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Abstract

Highway systems have witnessed a significant modernization in recent years due to
the deployment of traffic sensing and control capabilities. In addition, the ongoing
developments in connected and autonomous vehicle technology are poised to enable

advanced capabilities such as platooning and vehicle-to-infrastructure communica-

tions. On one hand, these advancements offer new opportunities for improving the

operational efficiency of highway systems. On the other hand, most highway system
operators still face significant challenges in ensuring adequate performance under dis-

ruptions such as incidents and other capacity-reducing events, as well as demand
fluctuations. Furthermore, the inherent vulnerabilities of cyber-physical components
in smart highway systems are prone to exploitation by adversarial agents, who can
introduce strategic disruptions. Thus, ensuring the resiliency of highway operations
is a principal concern of system operators.

In this thesis, we contribute to the above-mentioned challenge by developing a
system-theoretic approach for maintaining resilient highway operations under a broad
range of disruptions, modeled as stochastic perturbations in highway capacity or traf-
fic demand. In particular, we focus on three types of highway operations: vehicle
platooning, ramp metering, and capacity-aware routing/demand management. Our
approach relies on (i) modeling partially automated traffic flow dynamics under dis-
ruptions as stochastically switching dynamical systems, (ii) analyzing their long-time
properties (stability and/or convergence), and (iii) designing traffic control schemes
that improve system throughput with stability guarantees. We demonstrate the ap-
plication of our approach to several realistic situations ranging from capacity pertur-
bations at incident hotspots to moving bottlenecks created by heavy-duty vehicles to

stochastic arrivals/progression of autonomous vehicle platoons.
To model traffic flow dynamics under disruptions, we extend classical macro-

scopic traffic flow/queuing models by combining them with Markovian switches in

flow/queuing dynamics that capture the stochasticity in occurrence/clearance of dis-
ruptions. Specifically, we propose two models: Piecewise-Deterministic Queuing

(PDQ) model, and Stochastic Switching Cell Transmission Model (SS-CTM). The
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PDQ model is the most basic model that captures the dynamic evolution of a traffic
queue upstream of a highway bottleneck under perturbations in capacity or demand.
We use this model to analyze link-level capacity management schemes and design
capacity-aware routing schemes for parallel-route highway systems. The SS-CTM
captures the spatial propagation of a disturbance created by capacity perturbations,
and is useful for identifying the congestion bottlenecks induced by these perturba-
tions. We adopt this model to analyze the impact of perturbations on the on-ramp
queues and highway throughput as well as to design new ramp control schemes with
improved performance guarantees.

Our results on the stability analysis of PDQ and SS-CTM utilize more general
results on the stability of continuous-time Markov processes. We refine them for
the purpose of evaluating the boundedness of traffic queues upstream of highway
bottlenecks and on the ramps. Our key contribution is a computationally tractable
approach for verifying the classical Foster-Lyapunov drift condition over a finite sub-
set of states, which happen to be the vertices of an invariant set for the stochastic
traffic dynamics. This requires us to exploit the long-time properties of the PDQ and
SS-CTM-in particular, the cooperativity of traffic flow dynamics and ergodicity of
Markov chain that models disruptions. Our analysis approach enables us to estimate
how performance metrics such as throughput and travel time change with location
and intensity (rate) of disruptions. We also extend our results to the problem of de-
signing traffic control schemes that improve system throughput under perturbations,
while maintaining stable traffic queues. This leads us to identify somewhat surprising
ways to prioritize and route traffic on real-world highway systems, and relate them to
important operational capabilities such as lane control on automated highways, speed
regulation of platoons, incident-aware routing, and stabilization of on-ramp queues.

Finally, we also consider the modeling and impact evaluation of security disrup-
tions. We report an initial game-theoretic model that captures an emerging security
concern in multi-priority highway systems. The model is relevant to study the in-
centives of strategic misbehavior by individual vehicles who can exploit the security
vulnerabilities in vehicle-to-infrastructure communications and impact the highway
operations. We also discuss strategic response to cyber-physical attacks on smart
highway infrastructure for timely recovery of compromised traffic links.

Thesis Supervisor: Saurabh Amin
Title: Robert N. Noyce Career Development Associate Professor
of Civil and Environmental Engineering
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Chapter 1

Introduction

This thesis proposes a system-theoretic framework for macroscopic modeling, analy-

sis, and design of resiliency-improving control strategies for smart highway systems.

The concept of the smart highway includes controlling congested highway sections

with sensor-actuator systems and integration of connected and autonomous vehicles

(CAVs). We focus on a class of stochastic perturbations resulting from (i) unreliable

capacity of individual highway sections (traffic incidents) and (ii) dynamic bottlenecks

resulting from the integration of CAV platoons with normal traffic. In addition, we

discuss the modeling of security failures in the context of smart highway systems.

We propose a novel modeling framework that captures the macroscopic traffic dy-

namics under these perturbations, and develop new analysis and control design tools

to improve the system performance in terms of throughput and travel time (queue

length). While most of this thesis deals with perturbations that are non-strategic, we

also consider simple models of interaction between strategic users/malicious adver-

saries and system operators. The technical contributions presented in this thesis are

grounded in the theory of stochastic switching systems, control of continuous-time

Markov processes, and game-theoretic models of queuing systems.

In this introductory chapter, we present the technological features of smart high-

way systems, discuss the main challenges in ensuring operational resiliency of this

class of systems, and highlight our main contributions. In Section 1.1, we review the

background of smart highway systems and summarize key developments in this area.
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In particular, we focus on highway operations with integration of CAV platoons and

dynamic, feedback control strategies for ramp metering and demand management. In

Section 1.2, we review existing approaches and point out several practical challenges

that need to be addressed for extensive deployment of these technologies. We argue

that resolving these challenges entails development of operational tools to ensure ef-

ficiency in nominal operations, robustness against random perturbations (faults and

non-strategic disturbances), and survivability under security failures (adversarial at-

tacks on cyber/physical infrastructure). In Section 1.3, we discuss how the models

and analysis/design tools developed in this thesis contribute towards addressing these

challenges. Finally, in Section 1.4, we provide an outline of the subsequent chapters.

1.1 Overview of smart highway systems

To motivate our research, we recap the control systems architecture of smart high-

ways proposed by Varaiya [98]. The author introduced automatic highway control

and connected and autonomous vehicles as two key components of smart highway sys-

tems; see Fig. 1-1. The primary difference between conventional and smart highway

Connected & autonomous
vehicles (CAVs)

Feedback
traffic control

Sensing &
V21 communications

Figure 1-1: A smart highway system with feedback traffic control and vehicle pla-

tooning.

systems is the level of information exchange. The former involves mostly static and

one-way information exchange, in particular, via conventional road-side signals. On

the other hand, an essential feature of the latter is extensive real-time information
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exchange between the vehicles and the infrastructure (V21) as well as between vehi-

cles (V2V). Indeed, in the last 25 years since the article [981 was published, we have

witnessed continued progresses in information, communications, and control technol-

ogy for smart highways, and we are currently in the midst of another revolution in

autonomous vehicle technology. Next, let us briefly discuss the relevant aspects of

these technologies.

1.1.1 Automatic control of highway traffic

Broadly speaking, the control capabilities for smart highways contribute to demand

management (routing) and/or capacity allocation (ramp metering). Both capabili-

ties are intended to improve operational efficiency, including resolving congestion at

bottlenecks and improving throughput. Note that the time scale of operation that

we typically consider ranges from minutes to hours-the questions of how the de-

ployment of control capabilities is related to objectives of transportation planners is

beyond the scope of this thesis.

Demand management

Demand management refers to mechanisms that influence travelers' choices of routes

to improve system-wide performance. Route guidance and tolling are two typical

demand management mechanisms in the context of smart highways.

Route guidance is enabled by broadcasting real-time traffic information to drivers

via roadside message boards, GPS-enabled navigation tools, or V21 communications.

Technologically, this mechanism relies on traffic measurement and communications

capabilities, which have improved considerably during the past several decades due to

the increased deployment of roadside sensors (loop inductors, video cameras, etc.) and

use of smart phones [58]. The intended objective is to inform travelers about traffic

congestion and/or traffic incidents, and encourage travelers to take alternative routes

to avoid congestion. Without this information, travelers can only learn about traffic

conditions from their day-to-day experience and thus often make inefficient decisions.
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A typical assumption that is made in studying the impact of route guidance is that

every traveler rationally chooses the fastest route available to him/her, resulting in

an outcome governed by the so-called user equilibrium or Wardrop equilibrium [102].

Another classical mechanism for demand management is congestion pricing or

tolling, where tolls are charged on congested roads to incentivize travelers to choose

alternative routes or times. A typical objective in the design of tolling schemes is to

internalize the congestion externality, i.e. to move the user equilibrium under tolling

close to the system optimum. Indeed, a system optimum traffic assignment plan can

result in heterogeneous travel times on various routes; thus a system optimum can

entail some travelers taking a slower route, even if a faster route is available. Such

a route choice strategy cannot be justified when every traveler selfishly plans his/her

route using a route guidance tool. However, under a well designed tolling scheme,

some travelers may select the slower route, even if the faster route is available. Tolling

has been demonstrated to be effective in terms of improving system-wide performance

[90]. Although tolling involves the economic interaction between travelers and system

operators and thus requires micro-economic modeling; the system-level performance

metrics (congestion level, travel time) are identical to the ones used for evaluating

the effectiveness of tolling schemes.

One of the main goals of this thesis is to develop operational control tools for im-

proving performance of individual highway sections and simple (parallel-route) net-

works under a class of stochastic perturbations. We do not pursue the secondary

question of how network-level route choice strategies would alter when these control

tools are deployed. Nevertheless, we identify demand patterns (i.e. spatial distribu-

tion of traffic queues) for congested highway sections that result in effective utilization

of available traffic capacity. Again, the issue of how such demand patterns can be

implemented at the network level using route guidance or tolling schemes is not con-

sidered.
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Capacity allocation

Capacity allocation refers to the allocation of limited road capacity to various sources

of demand. For the purpose of achieving operational resiliency, we mainly focus on

ramp metering as a control mechanism for capacity allocation.

Ramp metering involves restricting the rate at which on-ramps discharge traffic

into the mainline of a highway. This operation came to the attention of transportation

researchers as early as the 1960s [6, 73, 1031. Since vehicle speed decreases as traffic

density exceeds a certain threshold (i.e. the critical density) [38], a traffic manager

can restrict the inflow from an on-ramp to maintain optimal speed on the mainline of

a highway. In practice, this restriction is imposed by either temporarily closing the

on-ramp or regulating the on-ramp discharge rate via a traffic signal [80].

Modern control technology enables traffic managers to regulate the on-ramp dis-

charge rates in response to real-time traffic conditions. A feedback ramp controller

can be distributed or centralized. A distributed ramp controller is responsive only to

the local traffic conditions. A typical distributed ramp controller is ALINEA proposed

by Papageorgiou et al. [79]. This controller requires the measurement of local traffic

density, and is in fact a proportional-integral (PI) controller. On the other hand,

a coordinated ramp controller simultaneously regulates multiple on-ramps. Such a

controller needs to be designed using model-predictive control design approach, and is

capable of achieving better performance than distributed controllers. However, imple-

mentation of coordinated ramp controllers heavily depends on accurate modeling and

calibration, and reliable communication between sensors and actuators. Currently,

these capabilities may not be always achievable in practice.

We view ramp metering as a control mechanism that helps the traffic manager

allocate limited highway capacity between the traffic on the mainline and the traffic

from the on-ramps, under a class of perturbations. When demand temporarily exceeds

capacity, congestion inevitably occurs at some location(s). In the absence of ramp

metering, the congestion first arises on the mainline before eventually propagating

to the on-ramps. With ramp metering, on the contrary, traffic congestion can be
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partly shifted to the on-ramps, and thus the mainline capacity can be effectively

utilized. In Chapters 4-5, we argue that a ramp control strategy can be used for

assigning relative priorities between mainline and on-ramp traffic to limit the effects

of stochastic perturbations on system-wide performance.

1.1.2 Connected and autonomous vehicles

Safe and efficient integration of connected and autonomous vehicles (CAVs) is another

key aspect of smart highway systems. CAV technology continues to improve with the

ultimate objective of eliminating the inefficiency and unreliability of human driving

[981. With regard to efficiency, human drivers are prone to irregular driving behavior,

including unnecessary acceleration and deceleration, which introduce perturbations in

traffic flow as well as increase fuel consumption [52]. With regard to safety, 45%-75%

of traffic accidents are due to human error [104]. In addition, traffic rule violations by

inattentive or aggressive drivers are also a significant contributor to traffic accidents

[109].

Next, we briefly comment on technological features of autonomous vehicles and

vehicle platooning.

Autonomous vehicles (AV)

Self-driving involves two main tasks, i.e. sensing/perceiving the environment and

controlling the vehicle's movement. Take as an example an autonomous vehicle built

by a group of researchers from MIT [661. The control system of this vehicle has a

classical architecture, which consists of three components: (i) sensing, (ii) perception,

and (iii) planning and control (P&C).

A typical sensing component installed on an AV includes a range of sensors such

as camera, radar, and lidar, which collect information from the surroundings. The

authors of [661 also considered the Global Positioning System (GPS) connectivity for

vehicle tracking and localization. In addition to the onboard sensors, an AV can

also collect information from other vehicles and from the infrastructure via V2V/V2I
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communications. Based on the information collected by the sensing component, the

perception component maps the dynamically evolving environment, including the

lanes, other vehicles, obstacles, etc. Then, the P&C component decides the path

and maneuvers (car-following, lane changing, overtaking, etc.), and commands the

actuators (steer, throttle, break, etc.) to realize the planned movement.

Vehicle platooning

Vehicle platooning refers to the cooperative movement of a group of autonomous

vehicles, or a platoon. Current platooning technology typically relies on a human-

driven vehicle acting as the platoon leader, while the following vehicles are driven by

computers [2]. In the future, this technology is expected to evolve to a stage where

the lead vehicle can also be computer-driven [98]. The movement of the following

vehicles is governed by the adaptive cruise control (ACC) system. In a platoon, the

ACC system of a following vehicle collects information of the lead vehicle via radar,

lidar, and wireless communications, and regulates the movement of the vehicle [2].

Currently, a following vehicle is driven by ACC only if it is part of an active platoon;

otherwise, it is controlled by a human driver.

Although the concept of automatically regulating a platoon of vehicles already

existed in the 1960s [67], it is only over the last few years that extensive experimental

studies in real-world traffic conditions have been conducted [2, 76, 961. Currently,

experiments of platooning are conducted mainly on highways, where the environ-

ment is simpler than urban streets. With the rapid advancements in vehicle platoon-

ing technology [86], it seems plausible that semi-automated highway systems will be

practically viable soon [41].

In the context of traffic operations, platooning of vehicles can be considered as

an effective way to improve traffic throughput [15, 69, 93] and reduce environmental

externalities [2, 12, 961. Platooning can improve throughput by reducing the inter-

vehicle spacing. Since the following vehicles in a platoon are driven by computers,

they can react faster to the movement of the lead vehicle, and thus travel with a

smaller distance from the front vehicle. Consequently, vehicles on a highway can
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travel at a fast speed even with shorter separation. In addition, the reduced spacing

leads to a reduction in the air resistance experienced by the following vehicles, which

improves fuel efficiency.

1.2 System resiliency: previous work and challenges

Resiliency is a major concern for design and operation of smart highways. In this

thesis, we define resiliency as a "super-attribute" comprising three aspects (i) efficiency

under nominal operational conditions, (ii) robustness against random perturbations,

and (iii) survivability under security failures; see Fig. 1-2. We will focus on the first

two aspects in the main body of this thesis (Chapters 3-5), and briefly discuss on

the third in the ongoing work (Section 6.2). Next, we review previous work on the

operational resiliency of highway systems, and summarize the main challenges that

define the focus of our research.

Operational Robustness to Survivability
effIce perturbatios under security

Resiliency

Figure 1-2: Three aspects of resiliency.

1.2.1 Efficient operation under nominal conditions

Currently, the main challenge in development of a system-level (macroscopic) model-

based control design framework for improving the operational resiliency of smart

highways is the lack of realistic and tractable models that capture specific features of

CAVs and their interaction with human-driven vehicles. In our research, we consider a

class of macroscopic traffic flow models as they are well-suited for system-level design
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of control strategies with performance guarantees. Indeed, vehicle-level (microscopic)

models are also relevant; however, they are outside the scope of this thesis.

The traditional macroscopic models for highway traffic flow that have been used

by the transportation community can be classified into the following three classes:

1. Stochastic queuing models consider vehicles as "customers" and a highway sec-

tion as a "server". The inter-arrival times as well as the service times of vehicles

are random variables. This class of models focuses on the delay due to random-

ness in the movement of individual vehicles [77]. The field of queuing theory

is very well developed (see standard textbooks such as [33]); typical stochas-

tic queuing models are tractable and enable analytical characterization of the

steady-state distribution of the traffic queue. This class of models are usu-

ally applicable to study performance of urban intersections [72, 84] as well as

highway sections [8].

2. Fluid queuing models consider the aggregate flow of vehicles rather than track-

ing individual vehicles. This class of models mainly considers the delay due to

fluctuations in demand and/or capacity, rather than randomness of the move-

ment of individual vehicles. Fluid queuing models are well tractable, even if

the demand/capacity fluctuations are stochastic. However, they do not account

for the spatial distribution of traffic (unless a network of fluid queuing links is

considered). This class of models is also applicable to study performance of

urban intersections [1001 and highway bottlenecks [77].

3. Partial differential equation (PDE)-based models consider traffic flow as a dy-

namic fluid with a particular flow-density relation, called the fundamental dia-

gram. The basic idea of the fundamental diagram is that vehicles move slower

when traffic density increases [38]. In the 1950s, Lighthill and Whitham [68]

and Richards [85] developed a fluid model for highway traffic flows, called the

LWR model. This model captures important features of highway traffic includ-

ing the flow-density relation and the propagation of congestion waves. However,

since this model is governed by a system of partial differential equations, its cal-
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ibration and use for control design is more complicated than the previous two

classes of models. A significant development in this direction is the introduc-

tion of Daganzo's cell transmission model (CTM, [24]), which is essentially a

first-order discrete Godunov approximation of the LWR model [36, 37]. Numer-

ous researchers have adopted the CTM for performance evaluation and control

design for highway traffic [22, 37, 40, 70, 991.

The control problem in the non-autonomous setting has been considered by trans-

portation researchers for decades, both theoretically and experimentally. In a 1965

paper, Athol [6] considered a simple control problem for a highway section with sev-

eral on-ramps. The author [6] qualitatively studied both distributed and coordinated

ramp control, and identified the importance of models for ramp control design. More

recently, relying on the advancements offered by sensing and control technologies,

Papageorgiou et al. [79] proposed a practical ramp controller, called ALINEA, which

provably stabilizes the traffic flow at isolated highway merges. Gomes et al. [371 fur-

ther synthesized the design of coordinated metering of multiple on-ramps to improve

highway throughput.

The existing literature focuses on maintaining free flow on the highway main-

line. Consequently, in high demand situations, ramp metering can lead to queuing

at on-ramps, which can be highly costly if the resulting congestion propagates to the

upstream highways/arterials. This problem was pointed out by May [731 as early

as 1964. Unfortunately, to the best of our knowledge, limited results are available

to systematically address the issue of on-ramp queues. In this thesis, we build on

the network version of the CTM proposed by Daganzo [25] to explicitly consider the

impact of on-ramp queuing in ramp control design for highway systems.

It is not yet clear how well the conventional models apply to (or rather how they

should be modified to) account for traffic flow with CAVs. A very recent survey [15]

summarizes the state-of-the-art of this area and provides a comprehensive literature

review. According to Calvert et al. [161, some simulation-based studies and theo-

retical analyses have been proposed; however, very limited justification is available

regarding their relevance to empirical evidence from field experiments. Talebpour
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and Mahmassani [941 conducted a simulation-based analysis of the influence of CAVs

on highway performance (travel time and throughput). Lioris et al. [69] studied

the throughput of intersections with flows of fully automated vehicles traveling in

platoons. However, a systematic modeling approach that considers the interaction

between CAVs and human-driven vehicles is still an outstanding issue and serves as

the first motivating challenge behind our research.

1.2.2 Robustness against random perturbations

Notably, most of the ramp metering approaches developed in the literature assume

nominal operating conditions, i.e. they do not provide congestion mitigation guaran-

tees under perturbations due to random capacity variations, incidents, or stochastic

traffic arrivals. However, most highway systems are routinely subject to capacity

perturbations, for example, crashes, road blockages, and other capacity-reducing in-

cidents [50, 55, 61, 891. In practice, these events can introduce significant congestion

in highways [62, 881, and control strategies designed for nominal operations are typi-

cally ineffective in resolving such congestion. This serves as the second challenge for

our research.

Previous work on stochastic models for incidents has focused on two broad classes

of problems. The first class is prediction and detection of incidents. One of the first

contributions in this direction is by Willsky et al. [105]. The authors proposed a

macroscopic approach to the detection of highway accidents using sensor data. More

recently, Lee et al. [65] identified several precursors that can help predict the like-

lihood of accidents. The second class is estimation of the impact of accidents using

historical data, and design of control schemes for capacity-reducing incidents. Khat-

tak et al. [541 developed a stochastic queuing model that estimates the consequences

of accidents. Recent work by Miller and Gupta [75] used a classification model to

assess the severity and induced delay due to reported accidents. In [601, Kurzhanskiy

explored practical control schemes for several accident scenarios in California high-

ways. Yet, to the best of our knowledge, the available literature does not present

a systematic approach that incorporates the randomness of accidents into highway
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traffic dynamics.

In terms of modeling the impact of perturbations, there has been previous work

on stochastic extensions of the CTM. Sumalee et al. [92] proposed a CTM with

parameters subject to random noise; however, their model is largely motivated by

the intrinsic randomness in demand and in the flow-density relation, but does not

explicitly model capacity-reducing events. Zhong et al. [111] consider a closely related

model in which traffic flow dynamics randomly switch between free-flow and congested

modes. Using that model, the authors of [111] studied an optimal control problem over

a finite time horizon. However, these models do not capture the dynamic propagation

of incident-induced congestion (spillback), which is a critical mechanism affecting the

traffic dynamics in highways.

In terms of control design under uncertain link or node capacities, previous work

either assumes a static (but uncertain) capacity model, or considers time-varying

capacities [5, 20, 82]. In the former approach, the actual capacity is assumed to lie

in a known set [20], or is realized according to a given probability distribution [35j.

Such models are useful for evaluating the system's performance against worst-case

disturbances. The latter approach is motivated by situations where the capacity is

inherently dynamic. These models can enable more accurate assessment of system

performance in comparison to static models. In contrast to the above two classes,

we consider the control design in situations where the capacity can be modeled as a

Markovian process [8, 47, 82].

1.2.3 Survivability in the face of security failures

The growing deployment of cyber-physical components, including sensors (induction

loops, video camera), actuators (adaptive traffic signals, navigation tools such as

Google and WAZE), and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V21)

communications in road traffic networks raises concerns for security failures. A cyber-

physical component can be compromised via either illegal attack/intrusion or injection

of malicious data, which leads to physical impacts on highway performance /safety.

It has been practically demonstrated by various research groups that cyber-physical
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components in smart highway systems are vulnerable to security failures:

1. On the vehicle side, Kosher et al. [561 demonstrated that a broad set of safety-

critical systems in a modern car can be compromised via hacking the electronic

control units. Spaar [91] identified the security vulnerability of the BMW Con-

nectedDrive system, through which a BMW car can be remotely unlocked.

DARPA researchers also managed to hack into a Chevrolet car via its OnStar

system [14].

2. On the infrastructure side, Ghena et al. [341 demonstrated a remote intrusion

into a traffic signal controller via the communications network connecting the

traffic signals. Petit and Shladover [83] also pointed out vulnerabilities in the

V2V/V21 communications, which could compromise either individual vehicles,

or a highway system collectively. In fact, hacking of traffic controllers has

occurred in reality and caused significant economic loss [11].

Because of the large number of cyber-physical components involved in smart high-

way systems, it is neither technologically nor economically feasible to protect every

component from security failures. Therefore, we should design the system such that

1. the most critical components are protected or inspected, and

2. the system architecture does not allow a local security failure to extensively

propagate through the system.

Besides ensuring adequate level of investment and oversight in deployment of se-

curity solutions, a major challenge in achieving resiliency to security attacks is the

lack of models that allow control engineers and traffic system operators to assess the

negative impact of plausible security failures on system performance. This serves

as the third motivating challenge behind our research. Prior work in this direction

includes the paper by Laszka et al. [64], who consider a dynamic traffic flow network

model for evaluating the impact (in terms of travel delay) of compromised intersec-

tions. The authors of [64] also provided a rather complete review of previous work

following this approach. Como et al. [20, 21] considered the problem of evaluating
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the resiliency of the traffic transmission over a single-origin-single-destination network

against worst-case physical disturbances (disruptions). Instead of travel delay, they

considered throughput loss as the metric for link disruption. In another approach

[4, 87], game-theoretic models have been used to study the strategic interaction be-

tween malicious or fraudulent users and system operators. Importantly, Babaioff et

al. [7] considered the equilibria of a class of congestion games involving strategic trav-

elers. However, in general, game-theoretic models that specifically consider strategic

attack models for transportation systems (and in particular smart highways) are still

in their infancy.

1.3 Our contributions

In this thesis, we develop a system-theoretic approach for modeling, analysis, and

control of smart highways subject to perturbations resulting from capacity-reducing

events (random incidents) and/or heterogeneous traffic classes (CAVs vs. normal

traffic).

Our approach enables analysis of traffic flow dynamics under a broad class of

stochastic demand/supply fluctuations, and can be used for designing control strate-

gies that limit the impact of these fluctuations on system performance. We model

such stochastic fluctuations as a finite-state Markov process and study their impact

on the dynamical evolution of the traffic state (vehicle densities and on-ramp queues).

A key finding is that stochastic fluctuations can lead to traffic bottlenecks and con-

gestion that do not exist with the nominal or average settings; therefore, highway

operations designed for the nominal/average setting can be inefficient or ineffective

in practice. We use this model to design capacity allocation schemes that guarantee

the stability of traffic queues and improve network-wide throughput. These schemes

suggest new and somewhat surprising ways to prioritize and route traffic flows on real-

world highway systems, and motivate several applications including management of

traffic incidents in highways and lane control of connected vehicles in mixed traffic

conditions. Furthermore, we consider a specific security failure that is relevant given
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the existing vulnerabilities in technologies supporting V21-based highway operations.

Modeling Analysis Control
* CAV flow * Stability & * Stability guarantee
eRandom convergence W Throughput

perturbations * Throughput improvement
* Security failures e Equilibrium * Strategic defense

Figure 1-3: Summary of the contributions.

We now highlight our specific contributions in modeling, analysis, and control,

as summarized by Fig. 1-3. The main body of this thesis focuses on operational

efficiency and robustness against random perturbations; modeling and analysis of

security failures as well as strategic defense are presented in Chapter 6 as ongoing

work.

1.3.1 Modeling

Fig. 1-4 illustrates a hierarchical control system for smart highways proposed in [981.

In this thesis, we focus on the macroscopic layers. That is, we are concerned with

the aggregate behavior of flows of vehicles, rather than the movement of individual

vehicles. This modeling approach enables us to apply well-known tools in the theory

of Markov processes (especially queuing theory) and control theory to analysis/design

in the macroscopic layers, and to derive useful insights for highway operations.

Our approach builds on two classical macroscopic traffic flow models, viz. fluid

queuing model (FQM) and cell transmission model (CTM), as indicated in Fig. 1-

4. Under stochastic demand and/or stochastic capacity perturbations-which we

model as a Markov process-these models become the piecewise-deterministic queuing

(PDQ, see [46]) model and stochastic switching cell transmission model (SS-CTM,

see [451), respectively. In fact, both these models belong to the more general class of

piecewise-determinstic Markov processes (PDMP, see [9, 29]).

In general, one can view the PDQ model as an abstraction of the SS-CTM. The

PDQ model captures the queuing due to demand/capacity perturbations, but ac-

counts for neither the spatial distribution of traffic queues nor the relation between
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Figure 1-4: Control layers and models involved in smart highway systems. This thesis

focuses on the macroscopic layers/models.

flow rate and queue length (or traffic density). On the other hand, the SS-CTM not

only tracks the total queuing delay, but also where the queue is located (on which

mainline section or at which on-ramp); furthermore, the SS-CTM explicitly accounts

for the flow-density relation of highway traffic. However, the PDQ model is more

tractable than the SS-CTM.

Next, we summarize the key features of these models.

Piecewise-deterministic queuing (PDQ) model

A key feature of the PDQ model for highway sections is that the traffic queue at a

bottleneck is always discharged at the capacity (which follows from the fluid queuing

model [77]). In addition, demand and/or capacity fluctuations vary stochastically

in this class of models. We show that the PDQ model can be used to capture the

effects of stochastic arrivals of vehicle platoons at a highway bottleneck, as well as

their macroscopic interaction with normal traffic. Furthermore, we also demonstrate

that the PDQ model can serve as a representative model for the design of stabilizing

routing strategies under stochastically fluctuating route capacities (which result from

recurring incidents). These applications demonstrate that, for network-level analysis,

PDQ models can serve as reasonable abstractions for highway systems facing a broad

class of Markovian perturbations.

PDQ for platooning operations: We consider a highway section with both conventional
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vehicles and platoons of CAVs. While previous work provides a good foundation to

study platooning in specific scenarios [30, 51], it does not naturally lead to a tractable

approach for designing efficient operational strategies under mixed traffic conditions.

We focus on the macroscopic interaction between platoons of connected vehicles and

ordinary vehicles, and show that the analytical tractability of PDQ model leads to

practically relevant insights on the design of platoon operations.

The PDQ model for platooning captures the following features of CAV platoons.

First, vehicle platoons can act as temporary bottlenecks for other vehicles. We use

a two-class fluid queuing model to capture the sharing of highway capacity between

vehicle platoons and the background (normal) traffic. Second, the headways between

platoons and the lengths of platoons are subject to random variations. We use a

Markov process to capture this randomness. Third, vehicles within a platoon have

smaller spacing compared to ordinary vehicles. We scale down the queuing effect due

to vehicle platoons according to a pre-defined inter-vehicle spacing ratio for the two

traffic classes. Note, however, that the model does not account for (i) the impact of

speed difference between platoons and background traffic, (ii) the formation/split of

platoons, (iii) the microscopic (vehicle-level) interaction between platoons and back-

ground traffic. Inclusion of these features is part of our ongoing work, see Section 6.2.1.

PDQ for incident management:

The PDQ model can also be used to represent a network of parallel routes fac-

ing stochastic capacity perturbations. This model conveniently captures the dynamic

effects of capacity-reducing traffic incidents which are known to have random occur-

rence/clearance rates. The parallel-route PDQ network model allows us to study the

following questions:

1. How to model the traffic delay induced by random incidents?

2. How do incident characteristics, including occurrence rate, duration, and ca-

pacity reduction, affect the induced delay?

3. How to route traffic in response to incidents?
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Since we focus on the behavior of aggregate traffic flows, fluid queueing models

are better suited to our objectives than conventional queueing models (e.g. M/M/1)

[82, 77]. Single server fluid queueing systems with stochastically switching saturation

rates have been studied previously; see [5, 18, 57]. This line of work focuses on the

analysis of the stationary distribution of queue length under a fixed inflow or an

open-loop control policy. Some results are also available on feedback-controlled fluid

queueing systems with stochastic capacities [82, 108]. However, to the best of our

knowledge, stability of parallel-link fluid queueing systems with uncertain capacities

has not previously been considered.

In our parallel-route PDQ network model, the saturation rates of the links switch

between a finite set of values, or modes, according to a Markov chain, while the

evolution of queue lengths between mode switches is deterministic. An advantage

of this model is that it can be easily calibrated using commonly available traffic

data [48]. Furthermore, since the capacity and the queue lengths can be obtained

using modern sensing technologies, this model can be used to design capacity-sensitive

control policies.

Stochastic switching cell transmission model (SS-CTM)

The SS-CTM combines a stochastic switching capacity model with the classical CTM.

This model has a continuous state that describes the traffic state (traffic density

on the mainline and queues at the on-ramps), and a discrete state that captures

change in dynamics due to accidents. For given parameters (calibrated offline) and

inputs, the model is capable of simulating the evolution of traffic under a range of

recurrent capacity-reducing events such as incidents and moving bottlenecks (slow

vehicles or CAV platoons) through the highway. This model can be used by traffic

controllers to evaluate the impact of randomly occurring events that affect highway

capacity. The model is also useful for designing control strategies that account for the

nature of incident occurrence/clearance events. While our main focus is on modeling

incidents, our modeling approach can be extended to other capacity-reducing events,

e.g. reduction in capacity due to blockage or road surface damage.
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The SS-CTM captures capacity-reducing events as switches of highway capacity

between a finite set of values (modes); the switches are governed by a continuous-

time finite-state Markov chain. The mode transitions can represent abrupt changes in

traffic dynamics including: (i) occurrence of primary incidents [1, 50], (ii) occurrence

of secondary incidents [54, 811, and (iii) clearance of incidents [47, 89]. In a given

mode, the traffic density in each section (the continuous state of the model) evolves

according to the CTM. The mode transitions essentially govern the build-up and

release of traffic queues in the system.

We note that true capacity fluctuation may be more complicated than implied

by the finite-state Markov model [44, 481. However, this model is adequate to study

the build-up and release of traffic queues due to stochastic capacity, and also enables

a tractable analysis of long-time properties of the traffic queues. In a related work

[48] (not included in this thesis), we showed that calibration of this model is simple,

and that it satisfactorily captures the stochastic variation of capacity in practical

situations; see [8, 53, 1111 for related models.

