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Abstract

The extensive genomic diversity of complex systems, such as the human gut micro-
biome and the evolution of human cancer, has been revealed with advances in DNA
sequencing. But we are still at an early stage in understanding this genomic diversity
to expand our knowledge in biology and for biomedical applications. Taking the di-
verse human gut microbiome as an example, little is known about the rapid exchange
of antibiotic resistance genes and virulence factors as part of the mobile gene flow
between the microbes in the gut.

Understanding such heterogeneous systems often involves studying the nature
and behavior of the individual cells that constitute the system and their interactions.
However, it is technically challenging to probe the genomic material of cells, the
smallest unit of life and amplify single genomes for sequencing. Current single-cell
technologies require complex instrumentation and the data quality is often confounded
by biased genome coverage and chimera artifacts. We address these challenges with a
new single-cell technology paradigm to make high-quality low-input genomic research
accessible to scientists.

We developed hydrogel-based virtual microfluidics as a simple and robust plat-
form for the compartmentalization of nucleic acid amplification reactions. We applied
whole genome amplification (WGA) to purified DNA molecules, cultured bacterial
cells, human gut microbiome samples, and human cell lines in the virtual microflu-
idics system. We demonstrated whole-genome sequencing of single-cell WGA prod-
ucts with excellent coverage uniformity and markedly reduced chimerism compared
with traditional methods. Additionally, we applied single-cell sequencing to identify
horizontally transferred genes between the microbes in the gut and revealed human
population activities' selective pressure in shaping the mobile gene pools.

Altogether, we expect virtual microfluidics will find application as a low-cost dig-
ital assay platform and as a high-throughput platform for single-cell sample prepa-
ration. This work offers a significant improvement in making high-quality low-input



genomic research accessible to scientists in microbiology and oncology.

Thesis Supervisor: Paul C. Blainey
Title: Associate Professor of Biological Engineering
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Chapter 1

Introduction

1.1 There is an increasing scientific and biomedical

need for low-input nucleic acid analyses

Applications from microbial genome discovery to biomedicine[1, 2, 3, 4, 5, 6, 7, 8j

are driving the broader application of high-throughput analyses of nucleic acids at

the level of single molecules and single cells. In this introduction, I will describe the

specific scientific and biomedical needs for single-molecule and single-cell analyses

in the characterization of unculturable microorganisms, human microbiome research,

cancer research, and clinical diagnosis. Following that, I will discuss the related

technology landscape and ideal technology features for such analyses. Lastly, I will

preview my technology, virtual microfluidics, which is the focus of this thesis. I

will explain how this technology fits in the emerging single-cell field and discuss its

potential to provide significant improvement and value in enabling easily accessible,

high-quality, and low-input genomic research to a large scientific and biomedical field.

1.1.1 Characterizing unculturable microorganisms requires single-

cell sequencing

Microbial communities (including bacteria and archaea) and their globally distributed

networks are an essential part of human life on earth. They are highly diverse, with an
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estimated 107 prokaryotic species [9]. These microbes play critical roles in ecosystems

that break down environmental toxins, produce fermentated dairy products at an

industrial scale, and associated with human health. For example, D. radiodurans was

first discovered in soil as the most radiation-resistant organism known. It was then

engineered with toluene dioxygenase to survive in highly radioactive waste sites and

decompose hazardous chemicals such as toluene and chlorobenzene [10]. Also, it has

been shown that long-term antibiotic treatment causes prolonged shifts in the gut

microbial composition, which decreases amyloid3 plaque deposition and is associated

with the Alzheimer's disease in humans [11]. Despite their importance, 90 ~ 99% of

microbes on earth have not been characterized because they are difficult to culture

in the lab [12]. Studying the uncharacterized microorganisms can open the door to a

huge reservoir of knowledge on microbial functions and gives us the ability to predict

microbial responses to perturbations from human activities.

The highly diverse nature of environmental microbes, however, requires the charac-

terization of the microbe not only collectively but also in isolation. Studying microbes

in isolation is needed to decode their genome sequences, understand gene functions

and microbes' relationship with different components of its community. Traditional

methods of isolating a single species in culture are not only labor-intensive and slow,

but they also require serial enrichment under culture conditions that are often sub-

optimal for microbes' growth [13]. Such a prolonged procedure increases the risks

of genomic changes in the microbe of interest and may result in diversity loss due

to competition or simple unculturability. Meanwhile, optimizing the culture condi-

tions for a large number of diverse species of bacteria is difficult. Understanding the

metabolic mechanism of an uncharacterized microbe could shed light on an axenic

culture in the lab and in many cases, a symbiotic co-culture might be necessary [14].

To address these issues, the recent development of next-generation sequencing

techniques has enabled us to discover a large number of microorganisms [15, 16, 17].

Specifically, these sequencing techniques have allowed scientists to identify the func-

tional pathways and phylogenies of newly characterized microorganisms [7]. Rir-

thermore, the evolutionary history and relationships among prokaryotic species are

18



developed based on marker genes, such as 16S sequences, gene panels and whole

genome sequencing, instead of solely relying on qualitative morphology observations.

Recent studies have discovered new variations of genetic code encoding for amino

acids. Across the diversity of microbes, the genetic code for amino acids has been

shown to vary in size and codon assignment[18]. UGA is a common stop codon. A

novel coding of glycine UGA was identified in newly discovered Gracilibacteria and

SR1 [7, 19]. These discoveries broaden our definition of how to encode life's basic

building blocks - amino acids. New phyla are also discovered from microbial samples.

First discovered in human oral cavities [20] and soil [21], TM7 was one of the first

elusive candidate phyla sequenced. The discovery shed light on potential virulence

factors in TM7 that may contribute to oral disease [20]. Sequencing data from hospital

sink biofilms was used to reconstruct partial genomes of a new candidate phylum TM6

and the periodontal pathogen Porphyromonas gingivalis [22, 23]. It also enabled the

identification of key virulence factors and polysaccharides biosynthesis pathways that

are proposed targets for new antibiotics.

Common sequence-based analysis methods, including metagenomic and single-

gene studies on environmental microbial samples, can only provide a fragmented

view of the common species present [13]. Metagenomic shotgun sequencing provides

sequencing results in billions of short fragments (commonly 100 bp for short-read

sequencing on Illumina machines). This method enables microbiologists to sample

genes and detect the abundance of microbes in various environments. However, due

to its fragmented nature, metagenomics alone is not suitable to assign genes to dif-

ferent phylogenetic groups. With extensive bioinformatic manipulations, it has been

shown that metagenomic reads can be assigned into biologically informed bins based

on the covariance of the k-mer read depth and thereby enables assembly of "individ-

ual genomes" [24]. Sequence reads alignment to reference genomes is another way

to achieve binning. But the binned genomes are "composite genomes" that could be

comprised of many different organisms. Even with long read sequencing technolo-

gies, such as PacBio and Nanopore, which allow sequencing reads of up to 400 kbp,

there are still discontinuous assemblies with gaps that need to be bridged in order to
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link genes and predicted pathways to a microorganism's phylogeny [25]. In addition,

the current reference genome database is highly biased with culturable bacteria. Se-

quences from rare species can be easily discarded due to the difficulty in getting a

mapping hit to the reference database.

Single-cell sequencing can phylogenetically connect unlinked metagenomic reads

by cell of origin [7]. Single-cell assemblies have also revealed the microbial family

Succinivibrionaceae is highly abundant in the gut microbiome but is difficult to detect

by metagenomic analysis due to its poor representation in reference databases [26].

Directly, single-cell whole genome sequencing alone can yield a large number of de

novo assembled genomes. But current single-cell technologies produce assemblies that

are often confounded by biases and chimeras generated through the whole genome

amplification process, resulting in mis-assemblies and low coverage completeness [27,

28]. A need exists for technologies that improve data quality from single-cell datasets

in order to produce confident, finer-scale heterogeneity among microbial samples that

are largely uncharacterized.

1.1.2 Pinpointing the human microbiome's therapeutic mech-

anism requires the help of single-cell sequencing tech-

nologies

The human body is also comprised of many uncharacterized microorganisms, which

are of the same order as the number of human cells [29]. Among the many micro-

biome niches on and inside the human body, the gut microbiome has been shown to

play a critical role in affecting human developmental variations [30] and modulating

the host immune system [31]. There also has been increasing evidence indicating that

bacterial microbiota plays a key role in carcinogenesis [32] and a wealth of studies in

patients and mice have linked the microbiota to colorectal and lung carcinogenesis

[33, 34]. In short, there are tremendous opportunities to leverage an understanding

of the microbiome for diagnostic and therapeutic appictions in healthcare. To date,

however, the majority of human microbiome research and clinical efforts have focused
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on culturing consortia of microbes without knowing the individual microbe's contri-

bution. It is difficult to predict such consortia's therapeutic efficacy or adverse effect

if used to treat humans.

As one example, Clostridium difficile infection (CDI) caused around 500,000 inci-

dences in the U.S. in 2011, with a mortality rate of 3% - 4%. The cost of managing

CDI was estimated to be at least $ 1 billion per year in the U.S. alone since 2010

[35, 36]. Remarkably, though, the basic pathophysiology of recurrent CDI is not

completely understood. C. difficile is not pathogenic at low levels. Broad-spectrum

antibiotics disrupt patients' gut microbial communities that normally keep C. diffi-

cMe population in check. C. difficile spores can remain dormant during the antibiotic

treatment and take over after treatment ends to proliferate, disrupt and cause in-

flammation in the gut by secreting toxins that damage the gut endothelial lining [37].

As a result, the current treatment uses Fecal Microbiota Transplantation (FMT) to

reconstitute normal microbial homeostasis [38], but our biomedical understanding of

FMT is limited. For instance, it is challenging to select a donor that guarantees

a safe and efficacious FMT [39]. Fundamentally, scientists lack a complete under-

standing of FMT from a basic science perspective, and the key microbial populations

that are responsible for beneficial outcomes and adverse effects remain unknown. A

metagenomic sequencing study [40] has shown that the relative abundance of assem-

bled composite genomes from the donor did not predict whether the microbes would

colonize the FMT recipient or not. But the study showed a link between taxonomy

and the colonization ability of a given assembled strain, while assembled strains from

the same taxon have slightly different colonization properties. This highlights the im-

portance of a better resolution in exploring the functional basis of FMT colonization

and identifying precisely what microbes need to be transferred to maximally benefit

a patient.

Single-cell whole genome sequencing is precisely the kind of technology that could

help answer scientific questions in designing therapeutic tools using complex biological

systems. Sequencing single cells from the targeted taxon could provide individually

assembled genomes with strain-level resolution. These genomes are separate ecologi-
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cal machines that contain genes related to sporulation that correlate with colonization

efficiency [41]. Pinpointing the strains of microbes with high colonization efficiencies

would likely guide the engineering of FMT with high manufacturing efficiency, high

efficacy and low adverse effects. However, current single-cell sequencing technology

is difficult to implement on a large number of gut microbes (with a density of 10"

cells/mL). It is also difficult to select the targeted taxon of interest from the gut micro-

biome consisting of microbes of different levels of unculturabilities. These challenges

explain the current low adoption rate of single-cell technologies in the gut micro-

biome research. I have taken steps towards making such technology improvements

in throughput, ease of implementation, optical screening and retrieval capability of

microbes. This would enable a large fraction of the human gut microbiome to be

analyzed with single-cell resolution to pinpoint its therapeutic mechanism.

Another class of problems that single-cell whole genome sequencing could address

relates to the horizontal gene transfers (HGT) in the human gut microbiome. HGT is

the acquisition of genetic materials (such as plasmids, transposons, prophages) from

non-parental lineages. It allows rapid exchange of virulence factors [42], antibiotic re-

sistance genes [43, 44], and xenobiotic metabolism genes [45] through the human gut

microbiome. A better understanding of the distribution of antibiotic-resistance genes

among different microbiomes could inform antibiotics overuse where the resistance of

specific antibiotics is the highest [441. Studying the mobile gene pool associated with

HGT, however, is difficult with current short-read metagenomics sequencing technolo-

gies. Previous studies have been constrained to individual species [46] and limited

mobile elements such as plasmids [47] and phages [48]. A more reliable method for

cataloging mobile genes (to include transposons and prophages) depends on assem-

bled genomes that are distantly related (more than 3% divergent) and share genes

with exact sequence matches. This requires individual genomes with their phylogenies

and genes coupled.

Single-cell technology could solve this problem by producing draft genomes that

contain enough genome context to link genes to hosts and identify mobile genes

with high confidence. Currently, research labs that are interested in applying single
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microbe sequencing have been relying on services provided by large genomics centers,

such as the Bigelow Single-cell Genomics Center and the Joint Genomic Institute.

The success rate of obtaining pure single amplified genomes is less than 10% using

FACS sorting and traditional whole genome amplification methods. In Chapter 3, we

propose a new single-cell technology that can provide high-quality data with a much

higher success rate (28%).

In summary, utilizing the microbiome for diagnostic and therapeutic tools holds

enormous potential. High-resolution spatial, temporal, and functional analyses of the

human intestinal microbiota are needed. In order to understand the microbiome's

function and develop methods for intervention, it is necessary to implement single-

cell whole genome sequencing technologies in academic and clinical settings. Later

in this chapter, I will discuss the technology landscape and demand of single-cell

sequencing. In Chapter 3, I will demonstrate virtual microfluidics' application on

cultured microbes and human gut microbiome samples and show how it enables high-

quality genomic analysis with ease of accessibility. At the end, I will also discuss the

technology's potential to be implemented in the field for environmental microbiome

studies.

1.1.3 Deciphering oncogenesis and tumor heterogeneity re-

quires single-cell analysis

Understanding the nature of oncogenesis (how normal cells transform into cancer

cells) and tumor genetic heterogeneity (different tumor cells show distinct phenotypic

profiles) has been the focus of a continuous research effort for the past several decades

[8, 49, 50, 51, 52, 531. Most cancers carry 1,000-20,000 somatic point mutations and

up to hundreds of insertions, deletions, and rearrangements [54, 551. Cancer muta-

tions' heterogeneous nature across a cell population is a factor of cancer treatment

failure and disease recurrence, as the treatment for one tumor cell subpopulation may

not work for another [56, 571. By measuring the mutational heterogeneity of a tumor,

researchers and clinicians hope to create targeted treatments and enable better clini-
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cal outcome prediction. For example, among patients with non-small-cell lung cancer,

elevated copy-number heterogeneity (such as in gene CDK4, FOXA1, and BCL11A)

from subsections of a tumor was associated with shorter relapse-free survival (P=4.4 x

10-4) [58]. This finding suggests that patients who have early-stage tumors with high

levels of copy-number heterogeneity may represent a high-risk group who may benefit

from close monitoring and early therapeutic intervention during follow-up. Tumor

heterogeneity, as quantified by the clonal diversity measure from evolution and ecol-

ogy, has been shown to predict progression to adenocarcinoma from a premalignant

condition in Barrett's esophagus [59]. The Shannon diversity index is calculated as:

H = - Z pi ln (pi) , where pi is the frequency of clone i in the sample. A tumor with

a high diversity index is expected to become resistant to chemotherapy as it harbors

pre-existing resistance mutations [60].

In order to evaluate the clonal diversity, researchers have made qualitative obser-

vations on the chromosome aberrations directly in single cancer cells with karyotyping

and fluorescence in situ hybridization (FISH). Recently, next-generation sequencing

has enabled large-scale quantitative analysis [60], but the sensitivity of detection is

limited to mutations that are present in about 20% of cells of a bulk sample [61]. In

addition, in clinical samples, such as fine-needle aspirates and core biopsy samples,

the number of cells is often limited. Single-cell sequencing is an effective solution

to improve measurements of the extent of intratumor genomic heterogeneity even

with low-input samples. Current single-cell technologies produce an uncharacterized

amount of amplification artifacts that confound the profiling of genome-wide muta-

tions (single nucleotide variations, copy number variations, and structural variations).

The technology improvements I describe in this thesis will improve the ability to pro-

duce high-quality single-cell data with low-level of genome structural artifacts.

Single-cell measurements can also inform our understanding of oncogenesis. The

process of mutational events in oncogenesis have two main explanations. The first

explanation is that cells can acquire hypermutations (the "mutator hypothesis") [62].

It argues that normal mutation rates are insufficient to account for the multiple

mutations observed in cancer cells [63]. Therefore, the hypermutation that increases
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mutation rates (such as the p53 mutation that impairs the detection of and response to

DNA damage) would account for a large number of mutations in human tumors. The

other explanation - "driver mutation" - is that selection without increased mutation

rates is sufficient, as the early driver mutations trigger clonal expansions and increase

the pool of cells at risk for further driver mutations [64]. Driver mutation denotes

mutations under positive selection within a population of cells. Passenger mutations

are variants that have no phenotypic consequences.

In order to test the two (not necessarily mutually exclusive) hypotheses, quantify-

ing the mutation rate in normal tissues and in different tumor types is needed. It has

been shown by bulk sequencing that normal tissue has a frequency of spontaneous mu-

tations less than 1 x 10- per base pair, while tumors from the same individual exhibit

an average frequency of 210 x 10- per base pair [65]. However, this bulk-sequencing

result does not differentiate between the two hypotheses; scientists cannot ascertain

whether the high mutation frequency per basepair is due to a small collection of cells

having high mutation rates with hypermutation or a majority of cells having driver

mutations. Over the years, we have learned that the mutational process of cancer cells

as population averages does not represent the mutational landscape because hetero-

geneous information is hidden in bulk samples [8, 66, 67]. By identifying mutations

and mutation rates with single-cell resolution, the nature of hypermutations or driver

mutations can be identified to better understand the oncogenesis process. Thus, there

is a need for high-throughput, high-quality, low-cost single-cell sequencing methods

to catalog and compare the mutation rate of a large number of normal and tumor

cells for the study of oncogenesis.

