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Gene expression is controlled by sequence-specific transcription
factors (TFs), which bind to regulatory sequences in DNA. TF
binding occurs in nucleosome-depleted regions of DNA (NDRs),
which generally encompass regions with lengths similar to those
protected by nucleosomes. However, less is known about where
within these regions specific TFs tend to be found. Here, we char-
acterize the positional bias of inferred binding sites for 103 TFs
within ∼500,000 NDRs across 47 cell types. We find that distinct
classes of TFs display different binding preferences: Some tend to
have binding sites toward the edges, some toward the center, and
some at other positions within the NDR. These patterns are highly
consistent across cell types, suggesting that they may reflect TF-
specific intrinsic structural or functional characteristics. In particu-
lar, TF classes with binding sites at NDR edges are enriched for
those known to interact with histones and chromatin remodelers,
whereas TFs with central enrichment interact with other TFs and
cofactors such as p300. Our results suggest distinct regiospecific
binding patterns and functions of TF classes within enhancers.

transcription factor binding | gene regulation | genomics |
chromatin structure

To investigate the characteristic positions of transcription
factor (TF)-binding sites in distal regulatory elements (en-

hancers), we identified active regulatory elements across numer-
ous cell types and characterized predicted functional TF-binding
sites within these elements. We defined putative active regulatory
elements by first identifying nucleosome-depleted regions of DNA
(NDRs) in 47 cell types based on DNaseI-hypersensitive (DHS)
sites defined by the Roadmap Epigenomics project (1) and Assay
for Transposase-Accessible Chromatin-sequencing (ATAC-seq)
experiments performed in each cell type (2–4). We then further
selected those NDRs marked by the active chromatin modifica-
tion H3K27ac using ChIP-sequencing (ChIP-seq) data from the
Roadmap Epigenomics project and other studies; two example
regions from K562 cells are shown in SI Appendix, Fig. S1A. We
and others have previously shown by massively parallel reporter
assays (MPRA) that genomic sites satisfying these criteria are
highly enriched for enhancer activity compared with other ge-
nomic sites and random sequences (5–8). Overall, we identified
∼40,000–160,000 putative active regulatory elements per cell
type, together representing a total of ∼500,000 distinct (non-
overlapping) elements (SI Appendix, Fig. S1 B and C). The edges
of flanking nucleosomes appear to occur ∼120 ± 50 bp from the
peak of the DHS/ATAC-seq signal, as assayed by micrococcal
nuclease-digestion assays (MNase-seq) (Fig. 1 A and B). The
regions are enriched for transcriptional initiation, consistent with
previous reports (9); the peak of transcription initiation is ∼55 bp
away from the peak of the DHS/ATAC-seq signal and ∼45 bp
before the position of the flanking nucleosome (Fig. 1 C and D).
As expected, cell types with similar anatomical and develop-
mental origins tended to have correlated regulatory elements (SI
Appendix, Fig. S2). Because developmental enhancers and
housekeeping enhancers are typically regulated by distinct sets
of TFs (10, 11), in our analysis we distinguished between cell

type-restricted enhancers (active in <50% of the cell types) and
ubiquitous enhancers (active in >90% of the cell types) (SI Ap-
pendix, Fig. S1C).
We next sought to infer functional TF-binding sites within the

active regulatory elements. In a recent study (5), we found that
TF binding is strongly correlated with the quantitative DNA
accessibility of a region. Furthermore, the TF motifs associated
with enhancer activity in reporter assays in a cell type corre-
sponded closely to those that are most enriched in the genomic
sequences of active regulatory elements in that cell type (5). In
these assays, disrupting occurrences of the 20–30 most enriched
motifs in such genomic regulatory sequences frequently caused
significant changes in enhancer activity, indicating that many
represent functional TF-binding sites. Together, these results
suggest that occurrences of highly enriched motifs in highly ac-
cessible regions very likely represent functional TF-binding sites
for a cell type.
We used this approach to define a set of candidate functional

