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ABSTRACT
Protein-protein interactions are central to all biological processes. Designer

reagents that selectively bind to proteins and inhibit their interactions can be used to
probe protein interaction networks, discover druggable targets, and generate potential
therapeutic leads. Current technology makes it possible to engineer proteins and
peptides with desirable interaction profiles using carefully selected sets of experiments
that are customized for each design objective. There is great interest in improving the
protein design pipeline to create protein binders more efficiently and against a wider
array of targets.

In this thesis, I describe the design and development of selective peptide
inhibitors of anti-apoptotic BcI-2 family proteins, with an emphasis on targeting Bfl-1.
Anti-apoptotic Bcl-2 family proteins bind to short, pro-apoptotic BH3 motifs to support
cellular survival. Overexpression of BfI-1 has been shown to promote cancer cell
survival and the development of chemoresistance. Prior work suggests that selective
inhibition of Bfl-1 can induce cell death in Bfl-1 overexpressing cancer cells without
compromising healthy cells that also rely on anti-apoptotic BcI-2 proteins for survival.
Thus, Bfl-1-selective BH3 mimetic peptides are potentially valuable for diagnosing Bfl-1
dependence and can serve as leads for therapeutic development.

In this thesis, I describe three distinct approaches to designing potent and
selective Bfl-1 inhibitors. First, I describe the design and screening of libraries of
variants of BH3 peptides. I show that peptides from this screen bind in a previously
unobserved BH3 binding mode and have large margins of specificity for Bfl-1 when
tested in vitro and in cultured cells. Second, I describe a computational model of the
specificity landscape of three anti-apoptotic Bcl-2 proteins including Bfl-1. This model
was derived from high-throughput affinity measurement of thousands of peptides from
BH3 libraries. I show that this model is useful for designing peptides with desirable
interaction profiles within a family of related proteins. Third, I describe the use of a
scoring potential built on the amino acid frequencies from well-defined structural motifs
complied from the Protein Data Bank to design novel BH3 peptides targeting Bfl-1.

Thesis Supervisor: Amy E. Keating
Title: Professor of Biology and Bioengineering
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Protein-protein interactions (PPIs) are central to nearly every biological process

including signaling, molecular recognition, immunity, transcription, translation, the cell

cycle, cell division, and myriad other essential processes. The human genome encodes

for -30,000 unique proteins, and current estimates suggest that the human interactome

consists of at least 400,000 PPIs1 . Given the massive potential for interaction of a

protein with many different partners, PPI selectivity is essential to protein function.

Whether through the loss of interaction or formation of new complexes, abnormal PPIs

can promote and drive diseases including neurodegenerative diseases and cancer.

In nature, PPIs are continually created, lost, and modulated through a

combination of genomic plasticity and evolutionary selection. Gene duplications, base-

pair substitutions, indels, and genomic recombinations create new proteins and diversify

their amino acid sequences all while evolutionary forces shape protein interactomes.

Similar processes of genetic diversification and evolutionary selection are occurring at

different timescales throughout all domains of life, enabling nature to create a large

number of protein sequence variants and simultaneously test them for function. It has

been estimated that as many as 105 protein sequences have been tested for function

during the earth's 4 billion year history2.

Given the biologically important roles of PPIs, there is tremendous practical and

scientific value in interaction engineering and design. Targeting PPIs can be useful for

the development of diagnostics, biosensors, research reagents, and therapeutics.

Additionally, the quantitative descriptions of molecular interactions developed for protein

design can be applied to studies of evolution, protein function, and molecular

mechanisms of disease. However, whereas nature uses evolution to create and test
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large numbers of sequences over a vast amount of time, to design proteins in the lab,

affinity and specificity must be explicitly accounted for either experimentally,

computationally, or by using both approaches.

Protein design is technically challenging for a number of reasons. First, sequence

space is massive (2 0 ' where n represents protein length in number of amino acids).

Although there may be many possible sequences that can achieve a desired design

profile, there is no guarantee that any such sequence is only a few mutations away from

a known sequence, which is the space most frequently searched in design projects.

Second, PPIs are structurally diverse and complex. PPIs can be formed by folded

domains that fit together like pieces from a puzzle, by proteins that lack significant

structure before binding, or by proteins that form 'fuzzy' complexes with high degrees of

structural heterogeneity 4 . Further, many PPIs exhibit structural plasticity, which

complicates design even when an experimentally determined structure is available.

Finally, mutations can exhibit epistasis or, in other words, the effect of a mutation can

differ depending on the sequence context in which that mutation occurs 5'6 . Mutational

epistasis complicates protein design by creating rugged fitness landscapes.

This thesis addresses the topic of peptide design for tight and selective binding to

a target protein, as well as methods and approaches for systematically navigating

mutational space. To provide context for this work, it is important to recognize that there

are many strategies that can be used to make a protein with desired properties. I will

summarize the most common approaches to protein design, which are directed

evolution (DE) and structure-based design (SBD), before discussing some emerging

protein-design approaches.
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Directed evolution

A common approach to design proteins with desirable PPI profiles is to use DE

wherein the search through mutational space is guided by experiment 7. Similarly to

natural selection, DE relies on nucleotide sequence randomization in combination with

screens or selections of protein function. By iterating through this process, mutations

accumulate until a protein sequence that meets the design objectives is discovered, as

illustrated in Figure 1.1 A, B.

A B

DNA ftIVA translation
diversification I4iDU# into protein

.. screen or
DNA selection 0 library starting point - accepted step
amplification for function 0 local minimum - rejected step

0 global minimum

Figure 1.1. An overview of the key steps and limitations of directed evolution. A) Genetic diversity is
generated and the effect of mutations is determined empirically with screens or selections. Mutations
accumulate through repetition of the cycle. B) Through several rounds of directed evolution, sequence
space (as illustrated here as a three-dimensional fitness landscape) can be navigated. In this illustration,
identifying the maximum fitness requires crossing a "fitness valley". The ruggedness of the fitness
landscape results from epistatic interactions between sets of mutations.

As in natural selection, genetic diversity is central to DE. Random mutagenesis is

used to introduce mutations into a protein-coding gene whose phenotype can later be

experimentally evaluated with genetic screens or selections. One of the advantages of

this approach is that proteins can be designed without any detailed knowledge of their

structure. This is a valuable feature, considering that the structures of many PPIs are

unknown. Although mutations to a target gene can be generated in vivo8, in vitro

18



methods allow more control over mutational sampling. For example, low-fidelity

polymerases can be used in error-prone PCR to generate point mutations9 . Mutational

biases of nucleotide substitutions can be countered experimentally, for example by

altering dNTP concentrations". However, there isn't a direct correspondence between

nucleotide mutations and protein mutations, so amino acid substitutions introduced in

this way are biased by the genetic code. Point mutations can also be introduced at the

codon level through assembly with synthetic DNA primers that contain mixed bases by

assembly PCR1  or DNA ligation'. Sequence diversity can also be created through

mimicking homologous recombination in vitro with approaches like DNA shuffling1 5'1 6 or

assembly PCR17 .

Mutational space is too large to comprehensively search with existing

experimental approaches for all but the shortest peptide sequences. The limit of how

much mutational space can be explored in DE depends on experimental throughput and

library transformation efficiency. A powerful and flexible platform for screening PPIs is

yeast cell-surface display18' 19. In this approach, protein libraries are expressed on the

yeast cell surface through genetic fusion with the yeast mating adhesion receptor Aga2.

Binding to fluorescently labeled target protein can be measured and screened with

fluorescence-activated cell sorting (FACS). Assays that measure binding to cell surface-

expressed molecules have the advantage of providing researchers with control over the

stringency of the screen, which can be tuned by altering target protein concentration.

This experimental design also facilitates negative screening or counterscreening against

off-target binding. Yeast libraries can be as large as -10 9 transformants, but FACS

sorting speed limits the number of cells that can be screened to ~10 7. Cell-surface

19



display platforms have been developed for other organisms including bacteria20 and

mammalian cells21 . Other screening approaches include modest-throughput plate-based

screens and screens in artificial cell-like compartments such as water-oil emulsions for

FACS-based22 or microfluidic screening23. Because genetic selections don't require

each library member to be inspected for phenotype, they can be used to search larger

library spaces. Affinity-based selections can be used to query larger libraries using

phage display (~10" variants) 24, ribosome display (~1012 - 1013 variants) 25 , and mRNA

display (~1012 - 1013 variants) 26.

DE is routinely used to engineer proteins with enhanced binding and specificity

profiles. DE approaches have proven particularly valuable in designing antibodies with

enhanced affinities for their targets. For example, Boder et al. used DE to design a

fluorescein-binding antibody that bound with a 48 fM KD, more than 1,000-fold tighter

than its parent antibody 27. Similar approaches have been used to develop affinity

matured antibodies against cholera toxin (1,300-fold improvement) 28, Her2/Neu (10-fold

improvement)29, TNF-a (30-fold improvement) 30, and many other targets as summarized

in reviews by Boder et al. 3 1 and Cherf et al.32 Antibody engineering using DE techniques

has contributed to the development of many of engineered antibodies that have been

approved for clinical use or entered clinical trials 33. DE is also commonly used to

engineer affinity agents on non-antibody scaffolds, including DARPins 34 35 , knottins 36,

fibronectin type Ill domains 37, T-cell receptors38, interleukin-I variants 39, and myriad

other proteins.

DE can be a powerful approach to protein design, but it has some limitations. For

example, it can be challenging to discover sequences far from the starting template with

20



DE because deleterious mutations are much more frequent than beneficial mutations40.

For example, Bershtein et al. demonstrated that only ~1/10 3 random mutations were

beneficial for TEM-1 P-lactamase function, but 1/3 mutations were deleterious 41. Thus,

researchers typically keep the mutational load in each round of DE low to avoid masking

beneficial mutations with deleterious mutations. Epistasis presents another challenge to

discovering diverse functional sequence spaces, because some mutations are only

beneficial after non-beneficial or deleterious mutations have accumulated, as illustrated

by the fitness valley in Figure 1.1 B.

Structure-based design

PPIs can be designed computationally with the use of structure-based scoring

potentials. There are three general categories of scoring potentials commonly used in

computational design: physics-based potentials, knowledge-based potentials, and

hybrid potentials that include both elements.

In theory, given a structure, it should be possible to explore vast amounts of

mutational space by calculating the energetic effects of mutations in silico. Physics-

based scoring potentials, including AMBER 42 and CHARMM 43, have been developed to

score the potential energy of proteins using principles of molecular mechanics. Physics-

based scoring potentials are mathematical models of molecular forces (van der Waals

attraction and repulsion, Columbic interactions, bond energies, etc.) whose energetic

contributions have been weighted based on chemical and physical theory or

experimental measurement44 . These scoring functions are optimized to predict the

lowest-energy protein conformations by calculating the potential energy of different

conformations for a single sequence, as is commonly done in molecular dynamics
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simulations. Scoring with physics-based potentials is computationally expensive, which

puts practical constraints on how much mutational space can be explored. These

methods aren't used alone for design, at least not without introducing many

approximations.

Alternatively, the effect of a mutation can be inferred from statistical (sometimes

called knowledge-based) potentials derived from structures in the Protein Data Bank

(PDB). These potentials are derived from frequencies of structural features like rotamer

positions and the geometries of interacting residue pairs. Statistical potentials assume

that structural features are Boltzmann distributed, such that the lowest energy structural

features will be the most frequently observed. Since their inception in the 1970's4 5,

statistical potentials have been used with some success in structure prediction6 '47 ,

structural quality assessment48,49, PPI prediction 0, and affinity prediction 1,52. In

comparison with physics-based potentials, knowledge-based potentials are fast to

evaluate and do not require structural minimization for scoring. But the accuracy of

these scoring functions limits their application in design. For example, Su et al. reported

a modest correlation (R= 0.76) between a knowledge-based scoring potential and the

previously published affinities of 86 protein-protein complexes, but the standard

deviation between the predictions and measured affinities was reported to be 2.24

kcal/mol ( 16x KD) 5 1 , limiting its potential use as a design tool . In attempts to improve

the accuracy of these methods for design, there has been considerable work done to

find new ways to define and score structural features. One promising way of describing

proteins was recently developed by Mackenzie et aP3 , who demonstrated that protein

structures can be decomposed into a defined set of tertiary motifs (TERMs) that have
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similar secondary, tertiary, and quaternary structure5 3. Further, TERMs have associated

sequence preferences, and Zheng et al. showed that a statistical potential derived from

the sequence statistics of TERMs predicts changes in protein stability upon mutation at

least as well as state-of-the-art physics-based potentials 54. A function that relates a

sequence to its fitness on a structure can be used for design, and design using TERM

energies (dTERMen) has been implemented in the Grigoryan lab and tested on a small

number of problems. The dTERMen scoring procedure is outlined in Figure 1.2.

Chapter 4 of this thesis demonstrates the potential of dTERMen to accurately design

PPIs with highly diversified sequences.

sequence model 2 . Sl enewrgy parameter

from sub-TERM 1"Pr predict
match ensembles A

<NC

order-2 sub-TERMs
higher-order

- - sub-TERMs

Tertiary Motif
(TERM)

order-1 sub-TERMs
order-O

sub-TERM

lee

Figure 1.2. An overview of dTERMen scoring function. Mutational energies are calculated by describing

the local structural environment and matching the geometry of the design template with a database of

tertiary motifs (TERMs) or sub-TERMs compiled from the PDB. Positional and pair amino-acid

frequencies of matching structural ensembles are used to predict the AAG of mutation. Figure is from

Zheng et a/5.
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Many of the most commonly used scoring functions for protein design combine

physics-based and knowledge-based scoring functions to speed scoring of large

mutational spaces. For example, the Rosetta scoring function was initially developed as

a statistical potential55 , but many additional physics-based energy terms have been

added to account for hydrogen bonding, van der Waals interactions, solvation, etc.56-58 .

Another commonly used platform for protein design is FoldX, which is a scoring function

based primarily on physical terms parameterized by empirical data, but includes some

statistical terms from the PDB to account for backbone and side chain entropies59 . The

accuracy of the hybrid scoring functions depends on which energetic terms are used

and how each term is weighted relative to each other. Scoring functions can be highly

customizable, leading to significant variability between research groups and particular

design tasks44. Hybrid potentials can be used to search large mutational spaces 60,61,

though the modest accuracy of these models typically necessitates experimental

screening to identify successful designs, as discussed below.

Combining experimental screening with computational design

DE and SBD are highly complementary methods that when combined can

produce superior results6 2,6 3 . For example, SBD can be used to design novel proteins

that can then be further optimized with DE. This approach has been widely used in

enzyme design and to design protein binders. Fleishman et al. used Rosetta to design

proteins to bind a conserved epitope of hemagglutinin (influenza) from the 1918 H1N1

pandemic virus starting from a structure of hemagglutinin bound to an antibody

fragment. They then affinity maturated the designs using DE to engineer proteins that
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bind to hemagglutinin with low nanomolar affinity61 . Similar approaches are routinely

used by the Baker lab and others to design novel protein binders.

SBD can be used to guide mutational selection for focused DE libraries. As

discussed in the preceding sections, experimental screens and selections are limited in

the number of unique sequences that can be explored and the mutational load that can

be encoded in those sequences. SBD can be used to identify which residue positions

are directly involved in PPIs and predict which mutations at those positions have the

most potential to improve function. Further, SBD can be used to identify and exclude

potentially disruptive mutations that have the potential to "poison" any fraction of the

library that encodes them. This makes it possible to construct libraries that encode

40
larger sets of mutations that explore farther away from the design template sequence .

In this way, SDB can be used to design focused, combinatorial libraries that can be

assembled using well-established randomization strategies 64. This approach has been

shown to be more efficient than DE by random mutagenesis. For example, focused

libraries of GFP mutants designed with SBD were found to encode a broader range of

fluorescent activities than mutagenic PCR-generated libraries 65. Structure-based library

design has become a routine approach to improving protein affinity, specificity66- 8 , and

regulation 9 . One advantage of focused, combinatorial libraries is their potential to

explore epistatic landscapes, as sets of mutations have increased potential to escape

local minima. An example of a focused combinatorial library that led to the discovery of

a peptide with a set of episatic mutations that would be difficult to discover with DE is

presented in chapter 2 of this thesis.
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Data-driven design

Techniques for measuring binding affinities in high-throughput have begun to

provide new opportunities for alternative and complementary approaches to protein

design. Here I discuss a few of the technologies that enable high-throughput PPI affinity

measurement, before discussing how these data can be used for protein design.

Peptide SPOT arrays and microarrays provide qualitative binding measurements

for peptides immobilized on a solid surface either by spotting, as done for ELISAs, or by

in situ synthesis7 0' 71 . In this way, hundreds or thousands of peptides to be assayed for

binding in parallel. These approaches are best suited for probing mutations in short

peptides. Although it is possible to synthesize peptides 50 amino acids or longer on

peptide arrays 72, 6-18 amino acids is optimal70. Synthesis quality and yield varies from

sequence to sequence, contributing to measurement uncertainty in these datasets.

A semi-quantitative measurement of affinity can be extracted from DE

experiments by deep-sequencing mutant libraries before and after one or several

rounds of screening or selection73-75. For example McLaughlin et al. used enrichment of

a bacterial two-hybrid library containing all possible single point mutants of a PDZ

domain to measure the affect of mutation over a broad range of affinities (-0.1-200 pM)

as evidenced by a linear relationship between enrichment values and independently

measured KDS (correlation coefficient not reported) 73. In more recent work, Younger et

al. used a Saccharomyces cerevisiae mating efficiency screen to measure KDS from

<500 pM to >300 pM 74. They reported a linear relationship between KD and mating

efficiency (R 2 =0.878). Approaches like these that capture trends in binding affinities are

increasingly being used as a general means to understand how function relates to

26



sequence, but are not currently widely adopted for protein design. Resolution of these

methods might be limited in part by their reliance on separation into binary groups of

either binders or non-binders. Further, biases from growth in preparation for deep-

sequencing might further reduce resolution.

Screening methods that separate samples into multiple phenotypic classes have

been developed to increase measurement resolution 7~79. Reich et al. developed a

method called SORTCERY to sort individual yeast cells from a library by their apparent

degree of binding76 ,80. In this method, yeast cells are sorted and deep-sequenced to

rank-order thousands of mutant peptides by affinity. SORTCERY has the advantage of

not requiring a growth step between sorting and deep sequencing. Chapter 3 of this

thesis presents a strategy to extract absolute affinities from SORTCERY data. Adams et

al. used multi-state sampling in combination with titration to create binding curves from

which the affinities of thousands of yeast-displayed proteins can be measured in

parallel 78. One significant advantage of this approach is that it provides researchers

control over the range of affinities that are measured. A minor drawback is that this

protocol requires growth steps in preparation for deep sequencing, which can contribute

to measurement noise.

Another potentially rich source of experimental data that could be exploited for

design is databases of measurements compiled from the literature, such as Ab-Bind81

and SKEMP18 2 . However, measurements made for the same protein interaction can

vary significantly between labs, methods, and experimental conditions, making it

infeasible to make reliable comparisons across studies. Databases assembled from the
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literature can also suffer from lack of mutational diversity. In particular, a

disproportionately large fraction of alanine mutants are observed in these datasets.

Large mutational datasets are valuable for benchmarking the performance of

computational models and improving protein design83 84 . For example, Rocklin et al.

used a high-throughput screen of protease sensitivity for a yeast-displayed library of

mini-proteins to measure protein stability in high-throughput. By comparing the

experimental measurements of stability with predictions made by Rosetta, the authors

85were able to reweight Rosetta energy terms and improve their design success rate

Similar data-driven reweighting of Rosetta terms was shown to improve PPI design 6

Mutational datasets can be used to build models of PPI for protein design. For

example, Wiedemann et al. measured hundreds of single point mutants for binding to

PDZ domains using SPOT arrays87. They then modeled the effect of mutation and

designed three novel peptide ligands, all of which bound modestly tighter (< 5-fold) than

the sequences from which they were designed. The model used for design assumed

that each residue contributes independently to binding, which isn't always the case for

PDZ domains88 .

Models that capture relationships between sequence and binding can be used to

guide the design of focused libraries. This approach is particularly valuable for

designing focused libraries in the absence of experimental structures. For example,

Dutta et al. used mutational data from SPOT arrays to develop position specific scoring

matrices (PSSMs) that were used to guide the selection of mutations to include in a

peptide library to achieve specificity against the anti-apoptotic protein Bcl-w, for which

there was no experimental structure available at the time8 9. Experimental data has also
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been used for library design in enzyme engineering in the form of "scouting"

experiments in which experimental data is used to provide clues as to which residues

are most important for function, to guide the design of focused libraries. For example,

this approach was used to change the substrate specificity of glutaryl acylase (for which

no structure was available at the time) toward adipyl compounds using random

mutagenesis to create a small (10,000 colony) pilot library90 . Screening revealed three

mutations that affected substrate specificity. Those three positions were randomized in

subsequent libraries with saturation mutagenesis to further improve catalytic efficiency

three-fold. Data-driven library design is being used to create focused libraries with

reduced size that decrease the amount of screening required to engineer proteins with

improved properties9 .

Machine learning on mutational datasets has been used to capture the

relationship between protein sequence and complex protein properties including

solubiity92 ,93 , cellular localization9 4' 95, crystallization propensity9 6 , and protein function97.

Additionally, there is evidence that given enough data, machine learning can be used to

model epistatic effects for use in PPI design. For example, Potapov et al. used a large

quantitative set of >4,500 coiled-coiled interactions to develop a model whose predictive

performance approached experimental error when intramolecular terms were

inicuded98 . One barrier to using machine learning in protein design is that these models

tend to generalize poorly and are best suited for predicting sequences that are close to

those used to train the model. Chapter 3 of this thesis provides evidence that machine

learning can, at least in some cases, be used to design sequences distant from those

used for model training.
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Summary of protein design approaches

In this Introduction, I discussed experimental and computational approaches that

have been used to design PPIs. Perhaps the most widely adopted PPI design strategy

is DE, which is limited in the amount of sequence space it can explore. When a protein

structure is available, SBD is a common approach to explore vast amounts of sequence

space, but is rarely used on its own to design novels proteins due to accuracy

limitations. SBD and DE are highly synergistic approaches that can be and increasingly

are used in combination to great effect. In the absence of structure, however, it is

difficult to model and explore vast amounts of sequence space. Although data-driven

design is still in its infancy, the ever-growing amount of experimental data is beginning

to transform PPI design. It is likely that data-driven design will greatly enhance our

design capabilities, especially in combination with well established DE and SBD

approaches.

Anti-apoptotic Bcl-2 protein family as a model system for protein design

The Bcl-2 protein family regulates the intrinsic pathway of apoptosis through

PPIs. Anti-apoptotic Bcl-2 proteins including Bcl-2, BcI-xL, Mcl-1, Bcl-w, and Bfl-1

promote cellular survival by binding to BH3 motifs. BH3 motif peptides are unfolded in

isolation but adopt a helical conformation upon binding, as shown in Figure 1.3. Anti-

apoptotic protein interactions with BH3 motifs prevent the pro-apoptotic proteins BAX

and BAK from homo-oligomerizing into pores in the mitochondrial outer membrane, a

"point of no return" in apoptotic signaling9 9'100 .

Anti-apoptotic Bcl-2 proteins are valuable therapeutic and diagnostic targets.

Overexpression of anti-apoptotic Bcl-2 proteins is known to contribute to oncogenesis

30



-J

and confer resistance to chemotherapeutic agents99 . Diagnostic determination of anti-

apoptotic protein dependencies from patient samples can be used to guide clinical

treatment options,1 01 and therapeutic inhibition of over-expressed anti-apoptotic proteins

can sensitize malignant cells to treatment102

Figure 1.3. The anti-apoptotic protein Bfl-1 (blue) bound to the natural BH3 motif of Puma (red, 5UUL113)
is shown.

There has been significant progress in targeting Bcl-2 family proteins

therapeutically with BH3-mimetic small molecules. For example, the small molecule

ABT-263 was found to promote apoptosis in lymphocytic leukemia cells overexpressing

Bcl-2104. Unfortunately, cross-reactivity of ABT-263 with Bcl-xL caused dose-limiting

thrombocytopenia, ultimately leading to failure in clinical trials 05106. By including

selectivity as a design criteria in subsequent work, a small molecule (ABT-199) that

bound to Bcl-2 but not Bcl-xL was developed and approved by the FDA for clinical

usel04,107. These results highlight the importance of sub-family selectivity when targeting
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members of this protein family therapeutically. Small molecules selectively targeting

Mcl-1 have since been developed 08.

As an alternative strategy, BH3 mimetic peptides are being developed to target

anti-apoptotic Bcl-2 family proteins. Peptides that selectively inhibit members of this

protein family are valued as therapeutic leads and as diagnostic reagents that can

probe anti-apoptotic protein dependencies to guide clinical treatments 01 . Protein design

has enabled the development of many selective reagents that are being used to study

Bcl-2 biology and develop diagnostic assays. For example, computationally designed,

focused yeast-display libraries have been used to design Bcl-xL 89 and Mcl- 1 109 selective

peptides.

Selective peptides or small molecules have proven difficult to develop for BfI-1.

Dutta et al. used a data-driven approach to design a combinatorial library and

discovered a peptide with >30 fold selectivity for Bfl-1. However, this peptide failed to

inhibit Bfl-1 in cellular studies" 0. Berger et aL. designed helical proteins with BH3

domains using Rosetta that selectively inhibit Bfl-1111, but these proteins are

comparatively large (>13 kDa), making cellular delivery a challenge. There have also

been attempts at designing small molecules targeting Bf-11 12- 115, though these small

molecules have only modest specificity for Bfl-1 relative to other Bcl-2 family members

and bind with low affinity (high nanomolar to low micromolar).

Research approach

In my thesis work, I designed potent and selective peptide inhibitors for the anti-

apoptotic protein Bfl-1. My thesis project began by designing a set of libraries to

selectively target anti-apoptotic Bcl-2 proteins. In chapter 2, I describe how these yeast-
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displayed libraries were designed and screened for Bfl-1 selectivity. The designed

peptides were characterized biochemically using solution binding assays, mutagenesis,

and X-ray crystallography. Our collaborators tested the designed peptides in cells and

confirmed selective Bfl-1 inhibition of apoptotic signaling. In chapter 3, l describe my

work with Vincent Xue to measure the apparent affinities of thousands of peptides from

these libraries for binding to Bfl-1, Mcl-1, and Bcl-xL in high-throughput. This work

required the development of a method to extract binding affinities from datasets of

binding profiles. These data were used to build a data-driven model of the specificity

landscape for these proteins. Further, we used this model to successfully design highly

selective peptides many mutations away from any sequence used to train the model.

