
Learning and Inference with Wasserstein Metrics

by

Charles Frogner

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Signature redacted
A uthor ............................

Department of Brain and Cognitive Sciences
January 18, 2018

Signature redacted
C ertified by ....... ..................

Tomaso Poggio
Eugene McDermott Professor of Brain and Cognitive Sciences

Thesis Supervisor

Signature redacted
Accepted by .................

Matthew Wilson
airman, Department Committee on Graduate Theses

MASSA HUSETTS INS
U TECHNOWDGY

OCT 112018

LIBRARIES
ARCHIVES



2



Learning and Inference with Wasserstein Metrics

by

Charles Frogner

Submitted to the Department of Brain and Cognitive Sciences
on January 18, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis develops new approaches for three problems in machine learning, us-
ing tools from the study of optimal transport (or Wasserstein) distances between
probability distributions. Optimal transport distances capture an intuitive notion of
similarity between distributions, by incorporating the underlying geometry of the do-
main of the distributions. Despite their intuitive appeal, optimal transport distances
are often difficult to apply in practice, as computing them requires solving a costly
optimization problem. In each setting studied here, we describe a numerical method
that overcomes this computational bottleneck and enables scaling to real data.

In the first part, we consider the problem of multi-output learning in the pres-
ence of a metric on the output domain. We develop a loss function that measures
the Wasserstein distance between the prediction and ground truth, and describe an
efficient learning algorithm based on entropic regularization of the optimal trans-
port problem. We additionally propose a novel extension of the Wasserstein distance
from probability measures to unnormalized measures, which is applicable in settings
where the ground truth is not naturally expressed as a probability distribution. We
show statistical learning bounds for both the Wasserstein loss and its unnormalized
counterpart. The Wasserstein loss can encourage smoothness of the predictions with
respect to a chosen metric on the output space. We demonstrate this property on
a real-data image tagging problem, outperforming a baseline that doesn't use the
metric.

In the second part, we consider the probabilistic inference problem for diffusion
processes. Such processes model a variety of stochastic phenomena and appear often
in continuous-time state space models. Exact inference for diffusion processes is gen-
erally intractable. In this work, we describe a novel approximate inference method,
which is based on a characterization of the diffusion as following a gradient flow in
a space of probability densities endowed with a Wasserstein metric. Existing meth-
ods for computing this Wasserstein gradient flow rely on discretizing the underlying
domain of the diffusion, prohibiting their application to problems in more than sev-
eral dimensions. In the current work, we propose a novel algorithm for computing a
Wasserstein gradient flow that operates directly in a space of continuous functions,
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free of any underlying mesh. We apply our approximate gradient flow to the problem
of filtering a diffusion, showing superior performance where standard filters struggle.

Finally, we study the ecological inference problem, which is that of reasoning from

aggregate measurements of a population to inferences about the individual behaviors
of its members. This problem arises often when dealing with data from economics and

political sciences, such as when attempting to infer the demographic breakdown of

votes for each political party, given only the aggregate demographic and vote counts

separately. Ecological inference is generally ill-posed, and requires prior information
to distinguish a unique solution. We propose a novel, general framework for ecological
inference that allows for a variety of priors and enables efficient computation of the
most probable solution. Unlike previous methods, which rely on Monte Carlo esti-
mates of the posterior, our inference procedure uses an efficient fixed point iteration
that is linearly convergent. Given suitable prior information, our method can achieve
more accurate inferences than existing methods. We additionally explore a sampling

algorithm for estimating credible regions.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor of Brain and Cognitive Sciences
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Chapter 1

Introduction

This thesis studies new approaches to some old problems in machine learning. Multi-

output learning, diffusion processes, and ecological inference, in fact, have been stud-

ied since before the term "machine learning" was coined [92]. Yet they represent core

concerns for machine learning today: modern supervised learning problems, such

as image categorization, semantic segmentation, and speech recognition, frequently

involve predicting entire sets of labels all together, while systems that represent un-

certainty about the state of the world rely heavily on probabilistic modeling. There

is ample demand for innovation.

For a fresh perspective on these problems, we delve into a rich and still-evolving

set of tools coming from the study of optimal transport of probability measures. The

topic has a long history, going back to Monge in 1781 [109]. Monge studied the

problem of moving a pile of dirt to fill a hole, in such a way as to minimize the work

done in moving it. If X is the domain on which we've piled the dirt, 1a is the mass

distribution of the dirt (a measure on X), and T : X -+ X is our plan for moving it,

the amount of work done is the total distance traveled, weighted by the mass moved,

W(T) = lix - T(x)||dbt(x).

Monge's problem was to find a map T such that the push-forward of P via T exactly

matches the shape of the hole, and such that the work W(T) is minimized.
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We can see the flexibility of optimal transport already from Monge's problem.

For registering two images, for example, we can imagine transporting pixels from one

image to another so as to minimize the distortion [111]. For transferring colors from

one image to another, we might represent the distribution of colors in each image in

a color space (such as RGB) and transport one color distribution to match the other

[59]. And for domain adaptation in machine learning, we might transport the data

distribution from one domain to match that in the other domain [119] [137]. There

are numerous possiblities.

In this thesis, we rely on a relaxation of Monge's problem due to Kantorovich

[85] [86], which we describe in Section 1.2. This relaxation is the basis for a distance

function between probability measures, called the Wasserstein distance, defined by

the minimal amount of work done in transporting one measure to match the other.

The Wasserstein distance will be fundamental to the work in Chapters 2 and 3. It

is in many respects the natural way to define a distance between two probability

measures, and its application in machine learning is the subject of much recent work.

We survey the machine learning applications of the Wasserstein distance in Section

1.3. In Section 1.4, we conclude the chapter with an overview of the contributions of

this thesis.

1.1 Notation

Unless otherwise noted, X and Y are separable complete metric spaces. M +(X) is the

set of nonnegative Radon measures on X and P(X) is the set of probability measures

on X, P(X) = {p C M+(X)p(X) = 1}. Given a joint probability measure 7 on the

product space X x Y, its marginals are the measures Pi ir E P(X) and P2 7r E P(Y)

defined by

(P1 7r)(A) ='r(A x Y), (P2 7r)(B) = 7r(X x B),

for A C X and B C y measurable subsets of X and Y.
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The entropy of a probability measure p E P(X) is

H(p)=- dp (x)logdp (x)

with dp the density with respect to the Lebesgue measure on X. We let H(P) = +00

when such a density does not exist. The KL divergence between nonnegative measures

yE M+(X) and v E M+(X) is

KL(pllv) L dp(x)(log d(x) - 1) + dv(x)

with dc, dv the densities with respect to the Lebesgue measure on X and 9 thedil

relative density of p with respect to v. We define KL(pllv) = +oG whenever any of

the derivatives dp, dv or 4 do not exist.dv

R+ is the set of nonnegative reals, while R++ are positive reals. Ad is the d-

dimensional simplex, Ad = {u E Rd d ui = 1}. For matrices XY c Rmxn'

(X, Y),F is the Frobenius inner product.

1.2 Optimal transport and Wasserstein metric

Optimal transport

Suppose we have two probability measures p and v, defined on domains X and Y,

respectively. The theory of optimal transport [156] studies ways of relocating the

mass of p to match that of v. It defines a transport plan 7r that is a measure on the

product space X x Y, whose values determine the amount of mass transferred between

any pair of measurable subsets of the respective domains. Concretely, 7(A x B) is the

amount of mass transferred between subsets A and B, and 7 satisfies the condition

that its marginals match p and v,

(P ir)(A) = p(A) (P2 7)(B) = v(B), (1.1)
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for all measurable A C X and B C Y. Equivalently, for all pairs of test functions

p E L1 (dy) and 0 E Ll(dv),

L/ (x) + 0 (y))dr(x, y) = L (x)dp(x) + L (y)dv(y). (1.2)
Xx XX J

Note that 7r is necessarily a probability measure. Another way to look at it is that 7r

specifies a joint probability distribution whose marginals are A and v.

For any pair of probability measures p and v, define the set of valid transport

plans to be HI(p, v),

H([, v) =

{7r c P(X x Y)I P7r(A) = p(A) & P2 7r(B) = v(B), V measurable A C X, B C Y}

(1.3)

I1(p, v) is always nonempty, containing at least the product measure p 0 v. In fact,

it may contain an infinity of possible transport plans.

Optimal transport is concerned with identifying a transport plan that minimizes a

total cost of transporting the mass. Concretely, we define a nonnegative, measurable

function c : X x Y -÷ R+ U {+oo} whose value c(x, y) gives the cost of transporting

a unit of mass from location x G X to y E Y. The total cost for a plan 7r, then, is

C(7r) = c(x, y)dr(x, y), (1.4)

and optimizing this cost subject to the marginal constraints is known as the Kan-

torovich optimal transport problem [851 [861,

7r, = arginf C(ir). (1.5)

Example 1.2.1 (Discrete measures). We will frequently be concerned with optimal

transport of discrete measures, in which the distributions being compared are sup-

ported at a finite number of discrete locations {x(m, C X and {y(i)}'_1 9 Y. In

18



this case, the measures can written as weighted sums of delta functions,

m n

i=1 j=1

with u E Am and v E An the vectors of weights. Any valid transport plan ir then

has a similar representation,

m n

EF = 13 Ti(56(x( ),y()), (1.7)
i=1 j=1

with T E Amxn the matrix of weights that define the transport plan. In fact, we can

equally well represent the optimal transport problem in terms of u, v, and T, rather

than p, v, and 7r. The marginal constraints (1.1) become

T1= u, TT1 V) (1.8)

with 1 the all-ones vector of appropriate dimension, and the set of valid plans is the

intersection of these constraints with the nonnegative orthant,

II(u, v) = {T E Rm n fIT1 = u,TT1 = v}. (1.9)

I(u, v) is called the transport polytope 1, and it is closed, bounded and convex.

The marginal constraints (1.8) confine H(u, v) to an affine subspace of dimension

(m - 1)(n - 1) 2. The polytope is non-empty, containing at least the plan UVT.

Let c : X x Y - R+ be a cost function and let C c R' " be the matrix whose

entries are Cij = c(x(i), y(i)). The optimal transport problem (1.5) can then be

written

T, = argmin (C, T)37. (1.10)
TEH(u,v)

(1.10) is a linear program with m + n - 1 linear equality and mn linear inequality

'In statistics, I1(u, v) is sometimes known as the set of contingency tables or two-way tables with
fixed margins [52].

2(M- 1)(n - 1) = mn - (m + n - 1). Note that one of the affine constraints is redundant, as
conservation of mass determines one of the marginal values.
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constraints. As a linear minimization over a convex compact set, it admits at least

one solution which is an extreme point of the set '. This solution need not be unique.

Kantorovich duality

Kantorovich [85] defined a dual formulation of the optimal transport problem (1.5)

that coincides with the primal at optimality. For dual variables (O, 4) E L1 (du) x

L1 (dv), the dual objective is

D(p,)= p(x)dp(x) + j4 (y)dv(y). (1.11)

The duality is as follows.

Theorem 1 (Kantorovich duality, [156] Thm. 1.3). Let X and Y be Polish spaces,

and let p e P(X) and v E P(Y). Let c : X x Y --* R {+}oo be lower semi-

continuous. Define C and H as in (1.4) and (1.3), respectively, and let T (c) be the

set of measurable pairs (W, 4) E L' (dp) x L' (dv) satisfying

O ) + 0(y <;: c(X, y), (1.12)

for d p-almost all x E X and dy-almost all y E Y. Then

inf C(7r) sup D(W,4'). (1.13)
irE H (i,) (Wp,V)ET(c)

The infimum in (1.13) is attained.

Example 1.2.2 (Discrete duality). In the case of discrete measures p = Ei=1 uiSx(z)

and v = E'= vjgy(i), Kantorovich duality reduces to the standard linear program-

ming duality [20]. In this case, we have dual vectors a E Rm and 3 E R' and a dual

objective

D(a, /3) = aTU + 3TV, (1.14)

3An extreme point of a convex set is one that cannot be written as a convex combination of any
other pair of points from the set.
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which is maximized over a and 3 lying in the polyhedron

'I(C) = {(a,3)E Rm x R +ai + <Ci, Vi, j}. (1.15)

The duality is expressed

min (C, T)-F max D(a,,3), (1.16)
TEf(u,v) (a,/)E I(G)

with both optima attained.

Wasserstein metric

We are particularly interested in the case where p and v are probability measures on

a single domain X and the cost c derives from a metric on the domain. In this case,

the cost of the optimal transport plan can be used to define a metric on probability

measures, called the Wasserstein metric.

Let d : X x X - R+ be a metric on X, and define the cost c(x, y) = d(x, y)P, for

p C [0, +o). The associated optimal transport cost is

T(p, v) = inf j d(x, y)Pd7r(x, y). (1.17)
wTr(p,v) XXX

We define the Wasserstein distance between /t and v as follows.

Definition 1.2.1 (Wasserstein distance).

1. For p C [1, +oo), W([, v) = T (P, V)1/P.

2. For p E [0 , 1), WP(1p, V) = 'T- (P, V).

The case p = 1 is sometimes called the Earth Mover's Distance [125]. In

the discrete setting, we will abuse notation and write W,(u, v) for the Wasserstein

distance between the discrete measures having u and v as their weight vectors.

The Wasserstein distance is in fact a metric on probability measures, subject to a

moment condition.
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Theorem 2 (Wasserstein is a metric, [156] Thm. 7.3). Let Pp(X) be the set of

probability measures on X having finite moments of order p,

PP (X) = p E P(X) I d(, o)Pdp(x) < +oo, Vxo e X}. (1.18)

Then for all p C [0, +oo), WI is a metric on Pp(X).

Example 1.2.3 (Total variation distance). In the case of p = 0, we have d(x, y)P

l,. In other words, the cost is 0 if x = y and 1 otherwise. Then the Wasserstein

distance coincides with total variation,

1
Wo(P, v) =1IA - vIITv, (1.19)

2

for any p,v E P (X)

1.3 Wasserstein metrics in machine learning

Wasserstein metrics are potentially useful wherever one wants to compare probabil-

ity measures defined on a metric space. Such settings occur frequently in machine

learning. In natural language processing, computer vision, and bioinformatics, for

example, data of interest are often represented as histograms or "bags" of features,

such as SIFT features for images [105], bags of words or topic allocations for text [80]

[251, and counts of n-grams for sequences [100]. In all of these cases we may have

some notion of relatedness or similarity between the features, which can be encoded

as a metric. We will give more examples in what follows.

In such settings, Wasserstein metrics differentiate themselves from other diver-

gences - such as the Hellinger, X2, total variation, or Kullback-Leibler - in that they

take into consideration the underlying metric of the domain. They do so in an intu-

itive way: the Wasserstein distance between two distributions for p = 1 (also known

as the Earth Mover's Distance) is the minimal total distance traveled when moving

the mass in one distribution to match the other, for example. Whereas pointwise

divergences, such as those mentioned, will assign a large distance to measures with
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distinct supports, Wasserstein distances will be large or small depending on the un-

derlying metric distance between their supports. The Wasserstein distance between

two point masses, for any p > 1, is simply their metric distance, for example.

Computational cost

A major obstacle to the application of Wasserstein distances is the fact that computing

them requires solving a nontrivial optimization problem. The vast majority of existing

applications of optimal transport distances involve discrete measures, for which the

distance computation is a linear program with a number of constraints scaling as the

product of the cardinalities of the supports of the two measures. This linear program

can be solved via the network simplex method [62], interior point methods [113],

or through more specialized algorithms such as network flow [2] [118]. For general

underlying metrics, the complexity of interior point methods is O(n3 log n), where n

is the larger of the two support cardinalities, while these and the network simplex are

supercubic in practice [118] [125]. The execution time for computing a single distance

rapidly becomes impractical, requiring minutes ' for measures of cardinality larger

than 1000.

Two approaches have been suggested, for practical applications with discrete mea-

sures. The first is to restrict to special metrics and special arrangements of the under-

lying support points that allow for faster algorithms. When the domain is X = R, for

example, the optimal transport plan for the Euclidean cost is a monotone rearrange-

ment whose computation is 0 (n log n). For more general domains, Pele and Werman

[1181 use underlying metrics that are thresholded, saturating at a constant maximum

value, and show that one can reduce the complexity of the network flow computation

by an order of magnitude. Ling and Okada [101] assume the underlying metric is L'

and the points lie on a Manhattan network, showing that the number of variables in

the linear program can be reduced to 0(n), and achieving time complexity scaling

as n2 in practice. Other methods for the L' metric approximate the Wasserstein

distance by embedding the input measures in a different norm [79] [106], or by using

4Wall clock time from [451 run on a single core 2.66 Ghz Xeon.
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sums of wavelet coefficients computed on the difference measure [139], for example.

The second approach is to regularize the optimal transport problem. In particular,

entropic regularization is the focus of much current work, as it enables very efficient

algorithms. Entropic regularization of the transport problem has a long history,

going back at least to Schr6dinger [135] (see also [99]), and it has seen a variety

of applications outside machine learning [162] [146] [65]. It was introduced to the

machine learning community by Cuturi [45].

The entropic regularizer penalizes the negative entropy of the transport plan,

yielding a modified transport problem

,r, = arginf c(x, y)d7r(x, y) - yH(7r), (1.20)
7rErl(pp) JXxy

with H(7r) - f y d7r(x, y) log d7r(x, y) the entropy and y > 0 the regularization

parameter. While the original transport problem (1.5) may have many solutions, the

regularized problem is strictly convex, ensuring uniqueness of the optimum.

Although the entropy regularizer acts as a barrier function enforcing positivity, it

is perhaps not the most obvious choice in the sense of interior point methods [113].

The regularizer is effective instead due to its algebraic properties. In particular, the

regularized transport problem (1.20) can be written as a projection, with respect to

the Kullback-Leibler divergence, of a Gibbs measure onto the set of valid transport

plans H(p, v). When the Lebesgue integral on X x Y is well-defined, the initial Gibbs

measure has a closed form,

(A x B) exp -- c(x, y)), (1.21)
= AxB (_

for measurable A C X, B C Y. The regularized transport problem is expressed

7ry = arginf KL(7rI ). (1.22)
irEH(pv)
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In the case of discrete measures, we are solving a convex program,

T = argmin (C, T)y - yH(T) = argmin KL(TIIK), (1.23)
TEH(u,v) TEH(u,v)

with H(T) -(T, log T)T and K = exp (-.C) the kernel associated to the Gibbs

measure (1.21).

As this is a KL projection onto the intersection of affine constraints, the regularized

optimal transport problem is amenable to a very efficient method of optimization,

called Bregman's method [29]. In Bregman's method, one alternately projects the

Gibbs measure onto the marginal constraints for p and for v, until a fixed point is

reached. In particular, we begin with K and alternately project the matrix onto

the row and column sum constraints. Key to the efficiency is that each one of these

marginal projections is simply a left- or right-multiplication by a diagonal matrix.

The resulting algorithm is exactly Sinkhorn's algorithm for matrix scaling [1421 [143]

[144], which is known to converge linearly to the fixed point 163] [90]. Moreover, it

is easily parallelized [45]. More recently, [67] have improved upon the efficiency of

Sinkhorn's algorithm via stochastic optimization.