Overall, there is a need for an easily accessible, high data quality single-cell tech-

nology to enable the robust measurement of tumor heterogeneity and to push the

boundary of our knowledge in oncogenesis. With such a technology improvement, it

will be possible to pinpoint cancer mutation mechanisms, to inform targeted cancer

therapy for patients, and to bring accessible high-resolution genomic research to a

wide scientific and biomedical audience. In Chapter 4, I will demonstrate virtual

microfluidics on single human cells for whole genome sequencing and compare its
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advantages in terms of ease of implementation, high data quality, and low artifact

rate with several other recently developed single-cell technologies.

1.1.4 Clinical application of low-input DNA analysis requires

a high-sensitivity single-molecule technology

Considerable effort has been spent to translate genomic data into personalized prog-

noses and treatments [68, 69, 70]. For example, patients with low genomic risks (using

a 70-gene signature) during the early stage of breast cancer might not need to undergo

chemotherapy. The 5-year survival rate was only 1.5% lower than the rate from the-

control group undergone chemotherapy [681. This type of informed clinical decision-

making has great potential to improve patients' quality of life and avoid unnecessary

medical expenses. Repeated sampling of a tumor is ideally required to track patients'

genetic profiles before and after therapies to optimally deliver targeted therapy 171].

A traditional biopsy is invasive and technically challenging depending on the site of

sampling, while only sampling a single area of tumor underestimates the array of

genetic aberrations in heterogeneous tumors [72]. Researchers have shown that the

plasma provides a noninvasive source of tumor DNA for HER2 breast cancer [71, 73].

Other studies have demonstrated the monitoring of chronic myeloid leukemia with

BCR-ABL1 fusion quantification in the plasma [741. Common cancer mutations in

KRAS and p53 have also been identified in plasma from patients with colorectal and

pancreatic neoplasms [75, 76].

The biggest challenge facing liquid biopsy is the low occurrence of circulating tu-

mor DNA (ctDNA) and circulating tumor cells (CTCs) in the plasma (in the range of

1 cell in 20 mL). Current technologies limit the application to ctDNA in late-stage can-

cers and the detection rate of different gene targets in different cancer patients varies

dramatically (33% ~ 80% ) [77, 78]. There is a need for technology improvement in or-

der to achieve absolute quantification of single molecules and single cells from a dilute

input. The technology should also enable target enrichment, optical screening of rare

DNA fragments/cells, and eventually product retrieval for post-detection sequencing
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validation. In the next section of the introduction, I will summarize the state-of-the-

art technologies in DNA quantification by amplification, introduce the concept of a

hydrogel-based quantification assay, and explain why it has a great potential for the

clinical application of low-input DNA analysis. In Chapter 2, I will demonstrate and

characterize the absolute quantification of nucleic acids by amplification.

1.2 State of the art of single-molecule and single-cell

technologies

Previously, the need and significant impact of single-molecule and single-cell tech-

nologies in a wide range of scientific and biomedical contexts was discussed. In this

section, I will discuss the current approaches to single-molecule and single-cell analy-

sis with the goal of introducing the benefits and disadvantages of current methods. I

will then close with a discussion on the gap between what current technologies offer

and what hurdles need to be crossed to achieve a wide adoption of single-molecule

and single-cell technologies.

1.2.1 Single-molecule analysis of nucleic acids

Accurate quantification of nucleic acids has been an integral part of biological science

and has many applications in clinical research. A new class of 'digital', i.e. absolute

quantification, single-molecule analyses require parallel clonal amplification of individ-

ual nucleic acid templates-typically a few fragments in milliliters of blood-to gen-

erate a sufficient number of genomic replicates for detection [73, 74, 79, 80, 81, 82, 83].

A wide variety of amplification-based approaches have been explored for the mi-

crofluidic compartmentalization of single molecules across a large number of small

discrete reactors, such as high-density microfluidic arrays [84], engineered lab-on-chip

systems [85, 86, 87, 88], and multi-phase micro-droplet systems [89, 90, 91, 92]. These

systems provide platforms for performing assays such as digital PCR. Digital PCR

(dPCR) has been demonstrated to have the least quantitative bias for measuring a
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small fraction of DNA in liquid biopsy and has higher clinical sensitivity compared

to traditional PCR-based assays, which rely on relative quantification based on "tem-

plate standards" [80, 93, 94]. Digital PCR works by diluting the target molecules

into many partitions in a microfluidic device or across many droplets, such that each

partition has one molecule or less. After the dPCR reaction, one can easily read the

number of fluorescent partitions, thus estimating the absolute number of molecules

in a sample by counting [82].

However, dPCR requires tedious sample preparation and the dynamic range is

restricted by the choice of commercial microfluidic chips or the number of droplets

generated [911 as the number of partitions limits the range of molecule counting.

Existing methods to conduct dPCR require complex instrumentation and micro-

fabricated consumables that prevent broader deployment of digital assays. It is also

difficult to retrieve amplification products from microfluidic chambers or droplets,

which are required for follow-up sequencing and minimizing the false-positive rate.

Other characteristics desired in single-molecule digital processing systems are resis-

tance to extrinsic contamination, stability under temperature changes and good opti-

cal properties for digital readings. In this thesis, I will use a hydrogel-based method

to isolate DNA fragments by selective diffusion restriction. It has clear advantages

in terms of having a low equipment requirement, a high sample retrieval accessibility,

and a low reaction volume with a high throughput.

1.2.2 Single-cell analysis for genomic studies

Single-cell sequence data quality is determined by the purity of cell isolation, DNA

denaturation, whole genome amplification, library preparation quality (Fig. 1-1).

In this thesis, I focus on the main factors and their effect on data quality: cell

isolation (cross contamination, biases), lysis (efficiency, biases), and whole genome

amplification (coverage uniformity, errors, artifacts).
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Cell Whole Genome Fragmenting PCR
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Figure 1-1: An overview of single-cell whole genome sequencing. (a) The single-cell
analysis workflow. (b) Multiple displacement amplification (MDA) mechanism. (c)
DNA are fragmented, barcoded and sequenced with pair-end sequencing.

Cell isolation and lysis

Like with single-molecule analysis, the first critical step in single-cell analysis is cell

isolation. In order to separate cells of interest, relatively high-throughput technolo-

gies were adapted and developed. These technologies include fluorescent-activated

cell sorting (FACS) into multi-well plates [95], high-density microfluidic arrays [84],

engineered lab-on-chip systems [85, 86, 87, 88], and multi-phase micro-droplet systems

[89, 90, 92, 96, 97] (see Table 1.1).

Currently, the most commonly used method for cell isolation is FACS. FACS au-

tomates the process of single-cell isolation of identifiable subpopulations. The cells

being sorted need to have differentiating light-scattering characteristics, express cer-

tain fluorescent markers, or to be stained by fluorescent antibodies or DNA binding

dyes. Studies have used FACS with DNA binding dyes to detect and localize genetic

abnormalities such as whole chromosomal deletions and aneuploidy on single cells

[98]. The human cell size (10 pm ~ 20 pm in diameter) and surface markers make

it a suitable sample for FACS. However, it is difficult to achieve a similar success
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Single-cell Segregation Engineering Fixed Spatial Reagent Product Characteristic Max Max
seoloan Principle requirement Addressing Addition Recovery Reactin analytes analytes

Commodity
SBS multi-well Macro-scale plate & Liquid handler or manual 1 - 100 pL 1 0.10

Plate container array complex pipetting
robotics

Individually
Lab-on-a-c addressable Automated by 0.1 - 500 nL 10,000 0.10

(e.g. Fluidigm) microfluidic Yes microdevice
chambers

Open Specialized Liquid handler or manual
microfabricated Micro-fabricated microdevice pipetting (largest volume 0.05 pL* - 10 nL 20,000,000 20,000

array container array & controller only)

Monodisperse Multi-phase No Droplet Droplet 5 - 1000 pL 200,000 10,000microdroplets system merging breakdown

Selective No special Diffusion Physical

Hydrogel diffusion equipment Yes into or out punch or 0.05 - 1 pL** 20,000,000 20,000
restriction needed of hydrogel hydrogel

Ibreakdown_____
Men et al., Anal. Chem., 2012 used 3.3 micron diameter by 4.2 micron deep wells

** Defined by physical extent of product; reagents likely drawn from a larger volume

Table 1.1: A comparison of single-cell isolation technologies

rate when separating environmental microorganisms (- 1 pm). Environmental mi-

crobial samples have a range of morphological shapes and this may result in a biased

selection by light scattering, which contributes to a possible uneven representation

of taxa obtained through single-cell analysis using FACS compared to bulk metage-

nomic sequencing. Sample preparations involving FACS, plate/well transfer, and

dilution greatly increase the possibility of exogenous DNA contaminations from the

lab environment [991. In the case of single-cell whole genome amplification, one single

molecule of exogenous DNA can be amplified with the random priming mechanism,

pose challenges in data analysis and affect the quality of de novo assemblies [100].

To remedy the effect of sample handling, a wide variety of approaches have been

explored for the microfluidic compartmentalization of single cells across a large num-

ber of small discrete reactors [87, 88]. However, similar to the current methods for

single-molecule analysis, existing methods require complex instrumentation and are

labor intensive if set up in-house. In addition to the characteristics desired as in

single-molecule assays, single-cell studies often require the compartment access for

the addition and product removal of reagents and samples. A recent development

of a microfluidic system that incorporates DNA purifying capability for processing

30



microbial isolates may solve the reagent addition and retrieval problem but it is not

easily accessible and scalable to single-cell resolution [101]. The operation of open

microarray/microwells requires a specialized liquid handler such as Echo (Labcyte

Inc.) and CellCelectorTM (Automated Lab Solutions). Emulsion droplet systems

pose challenges in reagent addition and sample retrieval after the droplet formation.

This approach is positioned well to produce a large number of picoliter partitions

easily for digital counting in a single-molecule analysis that doesn't require follow up

Sanger or whole genome sequencing (WGS). A recent development utilizing droplets

as partitions for a single human genome WGA still requires FACS sorting or mouth

pipetting for cell isolation [89].

The challenges in the single-microbe analysis are distinct from its mammalian

counterpart. The difficulty in culturing prevents us from obtaining single colonies

on an agar plate that provide enough starting material for sequencing (nanograms

of DNA for Illumina benchtop procedures). Here is where single microbe Whole

Genome Amplification (WGA) comes into play. WGA can amplify the femtograms

of genomic DNA from a single microbe to nanograms (See next section on WGA for

more detail). However, single microbial WGA faces numerous challenges, including

low isolation efficiency and a high chance of contamination. In addition, microbial

communities consist of organisms with diverse physiologies, meaning that a universal

lysis strategy that works for all types is difficult. Most lysis methods are developed for

bulk samples, which may not be suitable at the single-cell level if the lysis efficiency is

low [13]. The undesired consequences of incomplete lysis might result in DNA locus

damage and undetected microbial species.

Alkaline lysis is the most common method for single microbe lysis today and it

was first described for single cells by Raghunathan et al. [102]. Other supplementary

methods include heat lysis, repeated freeze-thaw [103, 104]. But the lysis success rates

(obtaining pure single amplified genomes after WGA) vary widely and are often below

40% [1051. One particular type of microbes that does not lyse well in alkaline is the

environmental extreme, such as M. ruber that was found in hot springs with alkaline

pH [106]. On the other hand, Fleming et al. discussed that the best strategy might be
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using a cocktail of enzymes that provide efficient but gentle lysis on the entire microbe

types present [104]. But enzymatic cocktail unavoidably contains small fragments of

DNA lodged in the enzymes themselves, which become contaminants through the

WGA step. The enzymatic cocktail for one single cell in isolation is often excessive as

not every enzyme present will be effective in lysing and the enzyme collections might

not be compatible with downstream WGA method. And it is difficult to purify such a

low quantity of unamplified genomic DNA. Consequently, an effective, adaptable and

clean method to enable high-throughput single-microbe isolation and lysis is needed.

Cell isolation and lysis for mammalian cells is less technically challenging due to

their relatively large cell size and the absence of the cell wall. The lipid bilayer cell

membrane can be easily dissolved in a dilute solution of detergent, such as Triton-

10OX and NP-40. The enzymatic digestion and DNA deproteination methods have

been widely implemented and optimized [66, 89, 107, 108, 1091. However, it was

recently discovered that many single-cell studies could be confounded by the poor

data quality caused by the DNA damage after cell lysis when biological "variations"

are in fact extensive technical biases and errors [108, 110]. For sensitive applications

such as measuring the single-nucleotide variations (SNVs) in cancer cells, treating the

genomic DNA with uracil-DNA glycosylase to eliminate cytosine-deaminated uracil

bases can reduce a significant amount of false-positive C-to-T SNVs [108, 111].

Whole Genome Amplification (WGA)

One of the most critical steps to analyze genomes of single cells is the whole genome

amplification. Currently, the prevalent short-read library preparation and sequencing

technologies require nanograms (10- g) of input DNA for on bench procedures, while

the genome of a single cell ranges from femtograms (1.7 x 10-15 g, Prochlorococcus

MED4) to picograms (6 x 10-" g, human diploid). Thus, WGA is needed to replicate

the genomic DNA from a single-cell to approximately 10' ~ 106 fold. During the

WGA process, artifacts and technical errors such as low physical genome coverage,

non-uniform coverage due to GC% bias, false-positive (FP) errors and false-negative

errors are often introduced. Achieving a high physical coverage of the genome with
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a low error rate is crucial for calling mutations accurately at the same regions of

multiple single cells. There is a need for WGA method improvement that provide

high-quality single-cell WGA data in above-mentioned criteria.

Multiple Displacement Amplification (MDA) [109] is a well-characterized WGA

method commonly used to enable single-cell genome sequencing [20, 89, 95, 102, 112,

113, 114]. MDA uses (D29 polymerase with a strong strand displacement property

and random exonuclease-resistant 6 bp primers to produce longer than 12 kbp ampli-

fication products at 30 'C (Fig. 1-1b). MDA provides greater genome coverage than

the PCR-based methods such as degenerate oligonucleotide primed PCR (DOP-PCR)

and lower error rate than Taq and Bst polymerases owing to the high fidelity of P29

polymerase [109]. However, the exponentially amplified genome through MDA has

regions that are overrepresented and this bias positively correlates with the fold of

amplification [87]. In addition, the random priming nature allows DNA amplification

on any exogenous DNA contaminants, posing a threat in raising the false-positive

rate in new genome discovery.

Recent technology innovations have been focused on improving MDA performance

by varying methods of physical partitions. It has been shown that contaminating

DNA was largely eliminated by moving MDA from microliter reaction volumes in

tubes to a microfluidic format that used nanoliter volumes [87]. The MDA ampli-

fication gain is also limited by the nanoliter volume, thus improving its coverage

uniformity. The trend of using sub-microliter partitions lead to the development of

emulsion WGA (eWGA) [89] and Nanodrop MDA [107]. In eWGA, a single cell is

FACS sorted and lysed, then randomly distributes in a large number (105) of picol-

iter droplets. Each droplet contains zero to a few fragments of DNA that go through

MDA reaction. The results showed improved uniformity and high coverage at the

amplification gain of 2 x 106 for human cells. This improvement is made possible

by isolating different parts of the genome during MDA. Thus, this way, the over-

amplified fragments would not compete globally with fragments in different droplets

that have a late start in MDA. This results in a more uniform amplification depth that

improves copy number variations calling accuracy. Nanodrop MDA utilizes commer-
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cially available piezoelectric non-contact liquid dispenser to deposit nanoliter-ranged

drops sequentially onto a planar substrate and each drop's single-cell occupancy de-

pends on Poisson loading. MDA reagents are added to drops containing single cells

in the same way and each 100 nL reaction is covered with mineral oil to prevent evap-

oration. Both eWGA and Nanodrop methods have shown improvements in terms of

data quality in genome coverage percentage and coverage uniformity. But both meth-

ods still rely on FACS sorting or liquid dispensing and the rate of artifacts formed in

MDA was not characterized. High level of chimeric DNA rearrangements (artifacts)

can lead to inaccurate genome structural variation analysis but are rarely analyzed in

single-cell technology development. We will discuss this subject in depth in Chapter 4

and considers how it can impact microbial de novo assembly, investigating mutational

mosaicism in neurons, and single-cell cancer research.

In addition to improving the experimental setup for MDA, efforts have been made

to develop new WGA chemistry that linearly amplifies the genome to reduce biased

coverages the dependence on complex instruments [66, 108]. The most recent method

Linear Amplification via Transposon Insertion (LIANTI) utilizes direct transposon

insertion and in vitro transcription to linearly amplify RNA copies of the genome.

This method eliminates the random non-specific priming used in traditional MDA

method and has shown to improve coverage uniformity and reduce the false-positive

rate in calling single nucleotide variations. The lower error rate is due to linear

amplification's random error position on the same template. By sequencing single

cells to a high depth (30 x), amplification error would be corrected, which leads to

fewer false positive calls. LIANTI has significant potential for wide adoption as the

next generation of WGA method. According to the analysis in Chapter 4, a majority

(70%) of LIANTI's sequencing reads contain barcode information and poor quality

reads. A large portion of sequencing effort is wasted as a result ($2500 x 70% =

$1750 wasted per cell in sequencing cost). More work needs to be done to integrate

the transposon barcode insertion and its downstream library preparation.

