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Abstract

Small satellites (CubeSats) provide platforms for science payloads in space. A pre-
vious Earth weather observing CubeSat mission, the Micro-sized Microwave Atmo-
spheric Satellite-1 (MicroMAS-1), used a manual approach to both testing and com-
manding. This approach did not work well when it came to mission operations, as it
was error-prone, stressful, and non-repeatable. In this thesis work, we designed and
implemented an automated testing framework for the Microwave Radiometer Tech-
nology Acceleration (MiRaTA) CubeSat, which was used during testing and mission
operations; we also prepared tools and procedures for mission operations. The Mi-
RaTA system presented large improvements in usability and repeatability as com-
pared to the MicroMAS-1 system; for instance, an automated functional test could
be run 38x faster as compared to a manual functional test.
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Chapter 1

Introduction

The purpose of this thesis is to demonstrate process improvement for testing and

mission operations for CubeSats. Although this work was created specifically for the

MiRaTA mission, the general concepts can be applied to other CubeSats as well.

1.1 CubeSats and Weather Sensing

Remote sensing enables scientists to measure properties of the Earth, such as surface

temperature and atmosphere composition, from afar. One important type of Earth

observing remote sensor is the microwave radiometer; radiometers currently in orbit

around the planet capture important observational data as input for weather forecast-

ing models, which generate our day-to-day weather forecasts. Therefore, improving

the quality, global coverage, and frequency of microwave radiometer data is of direct

interest to scientific organizations such as the National Oceanic and Atmospheric

Administration, NASA, and society at large. One way to accomplish this goal is to

improve the development process and on-orbit operations of spacecraft used to carry

and operate radiometers.

Currently operating weather satellites are typically monolithic structures that host

many different types of sensors.[6] These satellites are very large in size (thousands

of kg), with high development costs in time (over ten years) and money (hundreds of

millions to billions of dollars). Due to their expensive and monolithic nature, these
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satellites also have a high impact of failure. In addition, their revisit period is too

long (from a minimum of 4-6 hours to up to 2 weeks over the same ground site) for

what would be necessary to improve severe weather tracking (15-30 minutes).[6]

Instead of using large satellites to hold many sensors, an alternative solution is to

build many small satellites (also known as CubeSats or nanosatellites), each holding

their own remote sensing payload.[6] Each satellite would have costs in the million-

dollar range, with a development time of 2-3 years. Since each satellite is relatively

cheap and has only one payload, if several are built, the failure impact is low. To

achieve a low revisit period (15-30 min), a constellation of small satellites could be

flown. This alternative satellite development paradigm is currently being undertaken

at MIT Lincoln Laboratory (MIT LL) in collaboration with the MIT Space Systems

Lab (MIT SSL); many other universities are developing and flying CubeSats as well.

Several CubeSat programs from MIT LL/MIT SSL have already flown. The

Micro-sized Microwave Atmospheric Satellite-1 (MicroMAS-1) was the first Cube-

Sat launched by MITLL/MIT SSL, in March 2015. MicroMAS-1 was able to perform

a successful checkout of its spacecraft systems; however, its transmitter eventually

failed a week into the mission, and no payload data was successfully received.[6] The

Microwave Radiometer Technology Acceleration spacecraft (MiRaTA) All of these

radiometer spacecraft have similar size (3U, 30 cm x 10 cm x 10 cm) and power

specifications ( 10 watts); each has a different radiometric payload, however.[6] The

MiRaTA spacecraft is of interest to this work, and will be discussed further.
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1.2 MiRaTA and MicroMAS-1

Figure 1-1: MiRaTA spacecraft.[26]

The MiRaTA spacecraft is comprised of several printed circuitboards (PCBs) con-

nected through a common header; on each circuitboard there are several types of

sensors (such as temperature and voltage sensors) as well as connections to devices

(such as reaction wheels and radios). MiRaTA also has a main microcontroller that

coordinates interactions with each device; the microcontroller runs a lightweight real-

time operating system which uses a cooperative scheduler to make sure tasks are

executed properly. External input to MiRaTA comes in the form of packets; these

packets can be sent via radio or via serial. MiRaTA has two types of radios, the

Micron radio (used for live commanding) and the L3 Cadet radio (used for rapid data

downlink); both radios operate in the ultra-high frequency (UHF) range.

MiRaTA utilized a good deal of code from MicroMAS-1. One software tool that

was used on MicroMAS-1 and adapted for MiRaTA is Dashboard[19], an application
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that can interface with ground station hardware to talk to the satellite. Dashboard

was used to both test the spacecraft on the ground and communicate with the space-

craft while it was orbiting Earth. Its user interface provided a simple command form

for issuing packets to the satellite, as well as a few different displays of telemetry from

the latest packets received from the spacecraft. Dashboard also saves data it receives

from the satellite, for later processing. Dashboard played a crucial role in testing

the MicroMAS-1 satellite, as it is the primary way of commanding the satellite and

viewing its state.

In order to ensure that a satellite will operate when it is launched into space, a

satellite must undergo a gamut of electrical, software, and environmental testing on

the ground. The bare minimum for the electrical and software testing is manual verifi-

cation of each parameter under test, which was the strategy used for the MicroMAS-1

mission. Most manual tests involved looking at a piece of data from a particular sensor

and seeing if it made sense given the current spacecraft environmental conditions.

These manual tests have several flaws, stemming from their very human-intensive

nature. Since each test needed to be run by an engineer, tests were subject to variabil-

ity such as timing between commands, errors in command sequence or parameters, or

failure to properly document the command sequence used. The tests were also very

repetitive, which can be boring for the test engineers, and also led to a disinclination

to run tests more often than the minimum necessary to ensure the spacecraft was

functioning at a basic level. Since the spacecraftâĂŹs state was constantly in flux

(due to changing software, hardware, and environments), ideally testing would be

done frequently to ensure operation of both new and old features.

During the MicroMAS-1 mission, Dashboard was also used as the primary way of

interfacing with the satellite. Dashboard did not have capabilities beyond the bare

minimum (command and view of telemetry), which led to some operational difficul-

ties while using Dashboard during the mission. For example, often, ground station

engineers would need to issue a sequence of predetermined commands. Unfortunately,

Dashboard at the time offered no way to define and verify these commands prior to

sending them, which resulted in engineers having to manually fill in the command

16



form each time, in a specified order, every time they wanted to command the space-

craft to do something. This introduces a great risk of human error. The difficulty of

issuing these commands was compounded by the short time that the satellite was in

communication at a given time with a ground station, creating a source of stress for

the ground station engineers. Eventually software workarounds were made, but they

were ad-hoc.

Automated testing and commanding provides another alternative to manual test-

ing, and addresses concerns related to the manual testing approach. An automated

test is comprised of the same command sequences and telemetry checkpoints as de-

scribed for the manual test, but would be issued/checked by software rather than by

human operators. Automated testing would allow for a test to be run many times

over, reducing human error and cognitive load during testing. The repeatability of an

automated test would also ensure that any changes in the results of a test were due

to either environmental changes, hardware changes, or software changes (rather than

variance in how the test was administered). Finally, mission operations would benefit

from an automated approach, as operators would not need to worry about acciden-

tally missing a command, or entering in a wrong command. Automated commanding

gives mission operators a way to carefully plan out what command sequences would

be issued while the spacecraft is reachable from the ground station.

In Chapter 2, we discuss testing and mission operations of a spacecraft, the Mi-

RaTA mission, and the MicroMAS-1 mission. In Chapter 3, we present the basic

capabilities of Dashboard. In Chapter 4, we cover our approach to building testing

/ automated commanding systems for MiRaTA. In Chapter 5, we discuss the perfor-

mance of the MiRaTA systems as compared to the MicroMAS-1 systems and suggest

avenues for future work.
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Chapter 2

The MiRaTA and MicroMAS

CubeSat Missions

As background for this thesis, we provide a brief overview of general concepts relating

to the testing and operations of satellite missions. We then describe the MiRaTA

mission, with a focus on its hardware and software components. Finally, we briefly

discuss the MicroMAS mission.

2.1 Testing and Mission Operations

2.1.1 Qualification and Acceptance Testing

All spacecraft must go through a battery of tests before they are approved for launch

by the company that coordinates launches of spacecraft (a launch service provider).

These tests (also known as acceptance tests) emulate the conditions the spacecraft

will be subjected to during launch and after deployment in space.[5] They help verify

spacecraft build quality, integrity, and ensure that the spacecraft will be able to be

launched properly. In addition to the LSP’s tests, teams also conduct their own tests

to check spacecraft workmanship and functionality; tests to check if the spacecraft

will meet design parameters are called qualification tests.[5]

For testing, multiple versions of the spacecraft design are built. The spacecraft

19



Table 2.1: Types of environmental tests conducted on MiRaTA.

Test Conditions Component lvl Subassembly lvl SV lvl

TC Vacuum or oven X X
TB Vacuum X
Vibration Room temp/pressure X X
EMC Room temp/pressure X X
Functional Vacuum or room X X X

An X indicates that at least one of that type of test was performed on MiRaTA.
Component/subassembly/space vehicle examples: A component would be something
like a battery, subassembly means the entire power system, and space vehicle means
the entire spacecraft.

which will be launched is called the flight model (FM); usually the FM is subjected

to the bare minimum of tests needed to verify that the spacecraft is operational, in

order to avoid causing harm to the spacecraft while doing testing. A structural/ther-

mal model (STM) replicates the physical structure and thermal properties of the

spacecraft but without functional components; building an STM is much cheaper and

easier than building a full spacecraft and allows the team to do rigorous physical

testing without risk of harming the FM. The engineering model (EM) is a replica of

the FM, but is used on the ground for development and functional testing much more

than the flight model; for instance, on MiRaTA, the EM was used for virtually all of

software development. During mission operations, the EM can be used as a way to

verify expected spacecraft behavior, before sending commands to the actual FM in

space.
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Figure 2-1: MicroMAS-1 spacecraft in a thermal vacuum chamber.[9]

Types of tests that a spacecraft undergoes include, but are not limited to:

• Thermal cycling (TC): Repeatedly expose the spacecraft to a cycle of cold

temperatures, then hot temperatures.[3] Thermal cycling causes expansion and

contraction of components, another potential source of stress for the spacecraft.