Finally, in chapter 4, I describe collaborative work using dTERMen to design novel

sequences using structures of Mcl-1 and Bfl-1 complexes as input.
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Abstract

Overexpression of anti-apoptotic Bcl-2 family proteins contributes to cancer

progression and confers resistance to chemotherapy. Small molecules that target Bcl-2

are used in the clinic to treat leukemia, but tight and selective inhibitors are not available

for Bcl-2 paralog Bfl-1. Guided by computational analysis, we designed variants of the

native BH3 motif PUMA that are > 150-fold selective for Bfl-1 binding. The designed

peptides potently trigger disruption of the mitochondrial outer membrane in cells

dependent on Bfl-1, but not in cells dependent on other anti-apoptotic homologs. High-

resolution crystal structures show that designed peptide FS2 binds Bfl-1 in a shifted

geometry, relative to PUMA and other binding partners, due to a set of epistatic

mutations. FS2 modified with an electrophile reacts with a cysteine near the peptide-

binding groove to augment specificity. Designed Bfl-1 binders provide reagents for

cellular profiling and leads for developing enhanced and cell-permeable peptide or

small-molecule inhibitors.
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Introduction

Anti-apoptotic members of the Bcl-2 family are broadly recognized as promising

cancer therapeutic targets. Human anti-apoptotic proteins BcI-2, Bcl-xL, Bcl-w, Mcl-1,

and Bfl-1 have a globular, helical fold and function by binding to short, a-helical Bcl-2

homology 3 (BH3) motifs in pro-apoptotic proteins, as shown in Figure 2.1A.

Competition for binding among BH3-containing proteins regulates mitochondrial outer

membrane permeabilization (MOMP), which is an irreversible step towards caspase

activation and cell death. The appropriate balance of interactions between pro-survival

and pro-death Bcl-2 family members in healthy cells is often disrupted in cancer cells,

where overexpression of anti-apoptotic Bcl-2 proteins can promote oncogenesis and

confer resistance to chemotherapeutic agents'.

There has been considerable progress developing BH3 mimetic peptides and

small molecules to inhibit the function of anti-apoptotic Bcl-2 proteins by blocking their

interactions. One outstanding example is the small molecule venetoclax, which targets

BcI-2 and was recently approved by the FDA for treatment of chronic lymphocytic

leukemia2 3 . A major challenge in developing venetoclax was achieving specificity,

which is important because Bcl-2 family members support survival of healthy cells. For

example, the small molecule ABT-263 inhibits both BcI-2 and Bcl-xL, but Bcl-xL cross-

reactivity leads to dose-limiting thrombocytopenia- 6 . In the laboratory, highly selective

inhibitors of anti-apoptotic proteins are used for profiling experiments that can establish

which anti-apoptotic proteins are essential for cancer cell survival in individual patients

and predict chemotherapeutic response in vivo7-9. There has been progress towards

creating a panel of reagents specific for each mammalian anti-apoptotic protein that can
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advance such diagnostic assays. Useful reagents for this purpose include peptides and

small molecules that are selective for McI- 11 0 or Bcl-xL1
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Figure 2.1. Computational design of a library of PUMA BH3 variants selective for B~fl-1. (A) PUMA BH3 is
pan-selective; the design objective was a peptide that binds tightly only to B~fl-1. (B) Sequence of PUMA
BH3 showing the heptad numbering convention used in this paper. (C) Overview of the computational
library design procedure. (D-E) Scores for members of three libraries designed to target B~fl-1 (blue), Mcl-
1 (green), or Bcl-xL (red). (D) PSSMsPOT scores (E) STATIUM z-scores. (F-1) The affinities of library
peptides for different Bcl-2 proteins were predicted to be strongly correlated. (F) PSSMsPOT scores for
binding to Bcl-xL versus B~fl-1, (G) PSSMSPOT Scores for binding to Mcl-1 versus B~fl-1, (H) STATIUM z-
scores for binding to Bcl-xL versus B~fl-1, (1) STATIUM z-scores for binding to Mcl-1 versus Bfl-1. For (D-1),
each point represents one peptide sequence and higher scores correspond to higher predicted affinities
for the indicated target. Points on the dashed line have the same low specificity as PUMA BH3 (which is
shown with a black open circle).
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The role of anti-apoptotic protein BfI-1 in cancer is less characterized than that of

Mcl-1 or Bcl-xL, but many lines of evidence suggest that BfI-1 is also a critical target. In

melanoma, Bfl-1 overexpression confers resistance to BRAF inhibitors, and siRNA

mediated knockdown of Bfl-1 induces cell death in melanoma cell lines but not non-

malignant cels13-15 . Mis-regulation of Bfl-1 is also implicated in hematological

malignancies, where elevated levels of Bfl-1 confer resistance to common

chemotherapeutic agents. Bfl-1 knockdown suppresses resistance and sensitizes

malignant B-cells to chemotherapy 1 6. Bfl-1 expression can also counteract the effects of

inhibitors of other anti-apoptotic family members (e.g. Mcl-1, Bcl-2) in leukemia and

lymphoma 17. Bfl-1 mRNA is over-expressed in myriad malignancies including solid

tumor samples from breast, colon, ovary, and prostate tissues18 . Thus, Bfl-1 is an

intriguing therapeutic target and biomarker for resistance to cytotoxic anticancer drugs.

Identifying Bfl-1-selective interaction inhibitors has proven difficult. Small

molecules must compete with an extended protein-peptide interface, and development

of small-molecule inhibitors of Bcl-xL, Bcl-2, and Mcl-1 required years of work, guided by

intensive NMR studies of fragment binding 2 ,19,20. Screening has identified small-

molecule inhibitors of Bfl-1, but these compounds have IC50 values in the high

nanomolar to low micromolar range and exhibit only modest specificity for Bfl-1 relative

to other Bcl-2 family members 21 24 . Recently, helical bundle proteins that incorporate a

BH3 motif have been designed to inhibit Bfl-1 and other anti-apoptotic proteins. These

proteins are tight and selective binders, but their function relies on them being folded,

and delivering proteins of molecular weight > 13 kDa into cells is problematic given

current technologies 25.
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An attractive strategy for inhibiting Bcl-2 family proteins is to develop short

peptides that mimic the interaction geometry of native Bcl-2 protein complexes (Figure

2.1A). Screening BH3-like peptide libraries previously led to identification of a molecule

with -50 nM affinity for Bfl-1 and 30-fold specificity for Bfl-1 over Mc-I1,26 but this

peptide was not shown to induce mitochondrial depolarization in cell-based assays.

Identifying Bfl-1 selective peptides is complicated by the extremely large sequence

space of short BH3-like helical binders. There are more than 1029 possible peptides of

length 23 residues. This sequence space is too large to exhaustively search

experimentally. Furthermore, the BH3 motif is a weak motif (only three positions are

strongly conserved) that does little to restrict possible binders. Another confounding

factor is that Bfl-1 interacts with fewer BH3-like peptides than other anti-apoptotic Bcl-2

family paralogs do 2 7,28 , and no native interaction partners are known to be selective for

Bfl-1, suggesting that there may be limited opportunities for achieving specificity.

The results described here showcase our computational/experimental roadmap

for designing selective peptide inhibitors. We used computational models to design a

focused library of ~107 candidate binders and screened it to identify three peptides,

FS1, FS2, and FS3, that bind tightly and specifically to Bfl-1. Mutational studies and

high-resolution structures revealed that the high specificity comes from a BH3 binding

mode that is markedly different from what has been seen in prior structures of Bfl-1:BH3

complexes 29,30. Importantly, FS1, FS2, and FS3 are specific in BH3 profiling, an assay

that tests for MOMP in cells. Subsequent rational introduction of an acrylamide moiety

to covalently react with Bfl-1 further enhanced Bfl-1 inhibitor specificity. FS1, FS2, FS3
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and their chemical derivatives provide new reagents with utility for studying Bfl-1 biology

and a launching point for developing Bfl-1 targeting therapeutics.

Results

Computational analysis prioritizes mutations for targeted library design

To reduce the enormous space of possible 23-mer sequences to < 107 candidates that

could be tested experimentally, we used computational modeling to design focused

combinatorial libraries. We first scored mutations throughout the BH3 motif using: (1) a

position-specific scoring matrix (PSSM) derived from SPOT peptide array data

(PSSMSPOT) and (2) STATIUM, a structure-based statistical potential that previously

showed good performance evaluating Bcl-2 protein binding to BH3-like peptides (2.

1BC)28 ,31 . Mutations were modeled in the BIM BH3 motif, with the intention of testing

the mutations in the context of both BIM and PUMA BH3 motifs. These two BH3-only

proteins, as well as tBID, interact tightly with Bfl-1. BIM and PUMA bind with low

nanomolar affinity to Bfl-1, but also to anti-apoptotic paralogs Bcl-2, Bcl-xL, Mcl-1, and

Bcl-w 26 ,2 7. Thus, our design challenge was to introduce mutations that eliminate off-

target binding without destabilizing Bfl-1 binding. Bfl-1 shares 38% binding-groove

sequence identity with Mci-1 and 30% binding-groove identity to Bcl-xL. Bcl-2 and Bcl-w

are closely related to Bcl-xL, with 60% sequence identity in the binding groove2 7. To

model cross-reactivity, we compared how mutations in BIM were predicted to affect

binding to Bfl-1 relative to Bcl-xL and Mcl-1, for which high quality structures of

complexes are available. The predicted binding scores of diverse sequences for the

three proteins were highly correlated, and most single mutations were predicted to

weaken Bfl-1 binding compared to the wild-type sequence (Figure 2.2).
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Figure 2.2. Affinities of BIM point mutants for different Bcl-2 proteins are predicted to be strongly
correlated. Larger scores predict tighter binding. Red points represent wt PUMA BH3. (A) PSSMSPOT
scores for binding to Bcl-xL versus Bfl-1, (B) PSSMSPOT scores for binding to Mcl-1 versus Bfl-1, (C)
STATIUM z-scores for binding to Bcl-xL versus Bfl-1, (D) STATIUM z-scores for binding to Mcl-1 versus
Bfl-1. Single point mutations to all residues other than cysteine and methionine were measured at
positions 2d, 2e, 2g-3b, and 3d-4a for PSSMSPOT (A, B). Single point mutations to all residues were
calculated for positions 1g, 2a, 2c-2e, 2g-3b, 3d-3f, 4a, 4b, 4e, and 4f for STATIUM (C, D). Pearson
correlation coefficients are indicated.

Mutational scoring identified promising positions for introducing sequence

variation (helix positions are defined in Figure 2.1B above the sequence of PUMA BH3).

Bfl-1, Bcl-xL, and Mci-1 -were predicted to have distinct residue preferences at

conserved hydrophobic positions 3d and 4a, consistent with previous observations32 .

Many mutations at position 4e were predicted to be strongly Bfl-1 selective, which is

supported by the observation that peptide binding by both Bcl-xL, and Mcl-1 is
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weakened by mutations at this position33 . Mutations at positions 2a and 3g were also

predicted to confer Bfl-1 specificity. In native BH3 motifs, these sites are generally

occupied by small charged or polar residues that can form hydrogen bonds/salt-bridges

with Bcl-xL and Mci-1 groups that are absent in Bfl-1. Finally, the region around sites 2e

and 2g has local structural differences in Bfl-1, McI-1 and BcI-xL.

We used in-house software to select degenerate codons at variable sites that

optimized the predicted BfI-1 binding affinity and specificity and that provided chemical

diversity in the resulting library26 ,34 . The final library design included > 6.8*106 unique

sequences (Table 2.1), most of which were predicted to be Bfl-1 selective by PSSMSPOT

and STATIUM (2.1 F-1). As a control, we designed similarly sized libraries to be

selective for Bcl-xL and Mcl-1 (Table 2.1). PSSMSPOT predicted each library to be

enriched in peptides selective for the appropriate target, as shown in Figure 2.1D. In

contrast, STATIUM predicted significantly more cross-reactivity for library members

(Figure 2.1E, Figure 2.3).
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Table 2.1. Composition of the Bcl-xL, Mcl-1, and Bfl-1 targeted libraries

Position BIM PUMA BflI Bcl-XL McI-1ISpecific Library Specific Library Specific Library
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Figure 2.3. Scores for members of three libraries designed to target Bfl-1 (blue), Mcl-1 (green), or BcI-xL
(red). Scores show predicted affinities of peptides in each library for each target. Larger scores predict
tighter binding. (A) PSSMSPOT scores for binding to Bcl-xL versus Bfl-1, (B) PSSMSPOT scores for binding
to Mcl-1 versus Bfl-1, (C) STATIUM z-scores for binding to Bcl-xL versus Bfl-1, (D) STATIUM z-scores for
binding to Mcl-1 versus Bfl-1. Points on the dashed line have the same low specificity as PUMA BH3
(open black circle).

Experimental Library screening

Oligonucleotides encoding the peptide libraries designed to be specific for Bfl-1,

Bcl-xL, and McI-1 were synthesized in the context of BIM and PUMA BH3 sequences.

Pooled BIM-based libraries and pooled PUMA-based libraries were then screened

separately for tight and selective binding to Bfl-1. Screening the libraries designed for

McI-1 and Bcl-xL for binding to Bfl-1, in addition to the library designed to target Bfl-1,

provided an opportunity to evaluate the utility of computational library focusing.
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We used yeast-surface display to identify selective Bfl-1-binding peptides from

our mixed libraries (Figure 2.4A). FACS analysis revealed that the initial libraries had a

modest number of cells expressing peptides that bound to Bfl-1 at 100 nM (Figure

2.4B). This is consistent with predictions that less than 6.5% or 4% of the theoretical

library would bind as well or better than PUMA, according to PSSMSPOT or STATIUM,

respectively.
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Figure 2.4. Experimental library screening for
Bfl-1 affinity and selectivity. (A) Yeast-surface
display configuration. BH3 peptides were
expressed as fusions to Aga2; HA tag
expression was detected with APC and Bfl-1
binding was detected with PE. (B) FACS
analysis showed that only -5 % of cells in the
unsorted PUMA libraries bound to Bfl-1 at 100
nM. (C) Library binding to 100 nM Bfl-1 after one
round of enrichment. (D-G) Library binding to
off-target proteins (100 nM) after one round of
enrichment: (D) Bcl-xL (E) Bcl-2 (F) Bcl-w (G)
McI-1. (H) Library binding to 100 nM Myc-tagged
Bfl-1 in the presence of excess unlabeled
competitor (McI-1, BcI-2, Bcl-w, and Bcl-xL; 1 pM
each) after six rounds of enrichment. (1)
Inhibition constants determined using
fluorescence anisotropy for 23-residue peptides
corresponding to PUMA BH3, FS1, FS2 and
FS3.
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Most of the peptides that bound Bfl-1 were cross-reactive with one or more other

Bcl-2 family proteins (Figure 2.4C-G). This cross-reactivity was expected based on the

high correlation of predicted binding scores for Bfl-1, Mci-1, and BcI-xL and highlights

the challenge of identifying specific binders (Figure 2.1 D-E, Figure 2.2). Six rounds of

positive, negative, and/or competition FACS screening were used to isolate cells that

expressed the tightest and most Bfl-1 -selective peptides (Figure 2.5). McI-1, Bcl-xL, Bcl-

2, and Bcl-w were included in the screen as untagged competitors. Early screening

provided many Bfl-1 selective hits from the PUMA libraries, but few from the BIM

libraries, so the BIM libraries were not pursued (Figure 2.6). After several rounds of

competition screening, the PUMA library was enriched in cells displaying peptides that

bound to Bfl-1 at 100 nM in the presence of 40-fold excess unlabeled competitor (Figure

2.4H).
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Naive BfI-1 Library

Positive

FL1
Negative 4,

FL2

Competition

FL3

Competition 4
FL4

(100 nM Bfl-1)

(100 nM Bci-2,
Bcl-xL, Mci-1, Bcl-w)

(100 nM Bfl-1,
1 pM Bci-2, Bci-xL
Mci-1, Bci-w)

(100 nM Bfl-1,
1 laM BcI-2, Bci-xL'
Mci-1, Bci-w)

Competition

Competition

4,
I

(100 nM Bfl-1,
1 pM Bci-2, Bcl-xL'
Mci-1, Bci-w)

FL5
(100 nM Bfl-1,
1 jaM Bci-2, Bcl-xL,
Mci-1, Bci-w)

FL6

FL5'

FL6'

(100 nM Bfl-1 C55S,
1 pM Bci-2, Bcl-xL'
Mci-1, Bci-w)

(10 nM Bfl-1 C55S,
1 jaM Bci-2, Bci-xL.
Mci-1, Bci-w)

Figure 2.5. The PUMA BH3 library was screened to enrich for selective binders of Bfl-1. Several positive,
negative, and competition screens were used to identify tight and selective Bfl-1 binders. Competition
screens included unlabeled competitors at the indicated concentrations. In negative screens, cells that did
not bind to the indicated labeled proteins were collected. Nearly all clones sequenced from pools FL5 and
FL6 contained a cysteine in positions 1g-2e. Sorts FS5 and FS6 were repeated with the cysteine-to-
serine point mutant of Bfl-1, C55S.
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(expression)

log APC fluorescence
(expression)

Figure 2.6. FACS analysis of the designed libraries after first two rounds of sorting (FL2, see Figure 2.5).
Plots show binding of library peptides to 100 nM Myc-tagged Bfl-1 in the presence of excess unlabeled
competitor (Mcl-1, Bcl-2, Bcl-w, and Bcl-xL; 1 pM each) when encoded in (A) a BIM background or (B) a
PUMA background. Cells displaying Bfl-1 selective peptides fall in the region outlined by dotted lines.

50 colonies isolated in the final round of screening were sequenced, providing 13

unique sequences. 9 sequences were from the Bfl-1 specific library, 2 were from the

Bcl-xL library, and 2 were from the Mcl-1 library (Table 2.2). We tested three Bfl-1

selective peptides that were recovered two or more times (FS1, FS2, and FS3). FS1,

FS2, and FS3 were all derived from the Bfl-1 targeted library, although FS1 also

contained one mutation caused by a spurious single-base pair mutation. FS1, FS2, and

FS3 each had reduced affinity for Bfl-1 relative to PUMA, but significantly increased

specificity (Figure 2.41 and Table 2.3). FS1 bound Bfl-1 with Ki = 15 nM and at least

150-fold specificity for Bfl-1 relative to BcI-xL, Bcl-2, Bcl-w, and Mcl-1.
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Table 2.2. Conventionally sequenced clones from pool FL6'.

name sequence library count

FS1 QWVREIAAGLRLAADNVNAQLER Bfl-1 25

FS2 QWVREIAAGLRRAADDVNAQVER Bfl-1 10

FS3 QWIREIAAGLRRFADILNAQVER Bfl-1 5

QWVREIGAGLRRIADNANAQLER Bfl-1 1

QWVRELGAQLRRYGDDLNKQDER Bcl-xL 1

QWLREIGAGLRRSADDANAQPER Bfl-1 1

QWVREIGAQLRRTGDDLDEQDER BCI-xL 1

QWIREIDAFLRRFADQNNAQFER Bfl-1 1

QWIREIDAFLRPFADQNNAQFER Bfl-1 1

QWVREIAAGLRRAADKANAQPER Bfl-1 1

QRASEAGAQLGRMADDVEAQYER Mci-i 1

QWAREIAAGLRRAADKVNAQVER Bfl-1 1

QSAAHTIAQLGRMADDAKAQYER Mci-1 1

Table 2.3. Peptide affinities for Bfl-1, BcI-xL, Mcl-1, Bcl-2, and BcI-w. Ki obtained from competition assays
with fluoresceinated BIM peptide. Data are mean SD of three replicates.

Sequence
Peptide ---- 2------3-----4--- K (nM)

fgabcdefgabcdefgabcdefg Bfi-I Mci-I BcI-XL BcI-w BcI-2
PUMA QWAREIGAQLRRMADDLNAQYER 4.8 .6 2.4 .8 2.3 1.9 3 2 6 4

FS1 QWVREIAAGLRLAADNVNAQLER 15 3 > 5000 2400 1 400 > 5000 > 5000
FS2 QWVREIAAGLRRAADDVNAQVER 21 6 3200 300 > 5000 > 5000 2400 500
FS3 QWIREIAAGLRRFADILNAQVER 2.1 .3 550 150 320 90 770 80 2000 300
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Figure 2.7. FS2 mutations made in a BIM background generate a weak binder of Bfl-1. Fluorescence

anisotropy competition experiments for unlabeled BIM (blue) vs. BIM including mutations from FS2 (BIM-

FS2; E2bV, A2eA, E2gG, 13dA, F4aV, Y4eV; red). BIM-FS2 (Ki = 720 110 nM) binds > 1000-fold more

weakly than native BIM (Ki < 0.1 nM). Data from are 3 independent measurements. Ki values are mean

SD at least three replicates.

To analyze enrichment trends and to assess the success of our library design,

we deep sequenced samples from the naive pool and from pools collected after 3, 4, 5,

and 6 rounds of sorting (sorting conditions are detailed in Figure 2.5). The naive pool

was diverse and not dominated by any particular subset of sequences. In contrast, FS1

(38% of sequences, the most prevalent library member), FS2 (25% of sequences), and

many other peptides from the Bfl-1 targeted library were prominent in the final screening

pool. Analysis of sequential pools showed that peptides from the Bfl-1 targeted library

were substantially enriched relative to peptides from the Bcl-xL and McI-1 targeted

libraries (Figure 2.8A). 73.9% of the unique sequences in the final pool were from the

Bfl-1 targeted library (Figure 2.8B).
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Figure 2.8. Evaluation of the library design. (A) Sequences from the Bfl-1 library were preferentially
enriched during sorting. Sequences with no more than 1 amino-acid mutation from the Bfl-1 (blue), Mcl-1
(green), or Bcl-xL (red) targeted libraries are plotted. Other sequences are shown in magenta. (B) The
large majority of unique sequences in the final pool originated from the Bfl-1 library (colors as in part a).
(C-F) Comparison of PSSMSPOT and STATIUM scores for the library before and after sorting. Peptides
from the final sorted pool (red dots) are superimposed on the distribution of scores for the theoretical
library (blue contour plots). Points to the left of the dotted lines correspond to peptides predicted to bind
more selectively to Bfl-1 than does PUMA, with respect to the indicated competitor protein (BcI-xL in C
and E, Mcl-1 in D and F). Scores for FS1, FS2 and FS3 are indicated.
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We scored peptides from the Bfl-1 targeted library that passed all rounds of

screening with the STATIUM and PSSMSPOT models used in library design (Figure 2.8

C-F). Most sequences were predicted to have improved selectivity for Bfl-1 relative to

PUMA (98-99% with improved specificity over Bcl-xL or McI-1 by PSSMSPOT, and 95% or

62% with improved specificity over Bcl-xL or Mci-1, respectively, by STATIUM). The

selected sequences were not among those predicted by either model to be the tightest

or most Bfl-1 selective in the theoretical library.

The binding mode of BfI-1-selective peptides

FS1, FS2, and FS3 included mutations to larger residues than those in PUMA at

their N-termini (red in Figure 2.9B,C), and smaller residues at their C-termini (blue in

Figure 2.9B,C). Deep sequencing of additional selective sequences supported this

trend: Of 612 unique peptide sequences from the final round of sorting that originated

from the Bfl-1 targeted library sequences, 364 showed this type of residue size

patterning at the same sites (sequence logo in Figure 2.9A).

To assess whether the combination of large and small residues played a role in

establishing binding specificity, we tested PUMA/FS2 chimeric peptides for binding to all

five anti-apoptotic proteins. Mutating PUMA to introduce smaller residues at positions

2g, 3d, 4a, and 4e differentially impaired binding to all receptors and resulted in weak

yet specific binding to Bfl-1 (Table 2.4). Mutating residues at the N-terminus of PUMA to

larger residues at positions 2a and 2e gave a modest 2.3-fold increase in affinity for Bfl-

1. But the same mutations in the context of smaller residues at positions 2g, 3d, 4a, and

4e improved affinity for Bfl-1 by 28.6-fold (Figure 2.9D). The different effects of these

59



mutations, when made in different contexts, indicates an energetic coupling consistent

with a structural repositioning of the designed peptides in the groove of Bfl-1.

A

B - - - - - - ---- 4 -- -I

f g a b c d e f g a b c d e f g a b c d e f g
PUMA Q W A R E I G A Q L R R M A D D L N A Q Y E R

FS1 QWVRE I AAGLRL AADNVNAQ LER

FS2 QWVRE I AAGLRRAADDVNAQVER

FS3 QW IRE I AAGLRRF AD I LNAQVER
increase size decrease size

Figure 2.9. Epistatic mutations in PUMA confer
Bfl-1 binding specificity. (A) Sequence logo of
unique peptide sequences in the final sorted
pool from the Bfl-1 targeted library. (B) Location
of mutated sites in FS1, FS2, and FS3.
Mutations at positions 2a and 2e are in red and
positions 2g, 3d, 4a, and 4e are in blue. (C)
Structure of Bfl-1 (gray surface) bound to PUMA
(green, this work) with residues at positions 2a
and 2e in red and those at 2g, 3d, 4a, and 4e in
blue. (D) Non-additive mutational energies for
PUMA/FS2 chimeric proteins indicate coupling
between N- and C-terminal mutations. Data are
Ki SD of 3 or more independent fluorescence
anisotropy competition experiments.
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Table 2.4. Affinities of FS2 chimeric proteins binding to Bfl-1, BcI-xL, Mcl-1, Bcl-2, and Bcl-w. Ki obtained
from competition assays with fluoresceinated BIM peptide. Data are mean SD of three replicates.

Sequence
Peptide ---- 2-------3-----4--- K, (nM)a

fgabcdefgabcdefgabcdefg Bfi-1 McI-1 BcI-XL Bcl-w BcI-2

Puma QWAREIGAQLRRMADDLNAQYER 4.8 .6 2.4 .8 2.3 1.9 3 2 6 4

FS2_N/PumaC QWVREIAAQLRRMADDLNAQYER 2.1 .1 .3 .3 2.4 1.2 1.2 .3 14 2

PumaN/FS2_C QWAREIGAGLRRAADDVNAQVER 600 100 > 5000 1100 300 > 5000 2000 160

FS2 QWVREIAAGLRRAADDVNAQVER 21 6 3200 300 > 5000 > 5000 2400 500

To better understand the structural basis for the epistasis, we solved X-ray

crystal structures of Bfl-1 bound to PUMA, at 1.33 A resolution, and of Bfl-1 bound to

FS2 at 1.2 A resolution (Table 2.5). In comparison with all available X-ray structures of

BH3 peptides bound to human or murine Bfl-1, PUMA and FS2 each adopt new, distinct

positions in the binding groove (Figure 2.1 OA and Figure 2.11). FS2 is shifted 1.2 A and

rotated 170 in the binding groove compared to its parent peptide PUMA. The peptide C-

terminus, which harbors the large-to-small mutations, is repositioned more dramatically

than the N-terminus (Figure 2.10B). Despite the shifts in peptide binding geometry, the

structures of Bfl-1 in these newly solved complexes are highly similar. The all-atom

RMSD for residues in the binding pocket (within 5 A of the BH3 peptide) of Bfl-1:FS2 vs.