1.3.2 Analysis

In this thesis, we develop tools for analyzing performance of smart highway systems,

based on either the PDQ model or the SS-CTM. We consider travel time and through-

put the key performance metrics. Specifically, our analysis focuses on the following

practical questions:

1. Under what conditions do the traffic queues induced by demand/capacity per-

turbations remain bounded?

2. What is the maximum rate at which a smart highway system can discharge

traffic without inducing unbounded queues?

The first question is relevant for estimating the average travel time, since travel

delay is directly related to traffic queue length. The second question is relevant

for throughput analysis. These two metrics are standard for nominal performance
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evaluation of highway systems [61, 99], and useful for estimating the efficiency loss

due to random perturbations [8, 77] or security failures [64].

In the context of the PDQ model or the SS-CTM, boundedness of traffic queues

means that the stochastic process governing the evolution of traffic (in particular,

build-up and release of traffic queues in either model) is stable. We are interested

in deriving intuitive and verifiable stability criteria for both models. Specifically, we

consider boundedness of either the time-average moment generating function (MGF)

or the time-average expected value of the total number of vehicles in our analysis. In

the PDQ, this means that the queues on every link are bounded. In the SS-CTM,

this means that the queue at every on-ramp is bounded. In addition, for the more

tractable PDQ model, we also consider convergence, a notion related to stability,

which means that the traffic queues converges to a unique steady-state probability

distribution. Our notion of stability and convergence is similar to that considered by

Dai and Meyn [28].

The main results of our analysis include necessary and sufficient conditions for

stability of both models, viz. the PDQ and the SS-CTM. To establish these results,

we build on the theory of stability of continuous-time Markov processes [9, 33, 74].

Note, however, that the application of standard stability results to our setting is not

straightforward due to non-linearity of the PDQ/CTM dynamics. In this thesis, we

exploit the properties of the mode transition process and the PDQ/CTM dynamics to

develop a computationally tractable approach to characterizing the set of stabilizing

inflow vectors-specifically, an over- and an under-approximation of this set. We now

introduce the main features of our stability conditions.

For the SS-CTM model, the necessary condition essentially state that the on-

ramp queues are stable only if for each highway section, the incoming traffic flow

does not exceed the time-average of the "spillback-adjusted" capacity. The notion of

spillback-adjusted capacity essentially captures the effect of downstream congestion

(i.e. spillback) resulting from capacity fluctuations on the traffic discharging ability of

each cell. To the best of our knowledge, this notion has not been reported previously

in the literature. The computation of spillback-adjusted capacity builds on the con-
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struction of an invariant set that is also globally attracting. Using this construction,

we show that the capacity fluctuation can result in an unbounded traffic queue even

when the inflow in each cell is less than the average capacity; this property essentially

results from the effect of traffic spillback. The necessary condition also provides a

way to identify an over-approximation of the set of stabilizing inflow vectors (i.e. the

inflows that satisfy the necessary condition).

To establish sufficient conditions for stability, we consider a well-known approach

formalized by Meyn and Tweedie [74]. Application of this approach to our model

is challenging, since it requires verification of the Foster-Lyapunov drift condition,

i.e. that a Lyapunov function for the stochastic process is decreasing in expec-

tation everywhere over the state space. Computationally, verifying this condition

involves checking a set of non-linear inequalities everywhere over the invariant set

(which we explicitly construct for the SS-CTM). To resolve this issue, we construct

a switched Lyapunov function that captures both the queuing process as well as the

demand/capacity perturbations as "mode transitions". We also utilize properties of

the SS-CTM dynamics to show that the drift condition holds everywhere over the

invariant set if it holds over the finite set of vertices of the invariant sets that we

construct. Thus, to establish stability, we only need to verify the drift condition at

finitely many states. Consequently, standard computational tools (71] can be used to

check whether or not the PDQ model/SS-CTM is stable.

Overall, these results enable a systematic analysis of the congestion induced by

stochastic demand/capacity. We also discuss the tightness of our results, i.e., the gap

between the necessary and the sufficient condition. In addition, we present illustra-

tive examples to study the impact of capacity fluctuation (including its frequency,

intensity, and spatial correlation) on throughput.

For the PDQ model, similar necessary/sufficient conditions for stability can be

derived, using similar tools. Furthermore, we can argue for the convergence of the

probability distribution of the traffic queues. That is, in addition to being bounded,

the queues on a single link or on a network of parallel links converge to a unique

steady-state distribution (in the sense of total variation), or an invariant probabil-
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ity measure. The sufficient condition for convergence has two requirements: (i) the

model is stable, i.e. the traffic queues are bounded on average; (ii) all queues even-

tually vanish in a "nominal" mode. Condition (i) essentially ensures the existence of

an invariant probability measure, and Condition (ii) ensures the uniqueness of the

invariant measure. This condition also provides an exponential convergence rate to-

wards the invariant measure. The sufficient conditions for convergence can be verified

in a more straightforward manner in the case when the PDQ system has two modes.

Furthermore, under a mode-responsive control policy the sufficient condition and the

necessary coincide for a two-mode PDQ.

1.3.3 Control design

Varaiya [981 proposed a four-layer hierarchy for the control system of smart highways,

including network, link, planning, and regulation. We adapt Varaiya's layering for our

resilient control problem and focus on the system-level layers, i.e. network and link

layers. In these layers, limited results on resiliency-improving control, either theoret-

ical or experimental, are available, and a systematic framework that supports control

design is lacking. We focus on the control design problem for the network layer and

the link layer of smart highway systems under a class of Markovian demand/capacity

perturbations. Control design under integration of CAVs is part of our ongoing work

and beyond the scope of this thesis.

The network layer refers to the assignment of given traffic demand over a set

of alternative routes. The network layer involves network-wide, long-term (order of

hours/days) decisions, while the link layer involves local, short-term (order of minutes)

decisions. At the network layer, routing policies (network layer) are designed based

on an abstraction of metered highway segments. We use the more tractable PDQ

model in this layer.

The link layer refers to the operation of a single highway link, possibly with on-

ramps and off-ramps. At the link layer, ramp metering policies (segment layer) are

designed in a distributed manner, independent of metering policies for other links,

and independent of network-wide routing. We use the more detailed SS-CTM in this
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layer. This thesis focuses on the analysis in each individual layer. The synthesis of

the two layers is part of our ongoing work.

Specifically, we focus on:

1. Network layer: routing over a network of parallel highways facing time-varying

capacity perturbations.

2. Link layer: demand management and ramp control for a single highway with

multiple on-ramps and off-ramps and facing spatially and temporally evolving

capacity perturbations.

In this thesis, we deal with control design under stochastic perturbations in each

layer separately. The synthesis of multiple layers with a consistency guarantee is

indeed an important issue and is part of our ongoing work. Nevertheless, since we

use analogous models and a common design approach over both layers, we expect the

synthesis to be achievable.

Network layer

In the network layer, we consider a PDQ model with parallel links (see Fig. 1-5)

that accounts for stochastically varying capacities of individual highway links, and

investigate its stability under a class of feedback control policies. Since we focus on

the behavior of aggregate traffic flows, fluid queueing models are better suited to our

objectives than stochastic queueing models (e.g. M/M/1) [77, 82]. In addition, for

routing policy design, the PDQ model is more tractable and insightful than the more

sophisticated CTM.

origin destination

Figure 1-5: A network of parallel PDQ links.
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We mainly study the stability and convergence of the PDQ network under a class

of feedback routing policies. Our results are based on two assumptions: (i) the mode

transition process is ergodic, and (ii) the feedback control policy is bounded and

continuous in the queue lengths, and also satisfies a monotonicity condition to ensure

that more traffic is routed through links with smaller queues.

Under these assumptions, and based on the analysis results, we derive necessary

and sufficient conditions for stability as well as convergence. The necessary condition

is that, for every link, a suitably defined lower bound on the time-average inflow does

not exceed the corresponding link's time-average saturation rate. The sufficiency

result requires a lower bound on the discharge rate of the system in individual modes

verify a bilinear matrix inequality (BMI). The sufficient conditions for stability can

be verified in a more straightforward manner in the case when the PDQ system has

two modes. Furthermore, under a mode-responsive control policy the necessary and

sufficient conditions coincide for a two-mode PDQ.

Link layer

In the link layer, we consider the improvement of the throughput of a highway seg-

ment (see Fig. 1-6) via joint demand management and capacity allocation. Based

on previous results in the nominal setting [23, 37], we study stabilization of on-ramp

queues and improvement of highway throughput under stochastic capacity perturba-

tions, using the SS-CTM.

Figure 1-6: A highway with multiple on-ramps and off-ramps.

The decision variables (control inputs) include (i) the amount of demand that is

accepted at each entrance, called the inflow, and (ii) the priority of each on-ramp with

respect to the mainline, called the priority rule. For a highway with a given demand
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pattern, we are interested in maximizing the throughput (in terms of vehicle-miles

traveled), while keeping the on-ramp queues bounded; i.e.

max throughput (PO)

s.t. every on-ramp queue is bounded on average.

constraints on control input.

We develop a systematic approach to designing the optimal operations. The main

contributions include:

1. An easily checkable sufficient condition for boundedness of the on-ramp queues,

which enables us to simplify the boundedness constraint in (PO). The stability

condition that we derive is bilinear or linear (depending on the complexity of

the stability condition) in the decision variables.

2. A mixed integer program formulation of the throughput-maximizing problem

under a broad class of stochastic capacity perturbations. Using the sufficient

condition for stability, the max-throughput problem is formulated as a mixed

integer bilinear/linear program (MIBLP/MILP).

3. Characterization of throughput-improving priority rules. Although analytical

solution to the max-throughput problem is in general not easy, we are able to

characterize the structure of a class of optimal traffic control configurations. We

find that, to improve throughput, an on-ramp should be prioritized if it has a

smaller capacity-demand margin than the mainline.

1.4 Thesis outline

The rest of this thesis is organized as follows. Chapter 2 introduces a piecewise-

deterministic queueing (PDQ) model to study the stability of traffic queues in parallel-

link transportation systems facing stochastic capacity fluctuations. In Chapter 3, we

extend the PDQ model to study the macroscopic interaction between randomly arriv-
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ing vehicle platoons and the background traffic at highway bottlenecks. Chapter 4 in-

troduces the SS-CTM for highway traffic dynamics under stochastic capacity-reducing

incidents, and provides insights for highway incident management by analyzing long-

time (stability) properties of the proposed model. In Chapter 5, we consider highway

control under the influence of stochastic capacity perturbations, based on the anal-

ysis presented in Chapter 4. In Chapter 6, we conclude the thesis by summarizing

the contributions and introducing several future directions. Importantly, we present

preliminary results on modeling strategic misbehavior in V2I-based highway opera-

tions, including a novel signaling game formulation and some practical insights. We

also introduce our ongoing work on strategic response to adversarial cyber-physical

attacks on smart highway systems.
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Chapter 2

Incident-Aware Routing over Parallel

Highways

Capacity fluctuations in transportation systems can cause significant efficiency losses

to the system operators [62]. In practice, these fluctuations can be frequent and also

hard to predict [48, 821. Thus, traffic control strategies that assume fixed (or nominal)

link capacities may fail to limit the inefficiencies resulting from capacity fluctuations,

especially when their intensity and/or frequency is non-negligible.

In this chapter, we introduce a piecewise-deterministic queueing (PDQ) model

to study the stability of traffic queues in parallel-link transportation systems facing

stochastic capacity fluctuations. The saturation rate (capacity) of the PDQ model

switches between a finite set of modes according to a Markov chain, and link inflows

are controlled by a state-feedback policy. A PDQ system is stable only if a lower bound

on the time-average link inflows does not exceed the corresponding time-average sat-

uration rate. Furthermore, a PDQ system is stable if the following two conditions

hold: the nominal mode's saturation rate is high enough that all queues vanish in

this mode, and a bilinear matrix inequality (BMI) involving an underestimate of the

discharge rates of the PDQ in individual modes is feasible.

In Section 2.1, we introduce the parallel-link fluid queueing model and the class

of routing policies that we consider. Our analysis involves two assumptions: (i) the

mode transition process is ergodic, and (ii) the feedback control policy is bounded
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and continuous in the queue lengths, and also satisfies a monotonicity condition to

ensure that more traffic is routed through links with smaller queues. Under these

assumptions, in Section 2.2, we derive a necessary condition (Theorem 2.1) and a

sufficient condition (Theorem 2.2) for stability. In Section 2.3, we further show that

the sufficient conditions for stability can be verified in a more straightforward manner

in the case when the PDQ system has two modes (Proposition 1). Furthermore,

under a mode-responsive control policy the necessary and sufficient conditions for a

two-mode PDQ coincide (Proposition 2). Finally, in Section 2.4, we illustrate some

applications of our results for designing stabilizing traffic routing policies in parallel-

link networks with stochastic capacity fluctuations.

2.1 Piecewise-deterministic queueing system

Consider the PDQ system in Figure 2-1 (left). A constant demand A > 0 of traffic

arrives at the system and is allocated to n parallel servers. The inflow vector F(t) =

[F1(t), ... , Fn(t)T E 'O is such that k= 1 Fk(t) = A for all t > 0. Traffic can be

temporarily stored in queueing buffers and discharged downstream. We denote the

vector of queue lengths by Q(t) = [Q 1(t), . . . , Q1 (t)]T. Let U(t) = [U(t), . . . ,Un(t)]

denote the vector of stochastic saturation rates, where Uk(t) is the maximum rate at

which the k-th server can release traffic at time t.

F, (t) =#,1(I(t),Q(t)1). R10 )

(u) )
2(W = #2(IM)QQ))_ L) R2(t)

2 
3

4(2)2 &F()=#( T),Q (-t q A) R,(t) (U2 (3

Figure 2-1: Illustration of a PDQ system with n parallel servers (left) and the mode

transition process (right).

For the k-th server, if Qk(t) = 0 and Fk(t) < Uk(t), the discharge rate Rk(t), i.e.

the rate at which traffic departs from the system through the k-th server, is given by

Rk(t) = Fk(t); otherwise Rk(t) = Uk(t). We assume infinite buffer sizes; i.e. Q(t) can
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take any value in the set Q := RO. This assumption enables us to account for all

traffic arriving at the system and not just the traffic that is ultimately discharged by

the system.

2.1.1 Markovian capacity model

In our model, the saturation rates of the n servers stochastically switch between a

finite set of values. To model this switching process, we introduce the set of modes I

of the PDQ system and let m = 1Il. We denote the mode of the PDQ system at time

t by I(t). Each mode i E I is associated with a fixed saturation rate, denoted by

i= [u ,. .. , u]T, which is distinct for each mode. The evolution of 1(t) is governed

by a finite-state Markov process with state space I and constant transition rates

{Aj; i, j E I}. We assume that Ari = 0 for all i E I. Note that this is without loss

of generality, since self-transitions do not change the saturation rate; thus, including

them will not affect the PDQ dynamics. Let

y := A, (2.1)
jEI

which is the rate at which the system leaves mode i. Given a fixed initial mode Io E I

at t = To := 0, let {T,; z = 1, 2,...} be the epochs at which the mode transitions

occur. Let Iz_1 be the mode during [Tz- 1, Tz) and S,, := T - Tz_ 1 . Then, S, follows

an exponential distribution with the cumulative distribution function (CDF):

Fs.(s) = 1 - e-"z-1 , z = 1, 2... (2.2)

One can capture the transition rates in the m x m matrix:

-vi A1 2  ... Aim

A A21  v 2  ... A 2 m (2.3)

Am, Am2 . Vm
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We assume the following about the mode transition process:

Assumption 1. The Markov process {I(t); t > 0} is ergodic.

This assumption ensures that the process {I(t); t > 01 converges to a unique

steady-state distribution, i.e. a row vector p = [pi,. .. , pm1 satisfying the following:

pA = 0, Ip1= 1, p > 0, (2.4)

where 1-1 is the 1-norm.

2.1.2 Stochastic queuing dynamics

We consider that the demand A is distributed across the n servers according to a state-

feedback routing policy, which we denote as : I x Q n IR0. A routing policy is

admissible if 1#(i, q)I= A for all (i, q) E Ix Q. For a given routing policy #, the vector

of discharge rates R(t) is specified by the vector-valued function rO : I x Q -+ RIO

with following components:

r' (iq) := { c(i, q), q = 0, Ok (i, q) u%,

u, o.w.

k E {1, , n}; (2.5)

i.e., for each t > 0 we have Rk(t) rf(I(t), Q(t)) Uk(t).

Let us define a vector field DO : I x Q n R" as follows:

D"(i, q) := 0(i, q) - rI(i, q). (2.6)

Then, the evolution of the hybrid state (I(t), Q(t)) of the PDQ system is specified by

the following dynamics:

I(0) = i, Q(0) =q, (i, q) E I x Q, (2.7a)

Pr{I(t + 6) = j'I(t) = j} = Ajjy 6 + o(6), j' $ j, (2.7b)
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dQ(t )
dt = DO (I (t), Q(t)), (2.7c)
dt

where 6 is an infinitesimal time increment. Henceforth, we consider routing policies

that satisfy the following assumption:

Assumption 2. The routing policy q#(i, q) [# 1 (i, q)..., qn(i, q)]T is bounded and

continuous in q. Furthermore, for k {1, ... ,n}, $k is non-increasing in qk, and

non-decreasing in qh for h 7 k.

The assumption of boundedness and continuity ensures that the Markov process

{(I(t), Q(t)); t ;> 0} is right continuous with left limits (RCLL, or cadlag) [29J. Fur-

thermore, since Q(t) is not reset after mode transitions, Q(t) is necessarily continuous

in t. With the RCLL property, following [29, Theorem 5.51, the infinitesimal genera-

tor L" of a PDQ with an admissible routing policy 0 satisfying Assumption 2 is given

by

Leg(i, q) = (DO(i, q))T Vt g Zq

+ 1: Ai (g (J, q) - g (i, q), (2, q) E I x Q,(2.8)
jE1

where g is any function on I x Q smooth in the continuous argument.

The assumption of monotonicity of controlled inflows with respect to queue lengths

is practically relevant: more traffic is allocated to servers with smaller queues. In

addition, this assumption ensures the existence of the following limits:

O'k := lim #k(i, qheh), h, k E f(1, n}, i (E 1, (2.9)
qh +0

where eh is the n-dimensional vector such that the h-th element is 1 and the others

are 0. Particularly, the monotonicity of # also implies that 9k (i, q) > Oik for all

k E {1,..., n} and all (i,q) c Ix Q.

Many practically relevant routing policies satisfy Assumption 2. Examples in-

clude:
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1. Mode-responsive routing policy:

Iod() = 1{j=i}0, k E {1, ... ,n}, (2.10)
jETI

where 1{.} is the indicator function, and O'k > 0 for k E {1, . . . ,n} and i E I.

This policy can be viewed as simple re-direction of traffic during disruptions.

2. Piecewise-affine routing policy:

#pwa(q) min {A, ( a - kkqk + Zkhqh)

h~k

k E {l, . .. , n}, (2.11)

where akh > 0 for all k, h E {, ... , n} and (.)+ indicates the positive part. This

policy is an example of a queue-responsive traffic control policy. Note that Ok

can be interpreted as the "nominal" inflow sent to each server when no queue

exists throughout the system, and the linear terms akhqh as adjustment to these

inflows that accounts for the queue lengths.

3. Logit routing policy:

log(q) A ,xp(Yk qk) k E {,. . . , n}, (2.12)
kk) =1 exp(Yh - I3hqh)

where 3k > 0 for k E {1,.. . , n}. This is a classical model of travelers' route

choice. One can interpret 3, as sensitivity parameter that reflects travelers'

preference to the queue length in the k-th server, and -yk the parameter governing

travelers' preference when every server has a zero queue.

Note that the computation of the limiting inflows yk is rather straightforward for

the above-mentioned routing policies (see Section 2.4).

Next, we introduce the notion of stability. The transition kernel [741 of a PDQ

at time t > 0 is a map Pt from I x Q to the set of probability measures on I x Q.

Essentially, for an initial condition (i, q) E I x Q and a measurable set 9 C I x Q,
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we have

Pt((i, q); E) = Pr{(I(t), Q(t)) E .11(0) = i, Q(0) = q}.

One can also consider Pt as an operator acting on probability measures p on I x Q

via

(2.13)

An invariant probability measure [74] of a PDQ system with routing policy # is a

probability measure u4 such that

Ppt = A0, Vt > 0.

Definition 2.1 (Stability [9, 191). The PDQ system with routing policy # is stable

if there exists a probability measure [t on I x Q such that, for each initial condition

(i, q) E I x Q,

lim IIPt((i, q);) - P()IITv= 0, V(i, q) C I x Q, (2.14)

where |-|ITV is the total variation distance. Furthermore, the PDQ system is expo-

nentially stable if it is stable and there exist constants B > 0 and c > 0, and a

norm-like function W : I x Q -+ [1, oc) such that, for any (i, q) E I x

IIPt((i, q); -) - (-)IITv< BW(i, q)e-ct, Vt > 0. (2.15)

Finally, the PDQ system is said to be unstable if (2.14) does not hold.

'Following [741, W is norm-like if W(i, q) -+ oc as IjqjI- oc for i E 1.
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2.2 Stability of feedback-controlled PDQs

In this section, we study the stability of controlled PDQ systems. The main results

are Theorem 2.1 (a necessary condition for stability) and Theorem 2.2 (a sufficient

condition for stability).

2.2.1 Necessary condition for stability

Theorem 2.1. Suppose that a PDQ system with n parallel servers is subject to a

total demand A c R>0 and is controlled by an admissible policy 0. If the PDQ system

is stable, then

p pikk < piuk, k E {1, ... ,n}, (2.16)
iEl iEI

where pi are given by (2.4) and pAk are given by (2.9).

Proof. Suppose that the PDQ system is stable.

For each server k E {1, .. . , n} and for each initial condition (i, q) E I x Q, we

obtain from (2.6) and (2.7c) that, for all t > 0,

Qk (t)= (Ok(I(S), Q(s)) - r"(I(s), Q(s))) ds + qk.

Since limt÷- qk/t = 0, we have

0 = lim k(I(s), Q(s)) - rOI(s), Q(s))) ds + qk - Qk(t)

lim 1(I(s), Q(s)) - rk (I(s), Q(s)))ds - Qk(t). (2.17)

Since the k-th queue is stable, for each initial condition (i, q) E Ix Q, Pr{limte, Q(t) =

oo} = 0 (i.e. non-evanescence, see [74, pp. 5241 for details), and we have limt,+ Qk(t)/t =
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0 a.s. Hence, we can rewrite (2.17) as

lim~ 1t (Ok (I (S),Q (S)) - rk' (I (s), Q(s))) ds =0, a.s.

Now we can make two observations. First, by Assumption 2 (monotonicity), we have

Ok(S) S ) s - k(S) sQk(s)ek)

> rnm<i(I(s),qkek) = IS) Vs > 0.
qk -+oo

Secondly, recall that (2.5) implies rf'(I(s), Q(s)) <; Uk(s) for s > 0. Thus, we have

0 = lim 1 j ((I(s), Q(s)) - rk(I(s), Q(s))) ds

> lim
t-*oo

ft(S

fot((kk
- Uk(S))ds. (2.18)

In addition, for every i C I, let Mi(t) be the amount of time that the PDQ system

is in mode i up to time t, i.e.:

AW(t) = 1{I(s)=j4 ds.

Then, under Assumption 1, we have

Mg(t)
lim = pi, a.s. Vi E 1.t-+00 t

Hence,

lim (")ds

= lim
t-*o E

=lim f
t-o t (YZ

iE1

M (M) pl - p Pik, a.s.
t O

51

1{I(S)=i}Ak)ds

(2.19)



Similarly, we can obtain

lim Uk(s)ds = E pi4', a.s. (2.20)
t-+oc t foiE

Combining (2.18)-(2.20), we obtain (2.16). El

Theorem 2.1 provides a way of identifying unstable control policies. As argued in

the proof, WiO is in fact the lower bound for #k(i, q) for all q c Q. Hence, Theorem 2.1

essentially states that if the PDQ system is stable, then the (time-average) lower

bound of the inflow does not exceed the average saturation rate.

2.2.2 Sufficient condition for stability

To introduce our next result, we define Rmin = [R1in, ... ,n as follows:

Rnin = min (i + E min{uX, U', i E I. (2.21)
\ hhk /

One can interpret Rmin as a lower bound on the total discharge rate of the n servers in

mode i when at least one of the n servers has a non-zero queue. Our next result uses

R"in to provide a sufficient condition for the stability of feedback-controlled PDQ

systems.

Theorem 2.2. Suppose that a PDQ system of n parallel servers is subject to a total

demand A E R>0 and is controlled by an admissible policy 4. Let the elements of the

vector Rmin be as defined in (2.21). Then, the PDQ system is stable if

i* E 1, Vk E {1,. . . n, k(i*, 0) <us, (2.22)

and if

(a = [al, . .mb]T E RAa, b > 0,

(diag(Ae - Rmin)b + A) a < -e, (2.23)
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where e is the m-dimensional vector of 1's. Furthermore, under the above conditions,

there exists a positive constant c = minc 1/(2a') such that, for some B > 0,

I|Pt((i, q); .) - AO (.I)ITv< B(aiebqI + )ect,

V(i, q) E I x Q, Vt > 0, (2.24)

where po is the unique invariant probability measure.

The proof of Theorem 2.2 is based on a more general result [74, Theorem 6.1],

which we recall here in the setting of PDQ systems. To conclude stability of the PDQ

system, [74, Theorem 6.11 requires that the following two conditions hold:

(A) For any two initial conditions (i, q), (j, f) E I x Q, there exist 6 > 0 and T > 0

such that

I|PT((i, q);-) - PT((j, e); IITv 1 - 6. (2.25)

(B) There exist a norm-like function V : I x Q - R;>o (called the Lyapunov function)

and constants c > 0 and d < oc such that

LV(i, q) < -cV(i, q) + d, V(i, q) E I x Q. (2.26)

Condition (A) is required for the uniqueness of the invariant probability measure [28].

Condition (B) is usually referred to as the drift condition, which essentially ensures

the existence of invariant probability measures [74, Theorem 4.5].

We are now ready to prove the theorem:

Proof of Theorem 2.2. Suppose that (2.22) and (2.23) hold. We verify condition (A)

(resp. (B)) using (2.22) (resp. (2.23)).

Condition (A):

Consider any initial condition (iO, qo) E I x Q.
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First, Assumption 1 ensures that the Markov process {I(t), Q(t); t > 0} recur-

rently visits the mode iZ*. That is, for any X1 > 0, there exists a > 0 such that

Pr{I(XI) = i*1I(0) = jo, Q(0) = qO} = a. (2.27)

Furthermore, we can obtain from (2.7c) that

|Q(X 1)| = q0 + (A - E ro(I(s), Q(s)))ds

k=1

K |q0|+AX1. (2.28)

Secondly, in mode i*, the vector of queue length Q(t) necessarily converges to

q* = 0. To see this, consider mode i* and any q E Q. For each k E {,.. . , n} such

that qk = 0, by Assumption 2, we have #k(i*, q) #k(j*, 0), and thus

r"(I*, q) = minIu , #k(i*, q)

> min{uk , k(i*, 0)} r (i*, 0). (2.29)

Therefore, for each q E Q\{0}, we have

n

D?(i*, q) = A - r (*q)
1k=1

= - u'*- E r"(I*, q)
k:qu>O k:q =k

k:q>O k:qk=O(2.29)
< A -- Uk - E rk (i*, 0)

k:qk >0 k:qk=0

< A - min9 ( + ro(i*, 0)) 0)
hqAk n k:q(=+

<A - min (U* + Er"(i-*, 0))
k E {1...,n}h 5k
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(2.22) (2 5)(2.22)
< A - r"(i*, 0) = 0.

k=1

One can see from (2.28) and (2.30) that there exists

|qo|+AX1
X2=A 1 

min + q)

A--Mink (+ 1 h:, q-

(2.30)

such that Q(X1 + X2 ) 0 if I(t) = i* for all t E [X 1 , X 2 + X2 ). Note that

Pr{I(t) i*; t [X 1,X 1 + X2 )jI(X1 ) = i*} = e-"i*X2.

Thus, we have

Pr{Q(X1 + X2 ) 01I(0) = io, Q(0) = qo} > ae-"i*X2 > 0,

where o- satisfies (2.27). Hence, we have

Px1+x 2 ((io, qo), {(i*, 0)}) > -e-i*X2.

Then, for any T > X1 + X2 , we have

PT((io, qo), {(1*, 0)}) > Ue-v*(T-X)

Thus, for arbitrary initial conditions (i, q) and (j, f), there exist o-' > 0, X' > 0,

X, > 0, and T' > 0 such that

PT, ((Zi, q), {(i*, 0)}1) > o-'e~"vi*(T-'-x)

pT,, f), {(i* 0)}1) > o-'e-"i* (T'-X2,

which verifies (2.25) with T = T' and 2 = -e-i*(T'X6)

Condition (B):
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Consider the Lyapunov function

V(i, q) = aiebqI (iq) I x (2.31)

where al,... , am, and b are positive constants.

For each server k, by the definition of Sp (2.9), there necessarily exists Lk < 0

such that, for all h 74 k,

min u Oh(i, Lkek) } minu k ~ I -Pa (2.32)
h I hhkj -2nb maxiE., a-7

Let L = [L1, ... , L4IT. We claim that the constants

c:= . (2.33a)
2 maxje a '

d := maxILV(i, L) + cV(i, L)I, (2.33b)
iET

verify the drift condition (2.26). Let us prove this claim.

Plugging the Lyapunov function defined in (2.31) into the expression of the in-

finitesimal generator (2.8), we obtain

LV (i, q) = (Ok(i, q) - rg(i, q) ab
\k=1

+ Z Aj (ai - a) ebIqI (2.34)
jEI

Then, to check (2.26), we need to consider two cases:

Case I: q E {( E Q : 0 < ( L}. Since each such q's are bounded, V(i, q) is also

bounded. Hence, we can verify in a rather straightforward manner that, with c and

d given by (2.33), LV < -cV + d for all i E I and 0 < q < L.

Case II: q E Q\{( E Q : 0 < ( < L}. For each such q, there necessarily exists a

server k, such that qk, > Lk,. For the ki-th server, since qk, > Lk, > 0, we have

rk (i, q)=ut , ViEI. (2.35)
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For the other servers, i.e. for each h : ki, we have

r"(2, q) ( min

> min{ui, i Oh(i, qkIeki)} min{ui, #h(i, Lk 1ekj)}

(2.32) 1

> min{uT k (i)} I ,) Vi E i,hl Ph' I 2nb maXjEE a-7

where (2.36a) results from Assumption 2 (monotonicity).

(2.36b), we can write

Combining (2.35) and

n

r" (i, q) > u'
h=1

(2.21)

+ E min {uhl (i)}
h:h5k1

- b 1
2b maX j l a3

> Rmm - m..a
mn 2b maXjcEr aj'

k= (k(zq)

k=1

- r"(-, q)) ab +

- k~in+ .I
2b maxjec ai)

1 1
2 -+

Finally,

(2.34) 1 (2.33a)

LV(i, q) < -C <

Hence, (2.26) holds for all i c I, all q c Q\{q : 0 < ( < L}, and all d > 0.

Thus, we have verified that the drift condition (2.26) holds for all (i, q) E I x Q.

Finally, note that we have verified conditions (A) and (B) for the controlled PDQ

system. Thus, we obtain from [74, Theorem 6.1] that the PDQ system is exponentially

stable.

l
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(2.36a)

(2.36b)

Then,

(2.37)

E A2 (a3 - at)

(2.37)
(2.A2

(2.23)

a b+ E A(3(a3

j EI

-ca e ~bj (2.31) -cV.

Uh, 7 Oh(z, q)

- a')



The condition (2.22) states that there exists a mode i* in which every queue

decreases to zero. Practically, one can interpret i* as a "nominal" or "normal" mode

in which the saturation rates are sufficiently high and satisfy (2.22). This condition

leads to Condition (A).

The condition (2.23) essentially imposes a lower bound on the total discharged

flow from the n servers, which is characterized by R . This condition leads to

Condition (B). To verify this condition, one needs to determine whether BMI (2.23)

admits positive solutions for al,. . . ,am and b. This can be done using the known

computational methods to solve BMIs (see e.g. [97, 711).

Remark 2.1. Using the exponential Lyapunov function (31), one can also apply /74,

Theorem 4.3] to obtain that, under (23), for each initial condition (i, q) E I x Q, we

have

1 Ft

lim sup- E[eIQ(s) ]ds <o.
t-+oo t 0

That is, moments of the queue lengths are bounded.

2.3 Two-mode systems

If the system has only two modes, solutions for b and a can be constructed in a more

straightforward manner, which motivates the next result.

Proposition 2.1. A PDQ system of n parallel servers with two modes {1, 2} and

with an admissible control policy 0 is stable if

E {1, 2}, k(i*, 0) < uks, k E {1, 2}, (2.38)

and if

A < p1 i+ p2R2, (2.39)

where Rmin is defined in (2.21).
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Proof. First, let us define the following quantities

Dmin {A - R1 in, A - R2} ,

Dmax -max A - R'i,, A - Rmin} ,

D = A - (p 1Rmin + p 2Rmin),

1, if Dmin = A - Rmin,
min= 2

2, O.w.

2m ax =

Amin {
Amax {

(2.40a)

(2.40b)

(2.40c)

(2.40d)

(2.40e)

(2.40f)

(2.40g)

2, if Dmin = A - Rin,

1, o.w.

A12 , if Dmin= A - R

A21 , O.W.

if Dmin = A -Ri"

A 12 , O.w.