Workmanship issues (how well components are assembled) can be exposed in

this test.

• Thermal balance (TB): Makes sure that the spacecraft does not heat up or

cool down too much while in vacuum; the spacecraft temperatures are compared

to the thermal model for verification.[3] This test is necessary because heat

transfer is different in space versus on Earth.

• Thermal vacuum (TV or TVAC): Expose the spacecraft to high vacuum

and extreme temperatures, to emulate flight conditions.[5]

• Vibration: Vibration tests vibrate the spacecraft in a way that emulates the

type of vibrations that may arise during launch.[5] Different types of vibration

profiles are used, such as sinusoidal vibrations and random vibrations.[1]
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• Shock: Shock tests subject the spacecraft to sudden motion.[1]

• Electromagnetic compatibility (EMC): EMC tests check for excessive elec-

tromagnetic (EM) emissions created by the spacecraft, and also determine if the

spacecraft is susceptible to external EM interference.[2]

• Functional: Functional tests check if the spacecraft can execute all of the

functions required of it to complete the mission. These are defined by the team

developing the spacecraft.

2.1.2 Mission Operations

After satisfactory qualification/assurance testing, the spacecraft is integrated into the

launch vehicle by the LSP. Some time after that, the spacecraft is launched into orbit,

at which point mission operations begins. Mission operations is the point at which the

spacecraft is remotely controlled by operators. There are two main phases to mission

operations: in-orbit testing (also called early orbit checkout) and nominal operations.

The purpose of in-orbit testing is to verify that the spacecraft is operating as ex-

pected in space; this includes telemetry/radio communications verification, payload

checkout, calibration, and some other functional tests.[27] Once in-orbit testing has

been completed, the mission enters nominal operations; for MiRaTA, this involves

collecting science data.

In order to communicate with the satellite, the spacecraft operators must utilize

a ground station. A ground station contains the radio frequency (RF) equipment

and software to be able to encode and decode information to/from the spacecraft, in

addition to any networking/software needed for the operators to connect to the ground

station hardware (if the operators are remote).[27] Communications with the satellite

can only occur when the satellite is visible from the ground station; the period of time

the satellite is overhead is called an overpass. For MiRaTA, the overpass durations

are no longer than 10-12 minutes.
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Figure 2-2: The horizontal coordinate system.[13]

The satellite’s position relative to the ground station is typically specified in the

horizontal coordinate system (as shown in Figure 2-2).[13] In Figure 2-2,

• 𝑁𝐸𝑆𝑊 are the cardinal directions (north, east, south, west), which defines the

horizontal plane.

• 𝑋 is the observer (the ground station in our case).

• 𝑅 is the satellite.

• 𝑅′ is the projection of 𝑅 onto the horizontal plane (also called the local horizon).

• 𝑎 is the altitude of 𝑅, or the angle between 𝑋𝑅 and 𝑋𝑅′.

• 𝐴 is the azimuth of 𝑅, or the angle between 𝑋𝑁 and 𝑋𝑅′; it increases from

north to east.

Information about the satellite’s orbit is stored in the two-line element (TLE)

format.[17] TLEs describe the orbit of a satellite, and are generated periodically

by NORAD (North American Aerospace Defense Command).[17] To use TLEs, an

operator feeds them into an orbit propagator, which calculates the path of a satellite

(also called the ground track) and when the satellite will pass over the ground station;

the propagator then displays the results via a graphical user interface. GPredict1 is
1http://gpredict.oz9aec.net/
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an open-source piece of software that is commonly used for this purpose; there is also

a website called n2yo.com that will also display satellite ground tracks.

Figure 2-3: MiRaTA’s ground track shown in n2yo.com.[28] Imagery from Google
Maps.[15]

Another important variable for the operator to keep in mind during mission oper-

ations is the effect of Doppler shift on satellite communications. Doppler shift is the

phenomena where a receiver (e.g. a ground station) of a signal generated by a moving

source (e.g. a satellite) will observe a change in frequency of the signal; this change

depends on the relative velocity of the source and the receiver.[14] If the source is

moving towards the receiver, then the receiver will perceive a higher-frequency signal

than what the source is actually emitting; if the source is moving away from the

receiver, then the receiver will perceive a lower-frequency signal. Depending on the

bandwidth (the understandable frequency range) of the receiver, Doppler shift can

make communications useless. Ground stations often implement Doppler correction

measures to account for Doppler shift; for instance, if a satellite is traveling towards a

ground station, the ground station will emit signals which are lower than the expected

receiver frequency of the satellite so that, when the signals arrive at the satellite, they

are at about the proper frequency. The appropriate Doppler correction is calculated

using the spacecraft TLE and the ground station location latitude/longitude/eleva-

tion.
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2.2 MicroMAS-1

Figure 2-4: MicroMAS-1 model.[9]

The MicroMAS-1 mission was the first joint CubeSat mission between the MIT Space

Systems Laboratory (SSL), MIT Lincoln Laboratory, and the University of Mas-

sachusetts at Amherst.[11] The payload of MicroMAS-1 was a passive scanning mi-

crowave radiometer; it had a scanner assembly that rotated the payload at about 0.8

Hz.[11] MicroMAS-1 was delivered to the International Space Station in 2014 and

was deployed in March 2015; unfortunately, after one week, the spacecraft suffered a

transmitter fault.[9]

The small MicroMAS-1 team had to design many procedures, build avionics

boards, and write flight/ground software code all from scratch. This understandably

led to some sub-optimality in MicroMAS-1 testing and mission operations procedures,

as the team was stretched thin and simply did not have enough time to complete the

necessary work. MiRaTA, which has the advantage of relying upon the vast body of
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work done by the MicroMAS-1 team, was able to improve upon some of the issues,

as described in Chapter 5.

2.2.1 Mission Operations

Some background on the specific configuration for MicroMAS-1 mission operations

is useful for understanding MiRaTA’s set-up, as several aspects remained the same

through both programs. The high-level block diagram is shown in Figure 5-2.

Figure 2-5: MicroMAS-1 ground station diagram.[9]

The process of communicating with the satellite during MicroMAS-1 operations

went as follows:

1. The mission planning team at LL (in Massachusetts) would figure out what the

goal of the next overpass was. For instance, confirm that a particular subsystem

is working.

2. The mission planning team would come up with a sequence of commands to

26



send during the overpass, and notify the mission command team at SDL (in

Utah).

3. The mission command team would issue commands and receive telemetry re-

motely through the dish at the Wallops Flight Facility (in Virginia).

4. Any data would also arrive at MIT campus, where it would be processed by the

data analysts.

As a result of data analysis, multiple data products are produced. These data

products are described by the NOAA processing levels:[24]

• Level 0: Unprocessed spacecraft telemetry.

• Level 1: Instrument-specific datasets that have been timestamped and include

raw unprocessed science data, with other information like data quality measure-

ments and calibration coefficients.

• Level 2: Contains geophysical variables derived from the Level 1 data, with

the same resolution and locations.

2.3 MiRaTA

The MiRaTA spacecraft, the primary focus of this thesis, is the result of a collabora-

tion between the MIT STAR (Space Telecommunications, Astronomy, and Radiation)

Laboratory, MIT Lincoln Laboratory, The Aerospace Corporation, the University of

Massachusetts, and Utah State University.[7] The goal of the MiRaTA mission is to

validate a passive microwave radiometer (MWR) and a GPS radio occultation (GP-

SRO) instrument, and also use a new approach to CubeSat radiometer calibration

using GPSRO measurements.[7] The planned mission duration is 90 days long.[12]
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Figure 2-6: MiRaTA spacecraft, expanded so some components are visible.[8]

2.3.1 Payload

The microwave radiometer is a tri-band, 10-channel sensor that provides temperature,

humidity, and cloud ice measurements; its three frequency bands are 52-58, 175-191,

and 206-208 GHz.[7] 2 A microwave radiometer works by measuring the thermal radi-

ation (brightness temperature) emitted by objects of interest (e.g. clouds, the Earth’s

surface, vegetation) over various frequencies; the response received by the radiometer

versus the frequency of the response is used to create an absorption profile.[23] This

absorption profile can then be compared to known absorption profile characteristics to

figure out various aspects of climate data (such as the temperature profiles MiRaTA
2The radiometer was developed by MIT LL and UMass Amherst.
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hopes to obtain). Microwave radiometers report brightness in raw digital numbers

(also called DNs or counts); it is thus important to calibrate the radiometer so that

one knows what counts correspond to what temperature. Calibration is typically done

by repeatedly pointing the radiometer at a hot target, then a cold target; these targets

are usually blackbodies, which means they have a known relationship between their

temperature and the amount of microwave energy they emit. On orbit, calibration

must be done frequently in order to correct sensor drift. Using bulky blackbodies is

unfortunately not an option for small CubeSats, which means alternative calibration

methods (such as the one being pioneered by MiRaTA) must be used.