After WGA, purified DNA will go through library preparation - fragmentation

and barcode insertion. Accurately purified and quantified libraries, in terms of both
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size ranges and quantities, will be loaded onto the sequencer (Fig. 1-1c).

Overall, the single-cell sequencing process from having cells in suspension to ob-

taining sequencing data is highly fragmented in terms of technology implementation.

eWGA and LIANTI have to rely on traditional FACS sorting or mouth pipetting while

Nanodrop requires sequential depositions for both cell isolation and reagents addition.

Efforts have been made to integrate library preparation in microfluidic chips [101] and

to package cell isolation and WGA in a commercially available droplet system (loX

Genomics). Both examples are either cumbersome to implement or expensive to

purchase. For lOX Genomics, for instance, it costs $50K per machine. Researchers

working in microbial discovery and oncology studies are looking for ways to conduct

single-cell sequencing with an economically reasonable and technically manageable

method for a large number of single cells. Independent innovations addressing differ-

ent stages of single-cell sequencing will push the field forward in small steps. Ideally,

an integrated approach that provides an accessible platform to streamline the process

while produces high-quality data is needed to realize single-cell sequencing's huge

potential in scientific discovery and the biomedical field.

1.3 Virtual Microfluidics for digital quantification

and single-cell sequencing

In the introduction, we reviewed the increasing scientific and biomedical need for

single-molecule and single-cell analysis and the current technology landscape. Much

improvement is needed to bridge the gap between the current technology state and

the wide adoption of single-cell sequencing The necessary improvement areas I have

discussed include high-throughput, the data quality, the ease of implementation, opti-

cal enrichment properties and the process integration. Thus, I developed the method

virtual microfluidics to make an improvement in above-mentioned areas and to help

push the single-molecule and single-cell analysis fields forward (Fig. 1-2).

Single-molecule and single-cell studies require individual molecules or cells sep-
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Figure 1-2: Conventional methods of digital quantification and single-cell sequencing

vs. virtual microfluidics. Conventional methods require discrete physical boundaries.

Virtual microfluidics relies on hydrogel-limited diffusion to compartmentalize tem-

plates and reaction products.

arated in partitions. But instead of creating physical partitions to isolate cells,

we decided to build "invisible" dividers around them. Passive segregation of sin-

gle molecules and the product of genome amplification would be able to facilitate the

genomic analysis of thousands of nucleic acids in parallel. In order to achieve this, a

porous structure that is able to fix many molecules and provide an aqueous environ-

ment for DNA amplification was chosen. Thus, the virtual microfluidics system was

created to enable single-cell WGA en masse in polyethylene glycol (PEG) hydrogel.

The hydrogel properties allow reagent exchange by diffusion, imaging accessibility,

product retrieval easiness and improved WGA performances using MDA compared

to instrumentation-based methods. Virtual microfluidics is also a versatile and com-

patible platform to integrate PCR, MDA and in-gel library preparation methods,

which holds great promise in integrating single-cell analysis field and pushing the

wider adoption of the technology (Fig. 1-3).

In Chapter 2, I will characterize virtual microfluidics in quantifying DNA targets

for single-molecule analysis and demonstrated its improvement in the ease of imple-

mentation and its wide dynamic range in quantifying DNA targets. In Chapter 3,

virtual microfluidics is applied to mixed cultures of bacteria and the human gut micro-

biome. It produces single amplified genomes with excellent coverage uniformity and

markedly reduced chimerism compared with liquid MDA reactions. We demonstrate
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Figure 1-3: A graphical abstract of the virtual microfluidics technique.

single-cell sequencing on human gut microbiome samples and obtain 117 pure single

draft genomes that enable the identification of more than 10,000 horizontally trans-

ferred genes that have unique population-specific and individual-specific features [44].

In Chapter 4, I will show how virtual microfluidics reduces the amount of chimera ar-

tifacts from MDA on single amplified human genomes compared to above-mentioned

technologies.

The results described in Chapters 2 and 3 have been previously published as Xu

et al. Nature Methods. 2016. The single-cell dataset generated from the human gut

microbiome contributed to the publication of Brito et al. Nature. 2016.
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Chapter 2

Virtual Microfluidics: a

hydrogel-based system for simple and

robust DNA digital quantification

using in situ amplification

This thesis chapter is reproduced from a previously published paper, Xu et al., Nature

Methods, 2016 [26]. Experiments and data analysis were performed by Liyi Xu.

2.1 Introduction

The absolute quantification of DNA sequences and fragments in genomics [1001 and

prenatal diagnostics [81j requires assays that enable parallel clonal nucleic acid ampli-

fication. DNA quantification by amplification also is needed to overcome nonspecific

background for the detection of rare sequence targets in microbial communities and

blood-plasma-based diagnostics [4, 71, 115, 1161.

The traditional method of single-molecule studies requires individual molecules

separated in partitions. It is commonly done in engineered microfluidic systems and

multi-phase micro-droplet systems, which prevent a broader deployment of digital

assays in research labs and in the clinic. Instead of creating physical partitions to
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Figure 2-1: The virtual microfluidics hydrogel structure (not to scale).

isolate individual contents, we decided to build "invisible" dividers around them. Pas-

sive segregation of single molecules and the product of genome amplification will be

able to facilitate genomic analysis of thousands of nucleic acids in parallel. In order

to achieve this, a porous structure that is able to fix many molecules and provide a

liquid environment for DNA amplification is needed.

Inspired by earlier work on culturing microbes in hydrogels [21], polymerase

cloning in polyacrylamide gels using PCR [117] and in agarose gels using MDA in

conjunction with flow cytometry [118], we developed and tested bulk polyethylene

glycol (PEG) hydrogels as a general and facile platform for compartmentalizing sin-

gle molecules and single cells without discrete partitions. This approach, which we

call virtual microfluidics (Fig. 1-2 and Fig. 2-1), enables massively parallel single-

molecule amplification in virtual sub-divisions without the need for engineered micro-

devices, multi-phase liquid systems, or instrumentation for cell sorting or microflu-

idics control. We selected hydrolytically degradable PEG hydrogels that covalently

crosslink under mild conditions [119]. The chemically selective crosslinking reaction

used in our method does not damage templates or inhibit subsequent reactions and

forms gels that are stable to high temperatures. The mesh size of the PEG gel allows

diffusion of small molecules, oligonucleotides, and enzymes but immobilizes cells and

high-molecular-weight nucleic acids [120]. If desired, PEG gels can be functionalized

to selectively immobilize low molecular weight species by attachment to the gel matrix

[121].

Hydrogels are formed by crosslinking polymer chains through physical, ionic or

covalent interactions and are best known for their ability to absorb water [122], which
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makes them an ideal candidate for solid-phase DNA amplification. Note that solid-

phase here means in-gel, compared to liquid-phase reactions. Previously, the poly-

acrylamide hydrogel has been used as a scaffold for solid-phase DNA amplification

[1171. However, polyacrylamide gel crosslinks with the free radicals initially produced

by ammonium persulfate or by photochemical polymerization. The free radicals have

been found to inhibit reverse-transcription PCR and inhibit DNA dyes such as SYBR

Green and LC Green plus [123] for real-time monitoring, while photochemical poly-

merization might introduce DNA damage to the target of interest. Such DNA oxida-

tive stress caused by the addition of free radicals is a pervasive cause of sequencing

error and directly confound variant identification [110]. Luckily, a new generation of

PEG-based multi-arm hydrogel has been developed that provide many advantages for

our purpose [124]. Specifically, 4-arm PEG hydrogel with various end moieties has

been applied for gene delivery and to bulid 3D scaffolds for tissue engineering. The

hydrogels are formed via Michael addition chemistry by reacting a 4-arm acrylate

terminated PEG with a thiol-functionalized PEG [125]. The use of Michael addition

chemistry allows for in situ hydrogel formation under physiological conditions, which

will cause minimal damage to the DNA and cells of interest in broad applications.

In addition, while acrylamide powder is neurotoxic, 4-arm PEG components pose no

such harm to researchers. In terms of mesh size, Raeber et al. and Kraehenbuehl et

al. have shown that 4-arm PEG's pore size is between 25 nm and 100 nm depending

on the weight percentage [119, 126].

Two types of DNA amplification-PCR and MDA are characterized for digital

quantlification. PCR amplifies sequence specific region locally defined by forward and

reverse primers, while MDA amplifies the template DNA globally through random

primer binding. In this chapter, I descrbied the characterization on both amplification

methods and focused on MDA method because of its wide application in enabling low-

input genomics.

41



Figure 2-2: DNA amplification clusters from PCR in hydrogel in capillary tubes.
Images are taking using a Nikon wide-field fluorescent microscope. The concentration
of DNA template was labeled in units of femtomolar (fM). The capillary tube is 50
pm tall. Scale bars represent 10 pm.

2.2 Results and Discussion

2.2.1 Digital PCR in-gel characterization

In order to characterize virtual microfluidics, purified lambda phage DNA is used

as the template to conduct DNA amplification in the PEG hydrogel. XDNA is a

common, well-characterized substrate for restriction endonucleases and its sequence

and properties have been well-understood [127, 128]. The 48502 bp length acts as

a useful proxy for genomic DNA from bacteria or mammalian cells. In order to

quantify the robustness of solid phase DNA amplification and estimate the dynamic

range of the technology, a range of DNA template concentrations from serial dilutions

of a stock were used. Reaction components consisting of 4-arm PEG-acrylate, dithiol-

PEG, PCR reaction buffer, primers, dNTP, DNA polymerase and template are mixed

thoroughly before loaded in a reaction chamber. Various experimental configurations

such as PDMS channels, capillary glass tubes (Fig. 2-2), thin PDMS wells (10 pm

to 50 pm), and frame-seal chambers (Biorad) have been tested, with the frame-

seal chamber (Fig. 1-3 in Chapter 1 and Fig. 2-6 in methods) proved to be the

most efficient and consistent loading method. Several types of DNA polymerase with

different levels of fidelity, 3'-5' proofreading, and primer extension capacity, such as

Jumpstart Taq, Vent (exo-), Vent, have been tested in hydrogel for amplification

optimization. Fig. 2-7 indicates that accurate digital counting was achieved by PCR

in gel.
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Figure 2-3: Digital single-molecule MDA in hydrogel (Lambda phage DNA). (a) Real-
time and digital MDA in PEG hydrogel. Top, time-lapse epi-fluorescence images
(SYTOX Orange DNA stain) illustrate MDA cluster growth from individual tem-

plate molecules. Bottom, DNA cluster number increases with template concentra-
tion. FOV, 650 nm x 650 nm field of view. NTC, no DNA template control. (b)
Calibration curve illustrates linear relationship between template concentration and
cluster number (n =2 or 3 FOV at each concentration). (c) MDA cluster size is
correlated with gel weight percentage and affected by acrydite-modified hexamer an-
chorage. Data is shown as 5% - 95% box plots with scattered outliers and center line
for median. (n =1334, 1587, 684, 704, 869 and 1301).

2.2.2 Digital MDA in-gel characterization

In addition to PCR in hydrogel, Multiple Displacement Amplification (MDA) is con-

ducted for whole genome amplification in hydrogel. MDA [1091 is a popular amplifi-

cation method for single-cell genome sequencing [20, 89, 95, 102, 112, 113, 1141. To

evaluate the virtual microfluidics concept for WGA, we tested dMDA [92, 100] of

purified, diluted Lambda phage DNA in the hydrogel format (Fig. 2-3a-c, Fig. 2-4

and Methods). Our estimate of 10 pg MDA product per cluster (Fig. 2-8) suggests

that we approached endpoint product concentrations typical of conventional liquid

MDA reactions (~6800 ng/L) [131. We varied parameters to test how in situ single-

molecule MDA reactions can be controlled (Fig. 2-3 and Fig. 2-4), observing that

the smaller pore sizes in higher density gels limit the spread of DNA products.

A similar sample preparation and loading method are used for dMDA compared

to dPCR in the hydrogel. The only difference for dMDA in the hydrogel is the UV

decontamination step on all reaction components except the polymerase. A study by
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Figure 2-4: Real time dMDA and MDA cluster size. (a) Real time digital MDA for

quantification of cluster growth (mean radius SEM) and count with time. The zero

time point cluster count and radius data points reflect the properties of fluorescent

contaminants. (b) MDA cluster size decreases with increasing DNA template con-

centration with the same gel condition. Data is shown as 5% - 95% box plot with

outliers scattered and the centerline as the median. (n = 2 fields of view at each

concentration, number of clusters for each field of view is: n = 43, 62, 89, 88, 191,
167, 321, 305, 478, 542, 711, 833).

Woyke et al. has shown that the calibrated UV decontamination step can effectively

remove contaminant DNA without introducing significant coverage biases or variants

[99].

With the success of dPCR and dMDA in the hydrogel, a robust but straightfor-

ward image analysis method is needed to obtain the absolute count of DNA molecules

and the size of DNA amplification clusters. Currently, image analysis is conducted

on the raw confocal stacks using the Fiji Image J. The Image J particle analyzer

plug-in is widely used for counting particles and cells. Confocal stacks were taken

with consistent laser power and integrated with a Z intensity gradient to minimize

cluster fluorescent saturation. Each gel stack, roughly 300 Am thick, was first pro-

jected in Z direction with the maximum intensity for a faster 2D processing. Then,

a thresholding algorithm is chosen manually based on the visual comparison between

the original projection and the thresholded image. This image analysis method has

been proved effective in measuring the number and the size of DNA amplification
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clusters. However, a more consistent and robust image analysis routine might be

needed for a higher-sensitivity application.

2.2.3 DNA amplification cluster analysis

Understanding the mechanism of cluster growth and effectively controlling the size of

the end product are keys ensuring the broader applicability of this technology. Key

parameters include initial DNA concentration, hydrogel weight percentage, primer

modification chemistry and amplification time. One hypothesis regarding the size of

clusters is that with a higher PEG hydrogel weight percentage, tighter clusters should

be generated. Higher PEG weight percentage means more 4-arm PEG acrylate and

dithiol-PEG in a fixed volume. Thus, the hydrogel network will provide a smaller mesh

size for DNA template and prevent amplification product from moving further due to

restricted diffusion. Another possibility is that a tighter mesh size might compromise

the robustness of DNA amplification reaction due to the physical impedance.

Another way to control the DNA amplification cluster size could be to add a

chemical moiety to the primers. Acrydite modification on DNA probes has been used

frequently to attach primers to various hydrogel platforms [117]. In this case, acrydite

reacts with the part of the thiol groups on dithiol-PEG and unreacted thiol groups

will crosslink with 4-arm PEG acrylate. Varying the modified primers' concentration

and its ratio to standard primer concentration gave us new insights on how to control

cluster size (Fig. 2-3c).

Meanwhile, real-time monitoring on the DNA clusters' growing helps determine

the optimal reaction time and cycle numbers for both MDA and PCR reactions (Fig.

2-4a). It will be also useful to help decide on a cut-off reading time to prevent false-

positive readings including the small primer-dimer clusters and clusters from short

DNA fragments mixed in a genomic DNA sample (Fig. 2-4a).
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2.2.4 Dynamic range of in-gel digital MDA

When the input for digital MDA is very low (fewer than 100 per field of view), molec-

ular counts are significantly inflated by contaminating fluorescence signals (contam-

inating DNA fragments or particles) that are not differentiated from true counts by

our image analysis algorithm. At high target concentrations, the DNA clusters crowd

one another, limiting the maximum useful concentration to 10,000 DNA molecules

per field of view. For MDA, the smaller cluster sizes observed at higher template

concentration (Fig. 2-4b) benefit assay dynamic range by improving cluster iden-

tifiability at the highest template concentrations. Based on our estimate of 10 pg

DNA per cluster (Fig. 2-8), 10,000 - 100,000 clusters per field of view in our setup

approximates typical maximum product concentrations of about 800 ng/pL achieved

in conventional liquid MDA reactions. The assay dynamic range can be improved

by manipulating the DNA cluster size, increasing the volume of gel imaged (e.g. by

combining multiple fields of view), improving image processing methods, and further

reducing the number of fluorescent contaminants.

2.2.5 Analysis of reaction extent limitation and local compe-

tition among MDA clusters

Based on Fig. 2-5, we concluded that a global auto-inhibition mechanism limits the

growth of MDA clusters. We analyzed the variability in cluster number and DNA

content around large and small reference clusters to test for local reagent competi-

tion among WGA reaction centers, finding little evidence for local competition. This

observation is consistent with the high diffusion constants for enzymes, primers, and

nucleotides measured in PEG hydrogels similar to ours [120, 129]. No specific limit-

ing reagent was identified when reactants were supplemented individually (data not

shown). The final reaction pH in our hydrogel reactions was measured to be 6.5

(initial pH = 7.5), which may limit cluster growth due to a global loss of polymerase

activity at lower pH. Altogether, these data are consistent with density-dependent

average size variation by global auto-inhibition, possibly by the pH drop. Variability
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Figure 2-5: Cluster size and location correlation analysis. Five reference clusters
with the largest radii and five reference clusters with the smallest radii were chosen
among clusters in one field of view (100+ clusters) of one MDA hydrogel sample.
a) By zooming out from selected clusters, the number of other clusters encountered
at successively greater distances was plotted. b) The total volume of other clusters
encountered was plotted. c) and d) are zoom-in views of a) and b) at 0 to 32 pm
from reference clusters. We hypothesized that large clusters consume local resources
and thus, would reduce the number and/or size of surrounding clusters. Although
slight enhancements in the number and size of clusters surrounding the set of small
reference clusters versus the set of large reference clusters exist, the effect is small.
Error bars are SEM.
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of cluster size in a single experiment may result from variable initial template confor-

mation, the degree of template denaturation, or local inhomogeneities in the hydrogel

structure.

