new set of
angles can be obtained by the linear accelerator machine. The LP
model is solved for yold and ynew giving optimal objective function
values zold and znew, respectively. According to standard SA, the
move to the new set of angles ynew is accepted whenever
the change improves the objective value or according to the
probability expð�ðznew�zoldÞ=tlÞ, where tl is the temperature of
the system at the iteration l. The adopted cooling scheme is the
Adaptive Simulated Annealing: T0nexpð�cnl1=d

Þ, where T0 is
the initial temperature of the system, c is a parameter, and d is
the dimension of the problem, as introduced in [3]. The tempera-
ture is updated every KT iterations, according to this cooling
scheme.

The general structure of the method is outlined in Fig. 1 and
the first approach for GD and SA are described in Figs. 2 and 3,
respectively.
4. Computational results

We illustrate the experimental results obtained by the pro-
posed method HM discussed in Section 3 on a phantom case and
on a 3D real-life pancreatic case study provided by the Massa-
chusetts General Hospital (MGH) of Boston, MA. HM was imple-
mented in C and CPLEX was used as a general purpose solver for
solving the LP-model (1), (3)–(5), (7)–(13), (14), when the set of
angles is fixed. For the phantom case we performed a comparison
of the solutions obtained by HM with a pure gradient descent, a
pure simulated annealing and with the solution obtained with
equispaced angles. Since the gradient descent turns out to be the
worst method (as it will be shown in the next section), for the
real-life case study the comparison is performed with a pure
simulated annealing and with the solution obtained with equis-
paced angles. We wish to mention that we tried several different
parameter settings, and we describe in the next section the choice
that experimentally turns out to be the best one.
¯0;

rent set of angles �̄;

te to the gradient and obtain the new set

responding to �k ;

e found an improved solution, correspond-
ew set of angles);

posite to the gradient and obtain the new

corresponding to �k ;

gradient descent method.
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Simulated Annealing Method
begin

l := 1; k := 1; � := �̄; (set of angles corresponding to the local minimum found by
GD, the corresponding objective value is z̄ *)

repeat

generate a new set of angles � l in the neighborhood of � (� l := � + r * α);

create and solve the LP-problem corresponding to � l ;

obtain x *l and z *l;

if (z *l < z̄ *) then set � := � l (and z̄ * := z*l);

else set θ := θ l (and z̄ * := z *l) with probability exp (− (z *l − z̄ *)/tl);

if (k = K T ) then t l = T0 * exp( − c* l1/d ) and k: = 1;

l := l + 1; k := k + 1;

until (l = K SA)

end.

Fig. 3. General structure of the simulated annealing method.

Fig. 4. Geometry of the 2D phantom case. Fig. 5. Comparison of best solutions found by gradient descent, simulated

annealing and hybrid method on the phantom case.
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4.1. Phantom case

The geometry of the phantom case that we consider is shown
in Fig. 4. It is a 2D pancreatic tumor case study, and the organs at
risk are outlined: kidneys, liver, spinal cord and bowel.

We consider n¼5 angles and 9Bk9¼ 16, k¼ 1, . . . ,n, (16 beam-
lets per angle). The VOIs considered are the following: the tumor
set that contains 145 voxels, the set of OARs that contains 42
voxels and the set of the normal tissue that contains 1005
elements (globally 1192 voxels). The matrix D is computed at
180 angles (i.e. D¼ 21). The computational tests are executed on a
Intel T2300, 1.6 GHz processor, 1 Gb Ram, and the LP-solver used
is CPLEX 9.0.

We have performed 40 runs of HM, with a time limit of 1800 s
per run. Since this instance is small, we have been able to perform
extensive tests on it. This testing has been done in order to get a
better feeling of the behavior of HM with respect to gradient
descent, to simulated annealing and to the solution obtained with
equispaced angles. At each run we started with five equispaced
angles. The number of GD iterations was chosen as KGD ¼ 10 and
the number of SA iterations as KSA ¼ 2. The step a¼ 4 and g ¼ 0:01
and g0 ¼ 0:00001. The initial temperature was set to 1000, the
final temperature was set to 0.00001 and KT¼10. The minimum
Please cite this article as: Bertsimas D, et al. A hybrid approach to be
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dose for each voxel in the tumor was set to 65 Gy (and 0 for
voxels in the OARs and in the normal tissue) and the maximum
dose for each voxel was set to 75 Gy. Since D is equal to 21, we
applied the first approach for GD (see Fig. 2).