TF-binding sites. For each of the 47 cell types, we selected the
7,500 cell-type restricted NDRs (active in <50% of cell types) with
the strongest DHS/ATAC-seq signals, with an average of 6%
being promoter-proximal regions [<1 kb from an annotated
transcription start site (TSS)] and 94% being distal enhancers.
Within these regions, we identified all occurrences of 1796 known
motifs (corresponding to 777 TFs) and focused on the 20 most
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enriched motifs in the cell type (after removing highly similar
motifs) (Materials and Methods and SI Appendix, Fig. S3A). Overall,
these enriched motifs corresponded to 103 different TFs across the
47 cell types. As expected, the motif-enrichment profiles were
correlated among related cell types (SI Appendix, Fig. S3B).
We then studied the positions of inferred binding sites for each

of the 103 TFs relative to the peak of the DHS/ATAC-seq signal
in the active regulatory elements (SI Appendix, Fig. S4). Different
TFs show strikingly different positional binding-site patterns (Fig. 2
and SI Appendix, Figs. S5 and S6). Some are strongly concen-
trated at the peak of the DNase/ATAC-seq signal (e.g., CTCF);
some are enriched over a more widely distributed central region
(e.g., ELF1); some are clustered near the edges of the region (e.g.,
FOXP1 and ARID3A); and some tend to bind at a specific dis-
tance from the center of the NDRs (e.g., EPAS1 and RREB1).
To classify these patterns, we calculated the density profiles

in ±200-bp regions around the peak and clustered them using
k-medoid clustering (Materials and Methods). The analysis identified
six clusters of distinct position patterns (Fig. 3A). The clusters are
clearly significant: The mean Kullback–Leibler divergence be-
tween density profiles within the same cluster is one to two orders
of magnitude smaller than the mean divergence between density
profiles in different clusters (Fig. 3B), and the density profiles
cannot be explained by local sequence composition (SI Appendix,
Fig. S7 A and B). Three of these clusters represent motifs that
occur most frequently near the center of NDRs, while the other
three clusters tend to occur nearer to the edges (Fig. 3C).

Cluster 1 contains 10 TFs with inferred binding sites that are
strongly biased toward the peak of highest DNA accessibility at the
middle of the NDR, suggesting that their binding directly shapes
local chromatin architecture. For six of these TFs (CTCF, NF-I,
C/EBPβ, KLF7, GRHL1, and TFAP2) there is clear functional
evidence to support this notion: (i) CTCF induces stably positioned
arrays of nucleosomes around its genomic binding sites (12); (ii)
NF-I, C/EBPβ, KLF7, and GRHL1 can function as pioneer factors
that can establish and maintain chromatin accessibility (13–18);
(iii) a recent systematic analysis of the TF-dependent changes in
chromatin accessibility induced by the binding of 733 TFs identified
CTCF, KLF7, and TFAP2 as having some of the strongest effects
on local chromatin accessibility during ES cell differentiation (19);
(iv) CTCF, NF-I, C/EBPβ, and GRHL1 show unusually stable
binding to DNA and long residence times (14, 20–22); and (v)
motifs in cluster 1 have especially strong DNaseI footprinting sig-
nals (SI Appendix, Fig. S8), a feature associated with a slow DNA-
binding off-rate (17, 23). The properties of the six TFs may enable
them to serve as central anchor points for displacing the central
nucleosome, adapting the surrounding chromatin, and stabilizing
the NDR and flanking nucleosomes (14).
The remaining three TFs in cluster 1 are nuclear receptors

(ESRRB, HNF4A, and PPAR). Unlike the other TFs in the
cluster, nuclear receptors are characterized by transient binding
to DNA with short residence times (24, 25) and localize almost
exclusively to preaccessible chromatin (16, 25–27). Nuclear re-
ceptor binding to genomic motif sites is often aided by assisted
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Fig. 1. Chromatin structure around putative regulatory NDRs. The nucleosome-depleted region at putative regulatory elements tends to span ∼200 bp
centered around the peak of the DHS signal and is generally flanked by well-positioned nucleosomes centered around +200 bp and −200 bp. (A and B)
Composite plot (Upper) and heatmap (Lower) of the DHS signal (A) and MNase-seq reads (B) in a 1-kb region aligned around the peak of the DHS signal. Five
thousand regions from K562 cells sorted by maximum DHS score are shown in heatmaps. (C) Composite profile of CAGE reads, indicating transcriptional
initiation on the plus strand (red) and minus strand (blue) from 14 cell types aligned around the peak of the DHS signal in NDRs. The initiation of gene and
enhancer RNA transcription peaks ∼55 bp away from the peak of the DHS signal and is oriented outwards from the accessible region. (D) Overlay of DHS (solid
black line), MNase-seq (dashed line), and CAGE (red and blue lines) signals in 400-bp region centered around the peak of the DHS signal.
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loading by a partner factor, which binds to a site overlapping or
adjacent to the nuclear receptor motif site and opens the chro-
matin (28). Notably, two of the pioneer TFs in cluster 1 (C/EBPβ
and NF-I) have been shown to catalyze the assisted loading of
several nuclear receptors (13, 16, 29–31). The central location of
the nuclear receptor motifs may be related to the assisted
loading by pioneer TFs in cluster 1.
Cluster 2 contains 31 TFs whose binding sites also are peaked