2.3 Conclusion

Here we tested the performance of virtual microfluidics in-gel digital PCR and digital

MDA amplification as an analytical method for molecular counting assays. Virtual

microfluidics enables high-throughput digital assays and preparative whole-genome

amplification without microfabricated consumables or expensive instrumentation. Up

to 20,000,000 analytes per ptL could be accommodated due to the nature of the

diffusion-restricted reaction and the continuous virtual chambers. Throughput could

be increased by using a thinner gel with more surface area. Its excellent optical

accessibility allows potential fluorescent labeling of rare sequences, which is a key in

identifying rare targets in liquid biopsy applications. We expect virtual microfluidics

to find applications as low-cost, highly accessible digital assay platforms that offer

superior sensitivity and dynamic range.

2.4 Materials and Methods

2.4.1 PEG hydrogel cross-linking

Hydrogel components, including 4-arm PEG acrylate (MW 10,000) and HS-PEG-

SH (MW 3,400), were obtained from Laysan Bio. For every 25 pL of 10% (wt/v)

cross-linked hydrogel, 1.6 mg of 4-arm PEG acrylate and 1.1 mg of HS-PEG-SH were

dissolved in pH 7.4 PBS (Invitrogen). It was briefly vortexed and centrifuged to

ensure mixing and it was allowed to sit on the bench for 10 min while the hydrogel

components cross-linked through the reaction between the thiol and acrylate groups.
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Figure 2-6: DNA amplification clusters from PCR in hydrogel in frame-seal chambers.
Each image is a z-axis max projection from a confocal tiff stack taken by a Zeiss
spinning disk confocal microscope. Scale bars represent 50 um.

2.4.2 In-gel digital PCR

The primers (Table 3.5) used for PCR on purified XDNA (48 kbp, NEB) were or-

dered through IDT(Integrated DNA Technologies). A 25 ML hydrogel PCR reaction

consisted of 2 U of VentR (exo-) polymerase (NEB), 1 x ThermoPol Reaction Buffer

(NEB), 0.4 mM dNTP (NEB), 1 pm Primers, 5% DMSO (Sigma), 0.5 mg/mL BSA

(NEB), 1.6 mg 4-arm PEG acrylate in PBS, 1.1 mg HS-PEG-SH in PBS, and XDNA

template (NEB) of various concentrations. The 25 pL above components were loaded

in a 9 mm by 9 mm frame-seal chamber (Bio-rad). The following thermal protocol

was ran on an MJ Research PTC-100 twin tower thermal cycler: 30 'C for 30 min

(gel polymerization), 98 'C for 3 min; 98 'C for 30 sec, 57 'C for 30 sec, 72 'C for 1

min for 40 to 60 cycles; 72 'C for 5 min and hold at 4 'C. The gel was stained with

500 nM SYTOX Orange nucleic acid dye (Invitrogen) (Fig. 2-6 and 2-7).

2.4.3 In-gel digital MDA

A 25 ML hydrogel MDA reaction consisted of 0.5 pL of REPLI-g sc Polymerase (Qia-

gen), 1 x (D29 buffer (NEB), 50 pm random hexamers (IDT; including two phospho-

rothioate bonds at 3' terminus), 2.5% DMSO, 0.4 mM dNTP, 0.5 mg/mL BSA, 500

nM SYTOX Orange (Invitrogen) and denatured XDNA. XDNA was denatured using

alkaline buffer "DI" (Qiagen) and neutralized using buffer "N1"(Qiagen) according to

Qiagen REPLI-G sc kit protocol prior to hydrogel encapsulation. All MDA and gel

components, except polymerase and SYTOX Orange dye, were UV treated for 30

min using the Stratalinker UV crosslinking instrument (Stratagene) to render con-
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Figure 2-7: Digital single-molecule PCR in hydrogel (Lambda phage DNA). Measured
cluster number per field of view versus calculated cluster number based on template
concentration. Reaction conditions are described in methods (PCR). The dotted line
indicates the ideal situation when measured cluster number equals to the theoretical
cluster number.

taminating background DNA incompetent for MDA. The 25 [L reaction mixture was

loaded in a 9 mm by 9 mm frame-seal chamber (Bio-rad, about 300 pam in height).

The gel was sealed in the chamber with a plastic cover and maintained at 30 'C for

8 hours or longer in the MJ Research PTC-100 twin tower thermal cycler. After the

reaction, we imaged the gel using Nikon ECLIPSE Ti inverted microscope or Nikon

ultra-fast laser scanning confocal microscope (MIT Koch Institute Microscopy Core

Facility) (Fig. 2-4a).

2.4.4 In-gel real-time dMDA

MDA hydrogel reactions were set up as described above and conducted at room

temperature for 6 hours on a Nikon ECLIPSE Ti Epi-Fluorescence Microscope excited

with a Lumencor Spectra X light engine (Lumencor) with fluorescent emissions filtered

through a SpGold filter (Semrock) (Fig. 2-4b). MATLAB was used to capture time-

lapse image stacks through a Nikon 20 x /0.4 NA objective and Hamamatsu C11440

camera with 15 min intervals, 100 ms exposure time, and 10% Lumencor excitation
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a) The E. coli MDA cluster and the mammalian genome were imaged with a Nikon
confocal microscope. The cluster radius of each were ploted. b) The mean fluorescence
of each stack was plotted for the E. coli MDA cluster and the mammalian genome.

power. All samples were stained with 500 nM SYTOX Orange. Each E. coli. MDA

cluster or mammalian cell image stack was cropped and processed as described below.

2.4.5 Image acquisition and analysis

Z-stack images were taken by Nikon ultra-fast laser scanning confocal microscope with

pinhole = 1.2, HV = 112, offset = 0, laser wavelength = 561 nm, laser power = 1.3

to 1.5, using a 20x objective on Galvano mode. Acquisition speed was 1 frame/sec

and z step size was 0.95 pm. On the inverted microscope, z-stack images were taken

with the exposure time 100 ms, Lumencor excitation power 10%, binning size 2 and z

step size 10 pm. Both z stacks were first processed into max intensity projections in

FIJI. Max projection tiff files were then loaded into MATLAB. The background was

obtained by applying a Gaussian filter of hsize 200 and sigma 50. All max projections

were background-subtracted and thresholded at 2 ~ 2.5 x standard deviations above

the mean intensity. Cluster count, cluster area (radius), and cluster mean intensity

were obtained with the bwconncomp and regionprops functions (Fig. 2-8).
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Chapter 3

Virtual Microfluidics enables

high-quality single-cell sequencing

from a mixed population of cultured

bacteria and the human gut

microbiome

This thesis chapter is reproduced from a previously published paper, Xu et al., Nature

Methods, 2016 [26]. Experiments and data analysis on the cultured bacteria were

performed by Liyi Xu. Ilana Brito and Liyi Xu conducted the data analysis of the

gut microbiome data.

3.1 Introduction

In the burgeoning field of single cell analysis [1], high-throughput and high-fidelity

whole-genome [89, 95, 102] and whole-transcriptome amplification (WGA and WTA)

reactions are needed to produce sufficient material for sequence library construction

to support the discovery and validation of new genomes [2, 112, 114], as well as the

analysis of genomic and functional heterogeneity [3, 89, 112].
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A variety of approaches have been explored for compartmentalization across a

large number of discrete reactors, including SBS plates [95], high-density microfluidic

arrays [84], engineered lab-on-chip systems [85, 86, 87, 88], and multi-phase micro-

droplet systems [89, 90, 91, 921. However, they require complex instrumentation and

microfabricated consumables that hinder broad deployment. An ideal platform should

resist external contaminants and cross-compartment mixing, exhibit high throughput

in small reaction volumes, be stable under temperature change, allow optical access,

and allow facile addition and removal of reagents and samples. Finally, it should

generate high-quality amplified products and minimize biases and artifacts, such as

chimeric fragments commonly formed in PCR, WGA and WTA, that can severely

impact single-cell sequencing results.

Building on my work in Chapter 2 on characterizing virtual microfluidics for DNA

digital quantification, I further developed the technology for single-cell sequencing.

3.2 Results and Discussion

3.2.1 In-gel single E. coli MDA

We applied digital MDA at the single-cell level using the virtual microfluidics system.

Individual log-phase Escherichia coli could be identified in the hydrogel by fluores-

cence microscopy (Fig. 3-1). We lysed the embedded cells by heat treatment and

carried out MDA on the denatured genomic DNA, observing the appearance of MDA

clusters at the reaction endpoint.

3.2.2 In-gel single-microbe MDA - cultured E. coli and S. au-

reus

Next, we tested the potential of virtual microfluidics to support single-cell shotgun

genome sequencing (Fig. 3-2). We mixed log-phase Escherichia coli (BL21) and

Staphylococcus aureus subsp. aureus (RN6390/8325) strains at about 200,000 cells/

mL and embedded the cells in a 300 micron thick PEG hydrogel. We used a mixed-
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Figure 3-1: Single-cell MDA on Escherichia coli. Hydrogel-encapsulated E. coli ex-

press GFP and exclude SYTOX Orange before lysis. SYTOX Orange staining reveals

product clusters after MDA. Top images are from the same field of view. NTC, MDA

control lacking E. coli.

Total hydrogel punches 80
E. coli positive punches 7

S. aureus positive punches 36

Double positive 7

Double negative 30

Table 3.1: QPCR characterization of hydrogel punches

input approach to ensure sensitive identification of any cross-contamination among

single-cell samples and any contamination of single cell samples from other sources

(including E. coli DNA contamination). The embedded cells were lysed by enzymatic

and heat treatment, and MDA reagents were introduced by diffusion into the gel.

Eighty sub-samples from the gel (of 60 nL each) were recovered manually in a grid

pattern as indicated in Fig. 3-2a Each punch sample was re-amplified to 10' - 1010

overall fold-amplification in a second-round 20 [LL liquid MDA reaction. Real-time

PCR (QPCR) assays for E. coli and S. aureus genome sequences were applied to

diluted aliquots from each sample (Table 3.1 and 3.5). The QPCR results were well-

approximated by a random cell dispersion model.

We sequenced Illumina short-insert libraries produced from randomly selected

punch samples and positive-control gDNA samples (MiSeq v2 500 cycles). Quality-

filtered reads were then mapped to de novo assemblies of the positive-control gDNA
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Figure 3-2: Single-cell whole genome sequencing from E. coli and S. aureus hydrogel
WGA samples. (a) Virtual microfluidics WGA workflow. (b) Sequence read classifi-
cation using BLAST against the corresponding databases. The samples were ordered
based on the ratio of S. aureus to E. coli reads from shotgun sequencing and the
fraction of reads not from S. aureus or E. coli. Two negative samples are classified as
false positive PCR calls. Positive S. aureus and E. coli samples with matching PCR
calls are included in downstream analyses. (c) Genome coverage in S. aureus and
E. coli hydrogel punch samples compared with published single-cell E. coli data pro-
duced using conventional liquid MDA reactions*. One E. coli outlier library showed
extremely poor genome coverage. This library had low complexity (37% duplicate
reads), which points to poor library quality rather than MDA as the cause for low
genome coverage. All samples were randomly down-sampled based on mapped reads
and bootstrapped 10 times; error in all cases was smaller than the symbols plotted.
(d) Coverage distribution bias. Gini Index (derived from Lorenz curve) reports the
genome coverage bias of single-cell E. coli and S. aureus punches compared to the
same published liquid-MDA single-cell E. coli data as a function of amplification
gain. (e) Chimera frequency in the virtual microfluidics samples is significantly re-
duced versus published E. coli data produced using standard liquid MDA reactions.
Indicates liquid MDA data from de Bourcy et al. 2014.
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datasets and sequence databases (Table 3.6, Table 3.7). The positive punch samples

showed strong enrichment (Fig. 3-2b) for reads mapping to the expected reference

genome (Fig. 3-6) while the negative punch samples showed enrichment for human

reads, reads with poor mapping quality, and E. coli (possibly contaminants from

the reagents and/or laboratory environment), and were similar to the results from a

mock library (Table 3.2). The lack of E. coli and S. aureus cross-contamination in

the positive punch samples indicates that virtual microfluidics can resolve single-cell

amplification products.

At 20x mean coverage (Table 3.8 in methods), approximately 30% of the E.

coli genome and about 60% of the S. aureus genome were covered in each single-

cell sample (Fig. 3-2c). The coverage values for E. coli are in-line with typical

single microbe genome sequencing at similar sequencing effort [87, 99]. The superior

coverage performance in S. aureus may be attributable to the lower GC content of S.

aureus (33%) compared with E. coli (51%), better accessibility (deproteination) of

the genome after lysis, and/or higher average genome equivalents per cell in S. aureus

resulting from cell cycle dynamics.

To rigorously evaluate sequence coverage distribution, we calculated the Gini In-

dex (a measure of inequity ranging from 0 to 1) for each of our single-cell datasets

and previously published single-cell E. coli liquid MDA datasets for which raw read

data were available and fold-amplification was known (Fig. 3-2d). The coverage uni-

formity in our single-cell punch samples compares favorably with published single-cell

datasets at similar amplification gain.

We then analyzed the occurrence of chimeric reads, which are known to occur with

high frequency in MDA by a cross-priming mechanism [130]. Chimeric reads directly

confound de novo assembly, analysis of rearrangements, and mapped read counting.

Our single-cell datasets contained about 0.5% chimeric reads, approximately five-fold

lower than previously published short-read datasets produced using liquid single-cell

MDA samples (Fig. 3-2e and Table 3.6). The occurrence of chimeric reads spanning

more than 10 kb of the template is even lower (about 0.1%, Fig. 3-3), raising the

possibility of extracting long-range information from single-cell MDA samples using

57



"Other % Cloning/ex Other Other Synthetic Propoloniba Percent
reads" Identified pression E. coli S. aureus construct cternum Other major categories listedvector % % % % acens %

E. coli
genomic 42941 64.27% 21.30% 6.07% 0.01% 72.33% 0.12% 99.82%

DNA
S.aureus
genomic 4720 38.24% 1.16% 0.11% 61.83% 3.66% 10.80% Staphylococcus phage: 19.34% ) 96.90%

DNA

S1 11887 4.85% 1.22% 0.17% 20.31% 4.34% 19.62% Assorted bacteria and 43.06% ) 88.72%
fungus: 248

S2 1306 16.62% 3.23% 11.52% 1.84% 77.42% 94.01%

S3 34963 0.24% 9.64% 28.92% 15.66% 12.05% Assorted bacteria and 33.73% ) 100.00%
3496 0.4% .64%28.2% 5.66 1205%fungus: 28

S4 1800 25.78% 0.65% 61.64% 2.80% 16.16% 81.25%

S5 4571 27.28% 0.88% 0.24% 62.63% 16.84% Staphylococcus phage: 17.16% ) 97.75%214

S6 4899 46.87% 18.60% 57.23% Assorted bacteria and 22.04% ) 97.87%S6 499 4.87%18.6% 5723%fungus: 506

S7 14074 14.53% 0.29% 77.65% 1.32% Staphykcoccus phage: 17.65% ) 96.92%361

E1* 352603 11.23% 1.15% 0.01% 3.99% Assorted bacteria and 89.12% ) 94.26%fungus: 35284

E2 32744 76.79% 25.00% 2.57% 71.89% 0.14% 99.60%
E3 20547 59.69% 27.47% 0.21% 71.67% 0.44% 99.79%

E4 47915 77.10% 13.09% 0.03% 46.17% 0.92% Malassezia globosa 37.36% ) 97.57%CBS: 13804

ES* 430977 12.60% 5.95% 0.33% 21.91% 15.95% Assorted bacteria and 49.07% 93.20%fungus: 26635 (490%)3.0

E6 46757 1.64% 1.56% 0.65% 7.16% 5.34% 39.71% Listeria seelige serovar 31.90% ) 86.33%1/2b str: 245
E7 55490 77.20% 20.42% 0.01% 79.24% 99.67%

NTC1 365936 0.94% 1.51% 3.22% 12.73% Assorted bacteria and 81.47% ) 98.93%fungus: 2809
NTC2 303923 86.55% 0.08% 2.99% Human: 247884 ( 94.24% ) 97.31%

NTC3 251727 89.49% 0.26% Asso : b 2180era and 96.84% ) 97.09%

NTC4 243833 96.26% 99.96% 99.96%

NTC5 213052 90.75% 2.20% Human: 187178 ( 96.81% ) 99.02%
NTC6 45986 95.44% 0.04% 0.03% Human: 43806 ( 99.81% ) 99.87%
NTC7 74719 0.54% 37.87% 45.30% 83.17%

Mock 7204 11.30% 8.60% 29.85% 14.74% Assorted bacteria and 45.82% ) 99.02%
1 fungus: 373

False-positive E. coli single-cell samples
*Values less than 0.01% were omitted for clarity

Table 3.2: Sequence read classification of "other reads"
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Figure 3-3: MDA chimera frequency with different insert sizes, E. coli and S. aureus
data. a) 1 - 3 kb. b) 3 kb - 10 kb. c) Larger than 10 kb. Centerlines represent the
mean value.

long-read sequencing. This dramatic reduction in the occurrence of chimeric reads

can be understood by restricted diffusion of the MDA intermediates that prevents

cross-priming by isolating each portion of the product mixture. It may be the case

that substantially all of the chimeras we observed in the punch samples were generated

during the liquid-phase secondary amplification reactions. Based on these results, it

is likely beneficial to run MDA in PEG hydrogels for all applications at all scales.

