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Abstract

Motivated by an idealized model of positron emission tomography, we consider the
statistical problem of estimating an unknown probability measure, u, given n inde-
pendent observations distributed according to the probability measure Ty, where T
denotes the (scaled) Radon transform on measures. The usual approach to such a
problem assumes that p is representable by a probability density function satisfying
certain smoothness conditions and uses a loss function based on metrics for proba-
bility measures which metrize convergence in total variation, e.g., the L' metric on
the associated density functions. In contrast, we allow u to be an arbitrary proba-
bility measure on the unit square in R? and use loss functions based on L2-Sobolev
norms which metrize convergence in law. We thereby obtain results on the rate of
convergence of the minimax risk as a function of n without the need for smoothness
assumptions. Moreover, we argue that these metrics are more relevant to the physical
problem.

Consider the loss function generated by the squared L? Sobolev norm of order —a.
We show that the minimax error is O(n™!) if and only if > 3/2. In comparison,
the minimax error given n independent observations distributed according u itself is
O(n7!) if and only if a > 1.

We also give several results on the estimation of integral functionals of u. For
example, let p{) denote the closed disk of radius p < 1/2 centered at the origin. The
minimax risk with respect to squared error loss for the estimation of u(pQ) is O(n~!)
given n independent observations distributed according to u, but is bounded away
from 0 given n independent observations distributed according to T'u.

Thesis Supervisor: Mark V. Matthews
Title: Assistant Professor, Department of Mathematics
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Chapter 1

Introduction

1.1 Overview

The motivating physical problem for the work in this thesis is the medical imaging
technique of positron emission tomography (PET). In PET, the goal is to character-
ize the spatial distribution of positron-emitting tracer molecules in a patient using
external detectors. Shortly after a positron is emitted, it combines with an electron
in an annihilation reaction. On the average, a positron travels only a very short dis-
tance between emission and annihilation, so the position of the annihilation reaction
is approximately that of the positron emission. The annihilation reaction results in
the emission of a pair of annihilation photons traveling in (approximately) opposite
directions along a line with uniformly-distributed random spatial orientation. These
photons subsequently strike detectors at approximately the same time, forming what
is known as a coincident pair. From a coincident pair, one can thus infer that a
positron was emitted (approximately) on the line segment between the two register-
ing detectors. More detailed descriptions of PET may be found in, e.g., [SP87] or
[MP8g].

The PET problem is inherently 3-dimensional in that the positions of the positron
emissions and the paths of the resulting annihilation photons are naturally modeled
as points and lines, respectively, in Euclidean 3-space. However, the most common

detector configurations actually detect only coincident pairs whose paths are close
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to a fixed plane (and which therefore must originate from an annihilation reaction
occurring near that plane). In this case, it makes sense to model the problem in
2 dimensions. In what follows, we will, for simplicity, restrict ourselves to the 2-
dimensional PET problem.

To obtain a mathematical idealization of the PET problem, one may model the
locations of the positror emissions as n points, zy,...,r,, in Euclidean 2-space, R2.
The observations in the PET problem may be modeled as n independent random lines,
L,..., 1., in R% where [; is a line through z; with (uniformly distributed) random
spatial orientation.

To complete the specification of a statistical model for the PET problem, we
need to state our assumptions about the z;. One possibility is just to model the z;
as unknown parameters to be estimated. Alternatively, one may view the r; as a
random sample from the set of all the tracer molecules present. In the limiting case
where the number of tracer molecules approaches infinity, this suggests modeling the
r; as independent random variables distributed according to a probability measure x
on a domain D C R% (This model makes sense, of course, only if the distribution
of the tracer molecules remains constant for the duration of the experiment. We will
assume this to be the case.) We will use such a model in the remainder of this work.

For simplicity, we shall take D to be the closed unit square SC R%. The orienta-
tions of the /; are assumed to be independent of the z; and each other, so that the [;
are independent random variables distributed according to the probability measure
- T i on the set of lines in R2, where T is a (deterministic) function. It is shown in
section 2.3 that T is proportional to the Radon transform on measures. We will call y
the probability measure of interest and call v the probability measure of the observa-
tions. We are thus faced with the statistical inverse problem of trying to estimate the
unknown probability measure g from n independent observations distributed accord-
ing to the probability measure Tu. The main goal of this work is to obtain suitable
notions of the intrinsic difficulty of this statistical estimation problem.

It should be emphasized that the model described here is a very idealized model

of the PET problem. It ignores a number of physical effects which complicate PET in



practice. Nevertheless, it appears to capture the essence of the problem of emission
tomography.
In order to put the various possible statistical approaches to the PET problem

into a single theoretical framework, it is useful to introduce some standard notions

from statistical decision theory. We follow [Str85].

Definition 1.1.1 A statistical experiment is defined to be an ordered triple
E=(X,o,{us:0€0}),

where (X, &) is a measurable space and {ug : 6 € O} is a set of probability measures
on (X, &) indexed by the set @. The set X, known as the sample space, is the set of
possible observations. Under the statistical model (i.e., statistical hypothesis) indexed
by 8, the observation is a random variable distributed according to the probability

measure pg. The set © is called the parameter space (cf. [Str85, def. 7.1]).

Definition 1.1.2 Let D be a metric space, which we will refer to as the decision
space. We equip D with the Borel o-algebra. A measurable function x : X — D
is known as a (nonrandomized) decision function. A family of measurable functions
Wy : D - R, 8 € O that are bounded from below is called a loss function. For
a decision function &, r(0,«) 4f Ey,Wk is called the risk of x with respect to the
loss function Wy, 8§ € O. (F; denotes mathematical expectation with respect to
the probability measure py.) The combination of a statistical experiment with a
decision space and loss function is known as a statistical decision problem (cf. [Str85,

defs. 33.1, 33.3, rem. 33.2)).

Definition 1.1.3 It is often useful to extend the notion of decision function to permit
what are known as randomized decision functions. Roughly speaking, a randomized
decision function is a random, rather than a deterministic, function of r € X. The
formalities may be found in, e.g., [Str85, defs. 33.1, 33.2, rem. 33.2]. In what follows,

we will take the term decision function to mean a randomized decision function.



Definition 1.1.4 We shall be interested exclusively in statistical decision problems
in which W, depends on 8 only through some function ¢ : ® — D, i.e., we will be
estimating ¢(#). Such a statistical decision problem is called a statistical estimation
problem [Str85, def. 33.5]. Most frequently, we will take D = © and ¢ equal to the
identity function, i.e., we will be estimating 6. In statistical esti-ation problems,
the decision function is called an estimator. In all instances considered here, the loss
function is of the form Wy = ¢ o d(-, ¢(8)), where d is a metric on D and ¢ : [0, 00) —
[0,00) is an increasing function (typically £ : z +— z or ¢ : z — r?). We will say that
such a loss function is based on the metric d and generated by the function € o d. If

& is an estimator of ¢(6). we will write the risk of ¢ as

r(8, ) = Eql 0 d($, #()).

Roughly speaking, the goal of a statistical estimation problem is to find estimators
with small risk for many of the § € ©. The following definition formalizes one

approach to quantifying the difficulty of a statistical estimation problem.

Definition 1.1.5 By a slight abuse of language, we define the maximum risk of an

estimator ¢ to be

a

supr(6, ¢).
66

The maximum risk quantifies the performance of the estimator ¢ in terms of its
worst-case risk. The intrinsic difficulty of a statistical estimation problem can then be
quantified in terms of the srnallest maximum risk that is achievable by any estimator.

Thus we define the minimax risk of a statistical estimation problem to be

inf sup (6, $),
b 06€6

where the infimum is taken over all estimators ¢.

In the PET problem described above, the sample space is the n-fold product of the

9



set of lines through S. The parameter set can be taken to index a subset, .2, of the
set, P(S), of probability measures on S. If the probability measure g is indexed by 0,
the probability measure of the observation under 6 is given by the n-foid product of
Tu. The major choices in selecting a statistical model for the PET problem are the
choice of 2 (along with an appropriate parameterization) and the choice of a loss
function.

In most statistical models for PET, u is assumed to belong to some predetermined
finite-dimensional family of probability measures. Such models are termed “paramet-
ric”. Most commonly, the domain of interest is “pixelized”, i.e., divided into a finite
number of squares. It is then assumed that the probability density is constant with
respect to Lebesgue measure on each square (e.g., [VSK85, sec. 1.2]). Another possi-
ble parametric approach, based on a singular value decomposition of the tomography
process, is described in [Bak91]. The advantage of parametric models is that one
can use standard methods of parametric statistics to develop and evaluate estimators
(e.g., maximum likelihood estimators and Cramér-Rao bounds). The main disad-
vantage of parametric models in PET is that, in practice, the actual g is unlikely
to conform to the assumed model, creating an error which falls outside the assumed
statistical framework. Moreover, many natural questions about the PET problem,
such as how potential spatial resolution increases with n, are difficult to formulate in
a natural way using parametric models.

The preceding paragraph should not be interpreted as disparaging parametric
models for PET in general. Many PET systems are constructed using a finite number
of detectors with no intrinsic spatial resolution. In such a systein, the observation
space is inherently finite-dimensional. As a consequence, only a finite-dimensional
space of models are distinguishable and a parametric model is very reasonable. (A
good description of this situation may be found in [Bak91].) The only claim intended
is that in PET systems with continuous spatial resolution, as in our mathematical
model, parametric models may not extract all of the available information.

The limitations of parametric models may be transcended by allowing u to lie

in an infinite-dimensional family of probability measures. Such models are termed
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“nonparametric”. Let § C R? denote the open unit disk and Q its closure. Johnstone
and Silverman [JS90] have recently described a statistical model where &2 was taken
to be the subset of P({)) consisting of probability measures represented by probability
density functions (with respect to normalized Lebesgue measure) which lie in a certain
ellipsoid in L%(Q), the space of (equivalence classes of) square-integrable functions
on Q. The condition of lying in such an ellipsoid is essentially a smoothness and
integrability constraint. If g € 2, let f, denote the probability density associated
with p. Let fn be an estimator of f, based on n independent observations distributed
according to T, with £, denoting the probability measure corresponding to fa. The
loss, W,(jin), was taken to be the squared L? distance between fn and f,, resulting
in a risk function given by r(g, i,) = E(T“)n”fn — fulliz(q)» where E(r,)n denotes
expectation with respect to the n-fold product of Tu. The overall difficulty of the
problem was then assessed in terms of minimax risk. Johnstone and Silverman were
able to obtain quite precise characterizations of the functional form of the dependence
of the minimax risk on n. However, the results were found to depend significantly on
the specific smoothness and integrability assumptions that were made. Since these
assumptions would be difficult to verify in practice, the application of the results is
problematic. Moreover, these assumptions were, in all cases, quite restrictive, e.g.,
they implied the density of interest always took values in the range (0, 2).

In this thesis, we will explore a different nonparametric approach to the PET
problem. We will allow u to be an arbitrary probability measure on 5, i.e., we will
take 2 = P(S), and use loss functions which are based upon L2-Sobolev metrics
of order < —1 for probability measures (see definition 3.2.1). The significance of
this change in loss function will be discussed in greater detail in the next section.
Using this approach, we will see that it is possible to characterize the minimax risk
as a function of n without the use of smoothness assumptions. In particular, we
shall show that the minimax risk is O(n~!) (i.e., bounded above by cn~! for some
constant c) for the loss function generated by the squared Sobolev norm of order
—a if and only if @ > 3/2. (The significance of the O(n~') rate is that this is this

rate is typically achieved for squared error loss in parametric models.) It is useful to
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compare this rate with the one for the problem of estimating u given n observations
distributed according to p itself. For this problem, the O(n~!) rate is obtained if and
only if @ > 1. This result, in a sense, quantifies the relative difficulty of estimating
p from observations distributed according to g and Tu. In many PET problems it
is difficult to characterize the smoothness properties of the probability measure p,
so it is desirable to develop statistical methodologies, such as these, that require few

assumptions about pu.
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1.2 Loss functions for estimation of probability
measures

In this section, we consider loss functions for the PET problem in the context of prob-
ability measure estimation problems in general. We start by recalling the definitions

of some metrics and notions of convergence on spaces of probability measures.

Definition 1.2.1 For probability measures p and g’ on a measurable space (X, &),

the variational distance between p and g’ is defined by

dy(py ') & sup |u(A) - 4'(A)|
Acs

[Str85, def. 2.1]. If u and p' can be represented with respect to the o-finite mea-
sure A by the probability density functions f and f’, respectively, then d,(g, ') =
3 Jx |f — f'|dX. That is, d,(p, p') is proportional to the L! distance between f and f’
[Str85, lem. 2.4]. Convergence of a sequence of probability measures with respect to
variational distance will be called strong convergence, and any metric that metrizes
strong convergence will be called a strong metric. Strong convergence is sometimes
called convergence in total variation in the literature [Dud89, p. 228]. An important
property of variational distance is that it is invariant under a bijective change of

coordinates on the underlying probability space.

Definition 1.2.2 Let X be a topological space, & the o-algebra of Borel subsets
of X, and Cy(X) the set of bounded, continuous, real-valued functions on X. The
sequence {uy,} of probability measures on X is said to converge weakly to the prob-
ability measure u if [ fdu, — [ fdu for all f € Cy(X) [HQ85, p. 361]. Any metric

that metrizes weak convergence of probability measures will be called a weak metric.

Remark 1.2.3 There are a number of weak metrics for probability measures used
in the literature. One example is the Prohorov metric. Let X be a metric space. If
B € A, define

B ¥ {y € X : d(z,y) < € for some z € B},

13



i.e., B¢ is the set of all points in X whose distance from B is less than e. Then the

Prohorov metric, defined by
plp, p') & inf{e > 0: p(B) < u'(B) + ¢ for all B € #},

is a weak metric for probability measures on X [Dud89, thm. 11.3.3]. If X is a compact
Riemannian manifold of dimension d, then L? Sobolev metrics of order < —d/2 are
weak metrics for probability measures on X [Gin75, thm. 2.2]. Essentially the same
proof shows that L? Sobolev metrics of order < —d/2 are weak metrics for probability

measures on a fixed compact set of RY.

Remark 1.2.4 The mode of convergence which we call weak convergence has many
other names in the literature. It has been called convergence in distribution [Pol84,
p. 43], convergence in law [Dud89, p. 229], weak-star convergence [Gin75, p. 1245],
and vague convergence [Chu74, thm. 4.4.2].

There is a large literature on probability density estimation problems. In these
problems, one is attempting to estimate an unknown probability density, f € &, given
n independent observations distributed according to the probability density g = T'f,
where T is some deterministic function on & (often T is just the identity function).
These problems may be viewed as probability measure estimation problems where
the unknown probability measure is assumed to be representable as a probability
density, f € &#. Most commonly, the loss functions for these density estimation
problems are based on the L! or L? distances between the densities in #. As noted
in definition 1.2.1, convergence of density functions with respect to the L' metric
is equivalent to strong convergence of the associated probability measures. Under
additional conditions, (e.g., density functions uniformly bounded above and below
away from 0 and a finite common dominating measure, as in [JS90]) convergence of
density functions with respect to the L? metric is also equivalent.

In many density estimation problems, it is possible to construct consistent esti-

mators, i.e., estimators whose risk (based on the L! or L? metric) converges to 0 as
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n — oo for each f € #. For example, in the case where the observations are dis-
tributed according the density of interest, there are easily checked conditions which
ensure the consistency of kernel estimators with respect to the loss function gener-
ated by the L! norm for arbitrary density functions [Dev87, thm. 3.1]. For the more
difficult problem where the observations come from the convolution of the density of
interest with some noise density whose characteristic function is positive almost ev-
erywhere, it is also possible to construct estimators which are consistent with respect
to the loss function generated by the L! norm [Dev89). However, it is generally not
possible to construct estimators whose maximum risk converges to zero as n — oo
without substantially restricting the set of possible density functions. For example,
consider the problem of estimating an unknown probability density, f, on R, from
n independent observations distributed according to f. It has been shown that the
minimax risk with respect to the L! loss function is bounded below by 1 if f is allowed
to range over the set of densities with support on [0, 1] which are bounded above by 2
or if f is allowed to range over the set of densities on R with infinitely many deriva-
tives which are uniformly bounded by some sequence of constants [Dev87, sec 5.3].
The moral is that some combination of tail conditions and smoothness conditions are
necessary to ensure a minimax error that converges to 0 as n — co.

In what follows, we will explore a different approach to the problem of probability
measure estimation. On one hand, we will allow the unknown probability measure
i to be an arbitrary probability measure on the relevant measure space. On the
other hand, we will use a loss function based on a weak, rather than a strong, metric
for probability measures. Using this approach, we will see that is it possible to
characterize the rate at which the minimax risk converges to zero.

The obviation of smoothness constraints honors the spirit of nonparametric statis-
tics and is thus an advantage of our approach. But what price, if any, do we pay for
the change in loss functions? Strong metrics are clearly stricter than those based
on weak metrics in the sense that convergence with respect to the former implies
convergence with respect to the latter, but not vice versa. However, stricter does

not necessarily imply more relevant in a physical application. Roughly, the difference
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between the two classes of metrics is that weak metrics consider measures which live
on disjoint sets which are close together in the underlying space to be close together,
while strong metrics see them as far apart. An example may make this clearer. Con-
sider measures on R with respect to the usual Borel o-algebra and let §, denote a
point mass at r. Then the sequence of measures {6;,,} converges to 8o weakly, but
not strongly (note that the variational distance between é,/, and &y remains fixed
at 1). Which risk function is “better” in a particular application thus depends on
whether or not “close counts” in that application. For general applications in PET
and many other areas, it seems to the author that “close counts” and hence that loss
functions based on weak metrics for probability measures are appropriate tools for

studying these problems.
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1.3 Notation

In this work, we shall often be concerned with estimating a probability measure on
a subset of R? from independent observations distributed according to a probability
measure on the set of lines in R? which we shall denote by G, ;. We shall generally
denote these respective probability measures by 4 and v, and (when they exist) the
corresponding probability density functions by f and g. Distributions on these spaces
will usually be denoted by u and v, respectively.

We will use the notations C, R, Z, and N to denote the set of complex numbers, real
numbers, integers, and natural numbers (including 0), respectively. The notations R*
and N* will denote the set of positive real numbers and natural numbers, respectively.
The imaginary unit will be denoted by :. The notation R? will be used to denote
d-dimensional Euclidean space. The inner product of r,y € R? will be denoted by
T-y.

We will make frequent use of the so-called big oh and little oh notation [Apo74,
sec. 8.13]. If {a,} and {b,} are two sequences with b, > 0, we say a, = O(b,) if
there exists a constant M > 0 such that |a,| < Mb, for all n. We say a, = o(b,) if
anf/bp - 0asn — oco. If I CR*and f,g: I — Rand g >0, wesay f = O(g) if
there exists a constant M > 0 such that |f| < Mg on I.