Wasserstein embeddings and nearest neighbors

Wasserstein distances are directly applicable in nearest neighbor algorithms, in which

objects of interest (such as images and text) are embedded in a space of histograms

and queries are made for the objects that are nearest in the sense of the Wasserstein

distance in the embedding space. The Earth Mover's Distance (EMD) - i.e. the

1-Wasserstein distance - has been widely applied in this context. EMD has been

used for image and texture retrieval [125] [106 [163], comparing histograms of color,

texture, shape and spatial position information, and for image keypoint matching

[117] [41] [101], in which the compared histograms represent local image regions. [97]

uses the EMD between image descriptors for both retrieval and nearest neighbor clas-

sification. [96] compute the EMD between normalized bag-of-words representations

of text documents and use it for nearest neighbor classification.
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Wasserstein embeddings are used in variety of other contexts, as well. For edge and

corner detection, [129] use the 1-Wasserstein distance between histograms describing

adjacent image regions to make judgments of local contrast and orientation. For com-

puting transport distances between large numbers of images, [160] suggest embedding

into a space in which the Euclidean distance approximates the 2-Wasserstein dis-

tance. [13] [115] [154] apply this idea to biomedical image analysis, embedding images

showing cell morphology before applying PCA and LDA in this space.

Central to using a Wasserstein embedding is the definition of the underlying

ground metric relating histogram bins. [46] show how to learn the metric from a

set of histograms and a similarity matrix for those histograms.

Wasserstein PCA

Defining an equivalent of PCA in Wasserstein space is challenging. In order to adapt

the standard definition of PCA on Riemannian manifolds, one needs to define a

bijection locally between the manifold of probability measures and the Wasserstein

tangent space, and no such bijection is known. [24] and [26] approach the problem as

an optimization over curves in P(X), focusing on restricted settings: P(R) in the first

case and a parameterized family of densities in the second. [160] proposes embedding

into a space in which the Euclidean distance approximates the Wasserstein distance,

before performing PCA. [136] define a principal geodesic analysis (PGA), in which

one finds parameterized geodesics that minimize the 2-Wasserstein distance to the

measures in the dataset, and solve it approximately. [36] take a similar approach but

solve the PGA problem exactly, using proximal methods.

Wasserstein kernels

The Wasserstein distance has also been used to define kernels for a variety of appli-

cations. [165] [45] [49] [53] suggest to use a generalized Gaussian kernel,

r(u, V) = exp (- W,(u, v)), (1.24)
(_-
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for a- > 0 the bandwidth and histograms u E A' and v E A' representing the objects

being compared. [165] and [45] use this kernel for classifying images, while [49] does

the same for classifying EEG signals, and [531 for brain connectomes. Note that the

generalized Gaussian kernel with a Wasserstein distance is not positive definite in

general, as this requires the metric space induced by the Wasserstein distance to have

zero curvature [58]. To address this, [93] use a sliced Wasserstein distance [121] [281,

defined by integrating Wasserstein distances between one-dimensional projections of

the input distributions, and show that the generalized Gaussian kernel using the sliced

Wasserstein distance (with p = 2) is positive definite, before showing applications to

kernel k-means, kernel PCA, and kernel SVM classification. [44] alternatively suggests

to use the permanent of the transport polytope H(u, v) in place of the generalized

Gaussian kernel, guaranteeing positive definiteness. [66] show that certain types of

metrics underlying the Wasserstein distance can guarantee positive definiteness, as

well.

Wasserstein barycenters

Wasserstein distances have also been used in objectives for variational problems in

machine learning. The prototypical example is the Wasserstein barycenter problem

[1], which is that of computing the "mean" of a set of probability measures, defined as

a measure that minimizes the sum of Wasserstein distances to the original measures.

[121] propose the sliced Wasserstein distance, defined by integrating Wasserstein dis-

tances between one-dimensional projections of the input distributions, and apply it

to compute the barycenter of discrete measures on Rd (possibly limited to d < 4).

[28] look at more general spaces and additionally define a Radon barycenter that

combines barycenters computed on one-dimensional projections. [47] give a barycen-

ter method for discrete measures on general metric spaces, using entropy-regularized

Wasserstein distances, while [48] and [17] give alternative methods for the same formu-

lation, achieving greater efficiency. [71 give a sparse linear programming formulation

of the discrete barycenter problem. [149] describe a fully data-parallel barycenter

method that operates on continuous measures. Wasserstein barycenters appear in
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a number of applications, including shape and texture interpolation [146], fusion of

posterior distributions in Bayesian inference [148], clustering distributions [164], and

multi-target tracking [14]. [27] study the problem of projecting a discrete probability

measure onto a weighted barycenter of some fixed measures.

Generative models

Wasserstein metrics are well-suited to density estimation and generative modeling.

In many generative settings, the model defines a nonlinear mapping from a low-

dimensional random vector into a high-dimensional observation space, implying a

singular density that has positive probability only on a low-dimensional subset of the

observation space. The Wasserstein metric is natural as a fitting criterion in such a

setting, as it uses the geometry of the space. The resulting estimator is called the

minimum Kantorovich estimator [11] [68] and has been implemented in restricted

Boltzmann machines using entropic regularization [110], in a variety of parametric

statistical models using an approximate Bayesian method [19], in neural networks us-

ing entropic regularization [69], and in neural networks via a rough approximation of

the Kantorovich dual problem [9]. The last of these is also known as the Wasserstein

GAN (Generative Adversarial Network), due to an interpretation of the Kantorovich

dual problem (1.13) as optimizing an "adversarial" discriminative mapping. In par-

ticular, for the 1-Wasserstein distance, the Kantorovich dual has a particular form

which is

Wi(p, v)= sup jp(x)d(p - v)(x). (1.25)
11Vl1Lip<1 JX

Letting p be the empirical distribution to which we are fitting the model and v = Vo

the model density, we see that we are optimizing a 1-Lipschitz function 'p to have

positive values where p(x) > ve(x) and negative values where p(x) < VO(x) - in other

words, it should be maximally discriminative between the two distributions. If we

optimize the model v9 to minimize the 1-Wasserstein distance, then, we have a mini-

max problem with the inner optimization over discriminative mappings p. Note that

the authors in [9] do not actually compute (1.25) but rather make a rough approx-
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imation in which, rather than optimizing p over 1-Lipschitz functions, they instead

optimize p over neural networks whose weights have a box constraint. Although their

formulation is effective for fitting the model, there is no evidence this approximates

the Wasserstein distance in any meaningful way.

Other variational problems

Other applications to variational problems have been described. [60], for example,

propose a variation on Fisher discriminant analysis that maximizes a ratio of inter-

class and intra-class Wasserstein distances. And several works have used a Wasserstein

distance as the fitting criterion for dictionary learning [130] [48] [123] [134].

1.4 Contributions of this thesis

This thesis addresses three problems in machine learning. We develop new methods

for each problem, using techniques from the study of Wasserstein distances. We char-

acterize these new methods both experimentally and theoretically. In two cases we

also propose novel numerical methods, for computing a new variant of the Wasserstein

distance and for computing an object called a Wasserstein gradient flow.

In Chapter 2, we consider the problem of multi-output learning. We introduce

a new method for incorporating into the learning problem a metric or similarity

structure on the dimensions of the output, via a Wasserstein loss function. The

Wasserstein loss measures the Wasserstein distance between predictions and ground

truth, with the underlying ground metric chosen by the user. While the Wasserstein

distance is constrained to comparing normalized probability vectors, in many learning

problems it is more natural to express the outputs as unnormalized vectors. We

propose a novel extension of the Wasserstein distance that operates on unnormalized

measures, which can likewise function as a loss function for learning. We derive novel

statistical learning bounds for this new, unnormalized Wasserstein loss function. We

also characterize the Wasserstein loss empirically. First, we demonstrate that it has

a "semantic smoothing" effect, in which the predictions are distributed over output
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categories that are nearby to the ground truth, with respect to the underlying ground

metric. We then demonstrate that, with a well-chosen ground metric, the Wasserstein

loss can improve prediction performance on real data, applying it to an image tagging

problem using the Yahoo Flickr Creative Commons dataset, and showing that it

outperforms a baseline that doesn't use a metric on the outputs.

In Chapter 3, we consider the problem of probabilistic inference for diffusion pro-

cesses. A diffusion process is a continuous-time, continuous-space Markov process

whose time-dependent density evolves according to a PDE called the Fokker-Planck

equation. Exact inference involves solving this PDE, which is intractable in general.

Current methods for approximate inference either make parametric assumptions or

are limited to low-dimensional domains. We propose a novel method for approxi-

mate inference that computes what is called a Wasserstein gradient flow, which is

the limit of implicit Euler steps (in a space of probability densities) taken with re-

spect to the Wasserstein metric. Computing this Euler step is an infinite-dimensional

optimization over probability densities, and we propose a novel finite-dimensional

approximation that nevertheless computes a continuous density. We derive a dual

formulation of the Euler step that can be interpreted as maximizing an expectation

of a functional on the dual variables, and this enables us to approximate the dual by

Monte Carlo sampling. We show that this stochastic approximation necessarily has

a finite-dimensional solution, and prove that it converges with increasing numbers of

samples to the exact solution for the dual. We also show that the stochastic approxi-

mation can be stablized by Tikhonov regularization, and demonstrate empirically the

quality of the resulting approximation for different numbers of Monte Carlo samples.

We apply our inference method to the problem of filtering a hidden diffusion process,

showing that the proposed method can produce more accurate posterior state distri-

butions than existing methods, including classical filters such as the unscented and

extended Kalman filters.

In Chapter 4, we consider the ecological inference problem. Mathematically, this is

the problem of recovering a joint distribution of two random variables, given only their

marginal distributions. It appears frequently in social sciences, in which one wants
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to combine aggregate measurements of a population (the marginal distributions) into

a more refined characterization (the joint distribution). A prominent example is in

studying election data, where one wants to characterize the political preferences of

different demographic groups, but only has access to aggregate census data and vote

counts. As ecological inference is an ill-posed problem, one has to apply prior assump-

tions to select a solution. We propose a novel framework for ecological inference that

incorporates a variety of different priors, and enables efficient inference of the most

probable solution, via a linearly-convergent fixed point iteration. We examine meth-

ods for estimating the prior distribution from side information, showing empirically

that the proposed inference method using the estimated prior can be significantly

more accurate than existing methods, on both synthetic and real election data. We

additionally propose a method for interval estimation, in which we determine the

boundary of the highest probability density credible region, for a desired threshold

probability level.
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Chapter 2

Learning with a Wasserstein Loss

2.1 Introduction

We consider the problem of learning to predict a non-negative measure over a finite

set. This problem includes many common machine learning scenarios. In multiclass

classification, for example, one often predicts a vector of scores or probabilities for

the classes. And in semantic segmentation [103], one can model the segmentation as

being the support of a measure defined over the pixel locations. Many problems in

which the output of the learning machine is both non-negative and multi-dimensional

might be cast as predicting a measure.

We specifically focus on problems in which the output space has a natural metric

or similarity structure, which is known (or estimated) a priori. In practice, many

learning problems have such structure. In the ImageNet Large Scale Visual Recog-

nition Challenge [ILSVRC] [128], for example, the output dimensions correspond to

1000 object categories that have inherent semantic relationships, some of which are

captured in the WordNet hierarchy that accompanies the categories. Similarly, in the

keyword spotting task from the IARPA Babel speech recognition project, the outputs

correspond to keywords that likewise have semantic relationships. In what follows,

we will call the similarity structure on the label space the ground metric or semantic

similarity.

Using the ground metric, we can measure prediction performance in a way that
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is sensitive to relationships between the different output dimensions. For example,

confusing dogs with cats might be more severe an error than confusing breeds of dogs.

A loss function that incorporates this metric might encourage the learning algorithm

to favor predictions that are, if not completely accurate, at least semantically similar

to the ground truth.

In this paper, we develop a loss function for multi-label learning that measures

the Wasserstein distance between a prediction and the target label, with respect to

a chosen metric on the output space. The Wasserstein distance is defined as the

cost of the optimal transport plan for moving the mass in the predicted measure

to match that in the target, and has been applied to a wide range of problems,

including barycenter estimation [47], label propagation [147], and clustering [40]. To

our knowledge, this paper represents the first use of the Wasserstein distance as a

loss for supervised learning.

We briefly describe a case in which

the Wasserstein loss improves learning

performance. The setting is a multi-

class classification problem in which la-

bel noise arises from confusion of semanti-
Siberian husky Eskimo dog

cally near-equivalent categories. Figure 2-
Figure 2-1: Semantically near-equivalent

1 shows such a case from the ILSVRC, in classes in ILSVRC

which the categories Siberian husky and

Eskimo dog are nearly indistinguishable. We synthesize a toy version of this problem

by identifying categories with points in the Euclidean plane and randomly switching

the training labels to nearby classes. The Wasserstein loss yields predictions that are

closer to the ground truth, robustly across all noise levels, as shown in Figure 2-2.

The standard multiclass logistic loss is the baseline for comparison. Section 2.10.1

describes the experiment in more detail.

The main contributions of this work are as follows. We formulate the problem of

learning with prior knowledge of the ground metric, and propose the Wasserstein loss

as an alternative to traditional information divergence-based loss functions. Specifi-
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Figure 2-2: The Wasserstein loss encourages predictions that are similar to ground

truth, robustly to incorrect labeling of similar classes (see Section 2.10.1). Shown is
Euclidean distance between prediction and ground truth vs. (left) number of classes,
averaged over different noise levels and (right) noise level, averaged over number of
classes. Baseline is the multiclass logistic loss.

cally, we focus on empirical risk minimization (ERM) with the Wasserstein loss, and

describe an efficient learning algorithm based on entropic regularization of the opti-

mal transport problem. We also describe a novel extension to unnormalized measures

that is similarly efficient to compute. We then justify ERM with the Wasserstein loss

by showing a statistical learning bound. Finally, we evaluate the proposed loss on

both synthetic examples and a real-world image annotation problem, demonstrating

benefits for incorporating an output metric into the loss.

2.2 Related work

Decomposable loss functions like KL Divergence and tp distances are very popular for

probabilistic [103] or vector-valued [6] predictions, as each component can be eval-

uated independently, often leading to simple and efficient algorithms. The idea of

exploiting smoothness in the label space according to a prior metric has been ex-

plored in many different forms, including regularization [127] and post-processing

with graphical models [38]. Optimal transport provides a natural distance for prob-

ability distributions over metric spaces. In [47, 481, the optimal transport is used

to formulate the Wasserstein barycenter as a probability distribution with minimum

total Wasserstein distance to a set of given points on the probability simplex. [147]

propagates histogram values on a graph by minimizing a Dirichlet energy induced by

optimal transport. The Wasserstein distance is also used to formulate a metric for
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comparing clusters in [40], and is applied to image retrieval [126], contour matching

[74], and many other problems [139, 55]. However, to our knowledge, this is the first

time it is used as a loss function in a discriminative learning framework. The closest

work to this paper is a theoretical study [12] of an estimator that minimizes the opti-

mal transport cost between the empirical distribution and the estimated distribution

in the setting of statistical parameter estimation.

2.3 Basics

2.3.1 Problem setup and notation

We consider the problem of learning a map from X C RD into the space Y = R'

of nonnegative measures over a finite set K of size IKI = K. Assume K possesses a

metric dr(., .), which is called the ground metric. dK measures semantic similarity

between dimensions of the output, which correspond to the elements of K. We perform

learning over a hypothesis space ' of predictors ho : X -+ Y, parameterized by 0 E .

These might be linear logistic regression models, for example.

In the standard statistical learning setting, we get an i.i.d. sequence of training

examples S = ((X 1 , yi), .. . , (XN, YN)), sampled from an unknown joint distribution

lPxXy. Given a measure of performance (a.k.a. risk) S(-, .), the goal is to find the

predictor h0 c '1 that minimizes the expected risk E[,(ho(x), y)]. Typically F(., -) is

difficult to optimize directly and the joint distribution Pxxy is unknown, so learning

is performed via empirical risk minimization. Specifically, we solve

1N
min Es[C(ho(x), y) = - 2 f(ho(xi), yi) (2.1)
heE{ N

with loss function f(., -) acting as a surrogate of E(-, .), and the empirical mean re-

placing the expectation.
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2.3.2 Exact Wasserstein loss

Information divergence-based loss functions are widely used in learning with probability-

valued outputs. Along with other popular measures like Hellinger distance and X2

distance, these divergences treat the output dimensions independently, ignoring any

metric structure on K.

When the ground truth y and the output of h are both probability measures, lying

in the simplex A', we can straightforwardly define a Wasserstein loss, which incor-

porates a ground metric in the output space and measures the Wasserstein distance

between the predictions and ground truth.

Definition 2.3.1 (Exact Wasserstein Loss). For any ho E '-, ho : X -+ Ak, let

ho(Klx) = ho(x), be the predicted value at element K c IC, given input x E X. Let

y(K) be the ground truth value for K given by the corresponding label y. Then we

define the exact Wasserstein loss as

WP(h(-Ix), y()) inf (T, M) (2.2)
TEH(h(x),y)

where M E RI xK is the distance matrix M,, = dic(K, ,'), and the set of valid

transport plans is

I(h(x), y) = {T (ER 1  : T1 h(x), TT1 y} (2.3)

where 1 is the all-one vector.

2.4 Efficient learning

To do learning, we optimize the empirical risk minimization functional (2.1) by gra-

dient descent (Algorithm 1). Doing so requires evaluating a descent direction for the

loss, with respect to the predictions h(x). Unfortunately, computing a subgradient of

the exact Wasserstein loss (2.2), is quite costly, as follows.
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Algorithm 1 Learning by stochastic gradient descent

Given training set S = {(xi, yi)} Yi1 C RP x AK, initial parameters 0(0), number of
epochs T, minibatch size Nb, step sizes {}?7t}_.
for t = 1, .. ., Tdo

Sample uniformly a minibatch St = {(xj, yj)}N C S.

Compute subgradients of the loss aWI'(h(a.,yj= 1,..., N.

Compute subgradient of empirical risk with respect to parameters =ESU00
1 bNb (OWN(h(xj),yj) (9h(xj)

Nb j=1 h(xj) 00

Update parameters 0 (t) - 0(t-1) _

end for

2.4.1 Subgradients of the exact Wasserstein loss

The exact Wasserstein loss (2.2) is a linear program and a subgradient of its solution

can be computed using Lagrange duality. The dual LP of (2.2) is

dWP(h(x), y) = sup &T h(x) + OTy, Cm {(a, K) 1 KxK : + ; MKK,}.
a,3ECm

(2.4)

As (2.2) is a linear program, at an optimum the values of the dual and the primal

are equal (see, e.g. [21]), hence the dual optimal a is a subgradient of the loss with

respect to its first argument.

Computing a is costly, as it entails solving a linear program with O(K2 ) contraints,

with K being the dimension of the output space. This cost can be prohibitive when

optimizing by gradient descent.

2.4.2 Entropic regularization

Cuturi [45] proposes a smoothed transport objective that enables efficient approxi-

mation of both the transport matrix in (2.2) and the subgradient of the loss. [45]

introduces an entropic regularization term that results in a strictly convex problem:

'W(h(.Ix), y(-)) = inf (T, M) 1 H(T), H(T) = - T,,, log T,,,. (2.5)
TErI(h(x),y)A
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Algorithm 2 Gradient of the smoothed Wasserstein loss

Given h(x), y E A, A > 0, K = exp (-AM - 1).

while u has not converged do
u +- h(x) o (K (y o KTu))

end while
OW,'/&h(x) " lo9u - 109uT

1
A AKC

Importantly, the transport matrix that solves (2.5) is a diagonal scaling of a matrix

K = e-AM-1:

T* = diag(u)Kdiag(v) (2.6)

for u = ela and v = eA, where a and 0 are the Lagrange dual variables for (2.5).

Identifying such a matrix subject to equality constraints on the row and column

sums is exactly a matrix balancing problem, which is well-studied in numerical linear

algebra and for which efficient iterative algorithms exist [91]. [45] and [47] use the

well-known Sinkhorn-Knopp algorithm.

2.4.3 Learning with the smoothed loss

When the output vectors h(x) and y lie in the simplex, (2.5) can be used directly

in place of (2.2), as (2.5) can approximate the exact Wasserstein distance closely for

large enough A [45]. In this case, the gradient a of the objective can be obtained from

the optimal scaling vector u as a = " - lg T, 1. 1 A Sinkhorn iteration for theA AK

gradient is given in Algorithm 2.