3.2.3 In-gel single-microbe MDA - human gut microbiome sam-

ples

Next, we tested the potential of virtual microfluidics for single-cell genome sequenc-

ing using samples from the Fiji Community Microbiome project (FijiCOMP). The

FijiCOMP samples contain a vast uncharacterized diversity of microbial species that

differ from those found in the microbiome of Western subjects. The procedure for

processing these human stool samples was similar to those for lab-cultured E. coli

and S. aureus, with modifications for initial sample processing and lysis (methods).

We processed a total of 421 hydrogel punch samples and compared the distribution

of organisms detected in our hydrogel samples with the distribution observed from

shotgun metagenomic profiling, which showed that the same top microbial families
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Figure 3-4: Fiji microbiome project (FijiCOMP) single-cell whole-genome sequenc-
ing. Here are the results for 117 single-cell data sets from five donor individuals. (a)
Distribution of top ten microbial families from single-cell assemblies and metagenome
shotgun sequencing. Samples were weighted according to the number of single cells
analyzed (Table 3.9). (b) De novo assemblies from single-cell sequencing data ranged
from 100 kbp to 2 Mbp. The line indicates the mean assembly size. (c) The total num-
ber of AMPHORA genes is nearly equal (dotted line) to the number of AMPHORA
genes from the top phylogenetic family for each sample, supporting the assertion that
each data set arises from an individual bacterial cell. A Gaussian-distributed random
jitter (p = 0, u2 = 0.1) was applied to enhance visualization.

were observed using both approaches (Fig. 3-4a and Table 3.9 in methods). Inter-

estingly, the second most abundant microbial family found in the single-cell dataset,

the Succinivibrionaceae, was not initially detected but was later confirmed in the

shotgun metagenomic data due to its rare representation in the established database

using standard methods for the taxonomic assignment such as MetaPhlAn [131]. This

discrepancy highlights the importance of unbiased approaches like single-cell analysis

for organisms that are less well represented in reference databases.

We carried out de novo assembly of the single-cell datasets and assigned taxon-

omy to ribosomal gene sequences and 31 "single copy" bacterial marker genes at the

family level [132]. This analysis enabled us to make crude assessments of sample

purity in the FijiCOMP single-cell datasets (for which we lack strain-specific bona

fide reference sequence). Of the 293 assemblies (up to 12 Mbp), we classified 117 as

single amplified genomes with assembly size greater than 100 kb and strong enrich-

ment of sequences from a single taxonomy (see Fig. 3-4 and Table 3.3) for the fate of

all samples. The purity of single amplified genomes are evaluated with the identity
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Sample categorizations Number of punches

Low read counts; no assembly 16
Laboratory contamination (E. coli, P. aeruginosa) 29

Human cell sequences amplified 3
No phylogenetic markers 80

Enrichment of multiple taxonomies from assemblies 108
Assembly < 100 kb 68

Single-cell assemblies 117
Total sequenced 421

Table 3.3: Overview of 117 FijiCOMP single-cell hydrogel samples

of AMPHORA (AutoMated PhylogenOmic infeRence Analysis) marker genes. AM-

PHORA genes are a collection of protein-coding marker genes that are single-copy in

the genome, universally distributed, and are relatively recalcitrant to horizontal gene

transfers [132]. We identify the number of AMPHORA marker genes and their phy-

logenines in each single amplified genome. If the total number of AMPHORA genes

is nearly equal to the number of AMPHORA genes from the top phylogenetic family,

it indicates the dataset arises from an individual bacterial cell (Fig. 3-4c). Overall,

the data quality observed from these human microbiome bacteria was consistent with

the results of our studies with lab-cultured Gram-negative and Gram-positive sam-

ples and demonstrates the applicability of the hydrogel method to real-world samples,

including lysis and amplification of a variety of naturally occurring microbes.

3.2.4 Random Dispersion Model

Based on qPCR analysis of the 80 punches, the expected number of punches that

have both E. coli and S. aureus is:

14 43
PE.coli = = 0.175; PS.aureus - 0.538

80 80
30 14 43

Pnegative - -= 0.375; < NbothE.coliandS.aureus >= X X 80 = 7.52

This result is in line with our qPCR result of seven double positive punches (Table

3.1), indicating the likelihood that the distributions of E. coli and S. aureus across
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the punch samples are independent as we expected. Furthermore, if we assume a

random (Poisson) distribution of microbes in the hydrogel:

PE.coli
-66

(0, XE) = e-AE = 0.825, AE = 0.192
80

PE.coli (1, AE) = AE eX E = 0.158

PE.coli (2, AE) = 2 -01

0.158 =90%

PE.coli (Single cell) 0.1580 90.32
1 -0.825

37
Ps.aureus (0, As) = e-As - 0.462, As =

80

Ps.aureus (1, As) = As e-As - 0.356

A2 e-As
Ps.aureus (2, AS) = 2 0.138

0.356
Ps.aureus (Single cell) = 1 = 66.2%

1 -0.462

0.772

The low probability value for the occurrence of single S. aureus is calculated based

on the high number of hydrogel punches that were identified as S. aureus by qPCR.

To bring down the value, a more dilute sample of S. aureus should be used (Table

3.4).

Ps.aureus(0) = 0.463
Ps.aureus(1) = 0.356
PS.areus(2) = 0.138

Table

PE.cli(0) = 0.825 PE.coli(1) = 0.158 PE.coli(2) = 0.01

0.38 0.073 0.0046
0.29 0.056 0.0036

0.114 0.022 0.0014

3.4: Microbe occurrence probability

3.3 Conclusion

Virtual microfluidics enables high throughput whole genome amplification and serial

reagent exchange in an easy-to-use, benchtop format that requires no special equip-

ment or environmental control. Here we show preparative amplification and recovery

of single bacterial genomes for ex-situ analysis of lab-cultured control cells and the

human gut microbiome by next-generation sequencing (NGS).
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Virtual microfluidics establishes a new paradigm in single-molecule and single-

cell analysis with dramatically different characteristics than established microfluidic

approaches. Besides reducing the production of chimeras in MDA, the unique phys-

ical characteristics of the engineered hydrogel environment may provide a means for

enhancing coverage extent and uniformity from WGA and WTA samples through

the self-limiting reactivity within each virtual compartment, similar to a recently re-

ported emulsion approach [89]. In addition, the straightforward addition and removal

of reagents to/from product clusters en masse and excellent optical access ideally suit

the virtual microfluidics system for rare-cell assays incorporating in situ labeling of

cells or product clusters. We expect that virtual microfluidics will find application as

a high-throughput platform for single-cell sample preparation.

3.4 Materials and Methods

3.4.1 In-gel single-microbe MDA - E. coli and S. aureus

Antibiotic resistant Staphylococcus aureus subsp. aureus (GFP) NCTC 8325 and

Escherichia coli (RFP) BL21 strains were obtained as cryogenic stocks. For each

culture, the frozen stock was inoculated in 5 mL LB broth and cultured at 37 'C

overnight. 10 piL of 25 mg/mL Chloramphenicol was added to S. aureus culture and

5 pL of 50 mg/mL Ampicillin was added to the E. coli culture. 50 pL and 20 PL

of each overnight culture were added to fresh 5 mL LB broth with the respective

antibiotic concentration. After two hours incubation (to achieve exponential growth

phase), 1 mL of each culture (O.D. 600 nm = 0.2) was centrifuged for 2 min at >10

krpm and the pellet was washed with 500 pL PBST (1% Tween-20) twice. The

equal ratio mixture of microbes were diluted to 206,000 cells/mL and 1 pL of each

was encapsulated in the same hydrogel sample to produce an average of less than 1

microbe per 500 pm diameter view. In addition to the hydrogel MDA reaction mix

described above, lysozyme (Sigma, final concentration 2.5 mg/mL) and lysostaphin

(Sigma, final concentration 0.1 mg/mL) were added to the mix. The hydrogel was
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left at RT to let crosslink for 20 minutes and cross-linked hydrogels were incubated at

37 'C for 1 hour for microbe lysis and heated to 95 'C for 5 min to denature genomic

DNA before rapid quenching on ice. 1 pL of REPLI-g sc Polymerase (Qiagen) diluted

in 2 ML water was then added on top of the hydrogel and allowed to diffuse into the

gel. Next, the gel chamber is resealed and MDA was conducted for 10 hours. After

the MDA reaction, the sample was heated to 65 'C for 5 min to deactivate phi29

polymerase.

3.4.2 Image acquisition and analysis

Z stack images were taken by a Nikon ultra-fast laser scanning confocal microscope

with the pinhole = 1.2, HV = 112, offset = 0, laser wavelength = 561 nm, laser

power = 1.3 to 1.5, using a 20x objective on Galvano mode. The acquisition speed

was 1 frame/sec and z step size was 0.95 pm. On the inverted microscope, z stack

images were taken with the exposure time 100 ms, Lumencor excitation power 10%,

binning size 2 and z step size 10 Mm. Both z Stacks were first processed into max

intensity projections in FIJI. Max projection tif files were then loaded into MATLAB.

Background was obtained by applying a Gaussian filter of hsize 200 and sigma 50. All

max projections were background-subtracted and thresholded at 2 - 2.5x standard

deviations above the mean intensity. Cluster count, cluster area (radius), and cluster

mean intensity were obtained with the bwconncomp and regionprops functions.

For whole gel (25 pL, 9mm by 9mm) microbe density approximation, I imaged

the gel with a 4x objective in a 5 x 5 grid with a 31% overlap. The 25 images were

stitched using the FIJI stitching function. Fluorescent DNA clusters were counted

and only gels with the appropriate clusters' range and dispersion (60 - 80 per gel)

were selected for hydrogel cluster retrieval. Images of the sampled locations were

acquired but not used to guide sampling, sample preparation, or data analysis in this

case.
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3.4.3 MDA product cluster retrieval

In order to identify and retrieve a regular array of punches (not guided by cluster

image data), we produced a tape stencil to guide the punch tool (Adhesive Applica-

tions High Tack Silicone Film Tape). We laser cut the double-sided tape with a 9 x 9

array of 500 pm diameter circles that has a center-to-center distance of 947 Pm (Full

Spectrum Laser LLC MLE-40). The tape stencil was applied on top of the frame seal

plastic cover. The gel was peeled off the glass slide by allowing it to adhere to the

plastic cover. The gel is then punched with a 1 mm diameter steel punch (Militek)

and the micro-samples collected in a 96 well LoBind twin.tec plate (Eppendorf). The

steel punch was cleaned with bleach and 70% Ethanol after each use.

3.4.4 BLAST analysis and read assignment for E. coli and S.

aureus

To characterize all samples after quality trimming, each sample (R1 from each read

pair) was blasted (task megablast) with the parameters listed in Fig. 3-5. The

BLAST database for E. coli consists of three E. coli genomes (strain BL21, MG1655

and W3110). The S. aureus database consists of the genomes of strain 8325, TW20

and USA300. Univec, Plasmid and Human genome (GRCH38) databases were down-

loaded from NCBI. All databases were produced using makeblastdb and blastdbalias

tool. Each read was mapped to all five databases (E. coli, S. aureus, Univec, Plas-

mid, and Human db) and the results were ranked based on bit score, e-value and then

percent identity. We assigned each read to one of the source databases based on the

top hit. Using the filter fasta.py tool in QIIME [133], we selected reads that did not

map to any of the five databases for further analysis. We ran BLAST against the nt

database to characterize these reads (Table. 3.2).
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Figure 3-5: NGS data analysis schematic for E. coli and S. aureus. The analysis
workflow is shown with a combination of bioinformatic tools, python scripts and
MATLAB scripts.
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Complete Primer list

MDA hexamer 5'-NNNN*N*N-3'
S. aureus G1 F TGC ACA TTT AAA CCC AGC GG
S. aureus G1 R ATC GCA TGT GCA ATT CTC GG
S. aureus arc F TTG ATT CAC CAG CGC GTA TTG TC
S. aureus arc R AGG TAT CTG CTT CAA TCA GCG

E. col G2 F CAA CCA AAT TAT TGC CGC GC
E. coliG2 R GCC ACG GTA ATT ACT GTC GC

E. coli uspA F CCG ATA CGC TGC CAA TCA GT
E. coli uspA R ACG CAG ACC GTA GGC CAG AT
ADNA 780bp F CGG CAA ACG GGA ATG AAA CGC C
ADNA 780bp R TGC GGC AAA GAC AGC AAC GG

* Represents phosphorothioated DNA bases
All sequences are listed from 5' to 3'

Table 3.5: PCR primer sequences

3.4.5 Secondary liquid MDA and PCR screening - cultured E.

coli and S. aureus

The retrieved hydrogel punch was dissolved and denatured in 1 AL of 1 M KOH with

0.1 mM EDTA and 0.1 M DTT at 72 'C for 10 min before neutralization in 1 AL

stop solution (Qiagen REPLI-g single cell kit. Approximately 0.06 pL of hydrogel

and 10 pg of DNA was captured for a cluster. The neutralized product was added

to 12.5 pL REPLI-g sc reaction mix with 1 ALL of phi29 polymerase. The secondary

MDA reaction was incubated for 10 hours before polymerase deactivation at 65 'C

for 5 min. The DNA products from MDA were cleaned by the SPRI procedure in

1.8:1 beads to DNA volume (Beckman Coulter). Each sample was analyzed for the

presence of S. aureus and E. coli marker loci by four sets of primers (Table 3.5) in

standard qPCR reactions with Jumpstart Taq 2x ready mix (Sigma Aldrich), 1x

Evagreen (Biotium), Ix ROX (Invitrogen) and 1 pM primers in Stratagene M3005.

Both melting curve analysis and agarose gel electrophoresis (not shown) were used to

support the QPCR results.

3.4.6 WGS library construction and sequencing

We quantified the purified MDA products using the Qubit/Quant-IT HS assay (Thermo

Fisher Scientific) and normalized samples to 5 ng/pL. All SPRI procedures were con-
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ducted on the Bravo robotic system (Agilent Technologies). Purified DNA (5 ng) was

then added to 1 pL of 5x tagmentation DNA buffer, 2 pL H2 0 and 1 AL Nextera

Tagmentation DNA enzyme (Illumina). The mixture was first incubated at 58 'C

for 10 min. With the addition of 0.5 pL of 1% SDS, it was then incubated at 68 'C

for 10 min, 4 'C for 3 min and 25 'C for 3 min to stop the tagmentation reaction.

Another SPRI clean-up was carried out, followed by PCR library barcoding using

Index primer N7 and S5 (Illumina) with the thermal protocol: 72 'C for 3 min, 98 'C

for 30 sec, 12 cycles of 98 'C for 10 sec, 60 'C for 30 sec, 72 'C for 30 sec and a 5 min

final extension at 72 'C. Samples were barcoded uniquely in the PCR step using stan-

dardized custom sample barcodes (Broad Institute Genomics platform). The PCR

products were purified with SPRI twice with 1:1 beads to DNA volume and library

quantification was carried out with the Quant-It assay (Thermo Fisher Scientific)

and the KAPA library quantification kit (KAPA Biosystems). Library normalization

and pooling were conducted on the Janus Mini Varispan workstation (PerkinElmer).

For E. coli and S. aureus samples, an average of 0.7 million paired-end reads were

allocated for each sample in a MiSeq 500 cycle v2 run (Illumina). For stool samples,

about 1 M reads (> 50x) were allocated to each sample on HiSeq 2500 2x 101/125

runs (Illumina).

3.4.7 NGS data analysis for E. coli and S. aureus

Data quality was first visualized using FastQC (Babraham Bioinformatics). All

data were trimmed using trimmomatic [134] and human reads were filtered out with

BLAST and QIIME. Each pair of trimmed and filtered reads was piped into BWA

and mapped to the custom reference sequences (Fig. 3-6). SAMtools view was

used to produce BAM files, and Picard tools (Broad Institute) deployed to mark

duplicate reads. The data analysis workflow is illustrated in Fig. 3-5. The sam-

ples included two positive-control purified genomic DNA samples, seven hydrogel

MDA punches identified as E. coli only by qPCR, seven punch samples identified

as S. aureus only by qPCR, and seven punch samples identified by qPCR as dou-

ble negative. Mapping statistics were obtained using the GAEMR (Broad Institute)
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Figure 3-6: Mapping single-cell genomes to references. Single-cell samples were

mapped to E. coli and S. aureus reference sequences with mean percent pair aligned

and standard deviation shown. (n = 5 for E. coli punches, n = 7 for S. aureus, n=

7 for negative punches).

get__simple _bam_stats.py tool (Table 3.6). Genome coverage was obtained using

Bedtools genomecov. Lorenz curves were obtained by first processing BAM files (du-

plicates marked) using samtools mpileup and then ranking the ascending coverage per

base pair. Single-cell E. coli' MDA data from de Bourcy et al. 2014 were downloaded

from NCBI Sequence Read Archive (SRA) and analyzed by the same procedures.

Genome Coverage Completeness Estimation: note that some studies in the field

report data from quality-filtered ('cherry-picked') cells, which dramatically improves

quality statistics such as average coverage. In this study, we report data on complete

sets of single-cell MDA reactions.