The GPSRO instrument is called the Compact TEC (Total Electron Count) /

Atmosphere GPS Sensor (CTAGS), and is based on a GPS receiver (OEM628) plus

a patch antenna array.[8] 3 GPSRO measurements have been demonstrated to have

the capability to create temperature profiles in the upper troposphere / lower strato-

sphere that approach 0.1K accuracy.[7] MiRaTA’s radiometer calibration approach

will leverage GPSRO measurements of the Earth’s limb, which is the atmosphere at

the visual edge of the Earth. The calibration approach will also use a noise diode,

which serves as a source of calibration signal; it itself will be calibrated using GP-

SRO measurements. Together, using the noise diode and GPSRO, MiRaTA is able

to avoid the use of the aforementioned bulky blackbody targets for calibration.[7]

Because MiRaTA does not do the typical calibration via external targets, MiRATA

has no active scanning mechanisms, simplifying the spacecraft structure.[26]

The final components of the payload are the Intermediate Frequency Processor

(IFP) and Payload Interface Module (PIM). The IFP does digitization and signal

processing on the incoming radio frequency (RF) signal. The PIM coordinates the

actions of the payload sensors, and serves as an interface between the bus and the

payload.
3CTAGS was developed by the Aerospace Corporation.
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2.3.2 Bus

The operation of the MiRaTA payload is supported by the spacecraft bus, which is

a collection of boards and components that make up the rest of the spacecraft; it

includes, among other components, two radios, a microcontroller, a power subsystem,

and an attitude determination and control system (ADCS). The design of the bus

carries over many lessons learned from MicroMAS-1 and uses many of the same com-

mercial off-the-shelf (COTS) components.[26] The COTS components are integrated

together using several custom-designed boards. Together, the bus and the payload

fit in a standard 3U CubeSat configuration, which is 10 cm x 10 cm x 34 cm with a

mass of around 4.5 kg.[12] 4

Power

MiRaTA’s power5 is provided by the Clyde Space6 Electronic Power System (EPS),

a Clyde Space battery, and Clyde Space double-deployed solar panels.[7] The EPS

provides the spacecraft bus regulated sources of 3.3V and 5V power, as well as a

connection to the battery (7-8V depending on charge). All lines also contain over-

current protection; when the EPS’s microcontroller detects an overcurrent condition,

the output lines are disconnected from the rest of the spacecraft bus.[10] The solar

panels connect to the EPS through a battery charge regulator (BCR), which then

connects to the battery for charging.

External to the EPS are a handful of power switches (called power distribution

units or PDUs). These PDUs control power to each individual sensor/subsystem and

can be toggled with the microcontroller.
4MiRaTA structures were worked on by Tim Cordeiro and Dave Toher.
5MiRaTA’s power subsystem was worked on by Annie Marinan and Ayesha Hein.
6https://www.clyde.space/products
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Communications

MiRaTA sports two ultra-high frequency (UHF) radios, one for data downlink and

one for commanding.7

The first is called the Cadet-U radio, developed by L-3 Communications and

the Space Dynamics Laboratory (SDL). It is the way payload and spacecraft data is

downlinked from the spacecraft, due to its high downlinked data rate ( 3.0 Mbps) and

large amount of internal storage.[20] It operates in the UHF range at around 450-460

MHz; in order to communicate with it, we use the NASA Wallops ground station

coupled with SDL’s SATRN and Titan software.[20, 8] The Cadet has a "store-and-

forward" architecture, which means that the radio collects data from the spacecraft in

its first-in-first-out buffer (which we call the FIFO), and the operators on the ground

must request particular subsets of the data in the FIFO; the Cadet cannot respond

with real-time data.[20]

The second radio on board MiRaTA is called the Micron radio, and is based on a

Planet UHF design which uses the CC1110 radio transceiver.[21] Since it can respond

in real time (unlike the Cadet), it is used as the primary commanding radio. Its

ground station is based on MIT’s campus.[8]
7MiRaTA’s communication systems were worked on by Greg Allan, Mic Byrne, Myron Lee, Julian

Mendoza, Joey Murphy, Stephen Shea, and Michael Shields.
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Figure 2-7: MiRaTA ground station diagram. The Cadet communications chain in
MiRaTA is similar to the MicroMAS-1 one. For MiRaTA, we have added the Micron
communications chain.

ADCS

The ADCS is made of a complement of sensors and actuators.8 The bulk of the ADCS

consists of the MAI-400 from Adcole Maryland Aerospace[4]. It contains a 3-axis

magnetometer, two IR Earth Horizon Sensors (IREHS), three electromagnets (also

called torque rods), three reaction wheels, and an ADACS computer.[4] In addition

to the MAI-400, MiRaTA also has an inertial measurement unit (IMU) and another

EHS.[7]
8The ADCS subsystem for MiRaTA was worked on by Zack Lee, Weston Marlow, and Adam

Milstein.
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Figure 2-8: MiRaTA spacecraft science maneuver. The green is the payload and the
blue is the spacecraft bus. The triangles indicate relative fields-of-view and direction
of the payload instruments (GPS, GPSRO antenna, and radiometer).[8]

All of these sensors and actuators are used to perform several spacecraft move-

ments, critical to mission success. The first ADCS mode to run is detumble, which

stabilizes the spacecraft from tumbling after deployment. In nominal operations, the

ADCS will also execute pitch-up and pitch-down moves, which moves the bus in

such a way that the payload can scan the Earth’s limb. These pitch-up and pitch-

down moves are a part of the spacecraft’s calibration maneuver (also called maneuver

mode), depicted in Figure 2-8; it lasts about 10 minutes.[8]

Other Components

Other components of note include:

• A set of resistive temperature detectors (RTDs) for monitoring the temperature

of various components.

• An oscillator to serve as the spacecraft’s sense of time/clock (also called avionics

elapsed time or AET).

• A flash chip for storage of multiple flight software images.

• A set of thermal knife drivers (TKDs) which, when fired, deploy the solar panels.

The spacecraft motherboard is a Pumpkin CubeSat motherboard.[7] Custom-built

boards interface with the COTS components, and form the backbone of the avionics
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stack. These boards are called the Top Interface Board (TIB), which interfaces with

the Cadet radio; the Bottom Interface Board (BIB), which interfaces with the MAI-

400; and the Micron Motherboard (MMB). The format of the boards follows the

CubeSat Kit PCB Specification.9

Microcontroller and Flight Software (FSW)

MiRaTA’s onboard microcontroller is a PIC24 running the Salvo Real Time Operating

System (RTOS).[25] Salvo was chosen for its extremely low memory requirement, and

was previously used on MicroMAS-1.[25, 11] The flight software (FSW) is written in

C.10

Salvo is a purely event-driven, stack-less cooperative multitasking RTOS11.[25] A

Salvo program is broken into a main program and various tasks. The main program

typically runs setup code (running initialization code for subsystems, for instance),

then runs the Salvo scheduler forever in a while loop. The scheduler then runs tasks

according to priority (there are 16 levels of priority available in Salvo); tasks that

share the same priority run in round-robin fashion.[25] Since Salvo is cooperative,

each task must manage task switching; this means that when a task is waiting or

done, the task must explicitly yield control to the scheduler, otherwise the operating

system can become stuck. Because each task controls when it switches, Salvo does

not need to keep a per-task stack; it merely needs to save registers on a task switch.

Another important part of the OS are interrupt service routines (ISRs), which are

pieces of code that handle external events (such as data becoming available from a

sensor). An ISR can interrupt any task; once the ISR is finished running, control is

returned back to the task that was interrupted.
9Available at http://www.cubesatkit.com/docs/CSK_PCB_Spec-A5.pdf

10Some code was taken from MicroMAS-1’s FSW, which was primarily written by Ryan Kingsbury;
other contributors include Kris Frey and the author. The FSW for MiRaTA was primarily written
by Kit Kennedy, with contributions by Julian Mendoza, Joe Kusters and Patrick Kage.

11Salvo is very different in concept from Linux, MacOS, or Windows, all which are pre-emptive
multitasking operating systems. In a pre-emptive OS, tasks can interrupt each other, with the
assumption that an interrupted task will resume later.
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Figure 2-9: Collection of the tasks that run in the FSW.

The FSW consists of all the tasks listed in Figure 2-9.

• Device drivers: At the lowest level, all subsystems/sensors have their own

driver, which is code that handles communication with the subsystem/sensor.

Drivers issue commands to their respective subsystems, collect data, and moni-

tor their subsystems for faults/errors. Each driver is structured in a loop which

executes forever while the processor is running. Most drivers also contain ISRs

to handle the many communication interfaces used on the spacecraft; examples

include SPI (Serial Peripheral Interface Bus), I2C (Inter-Integrated Circuit),

and UART (Universal Asynchronous Receiver-Transmitter). Device functional-

ity can be enabled or disabled by either the special function tasks or the high

level tasks.
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• ADCS tasks: These tasks control the execution of complicated routines. The

ADCS task manages the algorithmic aspects of moving the spacecraft in certain

ways; it executes spacecraft detumbling and pitch-up/down motions. The ma-

neuver task is in charge of managing the ADCS task state so that the payload

can take radiometer and GPSRO measurements, as shown in Figure 2-8.

• Spacecraft state tasks: The mode execution task keeps track of what mode

the spacecraft is in, and handles both autonomous and manual state transitions;

nominal modes are shown in figure 2-10. The housekeeping task keeps track of

all of the faults that accumulate from the different subsystems on the spacecraft,

and also keeps track of the frequency of code execution and the last time the

spacecraft heard from a ground station. The commanding task handles the

interpretation of commands from the ground, and can command a transition

to a modes or turning devices on and off. The command queuing task keeps

track of commands to be executed in the future; when it comes time to execute

queued commands, the command queuing task issues them to the commanding

task.

Spacecraft Modes

There are a few special modes that the spacecraft enters; nominal operational modes

are discussed below. When the microcontroller boots up (either through deployment

or through a spacecraft reset), the spacecraft is in "not initialized" mode. It then

autonomously and immediately moves to "inhibit mode" where the spacecraft waits

for some time. After "inhibit mode", the spacecraft autonomously moves to "deploy

mode", which fires the TKDs, thereby deploying the solar panels. After that, the

spacecraft autonomously enters "safe mode", which indicates that the spacecraft is

ready to begin mission operations. The spacecraft can then be manually commanded

into the modes listed in Figure 2-10 below. The only one of the previously-described

modes that the spacecraft can return to (without a spacecraft reset) is "safe mode",

which the spacecraft can autonomously transition to if there are too many faults; in
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transitioning to safe mode, all non-essential devices are turned off.