at the center of the NDR but with a wider distribution than
for cluster 1. The cluster is strongly enriched for transcrip-
tional activators [Gene Ontology (GO) category enrichment,
PBenjamini = 3.2 × 10−16], such as the activator protein 1 (AP-1)
subunits (JUN, FOS, ATF, and MAF factors) and activating
factors from the TCF, TEA, RUNX, IRF, and KLF families.
Based on known interactions reported in the bioGRID and
IntAct databases (32, 33), these TFs are enriched for interactions
with numerous transcriptional coactivators, including p300,
CREB-binding protein (CBP), YAP1, KDM1A, KAT2B, and
WWTR1 (Fig. 4 and SI Appendix, Table S1). Furthermore, the
TFs in this cluster interact frequently with each other [average of
1.8 pairwise interactions among the 32 TFs vs. 0.7–1.4 (mean =
1.0) interactions among the TFs in other clusters], suggesting
they could cooperatively activate transcription. For example,
studies of the IFNβ enhancer have shown that two TFs from this
cluster (ATF2 and Jun) bind overlapping motif sites to form a
scaffold that recruits CBP/p300 through multidentate interac-
tions (34), leading to synergistic transcriptional activation in re-
sponse to viral infection (35, 36). Interestingly, TFs in cluster
2 are twice as likely to participate in signaling pathways as the
TFs in other clusters [52% of TFs in cluster 2 vs. 16–30% of TFs
in other clusters, based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (37)] (Fig. 4 and SI Appendix, Table

S1), and AP-1 factors are required to maintain accessible chro-
matin to facilitate the binding of stimulus-regulated TFs (38).
Therefore the tightly clustered pattern of these motifs in this
cluster may promote cooperativity by both facilitating TF–TF
interactions and positioning TFs to form complexes that contact
multiple sites on cofactors, thereby allowing enhancers to link
multiple signaling pathways and respond in a highly synergistic
fashion to specific regulatory cues.
Cluster 3, which contains 25 TFs, also peaks at the center of

the NDR with a broader distribution than cluster 2. These TFs
are generally characterized by greater cell-type specificity in ex-
pression across the 57 cell types profiled in the Epigenomics
Roadmap project and greater motif enrichment than the TFs in
other clusters (SI Appendix, Table S1). Consistent with this ob-
servation, cluster 3 contains numerous TFs that play critical roles
in development, including all the homeobox, POU, SOX, ETS,
and GATA factors in our dataset (39–44) (SI Appendix, Table
S1). Furthermore, 20 of the 23 TFs have functional annotations
in GO related to differentiation and development in a wide
range of tissues (Fig. 4 and SI Appendix, Table S2), including
erythrocytes (GATA1, GATA3, and ETS1), myeloid and lym-
phoid cells (SPI1), osteoblasts (TP63 and ID4), keratinocytes
(TP63 and POU3F1), blastocysts (SPIC, POU5F1, and ELF3),
neurons (ASCL2, FEV, and ZEB1), and more. Although clusters
2 and 3 may represent a continuum of broad-occupancy profiles,
the TFs in cluster 3 have fewer annotated interactions with co-
factors and other TFs than the TFs in cluster 2 (average 5.2 vs.
10.2 interactions per TF). One possible explanation is that the
TFs in cluster 3 participate in fewer physically mediated co-
operative interactions and therefore are less tightly clustered in
the NDR. These TFs may function more independently or
through indirect cooperation with other factors.
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Cluster 4, which contains 16 TFs, is unusual in several re-
spects. The motif profiles show both a central peak and flanking
peaks at ∼70 bp upstream and downstream. Moreover, many of
the motifs in this cluster are asymmetric. When the NDRs are
oriented so that the motif occurrences for each TF all appear on
the same strand (SI Appendix, Fig. S9A), the motif occurrences in
the flanking peaks show a clear preferred orientation relative to the
center of the NDRs—that is, one of the two reverse-complementary
sequences defining the motifs preferentially points inward (SI
Appendix, Figs. S9B and S10A). This bias indicates that one side
of the TFs is generally positioned facing the edges of the NDR,
while the other side faces the NDR core.
The motifs in cluster 4 are also strongly enriched in promoter-