2.5 Relaxed transport

For many learning problems, a normalized output assumption is unnatural. In image

segmentation, for example, the target shape is not naturally represented as a his-

togram. And even when the prediction and the ground truth are constrained to the

'Note that a is only defined up to a constant shift: any upscaling of the vector u can be paired
with a corresponding downscaling of the vector v (and vice versa) without altering the matrix T*.
The choice a = lgU _ lgUl 1 ensures that a is tangent to the simplex.A AK
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simplex, the observed label can be subject to noise that violates the constraint.

There is more than one way to generalize optimal transport to unnormalized

measures, and this is a subject of active study [39]. We will develop here a novel

objective that deals effectively with the difference in total mass between h(x) and y

while still being efficient to optimize.

We propose a novel relaxation that extends the Wasserstein loss to unnormalized

measures. By replacing the equality constraints on the transport marginals in (2.2)

with soft penalties with respect to KL divergence, we get an approximate transport

problem.

Definition 2.5.1 (Relaxed Wasserstein Loss). For any ho E 71, ho : X - R', let

ho(K~x) = ho(x), be the predicted value at element t, E K, given input x E X. Let

y(r,) be the ground truth value for K given by the corresponding label y. Then we

define the relaxed Wasserstein loss as

'YaYb WKL(h(-Ix),y(-)) inf (T, M) + ya KL(T11h(-1x)) + ybKL(TT1I1y) (2.7)

where M c R xK is the distance matrix M,, = d,(K, t'), and KL(wIIz) = wT log(wo

z)-lTw+lTz is the generalized KL divergence between w, z E R'. Here 0 represents

element-wise division and 1 is the all-one vector.

As with the exact Wasserstein loss, computing subgradients is computationally

costly. We again approach this by adding an entropic regularizer, obtaining an un-

constrained objective.

A,-yYb WKL(h(.Ix), y(.)) min (T,M) H(T) +-ya KL(Tlllh(x))+7b KL(TT11y).
TER K

(2.8)

As with the previous formulation, the optimal transport matrix with respect to (2.8)

is a diagonal scaling of the matrix K.

Proposition 1. The transport matrix T* optimizing (2.8) satisfies T* = diag(u)Kdiag(v),

where u = (h(x) O T*1)Ya , V = (y 0 (T*)T1),, , and K = e--1.
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Proof. The first order condition for T* optimizing (2.8) is

Mij + I (log Ti* + 1) + -y, (log T*1 0 h(x)) + 7yb (log(T*)T 1 0 y). = 0.

= log Ti* + -yaA log (T*1 0 h(xi))\ + 'Yb A log ((T*)T1 0 yj), -AMij - 1
)-vaA '*Tj YbA

w Ti* (T*1 0 h(x)) " ((T*)1 exp (-AMij - 1)

,T* = (h(x) 0 T*l)"A (y 0 (T*)T)jA exp (-AMij - 1)

Hence T* (if it exists) is a diagonal scaling of K = exp (-AM - 1). ED

And the optimal transport matrix is a fixed point for a Sinkhorn-like iteration. 2

Proposition 2. T* = diag(u)Kdiag(v) optimizing (2.8) satisfies: i) u = h(x),JAi ®
-,aA _b>_ YbA

(Kv) "A+1 , and ii) v = ymA+1 ® (KTU) YbA+1, where 0 represents element-wise

multiplication.

Proof. Let u = (h(x) 0 T*1)aA and v = (y 0 (T*)T1)"b A, so T* = diag(u)Kdiag(v).

We have

T*1 = diag(u)Kdiag(v)

=# (T* )-" 1 = h(X)YaA G Kv

where we substituted the expression for u. Re-writing T*1,

(diag(u)Kv)^aA = diag(h(X)'IaA)Kv

Ul" A+' = h(X)YaA 0 (Kv)-aA

-> = h(x),Ya+1 0 (Kv)-Ya2+l.

2Note that, although the iteration suggested by Proposition 2 is observed empirically to converge
(see Figure 2-3c, for example), we have not proven a guarantee that it will do so.
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Algorithm 3 Gradient of the relaxed Wasserstein loss

Given h(x), y E Rf, A, ,Yb> 0, K = exp (-AM - 1).

while u has not converged do
baA T bA YaA+1

u +- h(x) - +1 0 K (y 0 KTu) yb+1)

end while
7b YbA

+--~ yYbA+l 0 KTU) Yb,+
1

OWKL/h(x - 7 (1 - (diag(u)Kdiag(v)) 0 h(x))

A symmetric argument shows that v = yb\+' 0 (KT u b.+1. E

Unlike the previous formulation, (2.8) is unconstrained with respect to h(x). The

gradient is given by V'h()WKL(h(. x), y')) = 7a (1 - T*-10 h(x)). The iteration is

given in Algorithm 3.

When restricted to normalized measures, the relaxed problem (2.8) approximates

smoothed transport (2.5). Figure 2-3a shows, for normalized h(x) and y, the relative

distance between the values of (2.8) and (2.5) 3. For A large enough, (2.8) converges

to (2.5) as -ya and Yb increase.

(2.8) also retains two properties of smoothed transport (2.5). Figure 2-3b shows

that, for normalized outputs, the relaxed loss converges to the unregularized Wasser-

stein distance as A, 7ya and 7b increase ". And Figure 2-3c shows that convergence of

the iterations in (2) is nearly independent of the dimension K of the output space.

2.6 Statistical properties of the loss

In this section, we establish statistical learning bounds for the exact Wasserstein loss

function (2.2) and its relaxed counterpart (2.7) 5.

31n figures 2-3a-c, h(x), y and M are generated as described in [45] section 5. In 2-3a-b, h(x) and
y have dimension 256. In 2-3c, convergence is defined as in [45]. Shaded regions are 95% intervals.

4 The unregularized Wasserstein distance was computed using FastEMD [118].
5Note that this section extends the results in [64] to encompass the relaxed transport loss (2.7).
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(a) Convergence to smoothed transport.

-- Smoothed transport
- Soft KL (y - 0.5)
- Soft KL (-t = 1)

- SftK y 5)
-- Soft KL (y -y 10)

0

logio A

(b) Approximation of exact Wasserstein.

-Smoothed transport
- Soft KL (,y 0. 1)
-Soft KL (-t 1)
- Soft KL (y 10)

Io&e dimension

(c) Convergence of alternating projections (A=
50).

Figure 2-3: The relaxed transport problem (2.8) for unnormalized measures.
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2.6.1 Main results

Let S = ((X 1 , yi), ... , (XN, YN)) be i.i.d. samples and h6 be the empirical risk mini-

mizer

h6 = argmin Es [W(he(.Ix), y)] = W (h (-xi), yi)
heEy N i}

Further assume 7 = _ o WI is the composition of a softmax s and a base hypothesis

space WO of functions mapping into RK. The softmax layer outputs a prediction that

lies in the simplex AK.

Theorem 3 (Consistency of ERM with exact Wasserstein loss). For p = 1, and any

6 > 0, with probability at least 1 - 6, it holds that

E (Wjth (-|x ), y )] [ inf E (W|(ho(-Ix), y)] + 32KCM9iN(-t0) 20M log(1/6) NeEW 2N
(2.9)

with the constant CM = max,,' M,,,. - N(N 0) is the Rademacher complexity [10/

measuring the complexity of the hypothesis space Vt.

The Rademacher complexity NN(-t) for commonly used models like neural net-

works and kernel machines [10] decays with the training set size. This theorem guar-

antees that the expected Wasserstein loss of the empirical risk minimizer approaches

the best achievable loss for 7-.

As an important special case, minimizing the empirical risk with Wasserstein loss

is also good for multiclass classification. Let y = e, be the "one-hot" encoded label

vector for the groundtruth class.

Proposition 3. In the multiclass classification setting, for p = 1 and any 6 > 0, with

probability at least 1 - 6, it holds that

heE~~ 3K2 C9~N(-t~ + CMK log(1/6)
Ex,. [dK (KO (x), K)] inf K E[W1(ho(x), y)] + 32K22NC N mK

hoEW 2N
(2.10)

where the predictor is K6(x) = argmax, h6(Klx), with h6 being the empirical risk

minimizer.
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Note that instead of the classification error EXK[1)], we actually get a bound

on the expected semantic distance between the prediction and the groundtruth.

For the relaxed Wasserstein loss (2.7), we get an equivalent bound. Suppose the

hypothesis space ?i is the product of component spaces 71, i.e. 71 = i x ... x WK-

Theorem 4 (Consistency of ERM with relaxed Wasserstein loss). For p = 1, -Ya, -Yb >

0 and any 6 > 0, with probability at least 1 - 6, it holds that

E [7'YaWKL(h ('Ix), y)]

inf E [7"'a"WKL(ho(-Ix), y)] + 4v 2K(CM - _Y) 9 () + 2 CM log(1/)
hoe1- 2N

k=1

(2.11)

with the constant CM = max,,, M,,, y = max{ya, 7b}, h6 the empirical risk minz-

mizer, and 9 1N(7) the Rademacher complexity /101 measuring the complexity of the

hypothesis space 7-.

2.7 Empirical

2.7.1 Impact of the ground metric

In this section, we show that the Wasserstein loss encourages smoothness with respect

to an artificial metric on the MNIST handwritten digit dataset. This is a multi-class

classification problem with output dimensions corresponding to the 10 digits, and we

apply a ground metric dp(r,, ,') = I - K'IP, where K, K' E {0, . . . , 9} and p E [0, 00).

This metric encourages the recognized digit to be numerically close to the true one.

We train a model independently for each value of p and plot the average predicted

probabilities of the different digits on the test set in Figure 2-4.

Note that as p -+ 0, the metric approaches the 0 - 1 metric do(K, K') =

which treats all incorrect digits as being equally unfavorable. In this case, as can

be seen in the figure, the predicted probability of the true digit goes to 1 while the

probability for all other digits goes to 0. As p increases, the predictions become more
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evenly distributed over the neighboring digits, converging to a uniform distribution

as p oo 6

2.7.2 Tagging Flickr images

We apply the Wasserstein loss to a real world multi-label learning problem, using the

recently released Yahoo/Flickr Creative Commons 100M dataset [153]. 7 Our goal is

tag prediction: we select 1000 descriptive tags along with two random sets of 10,000

images each, associated with these tags, for training and testing. We derive a distance

metric between tags by using word2vec [108] to embed the tags as unit vectors, then

taking their Euclidean distances. To extract image features we use MatConvNet [155].

Note that the set of tags is highly redundant and often many semantically equivalent

or similar tags can apply to an image. The images are also partially tagged, as different

users may prefer different tags. We therefore measure the prediction performance by

the top-K cost, defined as CK = 11K EK mm3 dx(kk, Kj), where {,j} is the set

of groundtruth tags, and {{k} are the tags with highest predicted probability. The

standard AUC measure is also reported.

We find that a linear combination of the Wasserstein loss Wg and the standard

multiclass logistic loss KL yields the best prediction results. Specifically, we train

a linear model by minimizing WP + aKL on the training set, where a controls the

relative weight of KL. Note that KL taken alone is our baseline in these experiments.

Figure 2-5a shows the top-K cost on the test set for the combined loss and the

baseline KL loss. We additionally create a second dataset by removing redundant

labels from the original dataset: this simulates the potentially more difficult case in

which a single user tags each image, by selecting one tag to apply from amongst each

cluster of applicable, semantically similar tags. Figure 3b shows that performance

for both algorithms decreases on the harder dataset, while the combined Wasserstein

loss continues to outperform the baseline.

6 To avoid numerical issues, we scale down the ground metric such that all of the distance values
are in the interval [0, 1).

7The dataset used here is available at http: //cbcl.mit.edu/wasserstein.
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In Figure 2-6, we show the effect on performance of varying the weight a on

the KL loss. We observe that the optimum of the top-K cost is achieved when the

Wasserstein loss is weighted more heavily than at the optimum of the AUC. This is

consistent with a semantic smoothing effect of Wasserstein, which during training will

favor mispredictions that are semantically similar to the ground truth, sometimes at

the cost of lower AUC '. We finally show selected images from the test set in Figures

2-7 and 2-8. These illustrate cases in which both baseline and Wasserstein loss result

in predictions that are semantically relevant in varying degrees, despite overlapping

very little with the ground truth.

2.8 Conclusion

In this chapter we have described a loss function for learning to predict a non-negative

measure over a finite set, based on the Wasserstein distance. Although optimizing

with respect to the exact Wasserstein loss is computationally costly, an approxima-

tion based on entropic regularization is efficiently computed. We described a learning

algorithm based on this regularization and we proposed a novel extension of the regu-

larized loss to unnormalized measures that preserves its efficiency. We also described

a statistical learning bound for the loss. The Wasserstein loss can encourage smooth-

ness of the predictions with respect to a chosen metric on the output space, and we

demonstrated this property on a real-data tag prediction problem, showing improved

performance over a baseline that doesn't incorporate the metric.

An interesting direction for future work may be to explore the connection be-

tween the Wasserstein loss and Markov random fields, as the latter are often used to

encourage smoothness of predictions, via inference at prediction time.

8The Wasserstein loss can achieve a similar trade-off by choosing the metric parameter p, as
discussed in Section 2.7.1.

However, the relationship between p and the smoothing behavior is complex and it can be simpler
to implement the trade-off by combining with the KL loss.
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2.9 Proofs of statistical properties

We establish the proofs of Theorems 3 and 4 in this section.

2.9.1 Preliminaries

For simpler notation, for a sequence S = ((x 1 , yi),..., (XN, YN)) of i.i.d. training

samples, we denote the empirical risk Rs and risk R as

Rs (ho) = Es [Wp (ho(-x), y(-) R(ho) = E [Wl (ho(-x), y(-) (2.12)

Lemma 1. Let ho, ho. E 71 be the minimizer of the empirical risk Rs and expected

risk R, respectively. Then

R(h6) < R(ho-)+ 2 supIR(h) - Rs(h)
hEh

Proof. By the optimality of h6 for $s,

R(h6) - R(ho0 ) = R(hb) - Rs(h6) + Rs(h6) - R(ho-)

<R(h6) - Rs(h6) + Zs(ho.) - R(ho-)

<2 sup IR(h) - Ns(h)I
hEW

Therefore, to bound the risk for h6, we need to establish uniform concentration

bounds for the Wasserstein loss. Towards that goal, we define a space of loss functions

induced by the hypothesis space 71 as

L = {fo : (x,y) F-+ W(ho(-Ix),y(.)) : ho E 711 (2.13)

The uniform concentration will depends on the "complexity" of L, which is measured

by the empirical Rademacher complexity defined below.
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Definition 2.9.1 (Rademacher Complexity [10]). Let g be a family of mapping from

Z to R, and S = (z 1 , ... , ZN) a fixed sample from Z. The empirical Rademacher

complexity of Q with respect to S is defined as

9is(9) = E, sup E gig (zi) (2.14)
.eg i=1 ..

where o- =(-,. .. , N), with oa's independent uniform random variables taking values

in {+1, -11. oi's are called the Rademacher random variables. The Rademacher

complexity is defined by taking expectation with respect to the samples S,

9iN(g) = Es [is()] (2.15)

Theorem 5. For any 6 > 0, with probability at least 1 - 6, the following holds for all

o c ,
C2 log(116)

E[fo] - s 2 9 N(L) M og (2.16)
2N

with the constant CM = max,,/ M,,,

By the definition of L, E[o] = R(ho) and Es[to] = Rls[ho]. Therefore, this theorem

provides a uniform control for the deviation of the empirical risk from the risk.

Theorem 6 (McDiarmid's Inequality). Let S = {X 1 ,..., XN} c X be N i.i.d.

random variables. Assume there exists C > 0 such that f : XN -* R satisfies the

following stability condition

,.. ./ . . . --- (2.17)

for all i = 1,... ,N and any x1 ,.. . ,x N, i C X. Then for any E > 0, denoting

f(X 1 ,... , XN) by f(S), it holds that

Pr (f(S) - E[f (S)] > E) exp (- 2 (2.18)
(NC2
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Lemma 2. Let the constant CM max,, M,,, then 0 <WP(.,) <CM.

Proof. For any h(-Ix) and y(.), let T* E F1(h(x), y) be the optimal transport plan that

solves (??), then

WP(h(x), y) = (T*, M) < CMZT' = CM

Proof of Theorem 5. For any to E C, note the empirical expectation is the empirical

risk of the corresponding ho:

N N
Es[to] = N to(Xi, yi) = W2 (ho(xi), y(-)) =s(ho)

Similarly, E[fo] = R(ho). Let

(2.19)4(S) = sup E[f] - Es [f]
eec

Let S' be S with the i-th sample replaced by (xi, y(), by Lemma 2, it holds that

4(S) - 1(S') < sup Es [f) - Ns= sup
tEL hoE7-t

WPP(ho(x'), y') - WP(ho(xi), yi)

N

Similarly, we can show 4(S') - 1(S) < CM/N, thus |@(S') - O(S)I < CM/N. By

Theorem 6, for any 6 > 0, with probability at least 1 - 6, it holds that

D(S) < E[(S)+ CM (/)2N (2.20)

To bound E[(S)], by Jensen's inequality,

Es[4(S)] = Es sup E[l] - tsit]
IfL JI

=Es sup Es, [t5' [f] - ts I]
. EJL

<Ess s - Ets[ 1]
LIEL J

Here S' is another sequence of i.i.d. samples, usually called ghost samples, that is

only used for analysis. Now we introduce the Rademacher variables ai, since the role
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of S and S' are completely symmetric, it follows

Es[<L(S)] 5 Es',O sup i y - i))

E N ]~[ N 1

Es',O sup - + Es,, sup -a-f(xi, yi
EL N EL N

= Es [is(L) ] + Es, [is'(L)

= 2MN(L)

The conclusion follows by combining (2.19) and (2.20).

To finish the proof of Theorem 3, we combine Lemma 1 and Theorem ??, and

relate 9 iN(C) to 9 iN(71) via the following generalized Talagrand's lemma [981.

Lemma 3. Let F be a class of real functions, and 71 c F = T1 x ... x FK be a

K-valued function class. If m : RK -+ R is a Lm-Lipschitz function and m(0) = 0,

then 9is(m o 'H) < 2Lm E 9s(Fk).

2.9.2 Exact Wasserstein loss

We can use the above results to obtain a bound on the Rademacher complexity of the

composition of the loss with the hypothesis, in terms of the complexity of the base

hypothesis class. To do so, we need to show a Lipschitz property for the loss. In the

case of the exact Wasserstein loss (2.2), this is as follows.

Theorem 7 (Theorem 6.15 of [1571). Let p and v be two probability measures on a

Polish space (K, dk). Let p E [1, oc) and io iz 1C. Then

Wp(t, v) 21/P' dK(I(o, K)djp - v(K)) i/p, + = 1 (2.21)

Corollary 1. The Wasserstein loss is Lipschitz continuous in the sense that for any
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ho c 71, and any (x, y) E X x Y,

WI(ho(-Ix),y) 5 2P-1 C>3 ho(Kjx) - y(K)1 (2.22)

In particular, when p = 1, we have

Wl'(ho(- Ix), y) < Cm E ho(KIX) - y(K)1 (2.23)
KC

We cannot apply Lemma 3 directly to the Wasserstein loss class, because the

Wasserstein loss is only defined on probability distributions, so 0 is not a valid input.

To get around this problem, we assume the hypothesis space 7- used in learning is of

the form

71 ={s o h' : h" E W} (2.24)

where WO is a function class that maps into RK, and s is the softmax function defined

as s(o) = (S1(0),... ,SK (O)), with

eOk
Sk(o) = , k = 1, . .. ,7K (2.25)

The softmax layer produce a valid probability distribution from arbitrary input, and

this is consistent with commonly used models such as Logistic Regression and Neural

Networks. By working with the log of the groundtruth labels, we can also add a

softmax layer to the labels.