Figure 2-10: Nominal spacecraft modes.[18]

The five listed modes are the nominal operational activities for MiRaTA, and are

mutually exclusive.[18] Maneuver mode is as described in Figure 2-8. The slew mode

involves moving the spacecraft from one attitude (orientation) to another. Recharge

mode corresponds to the ADCS suntracking mode, which charges the batteries with

solar energy. Downlink mode corresponds to when the spacecraft is commanded to

downlink data through the Cadet radio. Idle mode is the mode where the spacecraft

is doing nothing but maintaining a radiometer nadir pointing attitude, Local Vertical

Local Horizontal (LVLH); this means that the spacecraft is oriented parallel to Earth’s

surface.

Software Development

MiRaTA uses the Git12 version control system. All code resides in the same monolithic

repository, so that the team knows that a particular version of the flight software will
12https://git-scm.com/
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work with the ground software (which was a concern on MicroMAS-1).
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Chapter 3

Dashboard: Software for Command

and Data Handling

3.1 Introduction

Dashboard1 serves as a way for human operators to communicate with the satellite,

and also observe the state of the satellite. Dashboard has the capability to interface

with several types of ground stations, up to the operator’s choosing. Using Dash-

board’s web interface, operators can send commands to the spacecraft, and observe

telemetry in real-time. In this chapter, we cover the basic functionality of Dashboard:

its software architecture, as well as some screen shots. The automated testing/com-

manding features will be discussed in the next chapter. Note that all screen shots

used here and in the next chapter use randomly generated data.

Originally, Dashboard was created for the MicroMAS-1 mission, to assist in com-

manding and debugging the spacecraft telemetry. It was also used as a part of

MicroMAS-1 mission operations, which will be discussed in Chapter 5.

Dashboard’s functional requirements are as follows2:

1. Dashboard must support real-time (live) communications with the spacecraft
1Dashboard was originally written by Ryan Kingsbury, with many modifications from Kit

Kennedy, the author, Patrick Kage, and Erik Thompson.
2Many of these are the result of MicroMAS-1 experiences; specific suggestions were made by

Michael DiLiberto and Kit Kennedy.
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via the Micron radio, the Cadet radio, and a USB-serial link.

2. For each link, Dashboard must allow for commanding on that link, and inter-

preting telemetry packets from that link.

3. Dashboard must be able to display real-time telemetry from the spacecraft.

4. Dashboard must be able to facilitate live-debugging of the spacecraft and its

constituent components.

5. Dashboard must provide a time-tagged command log file, to record the com-

mands sent during a session.

6. Dashboard must provide a time-tagged telemetry log file, to record the telemetry

sent during a session.

7. Dashboard must be operator friendly: minimize operator error; provide easy-

to-use tools.

8. Dashboard must provide a method for Doppler effect compensation.

As context for this chapter and the next, Figure 3-1 shows the specific Dashboard

functionality that will be discussed.
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Figure 3-1: An overview of the functionality of Dashboard. All functionality shown
is present in MiRaTA’s Dashboard. Orange boxes show where the author made
significant contributions.

3.2 Dashboard User Interface

Dashboard is started in one of many modes depending on what the operator would

like to do. The most frequently-used options are as follows:

• Serial: Command the spacecraft over USB-serial.

• Micron: Command the spacecraft via Micron radio.

• Cadet: Command the spacecraft via Cadet radio.

• File: A special mode where Dashboard reads in a telemetry file and displays

the telemetry to the operator; not used for commanding.
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• Doppler: Prior to Dashboard sending a spacecraft command, Dashboard will

calculate the proper uplink frequency to transmit the command at to compen-

sate for the Doppler effect.

3.2.1 Commanding

Figure 3-2: List of sample commands.

In order to command the spacecraft, an operator will visit the command page and can

click on a command under the "Available commands" heading. CMD_EXAMPLE_1

in Figure 3-2 is an example of such a command.
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Figure 3-3: Sample command form.

When clicking on one of the commands in the command list, a form will appear

with fields corresponding to the packet’s schema. On clicking submit, a packet will

be generated and sent to the spacecraft.
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3.2.2 Telemetry

Figure 3-4: Dashboard’s main screen. This is also the telemetry overview page.

When first opening Dashboard in the browser, the operator is shown a summary of

the telemetry packets received so far. The left pane of all pages (including this one)

is a collapsible navigation bar, shared between all Dashboard pages. The top-left

is a live updating section that shows useful information such as the type of link-

mode (serial, Micron radio, or Cadet radio), the time, the current command sequence

number, number of packets received, number of packets sent, and number of packet

errors.

The operator can click one of the buttons at the top of the page under "Available

packets" to take them to the telemetry packet that they are interested in. For each

packet, the operator can choose to either view the recent history of packets (the last

10, 50, or 100 packets received); see a live-updating table containing the packet data;

or do a live plot of the fields in the packet.
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Live Plotting

In order to do a live plot of a packet, the operator should click the "live plot" button

and select how many data points and what fields to plot.

Figure 3-5: Sample telemetry plot.

Figure 3-5 shows an example of a live plot; it uses the Highcharts Javascript

library.3 The live plot feature is useful during testing and debugging, for observing

transient effects in telemetry.
3Available at https://www.highcharts.com/
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Message Log

Figure 3-6: Message log, with two of the message options selected.

A helpful debugging tool is the message log, which keeps track of interesting events

as they occur. It is most often used with the "cmd" and "tlm" options enabled,

which tracks the interleaving of commands as they are sent and telemetry received in

response. Other especially useful messages include "dev", which prints when devices

on the spacecraft are turned on and off, as well as "fault", which prints when the

spacecraft generates a fault message.
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Mission Summary

Figure 3-7: Mission summary page (showing random data).

Unlike the other telemetry views, this page was created with mission operations in

mind. It contains the spacecraft state tracked by Dashboard’s backend. By looking

at the leftmost column, the operator can tell at a glance what devices are on, what

state the spacecraft is in, and what temperatures all the components are at currently.

In the middle column, we track the command numbers, the FIFO state (the Cadet

radio’s internal storage), the conversion between three onboard time systems, and

the spacecraft telemetry generation rate. In the right column, we see a message log

consisting of the incoming telemetry packets and outgoing commands.

Other Telemetry Views

In addition to the above views, Dashboard offers several other debugging tools:

• Link stats: Shows bytes received and bytes sent, as well as other statistics

corresponding to packet framing and deframing.
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• Parser stats: Keeps track of how many packets of each type have been parsed,

in addition to parsing errors.

• Telemetry file replay: Allows a telemetry file to be loaded into Dashboard.

An operator can then select specific portions of the file to inspect, for quick

sanity checking of a previous logfile.

3.3 Dashboard Architecture

Dashboard consists of two main parts: the data-processing backend, and the operator-

facing frontend. It is written in Python 2.7.4 The library used to establish connections

is Twisted5, a networking engine. Flask6 is used to serve pages to the browser, and

templates were created using Jinja27.

Figure 3-8: Dashboard architecture.

4https://www.python.org/
5https://twistedmatrix.com/trac/
6http://flask.pocoo.org/
7http://jinja.pocoo.org/docs/2.10/
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3.3.1 Command Transmit Path

In order to transmit a command, a user goes to the command form page in the

Dashboard GUI and fills out the fields. On form submission, the packet builder is

called, generating a serialized form of the packet. This serialized form is then passed

on to the logger and the packet framer; the logger saves the packet to disk, and

the packet framer adds on additional bytes to the beginning of the packet (a packet

header) depending on what type of link we are using (Cadet radio, Micron radio,

or serial). After packet framing, the packet is passed to the Twisted protocol layer,

which sends the packet to the ground station. Finally, the ground station transmits

the packet to the satellite.

3.3.2 Telemetry Receive Path

The telemetry receive path is the inverse of the command transmit path. The space-

craft transmits RF energy, which is received by the ground station. The ground

station then demodulates the signal and digitizes it before sending it to Dashboard

via the Twisted protocol layer. The bytes are then sent to a deframer, which searches

for sentinel bytes signaling the start of a packet frame. After a frame is found, the

header is stripped off and the packet is sent to the packet parser. The packet parser

checks the deframed data against the packet specifications, and if it matches one of

the packet specifications, sends the packet to Dashboard’s internal storage and also

logs the packet to disk. After parsing, the packet data is then available in any of the

telemetry views.
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Chapter 4

Software Development for Spacecraft

Testing and Mission Operations

In this chapter we discuss some of the work involved in testing and operating MiRaTA.

We briefly cover interfaces for testing of the payload. The bulk of the chapter covers

the development of the automated testing system for Dashboard.

4.1 MiRaTA Payload Testing Software

As covered in Chapter 2, it is important to make sure that a microwave radiometer

(MWR) is properly calibrated to ensure correct correspondence between reported dig-

ital numbers and temperature. Before our MWR is flown, we measure its performance

in a known testing environment that replicates space conditions (a thermal vacuum

chamber, or TVAC chamber). Running the calibration within the TVAC chamber

requires assembling special ground support equipment (GSE).[22]
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Figure 4-1: Radiometer TVAC GSE equipment diagram.[22]

On the ground, we are able to use conventional blackbody targets for calibrating

our MWR; this technique is called periodic absolute calibration, or PAC.[22] As shown

in Figure 4-1, a box frame was constructed to hold three blackbody targets: one hot,

one cold, and one variable. The frame also held a reflector that could rotate to

point at each target in turn, reflecting the radiation of each blackbody target onto

the MWR in sequence. A computer was connected to the reflector motor driver (to

control the motor) and a Keithley switching multimeter (for temperature sensing of

the blackbody targets and motor); the computer provided a GUI (see Figure 4-2) to

control and observe the state of the system.1 The GUI is written in Python, and uses

the PyQt framework.2

1The TVAC GSE GUI was originally written by Michael DiLiberto, with rewriting by the author.
2https://riverbankcomputing.com/software/pyqt/intro
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Figure 4-2: Radiometer TVAC GSE GUI for controlling the reflector’s motor.[22]
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The TVAC GSE GUI features buttons to move the reflector for testing, control

radiometer data collection, and view temperature plots and statistics. In order to

head off some amount of operator error, the buttons on the GUI would grey-out if

clicking them would cause strange motor controller behavior.