proximal regions (6% of such NDRs contain occurrences
for motifs in cluster 4 vs. 1–3% for other clusters) (Fig. 5A).
ENCODE ChIP-seq data for 39 TFs in our dataset show greater
enrichment in promoter regions for TFs in cluster 4 than for TFs
in other clusters (38% of reported peaks within <1 kb of a TSS vs.
8–28% for other clusters) (Fig. 5B). One of the TFs in this cluster,
SP1, is a well-characterized promoter-proximal factor that binds
GC-rich elements in a wide variety of cellular and viral promoters.
Many of the other TFs in the cluster (including SP3, EGR1,
EPAS1, ZBTB7B, E2F, KLF15, MEF2C, WT1, and PURA) also
bind GC-rich motifs and are known to interact with SP1 at pro-
moters (45–55). We compared the motif-density profiles in NDRs
classified as promoter-proximal versus distal enhancers but found
them to be indistinguishable (SI Appendix, Fig. S11).
TFs in this cluster are also enriched for interactions with p300

[false-discovery rate (FDR) = 2.6 × 10−6] and Dnmt1, a DNA

methyltransferase that plays a key role in maintaining CpG
island methylation (56) (FDR = 0.03). Notably, functional
studies have demonstrated that SP1 stimulates transcription
when bound close to the initiation site but not in distal positions
(57, 58), unlike distal enhancer-binding factors from clusters 1–3.
These results suggest that SP1 and other TFs in cluster 4 may
belong to a distinct functional class of TFs with specialized
promoter-associated functions.
Because a key function of promoters is transcript initiation, we

hypothesized that the flanking peaks and orientation of TFs in
cluster 4 might reflect a role in establishing or stabilizing TSSs at
both promoters and enhancers. Recent studies have suggested
that, in addition to such features as TATA boxes and INR ele-
ments, TF-binding sites also contribute to determining the posi-
tion of the TSS (9, 59). To examine the relationship of TFs in each
cluster with the TSS, we examined cap analysis of gene expression
(CAGE) data for both enhancer and promoter-proximal NDRs
for 14 of the cell lines in our dataset (60). Transcriptional initia-
tion tends to peak at 50–60 bp from the center of the NDRs (as
noted above) (Fig. 1C) and ∼50 bp away for TF motif occurrences
(Fig. 5C). However, 64% of TFs in cluster 4 and 42% of TFs in
cluster 3 (vs. 0–8% in other clusters) show an additional peak of
transcriptional initiation ∼10 bp away from the location of motifs
sites (EGR1, EGR4, MAZ, PURA, SP1, SP3, ZBTB7B, and
ZNF281 from cluster 4 and ELF1, ELF2, ELF5, FLI1, SPI1, and
SPIC from cluster 3) (Fig. 5C). This observation suggests these
TFs play unique roles in positioning the site of initiation.
Cluster 5 contains six TFs whose binding sites are not enriched

at the center of NDRs but have peaks at ∼60 bp upstream or
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Fig. 4. TF clusters are enriched for distinct functional and structural properties. Selected enrichments for general annotation (Entrez Gene), GO categories,
protein–protein interactions, and protein structural domains in the TF clusters. All terms included in the heatmap are significantly enriched (PBenjamini < 0.05)
in at least one cluster. See SI Appendix, Table S3 for all significant enrichments.
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downstream. The TFs in this cluster all belong to the FOX family
of TFs and include the two best-characterized pioneer factors,
FOXA and FOXO. The DNA-binding domain (DBD) of FOX
factors structurally resembles the DBD of linker histones H1 and
H5 (61, 62), and FOXA factors can compete for binding to linker
histone-binding sites, which are located near the edges of the
core nucleosome, ∼65 bp away from its center (61, 63–65).
However, whereas linker histone binding leads to the compac-
tion of nucleosomal arrays, FOXA binding destabilizes nucleo-
somes and opens the region for binding by other TFs (66–68).
Since enhancer activation typically entails the elimination of a
well-positioned central nucleosome (69), motif sites for FOXA
and other FOX factors in cluster 5 may be positioned ±60 bp to
displace linker histones and destabilize the central nucleosome,
helping other TFs bind their target sites.
Finally, cluster 6 contains 14 TFs with binding sites enriched