Lemma 4 (Proposition 2 of [70]). The Wasserstein distances Wp(-, -) are metrics on

the space of probability distributions of K, for all 1 < p K oo.

Proposition 4. The map t : RK x R - R defined by t(yy') = W(s(y),S('))

satisfies

It(y, y') - t, :')I 4CM I I(y, y') - (p, ' 2 (2.26)

for any (y, y'), (p, q') E RK x RK. And 40,0) = 0.
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Proof. For any (y, y'), (9, 9') E RK x RK, by Lemma 4, we can use triangle inequality

on the Wasserstein loss,

Folw, y') - o, ) = It(y, y') - 49, y') + (9, y') - 49, Y')I < t(y, 9) + t(y', ')

Following Corollary 1, it continues as

It(y, y') - t(I, <') CM (Is(y) - SMHi + II-(y') -- 6(01i) (2.27)

Note for each k = 1, .. ., K, the gradient VYSk satisfies

||V y-kII2 = =) K
Oj j12

(2.28)
K

- - \ )K 2 + S( - 2s)
2=L kE j U

By mean value theorem, ]a E [0, 1], such that for yo = ay + (1 - a), it holds that

K K

I~~ ~~III = 3 (Vy6k I Y=Yk 'y - 9) 1 53 I Vy~k 1Y=Y "k 11211Y - Y112 211y - 9112
k=1 k=1

because by (2.28), and the fact that E s ! Xs = I and /'a +b < x/-+ Vb' for

a, b > 0, it holds

K

k=1 02 -
k=1

E I|Vy4k2 + E

<5 (S +2k/1 -22+k) +
k:Sk>1/2

K

Sk Y5 2,6 - 2
k=1

Similarly, we have IIs(y') - s (9')I11 211y' - Y112, so from (2.27), we know

It(y, y') - t(y, Y')j 2 Cm(Ily - 9112 + Ily' - 9112) < 2v/2CM (Ily - 112 + Iy' -- 9/12)1/2

then (2.26) follows immediately. The second conclusion follows trivially as s maps

the zero vector to a uniform distribution. ED
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Proof of Theorem 3. Consider the loss function space preceded with a softmax layer

L = {to : (x, y) F-+ W,(s(ho(x)), s(y)) : ho E 0H}

We apply Lemma 3 to the 4CM-Lipschitz continuous function t in Proposition 4 and

the function space

'H" x ... x ROx x ... x I
K copies K copies

with I a singleton function space with only the identity map. It holds

9is(L) < 8 CM (K~ts(io) + Kls(I)) = 8KCM is(W)

because for the identity map, and a sample S = (y1,. .. , yN), we can calculate

!1s(I) = E" [ 1su -
N

O-if(Yi)]

(2.29)

N
N -iyi =0

The conclusion of the theorem follows by combining (2.29) with Theorem 5 and

Lemma 1.

2.9.3 Relaxed Wasserstein loss

For the relaxed Wasserstein loss (2.7), we will again relate 9 iN(L) to NN(7) via a

variant of the Talagrand's lemma (Lemma 3). We first show a Lipschitz property for

the relaxed loss.

We start by proving an analog to Theorem 8 for the relaxed Wasserstein distance.

Theorem 8. Let p and v be two nonnegative measures on a Polish space (X, d). Let

p E [1, oc) and xo E X. Let -y = max{ya, }Yb. Then

'Ya YbW L (ALI V) 5 21 ' h) dAL - vI(x). (2.30)
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Proof. For fixed marginals p and v, we define a transport plan 7 that attempts to

distribute any unshared mass from the smaller of the two marginals uniformly across

the larger of the two. Define the total quantity of unshared mass by a = (p - v)+

b = (1 - v)_ (X), and let 3 = max{a, b}. Then the transport plan is defined

7r(A x B) = (p(A n B) - (p - v)+(A n B)) + (1 - v)+(A)(p - v)_ (B), (2.31)

for any measurable sets A, B. Let P1 r and P2 r denote the marginalization opera-

tions, P1 wr(A) = ir(A x X), P 2 7r(B) =7r(X x B). Then we have that

'YaYbWL(P, v) 5 L d(x, y)Pd'r(x, y) + -ya KL(P1 7r, p) + yb KL(P 2 ir, i).

We start by bounding the first term. Let xO C X.

L d(x, y)d7(x, y)
=- jd(x, y)Pd(pu - v)+(x)d(p - v)_ (y)

<2 J (d(x, xo)P + d(xo, y)P)d(p - v)+(x)d(p - v)_ (y)

S 2 P- 1  d(x, xo)Pd(p - v)+(x) + a L d(xo, y)Pd(p - v)-(y)

< 2P-1 d(x, xo)Pd [(Q - v)+ + (p - v)-] (x)

- 2P-1 j d(x, xo)Pdjg - vI(x).

The second step follows from the triangle inequality for d and the identity (U + V)P <

2P- 1 (uP + VP).

What remains is to bound the KL terms. We have the following expressions for

the two marginals of qr.

P1 7r(A) = p(A) - (p - v)+(A) + b (p - v)+(A) = p (A) - 3 -b v)+(A)

P 2 7(B) =p(B) - (t - v)+(B) + a(, - v)_(B).
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There are three cases.

1. a = b. Then a = b, so P 1 7r = and P2 7 = v. Both KL divergence terms

are 0.

2. a > b. Then P2 7r = v, while P1 7r = ( - (( - v)+. From the definition of

the generalized KL divergence, we have

KL(P1 r, p) =
x

[dPiw
[dP, log

dp t

dP 7+
d 1

- (x)dp (x).
dp I

We can bound the derivative dP,dpi

dP7(x)=d A x )
dp P

- d 
-([ bv)+) (x)

<1,

as b < / and d(p - v)+(x) > 0, for all x E X such that dp(x) > 0.

As a result, log d i (x) < 0 and so

log dj (x)
dp

+1 - dP1 7r (x)<1-
dlpt

Integrating both sides against p,

KL(P1 7r, p) /L
1 7r dp(x)

dp )

1 - dW (x) dp(x)
dy

= fdp - P 7r(x)
Jx

with the second step following from 1 - d (x) 0. The quantity in the last
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step is

dly - P1 7rl (x) = d '(p - v)+ (x)

< d~y - v|(x ),

as /3-b < 1 and 11(p - v)+H11 H1p - vjj1.
13

3. a < b. In this case, we have P1 r = p, while P2 = (/- V)+ + --

As v = p - (p - v)+ + (p - v)_, we can rewrite this P2 7r =V - '3 "(p - v)_.

The rest follows by analogy to the case that a > b, obtaining

KL(P 2 7r, v) f dv - P 2 7I(x) <- dp - vj (x).
fX J

Combining the two bounds, we get the theorem. El

Corollary 2. The relaxed Wasserstein loss

distance: for any ho E 'R and any (x, y) E X

(2.7) is bounded by the total variation

x Y,

with y = max ya, N .

In what follows, we will use a triangle

distance.

inequality for the relaxed Wasserstein

Theorem 9. Let p, p', v be nonnegative measures on a Polish space (X, d). Let

p E [1, +oo). Then

(2.33)

with -' = 7a/2P- 1 , y'b = 'Y/2P- 1 .

Proof. Let 7r 1 2 ,7r 2 3 be nonnegative measures on X x X, realizing the infimum in the

definition of the relaxed distance, for the pairs (y, v) and (v, y'), respectively. We
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have

YaYbWKL V) j d(x, y)Pd7 2(X, Y) + Ya KL(Pi 7r1 2 , u) + -yb KL(P 2 I1r 2 , V),

YaYb i) d(y, z)Pdr23 (Y, z) + Ya KL(Pi 7r2 3 , V) + Yb KL(P 2 7r 23 , j').

Let 7r be a nonnegative measure on X x X x X having bivariate marginals 7r1 2 and

7r2 3 . Existence of 7r is discussed in [140] Thm. 5. Let i1 3 be the remaining bivariate

marginal of 7r. Then we have

Ya(b WK(P ! JXX d(x, z)Pd7r 3(x, z) + -ya KL(P i i1 3 , P) + yb KL(P 2 7 13, -).

The first term is bounded as

-JXxXxX

< 2P- 1

= 2P-1 (j

Xx

LxX

x

d(x, y)Pd-r12 (X, Y) + fX

For the remaining terms, we note that PI i1 3 = P1 7 1 2 and P 2 7 1 3 = P 2 7 2 3 , and so

7a KL(Pi 713, A) = Ya KL(P1 7 1 2, /-1) _ a KL(P1 7 12 , A) + Yb KL(P 2 7 1 2 , v),

7b KL(P 2 7i13 , b = 7y KL(P 2 723, P) ya KL(Pi 723, v) + Yb KL(P2 723, ii).

Adding the first of these to the first term of the bound above gives 2P- 1 7' 4 WKL (f1, /)I

with y' = -Y/2P-l and y' = Yb/2P- 1 . Similarly, the second of these combined with

the second term of the bound above yield 2P- 1 -' 4YWL(V, ')

The relaxed Wasserstein loss satisfies a Lipschitz property with respect to the

Euclidean metric.

Proposition 5 (Lipschitz condition for the relaxed loss). Let ho, ho, E 7G and (x, y) E
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XxY. Let p=l. Then

7'Y 6aL'Y -y376 L 6 ) Kllho(-|x) - ho (- x) 112YaIbVKL(ho (.I x), y) -'YaY " ' KL(ho'(*x), y) (Cm + )KIh(I)-hix)1

(2.34)

with -y = max{ya, yb}

Proof. Suppose -"Na'YbWKL(ho(x), y) L'a Wk'L(ho- x), y). Then

Y'abWKL( ho x), y) WL(ho x), y) VKL(ho x), y)

<Ya,Yb VK'L(ho(.x), ho,(.x)) +Y,-b )IVKL(ho'(.x), y) -1a,1b WVKL(ho,(.x), y)

with the second step from the triangle inequality (Theorem 9). If instead

,7bWk L(ho,( Ix), y) -Ia,Ib WVL(h(.x), y), we similarly get

'IaVbKL(ho (.I x), y) ~Y(bWLh'*I) ) ~a~bWho,(.x), ho(.x)).

In either case, then, Corollary 2 gives

[Y'VYWKL(ho(-Ix), y) -a, WKL(ho;Q-x), y) < (Cm + , L)IMhoQIx) - ho'(' x)I,

with -y = max{ya, -}b}. The f term on the right hand side is bounded by KIho(-Ix)-

ho, (-| x) 112. ED

We use a version of the Talagrand contraction inequality (Lemma 3), due to

Maurer [107].

Lemma 5 (Vector contraction inequality [107]). Let F be a class of real functions,

and 71 C F = F x ... x FK be a K-valued function class. If mi : RK -4 R for

i = 1, ... , N are L-Lipschitz, then

9ks(m o7) < =L is(Fk).
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We're then ready to show the main theorem for the relaxed loss (Theorem 4).

Proof of Theorem 4. Consider the class generated by composing the relaxed 1 -Wasserstein

loss function with hypotheses from W,

Ya'7I= {e : (x, y) 8a'Yb )VWKL (ho(x), y)Iho E NH} . (2.36)

For any fixed label y E R', by Proposition 5, the loss function 'YYW(-, y) is (CM+

y)V'k-Lipschitz. By Lemma 5, then, the Rademacher complexity of the composed

class 7YaYbI is bounded in terms of the complexities of the component hypothesis

classes Ilk:

9s(7"'2) \/2(CM - _Y) KEIs((k). (2.37)
k=1

From Theorem 5, then we have for any to EaYb L,

E[to] - Es[Vo] < 212K(CM+ _Y) E 
9 iN k + 2N (2-38)

k=1

The bound in Theorem 4 follows by applying Lemma 1. E

2.10 Experimental details

2.10.1 Label noise

We simulate the phenomenon of label noise arising from confusion of semantically

similar classes, as follows. Consider a multiclass classification problem, in which

the classes correspond to the vertices on a D x D lattice on the 2D plane. The

Euclidean distance in R2 is used to measure the semantic similarity between labels.

The examples within each class are sampled from an isotropic Gaussian distribution

centered at the corresponding vertex. Given a noise level t E [0, 1], we choose with

probability t to flip the label for each training sample to one of the neighboring
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categories 9, chosen uniformly at random. Figure 2-9 shows the training set for a

3 x 3 lattice with noise levels t = 0.1 and t = 0.5, respectively.

Figure 2-2 is generated as follows. We repeat 10 times for noise levels t =

0.1,0.2,... ,0.9 and D = 3,4,... ,7. For each combination, we train a multiclass

linear logistic regression classifier by SGD, using either the standard KL-divergence

loss 0 or the proposed Wasserstein loss". Performance is measured by the mean

Euclidean distance between the predicted class and the true class, on the test set.

Figure 2-2 compares the performance of the two loss functions.

2.10.2 Tagging Flickr images

From the tags in the Yahoo Flickr Creative Commons dataset, we filtered out those

not occurring in the WordNet12 database, as well those whose dominant lexical cate-

gory was "noun.location" or "noun.time." We also filtered out by hand nouns referring

to geographical location or nationality, proper nouns, numbers, photography-specific

vocabulary, and several words not generally descriptive of visual content (such as

"annual" and "demo"). From the remainder, the 1000 most frequently occurring tags

were used.

We list some of the 1000 selected tags here. The 50 most frequently occurring

tags: travel, square, wedding, art, flower, music, nature, party, beach, family, people,

food, tree, summer, water, concert, winter, sky, snow, street, portrait, architecture,

car, live, trip, friend, cat, sign, garden, mountain, bird, sport, light, museum, animal,

rock, show, spring, dog, film, blue, green, road, girl, event, red, fun, building, new,

cloud. ... and the 50 least frequent tags: arboretum, chick, sightseeing, vineyard,

animalia, burlesque, key, flat, whale, swiss, giraffe, floor, peak, contemporary, scooter,

society, actor, tomb, fabric, gala, coral, sleeping, lizard, performer, album, body, crew,

bathroom, bed, cricket, piano, base, poetry, master, renovation, step, ghost, freight,

9 Connected vertices on the lattice are considered neighbors, and the Euclidean distance between
neighbors is set to 1. The lattice is 4-connected.

10This corresponds to maximum likelihood estimation of the logistic regression model.
"In this special case, this corresponds to weighted maximum likelihood estimation, c.f. Section ??.
12http: //wordnet .princeton. edu
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champion, cartoon, jumping, crochet, gaming, shooting, animation, carving, rocket,

infant, drift, hope.

The complete features and labels can also be downloaded from the project web-

site1 3 . We train a multiclass linear logistic regression model using a linear combination

of the Wasserstein loss and the KL divergence-based loss,

L(h(x), y) = W(h(x), y) + a KL(h(x) fy),

with a > 0 a fixed weight. The Wasserstein loss between the prediction and the

normalized groundtruth is computed as described in Algorithm 2, using 10 iterations

of the Sinkhorn-Knopp algorithm. Based on inspection of the ground metric matrix,

we use p-norm with p = 13, and set A = 50. This ensures that the matrix K is

reasonably sparse, enforcing semantic smoothness only in each local neighborhood.

We train using stochastic gradient descent (Algorithm 1) with a mini-batch size of

100, adding a momentum term with weight 0.7 to each iteration, and running for

100,000 iterations. As a baseline, we use the KL loss function alone, with identical

training and test data.

To create the dataset with reduced redundancy, for each image in the training

set we compute the pairwise semantic distance for the ground truth tags, and cluster

them into "equivalent" tag-sets with a threshold of semantic distance 1.3. Within

each tag-set, one tag is selected randomly to represent the tag set, and the rest are

discarded.

Figures 2-7 and 2-8 show test images and predictions randomly picked from the

test set.
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Figure 2-4: MNIST example. Each curve shows the predicted probability for one

digit, for models trained with different p values for the ground metric.
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(b) Reduced-redundancy Flickr tags dataset.

Figure 2-5: Top-K cost comparison of the proposed loss (Wasserstein) and the baseline
(Divergence).
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(b) Reduced-redundancy Flickr tags dataset.

Figure 2-6: Trade-off between semantic smoothness and maximum likelihood.
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(a) Flickr user tags: street, parade,
dragon; our proposals: people, protest,
parade; baseline proposals: music, car,
band.

(c) Flickr user tags: zoo,
run, mark; our proposals:
running, summer, fun; base-
line proposals: running,
country, lake.

(b) Flickr user tags: water, boat, re-
flection, sunshine; our proposals: wa-
ter, river, lake, summer; baseline pro-
posals: river, water, club, nature.

-- Aj

(d) Flickr user tags: travel, (e) Flickr user tags: spring,
architecture, tourism; our race, training; our propos-
proposals: sky, roof, build- als: road, bike, trail; base-
ing; baseline proposals: line proposals: dog, surf,
art, sky, beach. bike.

Figure 2-7: Examples of images in the Flickr dataset. We show the groundtruth tags
and as well as tags proposed by our algorithm and the baseline.
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(a) Flickr user tags: family, trip, house;
our proposals: family, girl, green; baseline
proposals: woman, tree, family.

(b) Flickr user tags: education, weather,
cow, agriculture; our proposals: girl, peo-
ple, animal, play; baseline proposals: con-
cert, statue, pretty, girl.

(c) Flickr user tags: garden, table, garden-
ing; our proposals: garden, spring, plant; (d) Flickr user tags: nature, bird, rescue;
baseline proposals: garden, decoration, our proposals: bird, nature, wildlife; base-
plant. line proposals: ature, bird, baby.

Figure 2-8: More examples of images in the Flickr dataset. We show the groundtruth

tags and as well as tags proposed by our algorithm and baseline.
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Chapter 3

Approximate inference with

Wasserstein gradient flows

3.1 Introduction

Diffusion processes are ubiquitous in science and engineering. They arise when model-

ing dynamical systems driven by random fluctuations, such as interest rates and asset

prices in finance, reaction dynamics in chemistry, population dynamics in ecology, and

in numerous other settings. In signal processing and machine learning, diffusion pro-

cesses provide the dynamics underlying classic filtering and smoothing methods such

as the Kalman filter.

Inference for general diffusions is an outstanding challenge. Exact, closed-form

solutions for the time-dependent probability density of the diffusion are typically un-

available, and numerous approximations have been proposed, including parametric

approximations, particle or sequential Monte Carlo methods [431 [57], MCMC meth-

ods [122] [711 and variational approximations [8]. Each poses a different tradeoff

between fidelity of the approximation and computational burden.

In this paper, we investigate an approximate inference method for nonlinear diffu-

sions. It is based on a characterization, due to Jordan, Kinderlehrer and Otto [81], of

the diffusion process as following a gradient flow with respect to a Wasserstein metric

on probability densities. Concretely, they define a time discretization of the diffusion
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process in which the approximate probability density Pk at the kth timestep solves a

variational problem,

Pk = argmin W(p, pk-1) + Tf(p) (3.1)
PEP(X)

with W : P(X) x P(X) -+ R being the Wasserstein distance, f : P(X) -+ R a free

energy functional defining the diffusion process, and T > 0 the size of the timestep 1.

This discrete process is shown to converge, as r -+ 0, to the exact diffusion process.

For reasonable values of the timestep T, the time-discretized Wasserstein gradient

flow in (3.1) gives a close approximation to the density of the diffusion. In Figure

3-1, we apply an approximation of the Wasserstein gradient flow to a simple diffusion,

initialized with a bimodal density. We see that it follows the exact density closely.

Existing methods for computing the Wasserstein gradient flow as given in (3.1)

rely on discretization of the domain of the diffusion, which prohibits their application

to diffusions in spaces with more than a few dimensions. Central to the current work is

a novel method for computing the gradient flow that is discretization-free, operating

directly on continuous densities. This method extends recent work on computing

optimal transport between continuous densities [67].