We now briefly review some standard notation used for function spaces. If (X, p)
is a measure space and 1 < p < oo, we shall denote the set of measurable complex-
valued functions f such that ||f||Ls(x,u) ' (Ux IfIPdp)'’® < oo by £P(X, ). The
usual Banach space obtained by identifying elements in #?(X, u) whose distance is 0
with respect to ||-||Ls(x,,) is denoted by LP(X, u). The spaces £*°(X, 1) and L=(X, p)
are defined analogously in the usual way (see, e.g., [Dud89, secs. 5.1, 5.2]). The set
of bounded measurable complex-valued functions on X will be denoted by £*( X, u).
The uniform norm on (X, 1) will be denoted by |[f|lu, i-e., ||f]ls & sup,ex |f(z)].

As mentioned previously, the set of probability measures on (X, &) will be denoted
by P(X, ). The set of (finite) signed measures on (X, %) will be denoted by
M(X,o). If X is a topological space, & will be understood to be the Borel ¢-

17



algebra and we will simply write P(X) and M(X).

The set of continuous real-valued functions on a topological space, X, is denoted
by C(X). The subset of C(X) whose elements have compact support will be denoted
by C.(X). The subset of C(X) whose elements are bounded will be denoted by
Cy(X). If X is a differentiable manifold, the set of infinitely differentiable functions
on X will be denoted by C*(X).

The index contains a list of notations and terminology. The notations are listed

pseudoalphabetically, e.g., || - ||« is listed under “n” for norm.
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Chapter 2

The Radon Transform

In this chapter, we shall show that the observations in the mathematical model of the
PET problem described in section 1.1 are distributed according to the (appropriately
scaled) Radon transform of the probability measure of interest. In section 2.1, we
define the Radon transform for functions on R%. The extension of the Radon transform
to measures and distributions on R? is defined in section 2.2, and its role in the PET

model is discussed in section 2.3.

2.1 The Radon transform on functions

Our treatment of the Radon transform parallels that of Hertle [Her83]). More com-
prehensive treatments of the Radon transform may be found in [Dea83] and [Nat86].
For simplicity, we shall only consider the Radon transform on R2.

Essentially, the Radon transform of a real-valued function f on R? is the real-
valued function on the set of lines in R? whose value on a given line is equal to the
integral of f over that line. We shall now specify suitable coordinate systems for the

set of lines in R? and proceed to formalize the definition of the Radon transform.

Definition 2.1.1 Let S! denote the unit sphere in R2. We will give S! the structure
of a differentiable manifold. (We assume familiarity with the basic notions regarding
differentiable manifolds. For a reader unfamiliar with these notions, we can recom-

mend [AMRS83] as a general reference.) We define charts on S* as follows. Define the
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map w :R—S! by 6 — (cos8,sinf). For § € R, define the chart domains Qs C S*
by Q9 % S1\{—w(f)}. There is a unique map wy' i Ny — (0 — 1,0 + 7) which is
the left inverse to w on (8 — 7,0 + 7). It is clear that (Qp,w;"') is a chart on S' and
that the collection of such charts gives an atlas for S'. Note that for any # € R there
is a unique point in S, namely w(6), that has the coordinate 8 in any of the above
charts. Thus while a point in S! may have different coordinates in different charts
(differing by integer multiples of 27), a given coordinate 8 specifies the unique point
w(d) € S'. It will sometimes be convenient, by a slight abuse of language, to refer
to points in S! as § € S! for some # € R. In particular, we will sometimes denote a
function on S! by 6 — f(0), where f is a function on R which is periodic with period

2, e.g., e"42m0,

Definition 2.1.2 The atlas {(€,w;")}ser gives rise to a global differential operator
on S! in a natural way. Namely, the pull-back of the differential operator 9, on

! is a differential operator on . It is easy to verify

(6 — 7,0 + 7) under the map w;
that these differential operators agree on the overlaps of their domains and thus give
rise to a globaliy defined differential operator on S'. We will denote this differential

operator by dy. By duality, we then obtain the differential 1-form df on S!.

Definition 2.1.3 If f € C*(S!), then it is not difficult to see that the integral of f
with respect to the volume form df, [, f df, satisfies

J, frdo= [ flw@)de.

where the integral on the right-hand side is an ordin;ry Riemann integral. This
integral can clearly be extended to all f € C(S'). By the Riesz representation
theorem, there exists a unique Borel measure o on S! such that [ fdf = [ fdo for

all f € C(S") [AMRS3, thm. 7.1.9]. We will call ¢ surface measure on S*.

Definition 2.1.4 The projective space P! is the quotient space of S! obtained by
identifying each point of S! with its antipodal point. We will denote the natural
projection map by p : S! — P!. Since the lines through the origin generated by two
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distinct elements of S! are identical if and only if the elements of S! are antipodal,
we can identify P! with the set of lines through the origin in the obvious way. We
will give P! the structure of a differentiable manifold. We define charts on P! as
follows. For 6 € R, define the chart domains Qy C P! by 0 %' P!\ {p[w(8 + 7/2)]}.
Then define w;' : Qy — (6 — 7/2,0 + 7/2) to be the (unique) left inverse to pow on
(0 —7/2,04+7/2). 1t is clear that (Q,@;!) is a chart on P* and that the collection of
such charts gives an atlas for P!. Note that for any # € R there is a unique point in
P!, namely p[w(#)], that has 8 as a coordinate in any of the above charts. Thus while
a point in P! may have different coordinates in different charts (differing by integer
multiples of 7), a given coordinate specifies a unique point in P!. P! is the quotient
manifold of S! with respect to the equivalence relation generated by p (cf. [AMRS3,
p. 173)).

Definition 2.1.5 We will denote the affine Grassmann manifold of lines in R? by G, ,
[Gon91]. We will give G, 2 the structure of a vector bundle over P'. (A discussion of
notions related to vector bundles may be found in [AMRS83, sec. 3.3].) Let 6, € R.
Define I'y, C G2 to be the subset of lines in R? which are not parallel to the
line generated by the vector w(6y). For each line ! € Ty, there is a unique § €
(6o — /2,60 + 7/2) such that the line generated by the vector w(8) is perpendicular
to [. It is easy to see that all the points on [ have the same inner product with w(#8).
Denoting this inner product by s, we assign the line [ the coordinates (8, s). Denoting
the resulting map by vg,: 'y, — (60 — 7/2,00 + m/2) X R, it is easy to verify that the
pair (I'g,,7s,) is a local bundle chart on ()2 and that the collection of these local
bundle charts for 65 € R is a vector bundle atlas for G, 2. It is also easy to see that
the zero section of this vector bundle consists of the set of lines through the origin
in R?, i.e., PL. It will be convenient to establish the convention of referring to points
in Gy, as (8,s) € G, ., where the coordinates (0, s) are understood to refer to the
chart (I'g,v5). Under this convention, (8,s) € G, is simply the line in R? through
the point sw(@) which is perpendicular to w(), i.e., the line in R? whose points
satisfy - w = s. It is perhaps worth noting that the other possible coordinates of a

point (8,38) € G, under this convention are precisely those of the form (6 + 2k, s)
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or (8 + (2k + 1)m, —s), for integer k. In particular, note that (-6, —s) = (,s) as

points in Gj 2.

Definition 2.1.6 We now define the standard double covering of G, ; by the product
space S'xR. If (w,s) € S'xR, wemap (w, s) to the line in G, 5 which is perpendicular
to the line generated by the vector w and whose points have inner product s with
w. We will denote this map by 7 : S x R — G;,. It is easy to see that this map
gives a double covering of G2 by S! x R and that the points (w,s) € S! x R and

(—w,—s) € S x R have the same image in G, 2 under this covering.

Remark 2.1.7 It is not difficult to convince oneself that G, 2, when equipped with
the vector bundle structure described above, is not vector bundle isomorphic to the
trivial vector bundle P! x R over P!, but rather is vector bundle isomorphic to the
Mobius band, cf. [AMRS3, pp. 139, 142]. The double covering of G; 2 by S x R is
just the usual orientable double covering of a nonorientable manifold, cf. [AMRS3,

p. 385].

Definition 2.1.8 For any function g : S! x R — R, define its flip, § : S* x R — R,
by

v de
g(w, s) f g(_wv —S),

its drop, § : G12 — R, by
3(6,5) = {glw(8), s] + gl (), 5]}, (2.1)
and its average, g : G1 2 — R, by
§(0,s) % -;-g(a, ). (2.2)

We say that g is even if § = g.

Definition 2.1.9 If g : G, ;—R, then the standard (double) covering map = : S x
R — G induces the even pull-back function §& g o 7 : §1 x R—R. We shall call §
the lift of g to S? x R.
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Definition 2.1.10 Let \? denote Lebesgue measure on R?. We will take the product
measure A? to be the standard measure on R? in the sense that LP(R?)% LP(RY, A?).

Similarly, we shall take the standard measures on S!' x R and G|, to be o x A! and

1

5 (@ x A')om~!, respectively.

the image measure

Remark 2.1.11 Suppose g € L'(S! x R). Then we have the explicit formula

foggdiox 2y = [ [ aeio),s)dsas,

where the right-hand side is an ordinary double integral over a rectangle with respect

to Lebesgue measure. Similarly, if g € L'(G)2), we have the explicit formula

l 1 -1 _1 ~ 1
‘-?-/Gl'zgd[(a'x)\)ow | =3[, gdox)
m/2

= 0,.s)dsdb
/mg(,s)s ,

-n/2

since § is even. In light of this formula, we shall often refer to the measure } (o x A!)o

=1 on G2, by an abuse of language, as ds af.

Remark 2.1.12 We are now ready to define the Radon transform. In essence, the
Radon transform of a real-valued function f : R? — R is the real-valued function on
G1,2 whose value on a given line [ € G, ; is equal to the integral of f over I. We will
denote the Radon transform of f by Rf : Gy 2 — R. It is, however, more standard to
define the Radon transform to be the real-valued function on S* x R which is the pull-
back of the Radon transform just defined with respect to the standard covering map
7. The resulting Radon transform has a redundancy due to the fact that each point
in G,z is represented by two points in S! x R. While working on S! x R is convenient
in most (deterministic) contexts, in our probabilistic context it is sometimes better
to avoid this redundancy by working directly on G, . In particular, we shall later be
considering samples of random variables that, from a physical point of view, live on
Gh 2 rather than S x R. There is, however, a price to be paid. Namely, to use any
of the previously obtained results on the Radon transform, we will have to go back

and forth between the two definitions. We shall refer to the Radon transform which
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gives functions on S! x R as the standard Radon transform and the transform which

gives functions on Gy, simply as the Radon transform.

Definition 2.1.13 The Radon transform on L!'(R?), which we shall denote by R,
maps f € L'(R?) to the function Rf : Gy, — R whose value at | € G, is equal
to the integral of f with respect to Lebesgue measure on [. The standard Radon
transform on L!(R?), which we shall denote by R, maps f € L'(R?) to the lift of Rf
to S! x R, i.e., Rf & Rf. It is shown in [Her83, p. 168] that Rf € L'(S! x R). It
follows at once that Rf € L'(G,,). Using the coordinate system for G, described
in definition 2.1.5, we can give an explicit expression for the Radon transform. We
will denote the unit vector (—sin 8, cos#), obtained by rotating w(8) by a angle of
7/2 in the counterclockwise direction, by w*(8). Rf(0,s) is equal to the integral of

f over the line whose points have inner product s with w(8), i.e.,

Rf85) = [ flsw(®)+tw*(0)) dt

= /oo f(scos@ — tsinf,ssin + t cosf) dt.

We next describe the adjoint of R.

Proposition 2.1.14 The map R* : L=(S! x R) — L*(R?) given by
RBg(z) = [ glwrz-w)do(w) (23)
for g € L>(S! x R) is the adjoint of R : L'(R?) — L'(S! x R) in the sense that
D 1y D=* 2
/SI)(Rngd(a x A1) _/m f Bgd
for all f € L'(R?) and g € L*(S' x R). The map R* : L*(G,2) — L>(R?) given by

(Rg)(z) = [ 9(6,2-w(0))ds

[, #(w,z - w) do(w) (2.4)



for g € L®(G\2) is the adjoint of R : L'(R?) — L'(G,2) in the sense that
— - 2
/G Rf gdsdf = /m f R gd)
for all f € L}(R?) and g € L*(G,.).

Proof.  The result for R is given in [Her83, p. 169, eq. 1.1]. To prove the result
for R, suppose f € L'(R?) and g € L*(G,2). Define § € L=(S! x R) as in definition

2.1.9. Then, using equation 2.4,

“~
!
*
<Y
U
p
w

N = DN DN

/m f R*gd)?

=

/ Rfgd(c x \)
StxR
/G” Rfgd[(c x A\")or™!]

=/ Rfgdsdd. O
G2

(2.5)

Remark 2.1.15 We note, for future reference, that R* : CP(S' x R) — C(R?)
[Her83, prop. 1.2(c)]. From this, it follows easily that R* : C$°(Gh,2) — C5°(R?).

We conclude this section with a simple identity which relates the adjoints of R

and R.

Lemma 2.1.16 If g € L>(S! x R), we have the identity
R'g= R‘g’

where § € L*(G, ) is defined as in equation 2.1.
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Proof. Using equation 2.4, we have

i |
Rg(z) = 5R (=)
% g(w(8),z - w(0))db
% i 3(0,z - w(0

-1 / 9(w(8),z - w(8))+g(~w(8), —z - w(B)) dO

= /S' g(w,z - w)do(w)

= R*g(z). O
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2.2 The Radon transform on distributions and
measures

In this section, we will develop the Radon transform on distributions and measures.
We start by defining the relevant notions from the theory of distributions. The

treatment here will be very brief; we can recommend [Tre67] as a general reference.

Definition 2.2.1 A multi-index is an ordered d-tuple of nonnegative integers. If 3 =
(Br,...,Ba) is a multi-index and z € RY, we define [B|% By + - -+ B,, 28X 2P ... 154,

and 9°%f oPr ... 084

Definition 2.2.2 Let X be a d-dimensional (C*) differentiable manifold with atlas
{(Uay¥a)}. A function f € C(X) is said to vanish at oo if, for all € > 0, the set
{r € X :|f(z)| 2 €} is compact [Fol84, pp. 125-6]. Define Co(X) to be the subset of
C(X) whose elements vanish at co. (In the literature, this space is sometimes denoted
by Cs [It685, art. 168B].) Define C°(X) to be the subset of Co(X') whose elements
have derivatives of all orders that are also in C¢(X). (In the literature, this space
is sometimes denoted by Z [It685, art. 125N].) We equip Cg°(X) with the locally
convex topology induced by the seminorms ||3°(f oy ~1)||, for all multi-indices A and

charts (U,, ¥4) in an atlas for X.

Definition 2.2.3 The dual space to C§°(X), i.e., the space of continuous linear func-
tionals on C§°(X), is termed the space of integrable distributions and denoted by
2;,(X) [1t685, art. 125N]. We identify L!(R?), L'(S* x R), and L'(G,z) with sub-
spaces of the appropriate space of integrable distributions in the obvious way. If
g € C5°(S' x R), then § € C§°(Gy2). Thus if v € 21 (G12), we can define its lift
v € 21,(S* x R) by (d,9) % (v,§), where the notation (u, f) indicates the oper-
ation of applying the distribution u to the test function f. If ¢ € C§°(G2), then
g € C(S' xR). Thus if v € 27 (S* x R), we can define its drop v € 2} (G\.)
by (3,9) & (v,§). We say that v € 21,(S' x R) is even if (v,g) = (v,g) for all test

functions g.
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Example 2.2.4 Suppose v € L!(S' x R). Then the drop of the distribution ¢ —
Jsixr 97d(o x A') on S' x R is given by the distribution g — [ g §7d(c x A') on
Gl'g. Now

/Slng‘Y d(o x ,\1) = /_’:r L:g(w(O),s)y(w(o)’s)ds do

— /o" /_‘: (8, 5)5(8, s) ds db,

so the drop of the distribution ¢ — [q ,ggvd(c x A?) is the distribution g +
fa,,, gydsdf. In other words, the drop of v considered as a function is consistent

with the drop of 4 considered as a distribution.

Example 2.2.5 Suppose v is a finite measure on S! x R. Then the drop of v is given

by the distribution g — [,z §dv on G 2. Now

5d =/ rd
/SlxIRg Y S‘xIRgo v

= dlvor™t),
/Gmg( )

so the drop of v is just the image measure of v under the map .

Example 2.2.6 Suppose v € L'(Gi;). Then the lift of the distribution g —
J6,, 97dsdf on Gy is given by the distribution g — JG,, 7 dsdb on 5! x R. Now

Gz gy dsdf = /o" [_: 3(0,3)v(8,3)ds db
= [ afwl6), syi(w(0), o) da do

= ¥ d A,
g 97 4o X )

so the lift of the distribution g — [ . g7 ds df is the distribution g — [q g g7 d(o x
Al). In other words, the lift of ¥ considered as a function is consistent with the lift

of v considered as a distribution.
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Definition 2.2.7 Suppose u € 21 (R?), i.e., u is a continuous linear functional on

C5°(R?). Then we define Ru € 2} (G12) by
(Ru,g) = (u, R'g)

for any test function g € C°(G ). Similarly, we define Ru € 2} (S' x R) by
(Ru,g) < (u, Rg)

for any test function g € C$°(S! x R). These definitions make sense by remark 2.1.135,
and, by proposition 2.1.14, extend R and R from L!(R?) to 21, (R?). Moreover, since

L! is dense in 2] , these extensions are unique [Her83, rem. 1.5].

Lemma 2.2.8 The standard Radon transform on 9; (R?) is even.
Proof. Let g € C(S! x R). For each z € R?, we have

Ri@) = [ g(-w,—z-w)do(w)

= /sl g(w,z - w)do(w)

~

= R*g(z),

so R*§ = R*g. It follows that

so Ru is even. O

Lemma 2.2.9 Ifu € 2; (R?), then Ru = Ru.
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Proof. If g€ CP(S! x R), we have, using definition 2.2.2 and lemma 2.1.16,

Definition 2.2.10 Let M(X) denote the space of (finite) signed measures on X.
M(X) is a Banach subspace of 9}, (X)) with respect to the total variation norm. That
is, if u is a signed measure on X, we can interpret u as the integrable distribution
f — [x fdp, where f € CP(X). Thus if u is a signed measure on R?, the Radon

transform of u is given by the integrable distribution

Ru:gw— /m R*gdu (2.6)

for ¢ € C$°(G,2) and similarly for the standard Radon transform of g. It is shown in
[Her83, p. 171, ex. 1] that Rp is actually a signed measure. An analogous argument
shows that Ry is also a signed measure. Thus, by the Riesz representation theorem
[Fol84, thm. 7.17], the integrable distribution Ry can be extended to a continuous
linear functional on Co(G}2). Moreover, since Cg° is dense in Cp [Sch66, p. 199], this
extension is unique. It is clear that this extension is obtained simply by extending
equation 2.6 to g € Co(G2). If p is a positive finite measure on R?, it is easy to see

that Ru and Ry are also positive finite measures.