We present a comparison of the results obtained with HM with
the results obtained running (with the same parameters and time
limit) the following two methods:
�

am
6/
Gradient Descent procedure described in Fig. 2

�
 Simulated Annealing procedure illustrated in Fig. 3.
This comparison is to show that HM as a combination of GD and
SA outperforms the other two methods. In addition, the starting
set of angles is chosen to be equispaced. In Fig. 5 we show the best
solution found (over the 40 runs) per time instant for each
method. As one can see, HM finds better solutions than the other
methods, with an improvement of about 18% in the objective
function from the starting set of angles. Moreover, GD turns out to
be the worst method.

In order to analyze the sensitivity of HM to the choice of the
initial set of angles, we computed the average objective function
value and the worst objective function value over the 40 runs
angle optimization in intensity-modulated radiation therapy.
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Fig. 6. Geometry of the 3D pancreatic case. For the remaining figures, spinal cord

and bowel are not shown since they are not dose limiting structures for the

pancreas case study.
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(at each run we started with five different equispaced angles), and
compared them to the best solution found. It turns out that the
average is 2.4% from the best value and the worst is 4.2% from
the best value. As expected, HM is influenced by the choice of the
initial set of angles. However, on average, the solution found is
not far from the best solution found.

In the following, we show the advantage of allowing HM to
choose any angle that can be obtained according to the accuracy
of the linear accelerator machine, instead of having a limited
choice of predefined candidate angles. To this aim, we develop an
MILP model, according to what described in [31].

More precisely, we consider a set C¼ fy1, . . . ,ymg of candidate
equispaced angles as given on input. Let m¼ 9C9, e.g. m¼36 or
m¼72 equispaced angles. We consider model (1), (3)–(5),
(7)–(13), (14), and modify it as follows. We introduce a binary
variable ck, for each candidate angle yk, k¼1,y,m, assuming
value 1 if the corresponding angle is selected in the solution:

ckAf0;1g, k¼ 1, . . . ,m ð15Þ

In addition, we insert the following constraint limiting
the number of angles that can be chosen in the solution to n

(e.g. n¼5):

Xm

k ¼ 1

ckrn ð16Þ

Finally, we add linking constraints that impose not to use any
beamlet belonging to a direction whose corresponding angle is
not selected:

xjr Ick, jABk, k¼ 1, . . . ,m ð17Þ

where I corresponds to the maximum intensity achievable by a
beamlet. We perform two comparison tests: in the first one, we
consider a set of m¼36 equispaced angles as candidate angles
while in the second one we consider a set of m¼72 equispaced
angles. The number n of angles to be chosen is set to five in both
cases. For both tests we set a time limit of 3600 s. For the first
case, the optimal solution to the MILP model, computed by CPLEX,
was obtained in 2236 s with value 53,464.2, i.e. 5% worse than the
best solution found by HM. For the second case, the time limit is
reached and the best solution found is 53,182.2, i.e. 4.5% worse
then the best solution found by HM; the optimal solution for the
second case is obtained in 123,823 s (about 34 h) with value
52,251.9, i.e. 2.8% worse than the best solution found by HM. We
also compare the average (over 40 runs) results obtained by HM
with the solutions obtained by considering 36 or 72 equispaced
candidate angles with a time limit of 1800 s: it turns out that the
best solution found in both cases (36 or 72) is 2.7% worse than the
average obtained by HM and 0.9% worse than the worst solution
obtained by HM.

4.2. Real-life case study

We consider a real-life 3D pancreatic case study provided by
the Massachusetts General Hospital (MGH) of Boston, MA. The
VOIs considered for building a treatment plan are the following:
left kidney, right kidney, liver, stomach, skin and pancreas (i.e.
clinical target volume). In Fig. 6 we show the geometry of the
considered case. As was done in [16], objectives of type 1 and
3 are considered, and in particular: left kidney, right kidney and
liver belong to O1; skin and stomach belong to O3 (described in
Section 2.1). This choice, as in [16], is mainly suggested by the
experimentation results and the interaction with doctors, that
accepted this formulation as the most clinically relevant formula-
tion to use.