The rest of this paper is organized as follows. In Section 2 we review diffusion

processes and introduce the Wasserstein gradient flow. In Section 3 we derive a

smoothed dual formulation of the Wasserstein gradient flow, and in Section 4 we use

this dual formulation to derive a novel inference algorithm for continuous domains. In

Section 5 we investigate theoretical properties. In Section 6 we validate the proposed

algorithm on a nonlinear filtering problem, before concluding.

3.2 Background and related work

3.2.1 Diffusions, free energy, and the Fokker-Planck equation

We consider a continuous-time stochastic process Xt taking values in a smooth man-

ifold X, for t c [ti, tf], and having single-time marginal densities pt : X --+ R with re-

'P(X) is the space of probability densities defined on domain X, having finite second moments.
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Figure 3-1: Regularized Wasserstein gradient flow (Section 3.3) approximates closely

an Ornstein-Uhlenbeck diffusion, initialized with a bimodal density. Both the regu-

larization (-y) and the discrete timestep (r) are sources of error. Shaded region is the

true density. (T = 0.1)

spect to a reference measure on X. We are specifically interested in diffusion processes

whose single-time marginal densities obey a diffusive partial differential equation,

0 P' -div [pt Vf'(pl)], (3.2)
at

with f : 'P(X) -+ R a functional on densities and f' its gradient for the L2 (X) metric.

f is the free energy and defines the diffusion entirely. An important example,

which will be our primary focus, is the advection-diffusion process, which is typically

characterized as obeying an ItO stochastic differential equation,

dXt = -Vw(Xt)dt + -1/2dWt (3.3)

with Vw being the gradient of a potential function w : X -+ R, determining the

advection or drift of the system, and #-1/2 > 0 the magnitude of the diffusion, which

is driven by a Wiener process having stochastic increments dWt (see [891 for a formal

introduction) 2. The advection-diffusion has marginal densities obeying a Fokker-

Planck equation,

t' = #-'A pt + div[pt Vw, (3.4)

which is a diffusive PDE with free energy functional f(p) = (w, p)L2(X)+O-'(p, log p)L2(X),

2 We assume sufficient conditions for existence of a strong solution to (3.3) are fulfilled [114] Thm.
5.2.1.
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for scalar potential w E L 2 (X). The advection-diffusion is linear whenever Vw is lin-

ear in its argument.

We note that the current work applies to those diffusions that can be rendered

into the form (3.2) via a change a variables. In particular, in the case of advection-

diffusion, these are the reducible diffusions and include nearly all diffusions in one

dimension [3].

3.2.2 Approximate inference for diffusions

Determining the predictive distribution for a diffusion is generally intractable. Given

an initial density at time ti, the goal is to determine the single-time marginal density

pt at some time t > ti. Exact inference entails solving the foward PDE (3.2), for

which closed-form solutions are seldom available.

Domain discretization

In certain cases, an Eulerian discretization of the domain, i.e. a fixed mesh, is avail-

able. Here one can apply standard numerical integration methods such as Chang

and Cooper's [37] or entropic averaging [116] for integrating the Fokker-Planck PDE.

A number of Eulerian methods have been proposed for Wasserstein gradient flows,

as well, including finite element [32] and finite volume methods [34]. Entropic regu-

larization of the problem yields an efficient iterative method [120]. Lagrangian dis-

cretizations, which follow moving particles or meshes, have also been explored [35]

[161] [31] [18].

Particle simulation

One approach to inference approximates the predictive density by a weighted sum of

delta functions, pt(x) = Wi- w6_ , at locations x) E X. Each delta function

represents a "particle," and can be obtained by sampling an initial location xt, ac-

cording to pt,, then forward simulating a trajectory from that location, according to

the diffusion. Standard simulation methods such as Euler-Maruyama discretize the
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time interval [ti, t] and update the particle's location recursively [89]. For a fixed time

discretization, such methods are biased in the sense that, with increasing number of

particles, they converge only to an approximation of the true predictive density. To

address this, one can use a rejection sampling method [23] [22] to sample exactly

(with no bias) from the distribution over trajectories. Density estimation can be used

to extrapolate the predictive density beyond the particle locations [54] [77].

Parametric approximations

One can also approximate the predictive density by a member of a parametric class

of distributions. This parametric density might be chosen by matching moments

or another criterion. The extended Kalman filter [84] [95], for example, chooses a

Gaussian density whose mean and covariance evolve according to a first order Taylor

approximation of the dynamics. Sigma point methods such as the unscented Kalman

filter [83] [82] [131] select a deterministic set of points xt E- X that evolve according

to the exact dynamics of the process, such that the mean and covariance of the true

predictive density is well-approximated by finite sums involving only these points.

The mean and covariance so computed then define a Gaussian approximation. Gauss-

Hermite [141], Gaussian quadrature and cubature methods [133] [132] correspond to

different mechanisms for choosing the sigma points x.

Beyond Gaussian approximations, mixtures of Gaussians have been used as well

to approximate the predictive density [5] [151] [152]. Variational methods attempt to

minimize a divergence between the chosen approximate density and the true predictive

density. These can include Gaussian approximations [8] [4] as well as more general

exponential families and mixtures [158] [150]. And for a broad class of diffusions,

closed-form expansions in a function basis are available [3].

3.2.3 Wasserstein gradient flow

Let f : P(X) -+ R be a free energy functional on densities. If we endow the space of

probability densities P(X) with a Wasserstein metric then we can define a gradient

73



flow of f with respect to this Wasserstein metric, as the limit of implicit Euler steps.

If v E P is a density and - > 0 is the stepsize, we evolve v by solving

V prox 4f v = argmin W(pI, V) + Tf(P). (3.5)
iEP(X)

Here proxf is the proximal operator for f with respect to the Wasserstein metric.

Jordan, Kinderlehrer and Otto [81] show that in the limit T _+ 0 3, the sequence

of densities obtained from (3.5) converges to the solution of the Fokker-Planck PDE

(3.4), for a particular free energy functional,

f(P) = (W, P)L2(X) +/3 1 (P, log - 1)L2(X),

with w E L2 (X) the potential energy and 3 > 0 the inverse dispersion coefficient.

Since then, many diffusive PDEs of the form (3.2) have been derived as Wasserstein

gradient flows, including the heat equation on Riemannian manifolds [561.

3.3 Smoothed dual formulation for Wasserstein gra-

dient flow

3.3.1 Entropy-regularized Wasserstein gradient flow

We start by introducing an entropy-regularized proximal operator for the gradient

step, which uses a regularized Wasserstein distance. This is the Sinkhorn distance,

introduced by Cuturi in [45], and its use for computing gradient flows has been studied

by Peyr6 [120]. For p, v E P(X), the regularized Wasserstein distance is

W,(p, v) = min c(x, y)d7r(x, y) - 7H(7r). (3.6)
7rErI(A,v) f Xxx

3It is assumed that the cost c underlying the Wasserstein metric is the squared distance on
the domain X. [811 also assumes a growth condition on the free energy f, namely jlVw(x)l
C(w(x) + 1), Vx E X.

74



with c : X x X -÷ [0, +oo) the transport cost, II(p, v) the set of transport plans having

marginals 1 and v, and H(7) = -(7, log 7r - 1)L2 (XXX) the entropy functional. Given

a free energy functional f, we define the primal objective P' T : P(X) -+ [0, +00),

P' (P) -" W(P, v) + Tf((P), (3.7)

for y > 0, and T > 0. The primal formulation for the regularized Wasserstein gradient

flow is

proxl v = argmin Py T (p). (3.8)
pEP(X)

For -y > 0, the map p - W(p, v) is strictly convex and coercive such that, assuming

a convex functional f in (3.7), the proximal operator is uniquely defined.

Carlier et al. [33] show that this reg-

ularized Wasserstein gradient flow con- Figure 3-2: Free energy expressions for
advection-diffusion

verges, in an appropriate limit of -y, T -

0, to the solution for (3.2). Here the en- f(P) =(w, P)L2(x) + 1 (P, log P - 1)L2(x)

tropic regularizer functions, in part, as a f*(z) =0- fx exp ((z(x) - w(x)))

barrier function for the positive octant, (Vf*(z)) (x) = exp (0 (z(x) - w(x)))

and ensures strict convexity of the mini- (V 2 f*(z)) (x, y) =

mization in (3.8). It also enables an un- 3 exp (0(z(x) - w(x))) x = y

constrained dual formulation, as shown in 0 otherwise

the following section.

Note that we give all formulas in terms

of a general free energy f. Table 3-2 gives

concrete expressions for the free energy and its conjugate, in the case of an advection-

diffusion system.

3.3.2 Smoothed dual formulation

We are interested in a dual formulation for the proximal operator (3.8). First, for

dual variables g, h e- L2 (X), we define functions a(x) = exp g(x)) and b(y) =
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exp ( h(y)). Then the dual objective DJ'' : L2 (X) x L2 (X) - R is

DJ' (g,)h) -f*(--g) + (h,v)L2(x) - y(K, a 0 b)L2(xxX), (3.9)

with f* the convex conjugate 4 and K(x, y) A exp ( c(x, y)) the Gibbs kernel for

the cost function c. We have the following.

Proposition 6 (Duality). Let v E P(X) and f : P(X) -+ [0, +oo) a convex, lower

semicontinuous and proper functional. Define P7'T as in (3.7) and D7'T as in (3.9).

Assume 1 > 0. Then

min P',(p) = max DY' (g, h).
pEP(X) gEL 2 (X),hEL2 (X) h

(3.10)

Suppose f is strictly convex and let g, h, maximize D''. Then

1
114 = Vf*'(--g4)

T
(3.11)

minimizes P .

Proof. For Wy(-, v) and f both convex, lower semicontinuous and proper, Fenchel

duality has that

min W(p, v) + Tf(P)
pEL2 (X)

4 f*(z) = infL(P, z)L2(X) - f(P).
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1
max -Wy(-, v)*(g) - Tf*(--g),

gEL2 (X) T

with W,(-, v)* and f* the convex conjugates,

Wy(-, v)*(g) = max (-, g)L2(X) -W )([,/v),,
pIEL2(X)

(3.12)

1
(Tf)*(-g) = Tf*(--g) = max

T ktEL
2 (X)

(3.13)

(3.14)- (P, g)L2 (X) - T f (P).



The Lagrangian dual formulation [48] for W,(p, v) has

W v(, v) = max (a, P)L2(X) + (0, V)L2(X) - 7(AaI A)L2(XXX),
Q,OEL2 (X)

with a, E L 2 (X) the Lagrangian dual variables for the marginal constraints, C(x, y) =

exp (-c(x, y)) the Gibbs kernel, and A"'3 defined by A'"3(x, y) = exp (a(x) + /(y)))

We can rewrite the conjugate W/V'(., v)*.

= max (g, P)L2(X) - max (a, p)L2(X) + (3, V)L2(X) - .(A",', IqL2(XXX)
ILEP(X) ajEL2 (X)

= max - maxc,3EL2(X)(a , PI L2(X) + (0, 7)L2(X) - (Aa'+, IQL2 (XXX)
pEiP(X)

= max -W '(p, v)
PeP(X)

where a'(x) = a(x) - g(x) and we write W1'(p, v) for the regularized Wasserstein

distance with respect to the cost c'(x, y) = c(x, y) -g(x). The last expression reduces

to an optimal transport problem constrained only in one marginal,

min (c', 7r)L2(X X X) - yH(7),
7rEP(XXX),fx 7(-,Y)=V

(3.15)

whose Lagrangian dual formulation is

)IV,(., v)*(g)=- max min (C',I 7)L2 (XXX) - -yH(7r) + (h, v - *(x, -)dx)L2(X),
hE L2(X) 7rEP(X x X) ,J

(3.16)

with h E L 2 (X) the Lagrangian dual variable for the marginal constraint r(X x B) =

v(B), for all measurable B C X. From the first order conditions for (3.16), the

optimal transport plan 7, satisfies

7"'(x y) = exp (g(x) + h(y) -c(x,y))
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for all x, y E X. Plugging 7rgh back into (3.16) yields

W,(-, v)*(g) - max (h, V)L2(x) - , 
(A K)h' L2(X XX),

hEL2
(X)

with A9,h defined as above. Plugging this into (3.12) yields the result (3.10).

Suppose g, h. E L2 (X) optimize the dual objective DF'-. Then I,. optimal for

P, satisfies

A* E O(Tf)*(-g*).

When f is strictly convex, this is , = V(rf)*(-g*) =Vf*(- g*). l

Importantly, we have replaced the linearly-constrained optimization in the primal

(3.8) with an unconstrained problem (3.10). The term involving the Gibbs kernel

acts as a soft constraint, encouraging g(x) + h(y) ; c(x, y).

3.4 Discretization-free inference

Our target is the predictive distribution of a diffusion: given an initial density pt,

we want to evolve it forward by a time increment At, to obtain the solution for the

diffusion (3.2) at time t + At. We propose to approximate this by one step of the

Wasserstein gradient flow (3.5), with stepsize T = At.

We will address one significant problem: there is no published method for solving

(3.8) on a continuous domain X, which involves optimizing over continuous densities.

We will address this by leveraging the smoothed dual formulation.

3.4.1 Representation

To represent continuous functions, we assume they lie in a compact subset g of a

reproducing kernel Hilbert space (RKHS) W defined on X, having kernel K : X x X -+

R and associated inner product (-, -)- : 71 x ?1 -+ R. Let g E 7t. From the reproducing

property of R, we have that pointwise evaluation is a linear functional such that

g(x) = (g, r(x, -))R, for all x E X.

78



Algorithm 4 Stochastic approximation to Wasserstein gradient flow

Given: initial density pt, constant -y > 0, timestep T > 0, regularizer A > 0.
Choose sampling densities 1o, vo on X.
Sample independently N pairs (xi, yi) ~ Po 0 Vo.
Solve g, h. = argmaxghEgD,;(gh) - 2(II.|K+ R|hIIN).

The evolved density is Pt+r = Vf* (-g*).

3.4.2 Expectation maximization

Key to our approach is reformulation of the proximal operator (3.8) for the flow as

maximizing an expectation over X x X, which will allow for a Monte Carlo approxima-

tion. Specifically, we choose reference densities po, vo E P(X), supported everywhere

in X, and express the dual objective (3.9) as

DJ'T (g, h) = Exy d7''(X, Y, g, h) (3.17)

for random variables X, Y distributed as po and vo, respectively, where the integrand

d7'T is

f*(-ig(x)) v(y) a(x)b(y)
d7'(x, y, g, h)=- + h(y) - _(x, y). (3.18)

[to(x) vo(Y) [to(x)vo(y)

Here, the term f* arises when we express the conjugate functional f* in DJ'r in

integral form,

f*(z) = Xf*(z(x))dx.

In the case of an advection-diffusion, for example, this is

f*(z(x)) = 3--1 exp (/3(z(x) - w(x)))

for w : X -+ [0, +oo) the advection potential.

3.4.3 Stochastic approximation
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Computing the Wasserstein gradient step for continuous density v is equivalent

to maximizing the expectation in (3.17). Unfortunately, this problem need not have

a finite-dimensional solution, making its exact computation intractable. To obtain a

tractable problem, we propose a Monte Carlo approximation to the expectation in

(3.17). Specifically, we can sample pairs (x, y) E X x X according to joint density

yo 0 vo, and compute the empirical mean,

D 
N

Dv'j(g, h) N dy (x(, yN, g, h), (3.19)

in place of the expectation.

As we will show, maximizing (3.19) over g x 9 is in fact a finite-dimensional

problem, as the solution is constrained to a finite-dimensional subspace of 7- x 'H.

First, however, we note that the problem as given is unstable for small to moderate N:

the maximizer can vary significantly depending on the particular underlying sample.

Figures 3-3a, 3-3d, and 3-3g show this variability for an example problem, in which we

fix an initial distribution (a mixture of two Gaussians) and compute the Wasserstein

gradient flow for multiple samples from po 0 vo, using N = 200, 400, and 1000 for the

stochastic approximation '. At N = 200 and 400, in particular, the solution varies

significantly.

To stabilize the problem, we introduce Tikhonov regularization, penalizing the

RKHS norm of the solution. The regularized problem is

(g*, h*) = argmax D' (g, h) - A (IIgII + 11hI11), (3.20)
g,hEg 2

with parameter A > 0. The resulting objective is A-strongly concave.

Figure 3-3 shows the reduction in variability obtained by regularizing, for the

same problem as above. The middle column shows roughly optimal choices for A,

minimizing the total f2 error with respect to the exact solution, with qualitatively

51n Figures 3-3 and 3-4, we sample points from po and vo being standard normal distributions.
We use a Gaussian kernel. The exact Wasserstein flow is computed by a Dykstra's method [120] on
a discrete grid. See Section 3.8 for more details.
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Figure 3-3: Regularization stabilizes stochastic approximation. Shaded region indi-

cates the exact gradient flow solution.

less variability. Regularization incurs a bias, of course; Figure 3-4 shows the bias-

variance tradeoff for this example problem. The bias here is the f2 error of the mean

output distribution over many independent underlying samples, while the "variance"

is the standard deviation of the output distributions around this mean distribution.

The figure demonstrates that, for small to moderate N, we can obtain a reduction

in variance while introducing minimal bias. At larger N (N = 1000), quality of

the unregularized solution is such that regularization yields no improvement in total

error.
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Importantly, the optimizer for (3.20) has a finite-dimensional representation.

Proposition 7 (Representation). Let v E P(X) and y, TN > 0. Let {(X(i), y(i)} 1 C

X x X. Then there exist g., h. E 9 maximizing (3.20) such that

N

(g ., ,) = a W (x W -) , af x(y W , ))

for some sequences of scalar coefficients {ag} 1 and {a } l.

Proof. Let )N c be the linear span of the functions x(, .), and W' its orthogonal

complement. For any g E W, we can decompose it as g = gl + g', with gl E 7WN and

E 7-t. Moreover, D-,'f(g, h) = D-,'7(gi, h), as D'f depends on its first argument

only via the evaluation functional at each point,

g(x(O) = (rx(), -), g)w = (r'(xW, -), g"l)W.

Hence if D' is maximized by g, it is also maximized by g. 7 N. The same

argument holds for h,.

The regularization terms decompose as |IgI|f = I1glIll + I|g'IIJ and I1hII' =

JhI 11 + I|h'Il2. Hence for any given value of the empirical term D', the g and

h attaining that value that also have maximum total objective value must lie in the

subspace W7 N. This is true of g., h. maximizing the total objective. El

The regularized stochastic approximation problem can be solved by a standard

iterative method such as conjugate gradient. Algorithm 4 outlines the resulting in-

ference method. And Algorithm 5 shows the computation of the objective and its

gradient.
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Algorithm 5 Objective and gradient computation for stochastic approximation

Given: initial density pt, constant -y > 0, timestep w > 0, regularizer A > 0,
sampling densities po, vo, sample points (x(), y(i) _ 1 , parameters %, a1 E RN*

g(x i) + EN K(xN,) x(j))a ~i, Vi.

h(y ()) +- Z s(y), y(i))a , Vi.

-yIh)+NZ (*((x(i))) + ~~)pt (yM) a(x(M))b(yM~) i-(i)WR (ag, a ) -r~j ) + h(y y))).)) -
0 N l(x*(i)+ gx(y()) _ _____

A R:N= (ag, a ) *i(- I+o (x() _ x (i) A x , y(i))) w)(x , xW) _

,7-,t~A (aEN 1 ) ,-z~ ( t(y!(i)) -a(x())b(yM)I~()()~\ ()()
A Z (y(i), x(w))a)

3.5 Properties

3.5.1 Consistency

Both the unregularized (3.19) and the regularized stochastic problem (3.20) yield con-

sistent approximations to the entropic-regularized Wasserstein gradient step (3.8), in

the sense that, as we increase the number of samples (and correspondingly decrease

the regularization parameter), the solution converges to that of the original expecta-

tion maximization (3.17).