Bfl-1:PUMA is < 0.7 A and is 1.05 A for Bfl-1:FS2 vs. Bfl-1:B1M 2 9.
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Figure 2.10. High-resolution structures of PUMA and FS2 bound to human Bfl-1. (A) Binding groove of
Bfl-1 (gray, surface) with PUMA (yellow) and FS2 (purple). (B) CM- Ca shifts between FS2 and PUMA.
Sites with larger/smaller residues in FS2 are indicated in red/blue. (C) The canonical Bfl-1:BH3 salt bridge
between D3f and R88 is observed in the Bfl-1:PUMA complex but not the Bfl-1:FS2 complex. (D)
Tryptophan at 1g is rotated into the Bfl-1 binding groove in the Bfl-1:FS2 complex and away from the
binding groove in the Bfl-1:PUMA complex. (E) In contrast with the solvent exposed arginine at position
3c of the Bfl-1:PUMA complex, R3c is oriented into the BH3 binding groove in the Bfl-1:FS2 complex,
forming a hydrogen bond with N51 of Bfl-1. (F) Bfl-1 targeted library sequences score better on the Bfl-
1:FS2 structure than on the Bfl-1:BID structure used for the initial library design; higher scores predict
tighter binding. STATIUM z-scores for the Bfl-1 targeted library are in blue. FS1, FS2, and FS3 are
indicated in red and PUMA in green. (G) Sorting enriched sequences that score better on the Bfl-1:FS2
template than on the Bfl-1:BID template. STATIUM z-scores for the input Bfl-1 library are in blue and
scores for sequences identified after the final round of screening are in green.
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Figure 2.11. Comparison of PUMA and FS2 binding poses with crystal structures of BH3:Bfl-1 deposited
in the PDB. All Bfl-1:peptide structures were aligned to Bfl-1 and the mean C-alpha positions were
calculated for each BH3 peptide position. Mean distances were calculated separately for all complexes in
the asymmetric unit. (A) The C-alpha distance deviation from the mean is plotted for all structures. (B)
Box plots illustrate the positional variability at each site. FS2 is significantly shifted at peptide positions 3f,
3g, and 4c. The following structures from the PDB were included in this comparison: 2VM629, 2VOF3 ,
2VOG 3, 2VOH 30, 2VO13, 3MQP3 , and 4ZEQ64.
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Table 2.5. Summary of X-ray data collection and refinement statistics.
Bfl-1:Puma Bfl-1:FS2 Bfi-1:FS2_1fX Mcl-1:FS2

Data Collection
Space Group P 1 21 1 P 1 21 1 P 1 21 1 C 12 1
Cell parameters

a, b, c 43.21,43.43, 47.38 43.25, 43.33, 45.74 43.40, 43.50, 47.07 132.62, 62.76, 48.79
a, P, y 90, 114.40, 90 90, 110.90, 90 90, 114.78, 90 90, 98.142, 90

Rmeas 0.066 (0.328) .075 (534) .083 (.357) .164 (1.007)
Rpim 0.026 (0.166) .022 (.196) .035 (.185) .067(.493)
Mean I/a(l) 35.0 (3.0) 58.6 (3.8) 21.0 (2.4) 19.8 (2.5)
Completeness (%) 97 (75) 95 (89) 94 (52) 99 (96)
Redundancy 5.8 (3) 10.2 (5.5) 5.0 (2.6) 5.8 (3.6)

Refinement

Resolution (A) 43-1.33 (1.36-1.33) 36.59-1.199 (1.24 -1.199) 39.4-1.726 (1.788-1.726) 27.33-2.35 (2.41-2.35)

No. Reflections 35893(2869) 47325(4377) 15892(974) 16697(1625)

Rwork/Rfree 0.1325/0.1555 0.1435/0.1629 0.1802/0.2060 0.2162/0.2508
(0.1692/0.2385) (0.2054/0.2287) (0.3157/0.3360) (0.2840/0.3594)

Number of non- 1597 1608 1529 3011hydrogen atoms
Average B-factors 21.68 27.32 29.24 48.77
Rmsd

Bond lengths (A) 0.006 0.008 0.003 0.003
Bond angles (*) 0.778 0.9 0.49 0.5

Values in parentheses are for the highest-resolution shell.

Further structural analysis showed that the Bfl-1:FS2 complex supports several

key side-chain interactions that are absent in Bfl-1:PUMA and that may be important for

selective binding. Surprisingly, aspartate at position 3f (D3f) in FS2, which is strongly

conserved in known BH3 motifs, makes different interactions than what is observed in

numerous previously solved Bcl-2 complex structures. D3f typically forms a salt bridge

with arginine 88 (R88) in helix 4 in Bfl-1 or the corresponding arginine in Bcl-xL, McI-1,

Bcl-w, or BcI-2 (Figure 2.10C). In the Bfl-1:FS2 structure, the carboxylate of D3f is

shifted 5.6 A away from the guanidinium group of R88, and is highly solvent exposed

(Figure 2.10C). Because D3f does not form the canonical D3f:R88 interaction and is

solvent exposed, we reasoned that FS2 should tolerate mutations at this site. This was

confirmed by the tight binding of 6 peptides with alanine, serine, asparagine, glutamate,

histidine or tyrosine at this position (Figure 2.12). Disruption of the D3f:R88 salt bridge
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would be expected to reduce affinity for Bfl-1 and for all of the other anti-apoptotic

receptors. However, in the Bfl-1:FS2 complex this change may be partially

compensated by hydrogen bonding on the opposite side of the FS2 helix between

arginine at position 3c (R3c) of FS2 and asparagine 51 (N51) of Bfl-1 (Figure 2.10E). In

Bfl-1:FS2, position 3c is positioned closer to helix 2 of Bfl-1 than in Bfl-1:PUMA, allowing

R3c to fill the space left by an adjacent methionine-to-alanine mutation at 3d when it

adopts this hydrogen-bonded position. N51 at this position of helix 2 is unique to Bfl-1

among the human anti-apoptotic proteins (Figure 2.13).

FS2

FS2 D3fA

FS2 D3fN
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FS2 D3fH
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FS2 D3fS
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Figure 2.12. FACS analysis of cells displaying FS2 or FS2 with single point mutants at position 3f. FACS
profiles for mutants are nearly indistinguishable from that of FS2. Data were collected the same day with
the same settings, and all plots use the same scale of arbitrary units.
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Bfl-1 VLQNVAFSVQKEVE KSCLDNVNvVVs ARTLFNQV1EKEFEDGI iNWGRIVTIFAFEGILIK

Mci-1 TLRRVGDGVQRNHE OGMLRKLDIKN d-rDVKSLSRVMIHVFSDGVtNWGRIVTLISFGAFVAK

Bcl-xL ALREAGDEFELRY SDLTSQLHITP -rAYOSFEQVVNELFRDGV-NWGRIVAFFSFGGALCV

Bcl-2 TLRQAGDDFSRRY AEMSSQLHLTP P-IARGRFATVVEELFRDGV-NWGRIVAFFEFGGVMCV

sBc-w AMRAAGDEFETRF SDLAAQLHVTP 4 - AQQRF'ToVSDELFOGGP-NWGRLVKFFVfGAALCA

Figure 2.13. Multiple-sequence alignment of helices 2-4 of human anti-apoptotic Bfl-1 homologs. Bfl-1
has an amino-acid insertion that may contribute to the widened binding groove between helices 3 and 4
(dotted box). Additionally, there is an asparagine that is unique to Bfl-1 at the elbow between helix 2 and
3 that forms a hydrogen bond with FS2 (solid box). This interaction may contribute to the Bfl-1 specificity
of FS2. Sequence alignment made using Cobalt65.

Other structural differences between PUMA and FS2 binding are apparent near

the N-terminal end of the peptide. Modeling FS2 mutations in the Bfl-1:PUMA structure

suggested that the small-to-large mutation of alanine at position 2a in PUMA to the

valine in FS2 would result in steric clashes with helix 4 of Bfl-1 for all backbone-

dependent rotamers (Figure 2.14). This change is accommodated by the shift in the Bfl-

1:FS2 structure. Also, a rotation of FS2 in the Bfl-1 binding groove partially buries the

phenylalanine at position 1g that is solvent-exposed in the PUMA complex, which may

be energetically favorable (Figure 2.1OD).
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BfI-1:PUMA BfI-1:FS2

Figure 2.14. Residues in FS2 are not readily accommodated in the PUMA binding geometry. Modeling on
a fixed backbone indicates that all valine rotamers would clash (red spheres) with Bfl-1 (green) when
modeled in to position 2a of PUMA (gray). Shown here is the most preferred rotamer. The shifted binding
mode of FS2 accommodates valine at position 2a. Model made using Pymol. Red lozenge indicates a
steric clash as detected by the program.

Because the altered binding mode of FS2 is expected to impact predictions made

using structure-based models, we re-scored the designed Bfl-1 library on the shifted Bfl-

1:FS2 structure using STATIUM. FS1 and FS2 scored much better (higher) on the

shifted model than on the original model, whereas PUMA scored better on the original

model (Figure 2.10F). Analysis of the entire pool of sequences that passed screening

showed that these peptides were enriched in sequences that scored better on the

shifted model, compared to the input library, consistent with our observation of size

patterning in the majority of these sequences (Figure 2.10G).

Structural analysis of off-target binding to Mcl-1

To better understand the structural basis of FS2 binding specificity, we solved the

X-ray crystal structure of FS2 bound to Mcl-1 at 2.35 A resolution. FS2 binding to Mcl-1

is > 100-fold weaker than binding to Bfl-1. Similar to the way FS2 binds to Bfl-1, FS2
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engages Mci-1 in a shifted orientation relative to BIM (Figure 2.15A, B). As is the case

for FS2 binding to Bfl-1, this shift re-positions the highly conserved aspartate at peptide

position 3f to a location 4.8 A away from McI-1, disrupting the canonical salt bridge with

arginine 92 (Figure 2.15C). This disruption would be expected to reduce affinity for Mcl-

1, but it doesn't account for the specificity of FS2 for Bfl-1, because the salt bridge is

lost in both complexes. There are other differences between the Bfl-1:FS2 and Mcl-

1:FS2 structures that may account for some of the affinity difference. For example, R3c

in FS2 forms a hydrogen bond with N51 of Bfl-1, but does not form an equivalent

interaction with Mcl-1 and is instead solvent exposed (Figure 2.15D). In McI-1, there is

an alanine (A55) at this site, and an adjacent histidine (H53) would be expected to clash

with R3c if it adopted this conformation. The N-terminus of FS2 is also buried further

into the binding groove of Bfl-1 than Mcl-1 (Figure 2.15E). The Bfl-1 binding groove is

wider in this region than the Mcl-1 binding groove, as illustrated by aligning many Bfl-1

and Mcl-1 structures (Figure 2.16). This region of the groove is formed by helices 3 and

4. There is an amino acid insertion in the loop between helices 3 and 4 that is unique to

Bfl-1 that likely contributes to the distinct structural environment of Bfl-1 in this region

(Figure 2.13).
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Figure 2.15. Crystal structure of FS2 bound to human Mcl-1. (A) Binding groove of Mci-1 (blue, surface)

with BIM (yellow, 2PQK 6) and FS2 (purple). (B) Ca- C0 shifts between FS2 and BIM when bound to Mcl-1.

(C) The canonical Bfl-1:BH3 salt bridge between D3f and R92, formed in McI-1:BIM, is not observed in

the McI-1:FS2 complex. (D) In contrast with the arginine at position 3c of the Bfl-1:FS2 complex, which

makes packing and hydrogen-bond interactions the interface, R3c is oriented away from the BH3 binding

groove in the McI-1:FS2 complex. (E) The McI-1 binding groove between helix 3 and helix 4 is narrower

than the Bfl-1 binding groove, and the N-terminus of FS2 is shifted in the McI-1:FS2 structure in

comparison with the Bfl-1:FS2 complex.
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Bfl-1
BH3

Figure 2.16. Alignment of all crystal structures in the PDB of Bfl-1/Mcl-1 bound to BH3 peptides. Helix 3
in Bfl-1 is shifted relative to Mcl-1, resulting in a widened binding groove.

Biological Activity of Designed Bfl-1 inhibitors

We tested our designed peptides for Bfl-1 selective targeting by carrying out BH3

profiling of cells with known dependencies on anti-apoptotic proteins. In this assay,

peptides are titrated into permeabilized cells, and mitochondrial depolarization is

measured using the voltage-sensitive dye JC-1 (Figure 2.17A)8 . We tested the apoptotic

sensitivity of BCR-ABL-expressing B-lineage acute lymphoblastic leukemia cell lines

engineered to depend on Bcl-2, Bcl-xL, Mcl-1, or Bfl-1 overexpression for survival 35 . The

percent depolarization from these assays is shown in Figure 2.17B. In comparison with

a shorter, truncated PUMA BH3 (PUMAle-4c, PUMASh), which promoted mitochondrial

depolarization in all of the cell lines tested, at 100 nM the Bfl-1 selective inhibitors FS1,

FS2, and FS3 promoted depolarization only in Bfl-1 dependent cells. An inactive
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PUMAsh mutant, PUMA L3aA;D3fA (PUMA 2A) was used as a negative control 36. EC50

values for inducing mitochondrial permeabilization in the engineered cell lines agreed

well with trends in Bfl-1 binding affinities, as expected based on the mechanism of

action (Figure 2.17C). As an additional test for on-pathway activity, we measured

cytochrome c release in the same engineered cell lines in response to peptide

treatment, using iBH3 profiling37. The specificity pattern observed when monitoring

cytochrome c release was consistent with that obtained by BH3 profiling read out using

JC-1 (Figure 2.17D, Figure 2.18). A Mci-1 selective peptide, MS1 was used as a

control10 . In both assays, FS3 promoted mitochondrial depolarization more potently than

FS1 or FS2, but was less selective, with significant cross reactivity at 30 pM peptide

concentration.

FS1, FS2, and FS3 were based on the sequence of PUMA BH3, which has been

proposed to directly activate apoptosis through interactions with BAK and BAX38 ,3 9. To

test the possibility that FS1, FS2, or FS3 may directly activate BAK and BAX, we

measured cytochrome c release in two "unprimed" cell lines (PC-3 and SF295).

Unprimed cells require BAK/BAX activators to release cytochrome c40. We observed

cytochrome c release in cells treated with BIM or PUMA BH3 but not in cells treated

with as much as 100 pM FS1 or FS2 (Figure 2.19). Treatment with FS3 or PUMAsh

peptide led to cytochrome c release at 32 and 100 pM (Figure 2.19). This may indicate

that FS3 and PUMAsh have very weak activator function. Taken together, our data show

that FS1 and FS2 are not themselves activators, but that they instead act as apoptotic

sensitizers by competing with activators or with BAX or BAK for binding to anti-apoptotic

proteins, as intended in our design scheme.
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Figure 2.17. Designed Bfl-1 inhibitors selectively induce MOMP in Bfl-1 dependent cells. (A) The BH3
profiling assay detects MOMP by monitoring JC-1 fluorescence in permeabilized cells treated with
different peptides. (B-C) Depolarization of mitochondria induced by designed peptides in four cell lines
that depend on ectopic expression of Mcl-1, Bcl-2, Bcl-xL, or Bfl-1 for survival. (C) Correlation between Ki
in solution studies and EC50 values in BH3 profiling. Open circles indicate lower bound estimates of EC50
or Ki. (D) Cytochrome c release from the same cell lines in b and c. Data are mean SD of 3 or more
independent measurements.
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Figure 2.18. At low concentrations, FS1, FS2, and FS3 selectively induced cytochrome c release only in
Bfl-1 dependent cell lines. iBH3 was performed on highly primed cells of known anti-apoptotic
dependency. Data are mean SD of 3 or more independent measurements.
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Covalent Inhibitors of Bfl-1 Enhance Specificity

Our initial sorts for Bfl-1 selective binders identified many sequences that

included cysteine at position 1g or 2b (Table 2.6). Interestingly, cysteines encoded at

several other positions along the BH3 motif were not enriched. Furthermore, cysteine

was not enriched in previous screens for Bfl-1 binding 26. This observation led us to

hypothesize that Bfl-1 binding selectivity could be improved in non-reducing conditions if

the peptide ligand formed a disulfide bond with cysteine 55 (C55) of Bfl-1, which is

adjacent to the binding cleft of Bfl-1 and unique to Bfl-1 among Bcl-2 family paralogs

(Figure 2.20). Testing yeast-displayed peptides for binding to a Bfl-1 cysteine-to-serine

(C55S) mutant confirmed that PUMA and BIM bound to Bfl-1 C55S, whereas the

majority of the peptides in the cysteine-enriched pool bound to wild type Bfl-1 but not to

Bfl-1 C55S (Figure 2.21). Rescreening our library using Bfl-1 C55S led to the

identification of FS1, FS2 and FS3, as described above. But, in addition, the discovery

that BH3 peptides in our library could access a unique, reactive cysteine in Bfl-1 led us

to design covalent inhibitors based on these peptides.
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Figure 2.20. An electrophilic variant of FS2 reacts covalently with Bfl-1. (A) C55 in Bfl-1 is close to the

BH3 binding groove in BIM:Bfl-1 structure 2VM629. (B-C) Modeling suggested two ways in which an N-

terminal acrylamide group could be incorporated into a BH3 peptide with good reaction geometry, leading

to peptides FS2_lgX (modification shown in B) or FS2_lfX (modification shown in C) (D) FS2_lfX (red)

reacted more rapidly with Bfl-1 than FS2_1gX (green). Bfl-1 crosslinking as a function of reaction time

was measured using gel-shift assays; data are mean SD of 2 or more independent measurements.

Crosslinking did not occur with the acetylated control peptide FS2_1fAc (blue). (E) FS2_lfX (red) was

more potent than FS2_1fAc (blue) in BH3 profiling assays of Bfl-1 dependent cells. Data are mean SD

of 3 or more independent measurements. (F) X-ray structure of Bfl-1 covalently cross-linked to FS2_lfX.

(G) Electron density map of covalent crosslink between FS2_1fX and Bfl-1.
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Figure 2.21. Library members bind covalently to Bfl-1 cysteine 55. FACS analysis of yeast cells
displaying (A) PUMA in the presence of Bfl-1, (B) PUMA in the presence of the cysteine-to-serine point
mutant Bfl-1 C55S, (C) the FL6 library pool in the presence of Bfl-1, and (D) the FL6 library pool in the
presence of Bfl-1 C55S.

We used structure-based modeling to choose appropriate cysteine-reactive

electrophiles and optimize their placement in different BH3 positions in the 2VM6

structure of Bfl-1 bound to BIM BH329. Our two most promising designs featured N-

terminal Michael acceptors at position 1g (FS2_lgX; Figure 2.20B) or 1f (FS2_lfX;

Figure 2.20C) of peptide FS2. We tested our designs for covalent modification of Bfl-1

and Bfl-1 C55S using gel-shift assays. Both FS2_1gX and FS2_1fX modified Bfl-1 once

or less when applied at micromolar concentrations, whereas Bfl-1 C55S (which contains
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A

2 other solvent-exposed cysteine residues) did not react with these electrophilic

peptides for at least 6 hours (Figure 2.22). Using densitometry, we measured the

fraction of Bfl-1 reacted as a function of time for both designs. FS2_1fX reacted with Bfl-

1 with a half-life of 6.5 min and FS2_1gX reacted more slowly with a half-life of 138 min

(Figure 2.20D). We tested FS2_1fX in BH3 profiling and found that it improved on-

pathway targeting of Bfl-1 compared to N-terminally acetylated control (Figure 2.20E)

and was selective for Bfl-1 (Figure 2.23). We solved a crystal structure of FS2_1fX

bound to Bfl-1 that showed clear electron density consistent with a covalent bond to

C55, as designed (Figure 2.20F,G).

A
Bfl-1 Bfl-1 C55S

25 kD

20 kD +*-Cross-linked Bfl-1

0' 5' 15' 30' 1h 2h 6h 0' 5' 15' 30' 1h 2h 6h
incubation time

B

25 kD

FS2_l fX 2OkD 4-Cross-linked Bfl-1
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25 kD

FS2_1gX 20 kD +-Cross-linked Bfl-1

4-Bfl-1
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0' 1' 2' 4' 8' 16' 32' 64' 128'
incubation time

Figure 2.22. Kinetics of the reaction of Bfl-1 with electrophilic peptides. (A) There is a time-dependent
shift in apparent molecular weight, as assessed by SDS-PAGE, when Bfl-1 is incubated with FS2_1fX but
not when Bfl-1 C55S 1 is incubated with FS2_lgX, consistent with covalent modification of Bfl-1 at
cysteine 55. (B) Time course of FS2_1gX and FS2_1fX crosslinking with Bfl-1.
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Figure 2.23. Depolarization of mitochondria induced by designed peptides, including covalent inhibitor
FS2_gX, in four cell lines that depend on ectopic expression of McI-1, Bcl-2, Bcl-xL, or Bfl-1 for survival.
Data are mean SD of 3 or more independent measurements.

Discussion

Bfl-1 is implicated in cancer progression, and inhibiting its anti-apoptotic function

may be therapeutically beneficial. Because the role of Bfl-1 in disease is less

characterized than that of McI-1 or Bcl-2, selective targeting agents will likely be critical

for disentangling the roles of different anti-apoptotic proteins. Prior efforts to identify Bfl-

1 selective inhibitors provided molecules with only modest binding affinity and/or

selectivity2 -24 ,26. More recent work has shown, as we demonstrate here, that reaction of

an electrophilic group on a Bfl-1 inhibitor with a cysteine near the BH3 binding site

confers both infinitely tight and covalently selective interactions with Bfl-1 in preference

to other BcI-2 protein family members. This strategy has been used to target Bfl-1 with a

BIM peptide chemically modified to react with cysteine41 -43. But BIM is a promiscuous

binder of Bcl-2, Bcl-xL, Bcl-w and McI-I, as well as an activator of BAX and BAK44.

Thus, although Bfl-1 is the only covalent target of electrophilic BIM, this approach does

not provide an optimal strategy for dissecting the contributions of Bfl-1 to cell survival,

because BIM peptides are expected to have many effects on the apoptotic protein-
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interaction network. Here, we addressed this by successfully re-engineering PUMA, a

promiscuous binder of anti-apoptotic proteins, to make it highly selective for Bfl-1 both

as a non-covalent and as a covalent inhibitor.

In re-designing PUMA, we confronted the enormous space of possible mutational

variants. The challenge was to identify combinations of mutations that would reduce

binding to Bcl-2, Bcl-xL, Bcl-w, and Mcl-1, while not substantially weakening Bfl-1

interaction. We used computational modeling and existing experimental data to guide

our design of focused libraries of peptides predicted to provide the desired specificity.

We tested libraries of combinations of the best-ranked mutations both in the context of

BIM and in the context of PUMA.

Interestingly, our experimental results showed stark differences in binding

behavior between two libraries that introduced the same mutations into BIM vs. PUMA

BH3 peptides. Our carefully designed library was rich in Bfl-1 selective binders when

tested in a PUMA background, but poor in binders when encoded in a BIM BH3

sequence. This was not because PUMA is a tighter or more selective binder of Bfl-1

than is PUMA; published data indicate that BIM BH3 binds at least as tightly to Bfl-1 as

does PUMA BH326 . Also, deep sequencing of the two input libraries indicated that they

were of similar quality; each had only a small percentage of sequences that were not

designed (6.6% for the BIM library and 4.4% for the PUMA library). Given that dramatic

differences were observed between the libraries early in screening (pool FL2, Figure

2.6), and that the PUMA library still contained just 5.9% non-designed mutations in pool

FL3, it is unlikely that random mutations were the source of the observed differences.
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We think it likely that the difference between the PUMA vs. BIM libraries arose

because background sequence differently influenced the contributions of library

mutations, or combinations of mutations, to binding. For example, this could be the case

if PUMA variants but not BIM variants could undergo the conformational shifts we

observed in our structures. Consistent with this, we found that introducing the 6

mutations of FS2 into BIM BH3 rather than PUMA BH3, giving BIM-FS2, weakened BIM

BH3 binding to Bfl-1 by >1000-fold; Figure 2.7. Differential effects of mutations based on

BH3 context were also observed by DeBartolo et al., who reported modest correlation

between the influence of point mutations on Mcl-1 binding tested in the context of BIM

vs. NOXA BH3 (Pearson r -0.55), and between the effect on Bcl-xL binding of mutations

made in BIM vs. BAD (r ~ 0.78)31. Our results are also consistent with the experiments

of Dutta et al., who studied Bfl-1 binding selectivity in BIM-based libraries but identified

only modestly selective peptides in screening26 . Other groups have reported similarly

dramatic background effects of context in protein engineering, e.g. in antibody libraries,

and have obtained different success rates from screens and selections that started with

different framework sequences4.

Epistasis between mutations contributed to selective Bfl-1 binding (Figure 2.9D).

Crystal structures of Bfl-1 bound to PUMA vs. FS2 show that epistasis arises from a

substantial alteration of the Bfl-1-binding mode. FS2 binds in a shifted and rotated

orientation relative to PUMA (Figure 2.10A), and does not make a key salt bridge that is

conserved in nearly all structures of Bcl-2 protein complexes. Interestingly, sorting for

Bfl-1 selective binders enriched sequences that score better when modeled using the

FS2 binding conformation than with the BIM or PUMA binding geometry (Figure 2.10G),
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suggesting that this structural shift may be a common feature of many sequences that

we identified and a general strategy for achieving Bfl-1 specificity. The FS2 structures

now provide a springboard to permit the design of further improvements in Bfl-1

selectivity, affinity, cell permeability, and other physicochemical properties. For

example, the structures of FS2 bound to Bfl-1 can be used to design chemical

crosslinks to reinforce helicity and promote cellular uptake46-49, the structure of FS2

bound to Mcl-1can be used to further reduce Mcl-1 binding, and the structure of

FS2_1fX can be used as a platform for the design of therapeutic peptides and small

molecules that covalently target Bfl-1.

By combining the strengths of computational design and library screening, we

successfully identified rare peptides with desired binding specificities. It is unlikely that

computational approaches alone could have identified FS1, FS2, or FS3 in the absence

of structural templates for the FS2 binding mode. Also, library sequences that were

predicted to give the best Bfl-1 affinity and specificity over BcI-xL and Mcl-1 (the top/left

edge of the score distribution for sequences in Figure 2.1F-1) were not among the hits

recovered in screening. This could be because of deficiencies in the models, or

because the experiments included competitor homologs Bcl-w and Bcl-2, which were

not modeled in library design. A structure of Bcl-w bound to a BH3 peptide was not

available when we deigned our libraries, so designing specificity against Bcl-w would

have been subject to the inaccuracies of homology models. It is also possible that even

the highest affinity sequences that bind in the geometry that we modeled cannot match

the tight binding or specificity that can be achieved with a conformational shift.
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Conversely, unguided library approaches (including random mutagenesis) would

probably not generate FS1, FS2, or FS3. More than 6 x 1012 sequences are 6 mutations

away from 23-residue PUMA BH3, and most mutations are predicted to weaken

binding. Furthermore, our models predict that most mutations will have correlated

effects on binding to different Bcl-2 family members (Figure 2.2), which dramatically

reduces the random chance of finding mutations that confer specificity. Library

approaches that take advantage of iterative randomization would have difficulty finding

sequences that contain synergistic mutations like those in FS2.