Remark 2.2.11 Definition 2.2.10 gives the Radon transform of a finite positive mea-
sure as a finite positive measure which is expressed in terms of its action on functions
in Co(G1,2). We will now work toward obtaining a more explicit expression for the

Radon transform of a finite positive measure.

Definition 2.2.12 Let u be a Borel measure on X and E a Borel subset of X. We

say that u is outer regular on E if

p(E) =inf{u(U) : U D E, U open},
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and inner regular on E if
p(E) = sup{u(K): K C E, K compact}.

A Borel measure is said to be a Radon measure if it is finite on compact sets, outer
regular on Borel sets, and inner regular on open sets [Fol84, p. 205]. A Borel measure
is said to be regular if it is outer and inner regular on all Borel sets. Any finite Borel
measure on a second-countable, locally-compact Hausdorff space is a regular Radon
measure [Fol84, thm. 7.8], so, in particular, any finite Borel measure on RY, G, or
S! x R is a Radon measure. If U is an open set of X and f € C.(X), we say that f is
subordinate to I/, and write f < U, if 0 < f <1 and supp(f) C U (supp(f) denotes
the support of f).

Proposition 2.2.13 Let u be a finite positive measure on R%. Let E be a Borel set
0fG1,2. Then
Ru(E) = /m Rl dp,

where 1 denotes the indicator function of the set E.

Proof. The result will be proved by first showing that it holds if £ is open or if
E is compact. The general result will then follow from the regularity of the measure
Ry.

If U is a open subset of G| 2, then, by the Riesz representation theorem for positive

measures [Fol84, thm. 7.2],

Ru(U) = sup {/m Regdu: g € Co(Ghz) and g < U}

(2.7)
< /m R*ly dp.

To get an inequality in the opposite direction, define U 7~1(U) and let d denote

the usual Riemannian metric on S! x R viewed as a cylinder. Define a sequence g,
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of functions in C.(S' x R) by

0 if inf d((w,s),U¢) <
gn(w,8) = 2nfinfd((w,s),0°) — L] if L < infd((w,s), UC) 1
1 if lnfd((w.s),UC) > 1 i

so that g, < U and {g,} is monotonically increasing with pointwise limit function 1.
Note that, since the indicator function of U is even, each g, is even. The sequence of
functions R*g, converges pointwise on R? to R*1; since, by the monotone convergence
theorem, for each z € R?,
lim R'ga(a) = [ lim ga(w,z - w) do(w)
= / lg(w, z - w)do(w)
st
= R*15(z).

Since each g, < U, it is clear that each 14 29n < U, hence

%/ gndRp

=%/ " Gn dpe

1
= - d
4/ "G dp

1 L
=§ zRg,,d,u.

A second application of the monotone convergence theorem then gives

nmee (2.8)
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Comparing equations 2.7 and 2.8, we conclude that

Ru(U) = /m Ry dy.

If K is a compact subset of G, 2, then, by the Riesz representation theorem for

positive measures [Fol84, thm. 7.2],

Ru(U) =inf {/m R°gdu(r): g € C(G2) and g 2 lx}

> [ (1) du

To get an inequality in the opposite direction, define K 4f r-1(K) and the sequence

gn of functions in C.(S! x R) by

0 if infd((w,s),K)>1
gn(w,8) = { n[ —infd((w,s),K)] if 0<infd((w,s),K)<?1
1 if s € K,

so that g, > 1 and {g,} is monotonically decreasing with pointwise limit function
1g. Again, each g, is even. The sequence of functions R*g, converges pointwise on
R? to R*1; since, by the dominated convergence theorem, for each z € R?,

lim R*g.(z) = . lim g, (w,z - w) do(w)

= /s lg(w,z - w)do(w)

= f?.'lf((x).
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Since each g, > 1g, it is clear that each ;g,. > 1k, hence

| =

Ru(K) <3 [ 3. dRu
= %/m R gn d
= i/m R.‘E" dy

1 .
== Rg.du.
2 /m gn ap
An application of the monotone convergence theorem then gives

Ru(K) < % lim /m R*gn dp
- % ./m i R"gn du
= % /m Rl & dp.
= /m R°lx dp.
and we conclude that

Ru(K) = /m R*1x dp.

Let € > 0 be given. By the inner and outer regularity of Ry, we can choose an

open set U and a compact set K such that K C ¥ C U with
Ru(U) — e < Ru(F) < Ru(K) + e.

We have
Ru(E) - [ Rlpdy < Ru(E)- [ R'lxdp

= Ry(E) — Rpu(K)

<€
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- ! < - F‘

= Ru(U) — Ru(E)
<e

SO
I/m R1gdy — Rp(E)l <e

Since € > 0 was arbitrary, the desired result follows. O
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2.3 Application to PET

In this section, we will compute the probability measure for the observations in our

idealization of the PET problem.

Definition 2.3.1 The set of lines in R? through a point r € R? can be given the
structure of a differentiable manifold by identifying it with the space P! in the fol-
lowing way. Recall that P! can be identified with the set of lines through the origin
in R2. If [ is a line through z, we identify it with the unique line through the origin.
i.e., the unique point & € P!, which is perpendicular to l. It is easy to see that this

identification gives a bijective relation between the lines in R? through z and P'.

Definition 2.3.2 Suppose the probability distribution of the location of positron
emissions in R? is described by the probability measure u. If a positron emission
takes place at £ € R?, we will model the line which its annihilation photons travel
along as a line in R? through z whose orientation is randomly distributed according
to the measure ;-0 o p~'on P'. That is, we identify the lines in R? through z with P!
as in definition 2.3.1 and give them the measure ;-0 o p~'. The event of a positron
emission occurring at £ € R? and its annihilation photons having orientation @ € P!

is thus described by the pair (z,&) € R? x P'. Thus the joint probability distribution

of z and @ is given by the product measure m &' y x (—2170 0 p“) on the space RZx P!.

In the PET problem, one does not observe (z,w), but rather only the point

p(z,@) € G2, where the function p : R? x P! — G, , is given by

p:(z,p(w))— m(w,zw).

It is easily verified that p is well-defined. Thus, the probability measure of the obser-

vations in the PET problem is just the image measure, v def [p X (2'70 o p")] op!
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induced on G, 3 by the map p. If B is a Borel set of G, ;, we have

u(B) ¥ [ux (5c005)| (o7 (B)
= o= [ [ lesmta @) dlo 0 p)(@) du(z)
= 5 [ [ @il ) do(w) du(z)
= oo [ [ 15l7(w,2 w) do(w) du()
=5 [ [ 15w,z w) do(w) duz)
- 5‘; [, Bis(@)duz)
== [ Bla(2) du(z)
= —Ru(B),

by proposition 2.2.13. We thus see that the probability measure of the observations

in the PET problem is given by 1 Ru. For convenience, we shall define T def 1R.

Remark 2.3.3 It is easy to see that if the measure u is representable by the density
fd)?, then the above agrees with the result previously obtained by Johnstone and

Silverman [JS90]. Indeed, using proposition 2.1.14, we have

v(B) = —R(fd\*)(B)

™ 2
/mR 15 f dA
1
. df
/Gm 15 Rf ds

™

1
_;r-/BRf ds df,

A=

so v is representable as the density 1 Rf with respect to the measure dsdf on Gi.
This agrees with equation (2.1) in [JS90] once the differences in the definitions of the

dominating measures are taken into account.
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Chapter 3

Sobolev Spaces

As stated in chapter 1, we will be analyzing the PET problem using loss functions
based on Sobolev norms. In this chapter, we will collect the necessary background
material on Sobolev spaces. Section 3.1 discusses the more general notion of interpo-
lation spaces, of which Sobolev spaces are a principal example. Section 3.2 discusses
Sobolev spaces on R?, S? x R, and G, 3. Section 3.3 discusses modified versions of
these spaces for distributions with fixed compact support. Section 3.4 gives some

continuity results for the Radon transform with respect to Sobolev norms.

3.1 Interpolation spaces

Before giving the definitions of the Sobolev spaces, we review some basic notions
regarding interpolation spaces. They will be used frequently in what follows. The
material in this section is mostly taken from [Nat86, sec. VIL.4].

The basic idea of interpolation spaces may be simply stated. One starts with a
pair of Hilbert spaces H; C Hp, where H; is continuously and densely embedded in
Hy. Theu the interpolation spaces H, for a € (0,1) are defined so as to provide a

continuum of Hilbert spaces between Hy and H,.

Definition 3.1.1 Suppose H, C H, are two Hilbert spaces such that H, is continu-
ously and densely embedded in Hy. Such a pair is said to be an interpolation couple.

It can be shown that there exists a self-adjoint, strictly-positive operator S : H; — Hp
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such that the norms ||f||y, and ||Sf]||x, are equivalent on H,. For 8 € [0,1], let 5¥
denote the operator S taken to the 3 power. (The details of the definition of 5¥
may be found in most treatments of the spectral theory of linear operators on Hilbert
spaces, e.g., [RSN55, sec. 127] or [RS80, sec. VIIL.3]). We define the interpolation
space Hj %' (Ho, H, )s to be the domain of the operator S? (a subspace of Hp, see
e.g., [RSN55, sec. 127] or [RS80, sec. VIIL.3] for details). Hjz is a Hilbert space with

def

norm ||f|lu, = ||SPfl|H,- It is clear that applying this procedure for 3 = 0 and 3 = |

just recovers the original spaces Hy and H,. It can be shown that, while S is not

uniquely determined, the space Hj is, and that the norm on Hj is determined up to

equivalence.

Proposition 3.1.2 Let Hy,H, and Ko, K, be interpolation couples and Hp and Kj
the corresponding interpolation spaces. If A: Hy — Ko is a bounded linear operator
such that A(H,) C K, and the restriction A : Hy — K, is also bounded with respect
to the norms of H, and K,, then A is bounded with respect to the norms of Hz and
Kp for all B € [0,1].

Proof. See [LMT72, ch. 1, thm. 5.1]. O

Remark 3.1.3 It will be shown in remark 3.2.2 that the Sobolev spaces provide nice

concrete examples of interpolation spaces.
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3.2 Definitions

Definition 3.2.1 The Schwartzspace .#(RY) is defined to be the subspace of C*°(R?)

consisting of functions f such that

|fi &' sup sup (1 + |z|?)™|8° f(z)|
|B|<m reRS

is finite for all m € N, where 8 is a multi-index [Tre67, ch. 10, ex. [V]. We equip
S (R?) with the topology induced by the seminorms | - |m. The space of tempered
distributions on R? is defined to be the dual space to #(RY) and is denoted by
#'(R?). The Fourier transform % : #(R?) — #(R?) is denoted by f — f, where f
is defined by
fO [ e f(z)de

[Tre67, p. 268, def. 25.1]. The Fourier transform & : #'(R?) — #'(R?) is defined by
duality, i.e., for u € S(R?) and f € S(R?), (i, f) %' (u, f) [Tre67, p. 275, def. 25.4].
For a € R, the Sobolev space L2(R?) is defined to be the subspace of .#/(R?) whose

elements u satisfy

Il ey & [ (1 +47%1ER)?Ta() P dg<oo, (3.1)

cf. [Ste70, subsec. V.3.1]. It is implicit in the definition that the distributicn (1 +
472|€|2)°/%4 can be represented by an element of L?(R?). L3(RY) is a Hilbert space

with inner product

(ulo)amo & [ (1 +4nlE)a(€)5(6) de,
where the bar denotes complex conjugate [Tre67, p. 330, prop. 31.7].

Remark 3.2.2 The spaces L2(R?%) and L2  (R?) are duals of each other with respect

to the bilinear form

() o [ #(€)F(-€)dg
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on LZ(RY) x L2 ,(R?) [Tre67, p. 330-331]. Moreover, if f € %, then this bilinear form
is given by (u, f), where (u, f) refers to the duality between .#’ and .%. Since, for
any a € R, % is dense in L2(R?) [Tre67, prop. 31.9], it follows that

|[ullzz ey = sup [(u, f)]. (3.2)
fE.s"(]Rd):"f”l‘g( d)=1
Remark 3.2.3 For n € Z, the pair L2(R?), L2 ,(R?) form an interpolation couple.
Ifn<a<n+1 witha=n+g, then

Li(RY) = (LA(R?), L241(RY) .

This can be seen by choosing the interpolation operator S in definition 3.1.1 such

that
(Su)™(€) = (1 + 472|€)*)**a(€)

[Nat86, p. 202].

Remark 3.2.4 The use of the circumflex to denote the Fourier transform conflicts
with its use in denoting an estimate of an unknown quantity. Since both notations are
quite standard, we shall just endure this ambiguity. It should be clear from context

which meaning is intended.

Remark 3.2.5 It is an unfortunate fact of life that there is no universally accepted
definition of the Fourier transform. In several of the works which we shall cite, the

function

1

JO ¥ G foue = (=) de (33)

is defined to be the Fourier transform of f, e.g., [Her83, p. 166] and [Nat86, p. 180].
(The notation conflicts with that of definition 2.1.8, but we shall just use it in this

and a related remark.) The two definitions are related by the equations

y 1 .
fl) = Wf(f/zﬂ’)
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and

f(&) = (2m)* f(2me).

In works which use equation 3.3 as the definition of the Fourier transform, the Sobolev

norm on L2(RY) is typically defined by

Il ey % [, (1 + 61O de.

Writing this in terms of our definition of the Fourier transform, we obtain

elfymey = e JpalL + IEPITaE 2 d

= [+ l2nel)ela () P de.
= HU“ig(Rdy

We see that the two definitions agree.

Remark 3.2.6 For o € N, we can express ||f||7; g in terms of the L?(R?)-norms

of f and its first « partial derivatives. Indeed, we have

“f”ig(m) =/ (1 +41r2|€|2)alf(f)|2df
( )/ [4n*(&} + P If(O) de

= (0
=0
56
20

where the derivatives are taken in the sense of tempered distributions on R2.

I
.
1
o

J

Z( ) L @re o @ne ) fo)? de
k=0

(3.4)

Il
"M" M- ||M9E

2

)
)%
)
)

(2) [, Vemesp=+ontart e de
> (1) [ oo e ae

k:

3 () 3’_k3k f”Lz(m),
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Remark 3.2.7 The set of (finite) signed measures M(R?) is a subspace of L? (RY)
for @ > d/2. This follows easily from the fact that the Fourier transform of a signed
measure is in Cy(RY), cf. [Chu74, p. 143]. In particular, we have P(R?) C L% _(RY)
for a > d/2.

We now want to consider Sobolev spaces on S' x R. We start by considering

differential operators on S! x R.

Definition 3.2.8 If g € C*(S! x R), define g, : S' = R by w — g(w,s). We {lien
define 9pg(w, s) def 0pgs(w), where the right-hand side is defined as in definition 2.1.2.

Definition 3.2.9 There is another procedure for defining differential operators on
S! xR that is used in the literature on the Radon transform. Suppose g € C>*(S! xR).
We can extend g to an element § € C*°(R?\{0} x R) which is homogeneous of degree
—1 by defining

i(z,5) € g (z/lel,s/lz]) /1z].

We then define the differential operators 9;, and 3;, on S! x R to be the operators
obtained by applying these operators to the extended function on R?\{0} x R and
evaluating on S* x R. If B = (B, 0;) is a multi-index, we shall write 8? for the
differential operator 3:9%. It can be shown that the homogeneous extension of
degree —1 just described is a natural extension of the Radon transform of a function

[Nat86, p. 12].

Definition 3.2.10 The Schwartz space .#(S! x R) is defined to be the subspace of
C>(S! x R) consisting of functions g such that

lgln &€ sup  sup (1 +5%)™|020g(w, ),
|Bl+k<m (w,s)€S! xR

where 3 is a multi-index and k € N, is finite for all m € N [HQ85, eq. 2.10]. We equip
(S x R) with the topology induced by the seminorms |- |,. The space of tempered
distributions on S x R, &#'(S! x R), is defined to be the space of continuous linear

functionals on #(S? x R).
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Definition 3.2.11 On #(S! x R), we take the Fourier transform to be the usual

Fourier transform with respect to the second variable only, i.e.,

dlw,n) & [ 9w, s) ds.

The Fourier transform on /(S x R) is defined by duality. (It is easily verified that
the Fourier transform of a function in #(S! x R) is in #(S? x R), so the definition

makes sense.)

Definition 3.2.12 The Sobolev space L, ,,(S* x R) is defined to be the subspace
of #'(S! x R) whose elements v satisfy

ol % [ (1 +amin?)elo(0, m) dn dofw)<oo,

where 9(0,7) is defined as in definition 3.2.11. L(0 a)(S' x R) is a Hilbert space with

inner product

(olo)rg, , % [ (1 +47%0%)5(w,n)B(w, m) dn do(w).

Remark 3.2.13 For a € N, we can express ||g||%%° (51 xR) in terms of the L?(S* xR)-

norms of g and its first « partial derivatives with respect to s. Indeed, we have
||9”i(20'a)(51xm) =/ /(1 + 4729%)*|§(w, n)|? dn do(w)

( ) /S, f (4n*n?) |§(w, n)|? dn do(w)
( _/|(27r7l)’y(w,n)|2dnda'(w) (3.5)

26

( 103015y

Il
u[\’]o IIMD 'ii[V]n it

)
)/S./ 1(829)" (w, n)I? dn do(w)
)

where the derivatives are taken in the sense of tempered distributions.
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Definition 3.2.14 We define the Schwartz space #(G,.) to be the subspace of
C>(G,2) whose elements have lifts in #(S? x R). The lifting map from # (G 2) to
Z(S! x R) is obviously injective and we equip #(Gy2) with the relative topology
induced by identifying it with its image under this map in &#(S! x R). The space of
tempered distributions on G ; is defined to be the dual of #(G,2) and is denot< by
F'(Gh2). The Sobolev space L?o'a)(G’l,g) is defined to be the subspace of (G 2)
whose elements have lifts in L{, ,,(S' x R). The squared norm of an element of

L}, 4)(G12) is defined to be 1/2 of the squared norm of its lift in L% o) (S' x R).
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3.3 Sobolev norms for distributions with fixed
compact support

In this work, we will mainly be concerned with distributions (actually probability
measures) with support on a fixed compact set. For such distributions, one can
construct alternative Sobolev norms in terms of their Fourier series coefficients. The
resulting Sobolev spaces have the desirable property of being separable, i.e., having

a countable orthonormal basis.