Under (2.39), we explicitly construct constants ainin, aimax, and b satisfying the

BMI (2.23). Condition (2.39) implies

A - p1Rmin - p2Rin = PiminDmin + Pima.Dmax < 0 (2.41)

Since Dmin < Dmax, (2.41) implies that Dmin < 0. Thus, we only need to consider

two cases:

In the case that Dmin

maxi{1/Aj} and let

< 0, Dmax < 0, we can select an arbitrary amin

a i"' = 2aimin b Aminaimin + 1

-Dminaimin

It is not hard to see that aimin, amax , and b are positive and satisfy the BMI (2.23).
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In the case that Dmin < 0, Dmax > 0, we let

b (A12 A2 1) (2.43a)
2 DminDmax

= Dmaxb+ A12 + A 2 1

det[diag(Ae - Rmin)b + A]'

mainx = Dminb+ A 12 + A21  (2.43c)
det[diag(Ae - Rmin)b + A]

Now, we show that these constants are positive. First, note that (2.39) implies

D < 0. Then, since Dmin < 0 and Dmax > 0, and since U < 0, b is positive. Secondly,

to see that a min > 0, note that

diag(Ae - Rmin)b + A

b(A - Rlin) - A12  A 12

A2 1  b(A -R 2 )- JI1

and

det[diag(Ae - Rmin)b + A]

- b 2 (A - R'ij (A - R2

- A12b (A - R2in) - A21b (A - R1in)

b2 (A - R1in) (A - R2 n)- b(A 12 + A 21)7

b2DminDmax - b(A 12 + A2 1 ).

Again, since Dmin < 0 and Dmax > 0, one can check that the b given in (2.43a) ensures

that det[diag(Ae - Rmin)b + A] > 0. In addition, note that

b - (A 12 + A2 1 )D
2 DminDmax

A12 + A2 1 (PiminDmin - PimaxDmax

Dmax -2Dmin 2
A12 + A2 1 (piminDmin - pijmaDmin'

Dmax -2Dmin I
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A1 2 + A2 1 A1 2 + A2 1
2 Dmax Dmax

which, along with Dmax > 0, implies aimin > 0. Finally, since Dmin < 0, a'mx is also

positive.

From (2.40d) and (2.40e), we know that

a= aimin, if Dmi = A - R ,

J mfinmi
" max 7OWSam, ow.

a2 a4mx, if Dmin = A - R ,
2iin min

a Ii .W.

Let a = [al, a2
]T. Then, one can check that a and b satisfy

[diag(Ae - Rmin)b + A]a = -e,

and thus satisfy the BMI (2.23).

In addition, (2.38) is analogous to (2.22). Thus, we can conclude from Theorem 2.2

that the two-mode PDQ system is stable.

In comparison to Theorem 2.2, Proposition 2.1 provides a simpler criterion (2.39)

for stability of PDQ systems with two modes, since it does not involve solving a BMI.

Furthermore, if a PDQ system with two modes is controlled by a mode-responsive

routing policy (2.10), then we can obtain a necessary and sufficient condition for

stability:

Proposition 2.2. A system of n parallel servers two modes {1, 2} and with a mode-

responsive routing policy 0 given by (2.10) is stable if and only if

P1i< + P2 k < PlUk + p 2u , Vk E {1, ... ,n}. (2.44)

Proof. Since the system is controlled by a mode-responsive policy, the queues in var-
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ious servers do not interact. Therefore, we can consider the n servers independently.

For the k-th server, consider the Lyapunov function

Vk (i, qk) = at exp(bkqk), (i, q) E {1, 2} x R. 0

with parameters [at, ajT C R, 0 and bk > 0. With this Lyapunov function, one can

adapt the proof of Proposition 2.1 and conclude that the k-th server is stable if (2.44)

holds.

To obtain the necessity of (2.44), first note that the k-th server is unstable if

Pil/4 + P2 k > piU -+ P2U. Secondly, to argue that the k-th server is unstable if

+ P2 Pi14 + P214, (2.45)

one can first assume by contradiction the existence of an invariant probability measure

pu, and then consider p4(I x {0}) to arrive at a contradiction to (2.45). D

In addition, for the setting of Proposition 2.2, expression for the invariant prob-

ability measure po has been reported in the literature [571, which makes possible

analytical optimization of the routing policy.

2.4 Insights for incident-aware routing

In this section, we demonstrate how our results can provide insights for traffic flow

routing under stochastic capacity fluctuations. Consider a network of two parallel

servers. The total inflow is A - 1. Our results in Section 2.2 can be applied to obtain

stability conditions of this network. We focus on the practically motivated routing

policies given in (2.10)-(2.12).

2.4.1 A two-mode network

Suppose that the network has two modes {1, 2} with symmetric transition rates A12 =

A2 1 = 1. Thus, the steady-state probabilities are pi = P2 = 0.5. The saturation rates
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in both modes are given as ul = [1.2, 0 .7]T and u2 = [0.2, 0 .7 ]T. Thus, both servers

have an average saturation rate of 0.7.

Mode-responsive routing

For this two-mode system, the policy given by (2.10) can be parametrized by two

constants V/4, 'i/ E [0, 1] (note that admissibility requires V)/ + V' = 1 for i E {1, 2}).

By Proposition 2.2, the routing policy mod is stabilizing if and only if

0.3 < ('/ + @/)/2 < 0.7, V)1 E [0, 1], V E [0, 1].

That is, the PDQ system is stable if and only if the average inflows into each server

are less than their respective average saturation rate (note that (01 + ?)/2 > 0.3 is

equivalent to (V'l + 02)/2 < 0.7).

Piecewise-affine feedback routing

Consider the policy given by (2.11). Admissibility requires a= a 12 , a21  a22, and

01 + 02 = 1. Hence, we denote ai = all a 12 and a 2 = a 21 = a 22. For k = 1, 2 and

i E {1, 2}, the expression of the limiting inflows (2.9) are as follows:

0, if ak > 0,
Pkk

min{A, 0k}, if ak= 0,

h 1, if ah > 0,

min{A, 0k}, if ah = 0,

Table 2.1 shows the necessary condition for stability given by Theorem 2.1 and the

sufficient condition for stability given by Proposition 2.1. Note that the restriction on

Ok is stronger if ak = 0. The intuition is that, if the routing policy is not responsive

to the queue length in a server, then an appropriate selection of the nominal inflow

Ok is crucial to ensure stability. In addition, the structures of the stability conditions

strongly depend on whether ak is zero, but not on the exact magnitude of ak. In this

example, the gap between the necessary condition and the sufficient condition mainly
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a1 a2 Necessary condition Sufficient condition

-0 = 0 0.3 < 01 < 0.7 0.3 < 01 < 0.7
-0 > 0 01 < 0.7 0.3 < 01 < 0.7
> 0 =0 01 > 0.3 01 > 0.3
> 0 > 0 01 E R 01 > 0.3

results from the condition (2.22), which requires 01 > 0.3.

Logit routing

Now, consider the policy (2.12). For k = 1, 2, i E {1, 2}, the limiting inflows are

0,
kk =(PkkA exp(-Yk )

-h=1 exp(-yh)

A,

Pkh Aexp(-Yk)
h 1 exp)

if fe > 0,

if k 0,

if /3 > 0,

if/h = 0,

(2.46a)

(2.46b)h 7 k.

Again, we can obtain stability conditions from Theorem 2.1 and Proposition 2.1.

Table 2.2 implies that the constants '7k have a stronger impact on stability of the

Table 2.2: Stability conditions (two modes, logit routing).
/31 /2 Necessary condition Sufficient condition

- 0 = 0 171 - 72|! log(7/3)
-0 > 0 m1 -N 2 log(7/3)
> 0 = 0 '71 - 72 ;> - log(7/3) 1 721<log(7/3)
> 0 > 0 71 E R, 7Y2 E R

PDQ system than the coefficients /k capturing the sensitivity to queue lengths. Once

again, the gap between the necessary condition and the sufficient condition results

from (2.22), which requires '71 - 721< log(7/3).

2.4.2 A three-mode network

Suppose that the network has three modes {1, 2, 3} with symmetric transition rates

A23 = 1 for all i, j E I. Thus, the steady-state probabilities are pi = P2 = p3 = 1/3.
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The saturation rates in the three modes are u' = [1. 2 , 0. 7 ]T, u2 = [0 .7, 0. 7 ]T, and

3 = [0.2, 0. 7 ]T; i.e. the average saturation rates are equal to those in the two-mode

case. The main difference between the analysis in this subsection and that in the

previous subsection is that the sufficient conditions for stability below are obtained

numerically (in terms of solving the BMI (2.23)) instead of analytically.

Mode-responsive routing

For case of presentation, we assume that 02 = 03 for k E {1, 2}. The limiting inflows

hare given by

Thoh , h E f1, 2}, k Ec 1, 2c, i E s.

Theorem 2.1 gives a necessary condition for stability:

0.3 < 1/301 + 2/3V < 0.7, (2.47)

whose complement is the "Unstable" region in Figure 2-2. Figure 2-2 also shows a

"Stable" region obtained from Theorem 2.2; the BMI (2.23) is solved using YALMIP

[711. In contrast to the two-mode case, there is an "Unknown" region between the

"Stable" and "Unstable" regions, due to the gap between the necessary condition

(Theorem 2.1) and the sufficient condition (Theorem 2.2).

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Figure 2-2: Stability of various (@i ) pairs.
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Queue-responsive routing policies

For the piecewise-affine routing policy (2.11) and the logit routing policy (2.12),

Table 2.3: Stability conditions (three modes, PWA routing).
a1 a2 Necessary condition Sufficient condition
= 0 = 0 0.3 < 01 O 0.7 0.41 < 01 O 0.59
-0 > 0 61 < 0.7 0.41 < 01 O 0.59
> 0 = 0 01 > 0.3 61 > 0.36
> 0 > 0 1 E R 61 > 0.3

Tables 2.3 and 2.4 show the stability conditions. In comparison to the two-mode

case, the necessary conditions are unchanged, but the sufficient conditions in the

three-mode case are more restrictive. This indicates that the sufficient condition

becomes more restrictive as the number of modes (and thus the number of bilinear

inequality constraints) increases.

2.5 Summary

In this chapter, we proposed an approach to routing policy design in networks with

unreliable capacities, based on a network extension of the PDQ model introduced in

the previous chapter. We model link saturation rates as piecewise-constant signals

that randomly switch between finite sets of values. We derived a necessary condition

(Theorem 2.1) for stability, which essentially states that the average inflow cannot

exceed the average saturation rate. We also derived a sufficient condition (Theo-

rem 2.2) based on properties of PDMPs and the Foster-Lyapunov criteria along with

an argument for the uniqueness of the invariant probability measure. For bimodal

PDQs, we refined the results (Propositions 2.1 and 2.2) and analyzed the impact of

Table 2.4: Stability conditions (three modes, logit routing).
A31 /32 Necessary condition Sufficient condition

= 0 = 0 |71 - 72|jlog(7/3)
= 0 > 0 71 -- Y2 < log(7/3)
> 0 = 0 Y1 - Y2 > - log(7/3)_
> 0 > 0 71i E R, 7 2 E R
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control policies on the average queue length and the rate of convergence. Based on

long-time properties of PDQs and their network extensions, we derive some useful

insights for incident-aware routing policy design.
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Chapter 3

Modeling Highway Traffic with

Vehicle Platooning

Vehicle platooning is a promising technology that can lead to significant fuel sav-

ings and emission reduction. However, the macroscopic impact of vehicle platoons

on highway traffic is not yet well understood. In this chapter, we propose a new

fluid queuing model to study the macroscopic interaction between randomly arriving

vehicle platoons and the background traffic at highway bottlenecks. Specifically, we

focus on three questions:

1. How to model the sharing of highway capacity between vehicle platoons and

the background traffic?

2. How do the key parameters of vehicle platoons, including penetration rate, pla-

toon length, and vehicle spacing within a platoon, affect highway performance?

3. How to evaluate the strategies for allocating road capacity between ordinary

vehicles and platoons?

Our analysis is based on a stochastic extension of the classical fluid queuing model,

called the piecewise-deterministic queuing (PDQ) model. Our model (Section 3.1)

captures the following important features of vehicle platoons. First, vehicle platoons

can act as temporary bottlenecks for other vehicles. Second, the headways between
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platoons and the lengths of platoons are subject to random variations. We use a

Markov process to capture such randomness. Third, vehicles within a platoon have

smaller spacing compared to ordinary vehicles. Our stability analysis (Section 3.2)

focuses on the queuing resulting from the interaction between the two classes of traffic.

The analysis presented in this chapter are based on the following assumptions:

1. The headways between consecutive vehicle platoons are i.i.d. exponential ran-

dom variables. This is a typical assumption for arrival processes with random

headways [77].

2. The lengths of vehicle platoons are i.i.d. exponential random variables. Note

that this assumption only applies to the fluid limit of traffic; in practice, the

number of vehicles in a platoon is always an integer. Since the discrete corre-

spondence of exponential distribution is geometric distribution, this assumption

essentially means that the formation of a platoon is a Bernoulli process, which

makes practical sense. In addition, this assumption ensures that the fluid queu-

ing model is a Markov process, and thus significantly improves tractability.

In reality, platoon lengths are more likely to be concentrated within a certain

range (e.g. 2-10 vehicles) rather than spread from 1 to infinity. In this sense,

our model overstates the variance in platoon lengths and thus overestimates

platooning-induced congestion.

3. A platoon of n CAVs is equivalent to (h/H)n ordinary vehicles in terms of

queuing effect, where h and H are the inter-vehicle spacings between two CAVs

and two ordinary vehicles, respectively. This assumption is consistent with the

model proposed by [69].

Our PDQ model focuses on the aggregate congestion due to platooning. Note that

the PDQ model does not account for (i) the spatial propagation of such congestion,

or (ii) congestion due to microscopic interactions such as formation/split of platoons

and speed difference between CAVs and ordinary vehicles. Regarding the first limita-

tion, we demonstrated in [49] that the main insights derived from the PDQ model is
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consistent with those obtained from the more detailed and practical multi-class cell

transmission model (CTM). We are also studying properties of tandem PDQ links

to better understand the impact of propagation of platooning-induced congestion.

Regarding the second limitation, part of our ongoing work is to establish the con-

sistency (both theoretical and empirical) between microscopic CAV models and the

PDQ model.

In the rest of this chapter, we first provide an intuitive stability result based on

the theory of convergence of stochastic fluid queuing systems [74, 46]. We also con-

sider the impact of key parameters of vehicle platoons on traffic queues (Section 3.3).

Main insights include: (i) increasing the fraction of connected vehicles typically re-

duces congestion; however, if the highway is in free flow without platooning, then

introduction of platooning may induce congestion due to the randomness in platoon

arrivals; (ii) short platoons lead to less congestion than long platoons; (iii) prioritizing

platoons over background traffic does not necessarily reduce congestion.

3.1 Traffic models with platoons

In this section, we introduce a stochastic two-class piecewise-deterministic queuing

(PDQ) model for highway traffic with vehicle platooning at highway bottlenecks.

bottleneck

Figure 3-1: A highway bottleneck.

We focus on the most basic setting of a highway bottleneck with both vehicle

platoons and ordinary vehicles (Figure 3-1). When a platoon is passing through the

bottleneck, for a period of time, one lane is occupied by the platoon and not available

to the background traffic. Thus, queuing happens upstream from the bottleneck.
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3.1.1 Stochastic platoon arrival process

Let us model the randomness in the arrival process at the highway bottleneck; as we

show subsequently, this model is simple enough to be integrated with the PDQ and

the CTM, both of which account for the interaction between the two traffic classes

(although in different ways). The first class is the background traffic, with a constant

inflow rate a > 0. The second class is the connected vehicles (platoons), with a

stochastic, time-varying inflow rate B(t). The unit of traffic flow is vehicles per hour

(veh/hr).

We assume that (i) the inter-platoon headways are i.i.d. and exponentially dis-

tributed with mean 1/A, and (ii) the numbers of vehicles in platoons are also i.i.d.

and exponentially distributed with mean v/(ph), where v is the free-flow speed and

h is the intra-platoon spacing. These assumptions are motivated by the inherent un-

certainty in the formation, split, and movement of platoons [63]. Specifically, the

exponential distribution is commonly used to model the randomness in vehicle head-

ways [43]. In addition, for our purposes, the random platoon lengths can be also

modeled as exponentially distributed random variables. With these assumptions, we

use a two-state Markov process to model the arrival of platoons. Thus, {B(t); t > 01

is a continuous-time, two-state Markov process with state space B 1 {0, v/h}; see

Figure 3-2 for an illustration.

to bottleneck

M~r, MO-l, 91-0 v/

Figure 3-2: Platoon headway Xk and length Yk are random (left). The arrival process

of connected vehicles B(t) is a two-state Markov process (right).

By standard results in Markov processes (see e.g. [33]), the average inflow rate of

connected vehicles is

B = 1 J B(r)dT A , a.s. (3.1)twhet 0 A + p h

where "a.s." means almost surely.
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3.1.2 Fluid queuing model

The fluid queuing model is a simple model that can be used to study highway bottle-

necks [77]. The essence of the PDQ is to consider the highway bottleneck as a server

with an infinite-sized buffer that stores the vehicles waiting for discharge. If there are

vehicles waiting in the buffer, then the server discharges the vehicles at the saturation

rate, denoted by u. The unit of u is veh/hr. If no traffic is waiting in the buffer, then

the rate at which the server discharges traffic is the minimum of the saturation rate

and the inflow rate.

The evolution of the traffic queue depends on the priority rule, i.e. how the server's

saturation rate (i.e. the bottleneck's capacity) is allocated to the two traffic classes.

Thanks to the simplicity of the PDQ, we can consider two operational policies for

capacity allocation. In the first policy, we model a highway bottleneck as a single

server with proportional priority; i.e., the road capacity allocated to a class of traffic

is proportional to the fraction of this class of traffic in the aggregate traffic queue.

In the second policy, vehicle platoons are prioritized; we name this policy segmented

priority, which is motivated by the idea of dedicated lanes for connected vehicles [10].

Queuing dynamics: proportional priority

This priority rule corresponds to a highway where connected and ordinary vehicles

share all lanes of the highway. This is a typical capacity allocation model for a

highway that allows mixing between connected and ordinary vehicles [106].

U

B(t)- (t)

Figure 3-3: PDQ model under the proportional priority rule.

Figure 3-3 shows the two-class PDQ. The (hybrid) state of the fluid queuing

system is (b, qa, qb), where b E B is the inflow of connected vehicles, qa E R>o is

the queue of ordinary vehicles, and qb E R;>o is the queue of connected vehicles. To

capture the reduced intra-platoon vehicle spacing, we scale down queues of connected

vehicles according to the spacing reduction enabled by platooning. More specifically,
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currently available platooning technology is able to reduce intra-platoon spacing to

less than half that between ordinary vehicles [2, 69]. We model this by scaling down

the traffic queue and flow of connected vehicles with a coefficient (h/H). Thus, we

define the effective queue length as

q qa + qb

and the effective discharge rate as

h
f =fa+ f

H

Then, the effective discharge rate can be expressed as a function of b and q:

f(b, q) = min{a + (h/H)b, u}, q = 0,

U, q > 0.

Furthermore, the discharge rates of each class of traffic are given by

_ J af(b, qa + k ba qa + qb > 0,
fa(b, qa, qb) _ qq a a +a qb o, (3.2a)

min {a) a+ } 
b =

hfb(b, qa qb) = f(b, qa (b, qa, qb). (3.2b)

The above formulae essentially mean that the server's saturation rate is allocated to a

class of traffic in proportion to this class's fraction in the aggregate (effective) queue.

If qa + qb = 0, then the server's saturation rate is allocated according to a class's

fraction in the aggregate (effective) inflow rate.

Throughout this chapter, we use lower-case letters (e.g. b and q) to denote the

state variable, and upper-case letters (e.g. B(t) and Q(t)) to denote the stochastic

processes. Thus, the evolution of the queues Qa(t) and Qb(t) is governed by the
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following dynamics:

q", aQ(t) a- fa(B(t), (t), Q,(0) (3.3a)
dt

Qb(0) = qb, d Q(t) B(t) - fb(B(t), Qa(t), Qb(t)). (3.3b)
dt

One can check that, with the discharged rates defined in (3.2), Qa(t) and Qb(t) are

continuous in t; thus Q(t) = Qa(t) + (h/H)Qb(t) is also continuous in t.

We can also use the infinitesimal generator to represent the stochastic dynamics

of the PDQ. Since {B(t); t> 0} is a stationary two-state Markov process and since

Q(t) is continuous in t, the PDQ under proportional priority is right-continuous with

left limits (RCLL, see [9]). Hence, by [29], the infinitesimal generator of the PDQ

under proportional priority can be written in operator form as follows:

g(b, qa qb)

(a - f'(b, qa, q b)) + (b - fb(b, qa, qb) ag

+ 11b=o A (g(v/h, q", qb) - g(O, qa, qb)

+ 1 b=v/hA(g(0,q q) - g(v/h,qa, qb) (3.4)

where g is any function smooth in the continuous arguments, and 1 is the indicator

function.

We say that the PDQ under proportional priority is stable if there exists a constant

C > 0 such that, for any initial condition (b, qa, qb) E B x R>O,

lim sup f E [exp (Qa(s) + (h/H)Qb(s)) ]ds ; C. (3.5)

This notion of stability is in line with that considered by Dai and Meyn for PDQs

[28]. Essentially, it captures the boundedness of moments of queue lengths.

We are also interested in the steady-state joint distribution of (B(t), Qa(t), Qb(t)),

called the invariant probability measure, denoted by 7rprop. This measure is defined

on the hybrid space B x R>O. In general, boundedness of moments does not ensure
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convergence towards a unique invariant probability measure [28]. However, we will

show while proving Theorem 3.1 that a stable PDQ necessarily converges to a unique

invariant probability measure.

With rprop, the steady-state average sprop and variance a2op of the effective queue

lengths can be obtained as follows:

qprop B qdirprop,

Urop = JBxR 2 (q- prop 
2 d7prop-

>0

We derive 4prop and a 2  in Section 3.2. Based on properties of the effective queueprop

length, we will also derive bounds on the actual queue length Qa(t) + Qb(t).

Furthermore, we define the throughput under proportional priority, denoted by

Jprop, as follows:

Jprop =sup{a +B: (3.5) holds}. (3.6)

i.e. the supremum of the set of average aggregate arrival rates a + B such that the

effective queue is stable; see (3.1) for the definition of B.

Queuing dynamics: segmented priority

This priority rule is motivated by the idea of segmenting ordinary and connected vehi-

cles and prioritizing connected vehicles in certain lanes [10]. For ease of presentation,

u/2

B(t) Q f (t)

Bottleneck A 2 -

(a) A bottleneck with segmented priority. (b) PDQ model
under the segmented
priority rule.

Figure 3-4: Relation between queue length and fraction of connected vehicles.

we consider a highway bottleneck with two identical lanes; see Figure 3-4(a). Since
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the total capacity of the bottleneck is u, each lane has a capacity of u/2. The two

traffic classes travel through the bottleneck as follows. When no connected vehicles

are arriving, i.e. when B(t) = 0, ordinary vehicles are evenly distributed over two

lanes; that is, background traffic enters each lane at rate a/2. When B(t) = v/h,

ordinary vehicles are restricted to one lane (server 2); the other lane (server 1) is

dedicated to platoons. Note that in this setting lane changes are not allowed at the

bottleneck.

Under the above priority rule, we can model the bottleneck as two parallel servers

as shown in Figure 3-4(b). Let Ak(t) be the rate at which the background traffic

enters the k-th server. The segmented priority rule leads to the following:

Ai(t) = 0 ,
a/2,

A2 (t) = a,

a/2,

B(t) > 0,

B(t) = 0,

B(t) > 0,

B(t) = 0,

Let qa (resp. qk) be the traffic queue of ordinary vehicles

in the k-th server. The effective queue lengths are

qk = q+ (h/H)q, k = 1, 2.

The discharge rates are given by

(resp. connected vehicles)

fi(b, q) =

f 2 (b, q) =

min{a/2, u/2},

min{b, u/2},

u/2,

min{a/2, u/2},

min{a, u/2},

u/2,
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q

q

q

q

q

q

0,b = 0,

0,b > 0,

0.

0,b = 0,

0,b > 0,
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Then, the dynamics of the effective queues can be written as follows:

d h
Qi(O) = qi, dQi(t) = A,(t) + h B(t) - fi(B(t), Q(t)),

dt

Q2(0) = q2, +Q 2 (t) = Ai(t) - f2(B(t), Q(t)).

For the above two-server system, we assume the following:

a < u, v/H < u/2. (3.7)

The first assumption is a trivial necessary condition for stability. The second assump-

tion essentially ensures that vehicle platoons are always in free flow if not interacting

with the background traffic. This assumption is typically satisfied by highway traffic,

since the capacity of a highway lane (u/2 in this case) is equal to the quotient between

free-flow speed v and minimal free-flow spacing H 1241.

Assuming that (3.7) holds implies that the inflow to server 1 is always less than

the capacity of server 1; hence Qi(t) vanishes. Therefore, we only need to consider

Q 2 (t) for steady-state analysis. Note that server 2 is essentially a single-class fluid

queuing system, since no platoons enter server 2. Hence, Q 2 (t) =Q(t).

We say that the PDQ under segmented priority is stable if there exists C > 0 such

that, for any initial condition (b, q , q , qi, 'i) E B x R>O,

lim sup j E exp (Q 2(s)) ]ds < C.

If the system is stable, there exists an invariant probability measure 7rseg on B x R>O,

and the steady-state average qseg and variance a 2 of queue lengths can be obtained

as follows:

seg x q2dseg,

Us2g = (q2 - qseg) 2 dxseg~seg LSxR
>0
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We will compute -seg, O2eg, in Section 3.2.

Furthermore, we define the throughput under segmented priority, denoted by Jseg,

as the supremum of the set of average aggregate demand a A+p 2 a such that the

system is stable.

3.2 Stability analysis of fluid queuing model

In this section, we study the stability of the PDQ model under two priority rules and

characterize the effective and actual queue lengths under the two priority rules.

3.2.1 Sufficient condition for bounded queue

Our first result states that the PDQ model is stable under proportional priority if the

average aggregate inflow rate is strictly less than the server's saturation rate:

Theorem 3.1 (Stability under proportional priority). The two-class fluid queuing

system is stable under proportional priority if

A v
a + - < u. (3.8)

Furthermore, if (3.8) holds, then, for any initial condition (b, qa, qb) c B x R>O,

the joint distribution of the hybrid state (B(t), Qa(t), Qb(t)), denoted by Pt(b, qa, q),

converges to a unique probability measure 7rprop, i.e.

lim Pt (b, qa, qb) - lrprop ITv= 0, (3.9)

where ||-|1Tv is the total variation distance.

Proof. The proof of the boundedness of moments (in the sense of (3.5)) is based on a

Foster-Lyapunov-type criterion introduced by Meyn and Tweedie [74, Theorem 4.3},

which we recall in our setting as follows: if there exist constants c > 0 and d < 00,
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and a norm-like function' V : B x RiO -+ R, such that

LV(b, qa, qb) < -cV(b, qa, qb) + d, V(b, qa, qb) C B x RO,

then the PDQ model is stable in the sense of (3.5). Next, we prescribe the function

V and explicitly construct the constants c and d.

Suppose that (3.8) holds. Let us consider the switched exponential Lyapunov

function

V(b, qa, qb) = {
k , g7(qa+(h/H)qb)

b = 0,

b -v/h.
(3.11)

The parameters -y, ko, and k, are constructed as follows. If a + v/H < u, we let

ko = 2 max{1/A, 1/p}, ki = 2ko, Ak 1
(u - a)ko'

which are positive under (3.8); otherwise, we let

(A + pt)(u - a - A})
12a)

2(u - a)(a + -! - u)'
'Y(a + } - u) + A + pa

7(A+ [t)(u - a - - - ) - -y(u - a)(a + v - u))'

7(a - u) + A + ,.

-y((A + p)(u - a - ) - 'y(u - a)(a + i - u))

(3.12b)

(3.12c)

which are also positive under (3.8) and a + v/H > u. In addition, we construct the

constants c and d as follows:

1
c = , d = max|lV(b, 0, 0) + cV(b, 0, 0)|.

2-yk,~ bEL3

Next, we verify (3.10) with V, c, and d as constructed above. Note that, for

'That is, for each b C B, V -+ 00 if qa + oc or qb 9 00.
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b = 0, q, + qb = 0, we have

LV(0, 0, 0) < ILV(0, 0, 0)1

< maxILV(b, 0, 0) + cV(b, 0, 0)1 -cV(0, 0, 0)
bEB

- -cV(0, 0, 0) + d;

for b = 0, q, + qb > 0, we have

LV = ko(a - u)ye,(ga+(h/H)qb) + A(ko - k1 )e,(Qa+(h/H )b)

= (ko-(a - u) + A(ko - k1) e,(qa+(h/H)qb)

< -C<(qa+(h/H)qb) < -cV < -cV + d-;

similarly, one can show that LV < -cV + d for b = v/h and (q,, qb) E R>O.

Finally, since we have verified (3.10), we can apply [74, Theorem 4.31 and obtain

(3.5).

To obtain (3.9), i.e. the convergence towards a unique invariant probability mea-

sure 7rprop, note that, under (3.8), we have a < u. Hence, the aggregate traffic queue

necessarily decreases when B(t) = 0. Therefore, for any initial condition, there is a

strictly positive probability that Qa(t) = Qb(t) = 0 for a sufficiently large t. That

is, the state (0, 0, 0) E B x R'O can be attained with positive probability. Then,

one can -adapt the proof of [9, Theorem 4.6] and obtain the convergence to a unique

invariant probability measure (in the sense of total variation distance). For details of

this argument, we refer readers to [57, 46].

l

3.2.2 Steady-state queue length

For a stable PDQ model, we can also study the queue length:

Proposition 3.1. For the PDQ model under proportional priority, if (3.8) holds,

the steady-state effective queue length qprop and variance oO can be analytically

81



expressed as follows:

0,

qprop

2 0),0~0,
prop

(A

a + -I! <tLu

A a+j -u ,
+p)2 u-a- ; -IL H .

)A+y H

a + } <Z,

(3.13a)

(3.13b)
A (a+}--u)(u-a) v

+j) ( u-a- )2, O.+0,i H

Furthermore, the steady-state actual queue length 4 =4a,prop +qb,prop and its variance

&2 satisfy

qprop 
2

Jprop U - ( I +

6 H\
+ H) -prop I

0 H )22

9 + I 0 h Urop,7

where 6 = .

The derivation of the above result is based on the following lemma:

Lemma 3.1. Under proportional priority, the following set

Qinv := [qa, qb] T
2 h

cz R>O : -b< <9q.
H~

is globally attracting, i.e., for any initial condition (b, qa, qb) B x R O,

lim inf [Qa(t),Qb(t)]T - [ a,4] = 0,
t-oo [ab T \2

EQinv

and positively invariant, i.e., for any initial condition (b, qa, qb) E B x Qinv,

Vt > 0.

This lemma can be proved by utilizing properties of the queuing dynamics (3.3).

We omit the proof here due to space limitations. Figure 3-5 illustrates the basic

2See 191 for details regarding invariant sets for PDMPs.
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-Invariant set

b~ 0

(f --- 1

1Z NZ 1 t Z
NZ ;Z

2 4 6 8 10

Figure 3-5: Illustration of the queuing dynamics and

proportional priority. The arrows represent the vectors

(3.3) for both b = 0 and for b = v/h.

the invariant set Qin, under
of time-derivatives defined in

intuition behind this result. The proof entails that, for any b E B and for any [qa, qbIT

such that [q., qb]T Qij, the vector of time-derivatives of the queue lengths has a

non-zero component that points to the interior of the invariant set Qi,.

Proof of Proposition 3.1. Average effective queue lengths and variance: Kulkarni gives

an analytical expression for the steady-state distribution of the queue length in a

single-class PDQ model that switches between a finite number of modes [57, Theorem

11.61. In the particular setting of this proposition, the steady-state joint distribution

of (b, q) can be represented as a probability density function (pdf) as follows:

(3.14)f(b,q) = z6 + a b 0,
age- , b = v/H,

where

Z1 (pAa+ v/H - u) Az
A +pi u -a u- a

a2  = Az __=IL _ A ~
a+v/H-u' a+v/H -u u-a '

and JO is the Dirac delta function centered at 0. Hence, we can obtain the expected

value 4pp, and variance 7op of the effective queue q, which are given by (3.13a) and
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(3.13b), respectively.

Lower bounds for the actual queue length: Since the actual queue length (qa + q)

is no less than the effective queue length q, qprop and o, are straightforward lower

bounds for the expected value 4 and variance &
2 of the actual queue.

Upper bounds for the actual queue length: Recall the invariant set Qinv from

Lemma 5.1. For each (qa, qb) C Qij, since (h/H)qb Oqa, we have

1 +O0h h
-qb <a + q . (3.15)

O H -H

Then,

h h h
qa+ q- qa +(H-h)-b--qa + q +(Hlh-I) qbHH H

(3.15) h 0 h
<(qa + -q)+ (Hlh -11+(qa + -qb)

(1 Hh
= + + -q). (3.16)

1+0 1 + 0h H

Since the set Qij, is globally attracting and positively invariant, the invariant prob-

ability measure 7rprop vanishes outside Qin [9]. Therefore,

R (qa + qb)d7prop = (qa + qb)dprop
JlxR 2 f x Q i n

(3.16) 1 0 H h
(1+ - + 2 h o 2 (qa + -qb)d7rProp

I 0 H);+ -o '> 1+0 1 + 0h

the last equality results from the fact that 7prop gives the same average value of

(qa + -qb) as the pdf in (3.14) does. The upper bound for variance the variance apro

of the actual queue can be similarly obtained. L

An analogous result regarding the stability and queue length of the PDQ model

under segmented priority can be derived:

Proposition 3.2 (Segmented priority). Consider the two-class fluid queuing model
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and assume that (3.7) holds. Then the model is stable if

a < u/2. (3.17)
A + p

Furthermore, under (3.17), the average and variance of queue length are given by

0, a< u/2,
qseg A (a-u/2)a/2

(A+j)2 u/2- A a7 , O. W.