Figure 4-3: Code layout of the TVAC GSE GUI.[22]

The first prototype of the GUI was able to plot temperature, but could be slow to

update. In order to support concurrent data updating and motor control, the GUI’s

backend was rewritten into several parts that did not block on each other (see Figure

4-3).
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Figure 4-4: Payload y-factor calibration page in Dashboard.

The final piece of the radiometer calibration is Dashboard, which is the primary

way of controlling the radiometer through testing. One of the ways the radiometer’s

performance was calculated (in addition to PAC) is called the y-factor method, which

allows one to calculate the noise figure and gain of a sensor.[16] For TVAC testing, a

special y-factor calculation page (Figure 4-4) was written for Dashboard. It stepped

the operators through the process of commanding the radiometer, moving the motor,
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and collecting data. It also calculated the final y-factor results, so that the test

operator could see at a glance if the radiometer was operating within parameters.

4.1.1 Results

Figure 4-5: MicroMAS-1 payload calibration set up.[9]

The TVAC GSE/GUI and Dashboard were used in September/October 2016 to run

MiRaTA’s MWR TVAC testing.[8] Preliminary results from the data analysis of test-

ing showed that MWR values were well within acceptable ranges for gain (accuracy)

and noise equivalent differential temperature (NeDT, or precision).[8] The TVAC

GSE/GUI and Dashboard commands developed for MiRaTA worked well enough
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for it to be used as the basis for MWR TVAC calibration for MicroMAS-2a and

MicroMAS-2b (follow-on missions for MicroMAS-1).

4.2 Automated Testing Capability for Dashboard

As a result of the team’s stressful experiences from MicroMAS-1 operations, it was

decided that automated testing and commanding would be a great addition to Dash-

board’s capabilities. Automated testing was developed for use in space vehicle (SV)

TVAC testing during late 2016.3 Like in the previous chapter, all packets and scripts

shown are dummy versions for demonstration.

4.2.1 Scripts

There are two types of scripts that an operator can run from Dashboard. The first

type is called an Automatic Test Script (ATS), and the second is called a Ground

Station Mission Manager script (GSMM script). Both types of scripts are executed

by the GSMM subsystem in Dashboard.

An ATS consists of a timeline of commands and telemetry check points, as in

Figure 4-6.

• 0.0s: Start device A in mode 2.

• 1.0s: Check device A telemetry packet: verify that device A is on and mode is
set to 2.

• 2.0s: Turn off device A.

• 3.0s: Check device A telemetry packet: verify that device A is off.

Figure 4-6: ATS concept.

When an ATS is run, the script manager within Dashboard steps through the

timeline specified in the ATS and issues commands to the spacecraft and/or checks
3The automated testing system was developed by the author and Kit Kennedy, with advice from

Nicholas Zorn and Michael DiLiberto.
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telemetry from the spacecraft. In order to keep the system simple, the timeline

specified in the ATS is relative to the beginning of when the script is executed (instead

of specifying the timeline in absolute time). As an ATS executes, it keeps track of

what telemetry checkpoints succeeded or failed. After an ATS is finished executing,

the results are written to a log file and displayed to the user. The ATS format

was intentionally kept simple, as it is intended to serve as a way to execute small

device-level tests, and as a building block for more complicated behavior.

The second type of script that an operator can run is a GSMM script. Figure 4-7

shows an example of possible GSMM script behavior.

1. Execute sampleATS.

2. Wait 2 seconds.

3. Check success result of sampleATS. If it did not succeed, and the test has been
running for less than one minute, go back to step 1.

Figure 4-7: GSMM script concept.

This type of script allows for more complicated control of Dashboard, as it allows

the script writer to use Python to specify commanding/telemetry reading behavior.

Several building blocks are built into the GSMM execution framework to enable the

script writer to access Dashboard interfaces; these include the ability to execute AT-

Ses, send single commands/read telemetry packets, and display data in the Dashboard

GUI. A GSMM script can be as simple as a sequence of ATSes ("a script of scripts").

On the other end of the complexity spectrum, a GSMM script can also be used to

issue all ground commands needed to run the spacecraft’s maneuver mode.

4.2.2 Scripting Related User Interfaces

ATS Building

ATSes are conceptually fairly simple, but their constituent commands and telemetry

packet fields can be quite complex. Thus, Dashboard provides a basic ATS creation
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tool that allows the script writer to fill in fields using a GUI that looks the same as

the command forms used in commanding.

Figure 4-8: ATS creation tool main page.

The field "New ATS name" allows you to specify a new name for an ATS file. The

field "Load ATS here" allows you to open an existing ATS for editing. If a name is

not specified at file creation, the date and time is used (as shown in the line Current

ATS). If the script writer wishes to save their script, they can hit the SAVE button

at any point.

The table right under "Current ATS" shows a brief summary of the contents of

the ATS. It lists the times, type of command or telemetry packet, and important

fields that are being issued. An ATS element can also be removed via this table.

To add a command or telemetry checkpoint to the loaded script, the operator clicks

one of the listed commands under "Available commands" or "Available telemetry

checkpoints".
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Figure 4-9: Form to add a command to an ATS. A similar form is used to add a
telemetry checkpoint to an ATS.

Figure 4-9 shows the interface to add a command to an ATS. It is entirely identical

to the manual command form, with the exception of the page title at the top. After

hitting the submit button, the script writer is redirected back to the main ATS

creation page.

The corresponding ATS file on disk to Figure 4-8 is Figure 4-10.
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1 {
2 "0.0": [{
3 "description": "Command example 1.",
4 "id": 1,
5 "name": "CMD_EXAMPLE_1",
6 "values": {}
7 },
8 {
9 "description": "Telemetry packet example 1.",

10 "id": 101,
11 "name": "TLM_EXAMPLE_1",
12 "values": {
13 "field1": [
14 "12",
15 "DC",
16 "25"
17 ],
18 "field2": [
19 "1",
20 "DC",
21 "2"
22 ],
23 "flag1": "0"
24 }
25 }],
26 "2.0": [{
27 "description": "Command example 5.",
28 "id": 5,
29 "name": "CMD_EXAMPLE_5",
30 "values": {
31 "flag": "2",
32 "setting": "11"
33 }
34 }],
35 "metadata": {"description": "ATS sample.", "version":"1.2"}
36 }

Figure 4-10: Simple raw ATS file sample. ATSes are formatted as Javascript Object
Notation (JSON).

The raw file reflects the same amount of information visible in the ATS builder.

The JSON format was chosen since it is a common data representation and, if needed,

can be directly modified.
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GSMM Script Building

Since GSMM scripts are just Python scripts, there is no built-in editor in Dashboard

for them. However, Dashboard’s source contains a sample GSMM script for reference.

The following features are available for use in a GSMM script:

1. Requesting telemetry from Dashboard packet storage.

2. Sending a command to Dashboard.

3. Custom user-input at script execution time.

4. Execution of ATS and checking of ATS success/fail results.

5. Printing status messages to Dashboard script output page.

6. Interruptible waiting function, that allows Dashboard to gracefully kill the script

if needed.

Running Scripts

The process of running an ATS and the process of running a GSMM script are vir-

tually identical.

Figure 4-11: An operator can choose an ATS to run from the ATS tab.

62



Figure 4-12: An operator can choose a GSMM script to run from the GSMM tab.

From the "ATS + GSMM Runner" screen, an operator can choose the script that

they want to run. The entries of the ATS/GSMM tabs are auto-populated by the

scripts available in the mirata_testing directory.

Figure 4-13: ATS summary before execution.

Figure 4-13 shows what happens when the operator clicks on an ATS name under

the ATS tab. The operator is directed to an overview of the script to be run, and an

execute button.
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Figure 4-14: GSMM script summary before execution.

Like what happens when an ATS is clicked from the ATS tab, Figure 4-14 shows

the screen that appears when a GSMM script is clicked from the GSMM tab. Instead

of a script summary, the GSMM script source is just directly printed to the screen.

To actually execute the ATS or GSMM script, the operator must hit the execute

button.

Figure 4-15: ATS output.

After a script (either ATS or GSMM) is executed by the operator, Dashboard

automatically redirects to the script output page. Figure 4-15 depicts an example of

what happens when executing the example ATS from Figure 4-13.
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4.2.3 Architecture

Figure 4-16: Dashboard block diagram with the addition of the GSMM subsystem.

The code that enables the automated commanding/testing is called the Ground Sta-

tion Mission Manager (GSMM), so named because this testing system would ulti-

mately be used to run the MiRaTA overpasses. The orange block in Figure 4-16

represents the new code that implements the GSMM functionality. The GSMM sub-

module runs in a separate process from the main Dashboard backend process, to

protect the main Dashboard event loop in the case of a script programmer error. As

a result, the GSMM submodule and Dashboard communicate through interprocess

pipes.

When the operator accesses the test runner and clicks execute, any options (such

as the name of the script) are sent to the GSMM submodule. The GSMM then

executes the specified script. Any telemetry points that need to be checked go through

the telemetry checker, which asks Dashboard for a telemetry packet from its packet

storage; upon getting a packet, the fields are verified against the script-writer’s input.

Any commands that need to be issued go through the commander, which sends a

command to Dashboard for sending via the normal command transmit path.
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Chapter 5

Discussion and Future Work

In this chapter, we compare MicroMAS-1 testing and mission operations procedures

to MiRaTA procedures, focusing on how the work for MiRaTA in Chapter 4 helped

the development process. We also discuss avenues for future work.

5.1 Comparing MicroMAS-1 and MiRaTA Procedures

As mentioned in Chapter 2, MiRaTA was able to take advantage of all of the work the

MicroMAS-1 team did to help create testing and mission operations procedures. The

lessons learned from the MicroMAS-1 mission informed many of the design decisions

made for the MiRaTA mission. The version of Dashboard used by MicroMAS-1 only

had manual commanding, the live telemetry tables, and live telemetry plotting, as

described in chapter 3; we will refer to MicroMAS-1’s Dashboard as MM1-Dashboard,

and the term Dashboard will refer to MiRaTA’s Dashboard.