Random mutagenesis is a powerful tool for exploring a local sequence space

(e.g. by error-prone PCR), and this could be a strategy for further improving peptides

identified in library screens such as this one. The low frequency of non-designed

mutations in our libraries introduced a random sampling element, but this did not appear

to be important for success in this study. FS2 and FS3 were included in the designed

library, and FS1 had only a single non-designed mutation, at a solvent-exposed site.

The peptides we designed in this work have immediate value as biochemical

reagents and tools for therapeutic development. FS1, FS2, and FS3 selectively trigger

apoptosis of Bfl-1 dependent cells in a BH3 profiling assay, and given that Bcl-2, Mcl-1,

and Bcl-xL dependencies are predictive of therapeutic response to cytotoxic anticancer

drugs7- 9, we speculate that diagnosing Bfl-1 dependence using these peptides will

provide additional predictive power to guide the use of existing treatments50.

Furthermore, recent studies with an electrophilic variant of BIM show that targeting Bfl-1

enhances cytotoxicity and caspase 3/7 activity in at least 3 Bfl-1 expressing melanoma

cell lines41. Finally, the high affinity and selectivity of these peptides, along with the
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available structural data, make them promising starting points for the development of

peptide- or small-molecule therapeutics directly targeting Bfl-1. Therapeutic applications

using peptides require a solution to the cell delivery problem. But chemical modification

by hydrocarbon stapling, carefully optimized, has proven effective for delivering other

helical BH3 peptides into cells46-4 9. We are optimistic that similar modifications will be

effective for FS1, FS2, and/or FS3, and we predict rapid development of a range of cell-

deliverable Bfl-1 targeting agents that draws on lessons learned from Bcl-xL and Mcl-1

inhibitor design as well as the new structural insights that we provide here.

Methods

Peptide synthesis and purification

Library peptides, the PUMA BH3 peptide, and PUMA BH3 peptide mutants had

N-terminal acetlyation and C-terminal amidation. Fluoresceinated BIM (fluorescein-

IWIAQELRRIGDEFNAYY) BH3 was synthesized with N-terminal 5/6-fluorescein amidite

and C-terminal amidation. Covalent peptide inhibitors had N-terminal acrylamide and C-

terminal amidation. Peptides were synthesized by the MIT Biopolymers Laboratory. The

crude synthesis product was purified by HPLC on a C18 column with a linear gradient of

acetonitrile in water. Peptides were verified by mass spectrometry.

Fluorescence polarization assay

Competition fluorescence polarization experiments were performed by titrating 0-

10 pM of unlabeled peptide into 50 nM receptor plus 25 nM fluoresceinated BIM

(fluorescein-IWIAQELRRIGDEFNAYY) in FP buffer (25 mM Tris pH 7.8, 50 mM NaCl, 1

mM EDTA, 5% DMSO, 0.001% v/v Triton-X). C-myc-tagged receptors were used for all

Bcl-2 homologs, as previously described'"'. Plates were mixed at 23 0C for 3 h. Plates
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were read again at 24 to check equilibration. Experiments were done in at least

triplicate. Data were fit, as described for competition fluorescence anisotropy

experiments in Foight et al.10 , to a complete competitive binding model (equation 17 in

Roehrl et al., 2004)51 using a Python script.

Library design

Position-specific scoring matrices based on SPOT array intensities (PSSMSPOT)

were described previously 31' 32 52 . PSSMSPOT scores were normalized to wild-type BIM

BH3, as described by Dutta et a1 32 . The structure-based statistical potential STATIUM

was used to predict and score the effect of mutations in BH3 peptides on binding to Bfl-

1, McI-1, Bcl-xL2 8 ,3 1. The crystal structures used to create the STATIUM models were

the same as those used in previous studies 28' 31: 3MQP (Bfl-1:Noxa)5 3, 3PK1 (Mcl-

1:BAX)54, and 3108 (Bcl-xL:BIM3aF) 55. STATIUM z-scores were normalized using the

score distribution for the human proteome, as described by DeBartolo et al2 8.

Libraries were constructed using degenerate codons chosen by a computational

optimization protocol56 . To guide codon selection, we divided residue substitutions into

three categories: preferred, required, and disruptive. Preferred substitutions were those

that scored higher than the median of all point mutants of BIM at positions 2a-4e on

either PSSMSPOTBfI-1 or STATIUMBfl-1. Additionally, some substitutions that did not meet

these criteria but that had large specificity scores from either PSSMSPOTBfl-1 or

STATIUMBM-1 were included. Required substitutions, designated manually, were a

subset of the most promising preferred residues, particularly those predicted to be

highly selective for Bfl-1 or BIM/PUMA wild-type residues. Specificity for Bfl-1 over Bcl-

XL or Mcl-1 was determined by the difference of PSSMSPOT scores or the difference in
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STATIUM z-scores. Disruptive residues included mutations with PSSMSPOT or STATIUM

scores for Bfl-1 that were more than 1 standard deviation worse than wild-type BIM.

Degenerate codons were considered as possibilities for design if they included all of the

required residues at a site and none of the disruptive residues. Codons that encoded 3

or fewer variants were eliminated, to decrease the likelihood that a large percentage of

the library would be "poisoned" by a disruptive substitution that wasn't identified by our

models. Combinations of degenerate codons were optimized with integer linear

programming, as previously described, to maximize the number of sequences

composed of preferred residues 56. The library was limited to at most 1 x 107 DNA

sequences. The final Bfl-1 targeted library contained a large number of protein

sequences (6.84 x 106), many of which were predicted to be tight and selective Bfl-1

binders by the PSSMSPOT and STATIUM models. The entire design process was

repeated to produce libraries selective for Bcl-xL and Mci-1.

Construction of the yeast-display vector and the combinatorial library

DNA encoding PUMA-BH3 (residues 132-172 from human PUMA, UniProt #

Q9BXH1-1) with a carboxy-terminal FLAG tag was subcloned into the plasmid

pCTCON2 57 between Nhel and Xhol restriction digest sites (5' Nhel-

GGTACCGGATCCGGTGGC-PUMA BH3-

GGCGGCCGCGATTATAAAGATGATGATGATAAATAA-Xhol-3'). The BH3 peptide

library was constructed with homologous recombination. The inserts were constructed

using the PUMA-BH3 yeast display vector as a template, a reverse primer (5'

CTAAAAGTACAGTGGGAACAAAGTCG 3'), and forward primers with degenerate

bases (PUMA Bfl-1 targeted library: 5' C GGA TCC GGT GGC CAA TGG VHA CGT
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GAA ATT KVT GCC NDC CTG CGT CGC NBC GCG GAT VWK NHT AAT GCC CAA

NYT GAA CGT CGT CGC CAG GAG GAA C 3'; BIM Bfl-1 targeted library: 5' GGA TCC

GGT GGC CGT CCG VHA ATT TGG ATT KVT CAG NDC CTG CGT CGT NBC GGC

GAT VWK NHT AAT GCG TAT NYT GCG CGT CGC GTG TTT CTG AAT 3'; PUMA

Bcl-xL targeted library: 5' C GGA TCC GGT GGC CAA TGG VWS CGT GAA NWT GGC

GCC CAA CTG RBA CGC NNC GSC GAT GAT CTG VHC RMA CAA NVC GAA CGT

CGT CGC CAG GAG GAA C 3'; BIM BcI-xL targeted library: 5' GGA TCC GGT GGC

CGT CCG VWS ATT TGG NWT GCG CAG GAA CTG RBA CGT NNC GSC GAT GAA

TTT VHC RMA TAT NVC GCG CGT CGC GTG TTT CTG AAT 3'; PUMA Mcl-1

targeted library: 5' GT ACC GGA TCC GGT GGC CAA NSG GCG BNC SAW RYC RBT

GCC CAA CTG RNA CGC ATG GCG GAT GAT NHT VAK GCC CAA TAT GAA CGT

CGT CGC C 3'; BIM Mcl-1 targeted library: 5' TACCGGATCCGGTGGCCGT NSG

GAA BNC SAW RYC RBT CAGGAACTG RNA CGTATTGGCGATGAA NHT VAK

GCGTATTATGCGCGTCGCGT 3'). To complete insert construction, the 5' ends of

these PCR products were further extended until there was at least 40 bp of homology to

the acceptor vector on both ends of the library inserts. The acceptor vector was

prepared by cleaving the yeast display vector with the endonucleases Xhol and Nhel

and purifying the cleavage product with a gel purification kit (Qiagen). The library inserts

and acceptor vector were mixed and transformed into yeast following the procedure of

Gietz et al.58 . 20 electroporations produced > 10 fold more transformants than the

theoretical size of each library with vector background estimated at < 0.01%. DNA from

transformed cells was PCR amplified to check for randomization.
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Flow cytometric analysis and sorting

The yeast-displayed Bfl-1 library was grown and sorted using fluorescence

activated cell sorting (FACS) according to a protocol adapted from Reich et a 59. The

libraries were grown from glycerol stocks that were inoculated to a final OD600 of 0.05 in

a volume sufficient to oversample the estimated library diversity by at least 10-fold in

selective media containing glucose (SD+CAA: 5 g/L casamino acids, 1.7 g/L yeast

nitrogen base, 5.3 g/L ammonium sulfate, 10.2 g/L Na2HPO4-7H 20 and 8.6 g/L

NaH2PO4-H 20, 2% glucose). Cultures were grown for 12 h at 30 0C and then cells were

diluted to OD600 of 0.005-0.01 in SD+CAA and grown to OD600 of 0.1-0.6 (-12h) at 30

0C. To induce expression, cultured were diluted (40 mL inoculate/L) into selective media

containing galactose (SG+CAA: 5 g/L casamino acids, 1.7 g/L yeast nitrogen base, 5.3

g/L ammonium sulfate, 10.2 g/L Na2HPO4-7H 20 and 8.6 g/L NaH 2PO4-H 20, 2%

glucose) and grown to OD600 of 0.2-0.5 (16-24h) at 30 C. Induced yeast cells were

filtered with 0.45 pm filter plates or bottle-top filters and washed twice with BSS (50 mM

Tris, 100 mM NaCl, pH 8, 1 mg/ml BSA). Sufficient cells to oversample the library

diversity at least 10-fold were resuspended in BSS with at least 10-fold molar excess

target protein and incubated for 2 h at room temperature with gentle shaking. Cells were

filtered, washed twice in chilled BSS, and incubated with a mixture of primary antibodies

(anti-HA mouse, Roche, RRID:AB_514505, and anti-c-myc rabbit, Sigma,

RRID:AB_439680) at 1:100 dilution in a volume of 20 pl per 106 cells for 15 min at 4 'C

in BSS. Cells were filtered, washed twice in chilled BSS, and incubated in a mixture of

secondary antibodies (1:40 APC rat anti-mouse, BD, RRID:AB_398465, and 1:100 PE

goat anti-rabbit, Sigma, RRID:AB_261257) in BSS at 4 0C in the dark for 15 min. The
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filtering and washing steps were repeated and the labeled cells were resuspended in

BSS and analyzed on a BD FACSCanto flow cytometer or sorted on a BD FACSAria

using FACSDiva software. The sorted cells were collected in selective media containing

glucose (SD+CAA) and grown to an OD600 of 6-10 for -48 hours in the presence of

streptomycin/penicillin to prevent bacterial growth, then pelleted, washed, and stored as

glycerol stocks in SD+CAA+20% glycerol. A series of positive, negative, and

competition sorts were used to enrich Bfl-1 selective binders. The detailed sorting

scheme is given in Figure 2.5.

Illumina sequencing and data processing

Glycerol stocks from each pool isolated during sorting were grown overnight in

SD+CAA, using sufficient stock to oversample the estimated library diversity by at least

10-fold. 1 x 108 cells from each pool were pelleted in a microcentrifuge tube at 300 x g

for 1 min and washed twice with PBS. The plasmid DNA from yeast was extracted using

the Zymoprep Yeast Plasmid Miniprep II (Zymo Research) reagents and Qiagen

miniprep columns. The DNA was eluted in water. The BH3 library was amplified with

PCR using primers that encoded an Mmel restriction enzyme binding site at 5' end and

a universal Illumina sequencing region on the 3' end. After purification with the Qiagen

PCR purification kit, the PCR products were digested with Mmel (3.45 pmol DNA:2 pL

Mmel, NEB) for 1 h at 37 *C before being heat inactivated at 80 'C for 20 min. Each

digestion product was then ligated by treatment with T4 DNA ligase (NEB) for 30 min at

20 'C to double-stranded DNA fragments containing Illumina adapters, with the adapter

containing a unique barcode, and heat inactivated for 10 min at 65 0C. Barcodes were

varied by at least two bases and were used to assign Illumina reads to the appropriate
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pool. A final PCR amplified the ligation product and extended the 5' and 3' regions to

include adaptor sequences for Illumina sequencing. Samples were then multiplexed and

run in one lane on an Illumina Nextseq with paired-end reads of 75 bp using the

universal Illumina forward sequencing primer and a PUMA construct-specific Illumina

read primer reverse (5' CGCCTTGTTCCTCCTGGCGACGACGTTCATATTGGGC 3').

Illumina deep sequencing data was processed in python. The data was filtered for

sequences with barcodes that had high Phred Scores (> 20). Sequences were

reconstructed by aligning pair end reads. Sequences observed fewer than 20 times

were removed from the data set.

Crystallography

Crystals of Bfl-1 in complex with PUMA, FS2 or FS2_1fX peptides were grown in

hanging drops over a reservoir containing 1.8 M ammonium sulfate, 0.1 M MES pH 7.0

at room temperature. Crystals were seeded with drops containing parent crystals grown

in higher ammonium sulfate (2.2-2.4 M) using a cat whisker. The protein was mixed with

peptide at a 1:1 molar ratio and concentrated to 4 mg/ml in 20 mM Tris, 150 mM NaCl,

1% glycerol, 1 mM DTT, pH 8.0. The hanging drops contained 1.5 pL of complex mixed

with 1.5 pL of reservoir solution. Crystals were cryo-protected by transferring into 2.0 M

lithium sulfate with 10% glycerol prior to flash freezing. Diffraction data were collected at

the Advanced Photon Source at the Argonne National Laboratory, NE-CAT beamline

24-ID-C. The Bfl-1:FS2 data were integrated and scaled to 1.2 A using HKL2000 and

phased using PHENIX ridged body refinement of chain A of structure 4ZEQ using

PHENIX 60'61 . The peptide was built into the difference density from the rigid body
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refinement and the structure was refined with iterative rounds of refinement and model

building using PHENIX and COOT6 1,2 . The PUMA and FS2_1fX complex data sets

extended to 1.33 A and 1.73 A respectively and were phased with the Bfl-1 chain of the

FS2 complex model63.

Crystals of the Mcl-1/FS2 peptide complex were grown at room temperature in

hanging drops over a reservoir containing 0.2 M zinc sulfate, 0.1 M imidazole (pH 6.5),

and 3% 6-aminohexanoic acid. The protein was mixed with peptide at a 1:1 molar ratio

and diluted to 2 mg/ml in 20 mM Tris, 150 mM NaCl, 1% glycerol, 1 mM DTT, pH 8.0.

The hanging drops contained 1.5 pL of complex mixed with 1.5 pL of reservoir solution.

Crystals were cryoprotected by transferring into 15% glycerol, 0.2 M zinc sulfate, 0.1 M

imidazole (pH 6.5), and 3% 6-aminohexanoic acid prior to flash freezing. Diffraction data

were collected at the Advanced Photon Source at the Argonne National Laboratory, NE-

CAT beamline 24-ID-E. The data to were processed to 2.35 A and phased using

molecular replacement with chain A of structure 3PK1 54 using PHASER and refined

using PHENIX and COOT6-

Gel shift assays

Myc-tagged Bfl-1 (5 pM) was incubated with BH3 peptide (25 pM) in 200 pL of

FP in 200 pL FP buffer (see above). 20 pL subsamples were taken at 0, 1, 2, 4, 8, 16,

32, 64, and 128 minutes and quenched in 7 pL loading buffer. Samples were

immediately flash frozen in liquid nitrogen, and stored at -80 C. Samples were run on a

14% acrylamide SDS-PAGE gel and visualized with Coomassie Brilliant Blue. Bands

were quantified with ImageJ. Data were fit in python to the equation y=C*(1-e-kt) where
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y is the fraction of cross-linked Bfl-1, C is the upper limit, t is time, and k is the decay

constant.

Cell lines

The creation and characterization of the BCR-ABL-expressing B-lineage acute

lymphoblastic leukemia suspension cell lines with engineered dependencies on human

versions of anti-apoptotic genes is detailed in Koss et aP5 and was grown in RPMI (Life

Technologies, CA) with 10% fetal bovine serum, 2 mM L-glutamine, 100 l.U./mL

penicillin, 100 pg/mL streptomycin, 25 mM HEPES, and 1 mM non-essential amino

acids. The adherent cell lines PC-3 and SF295 are from the NC160 panel and were

grown in RPMI (Life Technologies, CA) with 10% fetal bovine serum, 2 mM L-glutamine,

penicillin, and streptomycin.

BH3 profiling assays

Peptides were titrated by serial dilution in MEB buffer (150 mM Mannitol, 10 mM

HEPES-KOH pH 7.5, 50 mM KCI, 0.02 mM EGTA, 0.02 mM EDTA, 0.1% BSA, and 5

mM Succinate) containing 20 pg/mL oligomycin, 50 pg/mL digitonin, 2 pM JC-1, and 10

mM 2-mercaptoethanol in 384-well plates. Controls for no depolarization (1% DMSO)

and complete depolarization with the mitochondrial oxidative phosphorylation uncoupler

FCCP (20 pM) were included for data normalization. Cells were suspended at 1.67 x

106 cells/mL in MEB. 15 pL of cell suspension was added to each well containing 15 pL

of treatment solution. Fluorescence emission was measured every 5 minutes for 3

hours at 590 nM with 525 nM excitation on a Tecan Safire2. To produce percent

depolarization, the area under the resultant curve was calculated and normalized to the
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assay controls. Peptide titration curves were fit to sigmoidal dose-response curves

using Graphpad PRISM 7 to obtain EC5o values.

iBH3 assays

Cells were suspended in MEB buffer (150 mM mannitol, 50mM KCI, 10 mM

HEPES, 5 mM succinic acid, 20 pM EGTA, 20 pM EDTA, 0.1% BSA, final pH 7.4) at

0.5*1 06 cells/mL (adherent lines) or 2 *106 cells/mL (suspension lines). Cell suspension

was added to a 384 non-binding well plate (10 pL/well) containing peptides at 2X final

concentration in MEB with 20 pg/mL digitonin. Plates were incubated at 25 'C for 1 hr.

To terminate exposure, 10 pL of 4% formaldehyde in PBS was added to each well,

plates were incubated for 10 min before addition of 10 pL N2 buffer (1.7M Tris, 1.25M

glycine, pH 9.1) for 5 min. 10 pL of staining buffer (2% Tween20, 10% BSA, PBS)

containing 10 pg/mL Hoechst 33342 and 1.25 pg/mL anti-cytochrome c Alexa647

conjugate (BioLegend clone 6H2.B4) was added to each well before sealing the plate

and shaking overnight. The median fluorescence of the cytochrome c channel of

Hoechst positive singlets was recorded by an IntelliCyt iQue Screener Plus.

Cytochrome c release was determined by normalizing the median fluorescence intensity

(MFI) data to positive control wells (Alamethicin) and negative control wells (DMSO) as

follows:

Cytochrome c release = 1 -(MFISample-MFIAlamethicin)I(MFIDMSO-MFIAlamethicin)
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Chapter 3

Peptide design by optimization on a high-dimensional, data-

parameterized protein interaction landscape

V. Xue, J.M. Jenson, and A.E. Keating designed and wrote the study. L. Stretz performed the

titrations of the standards. V. Xue did the computational work and J.M. Jenson did all remaining

experiments.
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Abstract

Many applications in biotechnology require optimizing protein or peptide binding

affinity and specificity for one target among many similar, evolutionarily related family

members. For example, this is necessary to make specific detection reagents, or to

inhibit one paralog that is implicated in disease without affecting others that are

important for the maintenance of healthy cells. The underlying problem is that of

navigating a high-dimensional landscape in both sequence variables (L dimensions,

where L is the protein length) and target affinities (N dimensions, if there are N paralogs

of interest). Because the protein designer begins a problem with no understanding of

this complex landscape, the problem is typically treated by screening large, libraries of

candidate solutions that are often generated randomly and addressing each design

challenge with a new set of experiments. This is inefficient. Furthermore, because

functional protein sequences are rare, most screens only explore the local sequence

spaces around known binders, and therefore discover just a few function-enhancing

mutations at a time. A knowledge of the underlying protein landscape could open new

avenues for design and ways to access functional regions in sequence space that are

otherwise difficult to discover. We developed a protocol for using thousands of protein-

peptide binding affinities, measured with SORTCERY, to parameterize models in a

landscape where N = 3 members of the Bcl-2 family of apoptosis regulating proteins.

We showed that models trained on experimental data have predictive ability on

unobserved peptide sequences, and that optimization on a landscape defined by these

models generates new peptides that are distinct from any previously known binders and

have highly optimized interaction affinities and specificities. We generated 36 peptides
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that bind with high affinity and specificity to just one of BcI-xL, Mci-1 or Bfl-1, and

additional peptides that can bind selectively to two out of three of these proteins. The

successful designs demonstrate the power of this landscape-based design approach,

and the resulting peptides have potential for use as diagnostics or therapeutic leads.

Introduction

Protein-protein interactions (PPIs) play an essential role in all cellular functions,

including transcription, translation, signaling, homeostasis, and the regulation of

enzymatic activity. Protein interaction affinity and specificity are encoded in sequence

and structure in a complex mapping that we do not completely understand. A long-

standing goal in protein science is to describe the underlying relationships accurately

enough to inform studies of disease mechanisms, for example by predicting the effects

of mutations on function. Models that accurately link sequence to function can also

enable discovery of new binding partners and direct the engineering of proteins with

new functions.

Families of structurally similar protein domains that share an evolutionary history

provide intriguing, and often biomedically compelling, examples of how subtle details of

the protein sequence-structure relationship impact biological function. Diverged protein

paralogs often have distinct functions, e.g. distinct binding specificities, that can be

accommodated in a common structural scaffold. For example, the PDZ domain fold has

been evolved into proteins with at least 16 distinct specificity classes'. Many biomedical

applications require reagents that can bind or inhibit the function of just a single family

member within a larger family. Computational and experimental strategies for
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engineering selective inhibitors can be effective, but most methods treat each target

design as a new problem. A driving need for custom, selective, protein-binding

molecules has compelled our pursuit of new methods for modeling sequence-function

relationships that consider a wider swath of the protein sequence landscape for a given

type of domain.

Proteins of the B-cell lymphoma 2 (Bcl-2) family are critical regulators of

apoptosis that have emerged as promising therapeutic targets for the treatment of many

different cancers. Overexpression of human anti-apoptotic proteins Bcl-2, Mcl-1, Bfl-1,

Bcl-xL, and Bcl-w contribute to oncogenesis and resistance to chemotherapy 2 . These

five proteins are highly similar in structure and 18 - 53% identical in sequence3

Molecules that bind and block the functions of anti-apoptotic proteins have shown great

promise in pre-clinical and clinical studies4-7. It would be useful to design Bcl-2 family

member-selective inhibitors, rather than pan-family inhibitors, because off-target binding

can lead to cytotoxic effects 5'8 . The small molecule ABT-263, which binds and inhibits

the function of Bcl-2, BcI-xL and Bcl-w, was identified as a potential therapeutic for

treatment of acute lymphoblastic leukemia5 . However, ABT-263 inhibition of Bcl-xL leads

to dose-limiting thrombocytopenia, 9 . Venetoclax, an FDA approved therapeutic for

treating chronic lymphocytic leukemia, inhibits only Bcl-2 and not Bcl-xL or Bcl-w; fewer

side effects helped advance this molecule to the clinic4'6 . Selective inhibitors of BcI-2

family proteins also have utility for research and for cancer patient cell profiling0'". The

Bcl-2 family is just one example out of many protein families where understanding and

managing binding specificity is important for developing effective and safe therapeutics.
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Many native binding partners of Bcl-2, Mcl-1, Bfl-1, BCI-XL, and Bcl-w contain a -23-

residue Bcl-2 homology 3 (BH3) motif that forms an amphipathic helix upon complex

formation. Synthetic peptides with BH3 motif sequences can compete with native

interaction partners and function as inhibitors. Mapping how sequence determines the

binding profiles of BH3-like peptides could support the design of selective inhibitors with

applications as probes, diagnostics and therapeutics leads, but the >1028 possible

sequences for a 23-mer peptide pose a daunting challenge. Systematic mutational

analyses have provided information about the effects of single mutations in BH3

peptides, and library screening has uncovered functional sequences distinct from wild-

type examples3 ,1 -15 . However, as for most proteins, the biophysical study of BH3

structure-function relationships is hampered by the sparsity of available data in an

enormous sequence space. Ideally, computational methods would fill this gap, but

physical, structure-based modeling has limited accuracy for predicting folding or binding

energy differences among related protein complexes, especially in high-throughput16 .

Previous computational design of BcI-2 inhibitors installed known "hot-spot" residues at

the protein interface to stabilize binding, and used computation to generate a stabilized

scaffold to accommodate these residues1 7. Basing inhibitor design on known residue

interactions limits the novelty of solutions that can be obtained.

Experimental library screening is an effective method for discovering peptides

ligands that bind protein targets, including anti-apoptotic Bcl-2 proteins. Such

experiments typically consider only a single design objective (e.g. identify a tight and

selective binder of protein Bfl-1), and for every design objective, a new experiment must

be performed. The experiments usually focus on identifying a "winner," or a small set of
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the best binders out of an input library. Advances in technology have now made it

possible to use deep sequencing to obtain large amounts of phenotypic data from a

library screen, for example, readouts for all single-point and residue-pair mutations in a

modest-sized protein18 . This information is now available to guide protein design, and

the field can potentially advance faster by using it effectively.