near the edges of the accessible region (80–200 bp from the
center), suggesting these TFs could interact with the surrounding
chromatin. As with cluster 4, the TFs in cluster 6 have asym-

metric motifs and mostly exhibit a preferred orientation relative
to the center of the region (SI Appendix, Figs. S9 and S10B),
allowing directional interactions with the surrounding nucleo-
somes and larger chromatin landscape. Consistent with this no-
tion, 10 of the 14 TFs in cluster 6 are known to play roles in
chromatin remodeling. These include BPTF, the DNA-binding
subunits of nucleosome remodeling factor (NURF), which rec-
ognizes H3K4me3 and facilitates ATP-dependent nucleosome
sliding (70–72), ARID3A, which facilitates the opening of the
IgH enhancer (73–75), and several FOX factors, which interact
with histones and mediate recruitment of chromatin remodeling
complexes such as SWI/SNF (68, 76). Many of the motifs in this
cluster are A/T-rich (SI Appendix, Fig. S10). It is possible that
they also recruit additional members of the ARID (A+T-rich
interaction domain) family that binds nonspecifically to A/T se-
quences and has been implicated in chromatin remodeling, in-
cluding ARID1A/BAF250, the DNA-binding subunit of the BAF
chromatin remodeling complex (77).
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Fig. 5. TFs in cluster 4 are enriched in promoters and are associated with transcriptional initiation. (A) The fraction of motif sites in NDRs in our analysis that
occur in promoters (<1 kb upstream of the annotated TSS) for TFs in each cluster. (B) The fraction of ChIP-seq peaks for TFs in each cluster that overlap
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The TFs in cluster 6 also play roles in nuclear attachment,
DNA bending, and DNA unwinding. These TFs are enriched for
interactions with the chromatin organizers SATB1 and SATB2,
which induce chromatin looping and tether DNA to the nuclear
matrix (78, 79). For example, ARID3A binds to sites on the
periphery of the IgH enhancer to mediate the attachment of the
nuclear matrix (80). Several of the TFs (ARID3A, SRY, and
YY1) induce significant DNA bending (74, 81, 82), facilitating
TF binding and TF–TF interactions (83, 84). Finally, some (SRY
and FUBP1) unwind the DNA double helix, which can promote
transcriptional initiation and attachment to the nuclear matrix
(82, 85, 86).
To test directly whether TFs in cluster 6 interact with the sur-

rounding nucleosomes, we used MNase-seq data from two cell
types (GM12878 and K562) to infer the position of the flanking
nucleosomes for each individual NDR and then aligned the TF
motifs. For the TFs present in these cell types, we examined the
motif distribution relative to the inferred edge of the flanking
nucleosome (rather than to the peak of the DHS signal). The TFs
in clusters 1–5 did not show peaks of motif sites adjacent the
nucleosome edge, but five of the eight TFs in cluster 6 (FOXC1,
FOXJ3, FOXO1, FOXP1, and ARID3A) showed a peak (SI
Appendix, Fig. S12). The remaining three TFs (FUBP1, IRF1, and
IRF5) are not known to play roles in chromatin remodeling.
Finally, we wondered whether certain classes of TFs tend to

co-occur in enhancers. To investigate this, we examined whether
the distribution of motif sites from each class in the NDRs varied
with the presence or absence of motif sites from each of the
other classes (Fig. 5 D and E and SI Appendix, Table S3). We
counted the number of nonoverlapping motif sites from each
cluster in the NDRs and calculated the odds ratio (OR) for
coenrichment between the motif from each pair of clusters. To
control for motif similarities, we also calculated the baseline OR
for each pair of clusters in shuffled sequences. Significantly
coenriched or codepleted cluster pairs were defined as pairs for
which the OR falls outside the 95% CI of the OR in shuffled
sequences (SI Appendix, Table S3). We found that all six clusters
showed significant preferences for coenrichment and codeple-
tion with specific other clusters (SI Appendix, Table S3). For
example, regulatory elements with TF motif sites in cluster 4
(associated with TSS-related functions) contain significantly
more TF motif sites from cluster 3 (associated with cell type-
specific activation) (Fig. 5D) and significantly fewer motif sites
from clusters 5 and 6 (associated with nucleosome remodeling
and chromatin architecture) (Fig. 5E) than regulatory elements
without cluster 4 motifs. Importantly, these cluster associations
are consistent across cell types, even though the specific set of
TFs active in each cell type differs (SI Appendix, Fig. S13). Thus,
the TF clusters may constitute a general regulatory code, with
different cell types substituting specific TFs to activate different
sets of enhancers.
It has long been suggested that TFs may belong to different