We consider different weights for the VOIs in the objective
function: in particular, every VOI has weight 1 except from the
Please cite this article as: Bertsimas D, et al. A hybrid approach to be
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one selected as the most important, which gets weight 10. More
precisely, we consider 4 instances, each one aiming at a different
OAR: left kidney, right kidney, liver and stomach, respectively.
This choice is done to simulate the choice of the doctor to spare
one OAR with respect to the others. In addition, we consider the
instance in which all the OARs get the same weight (equal to 1):
we will identify this instance as ‘‘All’’. The following lower and
upper bounds on the doses delivered to the VOIs are used: LB¼0
for all the VOIs (left kidney, right kidney, liver, stomach, bowel,
spinal cord and skin) except from the target volume, which gets
LB¼50.4 Gy; UB¼56.4 Gy for all the VOIs, except from the spinal
cord which gets UB¼45 Gy. For skin and stomach, which belong
to O3, the left slope sh

l is set to 0 and the right slope sh
u to 1, with

th¼37 Gy for the skin and th¼30 for the stomach. The number Nh

of voxels in each VOIh are the following: bowel¼6707,
CTV¼7822, left kidney¼2398, right kidney¼1854, liver¼4574,
skin¼36,945, spinal cord¼1172 and stomach¼1124. Note that a
bigger VOI does not necessarily contain more voxels, since we
downsample the voxels differently for different structures. In
particular, we use the following sample rates: bowel¼4, CTV¼2,
left kidney¼2, right kidney¼2, liver¼4, skin¼8, spinal cord¼2
and stomach¼4. A sample rate of s means that the dose is
computed for one out of every s voxels in that structure. We
consider five angles from which to send the radiation to the
patient and 112 beamlets per angle. Beamlets are 1 cm�1 cm.

The dose influence matrix D is computed every D¼ 51, due to
the very large amount of data in the real-life case. Thus, the
second approach for GD is used (described in Section 3). The value
of dmin is set to 0.5. In addition, KGD is set to 3 and KSA is set to 1.
This choice is due to the following reasons: on one hand, we deal
with a larger amount of data when considering the real-life case,
thus the computing time for solving the LP problem is larger; on
the other hand, the gradient information is less trustable, since
we compute the dose influence matrix every 51 (instead of 2 as in
the phantom case). The initial and final temperatures and KT are
set as for the phantom case.

The hybrid method was tested on a Linux machine with
2.66 GHz processor, 16 GB ram, Intel Xeon and we used CPLEX
11.0 as a general purpose solver for solving the LP problem, when
the set of angles is fixed. We set a time limit of 80,000 s (22.2 h),
which is a reasonable time for computing a treatment plan if one
can guarantee that the final result will be acceptable without
needing further modifications. We have observed that higher
computing time brings little (or even irrelevant) percentage
improvement of the solution.
am angle optimization in intensity-modulated radiation therapy.
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In Fig. 7 we show as an example the execution of the hybrid
method (within the time limit of 80,000 s) for the case strongly
weighting the left kidney. In particular, this is the plot of the
evolution of the objective function value versus the number of
iterations of HM. We show in dotted line the iterations when the
gradient information is used. As we can see, most of the time
the gradient information is reliable even if it is an approximation
(due to the interpolation, indeed we evaluate the dose influence
matrix every 51), and it helps to quickly get an improvement in
the objective value. When the gradient step leads to a worsening
of the cost function, it is due to the gradient approximation error,
since a shrinking of the step size in these cases did not correct the
situation.
Fig. 7. Hybrid execution for left kidney objective.

Fig. 8. Change of the angles (solid lines) caused by the gradient descent step for

left kidney.