Definition 3.3.1 Let rS C R? denote the closed square with sides of length r cen-
tered at the origin, i.e., [-r/2,r/2]2. Let &'(R?) denote the space of compactly
supported distributions on R?, i.e., the space of continuous linear functionals on

C>*(R?). (The notation &'(R?) stems from the fact that C>°(R?) is sometimes de-
noted by &(R?) in the literature.) Let 6”(rS) denote the subspace of 6”(R?) whose

elements have support contained in rS.

Definition 3.3.2 Let C*(rT?) denote the subspace of C*(R?) whose elements are
periodic with period r in both coordinates. We equip C*(rT?) with the topology
induced by the seminorms ||3*f}|, for all multi-indices a. C*(rT?) can be viewed
as the set of smooth functions on the 2-torus, rT?, obtained by identifying points
in R? whose coordinates differ by integer multiples of r. Let &”(rT?) denote the
set of continuous linear functionals on C®°(rT?). &”(rT?) can be viewed as the set
of distributions on rT2. Since C=(rT?) C C>~(R?), the elements of (rS) can be
considered as elements of §”(rT?) in a natural way. For k € Z?, we define the Fourier

series coefficients of u € 6”(rT?) by

1 .
a(x) & = (u, P A

In particular, if f € L?(rT?), then it is well-known that f has the Fourier series

expansion

flz) =Y f(r)eiCrinin= (3.6)

/4
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in L*(rT?). For a € R, we define the Sobolev space L?(rT?) to be the subset of
&' (rT?) such that

|22 omy &0 3 [0+ (2m/r)2 s |i(x) (3.7)
I=r74

is finite.

Remark 3.3.3 Results that are analogous to those given in remark 3.2.2 for L2(R?)
hold for L2(rT?). The spaces L2(rT?) and L2 (rT?) are dual to each other with

respect to the bilinear form

(fruy > 3 f(€)i(=¢)

KELR

on L2(rT?) x L2 (rT?). Moreover, if f € C*(rT?), then this bilinear form is given
by (u, f), where (u, f) refers to the duality between C*°(rT?) and 6”(rT?) [Fol84,
exer. 8.39]. Since, for any a > 0, C(rT?) is dense in L2(rT?), it follows that, for
a<0,

lullez (rm) = sup [(u, f)|. (3.8)
FEC(rT? ):Ilfllbg(,-'rZ):l

Remark 3.3.4 For a € N, we can express || f||};(,1z) in terms of the L?(rT?)-norms

of f and its first a partial derivatives. Indeed, we have

Wfllaemy) =r% 3 (14 (2n/r)*a} + (2n/r)?k3)%| f(5)[?

K€D

(1) 23 [@n/r)at+ (20 /r)?w3P|f(w)] d

K€DR

o 1

= (?) g, (i) 2‘2[(%/1‘);:1]% O (2 /a1 () d
i :z; (7) g( ) T |orrass ) ()| de
) gx (CJ!) Z% (i:) I162%0%, 9112, ey
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where the derivatives are taken in the sense of distributions on rT2

We will now show that the norm || - ||12(+12) is equivalent to the norm || - ||12 ge)

on L%(rS) for a > 0.

Lemma 3.3.5 The norms || - ||2(1) and || - ||i2®e) are equivalent on L*(rS) for
a>0.
Proof.  First suppose that o € N. We claim that, in this case, || - [|L2(-) and

|- |22 (re) are equal on L?(rS). To prove the claim, suppose f € L?(rS). The Fourier
series expansion of f in L?(rS) is then given by equation 3.6. It follows that the

distributional derivatives of f have the Fourier series expansion

09902 f(z) = (i2n/r)+ 3 kil f(x)e T/ es
/4

on rS. From this expansion, we see that

1185 8% £11} , ey = (2 [r)2rtE2) 3 k7 637 f ()2
re2

By equation 3.4, we thus have

a o J : .
WMz =3 (5) 3= (3) 10208 e

1=0 k=

r’ i ((;) ZJ: (i,) > (@ /r)ma 202 fr)ea | £ ()

3=0 k=0 e

r’ Zm:((;)(27r/1')2"I'CI”'lfA(fC)I2

x€Z? j=0

=72 Y (1 + (27/r) |6} | f(x)[?

xeR

= ”f”ig(r'll‘)a

which proves the claim. The result for general o > 0 follows by a standard interpo-

lation argument (cf. [Nat86, sec. VIL.4]). D

To get a similar result for a < 0, we need to allow a little more room.
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Lemma 3.3.6 Suppose o > 0 and ¢ > 0. Then there ezist constants ¢,(a,r) and

c2(a,r,r + €) such that

ala,r)llullez ey < llullez @) < el r + €)llullLz ((reom) (3.10)
for all u € &'(rS).

Proof. Suppose u € &'(rS). By lemma 3.3.5, there exists a constant d(a,r) such
that ||f||.2(re) < d(a,m)}|fllL2(+r) for all f € L(rS). It follows that

”u”lﬁ_a(r'ﬂ’) = sup I(ua f)l
fECo(rT? )=|If||1,§(,1-2)51

< d(a,r) sup |(x, )
feC>(R? )=||f‘|L3( Z)Sl

= d(aﬂ')““”m_a(m)-

Taking ¢(a, 1) = 1/d(a, ) gives the first inequality.

To get the second inequality, let C®(rS) denote the subspace of CZ°(R?) with
support on rS. Choose x € C®((r + €)S) such that x = 1 on rS. There exists a
constant c(a, x) such that, for any f € LZ(R?), ||xf||z2@®e) < (@, x)||fl|L2 &) [Fol84,
cor. 8.58]. Since we can choose x depending only on r and r + ¢, we shall write c (e, x)
as cy(a,,7+¢). Thus, if f € C°(R?) with ||f||L2re) = 1, xf € C®((r+¢€)S), xf = f
on rS, and ||xf|lz2 we) < €2(e, 7,7 + €). Starting with equation 3.8, it follows that

lullzs @y < cale,r,r+¢) sup |(u, f)|
f€C°°((r+c)S):||f||Lg( 2)51

S CQ(C!, r,r + 6) sup |<u1 f)l
feco((r+e)T)|Ifll 2 2)<1

= cy(a, 1,7 + €)|[ullLz_((r4qm)- O

Remark 3.3.7 To see why a little extra room is needed in lemma 3.3.6, consider
the point masses at (1/2,0) and (—1/2,0). They are equal considered as elements of
&'(T?), but not as elements of ”(R?).
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As we shall be concerned principally with the Sobolev norms of positive mea-
sures, we shall frequently find it convenient to work with the Fourier sine and cosine
transforms rather than directly with the Fourier transform. Suppose the distribution
u € &'(rT?) has the property that it maps real-valued test functions into R. Define

the Fourier sine and cosine transforms by
d,(x) & 3(u sin[(27/r)k - z])
3 T2 )

and

tc(k) def %(u,cos[(?)r/r)fc - z]),

respectively. Using the identity 4(—«k) = u*(&), it follows that

i) = B i()
1

s

= :—2(11, cos[(2r /r)k - x])

<u,e£(21r/r)n-x + e—i(21r/r)n~::)

— (k)
2

and, similarly,
So(x) = #

In particular, if f € L%(rT?), then, starting from equation 3.6, we have the expansion

f(.’l:) = z f(n)ei(2w/r)n-z+f(_n)e—i(z-;r/r)n.z

re??
0<argn<m

=2 Y R[f(r)eCmINx] (3.11)

€D
o<argn<m

= Y fo(&) cos[(27 /7)& - ] — f,(k)sin[(27/r) - z].

xeZ?
O<argn<m
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We can rewrite equation 3.7 as

||“||ig(r1n) =2 Y [+ (2n/r)*|6 2| f(5))?

xeZ?
o<argr<m

. (3.12)
S [+ @/ IRl fR (k) + f2 (R

YA
O<argx<m

o 3

Let Q) C R? denote the closed disk of radius r centered at the origin. If u is
an integrable distribution on R? whose support is contained in r}, then the support
of Ru is contained in S x [—r,r] [Her83, thm. 2.9]. Distributions on S' x R with
support on S x [—r, 7] have a natural Fourier series representation and we can define
an alternative Sobolev norm for them in terms of their Fourier series coefficients. The

results will be seen to be quite analogous to the ones we have just obtained for R2.

Definition 3.3.8 Let ’(S! x R) denote the space of compactly supported distribu-
tions on S! x R, i.e., the space of continuous linear functionals on C*(S! x R). Let
&'(S' x [-r/2,7/2]) denote the subspace of £’(S! x R) whose elements have support
contained in S* x [—r/2,r/2].

Definition 3.3.9 Let C*(S? x rT!) denote the subspace of C*(S* x R) whose ele-
ments are periodic with respect to the second variable with period r. C*(S! x rT?)
can be viewed as the set of smooth functions on the product space S' x rT! ob-
tained by identifying points in S x R whose second coordinates differ by integer
multiples of r. Let 6”(S* x rT') denote the set of continuous linear functionals on
C>®(S' x rT'). &'(S! x rT!) can be viewed as the set of distributions on S x rT.
Since C>(S! x rT!) C C*(S? x R), the elements of 6”(S! x R) can be considered as
elements of 8(S! x rT!) in a natural way. For k € Z?, we define the Fourier series

coefficients of v € 6”(S! x rT!) by

( )d=ef _(v e—t[ﬁ|0+(21r/r)nza]).
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It is well-known that if g € L?(S! x rT?), it has the Fourier series expansion

g= Z g(n)ei[n10+(21r/r)r<ga] (313)
Y/

in L?(S! x rT'). We define the Sobolev space L2(S! x rT!) to be the subset of
&'(S! x rT?) such that

||”||%g(51xrm) & onr Y[+ &} + (2n/r)?k3)%14(0)1?
Y/

is finite.

Remark 3.3.10 Results analogous to those given in remark 3.3.3 for L2(rT?) hold
for L2(S* x rT!). (Indeed, they are essentially the same space!) The spaces L2(S! x

rT!) and L% (S x rT?) are dual to each other with respect to the bilinear form

(g,v) = 2mr 3 §(£)5(=¢).

74

on L2(S! x rT?) x L% (S* x rT?!). Moreover, if g € C(S* x rT?), then this bilinear
form is given by (v, g), where (v, g) refers to the duality between C*°(S! x rT!) and
&'(S? x rT!). Since, for any a > 0, C°(S! x rT?) is dense in LZ(S? x rT?), it follows
that

”v”Lz_a(Sler‘) = sup (v, g)|.
gEC®(StxrT ):"9"1%(51 xr‘l‘l)=1

Remark 3.3.11 Fora € N, we can express ||g][}; (s x,m) in terms of the L?(S* xR)-
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norms of g and its first o partial derivatives. Indeed, we have
”9”%3,(51”11'1) =27r Y [1+ &7 + (2n/r)*k3]°[4(x)[?

( )27rr S (62 + (2 /r)2R2) (k) ? dé

Il
M°

J=0 s€2
a J

B> a) 2 ( )2’“” > wUTR(2m /r)ma]*(r, m)|? dE
=0 \J k=0 K€

(3.14)

I
M=
M“‘

( )21rr 3 |7R (2 /) ko) kG (k)| dE

7

.
Il
(=]
x=
1]
o

o

I
™=

(
> ()
( ) ( )21rr > | *akg) (n)l

] KeEZ2

.
Il
o

M- [v]._,

(") ( )ua’-"a ST
] k=0

where the derivatives are taken in the sense of distributions.

Il
i M-

Definition 3.3.12 We shall define G, 5(r) C G12 to be n(S* x [-r,r]). The Sobolev
space L2(Gy2(r)) is defined to be the subspace of 6(G,2) whose elements have lifts
in L2(S' x T'). The squared norm on L3(G 2(r)) is defined to be 1/2 of the squared
norm of its lift in L2(S! x T?).
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3.4 Radon transforms and Sobolev spaces

In this section, we will establish a number of rather technical results having to do
with the bicontinuity of the Radon transform with respect to topologies induced by
Sobolev norms. We will need to reference some results which have been stated using
the standard Radon transform, R. We thus start by considering the relationship

between the Sobolev norms of the Radon transform used here, R, and R.

Proposition 3.4.1 Ifu is an integrable distribution on R?, then Ru € L} 4)(S x R)
if and only Ru € L?o,a)(Gl.z), in which case

1.~
IRullzz, , 612) = 5lIRullez,  (s1xm)-

(0.2)
Proof. By definition 3.2.14, ||Ru||l,(z0 [(Gra) = %Hﬂll% (s1xR)- The result thus

follows from lemma 2.2.9. O

The following proposition, due to Hertle, establishes the bicontinuity of the Radon

transform with respect to appropriate Sobolev norms.

Proposition 3.4.2 The maps
R=L§(TQ) - L(zo,a+1/2)(Gl.2("))

and

R:L%(rQ) — L%O.a+l/2)(Sl X [~r,7])

are bicontinuous into for all « € R.

Proof. The result for R is proved in [Her83, thm. 3.1] (note that L3 oy(S* x[=r,7])
in our notation is equivalent to L2(S* x[—r,7]) in the notation used in [Her83, p. 168]).

Applying proposition 3.4.1, the result carries over to R as well. O

Corollary 3.4.3 The map R:L*(rQ)) — L*(G12(r)) is continuous.
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Proof. Combine proposition 3.4.2 with the fact that the natural injection
Lio1/2)(Gr2(r)) = L*(Gh2(7))

is continuous. O

The Sobolev norm || - ”L(zo,c.)(Gm) on G, is a convenient norm for describing
continuity properties of the Radon transform. On the other hand, as we will see,
statistical convergence on G, is conveniently described by the Sobolev norm || -
ll22(Gy(r))- The goal of the following sequence of lemmas is to obtain analogues

of proposition 3.4.2 in which the Sobolev norm || - ||z (Gy2) 15 replaced by | -

(0,a+1/2)

' lL:+l/2 (Gl’z (r+c)) .

Lemma 3.4.4 The map R: L2(rQ) — L2, /2(S' x 2rT) is continuous for all real

a and bicontinuous into for all a > —1/2.

Proof. Suppose a > —1/2. In proposition 3.4.2, it was shown that the map
R: L2(rQ)) — L%, o41/2)(S8* X[, 7]) is bicontinuous into. It is shown below in lemma
A.1.4 that the norm || - |2

cl-|-1/2(sl

R[L%(rQ)]. It follows that the map R : L2(rQ)) — L2, /2(S' x 2rT1) is bicontinuous

x2+T1) i8 equivalent to the norm || - || L3y 0y /(S xR) OR

into for & > —1/2. It remains to show that it is continuous for & < —1/2. This is
immediate since the natural injection L}, ,,,/5)(S* X [=r,7]) = L2, ,(S! x 2rT") is
continuous for a < —1/2 (cf. remarks 3.2.13 and 3.3.11 and apply an interpolation

argument). O

Definition 3.4.5 For real a < d, we define the Riesz potential operator /* by

(12 £)"(€) ¥ (2rlel) = (€) (3.15)

for functions f on R? for which it makes sense (cf., [Ste70, sec. V.1]). For f € S#(R?),
(I*f)" € L*(R?), so, by the Riemann-Lebesgue lemma [Fol84, thm 8.22(f)], I*f is
well defined. For f € S(R?) and |a| < d, we have [°I~>f = f [Nat86, p. 18] [Hel80,
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thm. [.8.6]. On #(S! x R), we define I* to act on the second, or “s” variable, i.e.,

the operator is applied fiberwise.

Remark 3.4.6 While the definition of the Riesz potential operator given above may
appear to differ from that given in [Nat86, p. 18] by a constant, they are actually the
same. This is due to the fact that, as noted in remark 3.2.5, the Fourier transforms
used in [Nat86] and here are defined in slightly different ways. Indeed, using the

notation in remark 3.2.5, we bave

(I f)U(€) = (2m)~42(1>f)" (€/2m)
= (2m)~42|¢|-> f(¢/2n)
= €]~ (€),

which agrees with the definition of the Riesz potential operator given in [Nat86, p. 18].

Lemma 3.4.7 The map I™! : L2 ,(R?) — L2(R?) us continuous and we have the

estimate

= flleawey < Sllez,, me)-

Proof. For f € #(R?), we have

1 AWy = [, (1+42%€) anlePIF(O)1" dt
< [ (1 +an?leP) I f() de

= |IfllZs,, @) O

Lemma 3.4.8 The map R*R is equal to the map 47 I' on S (R?).

Proof. For f € &#(R?), we have the Radon transform inversion formula

_L -1 pD*D
f_41r1 R*Rf
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[Nat86, p. 18, thm. 2.1]. Applying the map I' to both sides of this equation gives the
identity
1 ~ ~
Ilf =—R Rfa
47

i.e., R*"R=4nI' on .#(R?). O

Corollary 3.4.9 For f € #(R?), we have the identity
1 DeDJr-1
f=—R'RI"'f.
AT
Proof. For f € #(R?), we have

f =1I'I"1f.
| semi
= —R" .0
41rRRI f

Lemma 3.4.10 Let e > 0 be given. The maps R : L3(rQ) — L2, /,(G12(r +¢)) and

R: L[2(rD) — L%, 1/2(S" x 2(r + €)T") are continuous for all real a and bicontinuous

into for a < —1/2.

Proof. It suffices to establish the result for R, since the result for R will then follow
from proposition 3.4.1. Since L2(rQ) C L2((r +¢€)§), the result for R was established
in lemma 3.4.4, except for the continuity of the inverse map for « < —1/2. To show
that the inverse map is continuous for a < —1/2, suppose @ < —1/2 and u € L2({).

Starting with equation 3.2 and using corollary 3.4.9, we can write

1 o
lulleawe) =~ sup |(u,R RI ‘f)|
T fe-f"(R’)dI!Il,,z_a(.z)Sl
1 =4 =4 -
=1 sup |(Ru,RI lf)l.

T fes @)l maySt

Applying lemma 3.4.7, it follows that

1 L
lullame) = = sup |(Ru, Rg)|,

~ 4n 2 :
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where (Ru, R) refers to the duality between L2 ,(R?) and L2 41)(R?).