functional classes. In some cases, prior biological knowledge of
certain TFs has been used to categorize TFs into classes, such as
pioneer factors that have the capability to bind motif sites in
closed chromatin versus nonpioneer factors that bind motif sites
only in open chromatin and cell type-specific versus ubiquitous
factors. However, there have been few systematic approaches to
recognize distinct classes and properties independent of the
known biological properties of the individual TFs. One such
functional study was recently performed in Drosophila, in which
investigators asked which TFs could substitute for each other
across a variety of regulatory contexts (10).
Here, we show that, solely by looking at the positional distri-

bution of motif sites within NDRs, we are able to recognize six
distinct classes of TFs. These classes bring together factors that
have a number of similar properties, such as binding stability,
interactions with other TFs and cofactors, cell-type specificity,

and pioneering ability. Furthermore, the position of motif sites
appears to be related to their known functions—for example,
localizing pioneer factors to the optimal positions to displace
nucleosomes and targeting chromatin remodelers in close prox-
imity to flanking nucleosome.
The degree to which the arrangement of motif sites within

regulatory elements determines their function remains an open
question. At one end of the spectrum, there are examples of
enhancesomes, such as the IFNβ enhancer, that are exquisitely
sensitive to the spacing and orientation of the motif sites (34, 87,
88). However, the activity of other regulatory elements, referred
to as “billboard” enhancers, appears to be relatively insensitive
to the arrangement of motif sites (89–91). Instead, our work
suggests a different kind of constraint, whereby TFs play distinct
roles in forming a functional enhancer, facilitated by their po-
sition within a regulatory sequence.
The classes identified here also help shed light on the prop-

erties of some less characterized TFs. For example, they suggest
that several other FOX factors in cluster 5 may use a mechanism
similar to that of FOXA1 to displace nucleosomes and that the
uncharacterized zinc finger TFs in cluster 6 (ZNF148, ZNF202,
and ZNF35) may have pioneering abilities. In addition, the po-
sitional preferences identified may prove useful in building
predictors of enhancer activity and recognizing functional en-
hancers in genomic sequence.
While here we focused on the classes of TFs, these results

naturally raise the question of whether different functional
classes of enhancers are formed based on these classes of TFs.
Identifying such enhancer classes may shed light on the classes of
TFs that must come together to accomplish all the functions
necessary to build a functional enhancer. Finally, in addition to
helping us understand natural enhancers, better knowledge
about the constraints and the functional implications of TF po-
sitions may aid in creating synthetic enhancers with specific
properties that can be used in synthetic biology.

Materials and Methods
ATAC-Seq for Jurkat and U937 Cell Lines. Cells were washed with ice-cold FACS
buffer and were kept on ice until cell sorting. Twenty-five thousand live cells
from each condition were sorted into FACS buffer and were pelleted by
centrifugation at 500 × g for 5 min at 4 °C in a precooled fixed-angle cen-
trifuge. Cell lines then were tagmented according to the previously de-
scribed Fast-ATAC protocol (92). Briefly, all supernatant was removed with
care taken not to disturb the not-visible cell pellet. Transposase mixture (50
μL: 25 μL of 2× TD, 2.5 μL of TDE1, 0.5 μL of 1% digitonin, 22 μL of nuclease-
free water) (catalog no. FC-121-1030, Illumina; catalog no. G9441, Promega)
was added to the cells, and the pellet was dissociated by pipetting. Trans-
position reactions were incubated at 37 °C for 30 min in an Eppendorf
ThermoMixer with agitation at 300 rpm. Transposed DNA was purified using
a Qiagen MinElute Reaction Cleanup kit (catalog no. 28204), and purified
DNA was eluted in 12 μL of elution buffer (10 mM Tris·HCl, pH 8). Transposed
fragments were amplified and purified as described previously (93) with
modified primers (94). Libraries were quantified using qPCR before se-
quencing. All Fast-ATAC libraries were sequenced using paired-end, dual-
index sequencing on a NextSeq sequencer (Illumina) with 76 × 8 × 8 × 76
cycle reads at an average read depth of 30 million reads per sample.