A few exciting examples illustrate the potential of large amounts of experimental

data, treated in a systematic way, to improve design. An early example was the use of

peptide arrays to measure the effects of peptide point mutations on PDZ domain

binding19. This led to a simple model of what was important for binding that, in turn,

guided the design of PDZ "super-binder" peptides that would have been difficult to

identify without the underlying experimental dataset. More recently, the Baker Lab has

demonstrated how using high-throughput screening to assay the effects of all possible

point mutations in a designed protein can provide insights into limitations of

computational models and lead to their improvemento. Rocklin et al. showed that

computationally designing and testing thousands of novel mini-proteins, and applying

computational analyses to capture trends in folding stability, led to improvements in

computational design outcomes21 . Bedbrook et al. used activity data for hundreds of

variants of channel rhodopsins to train a model to captures the sequence features

important for expression and membrane localization, and used this model to predict the

22best members in a library and also improve the behavior of poorly localizing protein .

With increasing amounts of experimental data becoming more routinely

accessible, the synergistic application of high-throughput binding assays with data-

driven modeling holds great potential for advancing rational design. Here, we
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demonstrate the possibilities of this type of approach by applying the high-throughput

SORTCERY assay to generate quantitative protein-peptide interaction data for the Bcl-2

protein family members Bfl-1, Mcl-1, and BcI-xL. The data allowed us to develop family-

specific computational models that provide insight into the determinants of binding

affinity and specificity. We applied our models to peptide design, showing that this data-

driven approach rapidly and reliably provides peptides with custom desired binding

properties. Our success illustrates a new approach for integrating data collection and

modeling to map high-dimensional protein binding landscapes and guide exploration of

novel sequence spaces. This can enable discovery of novel peptides with high potential

utility.

Results

SORTCERY is a protocol for measuring the relative affinities of hundreds or

thousands of peptide binders in parallel2 3 24 . Yeast cells displaying different peptide

ligands are separated into pools based the binding signal using fluorescence activated

cell sorting (FACS). By deep sequencing the library DNA from cells in different pools, it

is possible to assign relative binding affinities on the cell surface. In previous work,

SORTCERY was used to rank-order ligands by affinity23 . We improved on the original

pipeline, as described below, by using the binding profiles of standards of known affinity

to convert quantitative SORTCERY outputs into binding affinities in standard units (e.g.

kcal/mol). This allowed us to directly compare the binding of ligands measured at

different target protein concentrations and also compare peptide binding affinities for

different target proteins. We call this elaboration of the original SORTCERY protocol

amped (affinity mapped) SOR TCERY (Figure 3. 1A).
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We applied amped SORTCERY to measure binding of the three Bcl-2 family

proteins Bcl-xL, Mcl-1, and Bfl-1 to members of a small yet diverse library of BH3-like

peptides (Figure 3.1A). Approximately 10,000 peptides to be measured were selected

from much larger combinatorial libraries that were previously designed to be enriched in

selective binders of BcI-xL, Mci-1 or Bfl-1 2 5 .The input libraries contained peptides with

up to 8 amino-acid mutations compared to human Bim or Puma BH3 motifs and had a

theoretical diversity of 27,696,384 possible members; we refer to this set of sequences

as the input library (Figure 3.1A). Clones to be assayed by amped SORTCERY were

selected from the input library by pre-sorting to include peptides with a range of binding

affinities for Bcl-xL, Mci-1, and Bfl-1 (see Methods). SORTCERY assays were then run

at 1 nM, 1 nM, or 100 nM of BcI-xL, Mcl-1, or Bfl-1, respectively, generating six datasets

(Table 3.1). Bfl-1 binding was assayed at a higher protein concentration than was used

for BcI-xL or Mcl-1 because few peptides in this library bound detectably at 1 nM. After

computational filtering, each experiment generated binding profiles for between 1292

and 3489 unique peptides.
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Pool of 6 putative receptor selective peptide
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BimBd-xL --- X- -X- --- X-XX---XX-X
Sim Md-1 -- X-XXXX---X-----XX---
DmBfl-i --- X --- x---x--XX-GQWARK!GhQLBBIBDDZ;AQY

Puma Bd-XL --- X--X--- -X-XX-- -XX-X
Puma Mci-1 -- x-xxxx---x-----xx---
Puma Bfl-1 - - -X---X-X- -- - -XX- - --

Bfl-1

BcI-xL
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Figure 3.1. High-throughput measurement of thousands of BH3 mutant affinities for Bfl-1, Bcl-xL, and Mcl-

1 with amped SORTCERY. A) Schematic of data collection and modeling pipeline. Three computationally

designed libraries targeting Mcl-1 (red), Bfl-1 (green) and BcI-xL (blue) were synthesized in the context of

Bim and Puma BH3 scaffolds. In the left-most panel, "X" symbols indicate the positions that were varied

in each library. The six libraries were expressed on the yeast cell surface, cell populations were pooled,

and a subset of ~104 clones was evaluated for binding to the three receptors via a 12 gate FACS scheme.

Deep sequencing and computational analysis were applied to reconstruct the individual peptide binding

profiles across the 12 gates and determine mean affinity coordinates for each peptide. Standards were

measured to calibrate the mean affinity coordinate of each peptide to binding free energy in kcal/mol.

Experimentally determined receptor binding energies for 2679, 1292 or 3480 peptides binding to Bcl-xL,

Bfl-1, and Mcl-1 were identified, respectively. A histogram of the binding free energies show that the

peptides have cell-surface affinities between -14 and -9 kcal/mol. B) The binding energies for 420

sequences with experimentally measured affinities for Mcl-1, Bfl-1, and BcI-xL are plotted on a trisected

plane to visualize the specificity space. Each peptide is described by 3 vectors, each projecting the

negative binding free energy for Mcl-1, Bfl-1, or Bcl-xL, from the origin (0,0) toward one of three corners of

an equilateral triangle. The vectors are summed to produce a coordinate in 2D space that quantifies the

peptide binding preference for the three receptors. This projection removes the absolute quantification of

affinity and emphasizes paralog binding selectivity.
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Table 3.1. Summary statistics of datasets collected.

RMSE
of energy

Receptor Pearson R mapped Replicate
concentration # unique of A to standards Replicate RMSE Replicate

Reference (nM) sequences # standards standards (kcal/mol) overlap (kcallmol) Pearson R

Bcl-xL_ri 1 2679 17 0.82 0.56

Bcl-xLr2 1 3457 18 0,85 0.50 1749 0.35 0.91
Bfl-1_r1 100 1292 16 0.88 0.33

Bfl-1_r2 100 3489 16 0.84 0.39 975 0.21 0.95
Mci-i_ri 1 3326 16 0.89 0.47

Mci-1_r2 1 3480 16 0.92 0.40 2315 0.21 0.98

SORTCERY measures affinity (A) in arbitrary units related to what FACS gates

each clone is distributed across. Theory predicts that A will be linearly correlated with

binding free energies over a certain resolution range, under certain conditions23 . To test

this relationship and to map affinity measurements to kcal/mol, peptide standards

spanning the SORTCERY dynamic range were individually titrated on the yeast cell

surface with each of the three receptors to determine dissociation constants (Figures

3.2-3.4). Measured A values correlated with individually measured binding free energies

with Pearson R = 0.81-0.92 (see Table 3.1). We used these measurements to map A to

binding free energies in kcal/mol (see Methods). Linear fits for 16-18 standards per

dataset gave RMSE of 0.34-0.56 kcal/mol over a range of dissociation constants from

0.07 nM to 290 nM (Figure 3.1A).
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titrations are shown, one standard per plot. Experimental replicates are represented as different colors.

Fits to data are shown as solid lines. B-C) Correlation of the SORTCERY mean affinity coordinate (A) to

binding energy in kcal/mol is shown. Error bars for dissociation constants indicate standard deviations for

the individual titrations shown in A. Error bars for the SORTCERY mean affinity coordinates indicate the

standard deviation of the population across gates. The blue lines show the correlation for all of the data

points. The red lines show the correlation excluding points that did not have a numerical KD and points

whose titration curves saturated at lower binding signal than SORTCERY theory expected.

We quantified binding for 5769 unique peptide in this experiment. Binding

energies computed in two replicates were highly reproducible, with Pearson R values of

0.91-0.98. For 420 peptides, we obtained affinities for all three proteins Mcl-1, Bfl-1, and
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BcI-xL. Other peptides were either not observed in all three data sets or had affinity

values outside the range we could quantify. To visualize the binding selectivity

landscape of the 420 sequences, we plotted the affinity of each peptide for each protein

in three dimensions (one dimension for each target protein) and projected this plot into

two dimensions, giving a trisected plane representation (Figure 3.1B). Peptides with

three measured binding energies included examples with 100-fold specificity for binding

Mcl-1 over Bfl-1 or Bcl-xL. In contrast, the most selective binders of Bfl-1 or Bcl-xL had

only a 10-fold preference for those proteins.

We reasoned that if we could use amped SORTCERY data to build a

computational model to capture how sequence determines binding, we could predict

binding free energies for peptides not measured in our experiments and generate a

more complete binding landscape. We tested two different models. Peptide binding free

energy was either expressed as a sum of independent contributions from individual

residues (linear model), or as a sum of contributions from residue pairs (polynomial

model of order two) (see Methods).

We used support vector regression against amped SORTCERY data to fit the

residue contributions for each model 26. We compared the performance of linear vs.

polynomial models trained on each data set using nested cross-validation. The second-

order polynomial models consistently outperformed linear models trained on the same

data, when evaluated using a validation set of sequences that was non-overlapping with

the training data (see Figure 3.5A).
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We used the polynomial models to investigate whether high affinity for one

protein is predicted to correlate with high affinity for others, as has been observed using
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other predictors25 . To investigate tradeoffs between selectivity and affinity, we compared

predicted peptide binding affinities for pairs of receptors. The tradeoffs observed

depended on which proteins were compared. For most pairs, there is a positive

correlation of the binding affinities. For sequences in the input library, the peptides

predicted to bind most tightly to Mcl-1 were predicted to bind >1000-fold weaker to Bcl-

XL and >100-fold weaker to Bfl-1, on average (Figure 3.5B). This suggests that

identifying tight Mcl-1 binders that are specific for that target may not be difficult, and

indeed several peptides with this property have been published14 . In contrast, the

peptides from these libraries that were predicted to bind tightest to Bfl-1 were predicted

to bind more than 10 times more weakly to Bcl-xL, but greater than 10 times more tightly

to McI-1, on average (Figure 3.5B). This analysis suggests that it might be difficult to

identify high-affinity binders of Bfl-1 that do not bind to Mci-1, which is consistent with

prior observations from library screening experiments 27.

Models that can be used to predict unmeasured affinity values made it possible

to plot all 5769 peptides from our experiment in three-dimensional specificity space;

these values are shown in orange in Figure 3.5C. We can extrapolate even further, to

compute the predicted distribution of all 27,696,384 input library sequences, the vast

majority of which of which were not tested experimentally for binding to any of the three

proteins. The extremes of this distribution are shown in light pink in Figure 3.5C; the

results predict that our input library was enriched in Mcl-1 specific sequences, relative to

Bfl-1 or Bcl-xL specific sequences. Finally, although our models were trained on

sequences from the input library space, we can make predictions about sequences that

lie outside this space. For example, we can consider the space of 1014 sequences that
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includes all combinations of residues that were considered at any position in any library.

This space, which we call the integrated library space (Table 3.2), includes many

residue combinations that were never sampled experimentally, including sequences that

mix and match residues from the BIM and PUMA backgrounds. Thus, the model is not

necessarily expected to make accurate predictions in these regions of the sequence

landscape. To visualize the integrated library space, we solved for the Pareto frontier of

selectivity (Figure 3.5A), i.e. for sequences that are predicted to be optimally specific.

Sequences at this boundary (dark pink in Figure 3.5A) demonstrate that predicted

selectivity can be as much as tenfold greater in the integrated space than in the input

library space. The models predicted a modest opportunity to increase Mcl-1 specificity

beyond what we observed in the SORTCERY screen, but predicted that the integrated

library contains members with much enhanced specificity for BfI-1 or BcI-xL, relative to

the input library.
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Table 3.2. Summary of mutational spaces.

Poftiion BIM PUMA W1 fS.cL U p.L Intergrate d Ltbrary
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4d Y 0

4. Y Y AFILPSTV ACDG.44NPRSTY AC C..ILNPRSTVY

41 A E AE

4g R R

50 R R F

To evaluate the predictive power of our models at the boundaries of the

integrated library space, and test the utility of the models for practical applications, we

used them to design selective peptide binders of Bcl-2 family members. We designed

three sets of peptides to bind selectively to just one of Mci-1, Bfl-1, or BcI-xL, and three

sets of bispecific peptides to bind selectively two out of three receptors: Mci-1 and Bcl-

XL, Mcl-1 and Bfl-1, or Bcl-xL and Bfl-1. In both cases we used constrained optimization

to balance the dual objectives of tight binding to the target(s) and weak binding to the

off-target(s) 28. For the single-receptor specific peptides, we maximized predicted target-

binding affinity, with a constraint on the affinity for off-target proteins that was

implemented as a lower limit on the predicted binding free energy (Figure 3.6B).
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To evaluate whether the peptides that were designed to bind to just one protein

had the desired specificity traits, the peptides were expressed on the surface of

Saccharomyces cerevisiae and evaluated for binding using fluorescence activated cell
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sorting (see Methods, Tables 3.3-5). For each sequence, the median binding

fluorescence signal at 100 nM was measured and normalized using the saturated

binding signal of BIM, a native BH3 sequence with KD < 1 nM on the surface of yeast

(Figure 3.6D). All 36 of 36 monospecific peptides designed and tested demonstrated the

desired selectivity for the target protein. The dissociation constants for the designs

binding to their targets were all estimated to be lower than 100 nM, with 28 lower than

10 nM, and 5 lower than 1 nM. All of the off-target binding affinities for the designs were

weak, with estimated KDs greater than 1000 nM. These values compare favorably with

the reported affinities and specificities of previously reported selective Bcl-2 binders that

were identified by screening targeted libraries of >106 sequences 13 ,14 ,25 ,27.

Table 3.3. McI-1 specific designs.

name sequence
M1 GRSELEVVQELVRIGDIVVAYF

M2 GRSEYEYIQELVRIGDEVDAYF

M3 GRSLYEYIQELIRIGDEVTAYF

M4 GRSLLEYIQELIRIGDEVIAYF

M5 GRSELEYIQELVRIGDEVDAYF

M6 GRGQLEYIQELIRIGDIVDAYF

M7 GRSELEYIQELIRIGDNVDAYF

M8 GRSELEYIQELIRIGDIVDAYF

M9 GRSQYEVIQELIRIGDIVLAYF

M10 GRSEYEYIQELIRIGDNVDAYF

Ml1 GRSEYEYIQELIRIGDIVDAYF

M12 GRGQYEYIQELIRIGDIVDAYF
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Table 3.4. BcI-XL specific designs.

name
X1
X2

X3

X4
X5
X6
X7

X8
X9

X10
X11
X12

sequence
GQTLIWYGASLRRYADEFAKQR

GQTLIWYGAQLRRYADEFAKQR

GQPLIWFGASLRRGADEFAKQR

GQTLIWYGAQLRRVADDFAKQR

GQTAIWYGASLRRAADEFAKQR

GQSLIWFGASLRRGADEFAAQR

GQPLIWFGAQLRRGADEFAAQR

GQSMIWYGASLRRAADEFAKQR

GQTLIWYGAQLRRYADDFAKQR

GQRLIWYGAQLRRYADDFAKQR

GQTLIWFGASLRRGADEFAAQR

GQGLIWYGAQLRRVADDFAKQR

Table 3.5. Bfl-1 specific designs.

name sequence

F1 GRRVRHIAQGLRRAGDQLDAYG

F2 GQRVRHIAQGLRRTGDQLDAYG

F3 GRRVVHIAAGLRRTGDQLEAQG

F4 GQRVVHIAAGLRRTGDQLEAYG

F5 GQRVVHIAQGLRRTGDQLEAQG

F6 GQRVVQIAAGLRRTGDQLEKYG

F7 GQRVVQIAQGLRRTGDQLEKQG

F8 GRRVVQIAAGLRRTGDQLEKQG

F9 GRRVRHIAQGLRRAGDQLDKYG

F10 GRRVVQIAAGLRRAGDQLEKYG

F11 GQRVVQIAQGLRRAGDQLEKYG

F12 GRRVVQIAQGLRRAGDQLEKQG

To design bi-specific peptides, we first identified sequences that maximized the

difference between the predicted affinities for targets Mcl-1 and Bfl-1 vs. off-target BcI-xL

(see Methods, Table 3.6). All seven peptides that were designed this way bound to Bfl-1
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and Mcl-1 with nanomolar affinity and bound to off-target BcI-xL with KD greater than

1000 nM. This may be the easiest bi-specific design problem, because our analysis in

Figure 3.5B predicted that affinities for Mcl-1 and Bfl-1 are more strongly correlated than

are affinities for Mcl-1 and Bcl-xL or Bfl-1 and Bcl-xL. Peptide designs 1, 2, 5 and 6 all

showed evidence of strong binding to Mcl-1 and Bfl-1 at 100 nM, with very low or

undetectable binding to Bcl-xL at the same concentration.

Table 3.6. McI-1 and Bfl-1 bi-specific designs.

name sequence

MFO1 GRRIDEIAQILRRIGDHIEKYI

MF02 GRWIDQIAQFLRRIGDHIEKYI

MF03 GRRVDEIAQILRRIGDNIEEYI

MF04 GRRVDEIAQILRRIGDNINEYI

MF05 GRRIDEIAQILRRIGDHVEKYI

MF06 GRRVDEIAQILRRIGDNVTTYI

MF07 GRRVDEIAQILRRIGDQIEEYI

For the other combinations of targets, we suspected that tight and specific

binding might be harder to achieve, and we tested other approaches. The first was to

minimize the affinity of peptides for the off-target while constraining the predicted energy

of binding to the targets to be < -10 kcal/mol. From two attempts at bi-specific design

using this protocol, targeting either Mcl-1 and BcI-xL or Bfl-1 and Bcl-xL, neither gave

peptide with the desired profiles. The designs either bound to Bcl-xL but not BfI-1, or did

not bind to either target. This led us to try a third protocol that involved minimizing target

binding energy, subject to a constraint that off-target binding energy be greater than -10

kcal/mol (Figure 3.6C). Because there are two targets for a bi-specific design, we ran
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these target affinity-maximizing calculations twice. For the target that was not used for

binding score optimization, we imposed an upper-limit on the binding energy of -11

kcal/mol. We used these two strategies to design binders of Mcl-1 and BcI-xL, and

binders of BcI-xL and Bfl-1 (Tables 3.7,8). We obtained several dual-specific peptides

that bound tightly to Mcl-1 and Bcl-xL, with little or no binding to Bfl-1, as shown in

Figure 3.6D. However, peptides designed to bind to Bcl-xL and Bfl-1 often bound those

proteins with good signal at 100 nM protein concentration, but also bound to Mcl-1 as

well. Our best dual-specific Bcl-xL/Bfl-1 inhibitor was peptide XF13 which was -10 fold

selective over Mci-1.

Table 3.7. McI-1 and BcI-xL bi-specific designs.

name sequence

MX1 GRSQIWYVQELVRGGDVNHAYR

MX2 GRSQIWYDQELVRSGDVNAAYR

MX3 GRSQIWYDQELVRSGDENAAYR

MX4 GRSQIWYDQELVRYADVNAAYR

MX5 GRSQIWYDQELVRYGDVNAAYR

MX6 GRSQIWYVQELVRSGDVNHAYR

MX7 GRSEIWYDQELVRSGDVNAAYR

MX08 GQWLRWVIAELIRIADEFHAQY

MX09 GQWLYWVAAELVRIADDFLAQR

MX10 GQSLIWFIAELARIGDEFHEYY

MX11 GQWLIWYIAELIRIADEFHAQF

MX1 2 GQWLRDVVAELARIADEFHAQY

MX13 GQWLIWYIAELRRYADEFHAQI

MX14 GQWLIWVAAQLRRYADEFHAQR

MX15 GQWLIWYAAELARLADDFHAQR

MX16 GQWLIWYAAQLARIADEFHAQR

MX17 GQSLIWYIAELARIADEFAAQY
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Table 3.8. BcI-xL and BfI-1 bi-specific designs.

name sequence

XF1 GRRVVWIGQGLKRLADEYHKYA

XF2 GRREVWLSQSLKRIADQFQKYL

XF3 GRREIWLSQYLKRIADLFQKYL

XF4 GRREIWLSQSLKRIADMFQKYL

XF5 GRREIWLSQSLKRIADLFQKYL

XF6 GQRVDDFGQGLKRVADEYHAQA

XF7 GRREVWLSQSLKRIADQFQTYL

XF08 GQRLIWIGAGLRRLADEFDKQA

XF09 GQRIIWIAAELRRAADELDKQI

XF10 GQRIIWIAAELRRAADQLDAQI

XF11 GQRIIWIGAELRRLADELDKQV

XF12 GQRIIWIAAELRRAADQLDKQY

XF13 GQRIIWIAAGLRRLADELDKQL

XF14 GQALIWIGAELRRLADEFNKQL

XF15 GQRLIWIGAELRRLADEFDKQL

XF16 GQPLIWIGAELRRLADEFNKQV

XF17 GQRLIWIGAELRRLADDFDKQY

XF18 GQRLIWIGAELRRLADEFNKQA

All of the peptides that were designed and tested were dissimilar from the

sequences used to train the models. Each design was at least 4, and as many as 10

mutations away from any previously observed sequence (see Figure 3.6E). This

establishes that the regression models were able to make accurate predictions about

regions of the sequence landscape well outside of the region they were trained on. The

sequences were on average -4 mutations away from others in each design set.

Encouraged by our initial results, we picked six designs for further analysis. Two

sequences from each set of monoselective designs were chosen based on the initial

cell display data. We performed binding titrations from 0.66 to 1000 nM, measuring

binding signal on the cell surface. The Mcl-1 designs (Ml and M9) bound Mci-1 with Kd
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< 0.66 nM and bound Bcl-xL and Bfl-1 with Kd > 1000 nM (Figure 3.7). These are upper

bounds on the dissociation constant because the binding signal for the Mcl-1 specific

designs was at or near saturation at 0.66 nM Mcl-1, and near baseline in 1 pM Bfl-1 and

BCI-XL. Concerns about ligand depletion limited the low end of our titrations, and non-

specific binding limited the high end. Likewise, we found that the Bcl-xL specific designs

X1 and X7 bound their target tightly (Kd values of 1.56 nM and 0.088 nM, respectively)

and had negligible binding to Bfl-1 and Mci-1 up to at least 1000 nM. Bfl-1 specific

designs F4 and F10 bound to Bfl-

had negligible binding to Bcl-xL an
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Figure 3.7. Yeast cell-surface binding curves for 6 receptor-specific peptide designs tested against Mci-1
(red), Bfl-1 (green), and Bcl-xL (blue). The Mcl-1 designs bind tightly with KD < 0.6 nM for Mcl-1 and >> 1
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Given that the designed peptides have sequences very different from natural

BH3 sequences, we tested whether they bind in the same site as known BH3 peptides.

Protein binding to all 6 of the tested designs was abolished by the addition of BIM, in a

dose-dependent manner, consistent with competitive binding at the same site.

Moreover, we solved X-ray crystal structures of F4 and F10 bound to Bfl-1(Figures

3.8,9). Both complexes, Bfl-1:F4 and Bfl-1:F1O, were resolved at high resolution (1.48 A

In both cases) and the structures show that the designed peptides bind to Bfl-1 in a

geometry very similar to that of natural BH3s. Figure 3.9 shows a superposition of each

structure with the structure of Bfl-1 bound to Bim, emphasizing the high similarity.
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F10 F4
rmsd = 0.53

F10 Bim
rmsd =0.48

Figure 3.9. High resolution crystal structures of designed peptides show F4 and F10 bind similarly to
each other and to Bim BH3. A) Structural aligments of F4 (magenta ribbon) and F10 (cyan ribbon) bound
to Bfl-1 (gray surface). Structures were aligned on Bfl-1. B ) Structural aligments of F4 (magenta ribbon)
and Bim (green ribbon) bound to Bfl-1 (gray surface). Structures were aligned on Bfl-1.
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Table 3.9. Summary of X-ray data collection and refinement statistics.

Bfl-1:F4 BfI-1:F1O

Data Collection

Space Group P 1 21 1
Cell parameters

b, 43.22 42.947
a, b, c46.762

a, P, y 90 114.733 90
Rmeas 0.069 (0.411)
Rpim 0.030 (0.218)
Mean l/a(l) 27.72 (2.22)
Completeness (%) 92.01 (61.95)
Redundancy 4.5 (2.7)

Refinement

Resolution (A) 37.76 - 1.481
(1.534 - 1.481)

Unique Reflections 23970 (1596)

Rwork/Rfree 0.1343/0.1658
(0.1776/0.2755)

Number of non- 1562
hydrogen atoms
Wilson B-factors 19.88
Rmsd

Bond lengths (A) 0.007
Bond angles (0) 0.76

Values in parentheses are for the hiqhest-resolution shell.

A benefit of performing rational design using predictive models, such as the ones

we used here, is that the models provide detailed hypotheses about why certain

complexes are stable vs. unstable. Figure 3.8B shows the residue contribution weights

from our three different models mapped onto the structure of F10 bound to Bfl-1 using a

heatmap to indicate residues that are net stabilizing vs. destabilizing. The favorable

contributions of most residues to Bfl-1 binding are reflected in a mostly blue colored

peptide, at top. In contrast, our models for Bcl-xL and Mcl-1 binding highlight, in red,

residues that are predicted to destabilize binding and thereby contribute to specificity.
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The model weights indicate that the specificity of the designs comes from contributions

from many residues throughout the peptide, although some residues such as V3d are

predicted to be particularly important for disfavoring interactions with off-target proteins.

Discussion

Deep sequencing combined with library display technologies now makes it

possible to accurately describe and model larger parts of the protein interaction

universe than ever before. Amped SORTCERY provides a method to quantitatively

determine binding energies of thousands of diverse ligands in high throughput, and we

used it to measure peptide binding to a family of 3 structurally, functionally, and

evolutionarily related proteins: Bfl-1, Mcl-1, and Bcl-xL, mapping the specificity

landscape. We further expanded our description of the specificity landscape using

models trained on the experimental data. We demonstrated that statistical models

derived by regression could be used to design protein sequences up to ten mutations

away from the training set, and experimental testing confirmed that all of the designed

monospecific peptides and many of the dual-receptor specific had the desired binding

profiles.