0, a <u/2,{seg =I A (a-u/2)(u/2-a/2)a/2
(A+p)2 (u/2- A+p 2 a)2 , . W.m

Proof. Note that, under (3.7), the set (qa, qb, qa, q b) E R q = q = qb = 0} is

globally attracting and positively invariant under the segmented priority; i.e. Q2(t)
could be arbitrarily large, but Qa(t), Qb(t), and Qb(t) necessarily vanish after suffi-

ciently long time. Hence, we only need to consider the queue Qa(t). Note that Server

2 can be viewed as a single-class PDQ model. Thus, the rest of the proof is analogous

to that of Theorem 3.1. D

3.3 Performance analysis of platooning operations

We are now ready to discuss how characteristics of platoons (specifically, penetration

rate of connected vehicles, vehicle spacing within platoons, platoon length, and pri-

ority rule) affect traffic queue. Table 3.1 lists the nominal values considered in this

section.

3.3.1 Fraction of platooned vehicles

The fraction of platooned vehicles can be written as

B Av

a+B a+ A I
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Table 3.1: Nominal parameters of traffic flow and platoons.
Name Symbol value unit
Cell length 1 1 mi
Free-flow speed v 60 mi/hr
Congestion wave speed w 20 mi/hr
Jam density (per lane) p 100 veh/mi
Capacity (per lane) u 1500 veh/hr
Average aggregate demand a + B 3600 veh/hr
Spacing ratio h/H 1/3 N/A
Penetration rate of platooned vehicles 7 0.4375 N/A
Platoon arrival rate A 30 hr-
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3
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0 0.1 0.2 0.3 0.4 0.5
Fraction of platooned vehicles 77

(a) a +R < u.

0
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0
.6 3 0.1

-Proportional priority (lower bound)
-Proportional priority (upper bound)

Segmented priority

0.2 0 .3 0.4 0.5 0.6

Fraction of platooned vehicles 77

(b) a +B>u.

Figure 3-6: Impact of fraction of platooned vehicles on (actual) queue length.

where B is the average inflow of connected vehicles given by (3.1). Suppose that we

fix the aggregate average demand a + B, the platoon lengths p, and the space h, and

vary A (or equivalently q). Figure 3-6 shows how the (bounds of) queue length vary

with the fraction of platooned vehicles.

When the average aggregate demand a + B is smaller than the capacity u, this

relation is characterized by a cap-shaped curve (Figure 3-6(a)). The points worth

noting are: (i) at a low fraction, platooning increases the randomness of the arrival

process, and thus increases the traffic queue, and (ii) as the fraction increases further,

the gain of the reduced within-platoon spacing compensates for the increase in ran-

domness of the arrival process. From a practical perspective, the inefficient fraction

of platooned vehicles (~ 0.1 in this example) should be avoided to limit the effect of

random platoon arrivals. Furthermore, there exists a threshold 970 beyond which no
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queue exists:

u - v/H
yo = 1a + B

To see this, note that, for q > 7o, we have

h
a + B(t) < a + (1 -q)(a +) + < U,H H H

and thus the queue never grows. Hence, if the fraction of connected vehicles is greater

than qo, then the traffic on the highway can maintain free flow even with a high

density, thanks to the reduced spacing between platooned vehicles.

When the average aggregate demand is greater than the capacity (Figure 3-6(b)),

the -7- 7 curve has an elbow-shaped shape. In this case, note that, to ensure stability,

at least a certain fraction of the total demand should be connected vehicles such that

the excessive demand is compensated by the reduced spacing between platooned

vehicles. This threshold, qj, can be obtained from Theorem 1:

(a +B - u)+
(a +W)(1 - h/H)

Beyond this threshold, the queue length decreases with the fraction of platooned

vehicles.

3.3.2 Intra-platoon spacing

Now we study the benefit of reducing the intra-platoon spacing. Current technology

enables reduction of inter-vehicle spacing by 50% or more [2]. Suppose that we fix the

aggregate average demand a + W and vary h. For the queue to be stable, the spacing

should not exceed the following threshold:

u - q(a + B)h1 < _H.
(1 -7)(a + B)

Figure 3-7 shows how the queue varies with the ratio H/h when the average
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aggregate demand is greater than the capacity, i.e. a + B> u. As expected, queue

20
- Proportional priority (lower bound)
-Proportional priority (upper bound)

Segmented priority
15

E5

0
1 2 3 4 5 6

H/h

Figure 3-7: Impact of intra-platoon spacing on queue length.

length decreases as H/h increases. In addition, the curve becomes shallow as the ratio

increases, implying that an excessively high ratio (more than 3 in Figure 3-7) does

not bring much additional benefit. Note that high H/h ratios are not recommended

for safety considerations either [2].

Arrival frequency and lengths of platoons

20
- Proportional priority (lower bound)

-Proportional priority (upper bound)
Segmented priority

-15

C)10

0
0 10 20 30 40 50 60

Frequentcy of platoons A [hr
1

]

Figure 3-8: Impact of platoon arrival frequency on queue length.

Another question of practical interest is whether connected vehicles should form a

large number of short platoons or a small number of long platoons. Platoon lengths

affect fuel consumption and the ease of implementation [2]. Here, we focus on how

average platoon length affects the traffic queue. Suppose that we fix the ratio between

A and p, and vary A. That is, we fix the fraction of platooned vehicles rj, but vary
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the frequency and lengths of the platoons. Figure 3-8 shows that higher frequencies

lead to smaller queues. The reason is that, as the platoons become more frequent and

shorter, the probability of forming a long queue decreases. A practical interpretation

in the setting illustrated in Figure 3-1 is that it is more difficult for long platoons to

go through the bottleneck than short ones.

3.3.3 Priority rule

In Figures 3-6, 3-7, and 3-8, the queue lengths resulting from segmented priority are

also plotted. Figure 3-6(a) implies that, with a low fraction of platooning, propor-

tional priority leads to smaller traffic queues. This is intuitive in that prioritization

of platooned vehicles under-utilizes the road's capacity if the fraction Y is low. How-

ever, as the fraction increases (say greater than 0.4 in the figure), the queue length

associated with segmented priority approaches the lower bound of that associated

with proportional priority. In addition, Figure 3-7 implies that the relative benefit of

segmenting two classes of traffic increases as the intra-platoon spacing decreases. Fig-

ure 3-8 implies that the relative benefit of segmenting does not significantly vary with

the transition rates. However, in all the above-mentioned figures, the queue lengths

associated with segmented priority are never below the lower bounds associated with

proportional priority. Therefore, segmented priority is not guaranteed to outperform

proportional priority, at least in the setting being considered here. In a broader range

of settings, segmented priority may outperform proportional priority when the ratio

H/h is very high, i.e. when the intra-platoon spacing is very short.

Finally, we can obtain from Theorem 3.1 that the throughput (as defined in (3.6))

under proportional priority is

1 - + (h/H)Y

That is, throughput increases with the fraction of connected vehicles. Similarly, we
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can obtain from Proposition 3.2 that the throughput under segmented priority is

u 2H A +p
Jse = mm -U, U

1 - 77' h77' (I - q)(2A + p)

for 0 < 77 < 1. One can show that

A

iprop > seg, if > Ah
A+p H

A

Jprop <Jseg, if ' <

That is if the fraction of connected vehicles is high, then segmented priority leads to

a smaller throughput. The intuition is that, in such a scenario, one lane (server 1 in

Figure 3-4(b)) is not sufficient to serve the platoons, while the other lane (server 2)

is under-utilized.

3.4 Summary

In this chapter, we proposed a two-class fluid queuing model to study the traffic

congestion induced by vehicle platooning at highway bottlenecks. Using this model,

we are able to evaluate the impact of parameters of vehicle platoons and the priority

rule on traffic congestion and throughput. As we have argued at the beginning of

this chapter, our model considers exponentially distributed platoon lengths, which is

likely to be an over-approximation. Consequently, the stability analysis and control

design are thus likely conservative. One way of estimating the conservativeness is

to simulate the platooning-induced queues for alternative distributions of platoon

lengths and compare with our results.

This work is being extended in several directions. First, to consider the impact of

congestion downstream to a bottleneck, tandem PDQ models with finite buffers can

be considered. Known results [571 imply that, for PDQ models with finite buffers,

average platoon length affects not only queue length, but also stability. Second,
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our approach can be used to study control of platoons in response to local traffic

conditions, such as time-varying demand of background traffic and road capacity

perturbations. Of particular interest is the tradeoff between throughput gain and

fuel savings. More information about our ongoing work is available in Section 6.2.
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Chapter 4

Performance Analysis of Highways

Facing Perturbations

Freeway traffic networks are prone to capacity disruptions, for example, crashes, road

blockage, and other capacity-reducing incidents [50, 55, 61, 89]. In practice, these

events can introduce significant congestion in freeways [62, 881. To design traffic con-

trol strategies that reduce the congestion and throughput loss resulting from such

disruptions, we need to systematically analyze traffic dynamics under stochastic ca-

pacity fluctuations. This chapter introduces a stochastic switching model of freeway

traffic dynamics under capacity perturbations, and studies its stability (in the sense

of bounded traffic queue) under fixed inflows.

Perturbations (incidents) on a multi-cell freeway are modeled by reduction in

capacity at the affected freeway sections, which occur and clear according to a Markov

chain. We develop conditions under which the traffic queue induced by stochastic

incidents is bounded. A necessary condition is that the demand must not exceed the

time-average capacity adjusted for spillback. A sufficient condition, in the form of a

set of bilinear inequalities, is also established by constructing a Lyapunov function and

applying the classical Foster-Lyapunov drift condition. Both conditions can be easily

verified for realistic instances of the stochastic incident model. Our analysis relies

on the construction of a globally attracting invariant set, and exploits the properties

of the traffic flow dynamics. We use our results to analyze the impact of stochastic
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capacity fluctuation (frequency, intensity, and spatial correlation) on the throughput

of a freeway segment.

In our SS-CTM (formally defined in Section 4.1), the capacity of a freeway sec-

tion switches between a finite set of values (modes); the switches are governed by a

continuous-time finite-state Markov chain. The main results of this chapter (The-

orems 4.1 and 4.2; presented in Section 4.2) include a necessary condition and a

sufficient condition for stability of the SS-CTM with fixed inflows and an ergodic

mode transition process. Proofs of the main results are provided in Section 4.3. In

Section 4.4, we provide examples to show how Theorems 4.1 and 4.2 can be used to

characterize the set of stabilizing inflow vectors.

4.1 Stochastic Switching Cell Transmission Model

In this section, we define the stochastic switching cell transmission model (SS-CTM).

To develop this model, we introduce a Markovian capacity model, and combine it

with the classical CTM [241. We also introduce key definitions that are needed for

our subsequent analysis.

4.1.1 Markovian capacity model

Consider a freeway consisting of K cells, as shown in Figure 4-1. The capacity (or

saturation rate, in vehicles per hour, or veh/hr) of the k-th cell at time t > 0 is

denoted by Fk(t). Let F(t) = [F1(t), . . . , FK (t)] denote the vector of cell capacities

at time t. One can interpret Fk(t) as the maximum rate at which cell k can discharge

traffic to the downstream cell at time t.

S, 2 -, r h t. Sk. . SK

Figure 4-1: SS-CTM with K cells. Cell 1 includes an infinite-sized buffer to accom-

modate the upstream queue.

To model stochastic capacity disruptions, we assume that F(t) is a finite-state
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Markov process. Specifically, let I be a finite set of modes of the freeway and let m =

1I|. Each mode i E I is associated with a vector of cell capacities P = [Fi, ... , T.

We define

k" min Fk, F"= max Fk, (4.1)
iEI iEI

and refer to FJ"m as the normal (maximum) capacity of cell k. For ease of presenta-

tion, we assume an identical normal capacity for all cells throughout the chapter, i.e.

Fm" = Fma" for k 1, 2,..., K.

In our model, a mode represents a particular configuration of capacities at various

locations (cells). We say that the freeway is in the normal mode if the maximum

capacity is available at every cell. We model an incident in cell k by introducing a

mode i such that Fk < F and Fh = F for h f k. Transition from the normal mode to

mode i can be viewed as occurrence of an incident in cell k; similarly, the transition

from i to the normal mode can be viewed as clearance of the incident. Furthermore,

we call the k-th cell an incident hotspot if Fk"i" < Fm'.

Note that the Markovian capacity model can be used to represent more complex

situations. For example, two modes can be associated with incidents in the same

cell(s), but with different values of capacities, reflecting the difference in incident

intensities (e.g. minor and major). Furthermore, the occurrence of secondary (or

induced) incidents [541 can be modeled as a transition from a mode with an incident

in a single cell to a mode with incidents in multiple cells.

Throughout this chapter, we use i to denote elements of I, and use I(t) to denote

the stochastic mode of the freeway at time t. The mode I(t) switches according to a

continuous-time, finite-state Markov chain defined over the set I with (time-invariant)

transition rates {Ai; i, j c I}. We assume that A& = 0 for each i E I; note that this

is without loss of generality, as inclusion of self-transitions would not affect the traffic
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flow dynamics. Let vi = E A and define the transition matrix as follows:

-vi A12

A 2 1 - V 2

... Alm

... A2 m

Am, Am2

(4.2)

We assume the following for the mode switching process:

Assumption 3. The finite-state Markov process {I(t); t > 0} is ergodic.

This assumption ensures that the dwell times in each mode are finite almost surely

(a.s.). Under this assumption, the process {I(t); t > 0} admits a unique steady-state

probability distribution p = [pi, .. , pm] satisfying:

pA = 0, 1p|= 1, p > 0, (4.3)

where 1.1 indicates the 1-norm of (row or column) vectors [331.

4.1.2 Traffic flow under stochastic capacities

The formal definition of the SS-CTM is as follows:

Definition 4.1. The SS-CTM is a tuple (I, , 7 R, A, G), where

- I is a finite set of modes (discrete state space) with I|= m,

- K = [0, oc) x [0, nma)](Kl- is the set of traffic densities (continuous state space),

-R C R O is the set of inflow vectors,

- A E R x is the transition rate matrix governing the mode transitions, and

- G : I x K x 7 -+ RK is the vector field governing the continuous dynamics.

We have defined I and A, and now introduce K, R, and G.
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Let Nk(t) denote the traffic density (in vehicles per mile, veh/mi) in the k-th cell

at time t, as shown in Figure 4-1. Traffic density Nk(t) is non-negative and upper

bounded by nx, the k-th cell's jam density. The K-dimensional vector N(t)

[N1 (t), N2 (t), ... , NK(t)]T (E .A represents the stochastic continuous state of the SS-

CTM.

For ease of presentation, we assume that each cell k has the unit length of 1 mi.

Furthermore, each cell k has a free-flow speed ak, a congestion-wave speed /k, a jam

density nmax, and a normal capacity Fk. The unit of a and 3 is miles per hour (mi/hr).

We define the critical density of vehicles as

nkt - (4.4)
ak

The sending flows Sk and the receiving flows Rk can be written as follows:

Sk(i, nk) = min {aknk, Fi}, k = 1, 2, .. ,K, (4.5a)

Rk(nk) = k(nmax - nk), k = 2, 3,..., K. (4.5b)

Thus, Sk is the traffic flow that cell k can discharge downstream and Rk is the traffic

flow from upstream that cell k can accommodate. The receiving flow of cell 1 will be

discussed later in this subsection. Following [241, we assume that,

Vk E {1, 2,... , K}, max Sk(i, ncrit ) < Rk(n'rit),
iEI kk

which, along with (4.4) and (4.5), implies that,

F agkk ax. (4.6)
ak ,3 k /k

Let r = [ri, r2 ,. .. , rK T E R = R K denote the inflow vector to the freeway;

the unit of rk is veh/hr. Throughout this chapter, we assume that the freeway is

subject to a fixed (i.e. time-invariant) inflow vector. Importantly, we also make the

standard assumption that, for each cell k, the on-ramp flow rk is prioritized over the
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sending inflow Sk-l from the upstream cell [371. Under this priority rule, the flow (in

veh/hr) from cell k to cell k + 1, denoted by fk, is given by the flow function (i.e.,

the so-called fundamental diagram):

fo = 0, (4.7a)

fk(i, nk, nk+1, rk+1) = min{pkSk(i, nk),

(Rk+1(nk+1) - rk+1)+}, k = 1, 2,... ,K - 1, (4.7b)

fK(,nK) pKSK(i,nK). (4.7c)

where (.)+ stands for the positive part and Pk = fk/(fk + sk) E (0, 1] denotes the fixed

mainline ratio, i.e. the fraction of traffic from cell k entering cell k + 1. The off-ramp

flow Sk from cell k is given by Sk(t) = (1/pk - 1)fk(t) for k = 1, 2, .. , K.

Let f(i, n, r) denote the K-dimensional vector of flows. For notational conve-

nience, we denote Sk(t) = Sk(I(t), Nk(t)), Rk(t) = Rk(Nk(t)), and f(t) = f(I(t), N(t), r).

We say that cell k is experiencing spillback at time t if pkSk(t) > Rk+1(t) - rk+1, i.e-

if the sending flow from cell k exceeds the receiving flow of cell k + 1.

Due to spillback, there might be traffic queues at the entrances (on-ramps) to the

freeway. We track the queue upstream to cell 1 by assuming that cell 1 has a buffer

with infinite space to admit this queue, i.e. nm"x = oc (see Figure 4-1). However,

we do not consider the on-ramp queues (i.e. queues at on-ramps to cells 2, 3, .. , K).

Note that not including the on-ramp queues to cells 2 through K does not affect

our stability analysis of the upstream queue, since our priority rule implies that the

boundedness of the upstream queue is a sufficient condition for the boundedness of

the on-ramp queues. Hence, we denote the continuous state space of the SS-CTM as

K = f0, oo) x Hk=2[0, nk.

By mass conservation, traffic density in each .cell evolves as follows 1371:

Nk(t) = fk-1(t) + rk - fk(t)/pk, k = 1, 2,.. . , K. (4.8)

From (4.7) and (4.8), we can define the vector field G : I x .A x 7 - R' governing
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the continuous state of the SS-CTM as follows:

G1 (i, n, r) r, - fi(i, n1 , n 2 , r 2 )/pi, (4.9a)

Gk(i, n, r) fk-1(i, nk-1,nk, rk) + rk

-k (i, k,nk+1,rk+1)/Pk, k = 2,3,...,K- 1, (4.9b)

GK(i, n, r) = fK-1(i, nK-1, nK, rK) + rk - fK(i, nK)/PK. (4.9c)

Note that the vector field G is bounded and continuous in n. In a given mode i E I,

the integral curve starting from n c K, denoted by 0'(n) = [0(n) 1,... ,(n)K],

can be expressed as follows:

0'(n) = n + G (i, 0i (n), r) dT. (4.10)t tr=0

The hybrid state of the SS-CTM is (1(t), N(t)) at time t, and the hybrid state

space is I x M. The evolution of the discrete (resp. continuous) state is governed by

the finite-state Markov process with transition matrix A (resp. the vector field G).

For an initial condition (i, n) E I x IV, the stochastic process {(I(t), N(t)); t > O} is

given by

N(t) = n + G (I(r), N(T), r) dT, (4.11a)
tr=0

Pr {I(t + 6) = jI(t) = i} = A6 + o(6), j 7 i. (4.11b)

4.1.3 Additional definitions

For an SS-CTM with a given inflow vector r cz R, the total number of vehicles IN(t)j

at time t is given by

K

IN(t)I= ZNk(t). (4.12)
k=1

We say that the SS-CTM is stable if the moment generating function (MGF) of N(t)

is bounded on average; i.e., for some p C R K and some C > 0, and for each initial

99



condition (i, n) E I x K,

lrt
lim sup -- E [exp (PTN(T))] dr <C. (4.13)

t-*Oo t r=

Since a bounded MGF implies a bounded p-th moment for all p E Z>o, our notion of

stability is in line with the notion of bounded moments considered by Dai and Meyn

[28]. Recall that, in our model, N2 (t),.. . , NK (t) are always upper-bounded by the

jam density nm'; therefore, N(t) is bounded if and only if N1 (t) is bounded.

An alternative notion of stability that is used in the analysis of queueing systems

[28, 57, 46] and PDMPs [9, 19] is the convergence of the traffic queue towards a unique

invariant probability measure. This notion of stability is equivalent to boundedness

of the traffic queue in many simple settings (e.g. for M/M/1 queues [33] or fluid

queueing systems with stochastic service rates [57, 46]). However, convergence to a

unique invariant probability measure does not always guarantee bounded moments

of the traffic queue, which is of practical significance for freeway traffic management.

Therefore, in this chapter, we consider boundedness of the upstream queue as the

stability notion of interest.

A major issue in analyzing the stability of the SS-CTM is to ensure (4.13) for all

initial conditions (i, n) E I x K. We address this issue by constructing a positive

invariant set that is also globally attracting and positively invariant [91, i.e. a set

K C K such that

(Invariant) V(i, n) E I x R, Vt > 0, 0'(n) E K; (4.14a)

(Attracting) V(i, n) E I x K, 1(0) = i, N(O) = n,

Ve > 0, 3T > 0, Vt > T, min|IN(t) - v112< E. (4.14b)
vEK

For convenience, we henceforth refer to any set satisfying (4.14a) and (4.14b) simply

as an invariant set. Construction of an invariant set considerably simplifies the proofs

of our main results (Theorems 4.1 and 4.2), since, to capture long-time behavior of

SS-CTM, we only need to consider initial conditions in R rather than in K.
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Before proceeding further, we introduce two properties of the SS-CTM. First, the

natural filtration Jt of the SS-CTM is the --algebra generated by {(I(s), N(s)); s < t}

for all t > 0 [291. Since the realizations of the continuous state are always continuous

in time, and since the transition rates A are finite and constant, FT is right continuous

with left limits (RCLL, or cddldg [9]). Second, by [9, Proposition 2.1], thanks to the

RCLL property, the infinitesimal generator of the SS-CTM with a fixed inflow r E 'R-

can be written as an operator L as follows:

g(i, n) =GT(i, n, r)Vrg(i-, n) + EAij (g(J, n) - g(i', n))
jE

V(i, n) E I x ., (4.15)

where g : I x M -+ R is a function smooth in the second argument, and Vag(i, n)

is the gradient of g with respect to n.1 We utilize the expression of the infinitesimal

generator in our stability analysis (while applying the Foster-Lyapunov drift condition

[741 in Appendix C).

4.2 Stability of SS-CTM

In this section, we present our results and demonstrate their application via a simple

example. The proofs for these results are available in Section 4.3.

4.2.1 Main results

Our results include a necessary condition (Theorem 4.1) and a sufficient condition

(Theorem 4.2) for the stability of the SS-CTM under fixed inflows. Both of these

conditions rely on the construction of a "rectangular" invariant set of the following

form:

K

A' = [Z31, 0) X fj Nk, 1k (4.16)
k=2

'We consider Vg as a column vector.
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Proposition 4.1. For an SS-CTM with an inflow vector r E R, the set k of the

form in (4.16) is an invariant set in the sense of (4.14) with the interval boundaries

specified as follows:

n min { , , (4.17a)

Zlk = min{Pk-11 + rk Pk-1Fknl+rk 7F

Cek Cfk ak

k = 2,3, ., K, (4.17b)

pK-1FK -+ rK
, if PK-IFK + rK F"i',

fK - CK in (4.17c)
nmax FK o.w.

/3k-1Fk + rk
, if --1 Fk + rk

i F"in (Rk+1(ik+1) - rk+1)+

k =Pk

max _ 1 min Fmin (Rk+1("k+1) - rk+1)+

k Pk

0.W.,

k = K - 1, K - 2, ... ,2, (4.17d)

where Sk and Rk are given by (4.5).

The set K is constructed by considering the properties of the sending and receiving

flows (4.5). Specifically, for each cell k, the lower boundary nk can be viewed as the

limiting density when the flow fk_1 from upstream is at its minimum and when the

flow fk discharged to downstream is not constrained by the (k + 1)-th cell's receiving

flow. Thus, for each k and each n G A such that nk = Lk, we have Gk(i, n, r) 0

in each mode i E I; i.e. the vector field points in the direction of non-decreasing

cell density. Similarly, on the upper boundary of K, the vector field points in the

direction of non-increasing cell density; i.e. for each k > 2 and each n E K such that

nk 7k, we have Gk (i, n, r) < 0 in each mode i E 1.

We choose this specific form of invariant set (i.e. Cartesian product of intervals)

because of its simple representation [13]. Note that, for a given r E R, Proposition 4.1
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only provides one such construction; indeed, other rectangular sets satisfying (4.14)

exist. Importantly, this particular construction leads to intuitive and practically rele-

vant conditions (Theorems 4.1 and 4.2) that can be used to identify sets of stabilizing

and unstabilizing inflow vectors. In fact, the sharpness of our stability conditions is

directly related to the properties of the invariant set; please refer to Proposition 4.2

at the end of this subsection.

Before introducing the necessary condition for stability, we need to define a new

notion of spillback-adjusted capacities: for each i E 1,

Fk(n, r) = min Fi , (Rk+1 (r+) k+1 2

k = 1, 2, ... , K -- I (4.18a)

F (n, r) = Fk, (4.18b)

where nk's are given by (4.17a) and (4.17b). Recalling (4.5) and (4.7) and noting

that Rk is non-increasing in nk, one can see that

V(i, n) E I x k, Vr E R, Vt > 0,

fk(t) < pk min {vNk(t), P4(t) , k 1, 2. .. , K. (4.19)

Thus, Fk can be interpreted as the capacity adjusted for the receiving flow admissible

by the downstream the (k + 1)-th cell, and hence the name "spillback-adjusted". By

considering Fk, we do not need to explicitly involve the receiving flow in our necessary

condition for stability.

In addition, we define the following parameters:

pk =I1 k = 1,. .. ,K, (4.20a)
k2 -1

Pi = Ph, < ki < k2 - 1, k2 = 2, ... , K. (4.20b)
h=k1

Note that p can be viewed as the fraction of the inflow rki that is routed to cell k2 .
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Thus, for each k, we can view Zl_1 phrh as the total nominal flow through cell k.

Then, we have the following result:

Theorem 4.1 (Necessary condition). Consider an SS-CTM with an inflow vector

r e . Let p( be the solution to (4.3), Fj(n, r) be as defined in (4.18), and pk' be as

defined in (4.20). If the SS-CTM is stable in the sense of (4.13), then,

k

phrh < p PFk (n, r) , k = 1, 2, ... ., K. (4.21)
h=1 iEI

The left-hand side of (4.21) is the nominal flow through cell k. The right-hand side

of (4.21) can be viewed as the long-time average of the spillback-adjusted capacity.

Thus, Theorem 4.1 necessitates that, for the SS-CTM to be stable, the nominal flow

cannot exceed the average spillback-adjusted capacity. This result provides a simple

criterion to check for the instability of SS-CTM for a given inflow vector r C R: if

h1iphrh > >iE1 piFk(n, r) for some k, then the system is unstable.

An important implication of Theorem 4.1 is that the SS-CTM may be unstable

even if, for each cell, the nominal flow is strictly less than the average capacity of the

respective cell, i.e.

k

>phrh<Z piFk , k=1,2,...,K. (4.22)
h=1 iEl

To see this, one can note that (4.22) does not guarantee (4.21), unless Fk"(n, r) = Fk' for

all k and all i, which holds only when the inflows are sufficiently small. In summary,

our necessary condition imposes a restriction on the inflow vector that captures the

joint effect of capacity fluctuation and spillback. Note that Theorem 4.1 only involves

the steady state probabilities pi but not the elements of of A directly.

To develop the sufficient condition, let us limit our attention to the set of inflow

vectors satisfying (4.22). For each r satisfying (4.22), we define the vectors -y =
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[in, ... ,1KT and F = [F 1, .. . , FK as follows:

E~ P
k El PiF , k = 1, 2, 7 K, (4.23a)

KE-z PA - 1 hkrh

IK 7YK, (4.23b)

Fk=Pk(Fk+14-7k), k=K-1,K-2,...,1. (4.23c)

In our sufficient condition, we consider the sum of inflows weighted by Fk:

M/(r) = F'r. (4.24)

Essentially, Fk can be viewed as a weight assigned to the inflow or the traffic density

in the k-th cell with the following properties: (i) upstream cells have higher weights;

(ii) a cell's weight increases with the cell's inflow-capacity ratio.

In addition, we define the following sets

E = {n E M: n= nerit, nk E ,ILOk}, k = 2, 3, ... , K}, (4.25a)

E = {fn E N: ni = l,n E{ik, k}, k = 2,3,...,K}, (4.25b)

where nk and Wk are given by (4.17). Note that E and e both have cardinality of

2 K-1, where K is the number of cells. Furthermore, let

j(a, 7i, r) = min -yf (i, n, r), i E I, (4.26a)
nee

fi(rTh, r) = min -}f(i, n, r), i E I, (4.26b)
nEe

where f(i, n, r) is given by (4.7). Although (4.26) involves evaluating minima of _yTf

over discrete sets. We note that, for typical freeway lengths (in the order of 10 cells),

Yi(n, T, r) and J (n, T, r) can be obtained by simple enumeration. As we will show

in Appendix C, 9#'(n, 7, r) and 9i(n, T, r) can be viewed as lower bounds on the

weighted sum of the discharged flows fk in mode i.

Then, we have the following result:
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Theorem 4.2 (Sufficient condition). Consider an SS-CTM with an inflow vector

r E R satisfying (4.22). Let n and H be as defined in (4.17), M(r) as defined in

(4.24), and Fi (n, 7, r) and Ji (n, 7, r) as defined in (4.26).

If there exist positive constants a,, a2 , ... am and b such that

Vi E I, aib (M (r) - J#i (_n, , r)) + Z Xij(aj - ai) ; -1, (4.27)
jEl

then, by defining

c = , (4.28a)
maxi ai

d

max aib (M(r) - i (n, 7, r) + E Ai,(a - ai) + aic
iEI

x exp (b(Fini + F 2T2 +-- - + FKTK), (4.28b)

we obtain that, for each initial condition (i, n) E I x Ar,

1 Ft d
lim sup - E [exp (bFTN(T))] dr < . (4.29)

t+*oo t ,0 c mi ai

The bilinear inequalities (4.27) essentially restrict the weighted inflow M, and thus

restrict the inflow vector r to ensure stability. The first term on the left-hand side

of (4.27) captures the difference between the (weighted) inflow and the (weighted)

discharged flows; the second term captures the effect of stochastic mode transitions.

Note that, unlike Theorem 4.1, Theorem 4.2 explicitly involves the elements of A.

Theorem 4.2 is derived based on an approach introduced by Meyn and Tweedie

[74]. For readers' convenience, we state the relevant result [74, Theorem 4.31 as

follows. Recall that the SS-CTM is RCLL and its infinitesimal generator L is given

by (4.15). Suppose that there exists a norm-like2 function V : I x R -+ IR>o (called

2The function V : I x R -+ [0, oc) is norm like if limeoo V(i, n) = oc for all i E I.
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the Lyapunov function) such that, for some c > 0 and d < o,

LV(i, n) < -cV(i, n) + d, V(i, n) E I x R. (4.30)

The above condition is usually referred to as the drift condition [741. Under this

condition, for any initial condition (i, n) c I x

lim sup - E[V(I(T), N(T))I(0) i, N(0) = n dT < d/c. (4.31)
t-+00 t fr-O

We consider the Lyapunov function V : I x K -+ R>, defined as follows:

V(i, n) = ai exp (by Tn) , (4.32)

where a = [a,,...,am]T and b are strictly positive constants (to be determined)

and F is defined in (4.23). The switched Lyapunov function captures the effect of

both the mode (via the coefficient aj) and the traffic density (via the exponential

term exp(bF T n)). Intuitively, V decreases when the freeway switches to a mode with

larger capacities or when traffic is discharged from upstream cells to downstream

cells. The exponential form is in line with our notion of stability (4.13) and facilitates

verification of the drift condition (4.30).

The main challenge of verifying (4.30) is to show that

d > max _V(i, n) + cV(i, n). (4.33)
(i,n)Exf

Since the maximization problem in the right-hand side of (4.33) is rather complex,

the drift condition is not easy to verify and is thus far from checkable in its original

form. To address this challenge, we utilize properties of CTM dynamics to show that

(4.30) can be established by minimizing a concave function (see (4.51) in Appendix C)

over the rectangular set K, where an optimal solution must lie at one of the vertices

of K.

Finally, we note that, in general, there exists a gap between the necessary condition
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(Theorem 4.1) and the sufficient condition (Theorem 4.2). Since both these results

rely on the invariant set K, the gap depends on the construction of the invariant set.

Indeed, both results also apply to other invariant sets that can be expressed of the

form in (4.16). The following result addresses how the construction of the invariant

set affects the gap:

Proposition 4.2. Consider two invariant sets

K K

K =[(i, oo) x 17J[hkik], ',- [r.ioo) X fJk, il]
k=2 k=2

such that C ', i.e. n> n' and T < '. For a given r e R,

(i) if F(_n, r) satisfies (4.21), so does F (n', r);

(ii) if F (n', V, r) allows positive solutions for a1,. . . ,am, b to (4.27), so does Fj(, W, r).

Proposition 4.2 implies that a smaller invariant set leads to sharper stability condi-

tions (i.e. a smaller gap between the necessary condition and the sufficient condition).

Indeed, the invariant set given by Proposition 4.1 is in some cases the smallest invari-

ant set of the form in (4.16).

