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Abstract

In the past few years, we have been experiencing rapid growth of new mobility solutions fueled
by a myriad of innovations in technologies such as automated vehicles and in business models
such as shared-ride services. The emerging mobility solutions are often required to be profitable,
sustainable, and efficient while serving heterogeneous needs of mobility consumers. Given high-
resolution consumer mobility behavior collected from smartphones and other GPS-enabled
devices, the operational management strategies for future urban mobility can be personalized and
serve for various system objectives.

This thesis focuses on the personalization of future urban mobility through the
personalized menu optimization model. The model built upon individual consumer's choice
behavior generates a personalized menu for app-based mobility solutions. It integrates behavioral
modeling of consumer mobility choice with optimization objectives. Individual choice behavior
is modeled through logit mixture and the parameters are estimated with a hierarchical Bayes
(HB) procedure. In this thesis, we first present an enhancement to HB procedure with alternative
priors for covariance matrix estimation in order to improve the estimation performance. We also
evaluate the benefits of personalization through a Boston case study based on real travel survey
data. In addition, we present a sequential personalized menu optimization algorithm that
addresses trade-off between exploration (learn uncertain demand of menus) and exploitation
(offer the best menu based on current knowledge). We illustrate the benefits of exploration under
different conditions including different types of heterogeneity.
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Chapter 1

Introduction and Motivation

In the past decade, numerous urban passenger transportation options have been emerging to

serve the needs of travelers and society. Shared-vehicle is becoming one of the most common

ways of traveling and it keeps growing. Shared-vehicles including taxis and cars operated by

ride-sharing companies such as Uber accounted for 4% of global miles traveled in 2015 but by

2030, Morgan Stanley estimates that number could reach 26% (Morgan Stanley Research, 2016).

Miles Traveled & Shared Miles Forecasts for Major regions
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15,000 -
-20%

10,000 -
C

-10%
5,000 -

0 0%
2015 2017 2019 2021 2023 2025 2027 2029
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-. Global shared miles as a % of total

Fig. 1.1 Shared miles forecasts

While vehicle sharing can improve the vehicle utilization to 50%-60% of its full potential

(Morgan Stanley Research, 2016), automated vehicles on the other hand can remove the human

bottleneck and further improve the efficiency of travel. Many current vehicles have Level 1 and

2 technologies such as cruise control, hazard warning and automated parallel parking; some

companies like Waymo and Uber have announced plans to begin testing a driverless taxi service

(Litman, 2018).
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With new transportation options arising, we have also observed the shift in language from

transportation to mobility which represents a shift in thinking about how a transportation system

should be designed and managed. Mobility is a user-centric concept that recognizes that urban

transportation products and services must be responsive to the needs, habits, and preferences of

travelers and society (Center for Automotive Research, 2016). Those technologies and business

models for mobility solutions not only improve the operational efficiency of vehicles but also

aim to be more responsive to mobility consumers' needs.

Most of these new mobility solutions are based on smartphone apps. The growing

accessibility of the Internet and penetration rate of smartphones (see Fig. 1.2) have further

accelerated the growth of these app-based mobility services. Highly penetrated smartphones not

only provide platforms for app-based mobility solutions but also enable high-resolution mobility

behavioral data collection at individual level through smartphone-based travel survey tools such

as FMS (Future Mobility Sensing, Cottrill et al., 2013) which can be utilized for improving the

design and operations of these mobility solutions.

Smartphone Penetration of Mobile Phone Market
Source: comScore MobiLens, U.S., Age 13+, 3 Mo. Avg. Ending Dec 2005 - 3 Mo. Avg. Ending Dec 2015
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Fig. 1.2 Smartphone penetration of mobile phone market

As innovations in urban mobility are emerging, there has been a great amount of

literature about these innovations. Some researchers have been focusing on behavioral

experiments for new mobility solutions including intention to use, willingness to pay for
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ownership and adoption timing (Payre et al., 2014; Schoettle and Sivak 2014; Schoettle and

Sivak 2015; Kyriakidis et al., 2015; Bansal and Kockelman, 2016). Some researchers have been

developing and evaluating control strategies of the new mobility systems (Spieser et al., 2014;

Zhang et al., 2015; Zhang and Pavone, 2016).

The existing literature either focuses on system operation (supply side) or consumer

behavior (demand side). However, few have been studying future urban mobility solutions based

on the needs from both consumer and system perspectives. The proposed operational strategies

are somewhat separated from consumer behavior and are not personalized to serve

heterogeneous consumers.

For all the consumer-centric industries such as urban mobility and retail, how to better

serve the individual consumer is always one of the most important questions. If a consumer

dislikes most of the travel options shown on the mobility app, they would likely opt out and

choose other mobility solutions. Moreover, the probability that the consumer will visit the app in

the future will decrease quickly. As almost all the interactions between consumer and mobility

system happen through the app's user interface, an optimal control of what to show for an

individual consumer, especially the menu of different travel options is the key for achieving both

operational objectives and personalization.