5.2 Testing

5.2.1 Manual vs Automated Testing Comparison

As described in chapter 2, there are many assurance tests that are required to con-

firm spacecraft functionality in the face of extreme environmental conditions. To
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determine whether or not an assurance test damaged the spacecraft, it is advisable

to do a functional test before and after any assurance test that the team would like

to undertake.

On MicroMAS-1, the approach to determine whether or not a component was

operational was for an operator to watch individual telemetry values and ascertain

whether or not they were acceptable. For instance, an engineer, if they wanted to

confirm the function of a temperature sensor, would inspect values reported by the

spacecraft for current ambient temperatures, and making sure that they are within

reasonable bounds (e.g. about equal to what an external room thermometer was

reporting). In practice, this required an engineer to start MM1-Dashboard and view

the live value of each temperature sensor on board the spacecraft. The engineer

would then record a single value in a logbook and whether or not the value was within

allowable bounds. This manual testing would be done on the lab bench and also within

environmental test chambers, and be done for each system on the satellite. Because

of this manual nature of testing, it was difficult and extremely-time consuming for

the team to do thorough and repeatable functional tests. As a result, the satellite did

not get as much testing as it needed.

For MiRaTA, the team started out doing manual functional tests, and transitioned

to automated functional tests after the system in Chapter 5.2 was completed.

We can numerically compare the manual vs automatic approaches by estimating

how much time it takes for an engineer to complete a manual test of a component

versus an automated test, and then multiply by the amount of components that are

on the spacecraft.

For both MicroMAS-1 and MiRaTA, the set-up work is going to be of similar

length, since the test development engineer needs, in both cases, to establish the

list of components under test, and determine how each component’s performance

will be verified. There is additional work required of the MiRaTA test engineer to

write ATSes for each component, but the additional work is minimal since it is just

a formalization of the procedure established to test each component.

Here is what a component test would look like, using the inertial measurement
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unit (IMU) as a simple example:

1. Verify the initial state of the component by checking telemetry: Make sure that

the IMU is OFF.

2. Change one aspect of the state of the component: Turn on the IMU.

3. Check to make sure the state of the component is as expected: Make sure

the IMU is on and that it reports an acceleration vector consistent with the

spacecraft in an upright position.

4. Finish the test: Turn off the IMU.

To manually execute the test, the operator would do the following:

1. Click on the live view of telemetry for the spacecraft status packet.

2. Check that the IMU is OFF.

3. Click on the command form page and issue a command to turn the IMU on.

4. Return to the live view of telemetry for the spacecraft status, and make sure

that the IMU actually turned on.

5. Click on the live view of telemetry for the IMU packet.

6. Make sure that the acceleration values are what is expected.

7. Click on the command form page and issue a command to turn the IMU off.

8. Return to the live view of telemetry for the spacecraft status, and make sure

that the IMU actually turned off.

To automatically execute this test, the operator would do the following (after the

test engineer has defined the test ATS):

1. Click on the script runner page.

2. Click on the ATS corresponding to the IMU test.
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3. Click execute.

4. Wait for results.

Comparing the two methods, we can see improvements using the automated ver-

sion over the manual version. The second procedure will take at most half the time

of the first procedure; likely there is even a greater time savings for using the second

procedure, as the operator only has to check one result at the end (success/failure).

In addition, the second procedure will be identical for each component under test;

the first procedure will change, causing more complexity for operators.

The time and complexity savings are more apparent if we compare the amount of

time it takes to run many component-level tests in a row. For the manual procedure,

the operator has to check every single component as per procedure 1: this procedure

suffers from clear scalability issues. For the automated procedure, if there is a GSMM

script defined that can run all of the ATSes in sequence, then the active operator time

(how much time is spent clicking buttons and checking results) it takes to run all of

the ATSes in sequence is the same as the active operator time for executing one ATS.

To estimate the factor of automated testing improvement, let 𝑡 represent the time

that it takes to navigate to a Dashboard page and click something. The manual

procedure for our single IMU test is thus 4𝑡 long; the automated procedure is 2𝑡 long.

For MiRaTA, there were 19 different tests that were run for functional testing. The

time it takes to run the functional test manually is then 4𝑡 * 19 = 76𝑡; the time to

execute the functional test automatically remains at 2𝑡. Thus we should naively see

a 38x speedup of test execution. This is partially corroborated by a comparison of

the time taken completing a MiRaTA manual functional test versus an automatic

functional test: an automatic functional test takes 30 mins – 30 * 38/60 = 19 hrs for

an equivalent manual test, and the first MiRaTA manual functional test was spread

out over three work days according to test logs.

The ease of execution for the automated tests versus the manual tests meant that

team members with minimal training and/or familiarity with the spacecraft could

execute system functional tests. The automated testing system played a key role in
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MiRaTA’s environmental testing, most notably in space vehicle thermal vacuum (SV

TVAC) testing Thermal vacuum (TVAC) testing occurs continuously for 3-4 days,

and the spacecraft must be attended the entire time by operators; this means that any

testing procedure must be able to be executed by sleep-deprived staff. The simplicity

of the automated procedure meant that the MiRaTA team could execute a spacecraft-

wide functional test even while sleep-deprived. Also, because it is relatively simple

to build an ATS, it was easy to create new, repeatable tests on the fly. For instance,

the team decided to build a test that downlinked data repeatedly from the Cadet;

the ATS build system meant that the script was created with little hassle.

5.2.2 MiRaTA Test Scripts

Spacecraft Functional Test

Where possible, each subsystem specified in Chapter 2 had an ATS script defined

for it. After each ATS was defined, the ATSes were strung together in two testing

configurations: the functional test via serial (called the "serial functional test") and

the functional test via radio (called the "radio functional test"). "Serial" and "Radio"

indicate the different modes that the spacecraft was in for each test: serial mode

corresponds to when the spacecraft communicates via USB, streaming live data; radio

mode corresponds to when the spacecraft communicates via the two radios. Each

functional test was its own GSMM script.1

1The author wrote the ATSes and GSMM scripts used for functional testing, with spacecraft
knowledge assistance from Ayesha Hein, Kit Kennedy, Myron Lee, Zack Lee, Weston Marlow, and
Erik Thompson.
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Table 5.1: Types of functional tests conducted on MiRaTA.

Test name What the test checks Serial Radio

Battery telemetry Battery status nominal X X
EPS telemetry EPS voltages and currents as expected X X
AET timestamps AET is valid X X
IMU on IMU turns on X X
IMU telemetry IMU acceleration matches the orientation of the spacecraft X X
MAI on MAI turns on X X
Reaction wheels Spin the reaction wheels and check the telemetry to see if the wheels are indeed spinning X X
Torque rod telemetry Turn on the torque rods and make sure the torques are reported correctly X X
Earth horizon sensor aliveness EHS readings are within bounds X X
Magnetometer aliveness Magnetometer readings are within bounds X X
PIC reset via reset command Spacecraft reset command resets the spacecraft X X
Payload on The payload turns on X X
Payload GPS time check The payload GPS time monotonically increases X X
Payload GPS lock The payload acquires GPS lock X X
Payload science mode Payload enters science mode (produces radiometer data) X X
Payload GPSRO Payload enters GPSRO mode (produces GPSRO data) X X
PIC reset via Cadet The Cadet can reset the PIC X
PIC reset via Micron The Micron can reset the PIC X
Micron reset The Micron can reset itself X
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During a thermal vacuum test, the TVAC chamber is cycled through hot and cold

temperatures, pausing at each extreme (called a "hot soak"/"cold soak"). After each

hot soak and cold soak a pair of serial and radio functional tests was run. In total,

during SV TVAC testing, there were 21 functional tests run (counting serial and radio

together). In addition to running the functional tests during TVAC, the functional

tests were run before and after each thermal cycling (oven) test, and before and after

each vibe test.

Other Tests/Scripts

Other engineers on the team besides the author were able to design and make tests

using the automated testing system. Examples of various tests created by the team

include:

• An ATS to spin up the reaction wheels deterministically for performance check-

ing.2

• A GSMM script to run the spacecraft’s maneuver mode.3

• An ATS to test Cadet downlinks.4

• A GSMM script to test the reaction wheels and torque rods on an air bearing

(which allows the spacecraft to rotate freely).5

2By Weston Marlow.
3By Kit Kennedy.
4By Kit Kennedy.
5by the author, Weston Marlow, and Zack Lee.
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5.3 Mission Operations

5.3.1 MicroMAS-1

Figure 5-1: MicroMAS-1 ground station diagram, repeated from Chapter 2 for
reference.[9]

MM1-Dashboard was used at SDL for MicroMAS-1 mission operations. Unlike Mi-

RaTA, the team did not have time/manpower to do additional development between

testing and mission operations, which resulted in some suboptimal operational condi-

tions. Since there initially was no way for operators to send an automated sequence of

commands in MM1-Dashboard, it was stressful for operators to command the space-

craft. Operators had to make sure that they did not send an incorrect command,

make sure that they executed the commands in the right sequence, and confirm that

they executed properly, all in a ten-minute overpass. This process was error-prone,

stressful, and was not tolerant to deviations in the overpass plan. As a result, during

mission operations, the team implemented "command scripts" that were similar in

concept to the MiRaTA ATSes, although implemented quite differently. The archi-
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tecture of the final MicroMAS-1 software and data processing pipeline is shown in

Figure 5-2.

Figure 5-2: MicroMAS-1 software and data processing pipeline.[9]

To generate a command script, an operator would open MM1-Dashboard and

issue a sequence of manual commands; MM1-Dashboard would log those raw bytes

to a file. Thus, a script would consist of a sequence of raw bytes. This sequence

of bytes would then be sent by the command wrapper to the CadetWrapper (which

encapsulates spacecraft data in a format that the Cadet can understand). This is

better than issuing the command sequences manually, but also introduced a few

problems of their own. The scripts were not human-readable, as they were just raw

bytes. Thus an error or corruption of the bytes to be sent would be very difficult to

catch; an error in the bytes of one of the playbook sequences was only discovered late

in the mission operations process. In addition, the interface for sending scripts was

not clear; the operator would run the command wrapper with a numerical argument

specifying the number of the command script to be run. The number would come

from an Excel spreadsheet (the playbook) documenting the command script names.
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If the operator had command scripts that were out-of-date, or a playbook that was

out-of-date, then the operator could send wrong commands without knowing it.