4.3 Proofs of Main Results

4.3.1 Proof of Proposition 4.1

Invariant

To show the invariance of A, we demonstrate that the vector field G points towards

the interior of R everywhere on the boundary of K. That is, for each n E K such

that nk = rk (resp. nk = 7k) for some k G {1, ... , K} (resp. k E {2,.. . , K}), we

have Gk(i, n, r) > 0 (resp. Gk(i, n, r) 0) for all i E I.

a) We first study the directionality of the vector field on the lower boundaries.

Consider a given r E R.
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a.1) For each n E R such that nj = ni, we have

(4.9a)
G1 (i, n, r) = r1 - fi (1, 111, n2, r2)/pi

(4.7b)
= r, - min {InOIL, F,, (R2(n2) - r2)+/P21

> ri - aini
(4.17a) ri

> r, - -- = 0,
Cel

a.2) For each n E R such that nk -- k for some k E {2, . K - 1}, we need to

show that Gk > 0.

First, note that

fk-1 (i, k-1, lk,r 7k)

(4.7b)
= min { pak_1nk,pk1Fkl_, Rk(Rk) - r}

> min {pakIk _1, pk_1Fk_, Rk(mk) - Tr}

(4.5b)(4.17b)
> min {aklk - rk, A k(nm -mg) - rk}. (4.35)

(4.17b)
Since nIk < Fk/ak, we can obtain from (4.6) that

akRk 3 k(na - n).

Plugging the above into (4.35), we obtain

fkI-1 (i, nki1, ilk, rk) akZ - rk.

Next, note that

fA (i, k, nk+1,rk+1) /,Pk

(4.7b) . { Ok+1F
= Min CfkZg, Fi,

(nk+a -~ nk+1)

Pk

- rk+1 } akrik.
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Hence, we have

Gk(i, n, k)

= fk-1 (i, nk-1, Lk, 7k) + rk - fk (i, nk nk+1, rk+1) /Pk

(4.36)(4.37)
aknk - rk + T k - aknk = 0,

a. 3) The proof for k = K is analogous.

b) Next, we study the directionality of the vector field G on the upper boundaries.

Again, consider a given r E R.

b.1) For each n E N such that nK - 7K, we need to consider the two subcases in

(4.17c):

If PK-1FK + rK F;in, then we have

fK-1(i, nK-1,17K, 7K)

(4.7b)
Smin{ pK-aK-1K-1, pK-1F_, pK(flax - 12K) - K}

PK-1Fk_ 1< PK-1F,

fK (, fiK) (4.7c) (4.17c)
= minjOZK71K, Fi}=

PK
pK-iF + rK-

(4.39a)

(4.39b)

Thus, we have

(4.9c) fK (iK, JK)
GK(l,1, r) fK-1(,nK- 1, K, rK) + rK -

PK

(4.39)
:! PK-1FK-1 + TK - (PK-1FK-1 + rK) = 0, Vi c I.

Otherwise, we have

(4.7b)
K k(n"k - 12K) -rK

(4.17c)
= Kg -TK,

(4.7c) (4.17c)
fK(iK,!K)/pk min{aK(max - Fg'/ pk), Fk}

(4.6) n

(4.40a)

(4.40b)
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Thus, we have

(4.9c) ._fK (K, K)
GK (, n, r) = fK-1(i,nK-1, 7K, rK) + TK - K

PK
(4.40)

< (Fk" _ TK) + rK - FK" = 0, Vi C I.

b.2) For n C .fV such that nk = Wk for some k E {1,... , K - 1}, we again need to

consider both cases indicated in (4.17d):

If pk_1Fk_1 + Tk min{Fmi", Rk+l(k+ +1)-rk }, then we havek 7 Pk

fk-1(ink-1,Hk,rk) < Pk_1Fk-1 < pk_1Fk_1,

fk(iThk, nk+1, rk+1)/pk

(4.7b) . _
= min ank, Fk4,

> min akhky, Fk, 2k:
(4.17d) . k

=Min Pk-1 Fk-1

=pk_1Fk-1 + Tk.

#k+1(nax - nk+1) - Tk+1

Pk

1(n max - fk+1) - rk+1

Pk

}
F k+1(n +i - lk+1) - rk+1

+ Tk, Fk,
Pk }

Thus, we have

Gk(i, n, r)

k-1(ik-1, nk-1, Yk, rk) + rk - k (z, fk, nk+1, rk+1)/ pk

(4.41)
K Pk-1Fk_1 + rk - (pk_1Fk_1 + rk) = 0, Vi C I.

Otherwise, we have

fk1(i, k-1,krk) Nk(nn ~ k) - rk

(4.17d) . min,= min Fk"
k+1(nm+1 - fk+1) - rk+1

- rk,
Pk
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{k+1( max + nk+1) - rk+1
=min ak, F , + P

> min ak k, F k +1( nk+l- kk1)r-~ 1'k+
k, Pk

(4.17d) . Ok+(nm+ - flk+) - Tk+1
= mm F, k+1 Pk

>_ mill {Fji", Ok+1(nmI - Tk+1) - rk+1 } (4.42b)
Pk

Thus, we have

Gk(i,n,r) = fk_1(i, nk_1,k,rk ) + rk

(4.42)
- fk(ijk, nk+1, rk+1)/Pk < 0, Vi E I.

Combining cases a) and b), we obtain that f is invariant.

Attracting

To show that the set R is attracting, we define

i - N : k -In}, kE 1, 2,..., n,

Nk ={In EN : n k}, k = 2,3, ... ,n.

Thus, we have r = (nKNk) n (n = 2yk). Consider a given r E R.

a) First, we show by induction that the set n K Nk is attracting.

a.1) For any E > 0, consider B(N 1 , c), i.e. the neighborhood of A__ such that

mingEA In - p112< E. Without loss of generality, we consider 0 < E < mink:lk >o !k. If

Ri > 0, for any n E Bc(_ 1 , E) (complement of B(N 1 , c)), we have ni1 < n - E. Then,

we obtain from (4.5a) and (4.7) that

G,(i, n, r) = r, - fi(i, ni, n 2 , r 2)/p1 > ri - ani

> r - ai(i - E) > aIE > 0, Vi tE I.

Therefore, for any initial condition (i, n) E I x Bc(91, c), there exists T = nl/(aiE)

112



such that N(t) E B(A 1 , c) for all t > T. Hence, the set f__ 1 is attracting in the sense

of (4.14b).

If ni = 0, the proof is trivial.

a.2) Now, suppose that the set (nhflJh) is attracting. If nk+1 = 0, for any E > 0,

consider the neighborhood B(n~i+iiA_, E). For each n E (n khJj) n Bc(nk+l1__, C),

we have ni > n,...,nk > nk, nk+1 < nk+1 - c. Then, we obtain from (4.5a) and

(4.7) that

Gk+1(i, n, r) = fk(i, nk, nk+1, rk+1) + rk+1

- fk+1(i, nk+1, nk+2, 7k+2)/ Pk+1

(4.7b)
f(i,nk, nk+1,rk+1) -- rk+1

- fk+1(i, ik+1, nk+2, rk+2)/Pk+1

(4.17b)

> (ak+1nk+ 1 - rk+1) + rk+1 -k+1 (k+1 -

> Ozk+1C > 0, Vi E 1.

Therefore, for any initial condition (i, h) E I x (ni_ 1Kh) f Bc(nk+1f&h c), there

exists T = k+1/(&k+1e) such that N(t) E B(fl+iiK, 6) for all t > T. Recall that,

by the inductive hypothesis, nFIJAh is (globally) attracting. Hence, the set nf+_i1g

is attracting.

If nk+1 = 0, the proof is trivial.

In conclusion, _ is attracting.

b) The proof for nF- 27k being attracting is analogous.

4.3.2 Proof of Theorem 4.1

Suppose that the SS-CTM with a given inflow vector r is stable in the sense of (4.13).

To establish the necessary condition, we can limit our attention to a particular initial

condition in the invariant set, i.e. N(0) = n E R. The proof consists of two steps.

In Step 1), we show that the average flow is equal to the nominal flow. In Step 2),

we show that the average flow is less than or equal to the average spillback-adjusted
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capacity.

1) Integrating (4.8), we obtain that, for t > 0,

Nk(t) = 11 -fk-) +rk
f7=O

- fk(T)/ pk) dT + nk,

k = 1, 2... , n.

Since limt,,,, nk/t = 0 for k = 1,2,...n, we can write

t+0= t J (fk_1(T) + rk - fk(T)/Pk) dT

+ nk - Nk(t))

t +0lim J (fk-1() + rk - fk(r)/Pk) d

Since the MGF of IN(t)I is bounded on average, we have Pr{limtse Nk(t) = oo} 0

for k = 1, 2, ... , n. Thus, we have

(fk_1(T) + rk - )dT = 0, a.s.

For k = 1, since fo = 0 by definition, we have

lim -
t -oo t I a.s.

which implies that

To proceed by induction, we assume that, for some k > 1, we have

lim 1 fk()dT = pk pErh, a.s.
t +00 t 7=0 h=1
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1
lim -
t- 0 t

1 
0

r=O
(4.43)

(r - fl(T)/p1 )dT = 0,
(4.44)

(4.45)

lim -- f f, (r)dr = piri. a.s.
t--+OO t '=O



Then, we can obtain from (4.43) that

i1 *
lim - It fk+l(T)dT
t-+00 t r=O

Pk+1 lim - fk (T)dT + rk+1t-+OO r=o

k

Pk+1 Pk Y.Phrh + rk+1
h=1

k+1

kPk+1 h, a.s.
h=1

Hence, we conclude that

t

0lim I

k

fk(T)dT =Pk 5 Phh, a.s.
h=1

(4.46)

which means that the average flow is equal to the nominal flow.

2) For every i E I, let T(t) be the amount of time that the SS-CTM is in mode i

up to time t, i.e.

(4.47)

Then, recalling Assumption 3 and using [33, Theorem 7.2.6], we obtain

._Ti(t)_
lim = pi, a.s.
t-+0 t

(4.48)

In addition, since R is invariant, we know from (4.14a) that n(T) E R for all T > 0.

Then, we have, for k = 1, 2, .. . , n,

(4.19)
fk(r)dr < lim- i

t-+00 t J=0 PkFk (n, r)dT

(4.47) Ti (t)F (n, r) (4_48) P'(n r)Com ing t and ( w bn
ic-1 iE1

Combining (4.46) and (4.49), we obtain (4.21).
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lim i
t-4 00 t

( t

r=0

a.s. (4.49)

k = 1,1 2, . . . , n ,
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4.3.3 Proof of Theorem 4.2

Recall from Section 4.2.1 that, to obtain stability, we need to show (4.33). Let us

proceed with the following expression:

max 1V(i,
nEf

n) + cV(i, n)

(4.15)(4.32) K
= max aib E Fk(fk-1 + rk - fk/Pk)

nEN k=1

+ YAj (a
j=1

(4.23)(4.24)

= aib ('q(r) -

+ E Ai (aj - a,
j=1

- ai) + aic -
) V

min -Vi 
nER

s+ aic Vi E z

where c and d are given by (4.28). The key to evaluate (4.50) is to compute min,,, Yf (i, n, r).

To do this, we define

K

In := [crit, ) 0) X [Lk, -jk]
k=2
K

2 ,n rit ]X 1 kI k

k=2

and consider two cases:

1) n C A 1 . For each r E R and each i E i, consider

min
nERN

7'f (Zi, n, r). (4.51)

We claim that an optimal solution of (4.51) lies on one of the vertices of .A 1 , i.e. for

all i E I,

min -f( n, r) = min -yT f(Z, n, r)
nER, n EE

(4.26a)
(4.52)
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where 8 is defined in (4.25a). We will prove this claim at the end of this subsection.

Then, for each i E I, we have

max LV(i, n) + cV(i, n)

(4.50)(4.52)
5 a b (M(r) - Y (n, Yi, r)) +

j=1

x exp (FT n)

(4.27)
K (-1 + aic) exp (rTn)

(4.28a) (4.28b)
< 0 < d.

2) n c .N2.This case is straightforward, since A/2 is bounded. We claim that, for

all i E I,

mn2-y f(,n,r)
,nEJ'2

-min-y Tf ( nr)
nEe

(4.26b)
(4.53)

where E is as defined in (4.25b); again, we will prove this claim at the end of this

subsection. Then, we have

max LV + cV
nE R2

< aib (M(r) - '(9k(, E, r)) + 5 A(aj - aj) + aic
j=1

max ~ V (4.28b)
x nE 2  < d, Vi E I.

ai

Since R = I UN2, combining cases a) and b), we obtain (4.33) and thus the drift

condition (4.30). Using [74, Theorem 4.3], we obtain (4.29) from the drift condition.

The rest of this subsection is devoted to the derivation of (4.52) and (4.53):

To show (4.52), it suffices to argue that, for a given i E I and a given r E R, and

for each k E {1, ... , K}, -yTf(i, n, r) is concave in nk. For each i c I, let us consider
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the following quantity:

-Y1 f1(i, ni, n2, 7-2),

_Yk-1 k- I(z , nk-1 , nk , rk)

+"k fk(i, nk, nk+1, rk+1),

7K-1fK-1(z, nK-1, nK, rK)

+ K K (i, nK),

k- 1,

2 < k < K-i,

k = K.

Then, for each k E {1, ... , K}, we have

7f (i, n, r) = Hk (n) + Mk (ni, . k . e1, nk+1, ... , nK),

where MA is a term independent of nk. Hence, to show that 7Tf(i, n, r) is concave in

nk, we only need to show that Hk(n) is concave in nk.

We need to consider the following subcases of k:

a.1): For each k {2,. .. ,K- 1}, we have

Hk (n)

Yk--1 min Pk-l ak-1nk-1, OkFkl, /k- 1(nm' - nk) - rk }

+ k min { Pkaknk, pkFki, /3 k+1(n+ - nk+1) - rk+1}

In the above, the first term on the right side (corresponding to Tk-1fk-1) is non-

increasing in nk, while the second term (corresponding to kfk) is non-decreasing

in nk; both terms are piecewise affine in nk with exactly one intersecting point (see

Figure 4-2).

Note that the intersecting points n* and n** of the piecewise-linear functions

-k-1fk-1 and kk, respectively, satisfy the following:

1
7*, = 7jn' - -(min{pklank-l, pk-_1Fk_1} - rk)

w

pk-1F 1 nax _ F = 1 crit
k !Ok-1 k Ok-1
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-Ykfk

nk

Figure 4-2: The function Hk(n) is concave in nr.

nk* = 1 min{pkF ,3k+1(n+ - nk+1) - Tk+1}
A k k1

<< fk < F_ = ncrit
ak ak

Hence, we have n* > n**. Thus, we conclude that Hk(n) is concave in nr; see

Figure 4-2.

a.2): For k = 1 and k = K, the expression of Hk is simpler and thus the derivation

is straightforward.

The proof of (4.53) is analogous.

4.3.4 Proof of Proposition 4.2

We show the two conclusions in the statement separately:

(i): We can observe from (4.18) that F, (n, r) is non-increasing in n. Hence, for

each n' < n, we have

k = 1,2, ... n, Z E I.T(r, u) lw (fo, r),

The conclusion follows from the above.
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(ii): Consider 1 C A'. Define

K

: cnrito )x [', ' ,

k=2
K

1, al~ crit IX .j16 k
k=2

Clearly, 1 9 .Ar and .A2C A2. Then, from (4.52) and (4.53), we can obtain that

i(a, Ti, r) = min YTf(i, n, r) > min _f (j' r)
nE1 'n'eRf

= I(r, n', 7'), Vi E I,

,FjL, W, r) = min _Tf(i, n,r) > min _f (i, n', r)
n E 2 n'1 E JNr

=j F(r, n', W'), Vi' E 1.

The conclusion follows from the above and the fact that a,, a2 , ... , a, and b in (4.27)

are positive.

4.4 Some Practical Insights

In this section, we derive some practical insights for freeway traffic management under

capacity fluctuations. Specifically, we use our results to (i) identify the set of stable

inflow vectors for a given capacity model, (ii) analyze the impact due to frequency and

intensity of capacity fluctuation on throughput, and (iii) study the effect of correlation

between capacity fluctuation at various locations.

Buffer for
upstream queue E E {6000,3000}

s r2 F; {6000.3000}

Figure 4-3: A two-cell freeway with two incident hotspots.
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(a) Baseline model. (b) Variant 1. (c) Variant 2.

Figure 4-4: Stability of the two-cell freeway with various inflow vectors r = [ri, r 2 ]T

determined by Theorems 4.1 and 4.2.

A two-cell system as shown in Figure 4-3 is sufficient for our purpose. The pa-

rameters for the (baseline) capacity model is as follows:

I = {1, 2,3,4}. (4.54a)

F1 = [6000, 6000]T, F2 = [3000, 60 0 0]T, (4.54b)

F3 = [6000, 30 00 ]T, F4 = [3000, 30 0 0]T, (4.54c)

-2 1 1 0

1 -2 0 1
A = (4.54d)

1 0 -2 1

0 1 1 -2

Note that the transition rate matrix defined above implies that the capacity fluctua-

tions at both cells are mutually independent. We will discuss the impact of correlation

between cell capacities in Section 4.4.3.

4.4.1 Set of stabilizing inflow vectors

For an inflow vector r = [ri, r 2 ]T E R20, we know that r is unstable if it does not

satisfy the necessary condition (Theorem 4.1), and that r is stable if it satisfies the

sufficient condition (Theorem 4.2). For practicality, we also assume that the on-ramp

has a fixed saturation rate of 3000 veh/hr. Thus, the on-ramp inflow r 2 cannot exceed

3000 veh/hr if the freeway is stable.

Applying our stability conditions to various inflow vectors [ri, r 2]T, we obtain
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Figure 4-4(a). In this figure, the r-r 2 plane is partitioned into three regimes: The

"Unstable" regime (in black) depicts the set of inflow vectors violating the necessary

condition. Thus, any inflow vector in this regime leads to an infinite traffic queue. We

denote the complement of this regime as R1 . The "Stable" regime (in white) depicts

the set of inflow vectors satisfying sufficient condition. In this example, we solve the

bilinear inequalities (4.27) using YALMIP, a MATLAB-based optimization tool t711.

By Theorem 4.2, the inflow vectors in this regime lead to a traffic queue bounded in

the sense of (4.13). We denote this regime as R2 .

Notice that there is a gap, labeled as "Ambiguous", between the "Stable" and the

"Unstable" regimes. This regime shows the gap between the necessary condition and

the sufficient condition; for inflow vectors in this regime, our stability conditions do

not provide a conclusive answer.

These results can be used to calculate stabilizing inflows that lead to maximum

throughput, which partially motivates the results to be presented in the next chapter.

4.4.2 Impact of capacity fluctuation on throughput

Now we estimate the maximum throughput that can be achieved under a class of

capacity models parameterized by AF and A as follows:

I= {1, 2, 3,4}.

F1  [6000, 6 0 0 0 ]T , F2 = [6000 - AF, 6 0 0 0 ]T,

F3 = [6000,6000 - AF]T,

F4 = [6000 - AF, 6000 - AF|T,

-2A A A 0

1 -(1+ A) 0 A

1 0 -(1+A) A

0 1 1 -2

By varying the parameters AF and A, we can study the effect the intensity and the

frequency of capacity fluctuations on the maximum throughput of SS-CTM.
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Figure 4-5: Relation between maximum throughput and incident frequency/intensity.
The upper (resp. lower) bounds result from Theorem 4.1 (resp. Theorem 4.2).

For various (A, AF) pairs, we numerically determine Jmax and Figure 4-5(a)

shows that, with AF fixed at 3000 veh/hr, Jmb,,y and I decreases as A increases.

This is intuitive: more frequent capacity disruptions leads to lower throughput. Fig-

ure 4-5(b) shows that, with A fixed at 1 per hr, sim and In decreases as AF

increases. This is also intuitive: larger capacity reduction leads to lower throughput.

Note that the throughput tends to be more sensitive to AF than to A. Indeed, as

shown in Figure 4-5(a), if A is doubled from I (the baseline) to 2 per hr, the upper

(resp. lower) bound is reduced by 7% (resp. 3%). However, if AF is doubled from

3000 (the baseline) to 6000 vehjhr, we can observe from Figure 4-5(b) that the upper

(resp. lower) bound is reduced by 35% (resp. 82%).

The gap between Jmax and lmax in Figures 4-5(a) and 4-5(b) result from the gap

between the necessary condition and the sufficient condition for stability.

4.4.3 Impact of correlated capacity fluctuation

So far we have assumed that the cell capacities in the two-cell freeway are independent.

Now we consider the case where the cells' capacities are correlated. We consider two

extreme cases as follows.

Case 1: Suppose that the capacities of both cells are identical for all t > 0. In

other words, the freeway has two modes {1, 2} associated with F = [6000, 6 0 0 0]T
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and F2
= [3000, 3 0 0 0]T. In this case, the transition matrix is

ACase [= -

By implementing Theorems 4.1 and 4.2, we obtain the following bounds for the max-

imum throughput:

7485 < Jmax < 8910[veh-mi/hrl.

Case 2: Suppose that the freeway always has exactly one incident in either cell.

In other words, the freeway has two modes {1, 2} associated with F1 = [6000, 3 00 0]T

and F2 = [6000, 30 00]T. In this case, the transition matrix is

Acae 2  ]

By implementing Theorems 4.1 and 4.2, we obtain the following bounds for the max-

imum throughput:

6720 < Jmax < 8910[veh-mi/hr.

In conclusion, even with the same average cell capacities (4500 veh/hr for both

cells), the freeway's maximum throughput estimated by the sufficient condition could

vary (in the order of 10%) due to spatial correlation. Therefore, compared to tradi-

tional approaches that assume independent cell capacities (e.g. [92]), our approach is

able to capture the effect of spatial correlation and possibly achieve better through-

put. In a related work [481, we have found that the extent of spatial correlation can

be quite significant in practice.

We finally note that, in some situations, the transition rate matrix A may not be

easy to calibrate. Analysis of the SS-CTM with partially known transition rates is

indeed a practically relevant question, but is beyond the scope of this paper. We refer
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readers to [1101 for more information on stochastic switching systems with partially

known transition probabilities.

4.5 Summary

In this chapter, we developed (i) a stochastic switching cell transmission model for

traffic dynamics in incident-prone freeways and (ii) easily checkable stability condi-

tions for the SS-CTM (Theorems 4.1 and 4.2). A sufficient condition for stability

is that the inflow does not exceed the spillback-adjusted capacity. A necessary con-

dition for stability is that a set of bilinear inequalities, which is derived from the

Foster-Lyapunov drift condition, admit positive solutions. Both conditions build on

a construction of a globally attracting and invariant set of the SS-CTM (Proposi-

tion 4.1). Using these results, we derive new insights for the impact of capacity

fluctuation on the upstream traffic queue length and the attainable throughput.

The results in this chapter motivated additional work in several directions. First,

we developed a calibration approach for the SS-CTM , and constructed an SS-CTM

for a section of the US Route 101 using real data [48]. Second, recent results on

network traffic flow models [46, 22, 20] makes possible the extension of our model and

method to the network setting, and to feedback-controlled systems, which naturally

leads to the topic in the next chapter.
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Chapter 5

Control Design for Highways Facing

Perturbations

In the previous chapter, we analyzed the performance of highways facing stochastic

capacity perturbations. In this chapter, we further consider the control design prob-

lem. We use a variation of the SS-CTM introduced in the previous chapter with

on-ramp buffers to capture the evolution of traffic. For control design, we formulate

a throughput-maximizing problem: the decision variables are the accepted demands

at on-ramps (demand management) and priority of on-ramp traffic with respect to

mainline (capacity allocation), and the constraint is the boundedness of the on-ramp

queues. Using the stability theory of Markov processes, we derive necessary and suf-

ficient conditions for bounded queues. We show that our stability conditions make

the max-throughput problem a mixed integer bilinear or linear (depending whether

the parameters of the Lyapunov function is solved or constructed) program. We also

show that the throughput-maximizing control scheme prioritizes an on-ramp only if

the capacity-demand margin of the on-ramp is smaller than that of the mainline, i.e.

the "margin criterion."

The rest of this chapter is organized as follows. In Section 5.1, we introduce the

stochastic traffic flow model and the max-throughput problem. In Section 5.2, we de-

velop sufficient conditions for stable on-ramp queues. In Section 5.3, we present the

MIBPL/MILP formulation and characterize optimal solutions of the max-throughput
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problem (the margin criterion). In Section 5.4, we present the results of the SR123/1210

simulation.

5.1 SS-CTM with control input

Now we consider a version of SS-CTM that is similar to that in the previous chapter,

but with two important differences. First, in addition to the upstream queue, we now

explicitly track the queues at the on-ramps 2,3,... , K as well. Second, we include

control inputs, including the accepted inflow at each on-ramp and the priority of each

on-ramp (with respect to the mainline), into the model and the subsequent argument.

Specifically, we consider a highway segment modeled as a compartmental system

of K mainline cells with on-ramp buffers and off-ramp exits, as shown in Fig. 5-1.

This model is based on [37, 45] with the exception this model also explicitly tracks

the on-ramp queues. We call buffer 1 the upstream buffer, and buffers 2 through K

the on-ramp buffers. The upstream buffer has a saturation rate R, = F1 (veh/hr),

same as the capacity of cell 1. The other on-ramp buffers have saturation rates Rk

(veh/hr). The other model parameters are defined in the same way as in the previous

chapter.

Off-ramps

buffer 1 cell 1 cell 2 cell 3 cell K-I cell K I

Mainline Q, () N (t) N2(t) N (t) ----- N,
------------------------------- __:_____ ------- ------I

buffer 2 buffer 3 buffer K-I

On-ramps 2  Q.() Q,(t)

Figure 5-1: A highway with K mainline cells and K on-ramp buffers.

The continuous state of the highway is x = (q, n), where q = [qi q2 ... qK]T is

the lengths of the on-ramp queues and n = [n1 n2 ... nKIT is the traffic densities

in the mainline cells. For simplicity, we assume that every buffer has an infinite size;

thus, the set of queue lengths is Q = Ri. Since the traffic density in each cell is

non-negative and upper bounded by the jam density nk" , the set of traffic densities
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is = [0, . By including on-ramp queues as state variables, we can explicitly

track performance (throughput) loss induced by capacity perturbations.

In our model, a control input is described by u = (v, w), where v = [vi V 2 ... vK]T

denotes the vector of inflows (i.e. the demands that are admitted into the mainline)

at the on-ramps, and w = [wi w 2 - - KT denotes the vector of priorities assigned

to the on-ramp traffic flows (with respect to the mainline traffic flow). Thus, in our

model, each cell-buffer pair has two control inputs. The first is Vk E [0, dk], the inflow

into the mainline from on-ramp k, where dk is the demand at the kth on-ramp (see

Fig. 5-1). From a practical viewpoint, vk = dk means that all the demand at on-ramp

k is admitted, and Vk < dk means that only a fraction of the demand is admitted. We

assume that any non-admitted demand is permanently rejected from the system and

not redistributed to other locations. We make this conservative assumption to focus

on how individual on-ramp buffers are affected by stochastic capacity perturbations.

Indeed, our results can be extended to the case of interacting on-ramp buffers which

can exchange traffic demand.1 Also, we denote d = [di d2 ... dK T.

The second control input wk denotes the priority of inflow from buffer k with

respect to the mainline. Specifically, Wk = 1 (resp. Wk = 0) means that the inflow

from the kth on-ramp (resp. mainline) is prioritized over the flow from the mainline

(resp. kth on-ramp). From a practical viewpoint, prioritizing the kth on-ramp (i.e.

wk = 1) means that the flow from the kth on-ramp is not metered and is given full

priority over the mainline flow, and mainline priority (i.e. wk = 0) means that the kth

on-ramp is metered to give priority to the mainline flow. One can also view assigning

priority as a way of allocating highway capacity between mainline and on-ramp, or

distributing congestion on the mainline or queues at the on-ramps, as suggested by

Varaiya [99J.

'For example, instead of vk E [0, dk] for each k, we can impose the constraint 0 < 1 Vk

k=1 dk]-
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5.1.1 Stochastic capacity model

We again consider the class of Markovian capacity perturbations defined in the pre-

vious chapter. That is, the cell capacities stochastically vary over time according

to a finite-state Markov process over a set of modes denoted by I. The inter-mode

transition rates are {vij; i, j E I}. Every mode i is associated with a vector of

cell capacities F(i) = [Fi(i) -.. Fk(i)]T. For ease of presentation, we assume that

Fk(i) E {Fk, Fk - Ak} for each k and for all i; that is, the capacity of the kth cell

can only switch between two values Fk and Fk - Ak, where Ak > 0 characterizes

the intensity of capacity perturbation. We assume that the Markov chain governing

the the mode transition process {I(t); t > 0} is ergodic and associated with a unique

(row) vector of steady-state probabilities p = [po p -- - , pm] such that

vig pi = uipj vi E- T, lp= 1, p > 0. (5.1)
j G1 jE2E

The main results (Theorem 5.1 and Proposition 5.1) apply to this general class of

capacity perturbations. In addition, we also derive particular results for two specific

types of capacity perturbations of practical interest, which we introduce below.

vpv 0 =A 0 v-
v 10 -P~

1 vGDy 2 3 . K

(a) Stationary (b) Moving bottleneck.
hotspot.

Figure 5-2: Markov chains for the stochastic capacity models.

Stationary hotspot: Consider the setting where the Kth cell represents a highway

section that recurrently experience capacity-reducing incidents. Suppose that cells 1

through K - 1 have constant capacities, and only FK(t) is stochastic. In this case, we

call cell K as the stationary hotspot. When there is an incident in the Kth cell, its

capacity is reduced from the nominal value FK to FK - AK; for ease of presentation,

we assume that every incident leads to the same amount of capacity reduction AK.

To model the occurrence and clearance of incidents, we consider that the highway
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stochastically switches between a nominal mode "0" and a perturbed mode "1." The

set of modes is I = {0, 1}, and the cell capacities are given by:

Fk(z*) =Fk i = 0, 1, k = 17,1. K - 1,

FF
Fk-A i 1,

If the stationary hotspot faces incidents occurring at a rate A [hr 1 ] and clearing at

rate y [hr 1 ], one can represent these transitions as switches of the mode I(t) from 0

to 1 (resp. 1 to 0) at rate A (resp. p).

Moving bottlenecks: This perturbation model is relevant to highway sections that

face recurrent congestion due to the presence of slow vehicles [26] or, in a proposed

scenario, heavy-duty vehicle platoons [491. These slow vehicles or vehicle platoons act

as randomly moving bottlenecks for the regular traffic. In our model, we represent the

initiation and movement of these bottlenecks by introducing mode switches between

a nominal mode "0" and a set of perturbed modes "1", "2," ... , "K", where mode

"k" means that the moving bottleneck is in cell k. Then, the set of modes is I -

{o, 1,... , K}, and the mode-specific cell capacities are given by

Ek Fk -Ak, ik, kKFkai= Ex-4 ~ , k=1,...,K.
Fk, O.w.

Following standard analysis approach [771, the randomness in the arrival of moving

bottlenecks can be approximated as a time-homogeneous Markovian arrival process

with rate A. In addition, to account for the randomness in the movement of bottle-

necks through the highway, we assume that the time that a moving bottleneck spends

in a cell is an exponentially distributed random variable with mean 1/p. Furthermore,

for simplicity, we assume that, for each time t, at most one moving bottleneck can be

present in the highway. Under these assumptions, the mode 1(t) evolves according to

a Markov chain with transitions illustrated in Figure 5-2(b): as a moving bottleneck

enters and moves through the highway, the mode switches from "0" to "1'" to "2", and
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so on; as it leaves the highway, the mode switches from mode "K" back to "0."

5.1.2 Traffic flow model

We now describe the stochastic switching cell transmission model (SS-CTM, see

[451) as shown in Figure 5-1. We use (i, x) = (i, q, n) to denote state variables and

(I(t), X(t)) = (I(t), Q(t), N(t)) to denote (hyrbid) stochastic process. Following this

convention, we let Qk(t) be the queue length in the kth buffer and Nk(t) denote the

traffic density in the kth cell at time t. Let Q(t) = [Q 1(t), ... , QK(t E Q and

N(t) = [N 1(t),... , NK(t)]T E K, where Q = [0, OO]K and K = I-1 [0, ni']. For a

fixed control input u = (V, w) E [0, d] x {0, I}K, the stochastic dynamics of the mode

I(t), the on-ramp queues Q(t), and traffic densities N(t) can be written as follows:

Pr {I(t + 6) =j|I(t) = i, I(s), s < t} V6 + o(6) i,j E : jE i, (5.2a)

Q(t) = G(I(t), X(t), u), (5.2b)

N(t) = H(I(t), X(t), u), (5.2c)

where G : I x (Q x K) x ([0, d] x {0, I}K) __ RK and H : I x (Q x K) x ([0, d] x

{0, I}K) _+ RK are vector fields governing the dynamics of on-ramp queues and cell

traffic densities to be developed below.

For each cell k, the sending flow Sk and the receiving flow Tk can be written as

follows:

Sk(i, X) := min{caknk, Fk(i)} k = 1, 2, ... , K, (5.3a)

Tk(x) := Ok(n" - nk) k = 1, 2, .1 K, (5.3b)

where Sk is the traffic flow that cell k can discharge downstream and Tk is the traffic

flow from upstream that cell k can accept. Following [241, we assume that

Fk ak ma n+. (5.4)
o'k + Ak
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For k = 1, . . . , K - 1, let Pk E (0, 1] denote the fixed mainline ratio, i.e. the fraction

of traffic from cell k entering cell k + 1; the remaining traffic flow leaves the highway

at the kth off-ramp. Since the mainline ends at cell K, we have PK = 0. In addition,

we define

= 1 k = 1,2..., K, (5.5a)
k2 -1

P : Ph 1 < ki < k2 - 1, k2 =2,3,...,K. (5.5b)
h=ki

Note that p can be viewed as the fraction of the flow out of cell k, that eventually

go through cell k 2 .