One interesting observation is that our designed peptides were more specific for

their targets than was predicted by our models. The restricted dynamic range of the

SORTCERY affinity assay might help explain this, because it limited our ability to

accurately measured how destabilizing some mutations are. Models that underestimate

destabilizing effects could lead to overestimates of how well the designs bind off-target

proteins. Performing SORTCERY at higher concentrations could enable more accurate

measurement of weaker affinities.
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Many statistical models assume that the effects of multiple mutations are

additive, even though epistasis can be pervasive and its effects significant29-33. Prior

work suggests that epistasis can be important for determining the binding of BH3

peptides to Bcl-2 family proteins. For example, Jenson et al. demonstrated that there

can be a context dependence to the effect of substitutions made in Bim vs. Puma BH3

peptides 25. Specificity inducing mutations in the Puma BH3 context did not provide

specificity in the Bim BH3 context2 5. Jenson et al. additionally observed energetic

coupling between N-terminal and C-terminal residues in a designed Bfl-1 selective

binder. DeBartolo et al. reported only a modest correlation between the mutational

effects of point residue changes in Bim vs. Noxa BH3 peptides for Mcl-1 binding, and in

Bim vs. Bad for Bcl-xL binding34 . A residue may influence another by interacting with it

directly. Additionally, non-additivity can arise when mutations change the docking of the

peptide in the binding groove, thereby altering contributions from any residues that are

re-positioned by the structural change.

Coupling between residues poses a challenge for modeling because substantial

amounts of data are required to accurately capture epistatic effects with a statistical

model. Each mutation must be observed in sufficiently many sequence contexts to

determine the relevant dependencies. By analyzing AAG values from high-throughput

SORTCERY experiments, we found evidence of non-additivity, indicating that our

datasets do sample context-dependent events. Consistent with residue-residue coupling

contributing to binding, we found that second-order polynomial models evaluated on the

validation data consistently outperformed linear models trained on the same data. In

other words, the linear models can't describe the data as accurately because they fail to
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capture some replicable structure in the data that the polynomial models capture

through the pair terms.

Strikingly, we were able to use data collected in multiple local sequence spaces

to build models that had utility for navigating the binding landscape outside of those

spaces. In our initial input libraries, the peptides were sourced from six individual

libraries. Although each library covered a distinct set of sequences, we combined the

observations to build a single model and demonstrated success identifying sequences

within the larger, integrated library space, despite these sequences never having been

experimentally sampled. Notably, the tests that we challenged our models with were

design tasks. Design may be an easier task than prediction in regions of the landscape

that are remote from the training data. This is because regression modeling captures

the average contribution of a residue or residue pair in different contexts. If the training

data are dominated by a single canonical peptide binding mode, then average residue

contributions may be good estimates of the actual contributions of residues in this

binding mode. A model with these features would be good at describing the canonical

mode, and at designing sequences that bind well in that mode. Such a model would be

less good at scoring peptides that bind with a different geometry. Consistent with this,

X-ray crystallography revealed that designs F4 and F10 closely imitate the binding

poses of Bim BH3 (Figure 3.9). Also consistent with this, our models underestimate the

Bfl-1 specificity of previously described peptide FS2. FS2 binds to Bfl-1 in a shifted and

rotated geometry relative to other known BH3 peptides, and the residue weights that are

appropriate for those peptides do not provide accurate binding predictions for FS2

(although FS2 is still recognized as a tight and Bfl-1 selective binder).
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An advantage design guided by this type of model is that once the model is built,

searching sequence space is trivial, and it is simple to optimize for features that can be

hard to screen for experimentally. Here, we took data from libraries that were carefully

designed for mono-selectivity and used it to design bi-specific binders, which may not

be present in the input libraries, and even if they are, would require a long series of

affinity and specificity maturation cycles to identify. One could imagine adding additional

constraints to design for features that would be even more difficult or impossible to

screen for experimentally, such as charge, which can impact solubility and cell delivery,

or minimal predicted immunogenicity. The formalism of the design optimization can

readily accommodate diverse constraints on protein sequence.

The increasing ease with which it is possible to generate and screen peptide

libraries suggests that mapping landscapes through model building, as we have done

here, could become a useful and routine tool in the repertoire of protein design

methods. An interesting question for the future is what sequence space should be

sampled to support initial model building. Naive empirical models will be most accurate

within or close to the sequence space on which they were trained, and one way to

broaden this space would be to measure affinities for sequences that vary more sites

and residues. However, there is a tradeoff between increasing library diversity and

obtaining adequate coverage of combinations of residues. Sampling from broader

sequence space additionally decreases the chances of observing binders. In this work,

we biased the input sequences towards those deemed likely to bind by using prior

modeling and experimental analysis of the Bcl-2 family; this focused our sampling.
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Structure-based design, using experimental or predicted complex structures, may

represent a promising way to achieve this for other protein families.

Methods

Yeast growth and sorting

Yeast cultures were diluted from glycerol stocks to an OD600 of 0.05 in SD+CAA

(5 g/L casamino acids, 1.7 g/L yeast nitrogen base, 5.3 g/L ammonium sulfate, 10.2 g/L

Na2HPO4-7H 20 and 8.6 g/L NaH 2PO4-H 20, 2% glucose) and grown for 12 hr at 30 C.

Each culture was then diluted to an OD600 of 0.005-0.01 in SD+CAA and grown to an

OD600 of 0.1-0.6 at 30 *C. To induce expression, 40 mL of each culture was diluted into

1L SG+CAA (5 g/L casamino acids, 1.7 g/L yeast nitrogen base, 5.0 g/L ammonium

sulfate, 10.2 g/L Na2HPO4-7H20 and 8.6 g/L NaH 2PO4-H 20, 2% galactose) and grown

for 20-24 hr at 30 C. Cells were filtered with either a 0.45 pm bottle-top filter or a 96-

well plate filter, washed twice with BSS (50 mM Tris, 100 mM NaCl, pH 8, 1 mg/mI

BSA), and resuspended in BSS with least 10-fold molar excess target protein and

incubated for 2 h at room temperature with gentle shaking. Cells were filtered, washed

twice in chilled BSS, resuspended in a 1:100 dilution of mouse anti-HA (Roche,

RRID:AB_514505) and rabbit anti-c-myc antibodies (Sigma, RRID:AB_439680) primary

antibodies in a volume of 2 mL per 108 cells, and incubated for 15 min at 4 0C. Cells

were filtered, washed twice in chilled BSS, resuspended in a 1:40 dilution of APC rat

anti-mouse (BD, RRID:AB_398465) and 1:100 dilution of PE goat anti-rabbit (Sigma,

RRID:AB_261257) secondary antibodies in a volume of 2 mL per 108 cells, and

incubated in the dark for 15 min at 4 C. Cells were filtered and washed 2x in chilled
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BSS before resuspending the labeled cells in BSS and using BD FACSAria flow

cytometer or a BD FACSCanto using FACSDiva software for cell sorting or analysis.

High-throughput affinity sorting and sequencing

To select a diverse pool of -10,000 unique BH3 sequences for multi-receptor

Sortcery, we grew the six yeast display libraries described in Jenson et al. and pooled

the libraries prior to incubating with 100 nM Bfl-1, McI-1, or Bcl-xL . Cells were sorted

into 12 gates set to separate binders of different affinities as described in Reich et al. 24

Sorted cells were grown overnight in SD+CAA. An equal number of cells from the Bfl-1,

McI-1, and Bcl-xL sorts were pooled together to make a final pool of -10,000 cells. Of

the -3,333 cells from each sort, most were selected from the highest affinity gate (-540

cells) and the fewest were selected from the lowest affinity gate (-25 cells) with a linear

sampling gradient in between. The mixed library was grown overnight and stored in

glycerol stocks.

To experimentally determine affinities of yeast-displayed peptides for Bfl-1, Mcl-

1, and Bcl-xL, we sorted the mixed library into 12 affinity gates and subsequently deep-

sequenced DNA from cells collected in each gate following the Sortcery protocol

described in detail by Reich et al.2 4

Designed clones were verified for their specificity preferences with titrations.. The

median binding signal of the binding population was recorded for each clone and

applied to estimate an approximate KD. Clones were assigned to the bin at which the

estimated 1/2 max binding signal would occur. Sequences for which the signal was

below 1/2 max signal of Bim at 1000 nM were assigned as >1000nM.
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Crystallography

Crystals of Bfl-1 in complex with F4 and F10 were grown in hanging drops over a

reservoir containing 1.8 M ammonium sulfate, 0.1 M MES pH 7.0 at room temperature.

The protein was mixed with peptide at a 1:1 molar ratio and concentrated to 4 mg/ml in

20 mM Tris, 150 mM NaCl, 1% glycerol, 1 mM DTT, pH 8.0. The hanging drops

contained 1.5 pL of complex mixed with 1.5 pL of reservoir solution. Crystals were cryo-

protected (2.0 M lithium sulfate with 10% glycerol) and flash frozen. Diffraction data

were collected at the Advanced Photon Source at the Argonne National Laboratory, NE-

CAT beamline 24-ID-C. Both datasets were integrated and scaled to 1.48 A using

HKL2000 and phased using PHENIX ridged body refinement of chain A of structure

4ZEQ using PHENIX 35,36 . The peptide was built into the remaining difference density.

Several iterations of refinement using PHENIX and COOT to improve the structural

models 36' 37.

Computational Processing of SORTCERY Data

Filtering sequences for high-fidelity reads

Deep-sequencing data were filtered for high quality reads with at least 99% base

call accuracy and matching specified multiplex barcodes used to individually identify

each experiment. Paired-end reads that did not overlap were discarded, and

overlapping DNA segments were reassembled. Unique sequences that had at least 100

reads were processed for further analysis.

Generating clone profiles over gates and average affinity coordinates

Clonal cell counts per gate were estimated as a function of the deep sequencing

read counts. Because different numbers of cells are collected in different gates, read
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counts do not map directly to cell counts. To calculate the cell count for sequence x in a

given gate i, ni (x), we first calculated the clone's relative frequency in that gate as the

number of reads for sequence x in gate i, r(x), divided by the sum of all reads for all

sequences for gate i. The clone's relative frequency is then scaled by the observed

number of cells recorded to hit gate i in a fixed amount of time, ci.

ni(x) = (Z,~r,(x)
EALri U)

Calculated cell counts were normalized to determine the probability distribution over

gates for each sequence. The probability of finding clone x in gate i is given by:

n. (x)
Pi~x) =12

k=1 Ik(X)

To mitigate the effects of sequencing error on our analysis, DNA sequences were

clustered by sequence similarity using USEARCH with a 3 percent identity cutoff. Within

each DNA cluster, the sequence with the most reads was assigned as the parent of the

cluster and all other sequences were assigned as daughters. Daughter probability

distributions over gates were compared to parent profiles. A daughter sequence was

split into its own cluster if its probability distribution over gates differed significantly from

the parent probability distribution (chi-squared test with Bonferroni correction: alpha-

value < 0.005/# clones). Otherwise, daughter sequences were combined with parent

sequences and each cluster was assigned a new probability distribution profile over
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gates. Sequences that only occurred in one gate were removed, because profiles for

individual clones measured independently always span multiple gates. We also

removed sequences with non-unimodal profiles using a custom python script.

The probability distribution of cells over gates for each sequence approximates the

distribution of measured clones along an axis of affinity23 . Profiles were used to

compute an mean affinity coordinate, A, for each sequence using:

i=12

Mean coordinate value = i
i=1

DNA sequences were translated into protein sequences for all subsequent analyses,

yielding a list of protein sequences and their associated A, values. Redundant protein-

to-energy mappings originating from synonymous mutation were removed.

Sequences that may have originated from spurious mutation, PCR error, and

cross-library contamination were removed from the dataset by filtering for only

sequences that matched the designed library input using regular expression on the DNA

level.

Sequences were classified into three categories of affinity (unresolvable tight,

resolvable, and unresolvable weak). These sequences were separated based on the

calculated shape of the probability distribution function of the peptide across FACS

gates. If the maximum mode of the distribution occurred in gate 1 or 12, the binder was
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classified as resolvable tight or weak. The remaining sequences were classified as

resolvable.

Mapping mean affinity coordinate to AG

The average affinity coordinates for different clones reflect relative binding

affinities, but absolute values are specific to a given experiment. To compare affinity

values across experiments, we used standards to calibrate the affinity axis ito give

binding free energy in kcal/mol. Standards were selected to span the SORTCERY

affinity range of each experiment. For each standard, a binding curve was measured via

yeast titration and fit to give the standard free energy of binding. We applied linear

regression to map A, values to energies. Although a linear fit is an approximation of the

true relationship between A, and AGbinding, fitting the theoretical curve gave minimal

differences in values.

Regression modeling to relate peptide sequence to AGbinding

Support vector regression (SVR) models were trained to predict SORTCERY-

measured affinity from protein sequence. SVR solves for a function that has at most

epsiloni deviation from the observed value: Y? -- < 6 where Yi =T. I + As this

constraint problem is not always feasible, slack variables zetai are introduced for each

data point and minimized. This results in the primal form of the SVR regression

problem, which balances model complexity and performance as follows:
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min -w +C i +)

subject to yj - wT#(X,) - b _ e + (j,

WT $(X,) + b - yj < E + ,

(j(* ;> O, i = 1, ... , n

The epsilon parameter defines a range of insensitivity to noise and the C parameter

defines the cost of adding slack to the model. C can be interpreted as a scalar that

varies the complexity of the model. Smaller C allows the model to be simpler by

permitting more slack on the model optimization. The epsilon parameter and C

parameter for the final models are identified via nested cross-validation. SVR was used

as implemented in sklearn 8

Protein sequences were converted into numerical vectors via a binary amino acid

encoding. This procedure encodes a protein sequence of length n into a n*20 length

vector where each position/residue is represented as a one or zero, depending on

whether the position/residue is present in the sequence. For a peptide of length 22, as

for Bcl-2-peptide interactions, the resulting encoding is a binary vector of length 440,

with 22 non-zero values.

A generalizability score was determined for each dataset via 10-fold nested

cross-validation. An input dataset is split into 10, top-level subsets. Each top-level

subset (1/10 of data) is a validation dataset V which will be each report the performance

of models trained on the remaining 90% of data Tr.

The models trained on the dataset Tr retrieve their hyperparameter from a

nested ten-fold cross-validation within the dataset Tr. Dataset Tr is partitioned in 10
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parts , where now each part (Te) is used to test models trained on the remaining 90% of

data (S) A grid of hyperparameters, were evaluated (epsilon and C) on each Te and the

best performing hyperparameters inform the models trained on Tr. The grid of

parameters explored 2-14 - 26 for C and epsilon [0 - 1], in 0.05 intervals Performance of

models trained on Tr and evaluated on V reports an estimate of generalizability. The

best hyper-parameters for the final models were selected by args which performed the

best on the Te datasets. (The V dataset is only used to report genera lizability).

We tested a linear kernel rT z and a second order polynomial kernel (x' Zr in

our model building and comparisons. This primal optimization problem is solved in the

dual form by construction of the Lagrangian objective function, which is beyond the

scope of this paper2 .

Support vector regression models were used as implemented in Scikit-learn.

Scikit-learn solves the support vector regression objective function in dual form and

returns the dual weights as a solution to the fitting problem. To extract out the

component, pairwise weights from the dual coefficients, the following function was

applied.

xi is the expanded polynomial vector of a given training input point and ( ai -ai*) is the

dual coefficient. This equation tells us that the weight vector is a weighted sum of the

expanded polynomial vectors. The dual coefficient can be interpreted as the weighted

contribution of the data point to the weight vector26.
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Design with integer linear programming

Six design objectives were pursued with integer linear programming (ILP).

Monospecific peptides were designed to bind to Bcl-xL, Mcl-1, or Bfl-1. Bispecific

peptides were designed to bind Bcl-xL and Mci-1, Bcl-xL, and Bfl-1, or Mcl-1 and Bfl-1.

These peptides were designed to bind selectively to their intended receptor by

maximizing the target binding affinity, maximizing the specificity gap, or by minimizing

the off-target binding affinity. For each set of designs, 200 sequences were iteratively

solved with ILP, from which 7-12 sequences were selected to be evaluated. The models

weights used for design were derived from functions trained from an earlier curated

datasets which did not aggregate on DNA sequence similarity.

Designed sequences were restricted to select from residues in the input library

space and excluded Cys residues. However, sequences could choose residues from

either Bim or Puma scaffold sequences interchangeably which expanded the potential

sequence space to the order of 1014.

Constraints were included during optimization to prevent including residues with

low confidence. The sequence space was restricted to allow only position/residue terms

that were observed at least 25 times in all three training datasets. The models are prone

to overfit rare examples, thus, adding constraints such that a given residue must be

observed frequently helps to prevent designing in spaces with low confidence.

Designing sequences with ILP also required including formal constraints that

describe properties of a peptide. For example, a peptide must only have one residue at

each position. Also, if a residue is selected for design at a given position, the

140



corresponding squared term must also be included. Finally, pair terms for which the

component terms have both been included must also be included.

The scoring function is the sum of the receptor-specific pairwise weights

multiplied by the one-dimensional binary indicator vector Phi(x). For a sequence of

length n, this is equivalent to the sum the product of pair weights and indicator variables

xi and xj. The variables xi and xj identify whether an amino acid is present at a specific

position. Receptor-specific energy functions were developed for Bcl-xL, Mcl-1, and Bfl-1.

These are referred to as X, M, and F below.

n-20 n20

y = WG(X)= S, iIXzIxj

To design receptor-specific peptides, sequences maximized binding affinity to the

target receptor were solved for (i.e. to minimize binding energy). Constraints were

imposed to require that the designs bind the target with AG 5 -10.9 kcal/mol (10 nM)

and bind the two off targets with AG > -9.5 kcal/mol (Kd greater than 107.9 nM). The off-

target affinity boundary was selected to be the affinity at which the population of non-

resolvable weak binders started to appear. An example of the Bcl-xL receptor-specific

designs is provided below.
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min X(x)
subject to F(x) > -9.5 Bfl-1 off-target constraint

M(x) > -9.5 Mci-1 off-target constraint
X(x) < -10.9085 Bcl-xL target constraint
N(xi) > 25 for i = 1, . . . , 22 Frequency constraint

The design routine generates 200 peptide sequences. To select the set of

sequences to be experimentally tested, applied a consensus-based approach by

rescoring all designs using six re-trained energy functions for each of the three

receptors. The six SVR models were trained with linear or polynomial kernels on three

different sets of experimental data, for each receptor and averaged. Models were

trained on replicate 1, replicate 2, or a union of replicate 1 and replicate 2 datasets.

Twelve sequences for each receptor were selected to be evaluated. These 12

sequences were selected for the largest mean specificity.

For the bispecific designs targeting Bcl-xL and Bfl-1 (with specificity against Mcl-

1) or the bispecific designs targeting Mcl-1 and BcI-xL (with specificity against Bfl-1), the

sequences that minimized the off-target affinity were solved for. Constraints were added

to require tight binding of the two targets, AG <= -10 kcal/mol, and weak binding to the

off-target, AG >= -8.5 kcal/mol. The following shows the constraints for designing Bcl-xL

and Mci-1 bispecific peptides:

max F(x)
subject to F(x) > -8.5 Bfl-1 off-target constraint

M(x) < -10 Mci-1 target constraint
X (x) < -10 Bcl-xL target constraint
N(x-) > 25 for i = 1, ... , 22 Frequency constraint
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To select the set of sequences to be experimentally tested, all of the designs

were rescored using 6 re-trained energy functions for each of the 3 receptors as

described above. Seven bispecific sequences with the largest mean specificity were

selected to be tested.

To design bispecific peptides that bind to Mcl-1 and Bfl-1, without binding tightly

to Bcl-xL, I solved for sequences that maximized the gap between Bfl-1 and Bcl-xL

binding energies. (This is equivalent to maximizing the set of weights derived from the

difference of Bcl-xL and Bfl-1 models). Constraints were added to require that the Mcl-1

and Bfl-1 binding energies that differ by at most 0.2 kcal/mol. No additional binding

energy constraints were applied to the target or off-target binding energies.

max Dx-f (x)
subject to Df-m(x) <= 0.2 Target similarity constraint

Df-n(x) >= -0.2 Target similarity constraint
N (xi) > 25 for i = 1,.. . 22 Frequency constraint

To select the set of sequences to be experimentally tested, I re-scored all

designs using 6 re-trained energy functions for each of the 3 receptors as described

above. Seven bispecific sequences with the largest mean specificity were selected to be

tested.

To redesign the bispecific peptides, we added additional residue constraints,

optimized target binding as an objective function (rather than maximizing the specificity

gap or minimizing the stability of the off-target), and added additional requirements, as

described below, to select a more diverse set of sequences.
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To prevent the potential inclusion of destabilizing residues in the designs, we

limited the sequence space to include only those residues observed in tight binding

peptides for the target (peptides with SORTCERY AG < -10.5 kcal/mol). We added

constraints to require that the predicted binding energy for each of the two targets be

less than -11.3 kcal/mol. This boundary was chosen because it was the minimal

predicted binding affinity among the successful mono-receptor specific sequences.

Furthermore, we chose to minimize the binding energy of the targets instead of

maximizing the off-target energy. Given that ILP can only optimize one objective at a

time, we solved two optimizations for each dual-specificity design problem, one

optimizing the binding energy to the first target, and the second optimizing the binding

energy to the second target. To enforce specificity we imposed a constraint on the off-

target binding energy: AG >= -10 kcal/mol. The optimization problem was therefore:

min X(X)
subject to F(x) > --9.5 Bfl-1 off-target constraint

AI(x) < -11.3 Mcl-i target constraint
X (x) < -11.3 Bcl-xL target constraint
N(xi) > 25 for i = 1... 22 Frequency constraint
xl E binders for i = 1 ... , 22 Residue constraint

To select the ten best Bcl-xL and Bfl-1 bispecific peptides and ten best Mcl-1 and

BcI-xL bispecific sequences, we applied the consensus-based method to compute

average scores for each design binding to each receptor. We selected the top 5

sequences, based on affinity for one of the targets, that had at least two mutations

relative to higher ranking designs.
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In the second round of design for BcI-XL and Bfl-1 bispecific peptides and Mci-1

and Bcl-xL bispecific sequences, we used FlexPepDock to score the population of

sequences designed to confirm whether the changes in our optimization problem were

consistent with structural models.

Solving for boundaries of peptide specificity

Input library

The boundary of specificity for the input library was identified by estimating a

solution to the concave hull problem for the full set of 27,696,384 library members.

After mapping each sequence to an x,y coordinate, we estimated the shape by plotting

the minimum and maximum y values for each group of rounded x values (2 decimal

places) and vice versa.

Integrated library

The boundary of specificity for the integrated library space was calculated via

ILP. The angular and radial coordinate on the 2D plot is determined by the ratio of

binding affinity of a given peptide for the three receptors. At any given coordinate, there

are two target receptors and an off-target receptor. The radial position is determined by

the energy gap between the tighter of the two target binders and the off-target binder.

The angular coordinate is determined by the affinity ratio between the two target

binders. For every pair of target receptors, McI-1/ BcI-xL, Mcl-1/BfI-1, Bcl-xL/Bfi-1, the

energy gap between the two pairs is fixed as a constant between -6.8 and 6.8 kcal/mol,

and the sequence with the lowest off-target affinity is identified via ILP. This

optimization problem identifies a sequence that lands on the boundary of specificity.

(This boundary is still constrained by the need to have 25 observations per receptor)
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Plotting specificity vs. affinity tradeoffs

All 27,696,384 peptides in the designed library were computationally scored

against Mcl-1, Bfl-1, and Bcl-xL. For a given target receptor, all peptides were binned by

the predicted target affinity. The median affinity of the off-target is plotted for each bin.
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Chapter 4

Tertiary structural motif sequence statistics enable rapid discovery of

novel ligands for anti-apoptotic Bfl-1 and Mcl-1

V. Frappier, J.M. Jenson, and A.E. Keating designed and wrote the study. V. Frappier, J. Zhou,

and G. Grigoryan designed peptides with dTERMen, V. Frappier performed the benchmarking,

and J.M. Jenson performed all of the experiments.
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Abstract

Understanding the relationship between sequence and structure well enough to

design novel sequences from a structural template has been a longstanding goal

in protein design. To this end, the Protein Data Bank (PDB) has been a key resource for

defining and developing the general design criteria for structural features like rotamer

positions and dihedral angles. Here, we show that by decomposing protein structures

from the PDB into sets of well-defined, non-contiguous structural motifs (TERMs) it is

possible to rapidly and accurately predict the binding energies of peptide-protein

interactions at least as well as existing state-of-the-art methods without computationally

expensive structural relaxation and minimization or experimental screening. We

demonstrate the potential of this approach by designing highly diversified peptides more

than 14 mutations away from their naturally occurring counterparts to target the anti-

apoptotic proteins Bfl-1 and Mcl-1. We found that 15 of 17 designs bound tightly to their

intended target. Further, high-resolution structures of the designed peptides revealed at

least one example where a mutation was accommodated by minor adjustments in

backbone geometry that would not have been predicted if modeling was performed on a

rigid scaffold. These observations suggest new approaches to design novel protein

binders.
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Introduction

Protein-protein interactions (PPIs) are central to nearly all biological processes,

play a major role in cell homeostasis 2, and contribute to pathology in countless human

diseases 3. Reagents that can disrupt PPIs are highly sought after for basic research

and therapeutic development. The primary reason that there are so few PPI inhibitors,

relative to the 400,000 predicted biologically functional PPIs4 , is that the size and

complexity of many protein interfaces make them difficult to target5 . For example, large

binding sites that have multiple, widely spaced hotspots are notoriously difficult to

disrupt with small molecules, as are flat interfaces that lack pockets 6'7 . Antibodies and

nanobodies can be used to block PPls and have the advantage, relative to small

molecules, of binding to larger protein interfaces. But the difficulty of delivering such

large molecules into the cell, coupled with the low stability of some antibody-derived

agents in the reducing environment of the cytoplasm, has largely limited their

application to extracellular targets or chemically permeabilized cells ex vivo.

Furthermore, there are many PPI interfaces that are difficult to target with antibodies.

Peptides provide a complementary and highly promising approach to targeting

PPI interfaces8 10 . Peptide-protein interactions are ubiquitous in nature, where there are

many examples of short segments in a protein binding to large, structurally complex

protein surfaces. The latest delivery technologies make targeting intracellular proteins

with peptides increasingly possible. For example, peptides can be delivered into cells by

chemically modifying them to increase hydrophobicity and hide hydrogen bonds',

conjugating them to transduction domains (such as cell-penetrating peptides, CPPs)1 -

15, or delivering them using cationic lipid carriers1 6 . Nevertheless, there are well-known
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obstacles to developing useful peptide inhibitors. Peptides derived from naturally

occurring sequences have non-optimal pharmacological properties, because they

weren't selected for function as reagents or therapeutics. Furthermore, native ligands

often have a binding specificity profile different from what is desired for a given

application. Significant sequence optimization is typically required to minimize off-target

binding, increase protease sensitivity, reduce immunogenicity, and improve

pharmacokinetics. Not all of these potential pitfalls are unique to peptides, but there can

be many failure modes in the peptide development pipeline. Because we lack the ability

to predict pharmacological potential a priori, an ability to rapidly generate numerous

diverse peptide sequences that tightly bind/inhibit a target PPI would be transformative

for the development of peptide therapeutics.