3.4.8 Custom reference generation by de novo assembly for E.

coli and S. aureus

The gDNA E. coli (BL21) and S. aureus (8325) positive-control data were assembled

and curated to create custom reference genome sequences. Raw sequencing files were

quality trimmed using Trimmomatic (Fig. 3-5). We blasted the trimmed files against

respective reference databases and filtered described previously with the parameters

listed in in Fig. 3-5. Hit reads were filtered out of the sequencing files using the QIIME

filter-fasta.py tool. The filtered and trimmed files were assembled into unordered
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# Raw Median
reads insert length

(E. coil)

Median
insert length
(S. aureus)

Mapping
to E. coli

(%)

Mapping to Coverage of Coverage of chrceon
S. aureus E. coli S. aureus E. coi ref

(%) genome genome

E. coi
genomic DNA

S. aureus
genomic DNA

S1

S2

S3

S4

S5

S6

S7

E1*

E2

E3

E4

E5'

E6

E7

NTC1

NTC2

NTC3

NTC4

NTC5

1,888,337

987,244

873,658

361,857

594,951

654,669

470,077

803,684

450,240

822,345

473,648

425,227

527,854

1,200,678

745,092

1,053,059

972,597

671,370

715,428

508,975

784,944

120 89.86% 0.83% 99.99%

144 3.04% 88.70%

150

178

153

160

155

148

166

137

134

135

142

121

124

124

NTC6 579,921

NTC7 605,265

Mock 27,429

* False-positive E. coli single-cell samples

1.81% 90.89%

2.07% 89.02%

5.17% 53.30%

2.17% 90.16%

5.32%

5.27%

1.39%

9.81%

61.12%

77.35%

55.20%

9.76%

85.31%

68.43%

10.89%

0.51%

0.23%

0.12%

0.99%

84.03%

22.64%

25.71%

69.80%

64.47%

93.04%

0.59%

0.64%

2.38%

1.01%

3.36%

1.56%

0.38%

16.96%

1.59%

0.20%

0.07%

3.27%

0.06%

0.13%

16.81%

Table 3.6: Mapping statistics, E. coli and S. aureus
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Percent
chimera on
S. aureus

99.99%

64.35%

70.44%

53.85%

67.87%

66.95%

86.46%

47.34%

0.08%

0.12%

0.62%

0.84%

0.39%

0.57%

0.61%

0.49%

0.90%

7.14%

23.85%

47.59%

30.52%

14.10%

16.77%

23.79%

0.68%

0.69%

0.55%

0.78%

0.56%

0.84%

0.52%
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- ....

Assembly statistics E. coli gDNA S. aureus gDNA E coi gDNA
(de Bourcy et a/.)

# Contigs a Obp 126 113 115

# Contigs a 1kbp 101 86 91

Total length a Obp 4,406,278 2,678,216 4,432,657

Total length a 1kbp 4,396,297 2,666,092 4,422,013

Largest contig 295,162 148,028 326,226

Coverage 97% 95% 95%

GC % 50.80 32.69 50.75

N50 75,214 48,471 85,192

Table 3.7: de novo assembly statistics, E. coli and S. aureus

contigs with velvet. We mapped (BWA) unordered contigs to their closest NCBI

reference genome (NC_012971 and NC_007795.1 respectively). The resulting SAM

files were ranked on mapped length in descending order. Using a custom MATLAB

function, we created a reference genome backbone consisting of only '-' with the

same size as the reference genome and wrote sequences on it with only the top SAM

mapping sequence for each contig. We conducted the same assembly process for

the genomic DNA (E. coli DH10B) data from de Bourcy et al. 2014 using reference

genome NC_010473.1. Assembly statistics are listed in Table 3.7. Custom MATLAB

function, python codes and shell scripts are included in the supplementary software

zip file in Xu et al. 2016.

Random subsampling of mapped reads for E. coli and S. aureus Duplicates-

marked BAM files were down-sampled using samtools and bootstrapped with random

number seed 0 to 9 for each depth. See Table 3.8 for more information.

3.4.9 Chimera statistics for E. coli and S. aureus

To make the chimera statistics comparable, we used de novo assembled genome se-

quences (described below) from bulk genomic DNA samples as the reference. We

mapped read 1 and read 2 from each sample single-ended using BWA. We sorted the

SAM file by read index. We used a custom python code to import pysam in order to

pair up the 'read index', 'mapping position', 'is-reverse', and 'read length' information

into a .mat file. With a customized MATLAB script, we calculated the insert size
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Filename

SRR1614004

SRRI 614005
SRR1614006

SRR1614007
SRR1614011

SRR1614012

SRR1 614013
SRR1614014
SRR1614015

SRR1614016
SRR1614017

SRR1 614018

SRR1614019

SRR1614020

LX1

LX11

LXI 2

LX21

LX23
LX24

LX3

LX4

LX5
LX6

LX7
LX8

LX9

Mapped Frreads
1,953,388

124,353
1,552,882

222,175
2,191,740
2,034,992

5,476,888
2,631,391

11,448,119

3,833,180
2,720,938
2,377,409
2,217,047

5,331,247
1,690,339

283,308
324,651
259,540

571,435
708,610
728,290
335,567

321,849
609,813
335,862
528,641
435,904

* 20X coverage

action: 20X lox 5X Source

0.181

0.228

0.162
0.174

0.065
0.135
0.031
0.092

0.13
0.149

0.16
0.066
0.208

1*
1*
1*

0.62
0.5

0.29
0.64
0.66
0.35
0.64

0.4
0.49

was not obtained

0.091 0.045 de Bourcy tube

- 0.712 de Bourcy tube

0.114 0.057 de Bourcy tube

0.798 0.399 de Bourcy tube

0.081 0.040 de Bourcy MF

0.087 0.044 de Bourcy MF

0.032 0.016 de Bourcy MF

0.067 0.034 de Bourcy MF

0.015 0.008 de Bourcy MF

0.046 0.023 de Bourcy MF+T

0.065 0.033 de Bourcy MF+T

0.075 0.037 de Bourcy MF+T

0.08 0.04 de Bourcy MF+T

0.033 0.017 de Bourcy MF+T

0.104 0.052 E.coli gDNA (No MDA)

0.62 0.31 E.coli hydrogel

0.54 0.27 E.coli hydrogel

0.68 0.34 E.cofi hydrogel

0.31 0.15 E.coli hydrogel

0.25 0.12 E.colihydrogel

0.15 0.07 S.aureus hydrogel

0.32 0.16 S.aureus hydrogel

0.33 0.17 S.aureus hydrogel

0.18 0.09 S.aureus hydrogel

0.32 0.16 S.aureus hydrogel

0.2 0.1 S.aureus hydrogel

0.25 0.12 S.aureus hydrogel

for these samples: all available data were used

Table 3.8: Downsampling on mapped reads from single-cell MDA samples
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for each read pair and checked their relative orientation. We filtered out pairs that

were mapped one-ended. The chimera percentage was calculated as the (number of

properly orientated read pairs with insert size more than 1000 bp + number of read

pairs of wrong orientation)/Total number of read pairs.

3.4.10 In-gel single-microbe MDA - human gut microbiome

samples

We received ethics approvals for human subjects research from the Columbia Univer-

sity IRB, Massachusetts Institute IRB, Broad Institute IRB, and two research ethics

committees in Fiji: HRERC at CMNHS, FNU and FNHRERC at MoHFiji Ministry

of Health. The Fiji Community Microbiome Project (FijiCOMP) study participants

from 5 agrarian villages within the Fiji Islands. This project provided stool sam-

ples stored in 20% glycerol within 30 minutes of voiding and were frozen at -80 'C.

Five participants were analyzed for single-cell studies: M1.20, W2.21, WL.26, W2.33,

M2.41 (Table 3.9). 10 pL of thawed cells were resuspended in 500 AL PBST (0.1%).

Samples were sonicated for 20 seconds and filtered through 35 pm Nylon mesh and

5 pm membrane (Pall Corp.) to collect filtrate with a 500 pL PBST wash. Samples

were further diluted 1 to 500 ~1 to 2000 fold in PBST to reach the final concen-

tration of - 30 cells/pL. The diluted cell samples (2 pl) then underwent alkaline

lysis (1.5 pL D2 buffer) for 15 minutes at room temperature, after which the solution

was neutralized (1.5 pL Stop solution). Hydrogel monomer mix (1.3 mg 4-Arm PEG

Acrylate and 0.9 mg SH-PEG-SH) and MDA master mix were gently pipetted down

the wall of each sample tube. MDA master mix includes 1 x phi 29 buffer (NEB), 50

pM random hexamers with two phosphorothioate bonds at 3' terminus, 2.5% DMSO,

0.4 mM dNTP, 0.5 mg/mL BSA, 500 nM SYTOX Orange (Invitrogen) and 1 pL

REPLI-g SC Polymerase (Qiagen). Only gentle tapping was used to ensure reagent

mixing, in order not to disrupt the lysed microbes and denatured genomes. 25 pL of

each microbial suspension was added into a frame-seal chamber, the sealed chamber

was incubated at 30 'C for 12 hours, followed by 65 0C for 5 mins.

73



Sample ID M1.20 W2.21 WL.26 W2.33 M2.41 Weighted average

Prevotellaceae 27.0 46.0 61.9 28.9 52.1 44.0

Succinivibrionaceae 0.0 0.0 0.0 0.0 0.0 0.0

Clostidiaceae 0.6 0.0 0.9 0.0 0.0 0.2

Bacteroidaceae 0.0 0.1 1.3 0.0 4.1 1.2

Veillonellaceae 0.4 3.4 2.9 4.4 9.0 4.6

Firmicute 0.0 0.0 0.0 0.0 0.0 0.0

Enterobacteriaceae 0.1 33.3 1.2 0.3 0.3 6.4

Lachnospiraceae 8.1 4.2 4.7 16.5 4.1 8.4

Eubacteraceae 19.3 3.4 7.1 29.5 6.6 14.2

Ruminococcaceae 16.7 5.6 2.8 13.5 7.3 8.7

Megasphaera 0.0 0.0 0.0 0.0 0.0 0.0

Acetobacteraceae 0.0 0.0 0.0 0.0 0.0 0.0

Acidaminococcaceae 8.3 0.6 11.0 0.6 0.0 3.2

Clostridiales 0.0 0.0 0.0 0.0 0.0 0.0

Erysipelotrichaceae 16.0 2.0 0.8 3.4 1.3 3.0

Total (%) 96.5 98.5 94.7 97.0 84.7 94.0

Single cell count 8 21 25 37 26 All =117
Single cell percentage 7% 18% 21% 32% 22% All= 100%

Table 3.9: Metagenomic shotgun profiling weighted with single-cell samples

Secondary In-gel MDA - human gut microbiome samples Hydrogel punches

(approximately 0.24 pL of hydrogel and 10 pg of DNA if a cluster was captured) were

dissolved and denatured in 1 ML of 400 mM KOH with 0.1 mM EDTA and 0.1 M

DTT at 72 'C for 10 min before neutralization in 1 pL stop solution (Qiagen REPLI-g

single cell kit). The neutralized product was added to 8 puL hydrogel and MDA master

mix to reach a final volume of 10 pL for second round MDA reaction in hydrogel. The

MDA reaction was incubated for 10 hours at 30 'C before polymerase deactivation at

65 'C for 5 min. The 10 pL gel was dissolved with 10 pL 400 mM KOH for 5 mins

at 72 0C, and then neutralized with 6.6 pL 2.5% acetic acid.

Pre-processing and assembly of single-cell genomes from stool First, we re-

moved the adapter sequences from single-cell libraries using TRIMMOMATIC [134]

(TRAILING:3 MINLEN:40). To ensure that human DNA was not captured in our

single-cell libraries, we screened single-cell amplicons against the human genome

(GRCh38 reference) using BMTagger [135] (default). We screened our amplicons
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against E. coli references (BL21 and DHlOB) using BMTagger. Overall, the level

of contamination was small (around 0.01%). We also screened against Pseudomonas

(PAOi) and Staphylococcus (NCTC 8325) genomes, which were sequenced alongside

our libraries, to ensure no chimeric reads formed during sample preparation with

contaminating sequences from other cultures in our lab that confounded our analy-

ses. Finally, single genome amplicons were quality filtered (Phred score > 3), and

filtered for reads that were less than 45 bp. Amplicons were then assembled using

SPAdes (v3.6.0) (-careful) 1136]. We retained genomes where at least 100 kb could

be assembled.

Assessing the fidelity of single-cell genomes from stool To further vet the

quality and purity of our assemblies, we used BLAST to assign taxonomies to a set

of 31 predetermined core genes that are both phylogenetically conserved and single

copy in almost all genomes [132]. Although we could not identify the full set of 31

core genes in any of the assemblies, we were able to easily distinguish cases where

two or more cells were sequenced together from those in which there was a single cell.

Additional validation of the single-cell assemblies included quantifying the levels of

contamination using CheckM [137] and examining the number and taxonomy identi-

fied using RNAmmer [138]. CheckM accesses the quality of a genome using a broader

set of marker genes specific to its inferred lineage within a reference genome tree and

provides estimates of genome completeness and contamination percentages. RNAm-

mer uses hidden Markov models trained from ribosomal RNA databases to predict

the rRNA species. The extent and contiguity of our assemblies was documented by

reporting assembled genome size, N50, the number of contigs, CheckM completeness

percentage, CheckM contamination percentage and notes on RNAmmer classification

in an Excel file in Xu et al. 2016.

Notably, some microbes can be difficult to isolate from human stool samples due

to the cells' tendency to break or aggregate. Some of the punch samples with low

numbers of AMPHORA genes could be the result of broken cells containing reduced

genomic representation or free genomic DNA fragments, while samples with evidence
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for multiple taxonomies could have resulted from cell aggregates. Stool samples are

also fairly complex and contain a lot of particulate matter that complicates sample

processing. In principle, genes from samples with sequences of variable taxonomy

could arise for several reasons: the products of multiple cells being collected in a

single punch, downstream contamination in the second round MDA or library con-

struction steps, informatic demultiplexing, or from taxonomic mis-classification of

hard-to-assign sequences.

Analysis of metagenomic shotgun reads from stool FijiCOMP metagenomic

samples, each containing roughly 50 million paired-reads, were profiled using MetaPhlAn

[1311. Metagenomic samples were also aligned to the SILVA rRNA database (v.115)

to determine the presence of organisms from the Succinivibrionaceae family. Based

on alignments to the SILVA rRNA database, we find that organisms within the Suc-

cinivibrionaceae family are in fact highly abundant in the FijiCOMP metagenomic

data, with average FPKM (Fragments Per Kilobase of transcript per Million mapped

reads) values around 26,000.

76



Chapter 4

The characterization of chimeric

DNA rearrangements in single

amplified human genomes across

innovative single-cell technologies

4.1 Introduction

Transposable elements (TEs, 'jumping genes') are discrete pieces of DNA that can

move within the genome of a single cell and between the genomes of different cells.

Nearly 45% of the human genome is derived from TEs [139, 140]. Studies have

shown that TEs can cause mosaic copy-number variations (CNVs) and structural

variations (SVs) on genes such as PIK3CA, AKT3 and mTOR during prenatal brain

development. These mutations could result in brain malformation and neurological

defects, including epilepsy, intellectual disability and hemimegalencephaly [141, 142].

Thus, it is important to identify such mutation mechanisms and the affected diverse

cell types that disrupt the function of the cortical circuits. In order to achieve this,

targeted qPCR assay can be used to detect an increase in the copy number of TE.

However, a critical limitation is that the genomic location of the new insertion cannot
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Figure 4-1: The mechanism of MDA chimera. The strand displacement action of
MDA is shown on top. The strand migration dynamic causes the 3' end to freely
bind to another part of the genome, resulting in outward, inverted and large-insert
chimera. Cross-chromosome chimera is not shown but the mechanism is similar.

be identified [143].

Single-cell targeted sequencing and whole genome sequencing approaches have

enabled the location identification of novel brain-specific TE insertions. But the

results are often confounded by the inherent false discovery rate of current technology

[143]. Single-cell technology has also been widely applied in several other scientific and

biomedical field. For example, the screening of embryos using single-cell technologies

on polar bodies and blastomeres has shown improved in vitro fertilization success

by eliminating embryos with a high frequency (30 x above baseline) of chromosomal

rearrangements, which often lead to miscarriages [144]. This technique also lowers the

rate of Mendelian disease through genome-wide single nucleotide variations (SNVs)

screening on the embryos [145, 146].

The data quality of single amplified and sequenced cells is a key to providing
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accurate and trustworthy information for above-mentioned applications. During the

genome amplification and library preparation steps, artifacts are often generated that

confound the detection of genomic signatures and complicate data analysis. These

artifacts are often due to the implementation of the multiple displacement amplifi-

cation (MDA) reaction and PCR-based sequencing library preparation [130]. One

type of artifact generated by MDA-chimeric DNA rearrangements (Fig. 4-1), caused

by the highly branched DNA secondary structures with free 3' ends of single-strand

DNA during the reaction [130], has raised flags in several single-cell studies. It has

been shown that the preimplantation genetic diagnosis guided by single-cell genomics

can be affected by false-positive SNVs and structural variations from MDA chimera

[28, 147]. Researchers using single neurons to study developmental disorders discov-

ered the complication of the chimera artifacts in identifying novel retrotransposon

Li as the existence of the chimera caused false-positive identifications of structural

variations [5, 148]. This is also a problem for environmental microbes that lack a

closely related reference genome. But in this chapter, we focus on human cells.