Difficulties also arose in the data processing step for MicroMAS-1. The Cade-

tWrapper in Figure 5-2 was used to send commands via the ground station hardware.

However, the CadetWrapper was being developed frequently and thus its logfiles were

not consistent from pass to pass, causing the team much consternation in attempting

to recreate a definitive sequence of commands that were sent to the spacecraft. The

conversion process (Step 1) was cumbersome as it required running a few scripts,

including MM1-Dashboard. It also took many pieces of software to get spacecraft

data to a manipulatable state by data analysts.

5.3.2 MiRaTA

The MiRaTA software pipeline is shown in Figure 5-4 and Figure 5-3. To reduce oper-

ational complexity, the team decided to treat the two ground stations as independent

entities, only commanding through one ground station at one time.

Cadet Downlink/Uplink Chain

Figure 5-3: Cadet downlink/uplink chain.
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The Cadet downlink chain contains some new elements from MicroMAS-1. The

SATRN software developed by SDL allows for commanding from a remote computer;

this meant that SDL engineers did not have to command the spacecraft themselves,

reducing some complexity. Another piece of software developed by SDL (Titan) han-

dles the demodulation step (and controlling some aspects of the RF receiver/trans-

mitter), reducing the amount of work needed to be done by MiRaTA team. Finally,

Dashboard was improved to contain the functionality previously implemented by the

CadetWrapper, so that the CadetWrapper no longer needed to be used. These soft-

ware advances helped make using the Cadet radio for communications easier than in

MicroMAS-1.

The process of an overpass6 is as follows:

• The operator gets the latest Dashboard code from the Git repository to get the

newest GSMM scripts/ATSes.

• Operator schedules an overpass using the SATRN client software. The opera-

tor also makes sure the spacecraft TLE is up-to-date so that Dashboard does

Doppler compensation properly.

• When the overpass begins, SATRN client establishes a connection to the SATRN

GS software. The Wallops dish begins tracking the spacecraft.

• The operator then starts Dashboard with the SATRN + Doppler compensation

settings enabled.

• The operator issues a GSMM script for commanding. Dashboard sends space-

craft command packets to the SATRN Client, which relays them to the Wallops

GS for transmission. Since Dashboard is started in Doppler compensation mode,

it also automatically handles changing the uplink frequency of commands.

• At the end of the overpass, the SATRN Client closes the connection with the

SATRN GS.
6The author developed the SATRN-specific part of Dashboard and implemented Doppler com-

pensation; Mark Tolman set up the NMOC computer; Cameron Weston and Chad Buttars helped
with SATRN and Titan interfacing; Dan Cousins drove overpass procedure formalization.
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• Dashboard produces command and parsed telemetry logs; SATRN produces the

bytes demodulated by Titan. The operator moves these files to the MiRaTA

server by running a script which is automatically generated by Dashboard.

Micron Downlink/Uplink Chain

Figure 5-4: Micron downlink/uplink chain.

The Micron downlink/uplink chain is new for MiRaTA; as discussed in Chapter 2 it is

the real-time responding radio onboard the spacecraft. Since everything is located on

the MIT campus, the set-up is much simpler than the Cadet chain, and also allows for

the team to take overpasses whenever they happen (rather than having to schedule

them in advance with SDL and Wallops).

The process of an overpass7 is as follows:

• The operator gets the latest Dashboard code from the Git repository to get the

newest GSMM scripts/ATSes.

• The operator uses GPredict to see when an overpass is.

• Before the overpass, the operator turns on the RF hardware, sets up GPredict

to control the antenna, and sets up Dashboard in Micron mode.
7The campus GS was developed by Greg Allan and Joey Murphy.
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• During the overpass, the operator issues a GSMM script for commanding. Dash-

board sends spacecraft command packets to the Micron GS board, which han-

dles modulation/demodulation. (No Doppler compensation is needed for the

Micron GS.)

• The operator stops commanding when they decide to.

• Dashboard produces command and parsed telemetry logs, and also saves the

raw demodulated bytes from the Micron GS board. The operator moves these

files to the MiRaTA server by running a script which is automatically generated

by Dashboard.

MiRaTA Mission Operations Scripts

Lessons learned from the MicroMAS-1 mission operations process drove the develop-

ment of MiRaTA’s mission operations procedures and software. Mission operations is

an even more hectic period than SV TVAC, as spacecraft operators have less than ten

minutes to actually contact and command the satellite. Before launch, the MiRaTA

team predefined aspects of spacecraft functionality to verify on orbit. Each bit of

functionality could be verified in one overpass; for instance, the first overpass was

"verify that the spacecraft can respond to Micron-issued commands". From these

overpass definitions, the team built several early orbit checkout (EOC) ATSes and

GSMM script templates.8

Some examples of ATSes include:

• get_tlm_pkts: Request all interesting spacecraft telemetry.

• sc_cadet_status: Request the spacecraft status packet and the cadet status

packet.

• set_operational_fault_thresholds: Set the thresholds at which the spacecraft

will do something about fault packets.
8Early orbit checkout script development was done by Greg Allan and the author.
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• rad_orbit_turnon: Turn on the radiometer.

At time of writing, the MiRaTA team is in the middle of mission operations.

Because the time between overpasses is so low ( 12 hours), the team often issues

simple GSMM scripts/ATSes. The main GSMM script type used by the team is the

"repeat GSMM" script; this script will repeat an ATS over and over.

The repeat GSMM functions as follows:

1. In the Dashboard test runner interface, the operator specifies an ATS to repeat,

a duration to repeat the ATS, and a time delay. The operator then hits execute.

2. The GSMM script executes the specified ATS.

3. The GSMM script waits for the specified time delay.

4. The GSMM script checks how long it has been executing; if it has been executing

less than the specified duration, return to step 2.

Having the repeat GSMM script on hand during overpasses helps to streamline the

overpass process. Since the spacecraft (in early orbit, before detumble) occasionally

tumbles to point its antenna away from the ground station, commands get missed

by the spacecraft; thus, it was important to have the repeat GSMM functionality to

ensure that commands would reach the spacecraft. Because the GSMM script auto-

matically handled repeating the ATS, it made things much easier on the spacecraft

operator.

Comparing the ATS/GSMM/Dashboard system of MiRaTA mission operations

with the command script system of MicroMAS-1 mission operations:

• ATSes and GSMMs were designed to be human-readable; command scripts were

bytestrings and thus not human-readable.

• Sending an ATS or GSMM script from the Dashboard user interface gives the

operator several notices on what the script does; the command script interface

for MicroMAS-1 did not.
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• It is about as easy to create an ATS from scratch as to create a command script,

as both require Dashboard to be started. However, an operator can modify a

raw ATS file (since it is JSON); an operator cannot modify a command script.

• The ability to automatically repeat a string of commands was missing from the

MicroMAS-1 command wrapper.

• Since the MiRaTA team was able to use version control, the ATS/GSMM scripts

were easier to keep up to date as compared to the command scripts.

• Dashboard logs commands in a singular log; the command scripts presented

difficulties in post-overpass command parsing.

Thus, the MiRaTA system offers many improvements over the previous system. In

the end, 142 ATSes and 120 GSMM scripts were written collectively by the MiRaTA

team, which demonstrates that the system was key to the MiRaTA testing and mission

operations process.

5.4 Future Work

The system did conclusively help with testing and mission operations. However, there

are many ways to improve the current system and Dashboard.

1. Improve the usability of the ATS creator.

2. Enable non-coders to build GSMM scripts.

3. Allow the GSMM to run completely independently of Dashboard. (Right now

it needs to be launched by Dashboard.)

4. Add more flexibility to the Dashboard system so that it can accommodate

arbitrary spacecraft.

5. Add awareness of spacecraft limits to the Dashboard commanding system, so

that Dashboard cannot command the spacecraft to do something that will harm

it.
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6. Add more tests for the Dashboard code itself.
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Chapter 6

Conclusion

In this thesis, we cover the MiRaTA mission and the testing systems used to validate

its payload and bus. The Dashboard software, heritage from MicroMAS-1, has been

augmented with an automated testing system which allows for an operator to prede-

fine Automated Test Scripts (ATSes) – sequences of commands and telemetry check-

points, and Ground Station Mission Manager scripts (GSMM scripts) – scripts that

enable the execution of complicated spacecraft operations for the mission. Both ATS

and GSMM scripts played a crucial role in testing and mission operations, stream-

lining the process for operators, improving usability while being much faster than

previous testing procedures.

83



84



Bibliography

[1] Chapter 6 spacecraft design and verification requirements. http://www.
eurockot.com/wp-content/uploads/2012/10/Ch6UsersGuideIss5Rev0.pdf,
2011.

[2] Electromagnetic tests. http://www.iabg.de/en/business-fields/space/
electromagnetic-tests/, 2018.

[3] Thermal vacuum and thermal balance tests (tv/tb). http:
//www.iabg.de/en/business-fields/space/thermal-tests/
thermal-vacuum-and-thermal-balance-tests-tvtb/, 2018.

[4] Adcole Maryland Aerospace. Mai-400 1/2u cubesat adacs. http://maiaero.
com/datasheets/MAI400_Specifications.pdf, 2017.

[5] European Space Agency. Building and testing spacecraft. http://m.esa.int/
Our_Activities/Space_Science/Building_and_testing_spacecraft, 2018.

[6] William J. Blackwell. New small satellite capabilities for microwave atmospheric
remote sensing. Presentation, April 2016.