We now want to employ the portion of lemma 3.4.4 regarding the continuity of
R. To do so, we must first restrict the set over which the supremum is taken in
the above inequality to functions whose support is contained in a fixed compact set.
Let x € C®(R?) such that x = 1 on 7Q and x = 0 on R?*\(r + €)2. Then there
exists a constant d;(a, x) such that ||x¢||Lz_(a+”(Rz) < dl(a,X)||¢||L2_(°+l)(R2) for all
¢ € L2 ,41)(R?) [Fol84, thm. 8.57]. Since x can be chosen to depend only on r and ¢,
we will write di(a,7,€) © di(a, x). Thus if ¢ € L2, 41)(R?) with Hd’“L’_(am(W) <1,
||X¢||L2_(°+,)(IR2) < di(a,r,€) and ¢ = x¢ on Q2. It follows that

dy(a,r,€) |(~ ~ |

[u|lL2 ey £ ———= sup
4
T €L () ((r+)0)lI8ll 2 gy IS

By lemma 3.4.4, there exists a constant d,(a, 7 + €) such that

|| R$|| 2

2 anryn(Stx20+0m) S d2fayT + )lldllez,,, @)

for all ¢ € L2, ,,)(r). It follows that

dl(aa LK) 6)d2(a'; r+ 6)

lullame) < 1 sup I(~!u,g)|
= T g5 x2(r+¢)T :Ilgll,,z_(a“/z)(sn x3(r+)11) <1
di(a, 7, €)dy(a, 7 + €)=
= y= ||Ru||Lz_(°+l/2)(slx2(r+c)1l")' =
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Chapter 4

Lower Bounds on Minimax Risk

of Measure Estimation

In parametric problems where the parameter space is an open subset of R? and the
loss function is generated by the squared Euclidean norm (resp. the Euclidean norm),
the minimax risk is typically O(n~!) (resp. O(n~'/?)), where n is the number of
independent observations (cf. [Mil83, ch. VII]). In section 4.1, we shall see that a rate
of O(n~!) is not achievablein the PET problem for loss functions generated by squared
Sobolev norms of order > —3/2. In section 4.2, we shall derive a slightly tighter lower
bound for squared Sobolev norms of order between —1 and —3/2. Finally, in section
4.3, we show that the minimax risk is infinite for squared Sobolev norms of order

> —1.

4.1 Loss functions induced by Sobolev norms of
order > —3/2

Let S denote the unit square centered at the origin, i.e., [-1/2x1/2]2. Our goal in this
section is to show that the minimax risk for estimating y € P(S) from n independent
observations distributed according to Ty with respect to the loss function generated

by || - Ili,_ L(R) for « < 3/2 is not O(n~'). We begin by considering the case where
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the loss function is generated by || - |12 _(ge)-

Theorem 4.1.1 The minimaz risk for estimating p € P(S) from n independent ob-
servations distributed according to T p is not O(n~'/2) with respect to the loss function

generated by || - ||z _(re) for a < 3/2.

Proof. We shall prove the analogous result where || - ||;2 () is replaced by
||+ |lz2 (r2)- The stated result will then follow from lemma 3.3.6.

We will consider a sequence of restrictions of the estimation problem in question
where the unknown measure g is assumed to belong to a finite-dimensional subset of
P(S). For each of these finite-dimensional (parametric) problems, we will compute
a lower bound for the asymptotic minimax risk of the form ¢n,n~!/2, where ¢, is a
constant. We will show that a finite-dimensional subproblem can be chosen to make
¢m arbitrarily large, which implies that no bound of the form cn~1/2 exists for the
original problem.

Let k£ € N*. We will consider finite-dimensional parametric families of probability
measures that are indexed by a real vector, d, of dimension #{x € Z%: 0 < || < m}
which is composed of two subvectors, @ and b, of dimension J#{x € Z?: 0 < |x| < m}
(#{-} denotes the cardinality of the set {-}). For x € Z2, define arg x &' arg(x; +ix3),
where arg on the right-hand side is just the usual argument of a complex variable.
Define the probability measure u4 with support on S by p4 4f £, d)2, where f; : R? —
R is given by

fa(z) =151+ Y axcos(2mk - z) + bysin(27k - )],

re?
0<|x|]<m
o0<argn<n

where a, and b, denote components of a and b, respectively. Comparison with equa-
tion 3.11 shows that a, and b, are the Fourier cosine and sine transform components
of fa, respectively. It is easily verified that if the real vector d is contained in a
sufficiently small neighborhood N,, of 0, then we indeed have a parametric family

of probability measures. (We need to choose N,, sufficiently small so that f; > 0
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for all d € N,,). Consider the problem of estimating the vector d given n indepen-
dent observations distributed according to the probability measure v4 7 fadf ds on
Gi.a. Let r(d,d,) denote the risk of the estimator d, with respect to the loss function

llug — pallzz (). It is easy to see from equation 3.12 that

1 o .
”/‘J - l-‘d”Lz_a('ﬂ') = {5 z (l + 4”2|K|2) a[(an - 05)2 + (bn - bn)2]}1/2
K€Z?

o< |x|<m

O<Largr<m
(45 and b, are, of course, just the components of d corresponding to a, and by,
respectively). Let F,, and F;_ denote the diagonal elements of the Fisher information
matrix for the estimation of d from one observation distributed according to v4 that

correspond to the components a. and b, respectively. By the asymptotic minimax

lower bound [Mil83, p. 146, thm. VII.2.6][Str85, thm. 83.11, rem. 83.12],

liminf n'/? sup r(d,d,) > [l S+ 4P (F + BOYHVA (4.1)
n—00 2€Nm 2 A
0<|s|<m
O<Largn<m

It is shown below, in lemma 4.1.3, that F,, and F;, , when evaluated at d = 0, are

< |&]7Y(3 + log || /7). It follows that

liminf n'/? sup r(d,d,) > [-;- Yo (1 +47%|k[*)|x|(3 + log |k|/m) M]3 (4.2)
ENm

n—oco
N4
o<|s|<m

Now, by definition,

[ 1/2 TN —Tiom 1/2 A
liminf n Sup r(d,d,) =liminf n Sup [|a = pallzz (m),

where ji4 is any estimator of gy which has Fourier coefficients of 0 for || > m. But

since g4 has Fourier coefficients of 0 for |k| > m, such a restriction does not increase
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the minimax risk. We thus have
liminf n'/2 sup ||i — gl (p
gt e ez ()

>liminf n'/? sup || — Hdllrz ()

n—o00

>[5 X (14 47[x)2|sl(3 + log sl /)] 2.

reZ?
0<|kj<m

Finally, we note that the series in the last line of this inequality converges as
m — oo if and only if & > 3/2. Since this is fairly obvious for a # 3/2, we shall just

demonstrate that the series diverges for the “borderline” case a = 3/2. We have

3 (14 4n?ef?)"2r](3 + log [x|/7) !

ne?
[s|>e3"
> ) (16x%|x[*)"*/*|x|(21og |x|/7) "
r:EZ2
[x]>e3™
1
— 2—77r—2
2 ozl
|s|>e"
> 2-77l'-2/ R? L
- |=|§"+1 |z + 1|2 log |z + 1|

dr
= 2—6 -1 r
i /eam (r + 1) log(r + 1)

=2"61r'1/°° r-1 dr
ery2r2logr

>2 7x1 / .o _dr
- ery21logr

=2""7r"log(log )| %5n 42

= 0Q.

We conclude that for any « < 3/2 and ¢ > 0, there exists a finite-dimensional
restriction of the PET estimation problem whose minimax risk with respect to the
loss function ||g; — pall2 (12) is bounded below by cn~!/2 and hence the minimax

risk for the original problem is not O(n~'/2). O

Corollary 4.1.2 The minimaz risk for estimating u €P(S) from n independent ob-
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servations distributed according to Ty is not O(n~") with respect to the loss function

generated by || - ||i,_°(m) for a < 3/2.

Proof.  Apply Jensen’s inequality. (For a statement of this inequality, see, e.g.,

[Dud89, 10.2.6] or [Rud87, thm. 3.3].) O

It remains to prove the lemma that was used in the proof of theorem 4.1.1.

Lemma 4.1.3 Let F,, and F,, denote the diagonal elements of the Fisher informa-
tion matriz corresponding to the components a. and by, respectively, for the estima-
tion of d from an observation distributed according to v4. Then F,  and F,_, when

evaluated at d = 0, satisfy the inequalities
Fo, < |6|7'(8 + log|«|/m)

and

Fy, < |&|7'(3 + log ||/ ).

Proof. @ We shall just give the proof for F, .. The proof for F},_ is essentially the
same.

The probability density function of the observation is given by

g4 cl=ef de
= %{R(ls) + Z aR[ls cos(27k - z)] + by R[lssin(27k - )]}
O:Iilz;m
O<argn<n

with respect to the measure dfds on G,;. Recall that F, , evaluated at d = 0, is
given by
F,, = E, (Gas loggd)2,

where the expectation is taken over the subset of Gy, where Rls > 0 [Mil83, p. 104].
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We have

_ R[lscos(2rk - z)]
9d .
Thus F,,, when evaluated at d = 0, is given by

$+7/2 R[1s cos(2r« - )](8, s)\
: 0,s)dsdo, .
- /Rls(a 3)>0 ( R15(6,s) Rls (6,5)ds (4.3)
where ¢ is any real number.

We will now obtain some more explicit expressions for Rls and R[ls cos(27« - z)].
Denote the length of the intersection of the line (6,s) € G2 with S by £(6,s). We

have

R15(0,s) = £(6, s) (4.4)
and

R[ls cos(27k - z)](0,8) = /t:w(&)uul-(a)es cos{2mk - [sw(0) + tw'(0)]} dt

= cos[2msk - w(B) + 27ik - wh(0)] dt.
t:sw(0)+twt (6)€S
There exists a unique ¢ € [0, 7) such that £/|k| = w(¢). We can thus rewrite the last

equation as

R[1s cos(2mk - 2))(0, s)

= Jeaw(8)+tut (9)es cos[27s|k|w(@) - w(0) + 27t|x|w(4) - w' ()] dt

= - 0—¢— dt
,:W(O)Mw*(o)esc°3[27r3|'°|COS(O @) + 27tk cos(6 — ¢ — w/2)]

= Jonoyewr@yes cos[2ms|«| cos(8 — @) + 2nt|k|sin(0 — ¢)] dt.

We will need to use some estimates for the quantity |R[1s cos(27« - £)](6, s)|. On

one hand, we have the obvious estimate

|R[1s cos(27k - z)](8, s)| < £(8, 3). (4.6)
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To obtain another estimate, note, from equation 4.5, that R[ls cos(27« - 2)](0, s) is
given by the integral of a cosine function of period 1/|«||sin(@ — ¢)| over an interval.
It is easy to see that the magnitude of an integral of a cosine function of period ¢ over

an interval cannot exceed t/7. We thus obtain the estimate

|R[1s cos(2mx - 2)](0, s)| < erl(l?—dﬂ'

Using the inequality |sin 8| > (2/7)|6|, which is valid for || < 7/2, we obtain the

simpler estimate
1
R[lscos(2rk - 2)](0,s)| < ————— 4.7
for | — 0] < m/2.
We will now use the estimates on |R[ls cos(27« - z)](w, s)| to obtain an estimate

of F,,. We can decompose the right-hand side of equation 4.3 into

K

~

_1 R[1s cos(27k - z)](8, 3) 2
— w Jogio-4I<1/Inl /s:t(o,,)>o ( R15(0,s) Rls(0,s)dsdl,

+l/ | / (R[ls cos(2rk - z)](9, s)
T J1/|n|<16~8|< /2 J2:0<4(8,9)<1/x]10-9| Rl1s(8,s)

1 R[15 cos(27« - z)](6, s))2

— Rls(0,s)dsdf.
+7" A/INISI9—¢IS”/2 -/83‘(0.0)>1/|K||9-¢| ( Rls(0,s) st0.5)ds
(4.8)

2
) Rls (6, s)ds df

Using equation 4.6, the first term on the right-hand side of equation 4.8 is l.cunded

above by
1

= / €8, s)ds do
T Jo<|o0-o|<1/|x| J5:£(0,5)>0

1
<1 [ VT=stdsds
-1

T Jo<|o-¢|<1/|x|
1. 2 Y
T k| 2
_ 1

|&|’

where we used the result




[Sel72, p. 427, eq. 200]. Using equation 4.6 again, the second term on the right-hand

side of equation 4.8 is bounded above by

1

/ €6, s) ds df
T J1/|sI<|6-0|<7/2 J5:0<(8,5)<1/|x]|0- 9]

1
< / ds df
k| Ji/Ixi<io-sl<n/2 Ja0<o.0)<1/Ixl10-4] |0 — &)
2

1
< L %
= || Ji/isicle-signs2 |£]|0 — 6[? (4.10)

4 1
e /l/|~| g
4
= ——(|&| = 2/7)

ow|k|?
4

x|’
where, in the second inequality, we used the fact that the set {s : 0 < £(6,s) <
1/|&||60 — |} consists of two intervals of length less than 1/|«||6@ — ¢|. Using equa-

tion 4.7, the third term on the right-hand side of equation 4.8 is bounded above
by

1 / ! ds d6
7 J1/Inl<l0-s|<n/2 Jst(8.0)>1/Ixl10-0] 4][2|0 — $]24(0, 5)

1
<= / —
T J1/In|<l0-sI<n/2 Jnt(0.5)>1/xl10-4) 4]£]|0 — &]

1 (=21
1r|ln| 1/Ix| 0
= m[log(fﬂ) + log |«[]
1
||

dsdf

(4.11)

< ——(1/2 + log |x}).

Using the estimates obtained in equations 4.9, 4.10, and 4.11 in equation 4.8, we get

1 4 1 log |«|
F —
< Tel el T 2alel T Tl
_2r+9  loglx|
~ 2nx T|&|

< |&[7Y(3 + log |£|/7). O

Remark 4.1.4 Corollary 4.1.2 concerns estimators of g that are based on n inde-

pendent observations distributed according to T'u. It is useful to contrast this result
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with one concerning estimators of u that are based on n independent observations
distributed according to p itself. In this case, a (much simpler) analogue of lemma
4.1.3 shows that the corresponding F,, and F;, are uniformly bounded below by a
positive constant. Using this result, one may derive a result analogous to corollary

4.1.2 stating that the minimax risk is not O(n~!) for & < 1.
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4.2 Loss functions induced by Sobolev norms of

order —3/2 to —1

In section 4.1, we showed that the minimax risk in the PET problem with respect to
the loss function ||z — u||2, (re) 18 not O(n~!) for a < 3/2. In this section, we will

obtain some tighter lower bounds for 1 < a < 3/2.

Theorem 4.2.1 Let 1 < a < 8 < 3/2. The minimaz risk with respect to the loss

function || — p||3, () for estimating p €P(S) from n independent observations
distributed according to Ty is bounded below by O(n=2F+1)/5),

Proof. We shall prove the analogous result where || - ||z (ge) is replaced by
|| - I|lz2 _(12)- The stated result will then follow from lemma 3.3.6.

We will apply the procedure used in [JS90, sec. 5]. This procedure gives a lower
bound for the estimation of a probability measure of interest from n independent
observations distributed according a probability measure which is a linear function of
the probability measure of interest. The possible probability measures of interest are
assumed to be representable by probability density functions with respect to some
common measure on the observation space. These density functions are assumed to
belong to a subset # of an inner product space H. & is assumed to be a translate
of a set, Hy, that is balanced about the origin. If the probability density of interest
is f € &, the probability measure of the observations is assumed to be represented
by the probability density function B f with respect to a common measure, which we
shall denote by (. These density functions are assumed to lie in an inner product
space, K. The function B is assumed to extend to a linear operator B : H — K.

Define & %' B and let [ (g,9’) denote the Kullback-Leibler information number,
Jlog(g/g’')g d(. 1t is also assumed that there exists a constant ¢ such that I(g,¢’) <
c|lg — ¢'l|%k for all g,¢' € 4. This condition will be satisfied if the densities in ¢ are
uniformly bounded above and below away from 0.

For a finite-dimensional subspace M C H, denote the dimension of M by |M| and
the ball of radius 6 centered at 0 € M by Bp(6). The norm of the restriction of B to
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M is denoted by || B||as ' sup sepr{||Bfil /|| 1|} Define .#; = {M : By (8) C Ho}

and the modulus function
o(8) & sinf{||Bl|m/|M|V?*: M € ).

The function o is strictly increasing and we define the function 7 to be the left-
continuous inverse of o. Proposition 5.1 of [JS90] states that, under the conditions

given in the preceding paragraphs, there exist constants d; and d; such that
inf sup Ey||fo — fll} 2 dir?(dan™'?), (4.12)
f feF

where the infimum is taken over all estimators f that are based on n independent
observations distributed according to Bf. (The result in [JS90] is actually stated for
Hilbert spaces H and K, but proof works for inner product spaces as well )

To apply this result, we consider a restriction of the PET problem where the
probability measure of interest is assumed to be representable by a probability den-
sity function on S with respect to Lebesgue measure whose values are contained in
[1/2,3/2]). We can then identify the set of allowable probability measures of interest
with the subset & C L?(S) whose values are contained in [1/2,3/2]. We can write #
as 1s + Hy, where 15 is the indicator function of S and Hj is the subset of L? (T?)
consisting of functions in L?(S) whose values are contained in [—1/2,1/2]. Ho is
clearly balanced about the origin. We will take H to be L?(S) equipped with the
norm induced by L2 (T?).

If the probability measure of interest is represented by f € Hpy, the probability
measure of the observations is given by the probability measure which is represented
by the probability density function T f with respect to the measure dsdf on G, 2. In
order to get probability density functions that are uniformly bounded above and below
away from zero, we will instead represent the probability measures of the observations

by probability density functions with respect to the measure ¢ 4 T15dsdf on G 2-
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Define K = L?(¢) and the linear map B: H — K by

Bf(6,s) =

Rf(0,s)/Rls(6,s) Tls(6,s)#0
0 T1s(8,5)=0

Then, if the probability measure of interest is represented by f € Hy, the probability
measure of the observations is represented by Bf with respect to the measure  on
G 2-

For A > 1, we define M, to be the subspace of H spanned by the functions
cos(2wk - x) and sin(27k - =) for x € Z% with A/2 < |x| < X and 0 < argx < 7. For
& > 0, define \(6) %' dy(a)6-1/(+1) where dy(a) & (3r)-/(c+1)2-4/(>+1) It is shown
below, in lemma 4.2.2, that, if A(§) > 1, M) € .#5. Thus, if § is sufficiently small,
0(8) < 8l|B|IM,/|Mrs)|*/2. It is shown below, in lemma 4.2.3, that, if A(§) > 2,

“B”M,\(a) = O(Ap_llz(é))'

Since, by lemma 4.2.4 below, |M)| > ¢; A2, where ¢; def 1/[4(V2 + 1)?], we have, for é

sufficiently small,

O(N~1/%(6))
VeA(d)

= §0(\"~%%(¢))

= 50(5(3/2--ﬁ)/(a+1))

< 60(6B/2-A)/(B+1))

= O(6%/2(F+1)),

a(6) <4¢

It follows that, for sufficiently small ¢, there exists a constant d such that

7(€) > de2P+1/5,

hence
72(€) > d?eMPHI/S,
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We conclude that
T2(n-l/2) > dzn—z(ﬁﬂ)/s.
for sufficiently large n. The desired result now follows by applying equation 4.12 O

It remains to prove the lemmas which were used in the proof of theorem 4.2.1.

Lemma 4.2.2 Define A = A\(6) = da(a)61/(@+1) where
dy(a) def (3m)~o/(at)g=4/(at1),
Then, if \(8) > 1, M) € #;s.
Proof. Suppose f € By, (6). Since f € M), we can write f as

f(z)=1s _S_ a, cos(2mk - =) + besin(2mk - z).
A
A/2< KIS A
0<argn<m

By equation 3.12,

l -
Il my=5 X (+4n?lsf)™(ak +8).