Table 1
HM objective value and doses delivered to the OARs before and after applying the gra

Iteration HM Obj. LK RK Liver Skin

Before GD 28.47 0.36 3.65 14.09 3.89

After GD 28.15 0.28 4.33 13.55 3.94

Please cite this article as: Bertsimas D, et al. A hybrid approach to be
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In Fig. 8 we consider the same case, aiming at sparing the left
kidney. We show the set of angles (dotted lines) chosen at one
iteration of HM and the change of the angles (solid lines) caused
by the gradient descent (in this case, the best solution found by
HM is obtained after a gradient step). For a better understanding,
the angles and the doses delivered to the OARs are listed in
Table 1, before and after the execution of the gradient descent.

As Table 1 shows, two angles out of five have been changed by
21 each (14.9 changed to 16.9 and 164.3 changed to 166.3). In this
case, the best solution found by HM is obtained by this final
step of GD.

We perform a comparison of HM with the solution obtained
with a pure SA approach. We also compare the best solution
found by HM with the solution obtained with equispaced angles
(0,72,144,216,288). The comparison is presented in Table 2,
where we show the objective values obtained (for each instance
aiming at a different OAR and for the ‘‘All’’ instance) in the case of
equispaced angles, HM and SA. We also show the percentage
improvement obtained by HM and by SA with respect to the
equispaced solution. As we can see, HM turns out to be better
than the solution obtained with equispaced angles and than the
solution of SA, taking advantage from the gradient information in
all the cases.

In Table 3 we show the delivered mean doses (expressed in
Gray (Gy)) to the OARs for each instance in the case of equispaced
angles (the initial setting of HM) and in the best final solution
found, according to the described objective types. In addition, we
show the dose delivered to the target. As one can see, both the
dient step, and corresponding change in the angles.

Stomach Ang1 Ang2 Ang3 Ang4 Ang5

3.20 14.9 72.8 164.3 221.3 263.3

3.48 16.9 72.8 166.3 221.3 263.3

Table 2
Comparison of HM with the solution obtained with equispaced angles and SA.

Instance Equisp. obj. HM obj. %Impr. SA obj. % Impr.

Left kidney 33.48 28.15 15.9 30.04 10.3

Right kidney 32.49 25.76 20.7 27.5 15.3

Liver 120.75 106.48 11.8 111.95 7.3

Stomach 40.81 35.50 13.0 37.07 9.2

All 24.70 19.87 19.5 21.45 13.1

Table 3
OAR mean doses and target dose (in Gy) for the initial case of equispaced angles

and the final case (best solution found by HM).

Instance Left

kidney

Right

kidney

Liver Stomach Skin Target

Left kidney obj in.

dose

0.5 8.2 12.5 3.1 4.2 51.9

Left kidney obj fin.

dose

0.3 4.3 13.5 3.5 3.9 52.8

Right kidney obj in.

dose

7.6 0.4 13.9 2.5 3.9 53.2

Right kidney obj fin.

dose

2.0 0.4 13.5 2.1 3.9 53.1

Liver obj in. dose 4.8 7.1 10.1 4.2 3.7 52.9

Liver obj fin. dose 2.4 4.2 9.1 4.8 4.0 53.2

Stomach obj in. dose 3.7 3.4 13.4 1.6 3.8 52.9

Stomach obj fin. dose 1.3 1.9 12.5 1.5 3.9 52.9

All obj in. dose 2.9 3.6 12.2 3.7 2.2 53.2

All obj Fin. dose 1.1 1.2 11.5 3.9 2.1 52.9
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intensities and the angles are selected so as to keep a low dose to
the selected organ and also to reduce the total sum of the doses
delivered to all the OARs in the final setting. We also notice that
sometimes we get an increase in the dose to the normal tissue or
to a specific organ when changing the set of angles: this is mainly
due to reducing the total sum of the doses delivered to all the
organs, while satisfying the constraints on the prescribed dose to
the target.

The comparison between HM and the pure SA, when starting
from the set of equispaced angles (0,72,144,216,288), as shown in
Table 2, is also shown in the graphics in Fig. 9. In particular, we
present a figure for each instance aiming at a different OAR and
for the ‘‘All’’ instance and we show the best objective value
(expressed in Gy) against computing time (expressed in seconds
until the time limit of 80,000 s) for HM and SA.