Experimentally, several studies have made attempts to reduce such chimera arti-

facts. It has been shown that nanoliter microfluidic device might generate less MDA

chimera than microliter samples [20]. However, nanoliter to picoliter microfluidic

devices often require clean-room fabrication and supporting pneumatic instruments,

which makes it hard to implement for labs with limited resource and funding. Zhang

et al. used a combination of <129 polymerase debranching, S1 nuclease digestion and

DNA polymerase I nick translation to reduce the chimeric rate in the library prepara-

tion step for single microbes [95], but such methods do not directly affect the chimera

generated during MDA reaction. A recent study by Picher et al. used a modified 4b29

enzyme for whole genome amplification but didn't show evidence of reduced chimera

compared to using unmodified 4D29 [149]. A novel single-cell technology that is highly

accessible and provides high-quality data, especially on reducing the MDA chimera

artifact, is greatly needed.

Bioinformatically, the majority of single-cell studies have focused on character-

izing coverage uniformity, CNVs, SNVs, purity and throughput metrics, but have
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Comparisons Description Engineering Throuhput Reagent addition Product recovery

Nopaisn peile qpent Difuiotittolotehyialpucho

Virtual Microfluidics MDA in hydrogel matrix No special equipment Possion loading Diffusion to or out Physical prchdow
neddof hydrogel hydrogel breakdown

Emulsion WGA A single cell divided inut al 2015) 105 picoliter aqueous Droplet generator ingle-cell N.A. Droplet breakdown
droplets with MDA

Nanoliter droplet Nanoliter droplets Commercial liquid Sequential one by Sequential one by
(Leung at al. 2016) Nasnted on a planar dispensing system Possion loading one addition one retrievalsubstrate

LIANTI Linear amplification via Mouth pipetted or Single-cell N.A. N.A.
(Chen et al. 2017) transposon insertion FACS sorted isolation

Table 4.1: Single-cell technology comparisons for chimera analysis

often neglected to quantify the amount of artifacts generated from single-cell whole

genome amplification process and sequencing library preparation steps that affect as-

say performance. There exist established bioinformatic tools designed to filter chimera

artifacts from 16S PCR reactions (comparing the phylogenies of fragments) [150, 1511

and single-cell RNA-seq experiments (with the matching of unique molecular identi-

fiers and cell barcodes) [152]. However, existing tools are not designed for chimera

characterization and filtering in single MDA-amplified human genomes. A detailed

bioinformatic characterization of MDA chimeras is needed to evaluate single-cell tech-

nologies and datasets that have been developed and produced.

In this study, we present the application of virtual microfluidics on single human

cells to demonstrate our technology's capabilities in producing high-quality single am-

plified human genomes with minimum equipment requirement. We benchmarked its

performance with recent innovations of single-cell technologies (Table 4.1) based on

exponential amplification method-MDA (eWGA, Nanodrop) and quasi-linear am-

plification method-LIANTI and MALBAC [66, 89, 107, 108]. Virtual microfluidics

has been shown as a hydrogel-based single-cell isolation and amplification technology

that is highly accessible and can provide high-quality single-cell whole genome am-

plification (WGA) product on cultured bacteria and human gut microbiome samples

[26]. We have previously demonstrated its advantages on small genomes (bacteria)

in terms of multi-fold chimera reduction and coverage uniformity improvement. Our

hypothesis is that the single amplified human genomes in virtual microfluidics will
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Virtual Microfluidics Nano droplets eWGA LIANTI or MALBAC
10 tL (per genome) 100 nL 14 pL 25 iL

MDA based

Figure 4-2: Comparison of single-cell technologies. The volume labeled is for each
single-cell genome amplification reaction.

have a similar level of high-quality data to the previous study, with reduced chimeric

DNA rearrangements and improved coverage uniformity.

As we mentioned in Chapter 3, the restricted diffusion of the MDA intermedi-

ates prevents cross-priming by isolating each portion of the product mixture. It

limits cross-chromosome artifacts and chimera reads of large insert size (the distance

between the forward read and reverse read mapped on the genome, A mapped coordi-

nates + the length of reverse read). The hydrogel's micro-environment also physically

limits the secondary DNA structures during MDA, thus reducing the chimera break-

points out of total reads that are pair-mapped. To support the technology demon-

stration, we developed an algorithm to categorize the signatures of MDA chimeras

across multiple single-cell platforms. This characterization will serve as a guidance

for chimera analysis to be a non-negligible part of the analysis suite for evaluating

future single-cell technologies.

4.2 Results and Discussion

We conducted modified virtual microfluidics single-cell sequencing on 8 RPE-1 cells

in a HiSeq 2500 lane with 2 x 125 and obtained roughly 1 x mapping depth to reference

genome GRCh37-lite (methods). We characterized the single RPE cell dataset while

benchmarking with unsorted/(unclear whether cherry-picked) single-cell datasets from

eWGA (5 cells), MALBAC (2), tube MDA (2), Nanodrop (9) and LIANTI (3) (Table

4.2, Table A. 1 and Fig. 4-2). All samples were trimmed and analyzed according
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Number of single
Data source cells analyzed out Sequencing Library Prep Amplification Median Insert Cell lineof total available methods method fold size (bp)

(0.1-1OX depth)

PCR enriched hTERT RPE-1
Virtual Micofluidics 8 MDA single cells PE, 2x100bp (PCR free for bulk 0.05e4-3e4 110 ATCCS CRL-

HiSeq genomic DNA) 4000

Emulsion WGA 5 out of 10 OWGA PxObEmu lson a 2 MDA (tube) WGA 2x100bp PCR enriched -2e6 160 HUVEC
2 MALBAC (tube)

Nanoliter droplet 8 out of 15 MDA PE,2x125bp
Leung at al. 20 16) high depth 2x15b PCR enriched ~1e4 190 184- hTERT

9 out of 95 low depth

LIANTI 3 LIANTI clls PE, 2x125bp PCR enriched 3300 300 BJ ATCC@
(Chen etat. 2017) HlSeq CRL-2522

Table 4.2: Data source for chimera analysis

to the analysis workflow (Fig. 4-3). All mapped, de-duplicated, repeat-masked and

sorted BAM files are down-sampled to 430,000 reads/sample (-0.01 x, including both

forward and reverse reads) for chimera analysis (methods) .

The benchmarking datasets were chosen to represent different methods of cell

isolation (hydrogel-based virtual microfluidics, emulsion droplets, liquid dispensing),

WGA chemistry (MDA, MALBAC, LIANTI) and library preparation methods (Nex-

tera PCR-enriched and PCR-free ligation-based). According to Evrony et al. 2015,

most chimera originated from library preparation after MDA reaction. However,

our previous study showed a multifold chimera rate reduction from MDA process in

cultured bacteria compared to standard tube reactions using the same library prepa-

ration procedure (Nextera). Including above-mentioned datasets will help parse out

the chimera characteristics and sources from single amplified human genomes.

It has been shown from a couple hundred sequencing reads of E. coli that over

85% of MDA chimeras are inverted read pairs, which means the forward and reverse

read pairs don't have the correct orientation (inward facing) [130]. This type of

sequencing result can be easily filtered out in a single-chromosome organism with the

well-established reference genome, such as culturable bacteria. However, it becomes

bioinformatically difficult when the reference genome is enriched with repeat islands

in mammalian cells and when the draft genome is often inaccurate for unculturable

environmental microbes. Making improvements in single-cell technologies is a task
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Figure 4-3: Pair-ended sequencing provides read orientations for the chimera catego-
rization. (a) The insert size represents the length of DNA fragment. (b) The decision
workflow to categorize different chimera reads. (c) Chimera and non-chimera reads
are illustrated.

that needs to be done well both experimentally and bioinformatically.

4.2.1 Chimera categories

A correct read pair should map to different strands (+/-, or sense and antisense)

within the insert size range controlled by sequence library size selection (200 bp ~

800 bp). We defined five categories of chimera reads in this study (Fig. 4-3bc). In-

verted means forward and reverse reads mapped to the same strand of DNA template

(Fig. 4-3c). Within the inverted reads categories, the pairs of reads can be fur-

ther categorized into inverted&LargeInsert (>1000 bp insert size) and InvertedOnly

(<1000 bp). For reads with the correct orientation, the pairs of reads can be catego-

rized into LargeInsert Only chimera (>1000 bp) and cross-chromosome chimera. The

color code in Fig. 4-3c corresponds to the same categorizations in Fig. 4-4 chimera

quantification. The five categories are mutually exclusive and collectively exhaustive

for all chimeras that can be parsed out.

The median insert size distribution of sequencing reads across different datasets
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Figure 4-4: Chimeric breakpoints per 10 kbp across all samples are shown as 5 cate-
gories of chimera: cross-chromosome, inverted, large insert size (>1000 bp), outward,
and inverted large insert.

varies from 100 bp ~~ 300 bp. In order to eliminate the factor of inconsistent insert

size on chimera detection and possible read overlaps, we normalized the chimera

breakpoints over total basepairs mapped and trimmed all sequencing reads to 30

bp [1531. Previous studies have revealed the nature of MDA chimera in terms of

overlapping number of basepairs in the chimera junction [154, 1531. Here we focus on

the categorization of MDA chimera in different single-cell whole genome amplification

technologies on human cells and their genome-wide signatures. Single-ended and

pair-ended mapping of the same sequencing dataset were implemented side by side to

compare the read paring's impact on chimera detection. Here we define the chimera

breakpoints as the total number of Read 1 and Read 2 that categorize as chimera

reads (as there are two parts of the genome joined together, which represents two

breakpoints).

Chimera reads (Ri + R2) x i04

Chimera breakpoints per 10 kbp Toa=ubro pmpe

Chimera reads (Ri + R2) x i04

(Total pairs of reads that are mapped) x Average insert size
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Fig. 4-4 shows the number of chimeric breakpoints per 10 kbp mapped in a stacked

bar graph. Genomic DNA (gDNA) samples without WGA serve as the baseline of

comparisons. Virtual microfluidics samples exhibit low chimera breakpoint frequency

while confirming the 85% inverted composition in MDA chimera. RPE gDNA was

processed with PCR-free library preparation and is used as the negative control of

chimera detection. The residual chimera detected from the RPE gDNA represents

the inherent genome structural variations of the cell line. This also serves as the

comparison for the chimera introduced by PCR library preparation process. The

eWGA, Nanodrop, and LIANTI gDNA all went through PCR enrichment. But it

is unknown whether these 3 cell lines used (PCR-free datasets unavailable) have

inherently higher structural variations than RPE cell line does.

Interestingly, the eWGA single cells show more than 90% enrichment in "Inverted

Only" chimera reads and a 3 ~ 7 fold chimera frequency increase compared to the

gDNA baseline. This increase can be explained by the isolation of individual frag-

ments in picoliter liquid droplets. The confinement of a single DNA template in

picoliter volume resulted in mostly inverted artifacts from MDA while few template

was available for cross-chromosome priming to happen. The nanodrop dataset has a

different pattern for chimera signature, showing more than 50% chimeras that span

across different chromosomes and 25% chimeras with large insert size. Both eWGA

and nanodrop methods have a higher frequency of chimera reads occurrence com-

pared to microliter-ranged in-tube MDA. Our explanation is that a smaller reaction

volume does not affect the secondary structure of a single-strand DNA. But a higher

density of DNA increases the chance of cross priming. Due to the smaller reaction

volume that increases the DNA density in the reaction, more chimeras are produced

in eWGA and Nanodrop.
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Figure 4-5: The effect of mapping quality filtering on chimera detection.

4.2.2 Chimera rate analysis with respect to mapping quality

filtering

We implemented mapping quality filters (Q = 30, 20, 10) and found a slight decrease

of chimera rate when increasing the mapping quality threshold as expected by the

more stringent quality filtering (Fig. 4-5).

Most interestingly, we compared the effect of pair-ended and single-ended mapping

on chimera detection (Fig. 4-6). For all datasets except eWGA, single-ended mapping

analysis overestimates chimera rate compared to pair-ended mapping with the same

downsampled reads. With pair-ended mapping, read pairs mapped within the range

of insert size with the correct orientation is chosen as the primary mapping results.

With the single-ended mapping, reads that mapped to multiple locations equally

well were randomly chosen for the final output, thus, causing an overestimation of

chimeric read out of total mapped reads. For eWGA, there is a 50% increase of

chimera frequency by pair-ended mapping compared to single-ended mapping. This

increase can be explained by the especially high content of inverted chimera that can

be easily detected in the pair-end mode. In the single-end mode, a potential inverted

chimera might be able to map to a reverse-complementary location with the same

mapping quality, and thus, the single-end mode underestimate the chimera rate. We
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Figure 4-6: The effect of pair-ended (PE) and single-ended (SE) mapping on chimera
detection.

are uncertain about why VM samples are affected the most by PE vs SE mapping (

50% change). Possible explanations include the differences between cell lines, library

preparation procedures and the nature of DNA amplification in hydrogel. Further

experiments will be needed to validate the cause.

Furthermore, by hierarchically clustering the datasets based on their chimera sig-

natures (Fig. 4-7), we see the close similarities between virtual microfluidics samples

and the LIANTI single cells in terms of chimera rate, while most of the nanodrop

datasets are closely clustered with traditional MDA reactions. MALBAC samples are

clustered with gDNA controls with PCR-enriched chimera baseline. LIANTI samples

are closely clustered with PCR-free gDNA controls that represent chimera-free neg-

ative control, which indicates the in vitro transcription amplification could generate

minimal chimera.

In order to visualize the location of chimera discovered, I plotted all chimera pairs

throughout the genome in Circos plots (Fig. 4-8 and 4-9) [155]. All chimera pairs

shown were based on the normalization of 430K mapped sequencing reads for each

sample. Each Circos plot shows the chimera locations across the entire set of chromo-

somes. The VM gDNA represents the RPE bulk genomic DNA sample without any

PCR enrichment, indicating that the unamplified genomic DNA contains a baseline of
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Figure 4-7: Hierarchical clustering of chimera breakpoints per 10 kbp for each single
cells and genomic DNA controls. Virtual Microfluidics samples are closely clustered
with genomic DNA controls, indicating low levels of chimera generated by hydrogel
MDA
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Figure 4-8: Chimera breakpoints shown in Circos plots for bulk genomic DNA and
single-cell samples (part 1). Cross-chromosome chimera pairs are connected, shown
as black lines in the center. Inverted chimera breakpoints are represented as red dots.
Inverted & large-insert chimera breakpoints are green dots. Large-insert chimera
breakpoints are purple dots. Outward chimera breakpoints are blue dots.
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means the maximum bias. (b) Genome coverage percentage is shown for all datasets.

structural variations with respect to the reference genome. The difference in frequen-

cies of cross-chromosome chimera between the VM gDNA and other gDNA samples

probably originate from PCR enrichment and are cell-line specific. This difference

shows the difficulty in benchmarking chimera performances across different studies

and the importance of standardizing single-cell model systems for future technology

development and characterization.

4.2.3 Coverage uniformity and physical genome coverage per-

formances

In order to evaluate the coverage uniformity and the physical genome coverage perfor-

mance of single amplified human genomes, virtual microfluidic VM (8 cells), eWGA

(5), MALBAC (2), MDA (2), LIANTI (3) were first downsampled to Ix mapped

depth (about 30 million reads). Fig. 4-10a quantifies the coverage bias vs ampli-

fication gain. The coverage bias is quantified using the area under Lorenz curve

and is represented as the Gini index. Including the amplification gain is important

for quantifying coverage biases, as the literature has shown MDA over-amplification

results in highly biased genomes [871. Fig. 4-10b shows the genome coverage per-

centage across all samples at 1 x mapping depth. Virtual microfluidic samples show
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a range of performance in both coverage uniformity and physical genome coverage

percentage. This is most likely due to the uneven amplification gain obtained for 8

different samples (from 28093 to 565 folds). Future experiments with amplification

gain control of above 25000 fold should be able to produce much improved overall

performance in the coverage uniformity and the genome coverage percentage. Over-

all, the LIANTI method shows superior performances in terms of coverage uniformity,

physical genome coverage and chimera reduction. This new scheme of whole genome

amplification might overtake MDA's dominant place in future single cell genomic

applications.

The performances of single-cell analysis are often cherry-picked and selectively

reported. The Nanodrop method's high sequencing-depth data were cherry-picked

based on the quality of its low-depth dataset, thus we excluded it from the coverage

and uniformity comparison. It is highly likely that eWGA and LIANTI single cells

are cherry-picked as the best subsets but it is not yet confirmed. The effect of cherry-

picking, known as the fallacy of incomplete evidence, gives a false impression on

the overall quality of single cell sequencing technologies and inflates performance

measurements such as coverage uniformity and genome coverage. In contrast, the 8

VM cells were the entire dataset that went through MDA, library preparation and

sequencing (without cherry picking). I believe there is a great potential in improving

data qualities and virtual microfluidics measurements represent the foremost of single-

cell technology platform to this date.

4.3 Conclusion

In conclusion, virtual microfluidics enables high-quality single-cell genome sequencing

with 1 (compared with Nanodrop) - 8 fold (compared with eWGA) chimera rate

reduction in MDA reaction while only requiring basic bench tools. It eliminates the

need of creating ultra-small discrete chambers for sub-microliter MDA reactions. This

chapter also showcase the importance of quantifying chimeric DNA rearrangements

from single-cell genomic amplification and library preparation processes. Such study
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is important in providing a baseline analysis of the chimera signatures and can be

used for predicting the amount of false positive DNA rearrangements that are of

interests to prenatal and cancer diagnosis. Virtual microfluidics also has a potential

as a flexible platform for combining new WGA chemistry such as LIANTI and library

preparation methods involving in situ tagmentation that will push the throughput

and data quality from single-cell WGA to a new level.