Definition of NDRs. To define NDRs for our analysis, we used DNaseI-seq and
H3K27ac ChIP-seq data for 45 cell types in the Epigenomics Roadmap and
ENCODE Projects (1, 60). We supplemented this dataset with ATAC-seq data for
Jurkat and U937 cells generated in the N.H. laboratory and H3K27ac ChIP-seq
data for Jurkat and U937 cells from studies deposited in the National Center
for Biotechnology Information Gene Expression Omnibus database (acces-
sion no. SRR1057274) (95) and the European Nucleotide Archive database
(accession no. ERR671846), respectively. We aligned the ATAC-seq and
H3K27ac data for Jurkat and U937 cells as described in ref. 96 and called
peaks using MACS2 (97) with the standard parameters used by the Epi-
genomics Roadmap Project. To select our initial set of NDRs, we intersected
DHS/ATAC-seq narrowPeaks regions and H3K27ac gappedPeaks regions. We
then filtered out NDRs that were present in more than 24 (50%) of the cell
types in our analysis and selected the top 7,500 cell type-restricted NDRs for
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motif enrichment and positioning analysis. We defined the coordinates in
the NDRs relative to the summit called by MACS2 (i.e., the position with the
maximum DHS/ATAC-seq signal). For MNase-seq analysis, we used data from
GM12878 and K562 cells generated by the ENCODE project. The center of
the nucleosomes flanking the NDRs was estimated by identifying the posi-
tion with the highest MNase-seq read coverage in the 300 bp upstream and
downstream of the peak of the DHS signal.

Motif Enrichment Analysis. We calculated motif counts for all vertebrate
motifs in TRANSFAC (98), JASPAR (99), and CIS-BP (100) in the genomic NDR
sequences as well as scrambled genomic NDR sequences (holding di-
nucleotide frequencies constant). To identify enriched motifs in each cell
type, we used AME (101) with the mhg method to calculate the enrichment
of the total number of matches of each motif in the genomic sequences
compared with the scrambled sequences. When the combined databases
contained multiple position weight matrices (PWMs) corresponding to a
single TF, we selected the most enriched motif in each cell type corre-
sponding to each TF. To remove highly similar motifs, we calculated the
pairwise similarity of the motifs using the R package PWMEnrich and re-
moved motifs that had a similarity of >0.8 with a more highly enriched
motif. We then selected the top 20 motifs from the filtered list in each cell
type for positioning analysis. We called motif sites in the genomic and
scrambled sequences by running FIMO (102) with a P value threshold of 10−4.

Motif-Position Profiles and Clustering. To analyze the positioning of themotifs
with NDRs, we collapsed the motif matches to their central position and
calculated the density of each motif in 20-bp windows tiled every 1 bp across
the 400 bp centered around the position of maximum DHS/ATAC signal in
each NDR. The motif-position profiles were then clustered using the pam
function from the R package cluster with k = 6.

To assess how much each motif-position profile is due to the variation in
dinucleotide content across the regions, we calculated the background
motif-density profiles in shuffled sequences, holding the dinucleotide
content at each position constant, and normalized the genomic-density
profiles by subtracting out the background motif frequencies (SI
Appendix, Fig. S7B).

TF Cluster Feature Enrichment Analysis. Enrichment analysis was performed
using DAVID (103) for each of the six clusters for four types of features:
protein domains (PFAM, PIR, and SMART), functional annotations (GO and
Entrez Gene), protein–protein interactions (BioGRID interaction and intact
databases), and pathways (KEGG and BioCarta). P values were calculated
using the Benjamini correction for multiple testing.

TF Coenrichment Analysis. We tested for coenrichment and codepletion of
motifs from the six TF motif clusters in genomic NDR sequences using a Fisher
exact test. For each pair of cluster A and cluster B, we calculated the OR that a
genomic sequence contains a motif from cluster B, conditional on the
presence of a motif from cluster A. To control for motif similarities between
motifs in different clusters, we also calculated the same OR in scrambled
sequences (holding dinucleotide content constant). To identify significantly
coenriched or codepleted pairs, we selected pairs for which the 95% CI of the
genomic OR did not overlap the 95% CI of the shuffled OR.
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