Fig. 1.3 shows an example of an app-based urban mobility solution. The application is a

trip planner where a consumer inputs origin, destination, and departure time as a request. A menu

will be presented to this consumer which is a list of different travel options with attributes such

as departure/arrival time. The menus are often constrained in size in these apps. Consumer can

choose an option on the menu or opt out (leave the app and take other travel options not on the

menu).

14
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Fig. 1.3 App-based mobility solution

In this thesis, we propose a personalized menu optimization model that achieves both

personalization and efficiency for future urban mobility. With consumer mobility behavioral data

from either stated or revealed preferences sources or both, we can estimate logit mixture models

for consumer mobility choice behavior. The personalized menu optimization model is built upon

the individual's choice probabilities of travel options from the logit mixture model and

maximizes expected revenue (or other objectives) through the selection of travel options to be

presented on the menu.

The thesis focuses on improving the following aspects in the context of personalized

recommendation in transportation, which can also be used in general in other relevant research

fields:

* First, as the recommendation is highly associated with prediction accuracy of the

choice model, we propose to use alternative priors suggested by statisticians

instead of the inverse Wishart (IW) prior used in textbooks in economics and

commercial software in market research for covariance matrix in logit mixture.

It's the first time that the issue of using IW for logit mixture has been identified in
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transportation, economics and marketing fields, and those alternative priors are

applied for logit mixture. Through experiments using synthetic and real data, we

show that using alternative priors for logit mixture empirically outperform using

inverse Wishart in terms of the estimation accuracy.

* Second, we propose a novel personalized menu optimization (PMO) model based

on personalized estimates instead of non-personalized estimates used in existing

choice-based optimization literature. The PMO utilizes more sophisticated choice

models including logit mixture with inter- and intra-consumer heterogeneity

compared to existing models. We show that the proposed method outperforms the

method using non-personalized estimates as well as classical content-based

recommendation methods, and the performance gap between PMO and content-

based is larger when intra-consumer heterogeneity is incorporated.

* Third, we present a novel multi-armed bandit (MAB) approach for sequential

personalized menu optimization problem which integrates a classical bandit

learning algorithm and hierarchical Bayes estimates from logit mixture. It

incorporates exploration that extends the second study where only exploitation is

considered and extends the existing MAB algorithms where choice behavior is

modeled as independent Beta distribution or multinomial logit. It is shown

through numerical experiments that the approach outperforms the classical bandit

learning algorithm and outperforms personalized menu optimization under

disturbance when intra-consumer heterogeneity is taken into account.

The remainder of the thesis is organized as follows. In Chapter 2, we review relevant

studies about personalized menu optimization. In Chapter 3, we introduce the logit mixture and

hierarchical Bayesian procedure that estimates logit mixture. In addition, we propose an

enhancement using alternative priors instead of inverse Wishart that improves the estimation

accuracy, which will in turn improve the performance of personalized menu optimization. In

Chapter 4, we evaluate the personalized menu optimization through a Boston case study in the

context of a Smart Mobility system called Tripod. In Chapter 5, we focus on the sequential

personalized menu optimization through multi-armed bandit approach and evaluated the need of

exploration under different conditions. In Chapter 6, we summarize the findings in this thesis and

discuss the future research directions.
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Chapter 2

Literature Review

In this chapter, we review the relevant studies particularly about personalized recommendation in

app-based Smart Mobility systems. Smart Mobility systems are emerging to provide innovative

app-based mobility solutions that can deal with real-time requests from travelers with

heterogeneous travel behavior. Companies including Uber, Lyft, and Zipcar have been successful

in addressing traveler's needs and therefore have been attracting many travelers every day (Rayle

et al., 2015). The recommendations from Smart Mobility systems need to be personalized and

optimized in order to attract mobility consumers and operate efficiently, which can be achieved

with personalized menu optimization. In this chapter, we will review relevant studies including

travel behavioral modeling of individuals, existing personalized recommendation in general and

in transportation, sequential personalized recommendation in general and in transportation, as well

as relevant methodologies from other fields such as marketing, operations management and

machine learning.