In Figs. 10 and 11 we present in solid lines the set of angles
chosen in the best solution found and in dotted lines the set of
equispaced angles. These solutions correspond to the objective
values in Table 2 obtained by HM. As one can see, the final set of
angles is often not intuitive if compared to the equispaced angles,
but leads to better treatment plans, in reasonable computing times.
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Finally, in Table 4, we show the results obtained by HM within
a shorter computing time: in particular, we consider a time limit
of 30 min, 1 h and 5 h, respectively. We report as a comparison
the solution derived with equispaced angles and the correspond-
ing percentage improvement obtained by HM. As it can be seen
from the results, the improvement obtained by HM is significant
already after 1 h of execution and it increases after 5 h. This
means that HM is also effective when a shorter time limit is
imposed. If a larger computing time is available (which is usually
the case when a treatment plan is computed), HM can lead to
better results (see Table 2).

We can deduce from the presented results that HM takes
advantage from the gradient information, leading to better results
than using equispaced angles or pure simulated annealing both
when aiming at a single OAR and when all the OARs get the same
weight. The combination of gradient descent and simulated
annealing is very effective: gradient information helps to quickly
find a local minimum, while simulated annealing allows to escape
from local minima. In addition, the comparison to the method
described in [31], which selects the set of angles for the treatment
plan out of a set of candidate angles, shows the advantage of HM
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Table 4
Results obtained by HM in shorter computing time.
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of allowing to choose any angle that can be obtained according to
the accuracy of the linear accelerator machines.
Instance Equisp. obj. HM obj.

300 % Impr. 1 h % Impr. 5 h % Impr.

Left kidney 33.48 31.16 6.9 30.84 7.9 30.04 10.3

Right kidney 32.49 29.71 8.5 28.31 12.9 27.95 13.9

Liver 120.75 118.63 1.7 116.42 3.6 116.29 3.7

Stomach 40.81 40.81 0.0 40.63 0.4 39.84 2.4

All 24.70 24.06 2.6 24.06 2.6 21.68 12.2
5. Conclusions

We have studied the Beam Angle Optimization problem,
where the directions for delivering radiation to cancer patients
are optimized together with beam intensities for building an
optimal treatment plan. The aim is to spare the organs at risk,
while reaching the prescribed dose to the tumor. The problem is
often solved in two phases: firstly, the treatment planners decide
the delivery directions, and secondly the intensities of the beams
are optimized in an automated way. We have developed a hybrid
heuristic algorithm for finding good solutions to the Beam Angle
Optimization problem. It alternates some iterations of gradient
descent with some iterations of simulated annealing: gradient
information is used to quickly find a local minimum, while
simulated annealing is aimed to escape from local minima. The
optimization of the intensities, when a set of angles has been
chosen, is done by solving a linear programming model with
Cplex. The presented method differs from previous approaches
since it does not require to have on input a set of candidate
Please cite this article as: Bertsimas D, et al. A hybrid approach to be
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angles: angles could vary in the continuous space, provided the
accuracy of the linear accelerator machine used. Moreover, the
proposed method overcomes the difficulty of searching over a
power set of angles by using calculus. In addition, it takes
advantage both from the global search (simulated annealing
phase) and local search (gradient descent phase). Combining
these two techniques leads to a more trustable search (instead
of just applying ‘‘guessing’’ heuristics), which often gives as best
set of angles a non-intuitive choice (see also Stein et al. [28]). The
presented method has been tested on a phantom case and on a
real-life case. A comparison with pure simulated annealing, often
am angle optimization in intensity-modulated radiation therapy.
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used to solve Beam Angle Optimization, has been performed,
showing the effectiveness of the hybrid approach, which has
obtained an improvement in the solution value between 4% and
7%. In addition, a comparison with the solution obtained using
equispaced angles has been shown, reaching an improvement in
the solution value always above 10%, in reasonable computing
times. Future research can be devoted to speed up the computing
time of the hybrid method in order to be able to execute it
starting from different sets of angles, which can lead to further
improvement. Moreover, additional real-life requirements can be
taken into account: for example, it would be interesting to
evaluate how the obtained solution can be implemented by using
a multi-leaf collimator. We aim to incorporate the direct-aperture
optimization with the angle optimization that may circumvent
the uncertainties arising when transforming beam intensities to
leaf sequences.
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