To show this, we make the following assumptions.

Al X x X is compact.

A2 Mo and vo are bounded away from zero: minxEX po(x) = Uo"i" > 0, minyeX vo(Y) =

VOMin > 0.

A3 g is compact and convex, with ||g||w < H for all g E 9.

A4 'U has reproducing kernel K that is bounded: maxxE VK(x, x) = K < oo.

A5 f* is convex and Lf*-Lipschitz.

The assumptions guarantee that the stochastic dual objective (3.19) is L-Lipschitz.
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Proposition 8 (Lipschitz property for d>'). Let d7'T be defined as in (??) and sup-

pose Assumptions A1-A5 hold. Let Unax= maxxex,geW VfIt (x)) and v"na =

MaXyEX Y. Then for all g, g', h, h' E W-, d7' satisfies

Id7'(x, y, g, h) - d>' (x, y, g', h')| L f(g(x), h(y)) - (g'(x), h'(y))|1

exp(!KH)
with constant L defined by L = max {Um"", Vm + .invmin

Proof. Note that Um x and V"ax are finite by assumptions A2 and A5.

By A3-A4, we have that K = minxEX V/K(x, x) < 00, and g x g is bounded, such

that IjgIjI, jjhIVw 5 H. Therefore jg(x)j, jh(y) < KH, because by the reproducing

property

Ig(x) I=I X )gwI

< IjK(x, -)Iji|jgIKn

< Kl|g|11,

< KH,

with the second step from Cauchy-Schwarz. The analogous result holds for jh(y)j.

d'' has derivatives

ad'' Vf*(- g(x))

&g(x) Ao(x)

in g(x) and

0d' T 
_ v(y)

&h(y) vo(y)

a(x)b(y)

a(x)b(y)

to(x)vo(y)

in h(y). From Assumptions A2-A4 these are bounded,

exp (KH)
<Umax + Y 'L

-~vm U9"Ji

exp ( KH)

UOinVmin
ALh.
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Letting L = max{Lg, Lh}, this implies

Vdl' (x, y, g, h) - d2''(x, y, g', h')| < L (g(x), h(y)) - (g'(x), h'(y))k,

for all (g, h), (g', h') E g x g and (x, y) c X x X. E

Note that assumption A5 is satisfied by an advection-diffusion, so long as we

assume w is bounded below, as

1 # #3
max Vf*(--g(x)) = max exp(--g(x) - w(x)) exp(-KH - W)

gEg,xEX T gEg,xEX T T

with W = minEX w(x).

Under the assumptions, then, we get uniform convergence of the stochastic dual

objective (3.19) to its expectation (3.17), and this suffices to guarantee consistency.

Proposition 9 (Consistency of unregularized stochastic approximation). Let DV

and D'k be defined as in (3.17) and (3.19), respectively, with y, T, N > 0, and suppose

Assumptions A1-A5 hold. Let (gN, hN) optimize D,,N and (goo, h,,) optimize D' T .

Then for any 6 > 0, with probability at least 1 - 6 over the sample of size N,

(-HK L) 2 og(1/6))(.1D3'T (goo, hoo) - D7'T (gN, hN) < ' ( . (3.21)

Proof. Note that d'T is jointly convex in g(x) and h(y), and these are in linear in g

and h, respectively. They can be written g(x) = (g, ,(x, -))W with IIK(x, -)IK K

and ||gJJW 5 H, and similarly for h(y), with the same bounds.

From [138] Thm. 1, then, we have uniform convergence of the empirical functional

to its expectation, such that with probability 1 - 6

sup ID''r(g, h) - D'k(g, h)| ( KL)2log("))
g,hEW , N
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for any g, h c 9. This implies

(HKL) og16
DJ'T'(g,, h,) - D' (g ooh) + D' (g, h) - D-'T (g, h) <O L o )

( (HKL)2 log(1/6)
4D'T'(gO, ho,) - D''(g, h) < (D' (go, ho) - D3' I (g, h)) + 0 N

< (D,'(gN, hN) - D3'k (g, h)) +0 (HKL)2 log(1/6)

for any g, h E 9. In particular, it's true for g = gN and h hN, which yields the

statement. El

A-strong convexity of the regularized stochastic dual problem (3.20) actually guar-

antees a faster O(k) convergence rate, for fixed A. This allows us to get O(9')

convergence to the unregularized solution, with decreasing A.

Proposition 10 (Consistency of regularized stochastic approximation). Let (g,\, hA)

optimize the A-regularized objective (3.20) for a sample of size N, with A = ( (KL) 2(1/)

Let (g, ho,) optimize D3''. Then for any 6 > 0, with probability at least 1 - 6 over

the sample,

D' T (gOO, hco) - D' T (gA, hA) ( (HKL) .o(1/J) (3.22)

Proof. Define the regularized expected objective

Ry'r'A(g, h) = DJ'T (g, h) - -(+g|j2 +11hI12),

and R'fN its empirical counterpart. The regularizer is A-strongly convex, jointly in

g and h.

Let (gxo,, hA,oo) optimize R2'T'A. From [138] Theorem 2, then, we have for a fixed
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A

I (KL)2 10016i/)RT' (gA,o, h,o)-RrA(g, h) < 2 (R^7';(gA, hA) - R4'%A(g, h) +0( ) '
fr any I, .AN

for any g, h c g. Letting g= gA and h - hA, and rearranging, we get

R',''A(ga, hA) + 0 (KL)2 og(1/6))

R' '(go, ho)

=DL ''(go, h ) -- (11go1 + 11ho1.12

Hence

((KL)2 lo(13)\D7'r(gA, hA) + 0 K AN ) > D'(go, ho) - (IIgO 11 + I1ho 1I).

Rearranging,

A
D-''(go, hc) - D''(gA, hA) < (1lg1_Il + I1hoI) + 0

(KL)2 log(1/3)

AN

11J2 "'2 2 / HKL 2 N 11

Bounding IIgI| + 11hI < 2H and plugging in A = ( (KL) log(1/6)

bound.

yields the

F

3.5.2 Computational complexity

Complexity of first order descent methods for the stochastic dual problem is dom-

inated by evaluation of the functions g and h at each iteration, for each sample

(xi, yi)i 1 . Each pointwise evaluation of g at a point x (and analogously for h at

y) requires evaluating the sum j i s(x, xi)ai, with a being the coefficients param-

eterizing the function. Hence straightforward serial evaluation of g and h at each
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iteration is O(N 2 ). These sums, however, are trivially parallelizable. Moreover, for

certain kernels (notably Gaussian kernels), the serial complexity can be reduced to

O(N), by applying a fast multipole method such as the fast Gauss transform [75].

3.6 Application: nonlinear filtering

We demonstrate the Wasserstein gradient flow approximation in a continuous-time,

nonlinear filtering task.

3.6.1 Continuous-discrete filtering

We focus on diffusions that are observed partially or indirectly. A partially-observed

diffusion defines a measurement process that samples the diffusion at discrete times.

This is a discrete-time stochastic process Y taking values in the measurement domain

Y, at times tk, which is related to the underlying diffusion Xt by

Y = h(Xtk) +vk

with h : X -4 Y the measurement function and vk ~ K(O, a') noise.

Given a sequence of measurements Y = Yk, for k = 0, ... , K, the continuous-

discrete filtering problem is that of determining the underlying state Xt for present

and future times t > tK. Letting YO:K be the set of measurements up to time tK, the

goal is to evaluate the distribution over states Pr(Xt = Xtlyo:K). For future times

t > tK, this is the marginal prior or predictive distribution over states, defined by

the dynamics of the diffusion process, satisfying the forward PDE (3.2) with initial

density Pr(XtK = XtKIYO:K). At the measurement time t = tK, this is the margimal

posterior, conditional upon the measurements, and is defined by a recursive update

equation

Pr(YK YKIXtK XtK) Pr(XtK = XtKIYO:K-1)
PrP(XtK = XtKK):K

88



The term Pr(XK = XtK IYOK-1) is the predictive distribution given the measurements

up to time tK-1. We assume an initial distribution Pr(XtO = xto) is given.

3.6.2 Double-well system

Here we are tracking a particle that diffuses in a double-well potential, given by

w(x) = -2x 2 + 2x 4 . The particle's dynamics are described by an Ito stochastic

differential equation,

dxt (4x - 8x3 )dt + dWt, (3.23)

having unit dispersion coefficient #= 1. This diffusion exhibits discrete switching, as

the particle occasionally switches between the two potential wells (Figure 3-5b), with

frequency controlled by the dispersion coefficient. The particle's location is observed

noisily at discrete timepoints, via an observation function h,

Yk = h(xtk) + Vk (3.24)

with Vk ~ A(O, -) additive Gaussian observation noise having standard deviation a.

We look at two observation regimes:

1. direct observation: h(xtk) = Xtk and a = 1, and

2. quadratic observation: h(xtk) = x2 and o- = 0.1.

Figures 3-6a and 3-6b show typical posterior distributions obtained by solving the

filtering equations on a discrete grid 6. Under direct observation, the posterior is

unimodal but often skewed and non-Gaussian. The quadratic observation loses infor-

mation about the sign of the location xtk, leading to bimodal posterior densities.

3.6.3 Results

We apply the Wasserstein gradient flow to approximate the predictive density of the

diffusion, which at measurement times is multiplied pointwise with the likelihood
6 We use Chang and Cooper's method [37] on a regularly-spaced grid of 1000 points in [-3,3].
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Pr(yklxtk) to obtain an unnormalized posterior density.

We use five methods as baselines for comparison. The first computes the exact

predictive density by numerically integrating the Fokker-Planck equation (3.4) on a

fine grid - this allows us to compare computed posteriors to the exact, true posterior.

The second and third are the Extended and Unscented Kalman filters, which maintain

Gaussian approximations to the posterior. The fourth method is a Gaussian sum

filter [5], which approximates the posterior by a mixture of Gaussians. And the

fifth baseline is a bootstrap particle filter, which samples particles according to the

transition density Pr(xtk Ixtk_), by numerical forward simulation of the SDE (3.23)

7

We simulate 20 observations at a time interval of At = 0.5, and compute the

posterior density by each of the methods. Figures 3-7 and 3-8 show examples of the

posterior evolution, with the exact solution shaded in blue and the various approx-

imate methods overlaid. Qualitatively, the Wasserstein gradient flow approximation

closely captures the non-Gaussian and bimodal shapes of the posteriors, while the

other methods struggle. The extended Kalman filter, in particular, is very sensitive

to initialization and tends to follow only a single mode of the posterior, and the Gaus-

sian approximation in both the extended and unscented Kalman filters fails to capture

both the skew of the posterior in the directly observed case and the bimodality of the

quadratic observation case. The Gaussian sum filter, although in theory having the

capacity to represent both unimodal and bimodal posteriors quite accurately, suffers

from underlying linearization of the dynamics (leading it to over- or under-shoot the

true location of the mode[s]) and introduces spurious asymmetry of the modes in

the quadratic observation case. Not shown is the bootstrap particle filter, which can

approximate an arbitrary posterior, if given enough samples.

Figure 3-9 shows quantitatively the fidelity of the estimated posterior to that com-

puted by exact numerical integration, repeating the filtering experiment 100 times.

We use the 1-Wasserstein distance between the two densities 8, as it allows us to

7 For foward simulation, we use an Euler's method with timestep 10- 3 .
8The 1-Wasserstein distance is used with the Euclidean distance as the underlying metric. We

compute it using fastemd.
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treat the different posterior representations equivalently. Our Wasserstein gradient

flow approximation, the Kalman filters and the Gaussian sum filter all give contin-

uous representations of the posterior density, which can be evaluated at the same

grid points as the exact method, while the particle filter represents the posterior by a

collection of weighted delta functions, not straightforwardly extrapolated to the grid

points.

The Wasserstein gradient flow approximation consistently outperforms the base-

lines, both qualitatively and quantitatively, achieving smaller Wasserstein distance to

the true posterior.

3.7 Conclusion

We present a novel approximate inference method for diffusion processes, based on

the Wasserstein gradient flow formulation of the diffusion. In this formulation, the

time-dependent density of the diffusion is derived as the limit of implicit Euler steps

that follow the gradients of a particular free energy functional. Existing methods for

computing Wasserstein gradient flows rely on discretization of the domain of the dif-

fusion, prohibiting their application to domains in more than several dimensions. We

propose instead a discretization-free inference method that computes the Wasserstein

gradient flow directly in a space of continuous functions. We characterize approxima-

tion properties of the proposed method and evaluate it on a nonlinear filtering task,

finding superior performance to standard methods for filtering diffusions.

3.8 Experimental details

3.8.1 Instability of stochastic approximation

Figure 3-3 shows example solutions for the regularized stochastic approximation. Here

the solutions are overlaid on the ground truth density obtained by computing a dis-

crete (unregularized) Wasserstein gradient flow on a fine grid of 1000 points on [-3, 3],

using a Dykstra's method [120]. The stochastic approximation is computed indepen-
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dently 5 times for each figure. We use time step r = 0.1 and Wasserstein regularization

7 = 0.01, and vary the regularizer A. The potential is the quadratic w(x) = x2 , and

the initial density v is a mixture of two Gaussians, with centers at -1, +1 and both

having standard deviation 0.1. For sampling, we use standard normal distributions.

We compute the stochastic approximation using a BFGS algorithm, stopping when

the norm of the gradient is less than 10-2.

3.8.2 Bias-variance tradeoff

Figure 3-4 shows the bias-variance tradeoff for N = 200,400, 1000. Here the bias

is computed as the RMSE of the mean distribution obtained from 100 independent

runs of the stochastic approximation algorithm. From these 100 runs, we compute

100 bootstrap samples of size 100, and for each run we evaluate its resulting prob-

ability density p at a set of 1000 grid points on [-3, 3] and normalize the result to

sum to 1. The bias is the RMSE of mean distribution taken within each bootstrap

sample, with respect to the distribution obtained by computing a discrete (unreg-

ularized) Wasserstein gradient flow on the same grid, using a Dykstra's algorithm

[120]. Similarly, the variance is computed as the RMSE of the estimated probability

density with respect to the mean distribution, within each bootstrap sample, and the

total error is the RMSE of the estimated density with respect to the ground truth

unregularized Wasserstein flow. The figures show the bootstrapped median and 95%

intervals for all three values.

Here the underlying potential function is the quadratic w(x) = x 2 , and we use

dispersion parameter j = 1, time step T = 0.5, and Wasserstein regularization -Y =

0.01. The initial density is a mixture of two Gaussians, centered at -1, +1 and

having standard deviation 0.1. We compute the stochastic approximation using a

BFGS algorithm, stopping when the norm of the gradient is less than 10-2.
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3.8.3 Filtering

Problem setup and data generation

Latent state trajectories are generating from the SDE model

dxt = (4x - 8x3)dt + dWt

which is an advection-diffusion with potential w(x) = -2x 2 + 2x 4 and inverse disper-

sion coefficient # = 1.

The latent system is observed at a time interval of At = 0.5, with additive Gaus-

sian noise having standard devation o-, in one of two regimes:

1. direct observation: h(xt,) = xt, and a = 1, and

2. quadratic observation: h(xtk) = x2 and a = 0.1.

State trajectories are generated by simulating the SDE using an Euler-Maruyama

method with timestep 10-3.

Baselines

Discretized numerical integration. We construct a regularly-spaced grid of 1000

points on the interval [-3, 3], and use Chang and Cooper's method [37] to integrate

the Fokker-Planck equation for the dynamics. We use a timestep of 10-3 for the

integration.

When filtering, we obtain the posterior state distribution by first propagating for-

ward the posterior at the previous observation time, via integrating the Fokker-Planck

equation, then multiplying the resulting distribution pointwise by the observation

likelihood and normalizing to sum to one.

Extended Kalman filter. The extended Kalman filter is implemented as described

in [30]. We use Scipy's odeint to integrate the ODE for the mean and covariance. The

EKF is initialized with a Gaussian of whose mean is drawn from a normal distribution

having mean 0 and standard deviation 0.1, and whose variance is 10-4.
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Unscented Kalman filter. The unscented Kalman filter is implemented as de-

scribed in [131]. We use Scipy's odeint to integrate the ODE for the mean and

covariance. The UKF is initialized with a Gaussian of mean 0 and variance 10-4. We

use parameters a = 1, # = 2, r = 1. (3 here refers to the parameter in [131], rather

than the inverse dispersion coefficient in the main text.)

Gaussian sum filter. We implement a Gaussian sum filter as described in [5]. The

filter is initialized with a mixture of eight Gaussians, having means drawn indepen-

dently from a normal distribution with mean 0 and standard deviation 0.1, and each

having variance 10- 4 .

Bootstrap particle filter. The bootstrap particle filter is implemented as described

in [731. For propagating particles forward in time, we simulate the system dynamics

using an Euler-Maruyama method with timestep 10- 3 . We resample trajectories after

each observation.

Example posterior evolution

Figures 3-7 and 3-8 show an example of the evolution of the posterior distribution for

consecutive timesteps. We simulate system trajectories and observations as described

above and use the regularized stochastic approximation algorithm for the Wasser-

stein gradient flow to propagate the posterior at one observation time to the next.

The resulting distribution is multiplied pointwise by the likelihood to obtain an un-

normalized posterior. We compute the normalizer for the posterior by Monte Carlo

integration with 10000 samples. The sampling distribution for the stochastic approx-

imation is taken from a UKF initialized with mean and variance computed from the

previous timestep's posterior. We use y = 0.01 and A = le - 2 in both observa-

tion regimes. We compute the stochastic approximation using a BFGS algorithm,

stopping when the norm of the gradient is less than 10-2.

We additionally overlay posterior distributions for the baseline algorithms. The

distribution obtained from discretized numerical integration is shaded in blue. For

visualization, all distributions are sampled on a grid and normalized to sum to one.
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Quantitative comparison of methods

We simulate 100 independent latent state trajectories and their observations. For

each we obtain posterior distributions for the proposed Wasserstein gradient flow

approximation and the baseline methods, as described above. For all but the boot-

strap particle filter, we sample the resulting distributions on the same grid as was

used for discretized numerical integration and normalize to sum to one. We compute

the 1-Wasserstein distance, with Euclidean distance as the cost, between the exact

distribution from discretized numerical integration and the approximate distribution

from the given method. For the bootstrap filter, we compute the same distance, using

the original posterior (being a normalized sum of delta functions).
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Figure 3-4: Regularization parameter A induces a bias-variance tradeoff. Note that
the x-axis scale is shifted for N = 1000. For large enough N, regularization has
no impact on total accuracy, up to a threshold value of A (roughly A = 10- 3 when
N = 1000).
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solution.
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Chapter 4

Ecological inference

In certain federal redistricting cases, the prosecution needs to establish that disen-

franchisement has occurred: specifically, a protected group's vote has been diluted,

such that their preferences are no longer represented. This is an empirical problem,

as the lawyers need to demonstrate that there is a significant difference between the

voting preferences of the protected group and those of new majority. Such data are

typically inaccessible, however: voting occurs by secret ballot, such that only total

vote counts are available, and not their demographic breakdown. The solution is to

make what is called an ecological inference: to reason backwards from the aggregate

data (total vote counts and census data) and infer the voting behaviors of individual

subgroups of the population.

Ecological inference appears frequently in epidemiology, economics and social sci-

ences, where one is limited to aggregate surveys of a population and wishes to combine

these surveys for a more refined characterization. It is a well-known source of error

in interpreting statistical data, as well. If European countries having larger minority

populations tend also to have more votes for liberal candidates, we might (wrongly)

be tempted to conclude that minority voters prefer liberal candidates. Something

that is true for the group needs not be true for the individual. Such reasoning is

called the ecological fallacy.