A
A/2<|8I<A
0<argr<m

Since f € B, (8), its coeflicients must satisfy the inequality

2 T (e 4 8) < 8
xeZ?
A2 kI
O<Largn<m
and, a fortiori,
Lameae v din<s
2 Y A

A2 KIS
0<argn<m
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Solving the equation A = dz(a)6~1/(2+1) for § gives § = (A/dy(a))~(**+1). Substituting

this expression for § into the last display gives the sequence of inequalities

SBNTO T a4 B < (Vdy(e) e,

A
A/2<|KI<A
O<argn<m

22 Y 2+ <1/4
A
A2 KI<A
0<argr<m

Using the general inequality

n 2 n
(Z .1:,-) < nzz? (4.13)
=1 =1
and lemma 4.2.4 below, it now follows that

Y laxl+ bl < 1/2. (4.14)

x€Z?
A/2<|kI<A
O<argx<w

It is clear that this last condition insures that f € Hp. O

Lemma 4.2.3 For A\>2and1 <a< f<3/2
1B, = O(X~1/2).

Proof. M, is spanned by the functions of the form 15 cos(2r«x-z) and 15 sin(27«-x)
with A\/2 < |k| < A. It therefore suffices to that ||Bf||x/||fllx = O(\~1/2) for
functions f of this form. We will prove this for f of the form 1gcos(27« - ). The

proof for f of the form 1gsin(27« - z) is essentially the same.

Define (6, s) to be the length of the intersection of the line (#,s) € G,z with §
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and go def T1s. Then

IBAIl% = ll9/g0ll32)

1 [o+7/2 R[5 cos(2rk - 2)](6, s) 2
= - 15(0, 5) dsdb.
1r/¢-,r/2 ,/s:t(o,s)>o( R1s(0,s) R1s(9,s)ds

where 0 is any real number. The last quantity on the right-hand side of this equation
is just the quantity F,, in theorem 4.1.1 (see equation 4.3). Using the upper bound

for this quantity obtained in that proof, we get

Bl < I51=(3 + logxl/7)
< 212[-1(3 + log |A|/)
= O(A'log \).

On the other hand, we have

! -
Il = 501 +4nlal?)

2 %(3")—20/\—201.

It follows that
IBfllx . O(A-"21og"? )

g = 271/2(3m)~=A-=
— 0(/\0—1/2 logl/'z /\)
= 0(M-'?). 0

Lemma 4.2.4 If A > 1, then
ar? <My < )%, (4.15)
where ¢, ¥ 1/[4(v2 + 1)?] and c; ¥ 18.

Proof. For ) € R, let X and ) denote the smallest integer > X and the largest inte-
ger < A, respectively. Now [M,| > 4 forall A > 1, since A/2 < |(£A,0)],](0, £A)| < A
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Thus for A < 4(v/2 + 1),
My =>4
_16(V2+1)?
B 4(\/§1+ 1)2

T i)

On the other hand, for A > 4(v2 + 1)

2

IMy| =#{ke€Z?:1/2< |k <A)
=#{k€Z: k| <A} —#{r € Z2: |k| < \/2}
> #{r € Z: |k, |r2] < A/V2} — #{x € Z?: |1, |r2| < A/2}
= (2A/V2+1)? — (2X/2 = 1)?
> (V22 =1 = (A +1)
=202 — 220+ 1 - (A2 +2) +1)
= A2 - 2(v2+1)A
> A2/2.

This gives the left-hand side of equation 4.15. The right-hand side of equation 4.15

holds since

IM)| =#{x€Z?:2/2<|k| <A}
< #{reZ®:|x| <A}
< #{k € Z?: |r1|, k2| < A}
= (2X +1)?
=4\ +4) + 1
<92
< 18)2,

Remark 4.2.5 While the results in this section provide a lower bound on the rate of
convergence of the minimax risk, I would conjecture that they are, in fact, not very
tight. I would make the further conjecture that, at least under the slightly stronger
regularity conditions used in section 6.4, the actual minimax rates are O(n=2(>-1)).
This conjecture is based upon preliminary calculations of the performance of esti-

mators for estimating the Fourier coefficients of the measure of interest which are
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constructed along lines discussed in chapter 6.

Remark 4.2.6 The procedure in [JS90, sec. 5] that we used in this section stems from
a technique pioneered by Birgé [Bir83]. In essence, it involves constructing large finite
sets of allowable probability densities that are at a distance of > é from each other
with respect to the appropriate Sobolev norm, but whose Radon transforms are at a
distance < 7 with respect to the L? norm. The best results are obtained by choosing
sets which satisfy such conditions whose cardinality is as large as possible. Since one
is dealing with Sobolev norms, it is natural to specify the probability densities by
their Fourier coefficients. One then needs to make sure that the functions specified
are actually probability density functions, i.e., that they are nonnegative. This is, in
part, why the densities in our proof are constrained to have values in [1/2,3/2]. In
the preceding proof, we have used the inequality given by 4.13 and condition given
by equation 4.14 to ensure the satisfaction of this constraint. It is clear that thisis a
pretty heavy-handed approach; there are many densities which satisfy the constraint,
but not these conditions. However, it appears to be very difficult to characterize the
maximal cardinality of sets satisfying all the necessary conditions. As a result, we

conjecture that the results are suboptimal.
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4.3 Loss functions induced by Sobolev norms of

order > —1

In this section, we will show that the minimax risk for estimating u € P(S) from n
independent observations distributed according to Tu with respect to the loss function
|iin — #ll2 (me) for @ < 1 is infinite. If fact, we shall prove the stronger statement
that this is true for estimating g € P(S) from n independent observations distributed
according to p.

The idea of the proof can be briefly sketched. Suppose f, is an estimator of x based
on n independent observations distributed according to x and that sup,ep(s) Eul|fin —
pllz me) < oo. If ¢ € L2(R?), denote the functional P(S) — R given by p —
Jre ¢ dp by é. Then é&(ﬁn) is an estimator of the functional ¢(x) which satisfies

sup Eyun|¢(fin) — (p)] = sup Eun|(jin — p)(8)]
wEP(S) wEP(S) (4.16)
< ||Bllzmey sup Eunllin — plliz (me)-

ueP(S)

For each a < 1, we will construct an ¢ € LZ(R?) such that

inf sup Eyun|dn — ¢(u)| = oo.
én peP(S)

Equation 4.16 will then imply that

inf sup Epun||fn — pllr2 (we) = o00.
Hn ueP(S)

Theorem 4.3.1 Let a < 1 be given. There ezists a function ¢ € LZ(R?) such that

inf sup Eyn|én — $(p)| = o0,
#n u€P(S)

where the infimum is taken over all estimators ¢, of ¢(u) based on n independent

observations distributed according to u.

76



Proof. Ifv and v are probability measures on the measurable space X, let H(v, ')
denote the Hellinger distance between v and v'. If v and v’ are represented by the
densities g and ¢’, respectively, with respect to some o-finite measure A, then H(v,v')
is given by

1
H) = —IIVG - VollLaexn

[Str85, def. 2.7]. Define the modulus of continuity of the functional ¢ over P(S) by

w(e) = sup{|¢(n) — ()| : H(w',p) < €, 1" € P(S)}.
We will use the lower bound

inf sup Eyelda — ()] 2 cw(n™'/?) (4.17)
én uEP(S)
for some ¢ > 0 [DL91]. The proof will proceed by constructing a suitable ¢ € L2(R?)
and showing that the modulus of continuity w(e) is infinite for all ¢ > 0. Note that,
since L2,(R?) C L2(R?) for ' < a, it suffices to prove the theorem for o satisfying
0 < a < 1. We shall therefore assume, without loss of generality, that 0 < o < 1.
We start by constructing a function ¢ € L2(R?). Define the function x € C°(R?)
by
e—l/(l—16|x|2) Izl S 1/4
x(z) = ,
0 |z| > 1/4

cf. [Fol84, exer. 8.3]. Define A &' (a — 1)/2 and the function ¢ : R — R by

so) { el it el £0
0 if |z| =0

It is shown below in lemma 4.3.4 that ¢ € L2(R?).
We now want to show that the modulus of continuity of the functional 4 is infinite
for all € > 0. Since the modulus of continuity is obviously an increasing function, it

suffices to prove that it is infinite for 0 < € < 1. Let 0 < € < | be given. Define the
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measure g to be the uniform probability measure with respect to Lebesgue measure
on the annulus of inner radius 1/4 and outer radius 1/2 centered at the origin. For
0 < n < 1/4, define the measure u, to be the sum of (1 — €?)u and the positive
measure of total mass ¢ whose density is uniform with respect to Lebesgue measure
on the disk of radius 7 and 0 outside this disk. We obviously have ||u — g,]], = €

Now, for any probability measures yu and g/,

H* (¢, p) < [le' = pello (4.18)

[Str85, lem. 2.15], so H(p,p,) <e.
We now compute the difference between the values of the functional ¢ on x and
fy. We have
$(1a) = $(1) = $(n)
> E'ze-l/(l—usn?)nx_
The last expression approaches infinity as  — 0. Thus, for any ¢, M > 0, by taking
n sufficiently small, we have H(u,u,) < € and |@(u) — é(py)| > M. This says that

the modulus of continuity w(e) is equal to infinity for ¢ > 0. O

Corollary 4.3.2 Let a < 1 be given. Then

inf sup Erun|én — ¢(4)| = oo,
$n wEP(S)
where the infimum is taken over all estimators $, of ¢(p) based on n independent

observations distributed according to Tp.

Proof. It is clear that, given observations distributed according to p, one could
construct a derived experiment in which the observations would be distributed accord-
ing to 7'u. Thus, given any estimator based on observations distributed according to
T, one could construct a (randomized) estimator with the same risk that is based on
observations distributed according to x. This reasoning is usually expressed by saying

that the experiment with observations distributed according to T u is a randomization
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of the experiment with observations distributed according to y [Str85, sec. 55]). Thus
the minimax risk for the experiment with observations distributed according to Ty is
bounded below by the minimax risk for the experiment with observations distributed

according to . O

Corollary 4.3.3 Let a < 1 be givea. Then

inf sup E||i, — pl| = oo,
Hn ueP(S)

and

inf sup E||g. — pl|* = oo,
Hn ueP(S)

where the infimum is taken over all estimators i, of p based on n independent obser-

vations distributed according to p or Tu.

Proof. To prove the first equation, let ¢ be as in theorem 4.3.1. Assume, to obtain

a contradiction, that inf;, sup,ep(s) E||ftn — #|| < co. Then, by equation 4.16,

inf sup Eld, — ¢(n) < |16llcae)inf sup Elldn — ullis ge)
én u€P(D) Hn ueP(S)

< 00,

which contradicts theorem 4.3.1 and corollary 4.3.2. This proves the first equation
and the second follows from the first by Jensen’s inequality. O

It remains to prove the lemma that was used in the proof of theorem 4.3.1.

Lemma 4.3.4 Let 0 < o < 1 be given and let A = (a — 1)/2. Define the function

x:R?2 > R by
e—1/(1-16|z|?) |:r| < 1/4

X(z)= 0 |z| > 1/4

Then the function ¢ : R? — R given by

x(z)|z* if o] #0

¢(z) = ,
0 if |z| =0
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is in L2(R?).
Proof. We have to show that the quantity
18112 me) = [ (1 +4n21€R)7[d(e)] de (4.19)
e = [ :

is finite. Let ¢35 : R? — R denote the function given by

.
W)z{ o it = #0
0 if|z|=0

Then, if 8 ¢ 2Z, the Fourier transform of 3 is given by

¥p(€) = di(B)y-2-5(8),

where

aet 2'7PT((2 + B)/2)
— T(=8/2)

and the finite part of v, is understood when v < —2 [It685, app. A, tab. 11.II]. Using

()

this notation, we can write

& = x¥a-

Now x € C>(R?), hence x € Oy (R?), where Oy (R?) denotes the space of smooth
functions slowly increasing at infinity [Tre67, p. 275, def. 25.3]. Also #,, being the sum
of a function with compact support and a function in L=(R?), is in & (R?) [Tre67,
p- 274]. It thus follows that the Fourier transform of ¢ is given by the convolution of
% and ¥y:
$E) =x+Pa()
= di(A)X * ¥-2-1(£)

[Tre67, p. 319, thm. 30.4]. Since $_»_» € #'(R?) and (¢) € F(R?), § € C*(R?)
[Tre67, p. 317, thm. 30.2]. To prove the desired result, it therefore suffices to show

that the integrand in equation 4.19 is dominated by an integrable function for |£| > 2.
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Since y € &, for each k € N there exists a constant d;(k) such that, for £ # 0,

X(€) < dy(k)E|™*
= da(k)p_«(£).

We can write

fZ’(f) =di(A)(X * 1 <ca¥-2-2 + Ljj<a X * Lpp1¥-2-2

(4.20)
F1ps1X * L >19-2-2)(§)-
For |€| > 2, we have the estimates
X * 1<a¥—2-x(€) < da(3)-3 * 1| j<1¥0-2-a(€)

_ =3 [~2-A
= @) [ le= i~ dn
<dy(3)(IEl =17 | Inl™* M dy

Inl<1 (4.21)

< 2ndy(3)(|€]/2) 73 /0 1 ro1=N dr

= 16mdy(3)|¢]°
< 16mdy(3)|€]7272,

1I-ISI)Z * 1I-I>l¢-2—z\(€) < d2(1)1|-|511/’—1 * 1|-1>1¢'-2-,\(f)
=dy(1) [ Tl ~ ™l dn

< dy(1)(|¢] - 1)"‘*/l|e-n|51|£ — 7| dp (4.22)
< 2ndy(1)(JE]/2)"2> /0 " dr

= 167dy(1)|¢]7*,
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and
Lsax * L >1%-2-a(8)

S d2(3)]>1%-3 * 1 51¥-2-a(€)

=&:(3) ([ Leno1lé — 0|2 lnl "2 d
1) [y e i 6 = 17

+/ lis — 3|22 d )
lnl>lel/2 € nl>1|§ ™ Inl n
< &:(3) |8l T 1.23
o )( €l /Inlsm/z In| U] (4.23)
92+A —2—A/ L -3y )
TP | Hemnbrl€ =l
lel/2 o0
<2nas@ [ole [ e g [t
0 1

= 2mdy(3) [2H[¢] > + 27 g ]
< 25 rdy(3)]€722.

Substituting the estimates given by equations 4.21, 4.22, and 4.23 into equation 4.20

gives, for [£] > 2,

() < di()) [16mdy(3) + 16mdy(1) + 25+ wdy(3)] €]~
= 16mdy(A) [da(3) + da(1) + 2" do(3)] [€72.

Defining
d3(\) = 16mdy () [d2(3) + da(1) + 2*+2da(3)]

we see that

18(€)] < da(A)]€]72>

for |¢| > 2. Thus, for [£]| > 2

(144l B[ < BN+ 4n)lgl=>
< (37r)2°'d§(/\)|£|‘4'2)‘+2°‘
= (3m)Pedi(A) gl
= (3 B(lel .

The last function in this chain of inequalities is integrable over the region |£| > 2,
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which gives the desired result. O
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Chapter 5

Upper Bounds on Minimax Risk

of Measure Estimation

In chapter 4, we showed that the minimax risk in the PET problem is not O(n~!)
with respect to loss functions generated by squared Sobolev norms of order > —3/2.
In this chapter, we will show that the minimax risk is O(n~!) with respect to loss

functions generated by squared Sobolev norms of order < —3/2.

5.1 Loss functions induced by Sobolev norms of
order < —3/2

The main theorem in this section shows that the minimax risk for estimating u € P(.S)
with respect to the loss function generated by the squared Sobolev norm || - {|3: (g
for a> 3/2 is O(n™!). It is proved by constructing a sequence of estimators, {j,},

whose maximum risk over P(S) is O(n™1).

Definition 5.1.1 If z,,...,z, are points of the measurable space (X, %), we de-
fine the empirical probability measure generated by z,,...,z, to be the probability
measure on (X, &) consisting of the sum of n point masses of measure 1/n located
at ry,...,r,. Let P(G)2(r)) denote the set of probability measures on G, with

support on G 2(r).
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Theorem 5.1.2 For a > 3/2, there exists a sequence of estimators ji,, based on n

independent observations distributed according to Ty, such that

sup E(run||iin — #”iz_o(m) =0(n™). (5.1)
HEP(S)

Proof. We start by constructing the sequence of estimators. Fix n and let v,
denote the empirical probability measure generated from n independent observations
that are distributed according to the probability measure v = T'u. We first construct

an auxiliary estimate, oy, of v by choosing some 7, € T[P(S)] which satisfies

N 2 . N 2 -1
10n = walliz,,_, 1oy S o dnd o 1P = vnllie o 6ipap + 07

(It is, of course, obvious that such an estimate exists. Unfortunately, we cannot

construct our estimate by simply choosing some o, € T[P(S)] which satisfies

. , . T
17 = anle—(o-l/2)(Gl‘2(l)) - t‘:G'Il'ﬁf(S)] e V"“Lz—(o—l/z)(c‘-’m)

since there is no guarantee that such a 0, exists, i.e., that the infimum can be
achieved.) We then estimate p by i, def T-'0,.(The right-hand side of this equa-
tion makes sense since T is injective on P(S) and i, € T[P(S)].)

We will proceed by first showing that sup,erp(s)) Evnllin — u||i,_(°_l,2)(cl.2“” =
O(n~!) and then using lemma 3.4.10 to show that Sup,ep(s) E(run|lin — "lﬁ.?_a(m) =
O(n™!). By the triangle inequality and the easy inequality 2ab < a? + b?, we have

. 2
Won = vllz2 Gz

S 2(l1on = wmllza o (Graan Fl1m = vllEz e 52)
<2( _inf |7~ vallf2

-1 2
c€T[P(S)] y(G1.2(1)) +n7 4+ |lva - V“L’_(a_.m(cm(‘)))

(a=1/2

Slllvn —vllez L, Graay + 207
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(the last inequality follows since v € T[P(S)], hence

: - 2 2
De;.ﬁ,f(s)] 1o =valltz ooy S v =valliz o (Giaon):

Taking the expectation of equation (5.2) and using lemma 5.1.3 below, we find that

R 2

VG;?IE:S)] E"”“Vﬂ B u“Lz—(O—llﬁ)(Gl‘Z(l))

< sup 4Eun||vn —vl|i2
veT[P(S)] et/

=0(n™").

Graqy T 2071

To complete the proof, we note that lemma 3.4.10 shows that there exists a constant

¢ such that

Etupllin = lltz o) < € Equnl R~ Bullz 6100

_ 2.2 . 2
= Eqpllon — iz, Gia20)

It follows that

sup E(ruyn|lfn — plf <cr? sup  Eunl||tn — v||p2 G
wep(s) 22 ) veT(P(s) 2 (ami/(Gra(1)

=0(n™'). 0
It remains to give the proof of lemma 5.1.3, which was used in the above proof.