Current approaches for discovering diverse peptide PPI inhibitors for inclusion in

drug development pipelines are sometimes effective but are inefficient. The state of the

art of discovering novel proteins or peptides that modulate function relies heavily on

experimental screening. However, experimental screening of peptide libraries requires

that one choose a sequence/structure scaffold in advance, which is often a naturally

occurring ligand, around which only a vanishingly small fraction of the sequence space

can be queried. This approach, which selects for the "best" binders in a population,

does not typically provide diverse leads. Rational design, e.g. using computational

models to search sequence-structure space on a much larger scale, can effectively

guide screens into spaces far beyond those represented in nature1 7. However, given the

essentially infinite space to explore, and the difficulty of accurately predicting the best

binders, the success rates of rational, structure-based methods have so far been low.

154



Successful design studies have used prior information about known binding sequences,

or known binding hot-spot residues, to help define the design strategy and guide the

search. This limits the diversity of solutions that can be discovered. Furthermore, even

when such information about sequence/structure elements that promote binding is

available and can be exploited, computational design often must be followed by

extensive optimization using experimental screening to identify functional designs.

Recent methodological developments have shown that mining sequence-

structure relationships from the Protein Data Bank (PDB) has the potential to improve

the efficiency and efficacy of structure based modeling and design. It has long been

recognized that protein structures are composed of recurring structural elements, and

the large number of solved structures now makes it possible to compile a finite, yet

near-complete, list of the recurring tertiary structural motifs (here called TERMs) that are

needed to construct any protein structure18 . Recent analyses have also demonstrated

that TERMs have characteristic sequence preferences that can be detected by

statistical analysis of solved structures. These observations provide the foundation for a

formalism that can quantify the quality of fit of any sequence on any specified structural

scaffold19. This is exactly what is needed to predict the influence of a sequence

mutation, or to perform computational design as a sequence optimization problem for a

given structure.

TERM-based computational analyses have already demonstrated utility for

challenging modeling tasks. For example, a statistical analysis of TERM sequences is

remarkably effective at discriminating between good and poor structure prediction

models, on par with or exceeding leading model quality assessment metrics19. Zheng et
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aL. also showed that TERM sequence statistics capture aspects of protein

thermodynamics and can be used to predict stability changes upon mutation as well as,

or better than, state-of-the-art physics-based or statistical methods. Finally, TERM-

based sequence-structural relationships can be applied to protein design. We call

design using TERM sequence statistics dTERMen (design with TERM energies), and

Mackenzie et al. have shown that this approach to identifying the best sequence for a

given structure recapitulates native-like sequences given either NMR or X-ray native

backbones and can be used to rationalize observed evolutionary variation18 . As a

method for protein design, dTERMen is distinct from many other existing methods

because it does not at any stage perform explicit modeling of the designed structure.

This leads to substantial time savings, but could potentially lead to problems including

steric clashes or other structural frustration.

In this work, we applied dTERMen to a new application: analyzing and re-

designing peptide binders of biomedically important proteins. As targets, we chose the

anti-apoptotic proteins Bfl-1 and Mcl-1. These proteins are members of the Bcl-2 protein

family, along with paralogs Bcl-2, BcI-xL, and Bcl-w. Bfl-1 and Mcl-1 promote cellular

survival by binding to and sequestering pro-apoptotic BH3 domains and have well-

established roles supporting cancer cell survival and the development of

chemoresistance20,2. However, there are no clinically approved inhibitors targeting Bfl-1

or Mcl-1, despite considerable interest and investment. Small molecules, peptides, and

mini-proteins have been described as potential inhibitor leads1 0,22-25 , but given the high

attrition rates of inhibitor leads during development, success is not yet assured.

Therefore, we tested the ability of dTERMen to generate additional peptide sequences
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that can be included as scaffolds for ongoing drug-development pipelines. Our success

validates dTERMen as a promising and novel approach for rapid early stage discovery.

Results

Benchmarking dTERMen performance

To evaluate the potential of dTERMen for designing peptide ligands for Bfl-1 and

Mcl-1, we tested its performance on a variety of PPI prediction tasks using binding data

for Bcl-2 family proteins. dTERMen has not previously been used to predict binding

affinities, and in fact the method is parameterized using sequence preferences from

only single-chain structural motifs. Nevertheless, the binding of peptides to Bcl-2

proteins is a coupled binding-and-folding reaction that resembles single-chain protein

folding in some respects, and the resulting complexes share characteristics of folded

structures, including a globular arrangement of packed helices and a hydrophobic core

at the interface. Furthermore, there is precedent for extrapolating single-chain statistics

to model PPIs 26.

To evaluate binding prediction performance, we used a dataset consisting of

4386, 4491 and 3805 measurements of peptides binding to BcI-xL, Mci-1 and Bfl-1,

respectively. Affinity values were obtained using SORTCERY 27,28, a high-throughput

method for quantifying dissociation constants of peptides displayed on the surface of

Saccharomyces cerevisiae. The peptides that were tested contained between 1 and 8

mutations made in the background of the BH3 sequences of human BIM or PUMA, and

had SORTCERY-determined dissociation constants of 0.1 to 320 nM (binding energies

of -13.8 to -8.9 kcal/mol), with some peptides classified simply as binding tighter or

more weakly than the extremes of this range.
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We defined several prediction tasks using the BcI-2 family interaction data. The

easiest task was to discriminate the 20% tightest binders of a particular protein from

sequences that were observed in the 20% weakest binding affinity, at the concentration

tested (1 nM for Mcl-1 and BcI-xL, 100 nM for Bfl-1). We also defined an enrichment

task, which involved identifying the top 10% highest affinity binders and, finally, the

extremely difficult test of predicting quantitative affinities within a 5 kcal/mol range in

binding energies. In addition, we tested the ability of dTERMen and other methods to

predict the binding preferences of peptides for one Bcl-2 family protein vs. another.

Here, too, we defined easier and more challenging tasks, first asking if we could

correctly predict the binding behavior of peptides that interact tightly with one protein but

not detectably with another, and second testing the ability of different methods to predict

differences in measured binding energies. As input into the calculations, we used a

subset of solved structures of Bcl-2 protein-peptide complexes that were selected to

span observed binding geometries. We compared the performance of dTERMen with

that of commonly used methods Rosetta29 and FoldX30.

Table 4.1. Predicted performance of dTERMen compared to Rosetta and FoldX.
meanAUC mean cor mean spec mean Enrich

FoldX-moan 0.752035 0.311641 0.184434 21.377008

FoldX_ min 0.856194 0471359 0.385888 29.141456

Rosetta mean 0.752452 0.335921 0.268465 24.443816

Rosettamin 0.783532 0.373168 0.288744 26.037904

dTERMen- mean 0.772331 0.368573 0.292424 30.848460

dTERMen min 0.804637 0.408427 0.364274 35.606232

meanAUC= Predicted ability to discriminate between the tightest 20% and weakest 20% of binders, averaged across Bcl-xL, McI-
1, and Bfl-1 SORTCERY datasets.
meancorr= Observed correlation with measured affinities, averaged across Bcl-xL, Mcl-1, and Bfl-1 SORTCERY datasets.
meanspec= Ability to predict differences in measured binding energies between proteins, averaged across Bcl-xL, Mcl-1, and Bfl-1
SORTCERY datasets.
meanEnrich= enrichment of top 10% of binders, averaged across Bcl-xL, Mci-1, and Bfl-1 SORTCERY datasets.
FoldX, Rosetta, and dTERMenmean= average performance over all structural models
FoldX, Rosetta, and dTERMenmin= best performing structural model in tested set.
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We first tested whether different modeling approaches could discriminate high

affinity binders from peptides that were not observed to bind or bind weakly at the

concentrations tested. We ran a binary classification test and report the results in Table

4.1 as the area under the receiver operating characteristic (ROC) curve (AUC). An AUC

value of 1 corresponds to a perfect discrimination of peptides labeled as tight binders

vs. non-binders, and an AUC value of 0.5 represents the performance of random

guessing. We found that that predictive power varies significantly as a function of the

template using for modeling. One striking example comes from the FoldX predictions

made on the Bcl-xL dataset, where the AUC values range from 0.39 (worse than

random) to 0.82 based on the template used for modeling. In one case, multiple

complexes found in one crystal structure (5C6H) gave AUC values ranging from 0.65 to

0.82. Unfortunately, there is no reliable way to know, a priori, which template will give

the best results. We chose to report in Table 4.1 the average performance of each

method over all templates. Performance averaged for all protein targets shows that

dTERMen (AUCavg = 0.77) has similar predictive power to the other scoring methods,

Rosetta (AUCavg = 0.75) and FoldX (Ravg = 0.75). However, this small difference is

driven by better performance on the Bcl-xL dataset, for which dTERMen (AUCavg = 0.75)

is better than Rosetta (AUCavg = 0.69) or FoldX (AUCavg = 0.69). As expected, the

Pearson correlation values between the binding energies and prediction values for each

template follow an almost identical trend than the AUC values. Performance averaged

for all protein targets shows that dTERMen (Ravg = 0.37) is marginally better than the

other scoring methods, Rosetta (Ravg = 0.34) and FoldX (Ravg = 0.31). Moreover, some

methods perform significantly better on some templates than others, and no single
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method is consistently better than the others (table 4.1). This analysis shows that

dTERMen has predictive performance on par with some of the most commonly used

structure-based prediction tools, and thus has potential for application in protein design.

Many applications seek the tightest binding sequences, given that these may

have the greatest potential as reagents or therapeutics. But discriminating tight binders

from weaker binders is more difficult than recognizing the difference between tight

binders and non-binders. We used an enrichment test to evaluate method performance

on this task. Specifically, we used each method to rank all of the 4386, 4491 or 3805

sequences that had measured affinity values for Bcl-xL, Mci-1 or Bfl-1. We then

examined the top 10% of ranked sequences to determine what proportion of the top

10% of experimental binders were captured. For a perfect method, the answer would be

100%. Results for dTERMen, FoldX and Rosetta are reported in Table 4.1. Overall,

dTERMen (Binderavg = 31%) has better enrichment value than Rosetta (Binderavg =

24%) and FoldX (Bindervg = 21%). In contrast to the other benchmark metrics,

dTERMen tends to be consistently better than the other methods, for which it scores

better for 69% of the templates. In the other tasks, however, this value is around 38%,

which is close to random.

It is not surprising that binding affinity predictions depend on the input template

structures, particularly for dTERMen and FoldX, which do not perform template

structure backbone relaxation (dTERMen does not perform any structural modeling at

all). We were struck, however, by the strong dependence of the predicted binding

affinities on the choice of template structure and thought this might be an area where

dTERMen could provide an advantage. The robustness of prediction performance to
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very small differences in input structures was evaluated using 294 pairs of closely

related templates with binding site and peptide backbone atom RMSD < 1 A. For each

pair, we computed the correlation of predicted binding energies for all peptides with

measured dissociation constants. On average, dTERMen (Ravg = 0.77) is much less

sensitive to small differences in input template than FoldX (Ravg = 0.55). When run with

default options, the Rosetta (Ravg = 0.60) "relax" protocol is similar to FoldX, although

further structural sampling could, at least in theory, lead to a convergence of the

Rosetta predictions made on different templates, albeit at a higher cost in computing

time.

For all methods, prediction performance could potentially be increased by using a

more aggressive conformational search, such as peptide re-docking or MD simulation,

although this would be computationally expensive for benchmarks of this size (around

140,000 complexes). A more computationally tractable approach to structural sampling

is to evaluate each sequence on a finite number of input structures, and take the lowest

predicted binding energy (corresponding to the most stable complex) as the predicted

energy. This variation in scoring protocol was tested for all 3 benchmarks: tight

binder/non-binder discrimination, tight binder enrichment, and affinity correlation. A

summary of the performance is reported in Table 4.1. Without exception, performance

improved for all methods when more templates were used. Compared to Rosetta and

dTERMen, FoldX benefited the most from the additional sampling: where expected

performance increased from 0.31 to 0.47 for Pearson correlation to binding affinity

values, 0.75 to 0.85 for AUC values, and from 21% to 29% for enrichment of top binder.

dTERMen designs
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Because dTERMen performed at least as well as established scoring functions in

benchmarking, we reasoned that it might be useful for designing peptide binders. The

only input that must be specified for dTERMen is the design template structure. We

chose 5 structures as design templates: two structures of Bfl-1 complexes and three

structures of Mcl-1 complexes. Templates were chosen to sample structural diversity,

because distinct templates could potentially provide access to distinct sequence

spaces.

For Bfl-1 targeted designs, we selected the structure of Bfl-1 bound to the natural

ligand PUMA (PDB ID 5UUL) and of Bfl-1 bound to a Bfl-1 selective peptide (FS2) that

was identified in a previously reported screen (PDB ID 5UUK) 23. Because the

backbones of PUMA and FS2 are shifted 1.2 A and rotated 170 relative to one another

in the Bfl-1 binding pocket23, we expected to see differences in the optimal sequences

identified by dTERMen for these two templates. For the Mcl-1 targeted designs, we

used structures of Mcl-1 bound to the natural ligand BIM (PDB ID 2PQK31 ) and to a

stapled variant of the natural ligand BID (PDB ID 5C3F 3 2); these two structures have

similar binding modes (peptide RMSD < 1), but the Mcl-1 protein has differences in the

binding pocket. We also used a structure of peptide FS2 bound to Mcl-1. FS2 has low

affinity for Mcl-1 (Kd > 3 uM) but engages the protein in a unique binding pose (PDB ID

5UUM)23 .

Four sequences were designed on each template, using slightly different

versions of dTERMen and imposing constraints on the identities of some residues.

Specifically, the residue at position 4b of many native BH3 peptides serves as an N-

terminal helix cap for helix 5 of Mcl-1 or Bfl-1. This residue is often asparagine,
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aspartate or histidine. dTERMen chose threonine at this position, and a careful

investigation into why revealed that the database of single-chain structures used to

extract TERM statistics did not contain any examples of a corresponding TERM with

asparagine, which is apparently a motif found only in inter-chain arrangements. We

chose to fix position 4b as asparagine to mitigate the risk of using inappropriate

statistics for this inter-chain TERM. BH3 residue 3b also makes a helix-capping

interaction in some solved structures, so in half of the designs (FO1-F04, M01-M04) we

retained the wild-type residue from PUMA (arginine) or BIM (alanine) at this site.

Figure 4.1 shows sequence logos built from the top 100 sequences that were

designed on each template. As anticipated, the peptide sequences designed on

different templates were highly distinct. Particularly notable is the variability at the highly

conserved positions 3a and 3f. In the natural BH3 sequences position 3a is highly

conserved as a leucine. Although dTERMen overwhelmingly chose leucine at this

position for designs templated on 5UUL and 5C3F, there was unanticipated sequence

diversity predicted for the other design templates. Most notably, designs from the 5UUK

and 5UUM templates preferred isoleucine and methionine over leucine. Position 3f is

conserved an aspartate in the natural sequences, but dTERMen chose a variety of

residues across all the templates. Furthermore, the designed sequences were very

different from any previously known BH3 sequences. Figure 4.1B shows the minimum

number of mutations between 18 designed peptides and the natural BH3s.
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Figure 4.1. dTERMen as a predictive tool. A) Sequence logos generated by the dTERMen scoring
function for each of the design templates (5UUL, 5UUK, 5C3F, 2VM6, and 5UUM). Heptad notation for
the peptide sequences is shown above the logos. A list of the natural BH3s is in Table 4.2. B-C) The top-
scoring sequences from A were selected for experimental testing. The sequences of the top Bfl-1 designs
(B) and the top Mcl-1 designs (C) were compared to known natural ligands. A list of the top sequences is
shown in supplementary table 2. D) The designed sequences were cloned into yeast for cell surface
display and the binding affinities of the designs were approximated using a sparse titration. This enabled
qualitative comparison of the design binding affinities to the templates. All measurements were performed
at least twice.

To evaluate the predictions made by dTERMen, 17 designed peptides were

selected for experimental testing. An additional sequence designed on template 5C3F

was not tested because it was very similar to design M07. Peptide sequences are listed

in Table 4.3. Protein binding was assayed by yeast-surface display. Binding data from

yeast-surface display assays have been shown to correlate well with solution affinity

measurements, and numerous BH3 peptides shown to be tight binders on the yeast cell
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surface have been validated as having high affinity in solution. When the dTERMen

designs were assayed for target binding, 7 out of 8 of the peptides designed to bind Bfl-

1 gave strong binding signal at 100 nM Bfl-1 and 8 of 9 sequences designed to bind

Mcl-1 gave similarly strong signal at 100 nM McI-1 (Figure 4.1D). Measurements at 4

concentrations allowed us to put bounds on the cell surface dissociation constants, as

reported in Figure 4.1 D. The results show that a constraint on the helix-capping residue

at position 3b was not necessary for these sequences to bind their targets tightly;

peptides with and without this residue fixed bound tightly to their targets. Peptides

designed based on the 5UUM template, a complex that includes Mcl-1 bound to low-

affinity ligand FS2, bound approximately 100 fold more tightly than did FS2 itself.

Table 4.2. List of Natural BH3 sequences composing the sequence logo in Figure 4.1A

Name Sequence AA Position
PUMA EQWAREIGAQLRRMADDLNAQYERRR 131
BIM MRPEIWIAQELRRIGDEFNAYYARRV 142

NOXA AELEVECATQLRRFGDKLNFRQKLLN 19

BAD LWAAQRYGRELRRMSDEFVDSFKKGL 104

BAK SSTMGQVGRQLAIIGDDINRRYDSEF 68
BAX DASTKKLSECLKRIGDELDSNMELQR 53
HRK SSAAQLTAARLKALGDELHQRTMWRR 27

BMF HQAEVQIARKLQCIADQFHRLHVQQH 127

BIK MEGSDALALRLACIGDEMDVSLRAPR 51

BID EDIIRNIARHLAQVGDSMDRSIPPGL 80
MULE GVMTQEVGQLLQDMGDDVYQQYRSLT 1970

BECLIN GGTMENLSRRLKVTGDLFDIMSGQTD 106
BOK PGRLAEVCAVLLRLGDELEMIRPSVY 60
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Table 4.3.
sequences.

Alignment of BH3 sequences from template structures (bold) and dTERMen designed

Sequence
Name ---- 2------3-----4--- PDB ID

efgabcdefgabcdefgabcdefg
FS2 -QWVREIAAGLRRAADDVNAQVE- SUUK
F1 -SYVDKIADVMREVAEKINSDLT-

F2 -SYIDKIADLIRKVAEEINSKLE-

F5 -SYVDKIADLMKKVAEKINSDLT-

F6 -SYIDKIADLIDKVVEEINSKLE-

PUMA -QWAPEIGAQLRRMADDLNAQYER 5UUL
F3 -SLLEKLAEELRQLADELNKKFEK

F4 -SLLEKLAEYLRQMADEINKKYVK

F7 -SLLEKLAEELAQLADELNKKFEK

F8 -SLLEKLAEYLAQMGDEINKKYVK

BIM GRPEIWIAQELRRIGDKFNAYYA- 2PQK
M1 APKEKEVAETLRKIGEEINEALK-

M2 APYLEQVARTLRKIGEEINEALR-

M5 APKEKEVARTLIKIGEEINEALK-

M6 APYLEQJARTLLHIGMEINEALR-
BID EDIIRWIARHLABVGDBBDRSI-- 5C3F
M3 DKTLEEIARELAKLAEEIDKE--

M4 DKTLEEIARWLARLALEIDKEI--

M7 DKTLEEIARELLKLALEIDKEI--

FS2 -QWVREIAAGL~RtAADDVNAQVER 5UUM
M9 -DIEQEIAEALKEVADELSKAIED

M10 -DVVLSVAETLRELADRLYEEINT

B= Norleucine

The two designed peptides that did not bind their targets with high affinity were

F6 and M6. F6 is the only peptide we designed with a residue larger than alanine or

glycine at position 3e. Position 3e is uniformly conserved as small in all native BH3

motifs and in previous designed binders of Bfl-1 and Mcl-1. Modeling F6 on template

5UUK with Rosetta highlights clashes due to the close proximity of the Ca position of F6

position 3e and the backbone of Arg 88 in helix 5 of Bfl-1 (Figure 4.2G). It seems likely

that valine is too large to be accommodated at this site. For design M6, it seems likely

that the substitution of arginine and aspartate at positions 3b and 3f of BIM with leucine

and methionine, and concomitant disruption of a charged network between the peptide

and the protein may have been destabilizing. These features are consistent with F6 and

M6 not binding to any of the BcI-2 family members we tested.
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Figure 4.2. Side chain clashes for dTERMen designs on 5UUK (FS2:Bfl-1) template. A representative
sample of residues from the dTERMen designs were predicted to clash for all rotamers in model
structures, even with side chain repacking in Rosetta. The backbone dependent rotamers with the least
predicted clashing are shown. (A) Valine at position 2g of F1 (gray) is predicted to clash (red disks) with
L52 of Bfl-1 (green). (B) Methionine at position 3a of F1 (gray) and F5 is predicted to have minor clashes
with M75, E78, and F95 of Bfl-1 (green). (C) Valine at position 3d of F1 (gray), F2, F5 and F6 is predicted
to clash with V44 and V48 of Bfl-1 (green). (D) Isoleucine at position 3e of F1 (gray), F2, F5 and F6 is
predicted to clash with V44 of Bfl-1 (green). (E) Leucine at position 2g of F2 (gray), F5, and F6 is
predicted to clash with L52 of Bfl-1 (blue). (E) Isoleucine at position 3a of F2 (gray) and F6 is predicted to
have minor clashes with E78 and T91 of Bfl-1 (blue).

There is substantial interest in developing Bcl-2 family paralog selective

inhibitors. To determine whether our designs cross-react with other anti-apoptotic family

members, we tested binding of each peptide to Bcl-xL, Bcl-2, Bcl-w, McI-1 and Bfl-1.

Interestingly, the Bfl-1 binders that were designed on the structure of PUMA bound to

Bfl-1 bound tightly to most if not all five proteins, like the parent PUMA peptide. In

contrast, peptides designed on 5UUK, the structure of FS2 bound to Bfl-1, were > 100-

fold selective for Bfl-1, like FS2 itself. The data were less clear for McI-1 binders, some

of which were selective (Ml, M5) and some of which were not (M2, M3, M4, M6, M7)

(Figure 4.1D).

To determine whether the designed peptides maintained the binding mode of

peptides in the templates they were designed on, we solved crystal structures for four of
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the peptides that bound tightest to their targets: F1 and F4 in complex with Bfl-1, and

M1 and M7 in complex with Mcl-1 (Figure 4.3). Statistics for data collection and

refinement are reported in Table 4.4.

FS2:Bfl-1(5UUK) F1 PUMA:Bfl-1(5UUL)

BIM:Mcl-1 (2PQK) Mi BID:Mcl-1 (5C3F)

Figure 4.3. Structural comparison of designs and their templates. X-ray crystal structures of F1 bound to
Bfl-1 (A), F4 bound to Bfl-1 (B), MI bound to Mci-1 (C), and M7 bound to Mcl-1 (D) are compared to their
design templates (green ribbon and gray surface). The designed peptides are shown in purple.
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Table 4.4. Summary of X-ray data collection and refinement statistics.
Bfi-I:FI Bfl-1:F4 McI-1:M1 Mci-1:M7

Data Collection
SpaceGroup P1211 P1211 P212121 P3221
Cell parameters

a, b, c 43.223 42.92 47.718 43.466 42.905 46.666 64.792 69.733 84.853 80.758 80.758 57.95

a, P, Y 90 115.957 90 90 114.206 90 909090 9090120
Rmeas 0.078 (0.399) 0.078 (0.43) 0.137 (0.981) 0.122 (.0698)
Rpim 0.029 (0.169) 0.036 (0.259) 0.047 (0.398) 0.045 (0.338)
Mean l/a(l) 30.92 (2.9) 22.4 (2.0) 15.6 (0.655) 18.32 (1.49)
Completeness (%) 91.49 (77.84) 94.60 (74.42) 95.81 (67.33) 97.31 (78.96)
Redundancy 6.5 (4.3) 4.1 (1.9) 7.7 (3.9) 6.7 (3.4)

Refinement

Resolution (A) 38.86 - 1.587 42.56 - 1.752 24.3 - 1.945 26.77 - 2.247
(1.644 - 1.587) (1.815 - 1.752) (2.015 - 1.945) (2.327 - 2.247)

Unique Reflections 19602 (1654) 15074 (1193) 27713 (1926) 10410 (831)

Rwork/Rfree 0.1706/0.1952 0.1826/0.2074 0.1993/0.2340 0.1771/0.2122
(0.237210.2628) (0.2626/0.3506) (0.3105/0.3380) (0.2314/0.2456)

Numberof non- 1623 1528 3055 1481hydrogen atoms
Average B-factors 21.08 26.3 29.58 39.34
Rmsd

Bond lengths (A) 0.006 0.003 0.005 0.011
Bond angles (*) 0.77 0.54 0.93 1.38

Values in parentheses are for the highest-resolution she.

The structure of F1 in complex with Bfl-1, resolved to 1.58 A, shows that this

peptide binds very similarly to FS2 in template 5UUK (Figure 4.3A). It is striking how

similar the pocket-facing positions of the designed peptide F1 and template peptide FS2

are, even though the sequence identity of these two peptides is low (27%) and no

information about the FS2 sequence was used in the design process. Modeling F1 onto

the FS2 backbone in structure 5UUK indicates a minor clashes are anticipated between

M3a with residues in the P2 pocket (M75, F95, and E78), 14a with V44 in helix 2 of Bfl-1,

and V3d with V48 and V44 of helix 2 of Bfl-1 (Figure 4.2). Substantial clashes are

anticipated between V2g and L52 of helix 2 of Bfl-1, but the solved structure shows how

backbone adjustments can accommodated this residue. The small clash appears to be

the reason the C-terminus departs from its path in 5UUK. There are also deviations

between the N-terminus of FS2 in 5UUK and F1 in our new structure, which appear to

arise from changing tryptophan at position 2 to tyrosine, as well as from a change in N-
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terminal capping. FS2 is capped at the N terminus by the acetyl group, whereas for F1

this is a networked interaction involving Sif and D2b.

We solved the structure of F4 bound to Bfl-1 to 1.75 A and found that the C-

terminal end of the peptide rearranges (Figure 4.3B). In the original template (5UUL),

the helix begins to unwind around position 4d, but in the redesigned structure it the last

three or four residues are in an extended conformation. This could be due to mutation of

position 22 from glutamate to valine, as it ends up being flipped down and in an

extended conformation. We also found that dTERMen had poor statistics for structural

elements at the C-terminus of 5UUL, which might have contributed to the helical

unwinding. At the N-terminus, the sequence of F4 is very different from that of PUMA;

there is only 1 conserved position in the last 10 residues. A very important change is

glycine to alanine at position 2e. In 5UUL this is a very tightly packed helix-helix

position, where only glycine can sterically fit, but TERM statistics indicated that alanine

is common in very similar geometries. The solved structure shows how the F4 helix

shifted slightly to accommodate alanine and other sequence changes.