We assume that every on-ramp isa fluid queueing system with an infinite buffer

size [46]. That is, the sending flow from the kth buffer is given by

Dk(x, u) minfV, RI qk = 0, k = 1,..., K.R{ mo~, . w.

The flow rk (resp. Fk) discharged by the kth buffer (resp. cell) is defined as

follows:

rk(i, x, u) := min Dk(X, u), (Tk(x) - (1 - wk)Sk(i, Zx) k= 1,2, ... , K, (5.6a)

fk (Z, x, u) =min Sk (i, X), (Tk+ 1(X) - Wk Dk+ 1(Z, X) k = 1, 2, . .,K - 1,

(5.6b)

fk(i,X,u) = SK(i,x). (5.6c)

where (-)+ stands for the positive part. In the above, we make the standard assump-

tion that the Kth cell is not constrained from downstream [371. One can see from

(5.6a)-(5.6c) that the priority Wk determines whether the available receiving flow Tk

is first allocated to the on-ramp (Wk = 1) or to the mainline wk = 0.

We say that cell k is experiencing spillback at time t if Sk(t) < Fk(t), i.e. if the
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sending flow from cell k is strictly less than the actual flow. We say a buffer (resp.

cell) k to be congested at time t if Qk(t) > 0 (resp. Nk(t) ;> Fk/cak, where Fk/ozk is

the critical density [371). Then, we say that buffer k is a bottleneck at time t if buffer

k is congested but cell k is not, and that cell k is a bottleneck at time t if cell k is

congested but cell k + 1 is not.

Remark 5.1. Our notion of bottlenecks can be viewed as a time-varying extension

of the static notion of bottlenecks considered in /37]. The authors of /37 consider a

setting with constant demand and constant capacities, and thus the highway converges

to a particular congestion pattern. In our model, a particular congestion pattern can

recurrently occur and terminate because of the occurrence and clearance of capacity

perturbations.

Then, the vector fields G and H in (5.2b)-(5.2c) follow from mass conservation:

Gk(i, x, u) := Vk - rk(i, X, u) k = 1, ... , K, (5.7a)

H1 (i, x, u) : ri(i, x, u) - fi(i, x, u), (5.7b)

Hk(i, x, U) := pk1fk-(i, X, u) + rk(i, x, u) - fk(i, x, u) k = 2,... , K. (5.7c)

5.1.3 Control design problem

We now introduce two definitions that are required for formulating the max-throughput

problem, viz. stability and throughput.

For a given control input u = (v, w), we say that the SS-CTM is stable if the

limiting time-average on-ramp queues are bounded; i.e., there exists Z < oc such

that for each initial condition (i, q, n) E I x Q x M,

1 *t
lim sup - E[IQ(s)lds < Z. (5.8)

t-400 t J0

This definition follows the notion of stability considered by Dai and Meyn in the

context of fluid queuing systems [271.
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We say that a demand vector d is feasible if there exists a stabilizing control input

u = (v, w) such that v = d, and infeasible otherwise.

Instead, our stability analysis in Section 5.2 focuses on deriving a sufficient con-

dition in the form

C(u, 6) < 0 (5.9)

where C is a vector-valued function. Note that C may contain auxiliary variables 6

(taking value in some set E) that do not show up in the objective function. Thus,

the set of u satisfying C(u, 0) < 0 is a subset of stabilizing control inputs.

Next, for a given control input u = (v, w), throughput is defined as the time-

average off-ramp flows discharged by the highway:

J :=lim(1 - pk)Fk (I (s), Q (s), N (s) ) ds.:_ o li s= k=1

Direct computation of the above limit involves integration of traffic flows, which

evolve according to non-linear stochastic dynamics, and is thus not easy. However,

we note that, if the on-ramp queues are stable in the sense of (5.8), then, by mass

conservation, the time-average flow out of a cell becomes equal to the time-average

flow into the cell almost surely (a.s.):

k
lim - fk (I(s), Q(s), N(s)) ds = pvh a.s. k = 1, 2,... , K.

t 00t S-0h=1

Thus, we can rewrite the throughput as

K K _ K K(K Kh
J Z Z(1 - pk)pf h= ((1 - Ph)Pk V = ZVk. (5.10)

k=1 h=k k=1 h=k k=1

We can now rewrite the max-throughput problem (PO) as follows:

K

max E V(
k=1
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s.t. C(u, 0) 0,

U E [0, d] x {0, 1}K, E 0. (5.11)

Finally, we say that u is feasible w.r.t. (P) if u is a feasible solution to (P).

5.2 Sufficient condition for stability

In this section, we develop a sufficient condition for the boundedness of on-ramp

queues that can be expressed as (5.9). To state the main result (Theorem 5.1), for

each control input u = (v, w), we define a finite set of states V(u) C Q x .N:

K

V(u) U (fq x nfJrk(q>,jkj (5.12)

qEflf{qk,4} k=1

where

q: 00 if vk>Rk k=1,...,K, (5.13a)
0 o.w.

_fvl/ca 1  if q, =0
_i1 (q) : / (5.13b)

F 1/ai, o.w.

iRk (q) - min{pk-iNik1 + Vk/ak, Fk/ak} if qk 0 (5.13c)
min{pk-nk 1 + Rk/ak, Fk/ak} o.w.

fK nrnx - min FK(i)/OK, (5.13d)

Fk:= min , max mini Fk(i) max _ Ok+1(nkm+ - 92k+1) - k+1Wk+1

S akk k Pk/k

k = K - 1, K - 2, , 1, (5.13e)

0 if Vk < Rk and Vk < A (nmax - flk) - (1 - wk)pkl1 min{aklk-1 , Fk}
4k :=

00 o.w.

k =1,. .. , K. (5.13f)
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Note that qk, qk, Pk, nk all depend on the control input u; for notational conve-

nience we do not explicitly write them as functions of u. We will elaborate on the

interpretation of V after stating Theorem 5.1. Furthermore, define

Vo(u) = {(q, n) E V(u) q = 0}, (5.14a)

Vi(u) = {(q, n) E V(u) q - 0}. (5.14b)

In addition, let us define e to be a K-dimensional vector of l's, and define a constant

matrix D = (dkh) E RKxK such that

dkh 1 if k = h=l or h=k -1, (5.15)
0 o.w.

Then, we can state the sufficient condition for stability as follows.

Theorem 5.1 (Stability condition). Consider a K-cell SS-CTM with a set of modes I

with a demand vector d E RK. For a given control input u = (v, w) E [0, d] x {0, 1}K,

the SS-CTM is stable in the sense of (5.8) if there exist a symmetric K x K matrix

A satisfying

akh > ak+1,h k = 1, ... ,K-1, h = 1,...,K, aK,K > 0 (5.16)

and a set of K-dimensional vectors {b); i C I}, which jointly verify the following set

of inequalities linear in A and b():

A(DG(i,x,u) +H(i,x,u)) +Zvij (b0) - b-) < -e V(i,x) E I x V1(u). (5.17)
jel

For a given control input u, the vector fields G and H are fixed, and thus the

inequalities (5.17) are linear in A and 0). In addition, the cardinality of the set

I x V1 is upper-bounded by 22 Km. That is, checking (5.17) entails checking no

more than 22Km inequalities. Furthermore, for practical instances of the SS-CTM,

the cardinality of I x V1 is typically smaller than this upper bound, and therefore
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the model is still tractable as we show in the subsequent Examples 5.2 and 5.3. As

we will show in the next section, (5.17) is essentially a system of either linear or

bilinear inequalities (depending on whether A is variable or not) and can be solved

using existing computational tools [97]. In this chapter, solutions of inequalities are

obtained using YALMIP [71].

Theorem 5.1 specializes a more general result on the stability of continuous-time

Markov processes [74]. To conclude stability, the generic result in [74] (to be recalled

in Section 5.2.2 as the "Foster-Lyapunov criterion") requires that a "drift condition"

is verified everywhere over the hybrid state space I x (Q x K). Essentially, the drift

condition involves checking that the time derivative of an appropriately chosen Lya-

punov function is negative in expectation for those states far away from the "origin",

i.e. the states (q, n) such that qk = 0 for each k. To prove Theorem 5.1, we choose

a switched quadratic Lyapunov function V : I x (Q x K) -+ R that is specifically

tailored to the SS-CTM:

1
V(i, x) -(Dq + n)TA(Dq + n) + (b(i))T(Dq + n). (5.18)

2

We require the matrix A in the above to satisfy (5.16) to ensure that

(i) V is norm-like, i.e. lim1jo1 *O V(i, x) = oc for each i E I, and

(ii) V decreases as traffic moves downstream through the highway, i.e. for each

i Ei, each kc {1,...,K- 1}, each > 0, and each (q,n),(q',n') E Q xKr

such that

q = q,

nk = n' + 5 , nk+1 = n+1 , h = n/ Vh {k,k + 1}

we have V(i, q, n) > V(i, q', n').

Recall from Fig. 5-1 that both buffer k and cell (k - 1) are immediately upstream

of cell k; thus, the traffic out of buffer k and the traffic out of cell k - 1 merge with
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each other and cannot be further distinguished in our model. This feature of the SS-

CTM is captured by the Lyapunov function which equally penalizes qk and nr-I for

k = 2,. . . , K thanks to the structure of D. Also note that the vector 0 depends on

the mode i while the matrix A does not; thus, the second terms in (5.18) captures the

impact of mode transitions. Finally, we do not need to restrict the range of b0, since

only the differences between them is involved in (5.17); one can always set b0 > 0 to

ensure that V > 0 (if necessary).

By choosing the Lyapunov function as defined in (5.18), we can conclude that

verifying the drift condition reduces to checking the feasibility of the system of linear

inequalities (5.17). More importantly, we only require checking feasibility of this

system for the finite number of states in the set V. Note that straightforward use

of the generic result in [74] for the SS-CTM would require checking the feasibility of

(5.17) everywhere over Q xA, which essentially requires maximizing the left-hand side

of (5.17) over Q x K; this maximization is a non-linear and non-convex optimization

problem. Theorem 5.1 addresses this challenge by exploiting the cooperative property

(in the sense of [39]) of the SS-CTM dynamics in each mode. Using to this property,

we are able to find a globally attracting and positively invariant set of the continuous

state x = (q, n) as follows:

K

M(u):= U {q} x YJRk(q),1]) (5.19)

k=S Nk

Note that M(u) only involves the mode-specific capacities F(i) (see (5.13b)-(5.13f)),

but is independent of the transition rates vi.

One can see from (5.18) that V is the (finite) set of vertices of M. We also say

V to be a set of critical states, since they represent typical congestion patterns that

can recurrently happen due to capacity perturbations. For example, if n k < Fk/ak <

hk, then we can conclude that cell k recurrently switches between congestion and

free flow. By looking at the critical states, we can identify the bottlenecks that

capacity perturbations can recurrently induce. We emphasize here that a bottleneck

is not always a location of capacity perturbation. Due to spillback, even after a
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perturbation clears, traffic can still be stuck in an upstream cell/buffer, which we call

an induced bottleneck. The critical states clearly show where the induced bottlenecks

are. Example 5.1 illustrates this point.

Remark 5.2. M(u) is a generalization of the invariant set proposed in [45], which

does not consider the impact of on-ramp queues q2 ,. .. , qK-

To prove Theorem 5.1, we show that M is globally attracting and positively

invariant (Section 5.2.1) and then argue that verification of the drift condition reduces

to finding a feasible solution to (5.17) (Section 5.2.2).

5.2.1 Invariant set

Following [9j, a set A C Q x K is a globally attracting and positively invariant set

for the continuous state (q, n) if

(Attracting) V(I(0), Q(0), N(0)) C 1 x Q x K, Ve > 0, ]T > 0, Vt > T,

min II(Q(t), N(t)) - (q, n)|112< <, (5.20a)
(q,n)EA

(Invariant) V(I(0), Q(0), N(0)) E I x A, Vt > 0, (Q(t), N(t)) E A. (5.20b)

Intuitively, A is a set of states such that, for all initial conditions (i, q, n) E I x Q x K,

the process (I(t), Q(t), N(t)) eventually enters and does not leave A. For convenience,

we henceforth refer to any set satisfying (5.20a)-(5.20b) simply as an invariant set.

Lemma 5.1. The set M(u) as defined in (5.19) is globally attracting and positively

invariant.

With this result, for stability analysis, we can restrict our attention to the evolu-

tion of the continuous states over the invariant set M instead of the entire continuous

state space Q x K.

Proof of Lemma 5.1. Consider a given control input u = (v, w). One can adapt

the proof of [45, Proposition 11 and show that the set M = [0, OO]K X Hjl nk(0), TkI

is globally attracting and positively invariant. Note that M C M. In this proof, we
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refine A and eventually obtain the invariance of M. The refinement is done in three

steps:

1. [0, oC]K X lk( k to FIqk, X k,

2.G-aak 1 hk= (0,k I k =1 qk, k X k=1 k 0, ,
2. fljK 1 [q k, 00c]FI 1 [~Lrk (), ik I to HK t1 [q k,qk] X _1 1_a 0,7k

3. 1 [qk, qk] X kf 1[1k(0),k] to Uf {q} X 1 K

Step (1). For the k-th buffer, if Vk > Rk (and thus q k = o according to (5.13a)),

then for any initial condition (i, x, u) E I x M, we have limt÷, Qk(t) = oo. Hence,

the following set

K

[, 0 0 ]k~1 X {oo} X [0, 0 0 ]K-k X H h (0), 1h
h=1

is attracting and invariant. Repeating the above argument for each k, we conclude

that the following set

K K

M 1 =J[qk, o] X [Jt[i k(0), hk]
k=1 k=1

is attracting and invariant.

Step (2). For the k-th buffer, if Vk < Rk and vk < !k(nk--ik)-(1-k)pk-1 min{ak_-ilk_1, Fk1}

(and thus qk = 0), we have

Gk(i, x, U) = Vk - r(i, X, u) = Vk - min{1q=olVk + l(q>o}Rk, /3 (nmax - nk) - Pk-lfk-1(i, x, u)}

Vk - min{1{q=Ovk + 1{q>oRk , k(nf - Uk)

- (1 - Wk)pk_1 min{ak lkl1, Fk_1}}

K

if n2 E H[E h (0), ih]
h=1

< 0 if qk > 0.

Hence, the set

[0, 0O]k-1 X {0} x [0, 1O]K-k x
K

]IJ[itk(0), 72k]
k=1
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is attracting and invariant. Repeating the above argument for each k, we conclude

that the following set

K K

A42 = fj[0, qk I X f [Z k (0), A k
k=1 k=1

is attracting and invariant. Then, we conclude that M1 n M 2 is attracting and

invariant.

Step (3). We complete this step by showing (i) Al is attracting for each initial

condition (q, n) E (Al 1 n A4 2 ), and (ii) Al is invariant.

Step (3i). First, we consider the case that qi = oc. For each q E (A41 n A4 2) such

that qi > 0, we obtain from (5.13b) that

i 1 (q) = R1/a 1 .

Then, for each i E I and each (q, n) C {(C,() E (Al 1 n A 2) > 0, (1 < nI()}, we

have

H(i, x, u) = R- min {cin #82 (nm" - n2 )

Pi
> R1 - aini

> R1 - ain1 (q) = 0.

That is, for each (q, n) E {((, () E (M 1 n / 2 ) :i > 0, (i < n()}, the vector field

H has a strictly positive component pointing to the set

K

[a 1(q), i] x fJ[Zk(0), k].
k=2

Therefore, the set

Ml= UCM qu( M)
q(. 002).

q, =0

({q} x f1Jmk(0),k1)
\ k=1 /
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is attracting, where the subscript el = [1 0 .. O]T.

Next, for each z E I and each (q, n) E {(E, ) E M' : ' > 0, (2 < n 2()}, we have

H2(i, x, u) = pifi(i, x, u) + r2(i, X, u) - f2 (i, X, U)

= min {pi min{aiini, F1(i)} + r2 (q, n), 0 2 (na - n2 )}

-03(n23 - n3) - r3 (,, X, U)
- min a2n2, F2( )

P2

> picini(q) + v2 - f2n2 > pivn,(q) + v2 - C2R2 (q) 0.

That is, for each i E I and each (q, n) E {(, () E M I: > 0, (2 < n 2(()}, the

vector field H has a strictly positive component pointing to the set

2 K

7Jhk(q),Til1 x 7J[nk(O),Tik).
k=1 k=3

Therefore, the set

A4= Uj 1 x il[n(r),ffl

qE(Cin) 2): k=
qi=0

2 K

U ^U - fqj x fj z1(q),jn1] X 1111(0041

qE(min-A2). k=1 k=3
qj >0

is attracting.

Similarly, for each i E I and each (q, n) E M, we can show that H has a strictly

positive component pointing to the set H$Ik [(q), fk] x H k=k+2[k(0),jkIk, and thus

the set

h K

Mi=U jqj X 11lak(O),741
q E ( 1n 2 )k

qi =0
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h K

u U (q x K[Z1(q>,i1] x f nk(0>,w!k
qC(MllM2): k=1 k=h+1

q1>0

is attracting. Repeating this argument, we obtain that the set

Mq= U X\Lx H>la(O>,Jkj u ({q} x f[Z1(q>, 1f .

qE($inM2): k=1 qE()Cin,/(2)- =
q1=0 qi>0

is attracting.

By analogous arguments, we can show that, for every h such that qh = oo, the set

K UK U UK

MU (q} X [mk(O>, ) (u U x [z1()>,k1]-
qE(Mf1M2): k=1 qE( 1 2)

qi= 0  
qh >0

is attracting.

Since M l=l1 Mk, we conclude that M is also attracting.

Step (3ii): One can prove the invariance of M by adapting the proof of [45, Propo-

sition 121 and considering the direction of the vector field H on the boundary of M.

N

Note that the invariant set M may or may not be bounded: M is bounded if

and only if qk = 0 for all k. A bounded invariant set immediately imply stability of

the SS-CTM. Thus, we only need to focus on the case where M is unbounded, i.e.

k = oc for some k; see (5.13f). If the invariant set M is unbounded, then we need

to show that the drift condition holds everywhere over the invariant set M.

Next, we interpret the invariant set M as well as the critical states V via a practical

example.

Example 5.1. In this example, we consider the South Mountain Avenue on-ramp to

1210 East-bound in Monrovia, California, USA as shown in Fig. 5-15. Suppose that

the mainline is subject to capacity perturbation that randomly occur and terminates.
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The average time interval between two incidents is 1 hour, and the average duration of

an incident is 0.5 hour. The mainline nominal capacity is 9850 veh/hr, the capacity

reduction is 1970 veh/hr, and the on-ramp capacity is 3000 veh/hr. Fig. 5-4 shows

Figure 5-3: Traffic control for a stationary hotspot on 1210.

the SS-CTM for this highway section. Calibrated parameters are listed in Tab. 5.1; see

: buffer Cell I ell 1

Mainl ine

bulTcr2 / r.t)
On-rap)I

Figure 5-4: The SS-CTM for the highway section in Fig. 5-12.

[42] for details about the simulation model. For ease of presentation, we only illustrate

the invariant set and critical states in the case without metering (i.e. w 2 = 1); the

case of w 2 = 0 can be similarly illustrated.

Table 5.1: Parameters of the SS-CTM shown Fig. 5-4.

c'k Fk, Rk Ak n

Cell 1 108 km/hr 7360 veh/hr 1840 veh/hr 494 veh/km
Cell 2 111 km/hr 9850 veh/hr 1970 veh/hr 661 veh/km
Buffer 1 N/A 7360 veh/hr N/A N/A
Buffer 2 N/A 3000 veh/hr N/A N/A

Suppose that cell 2 is a stationary hotspot

constant capacity. That is, the two-cell model

mode-specific cell capacities are

for perturbation, while cell 1 has a

has two modes I = {0, 1}, and the

F(0) = [7360 9 8 5 0 ]T, F(1) = [7360 7 8 8 0 ]T.
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Furthermore, we assume the mode transition rates to be

A = 1[hr1], p =1[hr-1],

where A (resp. p) is the occurrence (resp. clearance) rate of capacity perturbations;

see Fig. 5-2(a). The control input v = [7000 1 0 0 0 ]T, w = [1 1 ]T is used in this

example; we will show in Example 5.2 that this control input is stabilizing.

q1 =0, q2 =0 q1 > 0, q2 =0
400 x x i r '

invariant set
350 N 4 \-+H(0,q,n)

N4+H(1, q, n)300 - _-critical density
257 o critical states

200

-150

100 -~

0 100 200 300
ni [veh/km]

(a) M0 = {[0 O]T } x H2= [nk(0),rik]

Figure 5-5: The vector field, the invaria
model with a stationary hotspot.

One can obtain from (5.13a) and (5

Fig. 5-5 shows the vector field H(i, x, u)

n) as well as the set [n1,ii1] x [n 2 , i 2] 0

[0, ni".2 Hence, the invariant set is

2

M(u) = 0]T} x ll[_ k([0 0]T), hk]
k=1

and the sets of critical states are

2

VO(u) = {[0 0]T} x JJ{lk([0
k=1

2Visualization of the vector field G(i, x, u) c
depends on the specific value of n.

400 invariant set
350 +- H(0, q,n)

+, 1 ,H(1, q, n)
300 '14 -critical density
250 o critical states~250-
200-

150

100 ___________

0
0 100 200 300

ni [veh/km]

(b) M1  = ((, oo] x {o}) x
k= _[nk([oo,01T), Ak]

nt set, and the critical states of the two-cell

.13f) that q 1 = q2 = q2= 0, while q1 = oo.

(governing the evolution of traffic densities

n the two-dimensional plane Af = [0, nm] x

2) ((0, oo] x {o}) x fl[nk([oo 0]T), 'h]
k=1

O]T), Ak} = {V0,1, V0 ,2 , V0,3, V0,4 }

wer the plane Q = [0, oo]2 is not easy, since G also
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2

V1(u) = {[oo 0]T } x 71 {k([oc 0]T), nk} = {Vi,1, V1,2, V1,3, Vi,4}
k=1

where vO, 1 -v 1 ,4 are indicated in Fig. 5-5. This invariant set M is unbounded. To see

this, note that the total inflow v 1 +v 2 is greater than the perturbed capacity (F 2 - A2);

hence, if the capacity perturbation lasts sufficiently long, which can always happen

with a positive probability (as long as p > 0), then the total number of vehicles

IQ(t)I+IN(t)| in the system can grow arbitrarily large.
------------ I------------- - ---------------

bufferI celI l2 1 bufe1 cell I cl bufeI cell I cel I

5() hddcells/cfersar buffersted. l : ifr

------- ------ - --------- ----

---------- I-------- ----- ------

bitiffaer 2 e buffer 2 bufer 2,

(a) Possible (V1, 3, VI, 4 )i (b) Possible (vi,,-V, 2 ). (c) Impossible.

Figure 5-6: Congestion patterns associated with the critical states indicated in Fig. 5-
5(b). Shaded cells/buffers are congested.

The critical states imply the following. First, cell 2 may be recurrently congested,

which means that cell 2 is a bottleneck (see Fig. 5-6(a)); this situation is captured by

the trivial states in Fig. 5-5(a) and non-trivial critical states v 1,3 and v1,4 in Fig. 5-

5(b). Second, it recurrently happens that cell 1 is congested but cell 2 is not; that

is, although cell 1 does not directly experience capacity perturbations, this cell is an

induced bottleneck. This situation is captured by the critical state v1 ,1 and v 1 ,2 in

Fig. 5-5(b) and illustrated in Fig. 5-6(b). Third, if buffer 1 is congested, cell 1 is

necessarily congested. That is, buffer 1 is never a bottleneck, and the situation in

Fig. 5-6(c) does not happen.

5.2.2 Verification of drift condition

Now we verify the drift condition for the Lyapunov function V defined in (5.18) for

the SS-CTM dynamics and utilize the Foster-Lyapunov criterion to obtain stability.

To formally state the Foster-Lyapunov criterion, we recall that the evolution of the
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process (I(t), X(t)) = (I(t), Q(t), N(t)) is captured by the infinitesimal generator of

the traffic flow dynamics [451. Since I(t) is a Markov chain and since Q(t) and N(t)

are always continuous in t, this process is right-continuous with left limits (RCLL).

Hence, by [9, Proposition 2.1], for a given control input u = (v, w), the infinitesimal

generator can be written as an operator L as follows:

LV(i, x) = GT(i, x, u)VqV(i, x) + HT(i, X, u)VnV(i, X) + v V(j, ) -- V(i, x))
jE1

(i, X) E I x (Q x /V), (5.21)

where VqV (resp. VnV) is the gradient of V with respect to q (resp. n). With the

above definition, we can state the generic result [74, Theorem 4.31 as follows:

Theorem (Foster Lyapunov criterion [74J). For an RCLL Markov process

with state { and invariant set E, if there exist a norm-like function V : B -+ IR>o, a

function g : E -+ R>O, and constants e > 0 and Z < oc such that

(Drift condition) LV( ) < -eg( ) + Z V E E, (5.22)

then, for each initial condition E B,

1 *t
limsup - S[g( (s))]ds Z/e. (5.23)

t-+O) t s=0

It turns out that we can conclude that the SS-CTM is stable if the drift condition

(5.22) can be verified over the set of critical states V instead of the invariant set M.

The key is to show that V contains the states where the expected time derivative of

the Lyapunov function attains its maximum, i.e. where the rate of traffic discharge is

minimal. Verifying the drift condition is straightforward over V0 , but requires more

work over V,.

Our task is to show that (5.17) is sufficient for verifying the drift condition (5.22)

with g(i, x) = |qj. Suppose that there exist a matrix A and vectors b) that satisfy
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the conditions in the statement of Theorem 5.1. Consider the invariant set M as

defined in (5.19). By (5.2b)-(5.2c) and (5.21), for a given control input u = (v,w),

we have

LV(i, x) =(DG+ H)TA(Dq + n) + (b(0))T(DG + H) + E vi (b0) - b() )(Dq + n)
iE1C

= ((DG + H)T A + :vij (bi) - bi) )T (Dq + n) + (b(0))T (DG + H).

(5.24)

Since Gk and Hk are bounded, we can define a constant

K

W := (maxlb) | (Rk + pkFk)
ikk)k=1 k

and obtain that

K
)T 

(5.15)

(b(0)T (DG(i,x,u)+ H(i,x,u)) < rnaxb() |(Gk + Hk)
k=1

(5.7a)-(5.7c)

< maxlbI(vk -T k(X,U) + pk-1fk-1(i,X,U)+ rk(X,U) - fk(i,x,u)

k=1

(5.6a) -(5.6c) ) K
< an xb() (Rk +pkF) W V(i, x) cI x (Q x .A). (5.25)

( i~k k k=1 k+P~)=W V

Here, we utilize a technical result;

Lemma 5.2. If (5.17) holds, then q k = 0 for q = 1,... , K.

Proof. Suppose that (5.17) holds for a given control input u = (v, w). Then, the

invariant set is M(u) and the set of vertices is V(u). Assume by contradiction that

there exists k such that q k o. By (5.13a), this means that uk > Rk. Consider the

state x' = (q', n') = ([q 1 -. q K] T , f I .'K T). Since qk= o= , (q', n') E V1. By

the proof of Lemma 5.1, Gh(i, x', U) > 0 and Hh(i, x', u) > 0 for h =1,.. ., K and for

each i E I. Then, for each h E {1, ... K}, letting i' = arg minb W), we can expand
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the hth row of (5.17) as follows:

K

ahj,(Gl(i', x', u) + G2 (i', x', u) + H,(i', x', u)) + E ah,f(Gj+1(i', x', u) + He(i', ', u))

+~ ve(b) - b("
jEI

> 0 + >v3 (b - b() ;>v (b()
jEI jEI

which contradicts (5.17).

-b(") 0,

M

Thus, we can partition M into two subsets:

Mo(u) := {(q, n) E M(u) : q

MA1(u) := f{(q, n) E AM(u) : q ' 0}.

Note that VO and V1 as defined in (5.14a) and (5.14b), respectively are the vertices

of M0 and M 1, respectively.

The rest of this proof has two steps for verifying the drift condition over MO and

M 1 , respectively:

Step 1: For each (q, n) E MO, since MO is a bounded set, there exists Zo < oc such

that

((DG + H)T A
+ 3vip(b0)

jEI

- (Dq + n) < Zo V(ix) E I x Mo.

Hence, we can obtain from (5.25) and the above that

LV(i, x) < Zo + W = -lql+Zo + W V(i, x) E I x M 0 .
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Step 2: For each (q, n) E M 1 and for h = 1, ... , K, note that

(DG + H)T

ah,

ah,2

ah,K

K K-1

ah,IVI + E ah,k-ivk - E
k=2 k=1

((ah,k - pkah,k+i)fk(i, X, a)

+ (ah,k - ah,k+)rk+1(X, u) - ah,KfK (i, X, U)

K K-1

< ah,1v1 + E ah,k-ivk - E(ah,k - ah,k+1) Pkfk(i X, U) + rk+l(x, u)
k=2 k=1

- ah,K fK (i, X, U) -

Note that (5.16) ensures that ah,k - ah,k+1 > 0 for k 1, . .. , K - 1. For each

q # 0, pklfkl- + rk is concave in n over the box 1 l [rk(q), ik] (see [45, Proof of

Theorem 21 for details). Therefore, pk-fk-1 + rk attains its minimum at one of the

vertices of the box, i.e.

K-1

min ( (ah,k - ah,k+1) (Pk k (i, X, U) + rk+1(X, U) + ah,KfK(i, x, i)
n~k=lEkf k=1

K-1

HKmin >E (ah,k
nE k1{!L~q, k -i=

- ah,k+) (Pk k (i, X, U) + 7k+ 1(, ) ) + ah,K fK (z, X, U) -

Then, we have

K

ak,v1 + E3 ak,k-1Vk
k=2

- K ((ak,k - Pkak,k+I)fk(i, q, n) + (ak,k - ak,k+i)rk+ (z, q, n)
k=1

- ak,KfK(i, q, n) + Evij (bj) - 0)
jEI

K

<ak,iv1 + E ak,k-vk - min
k=2 (q,n)EV1

+ Evij (b0) - b0) < -1 V(
jEI

(ak,k - ak,k+i) (Pkfk (z, X) + rk+i(z, x)) + ak,Kfk (i, X)

i,x) EIX M 1 .
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Thus, we can obtain from the above together with (5.24) and (5.25) that

LV < -eT(Dq + n) + W V(i, x) E I x M1.

Recalling the definition of D in (5.15), we have

LV < -Iql+W V(i, x) E I x M 1. (5.27)

Finally, let Z ZO + W, we can obtain from (5.26) and (5.27) that

LV(i, x) < - q|+Z V(i, x) E I x M,

which verifies the drift condition. This finishes the proof of Theorem 5.1.

5.2.3 Application of Theorem 5.1

Now we apply Theorem 5.1 to two particular scenarios of capacity perturbations,

viz. stationary hotspots and moving bottlenecks as introduced in Section 5.1.1, and

also evaluate the "sharpness" of Theorem 5.1, i.e. how large is the gap between

Theorem 5.1 and a necessary condition for stability of the SS-CTM.

Following [45, Theorem 1, a necessary condition for stability of the SS-CTM is

k 1 /
PhVh < E pi min Fk(i), (nax - minrik+1(q)) - }

h=1 
Pk

k = 1, , K - 1, (5.28a)

K

p Pv pFK(i), (5.28b)
h=1 iEI

vk Rk k = 2, ... ,K. (5.28c)

The necessary condition is based on the principle that if the on-ramp queues are

bounded, then the inflows v1 ,..., vK do not exceed the cell/buffer capacity. In the

setting of SS-CTM, this principle implies that for each cell (resp. buffer), the time-
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average inflow into the cell (resp. buffer) is no greater than the cell's (resp. buffer's)

time-average capacity. Furthermore, (5.28a) is refined with respect to the simple

average capacity, i.e. Fk Ejg piFk (i), to capture the impact of the receiving flow

of the downstream cell.

In general, there is a gap between the sufficient condition (Theorem 5.1) and the

necessary condition (5.28a)-(5.28c). For those control inputs lying in this gap, our

stability conditions do not give a conclusive answer to whether the SS-CTM is stable

or unstable. Factors affecting the size of the gap include (i) the particular form of

the Lyapunov function V, (ii) the tightness of the invariant set M, and (iii) the

model parameters. Here, we only discuss about (i); some discussion on (ii) and (iii)

is available in [45]. Particularly, we focus on how the structure of A affects the size

of the gap, or the sharpness.

When applying Theorem 5.1, one can consider A in (5.17) as an unknown to be

solved. For a given control input u, this involves solving a system of linear inequalities.

Alternatively, A can also be explicitly constructed using insights about the SS-CTM

dynamics. Although this practice may affect the sharpness of the sufficient condition,

this will make (5.17) easier to check, and thus make the max-throughput problem (P)

easier to solve. A simple construction is

ak,h = -y k = 1,., K, h =1, .. K, (5.29)

where -y is any constant in [1, oc). That is, the Lyapunov function V as defined

in (5.18) penalizes the on-ramp queues and mainline traffic densities equally. Con-

sequently, the Lyapunov function depends only the 1-norms of q and n (i.e. total

number of vehicles in the system) but not the spatial distribution of traffic over

various cells/buffers. This construction is suitable for a highway with a single or a

dominating bottleneck (see Example 5.2). An alternative construction is

awe = i kh k = his K, h = 1, ... ,to K, (5.30)

where -y is any constant in [1, oo). This construction accounts for the spatial distri-
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bution of traffic: the Lyapunov function will strictly decrease as traffic is discharged

downstream. Such a matrix A is suitable for a highway with multiple bottlenecks

(see Example 5.3). Next, we illustrate the stability conditions resulting from both

variable and constructed A matrices.