Mathematically, the inference problem is as follows. Given two partitions of a

population into m and n groups, we want to infer a table 7r - Rm n in which the
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element 7rij gives the proportion of the population that belongs simultaneously to the

ith and jth groups - in the voting rights case, these are the demographic groups and

the political parties. We only have access, however, to the marginals of the table,

7r1 and 7rTi, which are the aggregate proportions of the groups. The problem is

fundamentally ill-posed: for any pair of observed marginals there are many possible

tables that might fit these marginals. Methods for solving the problem must somehow

distinguish better and worse amongst the possible solutions - they require additional

prior assumptions.

A number of methods have been proposed to solve the ecological inference problem,

and each has its drawbacks. Simplest is the "neighborhood" model, which assumes

(possibly wrongly) that the two aggregate measurements are entirely independent (i.e.

the table is the product of its marginals). Goodman's regression method [721 does

not require independence and is efficient to compute, but it is also not constrained

to produce tables with entries inside the valid range of proportions ([0, 1]), making

the results sometimes difficult to interpret. Hierarchical Bayesian models proposed

by King [87], Rosen [124], Wakefield [159] and others represent more complex prior

assumptions, but rely on inefficient Markov Chain Monte Carlo inference methods

and can be sensitive to hyperparameter selection [159].

In this work, we propose a novel framework for ecological inference, which encom-

passes a variety of priors and allows for efficient computation of the most probable

solution. Unlike previous methods, which rely on Monte Carlo estimates of the pos-

terior distribution over tables, our inference procedure uses an efficient fixed point

iteration that is linearly convergent and requires memory scaling as the size of the

table. The method also generalizes naturally to tables having more than two observed

marginals. Importantly, with the right prior, the inferred tables can be more accurate

than those from existing methods, on both synthetic and real data. We additionally

give a method for interval estimation.

This chapter is organized as follows. In Section 4.1, we define the ecological

inference problem and discuss existing methods. In Section 4.2, we define the model

underlying our framework. In Section 4.3 we derive an efficient algorithm for MAP
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estimation of the table. In Section 4.4 we discuss estimation of the parameters of the

prior distribution. In Section 4.5 we derive a method for interval estimation. In 4.6

we evaluate our methods on synthetic and real data, before concluding.

4.1 Background

4.1.1 The ecological inference problem

Let X and Y be random variables defined on discrete domains X = {x2 } 1 and

Y {yj}> 1 , respectively. Each represents a distinct measurement of an underlying

population, in which we sample uniformly at random an individual from the popu-

lation and assign that individual to one of a set of fixed categories. These might be

demographic groups for X and political party affiliations for Y, for example. The

value of the random variable X or Y is the category to which the individual belongs,

and its distribution is determined by the proportion of individuals in the population

belonging to each category.

Let u E A m and v E A" represent the distributions of X and Y, respectively, with

elements ui = Pr(X = xi) and v = Pr(Y = yj). Each vector gives the proportions

of individuals falling into the various categories.

The two measurements X and Y need not be independent. In fact, for a pair of

random measurements there can be infinitely many joint distributions that are con-

sistent with both measurements simultaneously. We represent their joint distribution

by a matrix i E Amxn, with Amxn the simplex of m x n nonnegative real matrices

whose elements sum to 1, and 7ij A Pr(X = xi, Y = yj).

A joint distribution 7 is consistent with the measurements X and Y if its marginals

match the distributions u and v, meaning ui = I q r1i, Vi, and v =j r, Vj.

We can concisely write this as 71 = u and 7T= v, with 1 the all-ones vector of

the correct dimension. The set of all joint distributions consistent with the given

marginals we denote H(u, v), such that

II(u, v) = {7r E AmInXl = u, 7Tl = V.
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The ecological inference problem consists of recovering the joint distribution

7r, given only the measurement distributions u E Am and v E A'. In other words,

given two aggregate categorizations of the population, we would like to recover their

intersection. The problem is clearly ill-posed, as we have an entire set I1(u, v) of

valid joint distributions for the given marginals. The challenge will be entirely how

to define and compute a "best" joint distribution.

4.1.2 Related work

A number of methods have been proposed for ecological inference.

Neighborhood model

The most basic model is possibly the "neighborhood" model, in which the joint table

7r is assumed to be the product of its marginals,

7r = uvT.

This is equivalent to an assumption that the marginal variables are independent.

Goodman's regression

Goodman's regression [721 was among the first proposed methods for ecological in-

ference and, along with its generalization to arbitrary-sized tables [94] [102] [881 [761,

has been widely used in practice [87]. The model makes three assumptions. First is

that the individual tables 7r(') decompose as

7F' - diag(u'))p, Vi

for some row-wise proportionality matrix p E Rmxn that is shared between the in-

stances (i). The second is that p is row-stochastic, such that the row marginal con-

straint holds,

7r(1 - diag(u(z))p = u(, Vi.
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And the last assumption gives a regression model for the column marginal,

VW = pTu() + E, Vi,

with E) a normally distributed error. Note that the model is linear in the coefficients

Pik, so we can efficiently solve via linearly-constrained ordinary least squares. Note

also that the assumption of constant p is restrictive and often unrealistic.

King's method

King [87] proposed a method aimed at addressing deficiencies in Goodman's and

related models. King's method assumes that the tables 7r) decompose as

7(r) = diag(u(z))p(2), Vi (4.1)

with p(') rowwise proportionality matrices, constrained to be row-stochastic, p()1 =

1, Vi, such that the rowwise constraints 70)1 = u(), Vi are satisfied. Note that p(i) is

not shared across instances. Furthermore, the column-wise constraints are enforced

exactly via

p(i)Tu(i) - VI Vi, (4.2)

unlike in Goodman's model. Finally, King imposes a prior distribution on p('), assum-

ing it is sampled from a truncated normal distribution, restricted to the hypercube

[0, 1]mxn :

p ~ . 7-[0,1]m xn JV(p, E).

This truncation prevents uninterpretable values for entries of p('), which in Goodman's

case can fall outside [0, 1]. By assuming independence of the observations U), V)

conditional upon the parameters /t, E, the row- and column-wise constraints (4.1) and

(4.2) imply posterior predictive distributions Pr(p(z) Ium, V(i)) via Bayesian averaging

of the prior Pr(p(')I1p, E) with a prior on the parameters Pr(p, E). This posterior is

computed by Monte Carlo simulation.
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Hierarchical Bayesian models

Models such as Rosen [124] and Wakefield [159] carry King's idea further, by defining

a hierarchical distribution on u(') and v(). Rosen [124] gives a multinomial-Dirichlet

model, which assumes the marginal data are expressed as counts. The model has

the column marginal v(') multinomial distributed, with the rowwise proportions p(')

governed by a Dirichlet distribution and the Dirichlet parameters i.i.d. Gamma,

V') ~ Multinomial(N), p(i)TU(i)), Vi

p- Dirichlet(a i), Vij

a~ ~ Gamma(A, A2 ), Vi, j, k.

The model is fit using a Metropolis-within-Gibbs algorithm.

Optimal transport

The theory of optimal transport [156] relates probability distributions by defining a

transport plan that reassigns the mass in one distribution to match the other. The

optimal transport plan minimizes the total cost of moving the mass, with respect to a

given cost function. Specifically, for distributions given by vectors u and v, we solve

for a soft assignment matrix 7r. E ll(u, v), such that

7, = argmin(7r, C)7
7rEn(u,v)

with C E R" the cost matrix having Ci the cost for transporting a unit of mass

from the ith to the jth location, and I(u, v) the polytope of nonnegative matrices

having u and v as row and column marginals.

There is significant similarity between optimal transport and ecological inference,

in that both involve inferring a matrix with given marginals. A regularized form

of optimal transport has, in fact, recently been applied to ecological inference, with

quite positive results [112]. The authors there do not compare performance to existing

methods. Separately, the algorithm we present in Section 4.3 owes a great deal to
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methods derived for the optimal transport setting, in [17] [50].

4.2 Probabilistic model

4.2.1 Well-behaved priors

Our model relies on a prior distribution over tables, which we allow to come from

a general class of distributions, being those that are separable and log-concave of

Legendre type, with support in A,, n. With two additional technical assumptions,

these distributions are sufficiently well-behaved to enable the efficient optimization in

Section 4.3.

Let 'P(C) be a family of distributions over int(A"x), parameterized by C E

R"nx , and let Pr(7rlC) denote the density with respect to the Lebesgue measure.

Define Q(7r) =- log Pr(rFIC) the negative log density, for tables 7 E dom Q C R"mn.

Formally, we assume the following.

(Al) Q is separable and Legendre type.

(A2) int(A"'n') C domQ. (43)

(A3) dom Q* is open.

(A4) 0 E dom Q*.

Here Q* is the convex conjugate 1. For certain priors (such as the Dirichlet prior,

Example 4.3.1) we will drop the assumption A4.

We say Pr(i7rIC) is separable if it decomposes as

Pr(7r1C) H= f (ri ICiC),
ii

with f : R x R -+ [0, +oo] a one-dimensional density.

'The convex conjugate Q* : dom Q* a R is defined

Q*(U) = sup (u, x) - Q(x).
xEint(dom Q)
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Pr(7rIC) is log-concave of Legendre type if its negative log is convex of Legendre

type. Namely, the negative log is closed, proper, essentially smooth and strictly

convex on the interior of its domain 2. Separability and Legendreness of Pr(7rjC)

are satisfied a number of common distributions, including the (truncated) normal,

exponential, gamma, lognormal, beta, and Dirichlet distributions.

One aspect of Legendre-type functions we will exploit is duality between the do-

main and range of the gradient VQ. Specifically, for a Legendre-type Q, the gradient

of Q and that of the convex conjugate Q* define a bijection between int(dom Q) and

int(dom Q*), with VQ* = (VQ)- 1 . We formulate, for example, the MAP estimation

procedure in Section 4.3 as an optimization over the dual space dom Q*, and recover

the primal solution via the map VQ*.

4.2.2 Model

We assume a common prior distribution P(C) for N tables 7r(), which satisfies the

regularity properties (4.3). The tables represent different but related instances of

the problem, corresponding for example to different geographic regions in the voter

preference example. We assume the distribution's parameters C E R" I" are shared

across instances. The model specifies

(C) (4.4)
r(i) _LL 7r W C, I i j.

Conditioned on the observed vectors u(') E Am and v(') E A", we will draw

inferences about the posterior density Pr(7u(), v('), C), which is the truncation of

the prior to the polytope H(u, v). This ensures that marginals of the table 7r(') are

consistent with the observations.

2 Bauschke and Borwein [15] Def. 2.8 and surrounding gives a formal treatment of Legendre type
functions.
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4.3 Maximum a priori estimation

Each observed marginal vector defines an affine constraint on the table 7r('): for

marginals u(') and v('), we have 7W(1 = 0 and 7r(T 1 - v('). Together with the

constraints that the entries of the table be nonnegative, these affine constraints define

a convex polytope fI(u, v) of tables satisfying the constraints. Maximum a priori

estimation finds a table 7r that maximizes the posterior Pr(7()1u(0), V(0), C) over

this polytope H(u, v). On its face, MAP estimation is nontrivial, solving for each

table 7r() a nonlinear objective with mn + m + n linear constraints:

7 = argmax Pr(7r u(), vW , C)
7rERm Xn

= argmax Pr(7rlC).
7r(EH(U(0,V(0)

4.3.1 MAP estimation is a Bregman projection

Key to the tractability of MAP estimation for priors satisfying the assumptions (4.3)

is the fact that it can be formulated as minimization of a Bregman divergence over

the polytope of marginal constraints. This is stated in Proposition 11.

Proposition 11 (MAP is divergence minimization). Let Pr(7rIC) be a prior density

over tables 7 c Rmx, satisfying the regularity properties (4.3). Define Q(7) A

- log Pr(71-C) the negative log density. Then the posterior density Pr(7wju,v, C) has

a unique maximum rw that satisfies

7r, = argmin DQ(7r, VQ*(0)) (4.5)
7rEn(u,v)

with Q* the convex conjugate and DQ the Bregman divergence with respect to Q.

Proof. We first note that Q attains its global minimum at 7r = VQ* (0) int (dom Q),
as the assumptions Al, A3 and A4 from (4.3) imply that VQ(7) = 0 via the bijective

relation (VQ)- 1 = VQ*, and Q is strictly convex on int(dom Q), so the critical point

is a global minimum.
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The posterior density Pr(7rlu, v, C) is the truncation of the prior Pr(7rjC) to the

polytope H(u, v). Dessein [50] in Section 3.2, Lemma 2, shows that the restriction of

Q to H(u, v) attains its global minimum uniquely at the Bregman projection of the

unrestricted global minimum 7r, = VQ*(0) onto Il(u, v). The Lemma holds so long

as VQ(7r,) = 0 and H(u, v) n int(dom Q) # 0; the first is satisfied as noted above,

and the second is satisfied by assumption A2 of (4.3). D

In other words, the MAP estimate exists and is unique, and is a Bregman projec-

tion onto the marginal constraints H(u, v). Section 4.3.2 gives a method of alternating

Bregman projections, called Dykstra's method, for computing the MAP estimate.

Example 4.3.1 (Dirichlet prior). The Dirichlet distribution is a natural prior to use

in the setting of contingency table estimation, as it is supported on the simplex A"'x

of nonnegative tables whose total mass is equal to one, which are those representing

valid frequency distributions. It appears in hierarchical models for the ecological

inference problem [124] [1591.

The Dirichlet distribution, in fact, is not quite regular: it fails assumption A4

from Section 4.2.1, and so Proposition 11 does not apply. The problem is that the

negative log density (which has domain R"') does not attain its global optimum

- there is no finite 7r E R'"' such that VQ(7r) = 0. We therefore have no starting

point for the Bregman projection in Proposition 11.

The Dirichlet distribution is still tractable, however, in the following sense. For

any small e > 0, we can find a table 7r, E int(domQ) such that IIVQ(7rE)1|2 < e-

This, it turns out, is sufficient to guarantee that the Bregman projection of 7r, onto

H(u, v) is E-close to the MAP solution, for an appropriate e. This is stated formally

in Proposition 12.

Proposition 12 (E-MAP estimation). Let Pr(71C) be a prior density over tables r E

R"Xn, satisfying the regularity properties Al, A2 and A3 from (4.3). Define Q(7r) A

- log Pr(7r|C) the negative log density, and suppose there exists 7rE E int(domQ) such
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that IIVQ(7,)11| 2 < e. Let 7' be its Bregman projection,

7 = argmin DQ(7r, IrE). (4.6)
irefl(u,v)

Then the posterior density Pr(7ru, v, C) has a unique maximum 7, that satisfies

Q(74') - Q(7r,) < v/e. (4.7)

Proof. Let 7r' be the Bregman projection of 7r, onto H(u, v) with respect to Q. 1(u, v)

is a closed, convex set, and assumption A2 of (4.3) implies that FJ(u, v)nint(dom Q) /

0, so the Bregman projection is well-defined. The Bregman projection is characterized

by the relation

7 - 7r, VQ(7E) - VQ(7r')) ; 0, (4.8)

for all 7r E FJ(u, v) n int(domQ). From the definition of the Bregman divergence, we

have that DQ(7r, Ir') > 0 for all 7r E int(domQ), so

Q(wr) - Q(7r) > (ir - ir', VQ(ir'))

>(7F - 7r', V Q(7,)),

with the second inequality deriving from (4.8). Q is strictly convex on int(dom Q) and

H(u, v) is closed and convex, so Q has a unique minimum on F(u, v) n int(dom Q).

Let 7r, be this minimum. Inverting the previous inequality, we have

Q(7'r) - Q(7r,) < (7r' - Tr*, VQ(rE))

< 117r' - X, 11 21VQ(7r) 112,

by Cauchy-Schwarz. By assumption IIVQ(7E)112 < c, while r' and r, both lie in the

simplex A"nx", meaning that 11ir' - 7r,112 < v/2. Combining these yields the bound

(4.7). D
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4.3.2 Dykstra's method of alternating projections

Casting MAP estimation as a Bregman projection (Propositions 11 and 12) suggests

that we can apply efficient general methods for Bregman projections to compute the

solution. In particular, we will use the Dykstra-Bregman ("Dykstra's") method [29]

of alternating projections, which has been applied in the matrix balancing [144] and

optimal transport [45] [17] settings to obtain fast-converging iterative solvers.

Dykstra's method [29] obtains the Bregman projections (4.5) and (4.6) onto II(u, v)

by decomposing the polytope into the intersection of three convex sets defined by the

constraints,

IRxn,C+ = Rm "

C. = { 7r (E R" n : 7r1 = u}, (4.9)

Cv = {7r E R :7rx T = V},

such that H(u, v) = C+nCunC,. The method alternates Bregman projections onto the

constraints C+, C, and Cv taken individually. In this case, a theorem of Bauschke and

Lewis [16] guarantees the alternating projections converge linearly to the Bregman

projection onto H(u, v). Algorithm 6 gives the generic form of Dykstra's method for

this problem, with PQ indicating the Bregman projection onto C. Note that the initial

table (whose projection we are computing) depends on the particular prior density

used: it will be either VQ*(O) from (4.5) or 7rE from (4.6).

The MAP inference problem boils down to computing Bregman projections onto

the constraints individually. Bregman projections are rarely computable in closed

form, but for affine constraints we will show that they have a form suitable for nu-

merical optimization. Write the Lagrangians for the projections of a table 7r' onto C,

and C,,

4u(7r, a) = Q(7r) - (VQ(7r'), 7r) + aT (7rl - u), (4.10)

,(7r, 3) Q(7r) - (VQ (7r'), 7r) + OT (7Tl - v) . (4.11)
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For Q which is convex of Legendre type, the gradient map VQ : int(dom Q) -

int(dom Q*) is a bijection, with the gradient of the Fenchel conjugate VQ* being the

inverse of VQ. Applied to the first order conditions for (4.10) and (4.11), we get

rU = P 7Ir' = VQ* (VQ(7r') - alT) (4.12)

7rV = P 7r' = VQ* (VQ(7r') - 1 3T), (4.13)

for 7ru the projection of 7r' onto C,, and 7rv that onto C,. Computing 7r, reduces to

finding a such that the original constraint holds,

VQ* (VQ(7') - alT) 1 = u, (4.14)

and analogously for 7v and 3. Dhillon and Tropp [51] suggest a method for finding a.

As Q is Legendre, Q* is strictly convex, and a satisfying (4.14) is the unique optimum

for a strictly convex problem,

a* = argmin Ju(a) = Q* (VQ(7r') - alT) + uTa, (4.15)
aER"-

which can be addressed by standard techniques from numerical optimization. The

gradient of (4.15) exists, and the first order condition is exactly (4.14). When the

Hessian of Q* is available, for Q that is separable we have

V2 J"(a) = diag (V 2Q* (VQ(7r') - al T) 1). (4.16)

The analogous equations hold for optimization with respect to ,3.

The projection onto nonnegativity constraints C+, for Q separable, has a simple

form. Projecting 7r' results in

7+ = Pc+ max {0, 7r'} . (4.17)

Algorithm 7 gives a realization of Dykstra's method as an iteration on the dual
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Algorithm 6 Dykstra's method for MAP estimation

Input: u E A m , v E A', To E dom Q
7r +- Pc, (7ro)
repeat

7+ PC, (PQ 7

7 - PC, (P 7

until 7r converges

Algorithm 7 Dykstra's method for MAP estimation, dual parameterization

Input: u E Am , v E An, E) E dom Q*
E +- max {VQ(O), e0}
repeat

a, - argmin1Eam Q* (- - alT) + uTa

E <- max {VQ(0), E - a1T}
, +- argminEn Q* (E - 1T) + vT3

E +- max {VQ(0), E - 1,3T
until E converges
7r. +- 17Q*(E))

variable E = VQ(7r), alternating projections onto the affine constraints C,, Cv with

the nonnegativity constraint C+. Note that the projections (4.12) and (4.13) can

be viewed as linearly updating the dual representation of the original table w'. We

therefore need only represent E to compute the Dykstra iterations.