Lemma 5.1.3 Let v, be the empirical distribution obtained from n independent ob-

servations distributed according to v. Suppose a > 1. Then

sup Epnllvn - V”i?_a(al,g(l)) =0(n7").
vEP(G1,2(V2/2))

Proof. Let v € P(G,3(v/2/2)) and let i denote the lift of v to a distribution on
S' x R as in definition 2.2.2. Clearly 7 has support on S x [—v/2/2, v/2/2], hence on
St x [—1,1].

It is well-known that the set of exponential functions {#C—i("‘o*'""”)}“ezz is an
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orthonormal basis for L2(S! x 2T!). Since the map
Ua: frr FTH(L A+ w7+ 7)) 2F (),

where .# denotes the Fourier transform, is an isometric isomorphism of L3(S' x 2T*)

onto L% (S x 2T") (cf. [Tre67, p. 330, prop. 31.8]), the set of distributions

—i(r1047Kos) o:/2e—i(m0+1n<-2.s)}KGZ2

(Ul e heem = (=1 45+ 7°%3)

is an orthonormal basis for L2 _(S! x 2T!). For any distribution v € L? ,(S! x 2T"),

we have

ol122 _(sixam) = 47 D (1 + &1 + w263) 7 |6(x)[%.
x€Z?

Since
e—i(s;9+1rnga) d(l/n _ V) ~

o 1
(=) T8) = o= forn

1
= - 6 d(v, — v),
. cos(k10 + mr2s) d(vn — v)

it follows that

|| (vn = v) ~”§,’_°(Slx2'ﬂ")

2
=4 (1 +«}+n%k3)™® (/ cos(k10 + mKas) d(vn — u)) .
¥ Gia

(5.3)

Now if v is a probability measure on G}, and g is a measurable function on
Gi 2 such that |g| < 1, fgdv, (v, denotes the empirical measure generated by one

observations distributed according to v) is a random variable with mean [ gdv and

v/Gm gtdv — (ngdu)z.

Since the observations generating the empirical measure v, are independent, it follows

variance
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that [ gdv, — [ gdv is a zero-mean random variable with variance

Lo ()] <21,
l _ < -
= [ Gmg dv /gdu < - Gmg dv

<nlL

Applying this result to equation 5.3, we thus have

Enll(va =) 7ll}2 (sixom) S 47" 30 (147 + 263) 72 (5.4)
k€22

To show that the infinite sum on the right-hand side of this inequality is finite, view
the infinite sum as the integral of the function v“ose value is equal to (1+ 2+ m2£3)~*

on the unit square centered at « € Z2. It follows that

Staim)™ = ¥ [ (4 ) e
Y=/

KEZ?
<l+ > / |k|~2*dz

xeZ2\{0} /~+SCR?

<1+ |z|~2* dx
lz121/2

=1 +21r/ r1=2>dr
1/2

+_F
2(1 —a)
7|.22(:::—1)

(a—1)°

=1

LN

7'2(1_&)|$?_-1/2

Since v is an arbitrary element of G 32(v/2/2), we conclude that

sup  Eun|(vn —v) ~“i’_a(.<>‘1><2‘11'1) =0(n™").
v€G1,2(V2/2)

The desired result now follows by definition 3.2.14. O

Remark 5.1.4 We cannot take o < 1 in lemma 5.1.3 since ||vn — V|12 (G, 1)) Will

not then, in general, even be finite.
Remark 5.1.5 Theorem 5.1.2 concerns estimators of p that are based on n inde-
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pendent observations distributed according to Tu. It is useful to contrast this result
with one concerning estimators of u that are based on n independent observations
distributed according to u itself. In this case. there exists a sequence of estimators
fin such that sup,ep(s) Eun||ftn — /‘”iz_a(m) = O(n7!) for a > 1. Indeed. an argu-
ment similar to the one given in the proof of lemma 5.1.3 shows that the empirical

distribution g, is one such estimator.

Remark 5.1.6 Combining corollary 4.1.2 and theorem 5.1.2. we get the result that
the minimax risk for estimating 4 € P(S) from n independent observations distributed
according to Ty is O(n~') with respect to the loss function generated by || - ”izam»
if and only if @ > 3/2. Combining remarks 4.1.4 and 5.1.5, we get the companion
result that the minimax risk for estimating u € P(S) from n independent observations
distributed according to x is O(n=!) with respect to the loss function generated by

[l - ”iz-o(m) if and only if a > 1.
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Chapter 6

Estimation of Integral Functionals

Up until this point, we have focused on the problem of estimating the unknown
probability measure g in the PET problem. In this chapter, we will consider the
problem of estimating certain integral functionals of the unknown probability measure
p. Let ¢ : R? - R be a bounded measurable function. The function ¢ induces a
linear integral functional ¢ : M(S) — R defined by g — [ $du. We shall consider
the problem of estimating the quantity ¢(u), which we will refer to as the integral

functional generated by ¢.

6.1 Functionals generated by functions in L?

In this section, we will consider the estimation of integral functionals generated by
functions in L2(R?) for a > 3/2. The Sobolev embedding theorem [Fol84, thm. 8.54]
shows that L2(R?) C Co(R?) when a > 1, so the functions in L2 (R?) are, in particular,
continuous and bounded. We shall see that the minimax risk with respect to squared
error loss for the estimation of these functionals is O(n™!).

If $ € £*(R? and j, is an estimator of x, then an obvious estimator of é(p)
is given by ¢, def #(jin). Let a > 3/2. By theorem 5.1.2, there exists an estimator

fin such that sup,cp(s) E(rpun|liia — “”?ﬂ_a(RJ) = O(n7'). If ¢ € L2(R?), then the
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estimate d)(ﬂ,,) of ¢(p) satisfies
sup Ezunldn — (p)F = sup Egupnl(in — 1)(9)I°
kEP(S) u€P(S)

< |18llZzmey suP_ Eqrupnllin — plliz_ge) (6.1)
n€P(S)

< 16117z @e)O(n 7).

Examination of the bound given by equation (6.1) gives some insight into the meaning
of the result obtained in section 5.1. For example, if ¢ is a nonnegative function,
¢(p) is a weighted (by the magnitude of ¢) average of the mass contained in the
support of ¢. One can thus think of ¢ as representing a generalized pixel. Now a
natural quantity that one might want to estimate in the PET problem is the mass
contained in some measurable set Q@ C R?, i.e., the fraction of the tracer in some
(ordinary) pixel. This quantity could be rcpresented as the integral funct.onal lg,
where 1o denotes the indicator function of Q. However, note that equation (6.1)
says nothing about how well one might be able to estimate this functional, since, in
general, 15 ¢ L2(R?) (recall that the functions in L2(R?) for a > 3/2 are continuous).
To get an approximate answer to how much mass is contained in @, one would have
to apply equation (6.1) to some function in L2(R?) which is close in some sense to 1.
For example, for some ¢ > 0, we might choose ¢, such that 0 < ¢.(z) <1, ¢(z) =1
for z € @, and ¢.(z) = 0 for any z whose distance from @ is > €. It is easy to see
that as € becomes smaller, |[@[|zz(re), and hence the bound in equation (6.1), must
become larger.

The fact that our theory says nothing about how well one can estimate the mass
in an ordinary pixel is disappointing. However, it reflects an intrinsic property of the
estimation problem. In fact, in section 6.2, we shall see that the minimax risk for the
estimation of the mass in some very benign-looking ordinary pixels is bounded away

from 0 as n — oo.

Remark 6.1.1 We conclude this section with a few words on our use of the term

“generalized pixel”. We use this term in a way which is fairly close to the use of
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the term generalized function for a distribution. We identify an ordinary pixel, i.e.,
a set @ C R?, with its indicator function, lg, and thence with the integral linear
functional iQ on M(S). It is then natural to use the term generalized pixel for
any linear functional on M(S) and to identify generalized pixels which are integral
functionals with the functions that generate them. In {Bak9l], the term generalized
pixel is used for an element of a basis set for the image (lying in a suitable Hilbert
space) whose coefficient is to be estimated. That is, in [Bak91], a generalized pixel is
an element in the image space, while, here, a generalized pixel is a linear functional on
the image space. There is no real conflict between the definitions since a generalized
pixel in the sense of [Bak91] can always be viewed as a generalized pixel in the sense
used here by the usual identification of an element of a Hilbert space with an element

in its dual.
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6.2 Functionals generated by indicator functions

Let @ be a Borel subset of S. From a physical point of view, it is very natural to
want to estimate u(Q) = 1g(g). It is a somewhat surprising fact that for some very
benign-looking sets @ the minimax risk for estimating (@) is bounded away from
zero as n — oo. For example, the following proposition shows that the minimax risk

for estimating u(pQ) is bounded away from 0 when 0 < p < 1/2.

Proposition 6.2.1 Let pQ) denote the closed disk of radius 0 < p < 1/2 centered at

the origin. There ezists ¢ > 0, independent of n, such that

inf sup Eunllg — 1alp)l > ¢,
i,6 ueP(S)

where the infimum is taken over all estimators ipo based on n independent observa-

tions distributed according to Tp.

Proof. Define the modulus of continuity of the functional ipﬂ over P(S) by
w(e) Z sup{|i,n(k) — La(w) : H(Tu, Tw') < €, u 1’ € P(S)},

where H denotes the Hellinger distance as defined at the top of the proof of theorem

4.3.1. We will use the lower bound

inf sup E(runli,n(p) — La(p)| 2 a(n'/?) (6.2)
1,0 ueP(S)

for some ¢ > 0 [DL91]. We claim that w(e) = 1 for ¢ > 0. To prove the claim,
let € > 0 be given. Let y, denote the probability measure on R? which is uniformly
distributed on the circle of radius r centered at the origin with respect to the measure

df. In appendix A.2, it is shown that v, E Ty, is given by the probability density

dl/, (03)= m‘z___’, 1f|s|§r
dsdf™ 0 ifls|>r
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on G 2. Forr > p, we have

dv, dv,

dsdd ~ dsdf|,, ., .,

Y S E—— ng/,;ds
s \/;2_32 Vr? — 52 b /r? — 52

2
_;/ \/1— 3/p)2_—/° r\/l—(s/r

+7" 0 r\/l—- s/r _.-/0 r\/l— (s/7)? (6.3)

ofr
—_/ 1_32 _7;0 \/1—32

ds

olr
+*/ =
1 — 82 1 — s2
ds

elr
—;-/0 /1—32—;-/0 \/1-—-32

—9_ 2 inl(2
=2 "arcsm(r) y

lor = wollo =

which — 0 as 7\, p. By equation 4.18, it follows that lim,\ , H(T g, Ty,) = 0. On
the other hand |i,q(g,) — 1,a(g,)| = 1 for any r > p. This proves the claim that

w(e) = 1. Substituting this result into equation 6.2 completes the proof. O

Corollary 6.2.2 There exists ¢ > 0, independent of n, such that

inf sup Eunlin — La(w)® 2
1,0 ueP(S)

where the infimum is taken over all estimators f, based on n independent observations
distributed according to Tp.

Proof. Apply Jensen’s inequality.

Remark 6.2.3 This result contrasts sharply with the situation for the problem of
estimating u(pQ) given n independent observations distributed according to x. In
fact, let u,, denote the empirical measure constructed from n independent observations

distributed according to p. Then it is shown below that for any Borel subset @ of
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S the estimate l1g(gn) has a maximum risk of O(n!), cf. [Gin75, thm. 3.4]. We
thus see that corollary 6.2.2 reflects an inherent loss of spatial resolution when only

observations distributed according to Ty are available.

Proposition 6.2.4 If u € P(S) and Q) is a Borel subset of S,

Epnlpa(Q) — I‘(Q)lz <277t

Proof. The random variable y,(Q) is equal to n~! times the sum of n independent
random variables with the probability distribution of the random variable y;(Q),
where y; is the empirical distribution function constructed from one observation.
The latter random variable is obtained by evaluating the function lg at a random

sample drawn according to the probability measure p. Thus

E,m(Q) = p(Q)

and
E3Q = [ 13du
= (@)
Hence
Eunpa(Q) = Eupa(Q)
= Q)
and

varys pn(Q) =n"HE,p(Q) — [E.pm(Q))*}
=n"'[u(Q) - £(Q)]

< 272p-1,

Thus p,(Q) is an unbiased estimator of u(Q) with variance < 2-2n-!'. O
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6.3 Functionals generated by smooth, rapidly de-
creasing functions

In this section, we will consider the estimation of the integral functional generated by
a function ¢ € S(R?). Starting with the Radon transform inversion formula given

in [Nat86, p. 18, thm. 2.1} and using lemma 2.1.16, we can rewrite ¢ € S (R?) as

6 =R IRe
4r

__l_n -1p4\V
= SR (IR

(recall that I~! acts on the second or “s” variable of functions on S' x R). Writing

the function ¢ — #(1“[{¢)" as the right inverse R=*, we thus have

/w édu = /w R R $dp

= R"¢dR
G2 ¢ a

= /Gm T "¢dTp,

where T* % 7 R, so the functional ¢ can be expressed as y — [;, , T~*¢ dTp. That
is, defining v 4l 7-+4, the functional 4 on P(S) is equivalent to the functional ¥ on
T[P(S)] in the sense that ¢(g) = ¥(Tp).

The quantity 1)(T') is obviously the expected value of the random variable con-
structed by evaluating the function ¥ at a random sample drawn according to the
probability measure Ti. Thus an obvious estimate for ¢(x) is the sample mean of
the derived observations obtained by evaluating the function 3 at the original ob-
servations. We can write this estimator as ¢, def tf:(un), where v, is the empirical
distribution function constructed from the first n observations.

Let us now compute the performance of this estimator. The first thing to note is
that @, is equal to n~! times the sum of n independent randor variables with the

same distribution as &, def J6,, ¥ dvy, where v, is the empirical distribution function
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constructed from one observation. We have

ET#‘Z’I = 1/.’(T/‘)
= ¢(p)

and
Er,¢} = (¥°) (Tk)
Hence
E(1uyndn = é(n)
and

var(ru)n» &n = n“l[E'“qASf - (Eu‘i;l )2]
=n~ [*(Th) ~ [$(w)]*]
Remark 6.3.1 We conclude this section with a brief comment that is relevant to ob-

taining a numerical approximation to the function -1R¢é. By the so-called projection-

slice theorem [Nat86, p. 11, thm. 1.1],
Ré(w,n) = ¢(w),

hence (I"'R¢) (w,7) = |n|¢(yw). Thus I-' Ré(w,-) may be computed by taking the

inverse Fourier transform of |n|@(nw).
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6.4 Asymptotically locally minimax estimation of
functionals generated by smooth, rapidly de-
creasing functions

Throughout this work, we have been concerned with characterizing the minimax risk
for estimating quantities in the PET problem as a function of n. Up until this point,
the results have been expressed in terms of the order of the minimax risk as n — oo.
That is, we have been characterizing these rates up a constant. In practice, one wants
to use the minimax risk as a guide to system design and a benchmark for algorithm
performance. For these purposes, one needs to know the exact rate, i.e., one needs
to know the constant. In this section, we will develop a local theory which yields
exact asymptotic minimax rates for estimation of functionals generated by functions
in & (R?).

To develop this theory with a minimum of fuss, we will use slightly stronger
assumptions on the set &2 of allowable probability measures p. Instead of taking
P = P(S), we will take & to be the set of probability measures whose elements can
be represented by probability density functions with respect to Lebesgue measure on
S that are bounded above and below away from 0. In our opinion, this restriction on
& does not seriously restrict the applicability of our results. The assumption that
the density function is bounded above corresponds to the physical condition that the
concentration of tracer in the subject is bounded above. Since this upper bound can
be arbitrarily large, we consider this condition to be quite benign. The assumption
that the density function is bounded below away from 0 is perhaps more problematic,
but since this lower bound can be chosen to be arbitrarily small, we do not believe it
alters the essence of the problem. Physically, one can think of it as postulating some
positive level of background radiation. Alternatively, one could alter the experiment
by adding some artificial observations that mimic those that would be obtained from
a low-intensity uniform distribution.

The approach we will take is based upon differential structures. We follow [Pfa82]
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in our treatment of these structures.

Definition 6.4.1 Let 2 be a set of mutually absolutely continuous probability mea-
sures on a measurable space (X, &) and fix gy € L. A path in & is defined to be
a map from (0,¢) (for some ¢ > 0) to & and is denoted by t — p,. By an abuse
of language, we will refer to such a map as the path p,. For technical reasons, we
will also admit paths defined only on a sequence of points in R* converging to 0, cf.
(Pfa82, rem 1.1.6]. For brevity, if the measure x can be represented by the density
function ¢ with respect to the measure ), we shall simply say that x has the A-density
¢. The path g, is said to be differentiable (in the strong sense) at po with derivative

h € L*(po) if the po-density of g, (;, can be represented as
Ce=141t(h+r),

where ||r¢||12(,0) — 0 as ¢ — 0 [Pfa82, def. 1.1.1, eq. 1.1.5]. Let L2(yo) denote the
subspace of L?(uo) whose elements h satisfy [hduo = 0. It is easy to show that a
derivative of & at po must lie in L2(yo), see [Pfa82, p. 23]. The tangent cone of &
at po, denoted by T'(uo, &), is defined to be the subset of L2(uo) whose elements
are derivatives of paths in & at po. It can be shown that T(uo, P) is closed [Pfa82,
p- 25]. In the cases considered here, T'(uo, ) will always turn out to be a linear

subspace of L2(yo), hence we will refer to it as the tangent space of & at Ko-

Definition 6.4.2 We next introduce the notion of the canonical gradient of a func-
tional on &. Let £ : 2 —R be a functional. A function x* € L2(po) is said to be
a gradient of « at po for 2 if for every h € T(po, P) and every path p, in 2 with

derivative h,

£(pe) — £(po) = t(K'|R) L2(uo) + 0(2).

If a gradient of x exists, then « is said to be differentiable [Pfa82, def. 4.1.1]. While
a gradient is not necessarily unique, there is a unique gradient in T'(go, #). This
unique gradient in T'(po, ) is called the canonical gradient and will be denoted by
k*. It can be obtained by projecting any gradient onto T'(yo, &) [Pfa82, sec. 4.3.2].
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Definition 6.4.3 To avoid confusion with the use of T in this section to denote
tangent spaces, we shall define A def 1R and use it instead of T' to denote the scaled

Radon transform.

We will consider the local asymptotic minimax risk at po = fod\? € 2. We
define vy = Apo = Afodsdf. The first step is to characterize the tangent spaces at

fo and vg.