4.4 Materials and Methods

4.4.1 Experimental methods

The hTERT RPE-1 (ATCC) cell line stably expressing GFP-H2B were cultured in

10% final concentration of fetal bovine serum (FBS) and 0.01 mg/ml hygromycin in

ATCC-formulated DMEM:F12 Medium (Catalog No. 30-2006). When the culture

was at > 80% confluence, it was serum-starved for 12 hrs overnight for cell cycle syn-

chronization. A blank Costar 384-well plate with glass bottom was imaged for GFP

fluorescence and under the white light before cell deposition. Cells were trypsinized,

counted and diluted to 1 cell/pl, and 1 pl was added to each well of the 384 plate.

The plate was spin down briefly and imaged for GFP fluorescence and under white

light to confirm single-cell occupancy in each well. To the wells with single cells, 4

p of lysis buffer (30 mM Tris-HCl, 10 mM NaCl, 5 mM EDTA, 0.5% Triton X-100

and 1 mg/ml proteinase K) with hexamer of final concentration 50 [LM was added

and heated at 50 'C for 3 hrs and at 70 'C for 30 mins to denature proteinase. Then

the plate was heated at 98 'C for 4 mins and at 95 'C for 2 mins to ensure proper

fragmentation based on eWGA paper. Finally, DNA denaturation happened at 95

'C for 5 mins, and the plate was cold quenched on ice for 20 mins.

After cold quenching, PEG hydrogel reaction mix was added to the well. Gels were

formed in 20 mins at room temperature and maintain at 30 'C for 12 hrs for MDA

reaction and 65 'C for 5 mins to deactivate <D29. Reaction wells were imaged with

SYTOX orange DNA intercalating dye. To retrieve DNA for library preparation, 6.6
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LI of 400 mM KOH was added to incubate for 10 mins at 72 'C and 3 pl 3.75% acetic

acid neutralization buffer was added. The neutralized gel-DNA mix was SPRI cleaned

with 1X: 1X volume ratio and library prepared with standard Nextera procedures with

12 cycles of PCR. The 8 cell libraries were loaded on HiSeq 2500 in the rapid run

mode.

The experimental difference from virtual microfluidics on the microbial sample is

that we diluted single cells and Poisson loaded them into 384 wells. A single genome

was fragmented, evenly distributed in the PEG hydrogel and went through digital

MDA. Only one round of MDA was conducted.

4.4.2 Bioinformatic methods

Raw sequencing fastq.gz files were quality and adapter trimmed using Trimmomatic.

For fast processing of chimera analysis, fastq files were downsampled to 600,000 reads

using Seqtk (https://github.com/lh3/seqtk with seed 100). Fastq files were mapped

with BWA under default mode both pair-ended and single-ended. BAM files were

sorted by mapping coordinates. Mark PCR and optical duplicates, and mask repeat

region with the file downloaded from UCSC Genome Browser (assembly:GRCh37/

hg19, group: Repeats, track: RepeatMasker, output:BED). The mapping statistics

were retrieved from BAM files using gaemr get simple_bamstats.py, and all BAM

files were downsampled based the BAM stats resulting to 430,000 reads each sample

-both forward and reverse reads. Single-ended mapped BAM files were sorted by

query names and merged (Fig. 4-11).

Genome coverage was obtained using Bedtools genomecov. Lorenz curves were

obtained by first processing BAM files (duplicates marked) using SAMtools mpileup

and then ranking the ascending coverage per base pair (see Fig. 3-5 in Chapter 3 for

detail).
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Figure 4-11: Bioinformatic workflow for chimera analysis.
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Chapter 5

Conclusion and future directions

In this thesis, a novel single-cell whole genome sequencing technology termed virtual

microfluidics was developed and applied to enable the study of genomic heterogeneity

in complex biological systems. Our technology establishes a new paradigm in single-

molecule and single-cell analysis with dramatically different characteristics than es-

tablished microfluidic approaches. Applications of the technology on purified DNA,

cultured bacteria, human gut microbiome samples, and human cell lines demonstrated

the robustness of the system. Below, the key findings of this thesis are summarized

and possible future research directions are proposed.

5.1 Summary of advancements

Virtual microfluidics enables high-throughput nucleic acid digital quantification and

whole genome amplification in an easy-to-use, benchtop format that requires no spe-

cial equipment or environmental control.

5.1.1 Enabling equipment-independent high-throughput DNA

target detection

In Chapter 2, we demonstrated virtual microfluidics as a robust nucleic acid quantifi-

cation platform. The dynamic range of the measurement from a traditional method
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(such as dPCR in droplets or microfluidics devices) for DNA quantification is re-

stricted by the number of partitions, usually up to 10'. Due to the nature of virtual

microfluidics' diffusion-restricted reaction and the continuous virtual chambers, up

to 20,000,000 analytes per ML could be accommodated in our system. Specifically,

we tested the performance of in-gel digital PCR and digital MDA as an analytical

method for molecular detection and counting. We demonstrated high-throughput

digital assays and preparative whole-genome amplification without microfabricated

consumables or expensive instrumentation. As few as one DNA target can be de-

tected microscopically with a high signal-to-noise ratio by DNA amplification. The

in-gel amplification environment also seals potential infectious targets to minimize

the handling of biohazardous materials for infectious disease diagnosis. We expect

that virtual microfluidics will find application as a low-cost digital assay for detecting

DNA biomarkers in the clinic.

5.1.2 Improving the whole genome sequencing data quality

and success rate for characterizing uncultured microor-

ganisms

In Chapter 3, we characterized whole genome amplification and recovery of single

bacterial genomes for lab-cultured control cells and the human gut microbiome us-

ing next-generation sequencing (NGS). Compared to traditional methods of whole

genome sequencing on single microbes (in tube and microfluidic device), we improved

the uniformity of the whole genome amplification by 25% ~ 33% and reduced the rate

of the chimeric artifact by a factor of six. The success rate of virtual microfluidics

single-cell sequencing is about 28%, which is limited by the Poisson distribution. In

contrast, typical success rates (the percentage of amplified genomes that pass purity

and genome-size threshold) of single-cell sequencing services provided by large-scale

genomic centers based on the first-hand experience from our collaborators is about

10%. Such genomic centers routinely conduct single-cell sequencing in the clean

room and utilize FACS for cell isolation, while our approach has a minimal engineer-
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ing requirement. We demonstrated single-cell sequencing on human gut microbiome

samples and obtained 117 pure single draft genomes. Working with collaborators,

we were able to utilize the draft genomes to identify more than 10,000 horizontally

transferred genes with unique population-specific and individual-specific features [44j.

We expect that virtual microfluidics will find application as a high-throughput plat-

form for single-cell sample preparation to study a diverse collection of uncharacterized

microbes and environmental microbiome samples.

5.1.3 Reducing structural variation artifacts for studying hu-

man cells using single-cell sequencing

In Chapter 4, we demonstrated virtual microfluidics for high-quality single-cell genome

sequencing on human cell lines with a 3 - 6 fold chimera artifact reduction com-

pared to several single-cell technologies. The chimera reduction feature of the vir-

tual microfluidics reduces the false-positive rate of genome structural variation de-

tection in studying tumor clonal heterogeneity. Bioinformatically, we characterized

chimeric DNA rearrangements in several recently developed single-cell technologies.

The unique chimera signatures across different platforms drew attention to the impor-

tance of characterizing chimera artifacts in newly developed single-cell technologies.

The hydrogel environment also eliminates the need of creating ultra-small discrete

chambers for sub-microliter MDA reactions for comparable high-quality data. Fur-

thermore, all of the preparative steps of single-cell whole genome sequencing are

accessible with basic lab equipment. We expect virtual microfluidics to be imple-

mented widely by researchers who are interested in studying tumor heterogeneity

with single-cell resolution.

To summarize, this thesis work centers on the development and demonstration of

virtual microfluidics, a novel technique for high-quality low-input genomic research.

This technique makes single-cell genomics more accessible to a wide range of scientific

and biomedical researchers.
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5.2 Future directions

5.2.1 Future technical improvements of virtual microfluidics

Additional technical improvements are needed in order to realize the full potential

of virtual microfluidics. To begin, the throughput of virtual microfluidics can be

improved further. Currently, the primary throughput limitation in the initial demon-

stration on microbial samples is the volume sub-sampled (60 nL) when product clus-

ters are retrieved, which limits the number of sub-samples that can be retrieved from

a single hydrogel. A number of approaches are worth exploring: using a thinner gel

with more surface area and/or reducing the punch size from the 500 pm and 1 mm

diameters we employed here could improve throughput. A second possibility could

be to use imaging data to guide product retrieval and increase the fraction of re-

trieved samples containing a single-cell WGA reaction product. The thin hydrogel

format affords excellent physical access for imaging, equipment, and reagents, which

enables an assortment of sub-sampling approaches including punch/pickers, localized

hydrogel dissolution, and localized affinity tagging or barcoding. Finally, barcoding

approaches could conceivably enable retrieval of all amplified products en masse while

allowing in silico demultiplexing to sort sequence reads according to the cell of origin

[156].

Suitability of in-gel amplification format for product cluster labeling

Virtual microfluidics's excellent optical accessibility allows potential fluorescent la-

beling of rare sequences, which is essential to identify rare targets in microbial dark

matter discovery and liquid biopsy applications. For these applications, the demand

for single-cell assay throughput is not driven by the need to amass a large number

of single-cell datasets, but rather to access cells that are rare in the population. The

hydrogel format is ideally suited for this case as the WGA reaction endpoint is an

opportune moment to genotype product clusters using hybridization probes in order

to identify cells of interest for retrieval and sequencing analysis [157, 158]. In the

post-reaction hydrogel, genomic sequences have been amplified and are not protected
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by a cell envelope. In addition, the thin gel slab format facilitates the application

of reagents for rapid template denaturation, labeling, and de-staining. Once labeled,

the desired targets can be selectively retrieved for further analysis by image-guided

selection. Sequence-specific labeling might also reduce the number of false-positive

background spots that challenged the intercalating dye-based approach we used in

this study and/or to lend molecular specificity to quantification assays. In fact, se-

quential FISH could be used to probe for large sets of functional genes within the gel

itself, enabling the application of complex selection criteria [159].

Potential for amplification bias reduction

Up to 10 pg of DNA is produced by MDA from each template in the hydrogel format

using our protocol. Although we re-amplified punch samples in the microbial study to

microgram quantities, 10 pg is, in principle, enough product (of an order 1000 bacterial

genome equivalents) to support deep sequencing directly. Given that we obtain good

coverage distribution with our high-yield re-amplification protocol for bacteria, it may

be possible for coverage distribution improvement by direct library construction from

the 10 pg hydrogel product. Recent advances in ultra-efficient library construction

have demonstrated library construction from sub-nanogram input levels [160].

Although a number of modified protocols have been proposed to improve cover-

age distribution in MDA, none has yet been widely adopted, with major single-cell

genomics centers continuing to use D29 DNA polymerase reaction conditions very

similar to those originally developed 30 years ago [161, 118]. In contrast, limiting

fold-amplification reduces coverage bias, since the ratio of maximum possible fold

amplification to minimum possible fold amplification is necessarily reduced when the

average degree of amplification is reduced. When combined with the cost savings of

micro-scaled reactions and increasingly efficient sequence library construction proce-

dures, such an approach shows the future trend of single-cell WGA [87].
Today, investigators limit amplification-fold by reducing reaction volumes [86, 881

or by limiting reaction time [162]. Although it is currently unknown which approach is

more fruitful in bias reduction, both approaches have drawbacks. The hydrogel reac-
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tion format offers unique advantages in limited-extent WGA, as the product clusters

from each template molecule only reach a few microns in size, even under dilute tem-

plate conditions. This suggests that one can achieve uniform (limited) reaction extent

across single-cell WGA reactions, even when the reactions occur asynchronously. The

hydrogel format also enables maintenance of optimal amplification conditions for each

template throughout the reaction time course if desired by reagent supplementation,

possibly reducing sequence content and template fragment length biases. In order to

further measure the amplification bias in the hydrogel, a random barcode library can

be introduced into the hydrogel for amplification and sequencing analysis.

5.2.2 The future of single-cell whole genome sequencing

The single-cell sequencing process from having cells in suspension to obtaining se-

quencing data is highly fragmented in terms of technology implementation. On the

other hand, due to the diverse applications of single-molecule and single-cell analysis,

it is difficult to find a one-tool-fits-all solution. The key is to have a platform tech-

nology that allows modular changes of different processes involved, in order to strike

a balance among the requirements of throughput, hands-on time, cost, and qual-

ity for various applications. This reality also explains the slow uptake of single-cell

technology in various research and clinical settings. To address these issues, virtual

microfluidics represents a platform technology that can be implemented with a di-

verse collection of methods in cell lysis, whole genome amplification, and barcoding

strategies. With further technical optimizations, this technique could play a central

role in integrating the single-cell sequencing field.

Beyond the traditional method of whole genome amplification on isolated sin-

gle cells, I envision that it will be ideal to barcode a large number of single cells

with minimal amplification and obtain accurate long-read sequencing results. Such

a technology combination will revolutionize the landscape of single-cell sequencing.

Because it minimizes the biases and artifacts from extensive amplification that often

distort the output data from the original genomic sequences. Long-read sequenc-

ing (currently 10 kbp - 400 kbp) has the advantage of providing the genuine read
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of a long genome sequence that could be highly repeated and of high GC%, which

are challenging for the current short-read technologies (50 bp - 500 bp). At the same

time, it also requires the development of more accurate sequencing technologies. Cur-

rently PacBio (long-read) has an error rate of ~ 10%, compared to the 0.1 - 1 %

of the short-read Illumina sequencing. A recent development has demonstrated di-

rect library preparation on single cells in nano-droplets for whole genome sequencing

[163]. Its performance is below that of state of the art single-cell technologies, in

terms of genome physical coverage and coverage uniformity. However, the concept

of direct library preparation on a large number of samples (hundreds) without the

expensive and often biased WGA process is attractive to researchers to obtain the

most representative genomic information.

Beyond single-cell sequencing, there still exist challenges in implementing genomic

testing in the clinic as the standard of care. First of all, the reimbursement and clinical

adoption reply on the innovation of the sequencing cost reduction. Secondly, it is

difficult for patients, doctors and researchers who lack the genomic related training

to interpret the data. This is especially critical when doctors and patients have to

make decisions with the consideration of the inherent false-positive and false-negative

rate of the genomic data. Furthermore, a large percentage (40% - 60%) of patients

often don't have actionable mutations according to recent cancer sequencing projects

(GenomeWeb Mar 01, 2017). The uptake of standard genomic technologies will likely

develop hand-in-hand with genomic-guided and targeted drug discovery. With the

growing of related products such as 23andMe, and genomic service companies such

as Foundation Medicine, Grail, and Color Genomics, the sharing of genomic data

to promote research and diagnosis will spread rapidly. In my opinion, the future of

single-cell sequencing field relies on the uptake of standard genomic technologies, in

addition to more single-cell analysis innovations, in order to realize its full potential.
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Appendix A

NCBI accession numbers

A.1 Bacterial single cells

Raw sequencing data on E. coli and S. aureus are accessible at the NCBI Sequence

Read Archive (SRA) under BioProject accession number PRJNA279815 with BioSam-

ple accession numbers SAMN03451478-SAMN03451501. FijiCOMP metagenomic

reads can be found under BioProject accession number PRJNA217052 with the ac-

cession numbers: SRX345831, SRX344363, SRX344765, SRX343094, SRX344442,

SRX346405, SRX343839, SRX343780, SRX345901, SRX344600, SRX343866, SRX343411,

SRX344189, SRX344380, SRX346966, SRX345329, SRX343800, and SRX344616. Fi-

jiCOMP virtual microfluidics 117 single cells are accessible with the BioSample ac-

cession numbers SAMN04461233-SAMN04461349.

A.2 Human single cells

Raw sequencing data on RPE-1 bulk genomic DNA and single cells using virtual

microfluidics are accessible under BioProject accession number PRJNA408301 with

BioSample accession numbers SAMN07682898 and SAMN07682891.
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Table A.1: SRA accession numbers for human single-cell chimera analysis
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Data source SRA accession

gDNA:
SRR6075104

Single cells:
SRR6075105

Virtual Microfluidics SRR6075106
SRR6075107
SRR6075108
SRR6075109
SRR6075110
SRR6075111
SRR6075112

gDNA:
SRR1777284

Single cells:
-MDA
SRR1777287
SRR1777288

Emulsion WGA SRR1777290
(Fuetal. 2015) SRR1777291

SRR1777294
-MALBAC:
SRR1777304
SRR1777305
-MDA in tube:
SR R1777307
SRR1777308

Data source SRA accession

gDNA:
SRR3749177

Single cells:
-High depth:
SRR3749178
SRR3749179
SRR3749180
SRR3749181
SRR3749182
SRR3749183Nanoliter droplet SRR3749183

(Leung et al. 2016) SRR3749184
SRR3749186
-Low depth:
SRR3749174
SRR3749218
SRR3749230
SRR3749245
SRR3749252
SRR3749263
SRR3749274
SRR3749285
SRR3749296

gDNA:
SRR5365378

LIANTI Single cells:
(Chen et al. 2017) SRR5365376

SRR5365375
SRR5365374
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