For solving (4.15), Algorithm 8 gives a Newton-Raphson method to compute the

projection onto Cu. An analogous method works for C,. Note that for some priors

f (dom Q*) is a bounded subset of Rm
x, in which case backtracking can be used to

ensure the bounds are respected.

Algorithm 8 Newton-Raphson method for the projection Pc. onto a marginal con-
straint

Input: u E Am , E E int(domQ*)mxn, r > 0
a +- 0
repeat

a <- a - K (u - VQ* (E - alT) 1) o V 2Q* (E - alT) 1
until a converges
E) +- E - alT
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4.3.3 Complexity

The proposed approach to MAP estimation leverages fast convergence of Dykstra's

method to achieve computational efficiency. Under the conditions in Section 4.2.1, al-

ternating Bregman projections converge linearly in norm to the unique MAP solution

[161. Note that, for separable priors, the iterations have complexity O(mn).

Figure 4-la shows the number of iterations to converge for the proposed method,

using a Dirichlet prior. Note that the number of iterations to converge is roughly in-

dependent of the dimension of the table. We measure convergence by the norm of the

difference with the converged table 7, after a large number of iterations, thresholding

at |17 - 7r112 < 10-8. We observe convergence typically within 20 iterations 3.

Figure 4-1b shows the wall-clock time 4 for the proposed and existing methods,

using synthetic data '. The proposed method is substantially faster than the existing

Bayesian methods - the Dirichlet-Multinomial and King's methods - both of which

rely on MCMC sampling of the posterior 6. Goodman's regression (which essentially

computes a linear regression) is the fastest by an order of magnitude.

4.3.4 Tertiary or higher-order relationships

The inference problem we consider naturally generalizes to multidimensional tables

relating more than two marginals. In the example of voting prefences, we might

want to relate several types of aggregate demographic information (such as gender

3We conduct 1000 trials, in each trial sampling a table uniformly from Amxn and using its
marginals as inputs for the proposed MAP inference method, using a Dirichlet prior with parameters
C chosen uniformly from [0, 10]mx"'. Figure 4-la shows percentiles 2.5,25, 50, 75,97.5 for the number
of iterations.

4Wall-clock time measured on a MacBook Pro with a single 2.9 GHz Intel Core i7 processor.
The proposed method was implemented in MATLAB, while the Goodman's, King's and Dirichlet-
Multinomial methods were taken from the ei and eiPack packages for R.

5We conduct 100 trials in which we sample 100 tables from a Dirichlet prior having parameters
C chosen uniformly at random from [0, 10]"'X. Figure 4-lb shows the mean time (i one standard
deviation) to infer these 100 tables from their marginals. For our method we assume a Dirichlet
prior with uninformative parameters (C OC 11T).

6 For MCMC, the computation time depends on the total number of samples. In both cases, we
use a burnin period of 1000 samples and no thinning of the remaining 1000 samples, as increasing
these parameters had no impact on the performance of the posterior mean estimator on the given
data.
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MAP estimation.

and race) to vote counts, necessitating that we infer a multidimensional table each of

whose one-dimensional marginals matches a particular type of aggregate data.

The MAP estimation method outlined in this section extends straightforwardly to

the case of more than two marginals. Noting that each step of the Dykstra's method

(Algorithm 6) is a projection onto one of the marginal constraints followed by pro-

jection onto the nonnegative orthant, we extend naturally by doing so while cycling

through all of the marginal constraints in order. Let {Uk}'k be a be a set of K

marginals given as input data. Each marginal associates to an affine constraint Ck =

{7r E Rmi x.-xmK 1: Z---rl,...k, ...JK = (Uk) 3kVjk}. With these K constraints, the al-

ternating projection in Algorithm 6 becomes:

repeat

k<-(k+1) mod K+1

7r <- PC+ (PQc7

until 7r converges

This straightforward extension preserves the efficiency of the two-marginal case, con-

verging linearly to the MAP table [16].
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4.4 Estimating the prior

The prior distribution in (4.4) depends on a set of parameters C, which encode prior

preferences for certain tables 7r over others. In the case of an ecological inference

about voting preferences, C might encode the intrinsic tendency for certain groups

of people to vote for certain political parties, which then informs our inference for

specific observed census and vote counts. This prior knowledge can derive from a

number of sources, depending on the availability of side information extrinsic to the

inference problem.

4.4.1 Estimation with fully-observed tables

The richest side information we can use would be fully-observed tables sampled from

a shared prior distribution (as in the model (4.4)), or a proxy thereof. In the case

of voting preferences, for example, the individual-level data we care about is the

proportion of voters from each group that vote for each political party. A good proxy

might be the corresponding proportions of voter registrations for each party.

Regardless the source, given a set of one or more observed tables U) E A"x, we

can estimate the parameters C by maximum likelihood. For a prior Pr( JC), this is

C, satisfying

N

C, = argmin E3- log Pr( (j) IC).
CEdom f j1

A negative log density that is convex of Legendre type is smooth with a unique

minimum in int(dom f), and we can optimize by standard methods.

4.4.2 Estimation with polling data

We can also imagine sampling individuals from the population we're studying and

recording their individual-level data. In the voting preference example, this would
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mean polling individual voters and recording both their demographic information and

their vote.

For this type of polling data, we can extend our existing model (4.4) to include

a multinomial likelihood, which describes the distribution of counts for the different

individual-level categories, conditional on the particular table 7r of proportions. More

formally, for a single population this is

P(C), 
(4.18)

z Multinomial(7r, N),

with N the number of sampled individuals and z E Z"" the matrix of counts, drawn

according to the proportions in table ir. In order to estimate the prior parameters C,

we optimize the negative log of the marginal likelihood,

-log Pr(zIC) = -log j Pr(zl7) Pr(7rIC)d7r. (4.19)

For most families of priors P, the marginal likelihood is not available in closed form.

We can either apply a method of numerical integration or attempt to optimize an

upper bound on (4.19).

Example 4.4.1 (Dirichlet prior). In the case of the Dirichlet prior, the marginal

likelihood has a closed form. This is

Pr(z IC) =-F(a) M n F(zi. + Ci,) (4.20)
F(N + a) . F(Ci)

i=1 j=1

with a = I 1  " Cij. We can optimize the negative log directly, by standard

methods.
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4.5 Interval estimation

4.5.1 Credible region

For interval estimation, we compute the highest posterior density (HPD) credible

region. Given observed marginals u E A' and v E A', the HPD a-credible region

for the underlying table is a subset of the polytope H(u, v) of valid tables, having total

posterior probability mass a, and containing the tables 7r with the largest posterior

density Pr(7r Iu, v, C).

An HPD a-credible region is bounded by an isocontour of the posterior density and

can therefore be represented by the corresponding density value. As this is a single

parameter, the problem of computing the credibility region reduces to a search over

possible bounding density values, to find the value whose bounded region contains

the desired fraction a of the probability mass. We need only compute this fraction

for each density value.

We propose a Monte Carlo approximation for the fraction of mass in the bounded

region. First, note that the posterior density can be expressed in terms of the restric-

tion of the prior Pr(7rIC) to the polytope H(u, v), suitably normalized,

Pr(7rlu, v, C) = Z(u, v)- Pr(7rjC)In(u,v)(7r), (4.21)

with Z(u, v) the normalizer,

Z(u, v) = Pr(r1 C). (4.22)

Define the credible region R, {7r E (u, v) : Pr(7rlu, v, C) > y}, for threshold

density 7. Substituting the expressions (??) and (??), the total posterior mass in R-,

can be expressed

Pr(7rIu, v, C) = Pr(irIC) (4.23)
74 fn(u,v) Pr(7rIC)

Suppose we have a uniform sample {7r(k) }1 from fl(u, v). Then we can approximate

119



Algorithm 9 Credible region estimation

Input: u E , EAn, C E R " Z, E > 0, a [0, 1]
Sample: r(k) ~ Unif(H(u, v)), 1 < k < N
Tmin +- 0, rma +- maxk Pr(7r(k) IC)
repeat

Trmin+rmax

j,+ k : Pr(7~)C > 7}
J ecj, Pr(7r(') IC)
_est Pr(ir(k) JC)

f (Tmin, T) aest < a
(T, Tmax) aest > a

until Tmax - Tmin < '3

Output: {7r(k) : Pr(r(k)IC) > T}

the integrals in (4.23) by

Pr(7C) ~vol(N Uv) Pr(r(C)I(r()), (4.24)

) Pr(7r1C) vol( (u, v)) ZPr(r(k)IC), (4.25)
JH~u~v)k=1

with vol(J1(u, v)) the volume of the polytope. The standard estimator for (4.23) is

then the ratio /EN_ Pr(7r(V) IC) IR,(7r(V)
Pr(7rlu, v, C) ~Pr(I ) I ) (4.26)

Ji, ZC= Pr(w(k)IC)

For large n the bias should be neglible, going as O('). Algorithm 9 gives the resulting

algorithm for computing the HPD a-credible region, which uses the estimated total

mass (4.26) and does a binary search for a threshold T. Note that the threshold used

in the algorithm is equivalent to a posterior density threshold of 'y = Z(u, v)-T. Note

also that we rely on a uniform sample from the polytope H(u, v), which is computed

as described in the following section.

4.5.2 Generating uniform samples from FI(u, v)

Our algorithm for computing the credible region relies on uniform sampling of the

polytope 1(u, v). Uniform sampling of convex polytopes is hard in general, with the
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best known algorithms scaling as 0(n3) per sample [104]. Of the existing methods,

the "hit and run" algorithm first proposed by Smith [1451 is thought to be fastest in

practice [42]. Here we propose a hit and run sampler whose distribution converges to

the uniform distribution on H(u, v).

The standard hit and run algorithm is a Markov Chain Monte Carlo algorithm

that samples a sequence of points: for each sampled point the next point is chosen by

sampling a uniform random direction and distance to move from the previous point,

while staying within the polytope being sampled.

We note that, given a table 7, E H(u, v) (taken as a vector in Rmn and a uniform

random direction z E Smn-1, the table 7, + Az for A E R+ is almost surely not in

H(u, v). This is because H(u, v) is a lower-dimensional affine subset of Rmn. Our hit

and run sampler therefore has to restrict the directions sampled.

We decompose the polytope H(u, v) into the intersection of an affine set defined

by the marginal constraints, Cu,v { E Rmxn : u1 = U, wTl = v}, with the

nonnegative orthant RImY. If we write the marginal constraints in matrix form, as

A vec(-) , with each row of A encoding one of the row or column constraints,
V

we have that the valid directions for updating a point 7r, H(u, v), while staying in

the polytope, are exactly those lying in the nullspace of A: the directions z E ker A

are exactly those that guarantee 7.-+ Az E Cu,v, for any A E R+. Our sampler therefore

needs only to choose A such that 7,r+ Az lies in the nonnegative orthant. The bounds

for such a A are easy to compute: these are A c [0, minzk<o vecr)k]. Algorithm 10 gives

the resulting hit and run sampler, which converges to a uniform sample of FJ(u, v).

Figure 4-2 shows the autocorrelation 7 of the sequence produced by our hit and

run sampler, given randomly generated input marginals. Note first that the sample

sequence mixes, with the autocorrelation going to zero. For 2 x 2 tables the sampler

mixes rapidly, with negligible autocorrelation beyond a lag of 10 samples. The mixing

time increases substantially for larger tables.

7We measure autocorrelation of a sequence x(t) by the mean cosine of the angle between the
centered sequence r(t) = x(t) - x(tk) and its T-shifted version k(t - T). Shaded regions are

i one standard error over 100 replicates.
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Algorithm 10 Hit and run sampler for Unif (II(u, v))

Input: 7r(O) E II(u, v), K E Z+

A - [Im 1 k <- 0
T, 0 In

{ej}j_ <- orthonormal basis for ker A
repeat

a Unif(Sd-1)
z <- _i age3

Amax -- il'le<Ovec(7r(k))
Amax +- minz,<o -ecz )

A ~ Unif([O, Amax])

vec(7r(k+l)) +- vec(7r(k)) + Az
k +- k + 1

until k > K
Output: {r(k)} K

4.6 Empirical

4.6.1 Estimating the prior: synthetic data

We investigate three different settings of the ecological inference problem, using syn-

thetic data. In all settings we first estimate the prior parameters (using one of the

methods from Section 4.4) before using these parameters to perform inference. We

assume a Dirichlet prior in all cases, and sample the data from this prior. In the first

setting, we assume that there is a collection of problem instances that share a single

prior (this is the model in Section 4.2), and that we get to observe fully the tables in

a subset of these instances. The task is to estimate the prior and use it to infer the

tables in the remaining instances.

In the second setting, we have a single problem instance, meaning a single table

that we wish to infer, and we are able to poll N individuals from the underlying

population and determine their group memberships. The task is then to use this

polling data to estimate the prior, which is used to infer the table. (This is the model

in Section 4.4.2.)

In the third setting, we again have a collection of problem instances that share a

single prior, but now we assume we will poll N individuals from the total combined
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Figure 4-2: Autocorrelation of hit and run sampler for H(u, v).

populations underlying these instances 8. This polling data is used to estimate a single

prior, which we then use to infer all of the tables. This setting simulates, for example,

conducting a statewide poll to estimate a common prior for the voting behavior in

many counties within the state.

Figure 4-3a shows the results for the first setting. We compare MAP inference

with the maximum likelihood prior (Section 4.4.1) against two baselines. The first

is the neighborhood model (Section 4.1.2), which is straightforward, requires no pa-

rameters to be estimated, and reflects an inaccurate prior. The second baseline is

MAP inference with the true prior, which represents the best possible performance.

Most importantly, we see that even a single observed table yields a significantly more

accurate inference than with the neighborhood model, while performance converges

to that of the true prior with increasing number of observed tables.

Figure 4-3b shows the results for the second setting. We compare MAP inference

8We assume uniform random ratios of population sizes between the instances.
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with the maximum marginal likelihood prior (Section 4.4.2) against three baselines.

The first two are the neighborhood model and the true prior, as before. The third

baseline estimates the table by simply taking the proportions directly from the polling

data. Given that it incorporates extra constraints (from the observed marginals), we

expect MAP inference with a sufficiently good prior to outperform the direct method

(the last baseline). This is indeed the case: the prior we estimate by maximum

marginal likelihood is good enough, yielding a more accurate inferred table for all

numbers of polled individuals.

Figure 4-3c shows the results for the third setting. As in the second setting,

we compare MAP inference with the maximum marginal likelihood prior (Section

4.4.2) against three baselines. The first two are the neighborhood model and the

true prior, as before, while the third baseline estimates the table by simply taking

the proportions directly from the polling data. We make two observations. First,

the directly estimated proportions, which approximate the average table over the

combined populations underlying the instances, converge to a worse error than is

achieved by MAP inference using the true prior. In other words, we can do better

via MAP inference than guessing the average table. And second, the prior estimated

from polling data, despite deriving from the combined population, achieves an error

equivalent to that using the true prior.

In all three settings, we find that it is beneficial to use the methods of Section 4.4

to estimate the prior, before performing inference. In a real world setting, of course,

applicability of these methods depends on the availability of side information (such

as polling data).

4.6.2 Florida election

We examine a dataset of real voter registration data from the 2012 US presidential

election, in Florida [78]. The data contains both demographic information and party

registrations for roughly 10 million individual voters from 68 Florida counties. This

provides us with real ground truth data for validating the methodology proposed here,

and has been used for the same purpose elsewhere [61] [78] [112].
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Given the total demographic proportions and the total party registrations within

each county, the task is to infer the joint distribution of demographics and party

registrations. We apply the proposed MAP inference method (Section 4.3), using a

Dirichlet prior with two different sets of parameters. The first specifies an "uninforma-

tive" prior 9, which is nearly uniform over the simplex of tables. The second "feature"

prior is adapted from [112]: we define a feature vector for each demographic group

and for each political party, by computing the average age, gender, and vote in 2008

within the group, then use these feature vectors to define a similarity score between

pairs of groups. Specifically, if x(') is the feature vector for the ith demographic group

and y(i) is the feature vector for the jth political party, we define the similarity Ci

by

Ci = exp (-211x(') - y .)1|2) (4.27)

C is then used as the Dirichlet prior parameter for MAP inference.

As baselines, we compare against four major existing methods: the neighborhood

model, Goodman's regression [72], King's method [87], and the Dirichlet-multinomial

model of Rosen [124]. We additionally include two of the optimal transport-based

models described in Muzellec et al. [112]. For the optimal transport methods, we use

the suggested ground metric values from [112], given by

Mi = 2 - 2 exp(-51x(i) - yj) 11 2 ), (4.28)

with x(') and yU) the same feature vectors as above.

Table 4.1 shows the results, in terms of accuracy with respect to the ground truth

tables '. Interestingly, the best performing inference method is also the simplest,

being the neighborhood model - this indicates that independence of the two measure-

ments (demographic and political party) is not an unreasonable assumption in this

dataset. The next best performing is the MAP inference method proposed here, with

the prior parameters making almost no difference in the performance. The remaining

9 The parameters are Cj = 1 for all i,j.
10For methods that aren't guaranteed to return true probability tables, we report the generalized

KL divergence.
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baseline methods perform somewhat worse in terms of accuracy, with Goodman's

regression the worst in terms of absolute error and optimal transport the worst in

terms of KL divergence.

We additionally examine the impact of polling data on the inference problem.

We assume that we are able to conduct a statewide poll, in which we sample N

members of the population and assess both their demographic group and their party

registration. We use the method of Section 4.4.2 to estimate the maximum marginal

likelihood prior (assuming a Dirichlet prior), and use the estimated statewide prior

to perform MAP inference of the countywide tables.

Figure 4-4 shows the result. In Figure 4-4a we see the mean absolute error of the

inferred tables with respect to ground truth, and in Figure 4-4b the mean KL diver-

gence. For comparison, we show performance for both the best performing baseline

(the neighborhood model) and the Dirichlet model with a "uniform" prior. We make

two observations. First, the model of a common prior amongst the many instances

(Section 4.2) is a useful one on this real dataset, as MAP inference in this model, using

the performing estimated prior, significantly outperforms the best baseline method in

terms of accuracy. And second, it only requires 100 poll respondents for the estimated

prior to outperform the best baseline in terms of absolute error (1000 respondents for

KL).

Table 4.1: Accuracy of inferred tables for existing and proposed methods, Florida
election data (N = 68).

METHOD ABSOLUTE ERROR KL DIVERGENCE

GOODMAN'S REGRESSION 0.0301 0.0101 0.208 0.090
MULTINOMIAL-DIRICHLET 0.0205 0.0594 0.178 0.101
KING'S METHOD 0.0149 0.0076 0.107 0.095
OPTIMAL TRANSPORT 0.0211 0.0061 4.83 1.93
ENTROPY-REGULARIZED OT 0.0234 0.0023 0.349 0.089
Neighborhood 0.0076 0.0037 0.0492 0.0287
OURS (UNIFORM PRIOR) 0.0100 0.0047 0.0688 0.0399
OURS (FEATURE PRIOR) 0.0101 0.0044 0.0663 0.0362
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4.7 Conclusion

We described a novel method for ecological inference - the determination of indi-

vidual behaviors from aggregate measurements. Our method flexibly incorporates a

variety of prior distributions and admits an efficient fixed point iteration for com-

puting the most probable solution. We demonstrate that, with a suitable prior, our

method is more accurate than existing methods for ecological inference. We addi-

tionally propose a method for interval estimation. Ecological inference is a common

sticking point when analyzing data in social sciences and elsewhere, and we hope that

our proposed method can enable more transparent specification of priors and more

accurate inferences.
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