Proposition 6.4.4
T(po, #) =L2(po)-

Proof. The proof will mimic that of [Pfa82, ex. 2.1.1}. Since T'(yo, &) is defined
as a subset of L2(uo), we have to show that each A € L2%(yuo) is in T'(po, ). Let
h € L?(uo) be given and consider the path whose po-density is given by

Cg =1 +t(h+7‘g),

where

e def —hline—1y2y + /IR? h1(th<—1/2) dpo.

It is readily verified that this is indeed a path in &2. Moreover,

IrellZzge) = /m(_hl("'<"/2}+,/m h1(th<-1/2) dpo)? dpso

< /Rﬁ h?1{thc—-1/2) dpto

and the last quantity - 0 ast — 0. O

Proposition 6.4.5 Define the linear operator A,, : L*(po) — L*(vo) by ¢ — 5—&%91.
Then
T(vo, AP) = A, L2 (o).
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Proof. Suppose u = (po = (fodA? € P. Then

Ap = A(Cfo)dsdf

_AlCh),
Afo 0

so the Radon transform of the measure with po-density ( is represented by the vo-
density A, (. We start by showing that A, L?(po) C T(po, AP). Let h € L2(po).
Since T(po, 22) =L?(po), there exists a path of po-densities (; in & such that

Cg =1 + t(h + T'g),
where ||r¢||z2(u) — 0. Thus
AuoQt = Al + H(Ayoh + Ayere).

Since A,, is a bounded operator on L?(yo) (using corollary 3.4.3), || Ay, Tel|L2(6) — 0,
so A,,h is in the tangent space of & at v. This shows that Ay, L3(po) C T(ve, AP).
To prove the opposite inclusion, suppose 7 is in the tangent space at vo. Then there

is a path in AZ? whose vy-density is given by
Ao = Ayl +t(n +1e),

where (; is a path of po-densities in & and ||r¢||L2ss) — 0. (Note that A, 1 = 1.)

Solving this equation for 7 gives

p = dmlpfel
- (522) =1,

so 7 is in the closure of the range of A,,. But A, L?(pt0), being the image of a
closed set under a continuous map, is closed. Thus, A, L(po) C T(v0, AZP?) and we

conclude that T'(uo, AP) = A, L%(po). O

We are now ready to compute the local asymptotic minimax lower bound. Sup-
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pose ¢ € S(R?). In section 6.3, we established that the problem of estimating
the functional ¢(x) is equivalent to the problem of estimating the functional v(Ty).
where i = T~*¢. A gradient of this functional at vy = Ay is given by v — zjv(uo)
(Pfa82, prop. 5.1.5]. Letting p,, denote the projection onto A, L%(po) C L%*(vo),
it follows that the canonical gradient of this functional at vy = Apg is given by

t/;‘ = Puo [V — ti:(uo)]. We will consider neighborhoods of vy of the form
B(r,v0) ¥ {v € AP : v = (1 + £)wo with ||€]|120) < T}

Using the local asymptotic minimax bound as formulated by [Mil83, prop. XI}.2.7],

we get the result that

lim lim inf sup nE, [, — (v))? > ||¢'Hiz(u0). (6.4)

TN Y veB(en=1/2 1)

(Note: there is apparently a typographical error in the statement of proposition
XII.2.7 in [Mil83], with the lim,_.., as in equation 6.4 being omitted. It is, however,

present throughout the proof.)
Definition 6.4.6 An estimator ¥, is said to be locally asymptotically minimax at

v € AZ if

lim lim sup nE, |, — (v)]* = lim lim inf sup nE,[pn — v(v)]?

CTOON=00 e Blen=1/2 up) TN dn yneB(en=/2 )

1.e., if it achieves the lower bound given in equation 6.4. If 113,, is locally asymptotically
minimax at each vy € AP, 1), is said to be locally asymptotically minimax, cf. [Mil83,

def. VIL.2.4].

It is easy to construct a locally asymptotically minimax estimator for ¥(v) at

Vo € A.@

Proposition 6.4.7 The estimator

¥ Y (v0) + ¥"(va) (6.5)

102



is locally asymptotically minimaz for v(v) at vo € AP.

Proof. Suppose € € LZ(V;)) (note that £ € L?(v) is a necessary condition for

(1 + &)vo to be a probability measure). The mean of ¥ is given by

Busauortbn = 000) + [ pualt = $(0)l(1 +€)dv
= 000) + [ pul — (v dro
= blvo) + [ (¥ = d(wo) duo
= d(vo) + /G ved

= d)[(l + 6)”0]1

where the second equality follows since p,, [¥ — ¥(v0)] € A, L2(pto) C L2(v), and the

third and fourth equalities follow since £ € L2(vp). The variance of ¥, is given by

variuaguoln B =07 [ [ = (01E) 1 l(1 + ) dio (6.6)

Thus the risk at vy is equal to the lower bound given in equation 6.4. The result
now follows from the continuity of the risk of this estimator with respect to the
L%(vp)-distance on vp-densities. O

The trouble with proposition 6.4.7 is, of course, that the estimator depends on the
unknown measure po. One approach to building a practical estimator might be to
use some auxiliary estimator of g in conjunction with the estimator in proposition
6.4.7, cf. [Mil83, sec. VIL.3]. We will content ourselves here with constructing a
simple linear estimator which, while suboptimal, is an improvement over the naive
estimator proposed in section 6.3. The idea is that the estimator in section 6.3 would
be optimal if v were allowed to be an arbitrary measure on G, ,. However, we have
some additional information about v, namely that it is in the range of the Radon
transform. This suggests replacing the function % in the estimator in section 6.3 with

its projection onto a suitable subspace.
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Definition 6.4.8 Define p/, to be the projection onto the set A, L*(po) in L*(vp).

The following lemma show that this projection operator is actually independent of

po € Z.

Lemma 6.4.9 [f uo, uy € P, then Py = Pl

Proof.  We use the fact that p/ £ is uniquely determined by the condition

‘end =/ d
/Gmp,‘fn v Gm&n v

for all n € A,L%(y), where v = Tp [Pfa82, p. 69, prop. 4.2.1(iii)]. Let n = A, h €
A, L (o), po = fodsdf, and pu, = f, dsdf. We have

/ _ o A(RS)
-/Gmp“ofr)dl/l —‘/Gmp#oﬁ Ar Afvdsds

) A4 )
- G2 pm& Afo

= [ PlbAu(hfi/ o) dvo
= /GHEA (hf1/ fo) dvo

Afodsdd

_ ( fofO) Afo

G2 Afh Afo 4fl Afrdsdd
L[ AR

G2 Afl
- /;1.2 Endu,

which proves the claim. O

Thus, taking po to be the uniform distribution on S, for example, the estimator

W [ g pdn, (6.7)
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has, by an argument similar to that given in section 6.3, at p = (o, mean

E(Au)"&n =/Gl2p:‘0¢'AuoCdVO
= A, Cd
/Gl.2¢ uo G @Yo

= $(p).

and variance

ot b =7t | [ (P dw = 6007 (65)

1,2
It would be of interest to compare the quantities in equations 6.6 and 6.8 numerically

to see how performance is lost by this approach.

Remark 6.4.10 The reader may understandably wonder about the somewhat com-
plicated notion of optimality proposed in definition 6.4.6. Some motivation for the

definition and a discussion of why a simpler definition of optimality will not work may
be found in [Mil83, sec. VIL.2]. A defense of the use in definition 6.4.6 of neighbor-

hoods whose radii shrink at a rate proportional to n~'/2 is given in [Mil83, sec. XI.2].
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Appendix A

Some Auxiliary Results

In this appendix, we shall state and prove some auxiliary results that are used in the
body of this work. In section A.l, we discuss an alternative way of defining Sobolev
spaces on S! x R that is used in the literature and relate it to some of the Sobolev

norms used here. In section A.2, we compute the Radon transform of a circle.

A.1 An alternative Sobolev space definition

Definition A.1.1 For a € N, define the norm || ||zz(s:1 kg for functions g € L*(S! x
R) by

def
”g”%g(slxlk)é E |lafaf9”§,2(sum)’
[Bl+k<a

where the differential operator 8 is defined as in definition 3.2.9 and the derivatives
are taken in the sense of tempered distributions on S' x R. The space L2(S' x R)
is defined to be the subspace of L?(S! x R) for which this norm exists and is finite
[Nat86, p. 45]. For arbitrary a > 0, L2(S! x R) is defined by interpolation. That is,
fa=n+pBwithneNand 0< 8 <1, then

L2(S" x R) £ (L2(S! x R), L2,,(S" x R))ﬂ.
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In [Nat86, thm. I1.5.2], the norm || - [|z2(s1 xRy is shown to be equivalent to the
norm ||||L(zO o(S1xR) O1 R[C>(Q)] for a> 0. (Note that ||-||ga(z) as defined in [Nat86,
p. 42] is the same as || - IIL(z0 (s1xr) defined here.) We shall now extend this result to

R[L2(rQ)]. )

Lemma A.1.2 For a> 0, the norms || - [|2(s1xr) @nd || - ||z, (s1xg) are equivalent

(0.a)
on R[Lg—-lﬂ(rﬁ)]'

Proof.  The proof proceeds along the lines of the proof of [Nat86, thm. I1.5.2]. We
start by noting that the well-known identity

afRf — _llﬁlalﬁlR(zﬂf)

[Nat86, eq. II.1.5] extends, in a distributional sense, to the case where f € &'(R?)
[Her83, p. 173]. Suppose u € LZ_,,(rQ?) and a € N. Then, using remark 3.2.13,

HR“”%g(SIxR) = E ”afafR““iz(sth)
18| +k<Lax
= z ”almHR(xﬁu)”%z(suR)
18| +k<a
= z Z ||3£R($ﬂu)||i=(51xm)
181<a i=|8]
= fa ! B,\[2
< Y 3L B R(= )| (7251 k)
|8|<a i=0 \J
= Z ||R(-"«"G“)||i(20 (ST xR)*
1BI<a '

By proposition 3.4.2, there exist constants d, and d;, depending only on « and r,

such that

IRullzz, | (sixmy < dillulliz | me)

and

||“||i3__m(lk2) < dzllR"”igo'a)(suR)
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for allu € L2_, ,(rQ2). It follows that

|RullZz (s1xmy S 1 D |I2” u”m (R
181<a
Since u has compact support, the effect of multiplying by r? can be achieved by
multiplying by some function ¢5 € C*(R?). Thus there exist constants ds(3), de-
pending only on a, r, and 3, such that ||1:"u||z @) S < ds(B)||ull?. 2 (R for all
u € LZ_, /5(rQ). It follows that

[Rulla(s1xry < di Y dsf »3)||“||L2 j2(R?)
18I<a

<ddy ) d3(B ”R““L2 o(S1XR)*
BI<a

Going the other way, again using remark 3.2.13, we have

”R“”L2 o) (S1xR) —E( )HalRu”Lz(sum)

=0
< su 6‘Ru
< sup (J) LN
o
< sup () S {1690 RullZa st
0sisa NI/ |p1+k<a

a
= sup (J-)”Ru”ig(sxxm)-

0<i<a

This proves the result for € N. The result for general a > 0 follows by an interpo-
lation argument which is essentially the same as the one given in the proof of [Nat86,

thm. 5.2]. We omit the details. O

Lemma A.1.3 For a 20, the norms || - ||r2(s1xry and || - ||Lz2(s1x2-m) are equivalent
on L*(S! x [-r,7]).
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Proof. The statement is trivial for @ = 0. To prove the statement for a = 1, note

that, by lemma A.1.5 below,
[O6g(w(8), 5)]* = [~ sin80;, g(w(8), s) + cos 0, (w(8), s)]*.

Using the inequality
(a+b)? < 2(a? +42),

it follows that

[Beg(w(6),5)]* < 2{sin”8[0:,9(w(0),5)]* + cos® 60z, 9(w(6), 5)I*}
< 2{[0z,9(w(6), 5)]* + [0z,9(w(8), 5)]*},

hence

||399||%,2(51xrk) < 2(||3z19“i2(51xm) + Hal'zg”i?(S‘xIR))'

By remark 3.3.11, it follows that, for all g € L?(S* x [-r,7]),

||9||§,§(31 x2rT1)
= |19lZ2(s1xm) + 1106912251 xmy + 1059113251 xr)
<2 (Hg||21:=(s1 <Ry + 110z,972(s1 xRy + 110z,91172(s1 xR) + Haag”iz(snxm)

= 2“9”%}(51 xR)>

hence ||9||L§(Slxzr1rl) < \/§||9||L§(51x1k)-

To get an inequality in the opposite direction, note that, again by lemma A.1.5,
[0z,9(w(8), 5)]* = {~ sin 005g(w(9), s) — cos 8[sD,g(w(6), s) + g(w(8), s)]}?
and

[0z,9(w(0), 5)]* = {cos 08pg(w(0), s) — sin O[s,g(w(8), s) + g(w(8), s)]}>.
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Using the inequality
(@ + b+ c)? < 3(a® 4 b* + ¢?),

it follows that

[0:,9(w(8), 5)]?
< 3(sin? 0[Dpg(w(8), 5))* + s cos? 8[D,g(w(0), s)])* + cos® B[g(w(8), s)]*)
< 3([Bag(w(8), )]* + r?[Bsg(w(8), 5)]* + [9(w(0), 5)]*),

and
[0z,9(w(8), s)]?
< 3(cos? 0]Bpg(w(8), s)]* + 5% sin? 8[0,g(w(), 3))* + sin® O[g(w(B), 5)]?).
< 3([Bag(w(6), 5))* + r*[Bs9(w(8), 5)]* + [g(w(8), 5)]*),
hence
[102,91132 (51 xmy < 3(11009]22(s1 xmy + 211059117251 xmy + [191172(51 xm) )
and

||3:29||§,2(31xm < 3(“309”%2(31;(111) + 7'2“639“%2(51 xR) T ||.‘J||i2(sl x[R))'

It follows that, for all g € L%(S! x [—r,7]),

||9“%,§(51 R = l9llZ2s xm) + 10z, 911251 xRy + [10z,91172¢s1 xmy + 11059117251 xr)
< Tmax(1,) (IlgllEacssxm + 10091 Ea(s1xmy + 10201 Ea(50 )

= Tmax(1, 7‘2)”9“%}(51)(21'1‘)’

hence ||g||r2(s1xr) < ﬁmax(l,r)||g||L¥(51x2,m). The result for = 1 follows im-
mediately from these estimates. The result for o € N follows by applying a similar
argument inductively. The result for arbitrary a > 0 follows by a standard interpo-

lation argument using proposition 3.1.2. O
Lemma A.1.4 Fora> 0, the norms||- “L(zo (St xR) and || ||L2(s1x2-T) @are equivalent
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on R[Lg—x/z("ﬂ)]-

Proof.  Combine lemmas A.1.2 and A.1.3, using the fact that R[L%_, ,(rQ)] C
LY S! x [-r,r]). O

[t remains to prove the lemma that was used in the proof of lemma A.1.3.

Lemma A.1.5 The differential operators on S' x R defined in definitions 3.2.8 and
3.2.9 are related by the equations

Js = —sin 00;, + cos00,,,

0y, = —sin 80y + cos (s, + 1),

and

Oz, = cos80pg —sin b(s0, + 1).

Proof. Let ¢ € C(S! x R) and g its extension to R?\{0} x R as described
in definition 3.2.9. Let (w(fo),s0) = ((cosbp,sinby),sp) € S! x R. Since the curve
6 — ((cos8,sinf),se) in R?\{0} x R has the tangent vector ((— sin 8y, cosfy),0) at

(w(Bo), s0),
95§(w(6o), s0) = — sin 608, §(w(8o), 50) + cos B0z, §{w(bo), so)-
Define the differential operator 8, on R?\{0} x R by
0,§ = cos0,0;,§ + sin 0,0, 3.

It is easy to see that 0.§(w(fo), S0) is obtained by differentiating § along the curve
r + (r(cos f,sin ), 3¢) and evaluating at r = 1. Solving for 8;, and ;, in terms of

0s and 0,, we get

8,,§(w(00), 80) = - sin 0039!7(&)(00), So) + cos 006,§(w(00), So)
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and

0z,(w(0o), s0) = cos Bo0sg(w(bo), s0) + sin 800, g(w(o), o).

Computing 0,§(w(fp), so) explicitly, we have

0-G(w(8o),s0) = — [§(r(cosbq,sinby), so)]

(g((cos o, sin ), so/7) _)
(=

d
dr
d

dr

7‘339((00500,5"1 6o), s0/T) - sor %) — g((cos by, sin bp), so/T)

= —50059(w(6o), s0) — g(w(bo), 50)'

It follows that
0z,9(w(bo), 50) = — sin opg(w(bo), s0) — cos Bo[300,9(w(bo), s0) + g(w (o), s0)]
and

0z,9(w(0o), s0) = cos Bo0pg(w(bo), s0) — sin Op[s0059(w (o), o) + g(w (o), so0)]- O
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A.2 The Radon transform of a circle

In this section, we will compute the Radon transform of a circle of radius r centered

at the origin.

Proposition A.2.1 Let p denote the probability measure on R? that is concentrated
on the circle of radius r > 0 centered at the origin and is uniformly distributed with

respect to df. Then

Ty = —m—dfds if |s| <r
0df ds if |s|>r

Proof. Define E C Gy, by E% 7(S! x [—s, s]). Using proposition 2.2.13, we have

= - d
v(E) -/1R2 R'lgdp
L[ oo
=5 Ju Rleds
1 -
= E/I]P R‘lslx[-a,,] dﬂ
1 r
=5 Joa [WISIx[—s.a](w(o)az'w(o))dOdp(:c),
1 [~ = ,
T ir /_,, /_ Lstx{-s,0)(w(6), rw(8') - w(8)) d6 dO'
1 = = )
o /_ . /_ s (rw (@) - w(0)) db 8,
where we write z as rw(6'). For fixed r and ', we need to determine for which values
of 8 the condition —s < rw(#')-w(0) < s is satisfied. Now —s < rw(#')-w(f) < s if and
only if —s/r < cos(¢'—0) < s/r. If r < s, then the condition —s/r < cos(¢'—6) < s/r
is satisfied for all . Thus, in this case
—_— l " " ’
vB) = [ [ dods

=T.
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If r > s, then the condition —s/r < cos(8' — 8) < s/r is satisfied if and only if

arccos(s/r) < |0’ — 6| < arccos(—s/r). It follows that

WE) =~ [/ e 1o gy

27 J arccos(s/r)
= arccos(—s/r) — arccos(s/r)
= 1 — 2arccos(s/r)

= 2arcsin(s/r).

From considerations of symmetry, it is clear that Ry can be represented by a
density function f with respect to ds df that depends only on s and is symmetric on

s. Such a function must satisfy

/0" _:f(s)dsdo =27r/0’f(s)ds
_ 2arcsin(s/r) if s<r
- T ifs>r

Using the fact that

we get the desired result. O
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