[7] William J. Blackwell, G. Allan, G. Allen, D. Burianek, F. Busse, D. Elliott,
C. Galbraith, R. Leslie, I. Osaretin, M. Shields, E. Thompson, D. Toher, Kerri
Cahoy, Pratik Dave, Andrew Kennedy, Ryan Kingsbury, Anne Marinan, Eric Pe-
ters, Christopher Pong, Meghan Quadrino, James (Mic) Byrne, Rebecca Bishop,
James Bardeen, Neal Erickson, Chad Fish, and Erik Stromberg. Microwave ra-
diometer technology acceleration mission (mirata): Advancing weather remote
sensing with nanosatellites. In Proceedings of the 28th Annual AIAA/USU Con-
ference on Small Satellites, 2014.

[8] Kerri Cahoy, Gregory Allan, Zachary Lee, Ayesha Hein, Andrew Kennedy, My-
ron Lee, Erin Main, and Bill Blackwell. Integration and test of the microwave
radiometer technology acceleration (mirata) cubesat. In Proceedings of the
68th IAC (International Astronautical Congress), September 2017. URL of ab-
stract: http://digitalcommons.usu.edu/smallsat/2017/all2017/32/ and
URL of presentation: https://digitalcommons.usu.edu/cgi/viewcontent.
cgi?filename=1&article=3563&context=smallsat&type=additional.

85

http://www.eurockot.com/wp-content/uploads/2012/10/Ch6UsersGuideIss5Rev0.pdf
http://www.eurockot.com/wp-content/uploads/2012/10/Ch6UsersGuideIss5Rev0.pdf
http://www.iabg.de/en/business-fields/space/electromagnetic-tests/
http://www.iabg.de/en/business-fields/space/electromagnetic-tests/
http://www.iabg.de/en/business-fields/space/thermal-tests/thermal-vacuum-and-thermal-balance-tests-tvtb/
http://www.iabg.de/en/business-fields/space/thermal-tests/thermal-vacuum-and-thermal-balance-tests-tvtb/
http://www.iabg.de/en/business-fields/space/thermal-tests/thermal-vacuum-and-thermal-balance-tests-tvtb/
http://maiaero.com/datasheets/MAI400_Specifications.pdf
http://maiaero.com/datasheets/MAI400_Specifications.pdf
http://m.esa.int/Our_Activities/Space_Science/Building_and_testing_spacecraft
http://m.esa.int/Our_Activities/Space_Science/Building_and_testing_spacecraft
http://digitalcommons.usu.edu/smallsat/2017/all2017/32/
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=1&article=3563&context=smallsat&type=additional
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=1&article=3563&context=smallsat&type=additional


[9] Kerri Cahoy, J.M. Byrne, T. Cordeiro, P. DavÃľ, Z. Decker, A. Kennedy,
R. Kingsbury, A. Marinan, W. Marlow, T. Nguyen, S. Shea, William J. Blackwell,
G. Allen, F. Busse, C. Galbraith, A. Jensen, V. Leslie, I. Osaretin, M. DiLiberto,
P. Klein, M. Shields, E. Thompson, D. Toher, D. Townzen, and A. Vogel. The
microwave accelerometer technology acceleration cubesat (mirata). In Proceed-
ings of the ESTF 2014 (Earth Science Technology Forum), Leesburg, VA, USA,
Oct. 28-30, 2014, 2014.

[10] Craig Clark. Clyde space: 3rd generation eps plus some other
stuff. http://mstl.atl.calpoly.edu/~bklofas/Presentations/
DevelopersWorkshop2014/Clark_3rd_Generation_EPS.pdf, 2014.

[11] eoPortal Directory. Micromas-1 (micro-sized microwave atmospheric satellite-
1). https://directory.eoportal.org/web/eoportal/satellite-missions/
m/micromas-1, 2017.

[12] eoPortal Directory. Mirata (microwave radiometer technology acceler-
ation). directory.eoportal.org/web/eoportal/satellite-missions/m/
mirata, 2017.

[13] Richard Fitzpatrick. Horizontal coordinates. http://farside.ph.utexas.edu/
Books/Syntaxis/Almagest/node16.html, 2010.

[14] Nicholas Giordano. College Physics: Reasoning and Relationships. Cengage
Learning., 2009.

[15] Google. Google maps. https://www.google.com/maps, 2018.

[16] Maxim Integrated. Three methods of noise figure measurement. https://www.
maximintegrated.com/en/app-notes/index.mvp/id/2875, 2003.

[17] T.S. Kelso. Frequently asked questions: Two-line element set format. http:
//celestrak.com/columns/v04n03/, 2014.

[18] Andrew Kennedy, Anne Marinan, Kerri Cahoy, James Byrne, Timothy Cordeiro,
Zachary Decker, Weston Marlow, Stephen Shea, William J. Blackwell, Michael
DiLiberto, R. Vincent Leslie, Idahosa Osaretin, Erik Thompson, and Rebecca
Bishop. Automated resource-constrained science planning for the mirata mission.
In Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites,
2015.

[19] Ryan Kingsbury. Dashboard - overview. https://bitbucket.org/
roamingryan/dashboard, 2014.

[20] Space Dynamics Laboratory. Cadet: Uhf and uhf plus s-band radios. http:
//www.sdl.usu.edu/downloads/cadet-radios.pdf.

86

http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/Clark_3rd_Generation_EPS.pdf
http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/Clark_3rd_Generation_EPS.pdf
https://directory.eoportal.org/web/eoportal/satellite-missions/m/micromas-1
https://directory.eoportal.org/web/eoportal/satellite-missions/m/micromas-1
directory.eoportal.org/web/eoportal/satellite-missions/m/mirata
directory.eoportal.org/web/eoportal/satellite-missions/m/mirata
http://farside.ph.utexas.edu/Books/Syntaxis/Almagest/node16.html
http://farside.ph.utexas.edu/Books/Syntaxis/Almagest/node16.html
https://www.google.com/maps
https://www.maximintegrated.com/en/app-notes/index.mvp/id/2875
https://www.maximintegrated.com/en/app-notes/index.mvp/id/2875
http://celestrak.com/columns/v04n03/
http://celestrak.com/columns/v04n03/
https://bitbucket.org/roamingryan/dashboard
https://bitbucket.org/roamingryan/dashboard
http://www.sdl.usu.edu/downloads/cadet-radios.pdf
http://www.sdl.usu.edu/downloads/cadet-radios.pdf


[21] Planet Labs. Planet labsâĂŹ high data rate transmitter. http:
//mstl.atl.calpoly.edu/~bklofas/NSF_comm/20130813_smallsat/Planet_
Labs_Lurie.pdf, 2013.

[22] Erin Main, Michael DiLiberto, R. Vincent Leslie, and William Blackwell. Ground
support equipment for calibration of a radiometric payload in a thermal vacuum
chamber. Final report for MIT’s 6.UAP course., 2015.

[23] F. T. Ulaby. R. K. Moore and A. K. Fung. Microwave Remote Sensing - Active
and Passive, volume Volume 1: Microwave Remote Sensing Fundamentals and
Radiometry. Addison-Wesley, Reading, Massachusetts, 1981.

[24] National Oceanic and Atmospheric Administration (NOAA). Noaa process-
ing levels. https://www.ngdc.noaa.gov/wiki/index.php/NOAA_Processing_
Levels, 2018.

[25] Inc Pumpkin. Salvo user manual. http://www.pumpkininc.com/content/doc/
manual/SalvoUserManual.pdf.

[26] MIT Lincoln Laboratory / Spaceflight101. Mirata satellite overview. http:
//spaceflight101.com/jpss-1/mirata/, 2017.

[27] Robert Stengel. Ground segment. Presentation from Stengel’s Space System
Design (MAE 342) course at Princeton University. Retrieved from http://www.
princeton.edu/~stengel/MAE342Lecture18.pdf, 2016.

[28] n2yo.com. N2yo.com: Live real time satellite tracking and predictions: Mirata.
http://www.n2yo.com/?s=43015, 2018.

87

http://mstl.atl.calpoly.edu/~bklofas/NSF_comm/20130813_smallsat/Planet_Labs_Lurie.pdf
http://mstl.atl.calpoly.edu/~bklofas/NSF_comm/20130813_smallsat/Planet_Labs_Lurie.pdf
http://mstl.atl.calpoly.edu/~bklofas/NSF_comm/20130813_smallsat/Planet_Labs_Lurie.pdf
https://www.ngdc.noaa.gov/wiki/index.php/NOAA_Processing_Levels
https://www.ngdc.noaa.gov/wiki/index.php/NOAA_Processing_Levels
http://www.pumpkininc.com/content/doc/manual/SalvoUserManual.pdf
http://www.pumpkininc.com/content/doc/manual/SalvoUserManual.pdf
http://spaceflight101.com/jpss-1/mirata/
http://spaceflight101.com/jpss-1/mirata/
http://www.princeton.edu/~stengel/MAE342Lecture18.pdf
http://www.princeton.edu/~stengel/MAE342Lecture18.pdf
n2yo.com
http://www.n2yo.com/?s=43015

	Introduction
	CubeSats and Weather Sensing
	MiRaTA and MicroMAS-1

	The MiRaTA and MicroMAS CubeSat Missions
	Testing and Mission Operations
	Qualification and Acceptance Testing
	Mission Operations

	MicroMAS-1
	Mission Operations

	MiRaTA
	Payload
	Bus


	Dashboard: Software for Command and Data Handling
	Introduction
	Dashboard User Interface
	Commanding
	Telemetry

	Dashboard Architecture
	Command Transmit Path
	Telemetry Receive Path


	Software Development for Spacecraft Testing and Mission Operations
	MiRaTA Payload Testing Software
	Results

	Automated Testing Capability for Dashboard
	Scripts
	Scripting Related User Interfaces
	Architecture


	Discussion and Future Work
	Comparing MicroMAS-1 and MiRaTA Procedures
	Testing
	Manual vs Automated Testing Comparison
	MiRaTA Test Scripts

	Mission Operations
	MicroMAS-1
	MiRaTA

	Future Work

	Conclusion