Example 5.2 (stability, stationary). Consider the two-cell highway with a stationary

hotspot, as described in Example 5.1. For ease of presentation, we only consider

on-ramp priority, i.e. w = [1 I]T, and only vary v = [vi v 2 ]T over the set [0, oo)2

(assuming infinite demands). To implement Theorem 5.1 for this highway, we need

to verify (5.17) over the set VI. That is, if there exist A, b), and bW) satisfying these

inequalities, then the on-ramp queues are stable.

We consider three candidate A matrices, viz. a matrix of unknowns to be deter-

mined, and those given by (5.29) and (5.30). For a given control input u = (v,w),

if A is also given, then we only need to solve (5.17) for b(0 ) and bl). Otherwise, we

can obtain A, b(0), and bW) by solving the linear inequalities (5.17) (note that u is

fixed for now). In addition, we can obtain a set of destabilizing inputs by checking

the necessary condition (5.28a)-(5.28c): if a control input u does not satisfy these

inequalities, then it is destabilizing.

The results are illustrated in Fig. 5-7 and the nomenclature of various regions is

in Tab. 5.4. Specifically, the union of regions 1-4 is the set of inflows v = [v 1 v 2]

that satisfy Theorem 5.1 (with a variable A) and are thus stabilizing. In addition,

every [v 1 v2 ]T in region 6 violates the necessary condition (5.28a)-(5.28c), and is thus

destabilizing. Finally, there is a gap (region 5) between the sufficient condition and

the necessary condition; for control inputs in that region, our stability conditions do

not give a conclusive answer.

Furthermore, every [v1 V2 ]T in region 3 verifies the stability criterion (5.17) to-

gether with a matrix A such that ak,h = 7kh, but does not verify (5.17) if ak,h = y.

In addition, in region 4, only a variable A matrix is able to verify (5.17). Therefore,

compared with a variable A, a matrix A such that ak,h = y only increase the unknown

region by a small size (union of regions 3 and 4). Hence, ak,h = y is an adequate

approximation to a variable A for this example.
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Figure 5-7: Stability of the SS-CTM with a stationary hotspot and with various

control inputs [v1 v2 ]T. The white and light gray regions are the stabilizing inputs,
while the black region is the destabilizing inputs. The dark gray region represents
the gap between the necessary condition and the sufficient condition.

Table 5.2: Stability of various regions in Fig. 5-7.

Region variable ak,h ak,h = y ak,h = ykh

1 Stable Stable Stable
2 Stable Stable Unknown

3 Stable Unknown Stable
4 Stable Unknown Unknown
5 Unknown Unknown Unknown

6 Unstable Unstable Unstable

Example 5.3 (stability, moving). Consider again the two-cell highway as described

in Example 5.1. Now, we consider moving bottlenecks instead of a stationary hotspot.

That is, the two-cell model has three modes I = {0, 1, 2}, and, according to Tab. 5.1,

the mode-specific cell capacities are

F(O) = [7360 9 8 5 0 ]T F(1) = [5520 9 8 5 0 ]T, F(2) = [7360 7 8 8 01 T.

Furthermore, we assume the mode transition rates to be

A = 12[hr-1], p = 12[hr-1],

which means that on average moving bottlenecks arrive at the highway every five

minutes, and the average time that a moving bottleneck spends in a cell is five minutes;
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see Fig. 5-2(b). Again, for various control inputs [v1 v2]T we apply Theorem 5.1 and

(5.28a)-(5.28c) to check stability.

The results are illustrated in Fig. 5-8 and the nomenclature of various regions is in

Tab. 5.5. Specifically, the union of regions 1-3 consist of the set of inflows v = [v1 v 2]

that satisfy Theorem 5.1 (with a variable A) and are thus stabilizing. In addition,

every [v1 v2 ]T in region 5 violates the necessary condition (5.28a)-(5.28c), and is thus

destabilizing. Finally, there is a gap (region 4) between the sufficient condition and

the necessary condition.

3500

-30001

2500

20002

1500

E10001

500 3

4000 4500 5000 5500 6000 6500 7000
Upstream inflow u1 ivph]

Figure 5-8: Stability of the SS-CTM with moving bottlenecks and with various control

inputs [vi v2 ]T. The white and light gray regions are the stabilizing inputs, while the

black region is the destabilizing inputs. The dark gray region represents the gap

between the necessary condition and the sufficient condition.

Table 5.3: Stability of various regions in Fig. 5-8.

Region variable ak,h ak,h = y ak,h = ykh

1 Stable Stable Stable
2 Stable Stable Unknown

3 Stable Unknown Unknown
4 Unknown Unknown Unknown

5 Unstable Unstable Unstable

Furthermore, every [v1 v2 ]T in region 2 verifies the stability criterion (5.17) to-

gether with a matrix A such that ak,h = -ykh, but does not verify (5.17) if ak,h = '.

In addition, in region 3, only a variable A matrix is able to verify (5.17). There-

fore, compared with a variable A, a matrix A such that ak,h = ykh only increase the
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unknown region by a fairly small size (region 3). Hence, ak,h 'Ykh is an adequate

approximation to a variable A for this example.

5.3 Formulation and analysis of max-throughput prob-

lem

By Theorem 5.1, we can formulate the max-throughput problem as follows:

K

max J = vk (P1)
k=1

s.t. A (G(i, x, u) + DH(i, x, u)) + E vu (b) - b(')) < -e V(i, x) C I x V (u),
jE(

(5.31a)

U E 0, d] X to, 1}K. (5.31b)

The decision variables of (P1) are u = (v, w), A, and b). Since G and H as well as

the critical states V(u) are non-linear in u, even with a given matrix A, (5.31a) is

non-linear in the u. In this section, we address this challenge by reformulating (P1)

such that it is

(i) a mixed integer bilinear program (MIBLP), with a linear objective function and

bilinear constraints, if A is variable, and

(ii) a mixed integer linear program (MILP) if A is given.

In addition, we derive some insights about the structure of optimal solutions to the

max-throughput problem.
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5.3.1 Reformulation

The main techniques involved in the reformulation include (i) substitution of G and

H with a new set of variables,

; W k -1,..., K, i E, yE {, 1}K\{}K, Z E 10, 1}K

and (ii) eliminate the cross-product term vkWk (as appears in (5.13e)) using the big-M

method. One can interpret fW and jF(j) as the cell/buffer flow evaluated at the

critical states. One can approximately interpret y and z as indices for the critical

states: Yk = 0 (resp. Yk = 1) corresponds to qk = 0 (resp. qk = oc or q > 0),3 and

Zk = 0 (resp. Zk = 1) corresponds to nk = Ek(q) (resp. nk = ik). We reformulate

(P1) as follows:

Proposition 5.1. (P1) can be reformulated as the following mixed-integer program:

K

max J = Vk (P2)

k=1

s.t. Vi E I, Vy E {0, 1}K\{O}K, Vz E {0, i}K,

K K-1

ah,ivi + Sahklvk - (a , - ah,k+1) (Pkf2,z + ,yz) - ahfkYZ
k=2 k=1

K

+ E vj(bj) - b() < -1 + >3 Miyak h 1, ... , K, (5.32a)
jEI k=1

Vk if yk = 0, k = 1,. .. ,K, (5.32b)

A, < Rk = K, (5.32c)

k-1

P < (min Fh(i)) + E pk VE + ,,
i=h+l

if zk = 0, h= 1,...,k - 1,k = 1,...,K, (5.32d)

k-i

PWVe + r if Zk = 0, k = 1, ... , K, (5.32e)

e=1

3 Note that yk = 0 (resp. Yk = 1) does not necessarily correspond to q = q k (resp. q = qk), since

sometimes q k = oc and qk = 0.
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FW (< F k = ,...,K (5.32f)

+fyz Pk 1,y, if Zk+1 1, k 1,..., K - 1, (5.32g)

Vk ~ fkyz - Pk-1fk 1,y,z + M2Wk + M2(1 - k) k =2,. .., K, (5.32h)

Vk f,+ M 2 (1 - Wk) + M2(1 - k) k = 2, ... ,K, (5.32i)

ak,h > ak+1,h k = 1,...,K - 1, aK,h > I h = 1, . .. , K, (5.32j)

v G [0, d], W E {0, 1}K, E O0, 1 }K. (5.32k)

In summary, the decision variables in (P2) are Vk, Wk, f,, , akh, and bk).

Note that Yk, Zk are not decision variables; instead, they are only notations intended

for a compact representation of multiple inequalities. If A is variable, then (P2) is

an integer problem with a linear objective function and bilinear constraints. If A is

given, then (P2) is a mixed-integer linear program (MILP).

Next, we interpret the constraints (5.32a)-(5.32k). Constraints (5.32a)-(5.32i) are

imposed for each i E I, each y E {O, 11K\{}, and each z E {0, 1 }K. (5.32a) is a

reformulation of (5.31a), where the vector fields G and H are replaced by critical-state

flows f_,W and Al , and the matrix product is expanded for every row of A. Thef ,y, z k,y ,

right-hand side of (5.32a) includes a big-M term, which means that this constraint

is active4 if and only if YkWk = 1 for some k. The auxiliary binary variable k results

from (5.13f), which we will elaborate on as we interpret (5.32h)-(5.32i).

(5.32b)-(5.32c) result from (5.6a), i.e. the definition of the buffer-discharged flow.

(5.32d)-(5.32g) results from (5.6c) and (5.13b)-(5.13e), i.e. the expression for the

flows and for the boundaries of the invariant set M. Specifically, (5.32d)-(5.32e)

result from i k; recall that Zk = 0 corresponds to n = r k. (5.32f) is the capacity

constraint. (5.32g) is associated with the receiving flow constraint, which is only

active if Zk+1 = 1, i.e. if nk+1 = hk+1-

(5.32h)-(5.32i) are associated with the expression (5.13f) for qk. The big-M terms

associated with 4k replace the cross-product term VkWk in (5.13e) (and carried over to

4By "active", we mean that the constraint is imposed (instead of that the constraint is binding);
by "inactive", we mean that the constraint is essentially a dummy one that does not affect the optimal
solution under any circumstances.
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(5.13f)). The auxiliary variable k serves the following purpose. If both (5.32h) and

(5.32i) hold with k = 1, one can obtain from (5.13f) that qk= 0, and thus qk = 0

for every (q, n) E V; therefore, we do not need to verify the drift condition at those

states where qk > 0 (i.e. Yk = 1), and (k will "inactivate" (5.32a) for those y such that

y = 1.

(5.32j) results from (5.16); this constraint is not needed if A is given. Recall that

b) do not need to be constrained (see Section 5.2).

(5.32k) indicates the set of admissible control inputs u = (v, w) and the auxiliary

decision variables 4. The auxiliary decision variables fdi and f are naturallyfk,y,z k,y,z arZ aual

constrained by (5.32b)-(5.32i) and do not need explicit range constraints.

In addition, for the big-M constraints, if A is variable, then we can use

M, = 2,

M2= max{Fk + Rk}.
k

If A is given, then we can use the following values:

M, = Kai,1 max Fk + 1,
k

M2= max{F + Rk}.
k

5.3.2 Structure of optimal solution

With a fixed A matrix, we are able to characterize the optimal solutions (under

particular assumptions) and thus derive useful insights for highway control. In this

subsection, we study how the structure of optimal control inputs is jointly influenced

by the demand and the capacity. Because of the coupling between these two factors,

analysis of a general K-cell highway is neither tractable nor insightful. However, we

are able to derive useful insights by studying a two-cell highway section (as in Fig. 5-

9) with either a stationary hotspot or moving bottlenecks. Similar two-cell models

are commonly considered for ramp metering design and throughput analysis in the

literature 159, 79, 93]. For ease of presentation, we do not consider the impact of
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off-ramps and assume p, = 1. Furthermore, we assume that R1 = F1 .

buffer I celtl cell 2

Mainline vQ,(t) (F) F ( F)
- I - -

---------------

buffer 2

On-ramp Q,. (t) R2

--------------------

Figure 5-9: Two-cell highway with a single on-ramp.

Specifically, we show that the structure of the optimal control strongly depends

on whether the given demand is feasible or infeasible. First, for a feasible demand,

the optimal control follows the margin criterion: an on-ramp should be prioritized

over the mainline (i.e. not metered) if the on-ramp has a smaller capacity-to-demand

margin than the mainline. Second, for an infeasible demand, the optimal control

input prioritizes the mainline (resp. the on-ramp) if the on-ramp (resp. the mainline)

has a sufficiently large capacity-to-inflow margin. The optimal control inputs in the

above two scenarios are consistent, in that it is always optimal to place the queue at

the location where it will be discharged fast. For ease of presentation, our subsequent

theoretical analysis only considers either feasible or infinite demand, and excludes the

case of finite but infeasible demand. However, we will consider finite but infeasible

demand in the numerical examples.

Stationary hotspot

Consider the two-cell highway with a stationary hotspot. Let ak,h = -y; recall from

Example 5.2 that this construction of A is suitable for this setting. Then, we can set

b() = b( without loss of generality, and formulate the max-throughput problem as

follows:

max J=vi+v 2  (P2.1)

s.t. Vi E {O, 1}, Vy E {0, 1}2\{0}2, Vz E {, 1}27
2

v1 + v2 - f + E y(bl - b(')) < -- + Miyk~k, (5.33a)

jEY k=1
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2W vi + R2 if Y1 = 0, Y2 = 1, z 2 = 0, (5.33b)

i2, < F, + v 2 if y 1 = 1, y2 = 0, z2 = 0, (5.33c)

, F 2 - A 2f <-F, (5 .3 3 d )

vi < F2 - A 2 - V2 + M2 (1 - W 2) + M2 (1 - (5.33e)

Vi < F 2 - A 2 + M2w2 + M2 (1 - (5.33f)

v2  F2 - A2 + M2 (1 - W 2 ) + M2 (1 - 2), (5.33g)

V2< F2 - A2 - V1 + M2W2 + M2(1 - 2), (5.33h)

v E [0, d], W E {0, 1}2, (E {0, 1}2, (5.33i)

where 6 = 1/-; the selection of 6 or -y depends on the required numerical precision.

If the demand d is feasible in the formulation (P2.1), i.e. if there exist v = d and

w E {0, 1}2 satisfying (5.33a)-(5.33i), we have the following result:

Proposition 5.2 (Feasible demand, stationary). Consider a two-cell highway with a

stationary hotspot. Suppose that p= 1 and that the demand vector d = [d1 d2 ]T is

feasible under the formulation (P2.1). Then,

1. ([d1 d2 ]T, [1 1]T ) is an optimal solution to (P2.1) if

F 1 - di > R 2 - d2. (5.34)

2. ([d 1 d2 lT, [1 0 ]T) is an optimal solution to (P2.1) if

F 1 - di < R 2 - d2. (5.35)

Proposition 5.2 gives a criterion for whether to meter an on-ramp or not. Specifi-

cally, if the on-ramp has a capacity-to-demand margin (R 2 - d 2 ) that is larger than the

capacity-to-demand margin (F 1 - di) of the mainline, then the on-ramp is supposed

to be metered. As an intuitive interpretation, if buffer 1 has a larger margin than

cell 1, then cell 1 is the bottleneck that restricts the discharge of traffic congestion; in
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other words, the on-ramp can discharge traffic queue faster than the mainline does.

Consequently, prioritizing the traffic from the bottleneck improves throughput.

Proof of Proposition 5.2. Consider a given u = (v, w) E [0, d] x {0, 1}2. To

obtain the conclusion, we only need to show the following:

(i) if (v, w) = ([di d2 ]T, [1 O]T) satisfies (5.33a)-(5.33i) and if (5.34) holds, then

(v, w') = (d, d 2 ]T, [1 I]T) also satisfies (5.33a)-(5.33i);

(ii) if (v, w') ([di d21T, [1 i]T) satisfies (5.33a)-(5.33i) and if (5.35) holds, then

(V, w) = ([di d2 IT, [1 0 ]T) also satisfies (5.33a)-(5.33i).

Here we only present the proof of part (i); part (ii) can be analogously proved.

Suppose that (v, w) = ([di d 2 lT, [1 O]T) satisfies (5.33a)-(5.33i) and that (5.34) holds.

We now show that this particular solution also satisfies (5.33a)-(5.33i).

If v1 + v 2 < F2 - A 2 , then qh =q2 = 0 and M is bounded regardless of w 2 , and

the proof is straightforward.

If v1 + v2 > F2 - A2 and if v, < F2 - A 2 , then, with w 2 = 0, (5.33a)-(5.33i) are

equivalent to the following:

di + d2 - po(d, + R 2 ) - pi min{di + R 2, F2 - A 2 ) < -j. (5.36)

With w 2 = 1, (5.33a)-(5.33i) are implied by the following:

di + d2 - po min{F1 + d2 d, + R2} - pi min{F1 + d2,d, + R2 ,F 2 - A 2 ) < -J.

(5.37)

If (5.34) holds, then (5.36) implies (5.37). Hence, (v, w') = ([d, d2 lT, [1 1 1T) also

satisfies (5.33a)-(5.33i).

If v1 + v 2 > F2 - A 2 and if v1 > F2 - A 2 , then q, = q2 = oc with either

W2 = 0 or w' = 1; thus, (5.33a)-(5.33i) are again equivalent to (5.37). Hence,

(v, w') = ([d, d2 ]T, [1 1]T) also satisfies (5.33a)-(5.33i). N

If the demand is infinite, we have the following result:

163



Proposition 5.3 (Infinite demand, stationary). Consider a two-cell highway with

a stationary hotspot. Suppose that the demands are infinite, i.e. d1 = d2 = 00.

Furthermore, assume that p1 = 1 and F1 = R1 . Let F2 = poF2 + p1(F2 - A 2 ). Then,

1. Every (v, w) in the set 1Yj* x {[1 0]T}, where

{v E [0, d] : v 1 + v 2 = F2 , R2 - v 2 > F2 - F2 , vi < min{F1, F 2 - A 2 }

(5.38)

is an optimal solution to (P2.1).

2. Every (v,w) in the set 1(2* x {[i 1]T}, where

1/2* = {v E [0, d] : v 1 + v 2 = F2 , F 1 - vi > F2 - F2 , v2 < min{R 2 , F 2 - A 2}

(5.39)

is an optimal solution to (P2.1).

In summary, for infinite demand, if the on-ramp has a sufficiently large capacity-to-

inflow margin (in the sense that R2 - v 2  F 2 - F2 ), then it is optimal to prioritize the

mainline. The intuition is that in such a case, even if mainline priority leads to queues

at the on-ramp, the queues can be discharged quickly. Similarly, if the mainline has a

sufficiently large capacity-to-inflow margin (in the sense that F 1 - v, > F2 - F2), then

it is optimal to prioritize the on-ramp. This is consistent with the logic of the margin

criterion characterized by Proposition 5.2. Note that this logic can be extended to

the case where the demand is finite but infeasible with straightforward modification.

Proof of Proposition 5.3. We only present the proof of part (i); part (ii) can be

analogously proved. On the one hand, consider a v* E 1Yi* and w* = [1 0 ]T. Then, we

have

v1* + ;V - po min{v *+ R 2, F2 } - p1 {v* + R2, F2 - A 2}
(5.38)

<; F2 - poF 2 - p1 (F 2 - A 2 ) = 0. (5.40)
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Since v, < F2 - A 2 , we obtain from (5.13f) that qi = 0. Thus, (5.40) ensures (5.33a)-

(5.33i) (see the proof of Proposition 5.2). Hence, (v, w) is a feasible solution to (P2.1).

On the other hand, v* + v* < F2 is a necessary condition for stability, and P2 is

the maximum throughput that can be achieved (regardless of the formulation).

In conclusion, (v*, w*) is an optimal solution to the (P2.1). U

Remark 5.3. Proposition 5.3 gives at least one optimal solution, i.e. Yj* U 7* 0,

if and only if (i) F1 + R 2 > F2 and (ii) A 2  min{F 1 , R2}. Note that (i) and (ii)

typically hold for highway on-ramps [42].

Propositions 5.2 and 5.3 can be mechanically extended to a general K-cell highway.

However, the extension is notationally heavy and less insightful.

Example 5.4 (1210-EB, stationary). Recall the two-cell highway with a stationary

hotspot as described in Example 5.2. This example illustrates some insights from

Propositions 5.2 and 5.3, and visualizes the structure of the max-throughput problem

(P2.1). Figure 5-10 shows the feasible set of (P2.1); the meaning of each region is

listed in Tab. 5.4. Note that the feasible set is almost an exact one, since the gap

(region 4) between the stable regions and the unstable region is very small.

3000] 2

25001

2000

1500

1000'

500 Margin criterion

0
5000 5500 6000 6500 7000 7500

Upstream inflow Ui [veh/hr]

Figure 5-10: Stability of various control schemes (v, w). The margin criterion and a
set of optimal solutions (green/red line segments) are also indicated.

To obtain optimal solutions to (P2.1), we first need to determine whether the given

demand vector d = [d1 d2 ]T is feasible or not. If the demand vector d falls in the union

of regions 1-3, we know that it is feasible, and the corresponding control input can be
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Table 5.4: Stability of various regions in Figure

Regime w 2 = 0 w 2  1 w2 = V*

1 Stable Stable Stable
2 Unknown Stable Stable

3 Stable Unknown Stable
4 Unknown Unknown Unknown
5 Unstable Unstable Unstable

determined using the margin criterion given by Proposition 5.2: if v* = d = [d1 d2 ]T iS

below (resp. above) the line of margin criterion, then w* = [1 0 ]T (resp. w* = [1 1]T).

If the demand d is infinite, then a (sub)set of optimal solutions is given by

(1* X f{[1 o]T}) U (,2* X {[1 1]T})

where 2('* and -2* are given by Proposition 5.3 and illustrated in Fig. 5-10.

Moving bottlenecks

Consider the two-cell highway section as shown in Fig. 5-9. Suppose

bottlenecks randomly arrives at and moves through the highway section.

highway has three modes {0, 1, 2}, and the mode-specific capacities are

that moving

That is, the

F(0) = [F1 F2IT, F(1) = [F1 - A1 F2]T, F(2) = [F1 F2 - A2 ,

and the inter-mode transition rates are

vQ1 = A, V12 ~ P1, 20 -

Let ak,h = ykh and b(')

of A is suitable for moving

problem is as follows:

max J = V1 + V2

= 2b(; recall from Section 5.3 that this construction

bottlenecks. Then formulation for the max-throughput

(P2.2)
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s.t. Vi E {0, 1, 2}, Vy E {0, 1}2\ 0O2, VZ E {0, 1}2,

2vi + 2v 2 - i2, - f2,z + - b0) _ -6 + My
jEI k=1

(5.41a)

<k if yk = 0, k =1, 2, (5.41b)

1, , , R1, f2(',z < R2, (5.41c)

fw < ?it,z if Yi = 0, (5.41d)

12,z + 2,,z if2,y, if Z2 = 1,

2W , p (F, - A1) + i if z2 = 0, (5.41e)

2 ,2 5 p Avi + r2 ,z if 2 0, (5.4f)

S,Z F1 - A 1 1{= 11 , /25 F2 - A21{s=2}, (5.41g)

i2, P 2 r2,y,z if Z2 1, (5.41h)

-Pk

v25/92- 11, M2 (1 - w2 ) + M2 (1 - (2), (5.41i)

V2 y iZ , + M2 W 2 + M2 (1 - p2), (5.41j)

v2[0, dl, w E {0,Y1}2 , (I {0, 1}2. (5.41k)

For a feasible demand, we again have the "margin criterion" for traffic control

under moving bottlenecks:

Proposition 5.4 (Feasible demand, moving). Consider a highway of two-cells with

moving bottlenecks. Suppose that (i) p1 = 1 and (ii) the demand vector d = [d1 d2 ]T

is feasible in the formulation (P2.2).

1. An optimal solution is v* = [d 1 d2 ]T, w* = [1 1 ]T if

R2 - d2 < F1 - A, - di. (5.42)

2. An optimal solution is v* = [d 1 d2]T, w* = [1 O]T if

R2 - d2 > F1 - di. (5.43)
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The above result essentially states that, if the kth on-ramp has a capacity-to-

demand margin (R 2 - d2 ) smaller than that of the mainline (F 1 - A1 - dl) under the

influence of the moving bottleneck, then it should be metered; if the on-ramp has a

capacity-to-demand margin (R 2 - d2) larger than that of the mainline (F 1 - di) even

without the influence of the moving bottleneck, then it should not be metered. If

the margins do not fall in the above regions, this result does not provide conclusive

characterization of the structure of the optimal ramp metering plan. However, we

can still obtain the optimal solution by solving the MILP (P2).

The proof of Proposition 5.4 is similar to that of Proposition 5.2.

For infinite demand, we again analytically compute an optimal solution. Due

to the complexity of the SS-CTM dynamics under moving bottlenecks, a complete

characterization of the optimal solution involves too many cases and is thus tedious.

For ease of presentation, we only consider a practically relevant case, where F 1 + R 2 >

F2 , and F1 - A 1 + R 2 < F2 - A 2 /2; both inequalities hold if F1 + R2 is slightly greater

than F 2 , which is typically true for a highway merge. (Note that the subsequent result

can be easily extended to the other cases.) Then, we have the following result:

Proposition 5.5 (Infinite demand, moving). Consider a two-cell highway with mov-

ing bottlenecks. Suppose that (i) d1 = d2 = 00, (ii) P1 = 1, (iii) R1 = F1, (iv)

F1 + R2 > F2 , and (v) F1 - A1 + R 2 < F2 - A2 /2. Then, an optimal solution to (P2.2)

is

po(F 2 - A2 /2) + pi(F 1 - A, + R2 ) + p 2 (F 2 - A2 ) - R2 , [
R21

(5.44)

where Po, P1, P2 are the steady-state probabilities given by (5.1).

The above result essentially implies that on-ramp priority is more efficient in this

particular setting. In addition, the on-ramp inflow is maximized (v 2 = R 2 ). The rea-

son is that the capacity of buffer 2 is more reliable than that of cell 1, which is subject

to perturbations. The proof of Proposition 5.5 is similar to that of Proposition 5.3.
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Example 5.5 (Moving bottlenecks on 1210-EB). This example provides some in-

sights about the max-throughput problem (P2.2). Consider again the two-cell example

presented in Section 5.3. For each u = (v, w), we can verify the stability by applying

the sufficient condition, Theorem 5.1 and the necessary condition (5.28a)-(5.28c).

Figure 5-11 shows the results; the meaning of each region is listed in Tab. 5.5.

3500

3000

2500 argine 2
criterion 4

2)(00

1500

1000 margine
criterion

500 2

01
4000 4500 5000 5500 6000 6500 7000

Upstream inflow t, [vph

Figure 5-11: Stability of various control inputs. Margin criterion 1 (resp. 2) is
specified by (5.42) (resp. (5.43)). v* is the optimal solution in the case of infinite

demand given by Proposition 5.5.

Table 5.5: Stability of various regions in Figure 5-11.

Region Ramp metered w 2 = 0 Ramp not metered w 2 = 0 Margin criterion w*

1 Stable Stable Stable
2 Unknown Stable Stable/unknown
3 Stable Unknwon Stable
4 Unknown Unknown Unknown
5 Unstable Unstable Unstable

To obtain the optimal solution to (P2.2), we first need to determine whether the

given demand vector d = [d1 d2 ]T is feasible or not. If the d falls in the union of

regions 1-3, we know that it is feasible, and the corresponding control input can be

determined using the margin criteria given by Proposition 5.4: if d = [d1 d2 ]T is

below (resp. above) the line of margin criterion 1 (resp. 2), then w* = [1 0 ]T (resp.

w * = [1 1]T). If the demand vector falls between the two criteria, our results do

not give an analytical characterization; however, one can obtain optimal solutions

by solving the MILP (P2.2). If the demand d is infinite, then a particular optimal

169



solution is given by Proposition 5.5 and illustrated in Fig. 5-11.

5.4 Case study: a full-day simulation of SR-134 East/

1-210 East

In this section, we consider a 33.2-km stretch of SR-134 East/ 1-210 East in Los

Angeles County shown in Figure 5-12, as a test case for the margin criterion for ramp

control. This freeway stretch consists of 6.3 km of SR-134 East from postmile 9.46 to

postmile 13.36 and 26.9 km of 1-210 East from postmile 25 to postmile 41.7. There

are 28 on-ramps and 25 off-ramps. We consider the on-ramp flows measured on a day.

Particularly, we focus on two scenarios of capacity perturbations, viz. a stationary

perturbation hotspot and moving bottlenecks.

Figure 5-12: The segment of SR-134 East/ 1-210 East studied in this section.

The model was built using PeMS data [1011 for the corresponding segments of

the SR-134 East and 1-210 East for Monday, October 13, 2014. This was one of the

days when most vehicle detectors on mainline, on-ramps, and off-ramps of SR-134

East and 1-210 East were intact, and hence the PeMS data are reliable. Traffic flow

parameters were calibrated using PeMS data following the methodology [31]. The

simulations were conducted by Dr. Alexander A. Kurzhanskiy from UC Berkeley.

More information about the simulation tool is available in [421.

5.4.1 Stationary perturbation hotspot

We consider a stationary perturbation hotspot near North Azusa Avenue. The capac-

ity of the hotspot switches between 100% (mode 0) and 75% (mode 1) of its nominal
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Figure 5-13: Traffic density contour for the highway with a stationary hotspot.

capacity, and spends equal time in both modes. That is, the time average capacity is

87.5% of the nominal capacity.

We run three simulations in this setting. First, every on-ramp is prioritized over

the mainline, i.e. yk = 1 for every on-ramp k. This is considered as the baseline,

where no ramp is metered. Second, the mainline is prioritized over every on-ramp,

i.e. yk = 0 for every k. This can be viewed as an "aggressive" ramp metering strategy.

Third, the on-ramp priorities are determined according to the margin criterion given

by Proposition 5.2. For the three simulations, we track the traffic evolution over time.

The resulting traffic density contour plot is show in Figures 5-13(a)-5-13(c).

For all three control configurations, we compute the traffic delay with respect to

free-flow travel time. Compared to the baseline, mainline priority reduces delay by

62%. Compared to mainline priority, the margin criterion further reduces delay by

3%. More importantly, the margin criterion eliminates several very long on-ramp

queues that mainline priority induces by prioritizing particular on-ramps at those on-

ramps during certain hours: the longest on-ramp queue upstream from the stationary

hotspot is reduced by 39%.

Surprisingly, margin criterion leads to a significantly smaller upstream queue at

the origin. The reason is that mainline priority under-utilizes highway capacity and

thus discharges congestion more slowly. Figures 5-14(a) and 5-14(b) clearly illustrate

how the margin criterion improves discharge rate during the evening peak hour.
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Figure 5-15: Traffic density contour for the highway with moving bottlenecks.

5.4.2 Moving bottlenecks

We now consider moving bottlenecks randomly arriving at the highway. We consider

an arrival rate of moving bottlenecks of 12 per hour. When the moving bottleneck is

in a cell, then the cell's capacity is reduced by the capacity of one lane. The expected

time pk that a moving bottleneck spends in a cell is given by

1k

Vk

where 1k is the length of the cell and Vk is the free-flow speed.

Once again, we consider the control configurations in the previous subsection,

viz. on-ramp priority, mainline priority, and margin criterion. The resulting traffic

density contour plots are given by Figures 5-15(a)-5-15(c). Compared to the baseline,

mainline priority reduces delay by 16%. Compared to mainline priority, the margin

criterion further reduces delay by 25%.
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5.5 Summary

In this chapter, we considered the maximization of the throughput of a perturbation-

prone highway section, under the constraint that every on-ramp should remain bounded

on average. We developed a sufficient condition (Theorem 5.1) for bounded on-ramp

queues, which is based on the construction of a switched quadratic Lyapunov func-

tion and verification of the Foster-Lyapunov criterion. Furthermore, we formulate

the max-throughput problem as either an MILP or an MIBLP, depending on whether

the parameters of the Lyapunov function are given as constants or solved as un-

knowns. Under the MILP formulation, we characterized the structure of the optimal

solutions to the max-throughput problem, which we summarized as the "margin cri-

terion": traffic queue should be placed on a (mainline or on-ramp) link with a larger

capacity-to-demand margin.
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Chapter 6

Conclusions and Ongoing Work

6.1 Summary of this thesis

In this thesis, we have considered analysis and control of highway systems subject

to capacity disruptions and heterogeneous demand, which are important concerns in

many practical settings.

In Chapter 1, we posed the resiliency question for smart highway systems, i.e.

efficiency in the nominal setting, robustness against random perturbations, and sur-

vivability under security failures. We have discussed about the first two aspects in

thesis, and will mention our ongoing work in the third aspect in the next section. We

argued that the main challenge is the lack of models for smart highway systems and

for reliability/security failures.

In Chapter 2, we considered the routing problem over a network of parallel PDQ

links. We particularly focused on the feedback-controlled stability of the system. We

showed that a necessary condition for stability is that a lower bound on the time-

average link inflows does not exceed the corresponding time-average saturation rate.

In addition, we showed that a sufficient condition for stability is that (i) the nominal

mode's saturation rate is high enough that all queues vanish in this mode (i) and a

bilinear matrix inequality (BMI) involving an underestimate of the discharge rates of

the PDQ in individual modes is feasible. Furthermore, under the sufficient condition,

the state of the network converges to a unique invariant probability measure.
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In Chapter 3, we developed a piecewise-deterministic queuing (PDQ) model for

vehicle platoons. This model captures the interaction between platoons of CAVs

and the background traffic in terms sharing the highway's capacity. We show that

randomness in the arrival process of platoons can induce congestion on both platoons

and the background traffic. Our PDQ model also allows analytical characterize the

platooning-induced queue in terms of parameters of the highway and of the platooning

operations. To further validate the model, one can either conduct micro-simulation

or run field experiments to estimate how well the model captures the link between

key platooning parameters and highway performance.