We solved the structure of M1 bound to Mcl-1 to 1.95 A and found that that it

binds very similarly its template 2PQK (Figure 4.3C). However, the structure of M7

bound to Mcl-1 at 2.25 A resolution revealed a substantial change in the binding mode

of the peptide relative to the positioning of stapled BID in the design template (Figure

4.3D). The helix is shifted in the groove by 2.56 A, and canonical BH3 interactions

including aspartate at 3f and leucine at 3a are completely rearranged, as are the

hydrophobic contacts (Figure 4.4B, C). In Mcl-1 alpha helix 4 is rearranged (Figure

4.4A). Interestingly, when evaluated using dTERMen, the M7 sequence scored worse
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on the solved structure than it did on the template model. One complication in

evaluating this structure is that there are close contacts between two copies of the Mcl-

1:M7 complex near the C-terminal end of the binding groove and with alpha helix 4 of

Mcl-1 (Figure 4.5). It is possible that these influenced the binding mode; we can't rule

out at this time the possibility that crystal packing forces favored population of a minor

structural species.
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Bid-MM:Mc-1(5C3F) M7:McI-1

B R263
D256

L3f D4b

Figure 4.4. Comparison between the crystal structure of M7 (orange) in complex with Mcl-1 (yellow) and
its design template 5C3F (Bid-MM in blue and Mcl-1 in green). A) Structural alignment reveals a
rearrangement of alpha-helix 4 of McI-1. B) In 5C3F, as in most Mcl-1:BH3 structures, an aspartate in
peptide position 3f forms a salt-bridge network with R263 and D256 of BfI-1 (hydrogen bonds show as
blue dashes). A similar salt-bridge network is observed in the M7:Mcl-1 complex, but with an aspartate
one helical turn away in peptide position 4b (hydrogen bonds show as orange dashes). C) The shifted
binding mode of M7 re-arranges hydrophobic contacts with Mcl-1 relative to those observed in the 5C3F
structure.
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A -

Bid-MM:McI-1 (5C3F) M7:Mci1 symmetry reLaeu

BC

Figure 4.5. Crystal packing in the M7:Mcl-1 crystal structure. A) Symmetry related molecules (gray) in

M7:McI-1 crystal would be expected to clash with the Mcl-1 conformation (B) and peptide conformation

(C) observed in 5C3F.

There are a few features of design M7 that may account for this shift. First,

alanine at position 10 is over packed when modeled on the 5C3F backbone.

Nevertheless, we tested this design because wanted to assess whether the backbone

would adjust to accommodate the mutation, as was observed in the structure of F4

bound to Bfl-1. Interestingly, 5C3F and 2PQK backbones are very similar around this

position and dTERMen design calculations on both templates predicted that alanine and

glycine were both favorable. Alanine was chosen as optimal in the 5C3F-based design,
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whereas glycine was preferred for the 2PQK-based template. It may be that the Mcl-1-

peptide complex could not relax sufficiently to accommodate the addition of a methyl

group. Another element that may have contributed to the re-positioning of the peptide in

the groove may be the choice of residues at positions 3f and 4b, which form an interface

with the protein on one side of the helix. BID, and all other native BH3 peptides, have

aspartate at position 3f, but in design M7 this residue is leucine, and position 4b is

aspartate. In the crystal structure, peptide M7 is shifted such that Asp 4b can play a

similar role to that of Asp 3f in 5C3F, by interacting with Arg 263 in Mcl-1 (Figure 4.4B).

In summary, x-ray crystallography revealed that backbone positioning of two of

the crystalized designs were sub-angstrom matches of their design templates, one

bound in a geometry that shared high similarly with its template, and the remaining

design bound in an unexpected, dramatically shifted orientation.

DISCUSSION

Using dTERMen, we were able to rapidly design in entirely new regions of

sequence space without the need for explicit modeling of complex structures or

expensive experimental library screening. Previous work has shown that this is not a

trivial task. Even in carefully designed libraries only < 8 mutations away from natural

BH3 domains, most sequences fail to bind Bfl-1 and Mci-122 23 33. In contrast, with

dTERMen, 15/17 of the designs bound with native-like affinity, even though the

sequences were 14-22 mutations away from known BH3 binders (Figure 4.1B, C).

Our design protocol provided access to novel sequences. Some of the tight

binders we discovered using dTERMen lack the highly conserved leucine and aspartate

residues common to all known, native BH3 sequences (Figure 4.1A). This pair of
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residues has been used in the past to define the BH3 motif. Not only do our results

suggest that these residues are not necessary for binding, but they show that dTERMen

is a useful tool for discovering binders that can't be predicted or even recognized based

on conserved sequence features.

By using different design templates, we were able to find solutions in distinct

regions of sequence space, as illustrated in Figure 4.1A. This may seem to be at odds

with our finding that dTERMen is robust to small differences in input structure, but the

templates used for design were deliberately chosen to sample different backbone

geometries. We expected these templates to match with different TERMs from the PDB,

and thus to generate different sequence predictions. Templates 5UUL and 2PQK

included peptides with native sequences that have evolved for tight binding. Other

templates we tested, 5C3F and 5UUM, featured peptides that bound their targets more

than 3 orders of magnitude more weakly. It is interesting that both structures of high-

affinity and low-affinity peptide complexes led to novel, high-affinity peptide binders

when used as input to the design calculations. Design on other solved structures could

potentially provide access to even greater diversity. Going beyond solved structures, it

may be possible to perform dTERMen design on predicted structures with binding

modes that are not represented in the PDB.

Designs that are diverse in sequence are potentially valuable because they

provide opportunities to optimize pharmacological properties not related to binding.

These properties could influence whether these peptides are disruptive to membranes

and how readily they can be delivered to cells. Several studies have shown that the cell

permeability of stapled helical peptides depends on peptide properties including charge
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and hydrophobicity34 . The charge of a peptide can also affect how efficiently it is loaded

into nanoparticles. Different sequences will also have different cross-reactivity,

immunogenicity, and protease sensitivity, so having many option to choose from

increases the chances of developing useful reagents and lead therapeutics.

Interestingly, design using dTERMen is compatible with imposing constraints on peptide

properties such as net charge, so if the desired physical characteristics of a peptide

inhibitor are known, they can be used to direct the search into promising sequence

spaces.

The dTERMen scoring potential is based on sequence statistics for structural

elements observed repeatedly in nature. There is no formal relationship between these

statistics and protein stability or affinity, so the scoring may reflect any number of

evolutionary pressures including stability, specificity, folding kinetics, solubility, or other

factors. We interpret the success of dTERMen in design as evidence that whatever

evolutionary forces may be contributing to the statistics, there must be a substantial

contribution from the free energy of the sequence adopting the evaluated structure. The

fact that we designed helix-helix interactions in this project, which are common in the

PDB, may be part of the reason our dTERMen designs performed so well. This method

is not expected to perform as well on structural motifs that are sparsely sampled in the

PDB. However, more structures are deposited in the PDB every day, so the range of

accessible design targets is expected to improve over time 19.

One attractive feature of dTERMen is that it doesn't require structural modeling

or minimization; the design optimization is performed in sequence space. Although the

PDB structure-mining that is needed to build the scoring function can be somewhat time
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consuming, once such a function is derived, it is possible to perform design, or to

evaluate thousands of sequences, in seconds. Another advantage of dTERMen is that

there is a structural "fuzziness" built in, because the sequence statistics used for

modeling are derived from close, but not exact, matches of TERMs. This makes the

method more robust than FoldX to small variations in input structure, as shown in our

benchmark testing, and also accounts for some amount of backbone relaxation. In this

work, we saw one example where a mutation was accommodated (in peptide F4) that

would not have been predicted if modeling was performed on a rigid scaffold. On the

other hand, dTERMen design failures may result from over-packing the protein-peptide

interface beyond what can be accommodated by small structural rearrangements. This

may be what happened in designs F6 and M6, which did not bind tightly to their targets.

Future design studies will help calibrate the methods so that diverse sequences can be

obtained with high success rates. Combining dTERMen with a post-analysis procedure

that includes all-atom modeling, e.g. using Rosetta, could be one way to recognize

mutations that can vs. cannot be accommodated. Although this would increase the

computational costs, such a secondary evaluation could readily be performed for a

modest number (hundreds or thousands) of promising candidates designs.

One unexpected result from this work is that the specificity profiles of the designs

were observed to be template dependent (Figure 4.1D). This is particularly striking in

the case of the FS2 template. Although no off targets were considered during design,

the peptides designed from the FS2 structure were highly Bf-1 selective and in fact

provide outstanding leads for development as Bfl-1 targeting agents. This specificity of

peptides F1, F2 and F5 may be a result of the unique way FS2 engages Bfl-1. FS2
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adopts a non-canonical binding mode that has not been observed for natural BH3

ligands. It may be that the interactions that support the FS2 binding mode are under

less evolutionary pressure to mirror those required for BH3 binding in the other family

members and are thus more likely to be unique (Figure 4.6). This is consistent with the

idea that a peptide that makes contacts outside of the conserved binding cleft can use

these contacts to achieve intra-family specificity24 .

Residue conservation relative to Bfi-1

4 - similar residues are found in Bci-xL, Mcl-1, Bci-w, and Bcl-2

3

2

1
0 - residue is unique to Bfl-1

Figure 4.6. FS2 (white, cartoon) binding mode might have more potential than Puma (dark gray, cartoon)
binding mode to interact with residues that are unique to Bfl-1 (colored spheres). Similarity based on
Blosum62 matrix.

This proof-of-principle study makes us enormously enthusiastic about the

potential of dTERMen for designing peptide binders and inhibitors. The ease of use, fast

run times, and very high success rates on a difficult problem provide compelling

evidence of the promise of this approach. There are ample opportunities to improve

dTERMen further, for example by deriving TERM statistics from a database that

includes protein-protein and protein-peptide interfaces, and/or combining this sequence-

based design approach with all-atom modeling to better assess what mutations can be

accommodated by structural relaxation. We look forward to tackling increasingly difficult
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problems and moving the use of TERM statistics into the mainstream of modern protein

design.

Methods

Yeast clones

EBY1 00 yeast cells were transformed using the Frozen-EZ Yeast Transformation

II Kit (Zymo Research) according to the manufacturer's protocol. For a plasmid

backbone, we used the Puma PCT plasmid23 and digested it with xhol (NEB) and nhel-

HF (NEB) according to the manufacturer's protocol. The inserts were constructed with

PCR using primers that encoded the peptide sequence flanked with at least 40 bp of the

plasmid sequence on either side of the insertion site to facilitate homologous

recombination. The inserts and plasmid backbones were mixed at a 5 to 1 ratio for

transformation. The transformation mixture was spread onto SD + CAA plates (5 g/L

casamino acids, 1.7 g/L yeast nitrogen base, 5 g/L ammonium sulfate, 10.2 g/L

Na2HPO4-7H20 and 8.6 g/L NaH2PO4-H20, 2% glucose, 15-18 g/L agar, 182 g/L

sorbitol) and grown at 30 'C for 2 to 3 days. To confirm each strain, colony PCR

followed by sequencing was performed on single colonies. Sequence verified colonies

were grown overnight in SD+CAA (5 g/L casamino acids, 1.7 g/L yeast nitrogen base, 5

g/L ammonium sulfate, 10.2 g/L Na2HPO4-7H20 and 8.6 g/L NaH2PO4-H20, 2%

glucose). The saturated overnight cultures were diluted with to a final concentration of

15% glycerol and stored at -80 0C.

Yeast growth and FACS analysis

A small amount of frozen culture was scrapped from the top of frozen culture

stocks to inoculate SD+CAA. After passaging overnight at 30 C, cultures were diluted
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to an OD600 of 0.005-0.01 in SD+CAA and grown to an OD600 of 0.1-0.6. Cells cultures

were then diluted 25-fold with SG+CAA (5 g/L casamino acids, 1.7 g/L yeast nitrogen

base, 5.0 g/L ammonium sulfate, 10.2 g/L Na2HPO4-7H20 and 8.6 g/L NaH2PO4-H20,

2% galactose) to induce peptide expression and grown for 20-24 hr at 30 'C. To

measure binding to surface-displayed peptides, cells were filtered with a 96-well plate

filter (105-106 cells/well), washed twice with 150 pL BSS (50 mM Tris pH 8, 100 mM

NaCl, 1 mg/ml BSA), and resuspended in BSS with least 10-fold molar excess target

protein and incubated in the filter plate for 2 h at room temperature with gentle shaking

for equilibration. To detect cell surface expression and binding of target protein, cell

suspensions were filtered, washed twice in chilled BSS, resuspended in a 35 pL of

1:100 dilution of primary antibodies (mouse anti-HA, Roche, RRID:AB_514505 and

rabbit anti-c-myc antibodies, Sigma, RRID:AB_439680) in BSS and with gentle shaking

for 15 min at 4 *C. Cells were then filtered, washed twice in 150 pL chilled BSS,

resuspended in 35 pL of a solution of secondary antibodies in BSS (1:40 dilution of APC

rat anti-mouse, BD, RRID:AB_398465 and 1:100 dilution of PE goat anti-rabbit, Sigma,

RRID:AB_261257) and incubated with gentle shaking in the dark for 15 min at 4 C.

Cells were filtered and washed twice more in 150 pL chilled BSS to remove unbound

antibodies. Labeled cells were resuspended in BSS and analyzed using a BD

FACSCanto with FACSDiva software.

Protein and peptide purification

Sequences for the myc-tagged Mcl-1, Bfl-1, Bcl-2, Bcl-w, and Bcl-xL proteins

used for binding assays can be found in (ref). Sequences for the untagged Bfl-1 and

Mcl-1 proteins used for crystallography purified as previously described23 and frozen at -

180



80 C. The peptides used for crystallography were synthesized at the MIT biopolymers

facility with N-terminal acetylation and C-terminal amidation and were purified by HPLC

on a C-18 column with a linear gradient of acetonitrile and water. Purified peptides were

lyophilized and resuspended in DMSO. Peptide masses were confirmed by mass

spectrometry.

Crystallography

Crystals of Bfl-1 in complex with the designed peptides were grown in hanging

drops. To set the drops, untagged Bfl-1 (8 mg/mL in 20 mM Tris, 150 mM NaCl, 1%

glycerol, 1 mM DTT, pH 8.0) was mixed in equal molar ratio with the designed peptides.

1.5 pL of the Bfl-1/peptide mixture was pipetted onto a glass coverslip and mixed with

with 1.5 pL of well solution (1.8 - 2.0 M NH4 SO4 , 50 mM MES pH 6.5). To cryoprotect

the crystals, they were transferred into a solution of 2.0 M LiSO4 with 10% glycerol.

Crystals were flash frozen in liquid nitrogen. Diffraction data were collected at the

Advanced Photon Source at the Argonne National Laboratory, NE-CAT beamline 24-ID-

C. The datasets were refined to 1.59 A and 1.75 A and scaled using HKL200035 . Phenix

was used to phase with the Bfl-1 chain from PDB id 5UUK. The peptides were modeled

into the difference densities using Coot. Iterative rounds of refinement and model

building were performed using Phenix and Coot36 ,3 7.

Crystals of Mci-1 in complex with the designed peptides were grown in hanging

drops. To set the drops, TCEP (100 mM) and ZnSO4 (50 mM) was added at 10%

volume to untagged Mcl-1 (8.5 mg/mL in 20 mM Tris, 150 mM NaCl, 1% glycerol, 1 mM

DTT, pH 8.0) before adding equal molar amounts of the designed peptides. To grow

crystals of Mcl-1 in complex with F1, 1.5 pL of the peptide protein mixture was mixed
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with 1.5 pL of well solution (peg 3350, 50 mM bis-tris pH 8.5, 50 mM NH4CH3CO2).

Crystals were cryoprotected by adding 3 pL of a solution of 37.5% glucose in peg 3350,

50 mM bis-tris pH 8.5, 50 mM NH4CH 3CO 2 directly to the drop 0.5 pL at a time. To grow

crystals of Mcl-1 in complex with F7, 2.5 pL of the peptide protein mixture was mixed

with 0.5 uL of well solution (1.4 M sodium citrate pH 6.5, 0.1 M HEPES pH 7.5). To

cryoprotect, crystals were transferred to 1.6 M sodium citrate pH 6.5, 0.1 M HEPES pH

7.5. Crystals were flash frozen in liquid nitrogen. Diffraction data were collected at the

MIT X-ray core facility. The datasets were refined to 1.95 A and 2.25 A and scaled using

HKL2000 35. Phenix was used to phase with the Mcl-1 chain from PDB id 3PK1. The

peptides were modeled into the difference densities using Coot36 . Iterative rounds of

refinement and model building were performed using Phenix and Coot 36 ,37.

Benchmarking

Automatic download and annotation of BcI-2 protein-peptide complex structures

Uniprot sequences for Bcl-xL, Bfl-1 and Mcl-1 were retrieved from Uniprot and blasted

against the PDB database (7 Nov 2017). Matched structures were downloaded and

standardized by removing hydrogens and heteroatoms and transforming

selenomethionine to methionine. Sequences were aligned and renumbered on their

corresponding Uniprot template sequence using Needle. Regions that weren't matched

or that were poorly aligned with the Uniprot sequence were removed from the structure.

Chains of length [20,39] with residues that have more than 30% of their Voronoi surface

in contact with the receptor were identified as interacting peptide. Unless specified,

peptides containing non-natural amino acids were removed from the dataset. Only the

first model of NMR ensembles was retained. If a structure included multiple complexes
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in the asymmetric unit, these were split into new files and analyzed separately. Finally,

chains were re-labelled so that the Bcl-2 protein is always chain A and the peptide is

always chain B.

Alignment on binding site and method for comparing peptide binding geometry.

For every complex, residues within 8 A of any peptide atom were considered part of the

binding site and all complexes were structurally aligned using only their protein binding-

site atoms, using 3DCOMB. To define a common reference point for all bound peptides,

each peptide carbon alpha was represented as a node and a edge was created if the

distance between 2 nodes was below a threshold. The distance threshold was initially

set at 2 A and gradually increased by 0.1 A until largest clique in the graph included all

complexes . This clique represented a set of carbon alpha that are all within the

distance threshold and represent the "anchor" used for setting the registry. This position

was arbitrarily set to residue number 100. RMSDs between peptides in different

complexes were calculated using this alignment using only overlapping nodes.

Structural scoring functions dTERMen19, FoldX4.0 30, and Rosetta29 were tested

for their ability to predict peptide-protein binding affinity and specificity using binding

data obtained using the SORTCERY protocol 27,2 8. Scoring was based on 20-residue

peptides. The scored segment was chosen by structural inspection to include those

positions that make extensive contacts with the protein and that are unlikely to be

influenced by crystal contacts in the templates used for modeling.

Each structure was used as a template for dTERMen, generating a scoring

function for that template, i.e. a function that can score any peptide binding to the
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template-structure protein. FoldX4.0 was used to predict binding affinity by first using

FoldX4.0's "repair" function. Then, for each peptide in SORTCERY dataset, the repaired

template was transformed using the "mutate" function to generate the sequence of

peptide query and scored using the "complex" function. For Rosetta scoring, complex

structures generated by FoldX were relaxed with Rosetta using Talaris2014 or BetaNov

force fields. Relaxed structures were run through the surface analyzer "mover". Values

from cross and separated AG were kept as predicted binding energy.

The predictive power of the different structural scoring functions and protocols

was assessed by calculating the correlation between the binding energy determined by

SORTCERY, in kcal/mol, and each method's predicted binding energy (in arbitrary

units). Method's ability to identified top 10% binder vs. the rest was evaluated using

AUC of ROC curve. Finally, some sequences are found in more than one dataset and

their difference in binding energy represent their specificity. Using sequence that bind

tightly at least of the 2 receptors, ability of methods to predict specificity was assessed

by obtaining the correlation between experimental AAG and predicted AAG. Multiple

templates were tested for each protein receptor, and the predictive power was

evaluated for each template individually for binding affinity or all possible combinations

for specificity. Average performance on all templates was reported and represents the

expected value if a random template is chosen. We also report prediction performance

using the template that gave the lowest energy for each sequence.
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Chapter 5

Conclusions and future directions
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There are many possible ways design peptides with desirable interaction profiles.

My thesis work describes three distinct approaches to design tight and selective peptide

inhibitors of anti-apoptotic proteins, with an emphasis on Bfl-1. In one approach, I used

models built on small-scale mutational datasets and structure-based models to design

peptide libraries of BH3 variants. These libraries were screened to identify tight and

selective peptide inhibitors of Bfl-1. In another approach, I contributed to constructing a

computational model of the specificity landscape of Bfl-1, Bcl-xL, and Mci-1 that was

built on high-throughput affinity measurements of thousands of mutant BH3s. This data-

driven model provided valuable insight in to the binding preferences of these related

proteins and enabled us to design in a mutational space that is far larger than what is

experimentally tractable. In a complementary approach, I described the use of a

structure-based computational model built from sequence statistics extracted from the

PDB to design BH3 mimetics with sufficient accuracy to forgo experimental screening.

This thesis describes the design of and experimental validation of more than 22

novel Bfl-1 inhibitors, 20 novel Mcl-1 inhibitors, and 12 novel BcI-xL inhibitors. The

models used to design these peptides predict many hundreds of additional sequences

with similarly promising interaction profiles. Although the peptides described in this

thesis are far from orally available therapeutic drugs, these peptides do have immediate

value as research tools. For example, peptides from this thesis are already being used

by other research labs to study Bfl-1 function and to diagnose Bfl-1 dependence.

Further, lessons from my work can inform future efforts develop the next generation of

BH3 mimetics, as discussed below.
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The data-driven approach described in chapter 3 of this thesis to design

interaction specificity can be applied to other design tasks, including peptide delivery

into cells. Factors such as positive charge, a-helicity, charge distribution, peptide

sequence, and hydrophobicity have been proposed to contribute to cell uptake

propensity'. However, much of what is currently known is about cellular delivery is

inferred from (and biased by) the few sequences that have worked before. Given

sufficient data, it should be possible to build a computational model to design peptides

with improved cellular uptake. One of the major roadblocks to doing this is collecting a

sufficiently large and diverse dataset to build a useful model. Some cell delivery

platforms might be adaptable to high-throughput screening. One potential example is

bioreversible esterification 2,3. By esterifying carboxylate-containing side chains

(aspartate and glutamate), the negative charge of the peptide is masked and the

peptide is rendered more hydrophobic, facilitating translocation directly through the

plasma membrane. Once inside the cell, endogenous esterases unmask the peptide's

negatively charged side chains and it is thought that Coulombic repulsion with the

anionic head groups of the plasma membrane prevents peptide escape. Because

bioreversible esterification enables one-way trafficking directly across the membrane,

there may be an opportunity to screen membrane translocation in esterase-containing

liposomes, which can be readily adapted for high throughput screening. Alternatively, it

might be possible to measure cell delivery in plate-based screens using a variety of

reporters including functional readouts (like mitochondrial depolarization in the case of

Bfl-1 inhibiting peptides), dye labeled peptides, or radiolabeled peptides.
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The results in this thesis can potentially be applied to the development of small

molecules targeting Bfl-1. For example, previous screens for small molecule inhibitors of

Bfl-1 identified electrophilic small molecules as hits4. Presumably, this is because

electrophilic small molecules have the potential to form covalent adducts with C55 of

Bfl-1, which resides on the edge of the BH3 binding groove. The crystal structure of an

electrophilic variant of a Bfl-1 selective peptide presented in Figure 2.20 could provide a

valuable guide for rational design of small molecules to covalently react with C55 and

make additional contacts in the BH3 binding groove. My thesis work also demonstrated

that Bfl-1 is amenable to crystallization, opening the possibility that crystal soaking

experiments with small molecule fragments might be a fruitful approach to designing

small molecules to inhibit the Bfl-1 binding groove.

The results of my work also suggest peptide modifications that might improve the

margin of specificity for Bfl-1, which could broaden the therapeutic window for future

generations of potential therapeutic peptides. For example, one structural feature that is

unique to Bfl-1 and might be leveraged in future work to augment Bfl-1 selectivity is

glutamate at position 78 of BfI-1. All anti-apoptotic Bcl-2 proteins including Bfl-1 have a

deep, highly conserved hydrophobic pocket (P2 pocket) into which a highly conserved

leucine (L3a) docks upon BH3 binding. But the P2 pocket of Bfl-1 is unusual in that it is

formed with a gluatmate (at position 78) instead of all hydrophobic residues. Interactions

with this unusual structural feature could potentially be leveraged to enhance Bfl-1

selectivity beyond what is reported in this thesis. Unlike natural BH3 motifs, which all

have a leucine at position 3a, the designed peptide F1 described in chapter 4 of this

thesis has a methionine at position 3a that docks into the P2 pocket. The X-ray structure
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of F1 bound to Bfl-1 reveals that the terminal methyl of M3a is only 3.3 A from the

carboxyl group of E78. This structure could be used as a template to design peptides

with unnatural amino acids that can make hydrogen bonds with E78 to enhance Bfl-1

selectivity.

A B

P2 pocket

78

Figure 5.1. Structural positioning of glutamate at position 78 of Bfl-1. A) E78 of Bfl-1 forms one face of
the otherwise hydrophobic P2 pocket of Bfl-1 (gray surface). B) The X-ray crystal structure of the
designed Bfl-1 selective peptide F1 described in chapter 4 of this thesis (purple) bound to Bfl-1 (green).
The close proximity between M3a of F1 and E78 of Bfl-1 is highlighted with a dotted yellow line.

The results in chapter 4 of this thesis show that dTERMen is an efficient

approach to design novel BH3 peptides. Because the dTERMen scoring function is built

upon common structural tertiary motifs found in many evolutionary distinct proteins, it

may be possible to use dTERMen to predict non-obvious binding sites or to identify

novel binding modes. An example of a relatively simple binding mode of interest might

be a helix that binds the BH3 binding groove of Bfl-1 (or other anti-apoptotic protein) in a

flipped conformation relative to canonical BH3 peptide binders. Binding in a reversed

orientation might have the advantage of providing new, unexplored sequence spaces

with new opportunities for selective binding.
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In recent years, there has been significant progress in targeting BcI-2 family

proteins with BH3-mimetics. One outstanding example was the development of a small

molecule (ABT-199) that selectively inhibits Bcl-2, which has been approved by the FDA

for clinical use5 . This required years of work, guided by intensive NMR studies of

fragment binding- 7. Since then, small molecules selectively targeting Mcl-1 have also

been developed 7. This thesis, I describe the design of BH3 mimetic peptides with a high

degree of specificity for Bfl-1. The design processes and peptide reagents developed in

this work represent progress toward the larger goal of creating therapeutic peptides or

small molecules selectively targeting Bfl-1 to treat human disease.
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