In Chapter 4, we developed the stochastic switching cell transmission model (SS-

CTM) for highway sections subject to random perturbations. The main difference

between the SS-CTM and the classical CTM is that cell capacities in the SS-CTM are

stochastically varying according to a Markov chain. We develop a sufficient condition,

in the form of a set of bilinear inequalities, for the boundedness of the upstream traffic

queue. This sufficient condition is also established by constructing a Lyapunov func-

tion and applying the classical Foster-Lyapunov drift condition. The proof involves

the construction of a globally attracting invariant set, and utilizes the properties of

the traffic flow dynamics to show that, instead of verifying the drift condition ev-

erywhere over the continuous state space, it suffices to verify it over a finite set of

states. We also use our results to analyze the impact of stochastic capacity fluctu-

ation (frequency, intensity, and spatial correlation) on the throughput of a freeway

segment.

In Chapter 5, we build on the SS-CTM and considered the control design prob-

lem. We studied the scenario where on-ramp demand can be managed and on-ramps

can be either metered or not. We posed an optimization problem, where the objec-

tive is to maximize the throughput and the constraint is to ensure bounded on-ramp

queues. The main result is (i) a sufficient condition for the controlled SS-CTM, and

(ii) a MIBLP/MILP formulation of the max-throughput problem. Under particular

assumptions, we also characterized the structure of the optimal control input. Partic-

ularly, we showed that if traffic queue is inevitable, it should be placed on a location
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(either on the mainline or on an on-ramp) with a larger capacity-to-demand margin,

which we called the "margin criterion".

6.2 Ongoing work

The work presented in this thesis is being extended in several directions. First, the

PDQ model for platooning shown in Chapter 3 is a natural basis for control design.

Specifically, we are studying regulating the speed of vehicle platoons to alleviate the

efficiency loss at highway bottlenecks. Second, we are synthesizing game theoretic

models with traffic models to investigate the design of protection and inspection

schemes for critical smart highway components. Third, we are modeling the impact

(in terms of traffic delay and throughput loss) due to cyber-physical attacks on smart

highway systems, and developing effective response strategies for timely recovery.

6.2.1 Speed control of vehicle platoons

In this thesis, we have considered the interaction between vehicle platoons and high-

way traffic from two perspectives (see Chapters 3 and 5). Following this work, we are

considering the regulation of speed of vehicle platoons to alleviate the congestion and

throughput loss due to platooning at highway bottlenecks.

We consider a single highway split as shown in Fig. 6-1. CAVs only travel on the

mainline, while the background traffic have a fixed split between the mainline and

the off-ramp. That is, there are three traffic classes:

b
C

Figure 6-1: A highway section with an off-ramp.

1. Class a: CAVs, which travel in platoons on the mainline. The inflow rate of this

traffic class is a Markovian process A(t) (similar to that defined in Section 3.1.1).
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Figure 6-2: The multi-class, tandem PDQ models for the highway section in Fig. 6-1.

Specifically, A(t) switches between two values a and 0 according to a Markov

chain, with transition rates A (0 to a) and p (a to 0).

2. Class b: background traffic remaining on the mainline, with a constant inflow

rate b.

3. Class c: background traffic leaving the highway via the off-ramp, with a constant

inflow rate c.

We model the highway section in Fig. 6-1 as a tandem fluid queuing system, as

shown in Fig. 6-2(a). links 1 and 2 are on the mainline of a highway, and link 3 is

a downstream arterial road connected to the mainline via an on-ramp. The model

that we consider is a stochastic hybrid system. The state of the model is (b, qa, qb, qC)I

where b is the arrival rates of CAVs, qa = [qa qa]T E R2 is the vectors of queue lengths

of CAVs, qb = qjT E R2 is the queues of mainline traffic, and qc = [qc qc]T C R2

is the vector of off-ramp traffic. Furthermore, we define qk to be the total queue

length in link k, i.e.

a +
q1 = q1 + q, + qc,

q2 = qa + q2 ,

q3 = qc.

We regulate the speed of each individual platoons so that their arrival times at

the bottleneck (end of link 2) do not conflict. In terms of the fluid queuing model,

this control can be considered as applying a "gate" that regulates the arrival process
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of vehicle platoons, as shown in Fig. 6-2(b). Practically, the decision variable of the

control design problem is the time of arrival of each platoon at link 1. In the PDQ

model, this is equivalent to controlling the discharge rate ro, from link 0 (the "gate")

to link 1. That is, roi is specified by a function (control law) k : (a, qa, qb, qC) 4 roi.

The controlled system is stable if there exists a finite constant C such that for

each initial condition

S 3

lim sup E E Qk(s) ds < C.
t-+IO s_0 k= .

Throughput is defined as

j = lim - (r2(s) + r3 (s))ds

if this limit exists. For a stable system, we have

J lim f tA(s)ds) +b+c

Hence, the control design problem can be formulated as an optimization problem:

max J

s.t. qa, qb, qC are bounded on average

S satisfies practical constraints

To convert the above formulation into a solvable optimization problem, we first need

to develop a sufficient condition for the boundedness of the queues, and then identify

the set of practically admissible control laws.

6.2.2 Inspection of misbehavior in V21-based operations

Vehicle-to-Infrastructure (V21) communications are increasingly supporting highway

operations such as electronic toll collection, carpooling, and vehicle platooning. In this
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Figure 6-3: A highway with V21-based lane management operations.

work, we are studying the incentives of strategic misbehavior by individual vehicles

who can exploit the security vulnerabilities in V21 communications and impact the

highway operations. We consider a V21-enabled highway segment facing two classes

of vehicles (agent populations), each with authorized access to one server (subset of

lanes).

Next, we demonstrate via a particular example in the context of smart highways

how the models and approaches that we developed in the previous chapters can be

integrated into security failure analysis.

We consider a simple model of lane management operations on a highway section

equipped with vehicle-to-infrastructure (V21) communications capability. Suppose

that the highway system faces a fixed traffic demand A comprised of two types of

agent populations: a high priority type, denoted h, and a low priority type, denoted

1; see Fig. 6-3(a). The fraction of type h agents is 9 E (0, 1), and the fraction of type

1 agents is 1 - 0. There are two sets of lanes on the highway, H and L, which we

model as two parallel servers; see Fig. 6-3(b). In the absence of misbehavior, server

H only serves type h agents, and server L only serves type 1 agents. The highway is

equipped with a road-side unit (RSU), which collects messages from incoming agents

to monitor the traffic and grants access to each incoming agent based on the received

message (i.e., reported type).

Given any fraction of type h travelers, 0, the travel cost (or queueing delay) on

the H (resp. L) server is denoted as ch (resp. co). In general, cH (resp. co) increases

with the aggregate demand of agents using the server H (resp. L). In our setting,

to reduce his/her travel cost, an agent may misreport its type to the RSU, which
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we consider as misbehavior; i.e. a misbehaving type 1 agent reports itself as having

authorization for the sever H; similarly for a misbehaving type h agent. We use o"

(resp. o) to denote the fraction of I (resp. h) agents that misbehave. Consider a

generic misbehavior strategy at = (otI, af). Since the fraction of misbehaving agents

impacts the demand of agents using each server, we can use the notations cH (at)

(resp. co(o t )) to denote the cost of server H (resp. L) under the strategy o.

Characterization of the equilibria (in the sense of Perfect Bayesian Equilibria, or

PBEs; see [321) of this signaling game is available in [1071. Fig. 6-4 shows the regime

plot of an example taken from [107]. In regime A, since the misbehavior cost is high,

no traveler would have the incentive to misbehave. Consequently, the SO does not

need to inspect. In regime B1, travelers misbehave with a strictly positive probability;

however, the SO chooses not to inspect due to high inspection cost. In regime B 2 ,

travelers misbehave with a strictly positive probability, and the SO inspects any

traveler with a strictly positive probability.

60.

50-

40

o30 B, A

0 20

10
B 2

0
0 1 2 3 4 5

Misbehavior cost pf (USD)

Figure 6-4: PBE regimes. Analytical expressions for the boundaries, i.e. the function

Ac , is provided in [1071.

6.2.3 Response to adversarial cyber-physical attacks

We have considered random capacity perturbations in Chapters 2-5, which mainly ac-

count for "physical" capacity-reducing events. However, operations of smart highway

systems rely on ubiquitous sensing and actuation capabilities, mobile and embedded
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computing with smartphones, and deep penetration of wireless communications net-

works. A significant drawback of this Information Technology (IT) modernization

is lowered security of transportation systems, caused by the exposure to IT insecu-

rities. That is, security failures of the cyber components may also lead to capacity

perturbations.

Several real incidents have confirmed that transportation NCS [11, 781 and more

generally, supervisory control and data acquisitions (SCADA) systems for other crit-

ical infrastructures [3, 17, 951 are subject to significant security risks. These can

be broadly classfied as IT-based accidents, non-targeted attacks, and targeted at-

tacks. IT-based accidents are caused due to unintended technology failures. The

non-targeted attacks are similar to the incidents that any network-connected com-

puter may suffer. For example, In 2003, the Sobig virus infected the CSX train

control computer, shutting down the train signaling systems in the US East Coast

for 4 to 6 hours. Targeted attacks could be the most damaging class of attacks be-

cause they are tailored specifically to inflict maximum damage to NCS. For example,

hacking incidents have been reported in the Toronto subway system (where the trav-

eler information was reprogrammed) and the Moscow subway system (where a hacker

transferred revenue from the ticketing system).

In response to this emerging challenge, we are trying to model and analyze the

interaction between malicious attackers and system operators in this setting. We con-

sider a setting where the attacker can randomize the location and timing of attacks,

and the system operator can proactively allocate resources for recovery processes and

adaptively react to detected attacks. Since such recovery processes are of less ur-

gent nature than policing and rescuing, throughput is the primary concern (objective

function) for the system operator.

Our approach focuses on the three most critical aspects in this problem: adver-

sarial disruptions, response operations, and evolution of traffic queues. Specifically,

we are exploring the following questions:

1. For a given response strategy, what is the structure of optimal attack?
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2. What are key variables/parameters that effect the network stability (and margin

to instability)?

3. How to obtain the optimal response strategy under given attacker constraints

and budget?

Preliminary results imply that the attacker does not necessarily focus on the link with

the highest load. Instead, the optimal attacking strategy depends on not only the

load, but the recovery time, and the travel time between multiple sites.

6.3 Final remarks

In this thesis, we contribute to a system-theoretic approach to a modeling and design

framework providing efficiency and resiliency guarantees under a broad class of pertur-

bations. We focus on the operations (vehicle platooning, dynamic routing, and ramp

metering) under a broader set of random perturbations including traffic incidents,

effects of heterogeneous traffic flow (moving bottlenecks), and demand fluctuations.

In addition, we consider the modeling and impact evaluation of security disruptions.

We believe that our results are relevant for design of smart highway systems with

resiliency guarantees and provide basis for future research on this topic.

Particularly, we emphasize that an important future work is to validate or refine

the modeling and design approaches introduced in this thesis through analysis of real

traffic data and even lab/field experiments. The key is to identify peculiar character-

istics of CAVs and their impact on the aggregate traffic flow, especially under random

perturbations and/or security failures. Also of importance is to evaluate the practi-

cality of critical modeling assumptions (e.g. Markovian capacity perturbations) and

how sensitive the subsequent analysis/control design is with respect to them.

183



184



Bibliography

[11 Mohamed A Abdel-Aty and A Essam Radwan. Modeling traffic accident occur-
rence and involvement. Accident Analysis & Prevention, 32(5):633-642, 2000.

12] Assad Alam, Bart Besselink, Valerio Turri, Jonas Martensson, and Karl H Jo-
hansson. Heavy-duty vehicle platooning for sustainable freight transportation:
A cooperative method to enhance safety and efficiency. IEEE Control Systems,
35(6):34-56, 2015.

[3] Saurabh Amin, Xavier Litrico, S Shankar Sastry, and Alexandre M Bayen.
Stealthy deception attacks on water scada systems. In Proceedings of the 13th
ACM international conference on Hybrid systems: computation and control,
pages 161-170. ACM, 2010.

[4] Saurabh Amin, Galina A Schwartz, and S Shankar Sastry. Security of interde-
pendent and identical networked control systems. Automatica, 49(1):186-192,
2013.

[5] David Anick, Debasis Mitra, and Man Mohan Sondhi. Stochastic theory of a
data-handling system with multiple sources. The Bell System Technical Journal,
61(8):1871-1894, 1982.

[6] Patrick Athol. Interdependence of certain operational characteristics within a
moving traffic stream. Technical Report HS-006 579, 1965.

[7] Moshe Babaioff, Robert Kleinberg, and Christos H Papadimitriou. Congestion
games with malicious players. In Proceedings of the 8th ACM conference on
Electronic commerce, pages 103-112. ACM, 2007.

[8] Melike Baykal-Glirsoy, Weihua Xiao, and Kaan Ozbay. Modeling traffic flow in-
terrupted by incidents. European Journal of Operational Research, 195(1):127-
138, 2009.

[9] Michel Bena~im, St6phane Le Borgne, Florent Malrieu, and Pierre-Andr6 Zitt.
Qualitative properties of certain piecewise deterministic Markov processes. In
Annales de l'Institut Henri Poincars, Probabilitis et Statistiques, volume 51,
pages 1040-1075. Institut Henri Poincar6, 2015.

185



[10] Carl Bergenhem, Steven Shladover, Erik Coelingh, Christoffer Englund, and
Sadayuki Tsugawa. Overview of platooning systems. In Proceedings of the 19th
ITS World Congress, Oct 22-26, Vienna, Austria (2012), 2012.

[11] Sharon Bernstein and Andrew Blankstein. Key signals targeted, officials say.
Los Angeles Times.

[12] B. Besselink, V. Turri, S.H. van de Hoef, K.-Y. Liang, A. Alam, J. Martens-
son, and K. H. Johansson. Cyber-physical control of road freight transport.
Proceedings of IEEE, 104(5):1128-1141, 2016.

[131 Franco Blanchini. Survey paper: Set invariance in control. Automatica (Journal
of IFAC), 35(11):1747-1767, 1999.

[141 Gabriel Brindusescu. DARPA hacked a chevy impala through its onstar system.
autoevolution.

[15] Simeon Calvert, Hani Mahmassani, Jan-Niklas Meier, Pravin Varaiya, Samer
Hamdar, Danjue Chen, Xiaopeng Li, Alireza Talebpour, and Stephen P Mat-
tingly. Traffic flow of connected and automated vehicles: Challenges and op-
portunities. In Road Vehicle Automation 4, pages 235-245. Springer, 2018.

[16] Simeon C Calvert, A Soekroella, IR Wilmink, and B v Arem. Considering
knowledge gaps for automated driving in conventional traffic. In Proceedings
of the Fourth International Conference on Advances in Civil, Structural and
Environmental Engineering?ACSEE 2016, 2016.

[171 Alvaro A Cdrdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen
Huang, and Shankar Sastry. Attacks against process control systems: risk
assessment, detection, and response. In Proceedings of the 6th ACM symposium
on information, computer and communications security, pages 355-366. ACM,
2011.

[181 Hong Chen and David D Yao. A fluid model for systems with random disrup-
tions. Operations Research, 40(3-supplement-2):S239-S247, 1992.

[19] Bertrand Cloez, Martin Hairer, et al. Exponential ergodicity for Markov pro-
cesses with random switching. Bernoulli, 21(1):505-536, 2015.

[201 Giacomo Como, Ketan Savla, Daron Acemoglu, Munther A Dahleh, and Emilio
Frazzoli. Robust distributed routing in dynamical networks Part I: Locally
responsive policies and weak resilience. Automatic Control, IEEE Transactions
on, 58(2):317-332, 2013.

[21] Giacomo Como, Ketan Savla, Daron Acemoglu, Munther A Dahleh, and Emilio
Frazzoli. Robust distributed routing in dynamical networks Part II: Strong
resilience, equilibrium selection and cascaded failures. Automatic Control, IEEE
Transactions on, 58(2):333-348, 2013.

186



[221 Samuel Coogan and Murat Arcak. A compartmental model for traffic net-
works and its dynamical behavior. IEEE Transactions on Automatic Control,
60(10):2698-2703, 2015.

[23] Samuel Coogan and Murat Arcak. Stability of traffic flow networks with a
polytree topology. Automatica, 66:246-253, 2016.

[241 Carlos F Daganzo. The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory. Transportation
Research Part B: Methodological, 28(4):269-287, 1994.

[251 Carlos F Daganzo. The cell transmission model, part II: Network traffic. Trans-
portation Research Part B: Methodological, 29(2):79-93, 1995.

[26] Carlos F Daganzo and Jorge A Laval. On the numerical treatment of mov-
ing bottlenecks. Transportation Research Part B: Methodological, 39(1):31-46,
2005.

[27] Jim G Dai. On positive Harris recurrence of multiclass queueing networks:
a unified approach via fluid limit models. The Annals of Applied Probability,
pages 49-77, 1995.

[28] Jim G Dai and Sean P Meyn. Stability and convergence of moments for multi-
class queueing networks via fluid limit models. IEEE Transactions on Automatic
Control, 40(11):1889-1904, 1995.

[29] Mark H A Davis. Piecewise-deterministic Markov processes: A general class of
non-diffusion stochastic models. Journal of the Royal Statistical Society. Series
B. Methodological, 46(3):353-388, 1984.

[30] M. L. Delle Monache and P. Goatin. Scalar conservation laws with moving
constraints arising in traffic flow modeling: an existence result. Journal of
Differential Equations, 257:4015-4029, 2014.

[31] Gunes Dervisoglu, Gabriel Gomes, Jaimyoung Kwon, Roberto Horowitz, and
Pravin Varaiya. Automatic calibration of the fundamental diagram and empir-
ical observations on capacity. In Transportation Research Board 88th Annual
Meeting, number 09-3159, 2009.

[321 Drew Fudenberg and Jean Tirole. Perfect bayesian equilibrium and sequential
equilibrium. journal of Economic Theory, 53(2):236-260, 1991.

[33] Robert G Gallager. Stochastic Processes: Theory for Applications. Cambridge
University Press, 2013.

[34] Branden Ghena, William Beyer, Allen Hillaker, Jonathan Pevarnek, and J Alex
Halderman. Green lights forever: Analyzing the security of traffic infrastructure.
WOOT, 14:7-7, 2014.

187



[351 Gregory D Glockner and George L Nemhauser. A dynamic network flow prob-
lem with uncertain arc capacities: Formulation and problem structure. Opera-

tions Research, 48(2):233-242, 2000.

[361 Sergei Konstantinovich Godunov. A difference method for numerical calculation
of discontinuous solutions of the equations of hydrodynamics. Matematicheskii

Sbornik, 89(3):271-306, 1959.

[37] Gabriel Gomes, Roberto Horowitz, Alexandr A Kurzhanskiy, Pravin Varaiya,
and Jaimyoung Kwon. Behavior of the cell transmission model and effectiveness

of ramp metering. Transportation Research Part C: Emerging Technologies,
16(4):485-513, 2008.

[381 BD Greenshields, Ws Channing, Hh Miller, et al. A study of traffic capacity.
In Highway research board proceedings, volume 1935. National Research Council

(USA), Highway Research Board, 1935.

[391 Morris W Hirsch. Systems of differential equations that are competitive or

cooperative ii: Convergence almost everywhere. SIAM Journal on Mathematical

Analysis, 16(3):423-439, 1985.

[401 Serge P Hoogendoorn and Piet HL Bovy. State-of-the-art of vehicular traffic

flow modelling. Proceedings of the Institution of Mechanical Engineers, Part I:

Journal of Systems and Control Engineering, 215(4):283-303, 2001.

[411 R. Horowitz and P. Varaiya. Control design of an automated highway system.

Proceedings of the IEEE, 88(7):913-925, 2000.

[42] Roberto Horowitz, Alexander A. Kurzhanskiy, and Matthew Wright. HOT

lane simulation tools. Technical report, Institute of Transportation Studies,
University of California, Berkeley, CA, 2016.

[43] Saif Eddin Jabari and Henry X Liu. A stochastic model of traffic flow: Theoret-
ical foundations. Transportation Research Part B: Methodological, 46(1):156-
174, 2012.

[441 Anxi Jia, Billy Williams, and Nagui Rouphail. Identification and calibration of
site-specific stochastic freeway breakdown and queue discharge. Transportation

Research Record: Journal of the Transportation Research Board, (2188):148-
155, 2010.

[451 Li Jin and Saurabh Amin. Analysis of a stochastic switching model of freeway

traffic incidents. IEEE Transactions on Automatic Control. to appear.

[46] Li Jin and Saurabh Amin. Stability of fluid queueing systems with parallel

servers and stochastic capacities. IEEE Transactions on Automatic Control. to

appear.

188



[47] Li Jin and Saurabh Amin. A piecewise-deterministic Markov model of freeway
accidents. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference
on. IEEE, 2014.

[48] Li Jin and Saurabh Amin. Calibration of a macroscopic traffic flow model
with stochastic saturation rates. In Transportation Research Board 96th Annual
Meeting, 2017.

[49] Li Jin, Mladen ii6, Saurabh Amin, and Karl H Johansson. Modeling impact
of vehicle platooning on highway congestion: A fluid queuing approach. In Pro-
ceedings of the 21st International Conference on Hybrid Systems: Computation
and Control, New York, NY, USA, 2018. ACM.

[50] Bryan Jones, Lester Janssen, and Fred Mannering. Analysis of the frequency
and duration of freeway accidents in Seattle. Accident Analysis & Prevention,
23(4):239-255, 1991.

[51] A. Keimer, N. Laurent-Brouty, F. Farokhi, H. Signargout, V. Cvetkovic,
A. M. Bayen, and K. H. Johansson. Integration of information patterns in
the modeling and design of mobility management services. Technical report,
arXiv:1707.07371, 2017.

[52] Boris S Kerner and Peter Konhliuser. Cluster effect in initially homogeneous
traffic flow. Physical Review E, 48(4):R2335, 1993.

[531 Jeffrey P Kharoufeh and Natarajan Gautam. Deriving link travel-time distri-
butions via stochastic speed processes. Transportation Science, 38(1):97-106,
2004.

[541 A Khattak, X Wang, and H Zhang. Incident management integration tool:
dynamically predicting incident durations, secondary incident occurrence and
incident delays. IET Intelligent Transport Systems, 6(2):204-214, 2012.

[551 Victor L Knoop. Road Incidents and Network Dynamics: Effects on driving
behaviour and traffic congestion. PhD thesis, Technische Universiteit Delft,
2009.

[56] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, et al. Experimental security analysis of a modern automobile.
In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447-462. IEEE,
2010.

[57] Vidyadhar G Kulkarni. Fluid models for single buffer systems. Frontiers in
queueing: Models and applications in science and engineering, 321:338, 1997.

[58] Alexander A Kurzhanskiy and Pravin Varaiya. Traffic management: An out-
look. Economics of transportation, 4(3):135-146, 2015.

189



[59] Alexandr A Kurzhanskiy. Set-valued estimation of freeway traffic density. In
Control in Transportation Systems, pages 271-277, 2009.

[601 Alexandr A Kurzhanskiy. Online traffic simulation service for highway incident
management. Technical Report SHRP 2 L-15(C), Relteq Systems, Inc., Albany,
CA, February 2013.

[61] Alexandr A Kurzhanskiy and Pravin Varaiya. Active traffic management
on road networks: A macroscopic approach. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences,
368(1928):4607-4626, 2010.

[62] Jaimyoung Kwon, Michael Mauch, and Pravin Varaiya. Components of conges-
tion: Delay from incidents, special events, lane closures, weather, potential ramp
metering gain, and excess demand. Transportation Research Record: Journal

of the Transportation Research Board, 1959(1):84-91, 2006.

[63] Jeffrey Larson, Kuo-Yun Liang, and Karl H Johansson. A distributed frame-
work for coordinated heavy-duty vehicle platooning. Intelligent Transportation

Systems, IEEE Transactions on, 16(1):419-429, 2015.

[64] Aron Laszka, Bradley Potteiger, Yevgeniy Vorobeychik, Saurabh Amin, and
Xenofon Koutsoukos. Vulnerability of transportation networks to traffic-signal
tampering. In Cyber-Physical Systems (ICCPS), 2016 ACM/IEEE 7th Inter-
national Conference on, pages 1-10. IEEE, 2016.

[65] Chris Lee, Bruce Hellinga, and Frank Saccomanno. Real-time crash prediction
model for application to crash prevention in freeway traffic. Transportation

Research Record: Journal of the Transportation Research Board, 1840(1):67-
77, 2003.

[661 John Leonard, Jonathan How, Seth Teller, Mitch Berger, Stefan Campbell,
Gaston Fiore, Luke Fletcher, Emilio Frazzoli, Albert Huang, Sertac Karaman,
et al. A perception-driven autonomous urban vehicle. Journal of Field Robotics,
25(10):727-774, 2008.

[67] W. Levine and M. Athans. On the optimal error regulation of a string of moving
vehicles. IEEE Transactions on Automatic Control, 11(3):355-361, 1966.

[681 Michael James Lighthill and Gerald Beresford Whitham. On kinematic waves
ii. a theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A,
229(1178):317-345, 1955.

[69] Jennie Lioris, Ramtin Pedarsani, Fatma Yildiz Tascikaraoglu, and Pravin

Varaiya. Platoons of connected vehicles can double throughput in urban roads.

Transportation Research Part C: Emerging Technologies, 77:292-305, 2017.

190



[70] Hong K Lo and Wai Yuen Szeto. A cell-based variational inequality formulation
of the dynamic user optimal assignment problem. Transportation Research Part
B: Methodological, 36(5):421-443, 2002.

[71] Johan L6fberg. YALMIP: A toolbox for modeling and optimization in MAT-
LAB. In Computer Aided Control Systems Design, 2004 IEEE International
Symposium on, pages 284-289. IEEE, 2004.

[72] Samer M Madanat, Michael J Cassidy, and Mu-Han Wang. Probabilistic delay
model at stop-controlled intersection. Journal of transportation engineering,
120(1):21-36, 1994.

[73] Adolf D May Jr. Experimentation with manual and automatic ramp control.
Highway research record, (59), 1964.

[74] Sean P Meyn and Richard L Tweedie. Stability of Markovian processes III:
Foster-Lyapunov criteria for continuous-time processes. Advances in Applied
Probability, pages 518-548, 1993.

[75] Mahalia Miller and Chetan Gupta. Mining traffic incidents to forecast impact.
In Proceedings of the ACM SIGKDD International Workshop on Urban Com-
puting, pages 33-40, Beijing, China, August 2012. ACM.

[76] G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. van de Molengraft,
and M. Steinbuch. String-stable cacc design and experimental validation:
A frequency-domain approach. IEEE Transactions on Vehicular Technology,
59(9):4268-4279, 2010.

[771 Gordon F. Newell. Applications of Queueing Theory, volume 4. Springer Science
& Business Media, 2013.

[781 National Research Council (US). Committee on Freight Transportation Infor-
mation Systems Security. Cybersecurity of Freight Information Systems: A
Scoping Study. Number 274. Transportation Research Board, 2003.

[791 Markos Papageorgiou, Habib Hadj-Salem, and Jean-Marc Blosseville. ALINEA:
A local feedback control law for on-ramp metering. Transportation Research
Record, (1320), 1991.

[801 Markos Papageorgiou and Apostolos Kotsialos. Freeway ramp metering: An
overview. IEEE transactions on intelligent transportation systems, 3(4):271-
281, 2002.

[811 Hyoshin Park, Ali Shafahi, and Ali Haghani. A stochastic emergency response
location model considering secondary incidents on freeways. IEEE Transactions
on Intelligent Transportation Systems, (99), 2016.

191



[821 Michael D Peterson, Dimitris J Bertsimas, and Amedeo R Odoni. Models and
algorithms for transient queueing congestion at airports. Management Science,
41(8):1279-1295, 1995.

[83] Jonathan Petit and Steven E Shladover. Potential cyberattacks on automated
vehicles. IEEE Trans. Intelligent Transportation Systems, 16(2):546-556, 2015.

[841 Carolina Osorio Pisano. Mitigating network congestion: analytical models, opti-
mization methods and their applications. PhD thesis, Verlag nicht ermittelbar,
2010.

[85] Paul I Richards. Shock waves on the highway. Operations research, 4(1):42-51,
1956.

[86] RDW Rijkswaterstaat, the Ministry of Infrastructure, and the Netherlands
the Environment. European truck platooning challenge 2016-lessons learnt.
www.eutruckplatooning.com, 2016.

[87] Henrik Sandberg, Saurabh Amin, and Karl Henrik Johansson. Cyberphysical
security in networked control systems: An introduction to the issue. IEEE
Control Systems, 35(1):20-23, 2015.

[881 David Schrank, Bill Eisele, and Tim Lomax. TTI's 2012 urban mobility report.
Proceedings of the 2012 annual urban mobility report. Texas AHM Transporta-
tion Institute, Texas, USA, 2012.

[891 Alexander Skabardonis, Karl F Petty, Robert L Bertini, Pravin P Varaiya,
Hisham Noeimi, and Daniel Rydzewski. 1-880 field experiment: Analysis of
incident data. Transportation Research Record: Journal of the Transportation
Research Board, 1603(1):72-79, 1997.

[90] Kenneth A Small and Jia Yan. The value of "value pricing" of roads: Second-best
pricing and product differentiation. Journal of Urban Economics, 49(2):310-
336, 2001.

[91] Dieter Spaar. Auto, 6ffne dich. Sicherheitslicken bei BMWs ConnectedDrive.
C, 5:15, 2015. In German.

[921 A Sumalee, RX Zhong, TL Pan, and WY Szeto. Stochastic cell transmission
model (SCTM): A stochastic dynamic traffic model for traffic state surveillance
and assignment. Transportation Research Part B: Methodological, 45(3):507-
533, 2011.

[931 Alireza Talebpour and Hani S Mahmassani. Influence of connected and au-
tonomous vehicles on traffic flow stability and throughput. Transportation Re-
search Part C: Emerging Technologies, 71:143-163, 2016.

192



[94] Alireza Talebpour and Hani S Mahmassani. Influence of connected and au-
tonomous vehicles on traffic flow stability and throughput. Transportation Re-

search Part C: Emerging Technologies, 71:143-163, 2016.

[951 Andr6 Teixeira, Saurabh Amin, Henrik Sandberg, Karl Henrik Johansson, and
Shankar S Sastry. Cyber security analysis of state estimators in electric power
systems. In 49th IEEE Conference on Decision and Control (CDC). Atlanta,
GA. DEC 15-17, 2010, pages 5991-5998, 2010.

[96] Sadayuki Tsugawa, Sabina Jeschke, and Steven E Shladover. A review of truck
platooning projects for energy savings. IEEE Transactions on Intelligent Vehi-

cles, 1(1):68-77, 2016.

[971 Jeremy G VanAntwerp and Richard D Braatz. A tutorial on linear and bilinear
matrix inequalities. Journal of process control, 10(4):363-385, 2000.

[981 Pravin Varaiya. Smart cars on smart roads: Problems of control. IEEE Trans-
actions on Automatic Control, 38(2):195-207, 1993.

[991 Pravin Varaiya. Congestion, ramp metering and tolls. Philosophical Transac-
tions of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, 366(1872):1921-1930, 2008.

[1001 Pravin Varaiya. Max pressure control of a network of signalized intersections.
Transportation Research Part C: Emerging Technologies, 36:177-195, 2013.

[101] Pravin Pratap Varaiya. Freeway Performance Measurement System (PeMS),
PeMS 9.0. California PATH Program, Institute of Transportation Studies,
University of California at Berkeley, 2009.

[1021 John Glen Wardrop. Some theoretical aspects of road traffic research. In Inst
Civil Engineers Proc London/UK/, volume 1, pages 325-378, 1952.

[1031 Joseph A Wattleworth. Peak-period analysis and control of a freeway system.
Technical report, Texas Transportation Institute, 1965.

[1041 Walter W Wierwille, RJ Hanowski, JM Hankey, CA Kieliszewski, Suzanne E
Lee, A Medina, AS Keisler, and TA Dingus. Identification and evaluation of
driver errors: Overview and recommendations. Technical report, 2002.

[105] AS Willsky, PK Houpt, SB Gershwin, AL Kurkjian, CS Greene, and EY Chow.
Detection of incidents on freeways. In Decision and Control including the 17th

Symposium on Adaptive Processes, 1978 IEEE Conference on, volume 17, pages

1037-1041. IEEE, 1978.

[1061 Matthew Wright, Gabriel Gomes, Roberto Horowitz, and Alex A Kurzhanskiy.
A new model for multi-commodity macroscopic modeling of complex traffic

networks. arXiv preprint arXiv:1509.04995, 2015.

193



[107] Manxi Wu, Li Jin, Saurabh Amin, and Patrick Jaillet. Signaling game-based
misbehavior inspection in v2i-enabled highway operations. arXiv preprint

arXiv:1803.08415, 2018.

[1081 Haining Yu and Christos G Cassandras. Perturbation analysis of feedback-
controlled stochastic flow systems. IEEE Transactions on Automatic Control,
49(8):1317-1332, 2004.

[1091 Guangnan Zhang, Kelvin KW Yau, and Guanghan Chen. Risk factors associ-
ated with traffic violations and accident severity in china. Accident Analysis &
Prevention, 59:18-25, 2013.

[110] Lixian Zhang, El-K6bir Boukas, and James Lam. Analysis and synthesis of
markov jump linear systems with time-varying delays and partially known tran-
sition probabilities. IEEE Transactions on Automatic Control, 53(10):2458-
2464, 2008.

[111] RX Zhong, A Sumalee, TL Pan, and William HK Lam. Optimal and robust
strategies for freeway traffic management under demand and supply uncertain-
ties: an overview and general theory. Transportmetrica A: Transport Science,
10(10):849-877, 2014.

194