2.1 Travel behavioral modeling
In this section, we review relevant studies about travel behavioral modeling which is used by the

personalized menu optimization model. Predicting individuals' travel choice behavior is one of the

most important aspects of personalization in the transportation field. This is often conducted

through different types of discrete choice models such as multinomial logit, nested logit, and logit

mixture. In this thesis, we focus on logit mixture which gives estimates of individual specific taste

parameters. The personalized menu optimization with logit mixture is based on an individual's

preferences. For choice models such as multinomial logit, we may still call them personalization

only when the prediction is utilizing individual specific attributes and such attributes are included

in the utility function of the choice models. However, multinomial logit does not give us individual

specific preference knowledge.
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Logit mixture is increasingly used by transportation researchers and beyond for its

benefits, one of which is the improved estimation performance (Hess and Train, 2011). There are

various ways to estimate parameter values for logit mixture such as simulated maximum

likelihood (SML) and hierarchical Bayes (HB). The HB procedure has been popular since its

first application to marketing problems in the early 1990s (Allenby and Rossi, 2003) and it has

several advantages over the classical SML procedure. The HB method has better estimation

properties, such as consistency and efficiency, and it does not require maximization (Train,

2009). It has been applied in commercial software such as Sawtooth (Orme, 2009) and described

in well-known economics and marketing books (Train, 2009; Rossi et al., 2012). The earliest

impact of the HB procedure is in choice-based conjoint (CBC) analysis in marketing (Allenby

and Lenk, 1994; McCulloch and Rossi, 1994; Allenby and Ginter, 1995), and marketing

researchers have developed theories and applications of HB with CBC data (Moore et al., 1998;

Liechty et al., 2008; Ku et al., 2017). Additionally, various studies extend the HB procedure to

include decision heuristics such as screening rules (Gilbride and Allenby, 2003), advanced

models that include both inter- and intra-personal heterogeneity (Becker et al., 2018), and tools

for recommender systems based on HB (Danaf et al., 2018).

The estimation performance is obviously critical for personalization. A typical logit

mixture model often uses inverse Wishart (IW) distribution as the noninformative prior for

covariance matrix. However, based on knowledge from statisticians, we know that using IW prior

would impose informativity when true values of standard deviations are small and can lead to the

estimates for covariance matrix substantially deviating from true values (Alvarez et al., 2014),

which in turn will impact the estimates of individual specific parameters. In this thesis, we propose

to use alternative noninformative priors where no additional information is imposed for covariance

matrix in HB method and show that using alternative priors would reach better estimation

performance.

2.2 Personalized recommendation
2.2.1 Personalized recommendation in general

Recommender systems have been an important research field since the mid-1990s and have been

applied in many fields including books, documents, images, movies, music, shopping and others

18



(Park et al., 2012). Many recommendation techniques have been developed including widely used

collaborative filtering, content-based filtering, data mining techniques, knowledge-based, and

context-aware methods (Ricci et al., 2015).

Most existing studies of personalized recommendation are based on classical collaborative

filtering or content-based recommendation algorithms. Collaborative filtering predicts interest of

the user by collecting preferences from similar other users. For example, if customer A bought

books X, Y, Z and customer B bought books X and Y, the system will recommend customer B

book Z. Content-based recommendation is based on a description of the item and user's profile.

For example, a new book can be recommended based on its topic and user's historical choice of

this topic.

Liu et al. (2011) presented a hybrid approach to recommend blog articles on mobile

devices, which integrates personalized prediction of popularity of topic clusters, item-based

collaborative filtering and choice history. Zhuang et al. (2011) presented a context-aware and

personalized recommendation for mobile applications. It utilizes contexts including geo-locations

and user choice history based on the idea of collaborative filtering to enhance the recommendation

performance. Wang et al. (2015) presented a personalized recommendation for social network by

taking advantage of data from sensor-rich smartphones. It discovers lifestyles of users from user-

centric sensor data and recommend friends to users if someone has a similar lifestyle. Chen et al.

(2017) presented a content-based personalized recommendation integrated with unsupervised

textual embedding where content of items is embedded into latent feature space and showed its

effectiveness with online news feed data.

The above studies are built upon classical recommendation algorithms. However, there are

limitations with classical recommendation algorithms such as collaborative filtering and content-

based recommendation algorithms. Collaborative filtering requires lots of information about each

user and each item to make an accurate prediction, which is a cold-start problem. It's not suitable

for the case study in Chapter 4 where choice history with user and with travel options is limited.

Content-based recommendation techniques need very little information to start, which could be

used for the case study in Chapter 4. However, it may be limited when it does not have enough

information for each user to distinguish an item that a user likes from an item that a user dislikes

(Pazzani and Billsus, 2007).
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2.2.2 Personalized recommendation in transportation

There are limited studies about personalized recommendation in app-based transportation systems.

Some transportation apps would simply recommend alternatives with shortest travel time and

distance, which ignores the user's profile. Most recommendation techniques rely on both

alternatives' attributes and users' preference profiles which are content-based recommendation

algorithms. Nakamura et al. (2014) presented a personalized bus route recommender system based

on user context and transaction histories, which is shown to be effective through a case study using

Japanese data.

There are some recommender systems that enhance the classical recommendation

algorithms based on real-time collected traffic data or stated knowledge from users. Tsai and

Chung (2012) presented a recommender system for theme park tourists. The proposed

recommender system collects tourist visiting sequences and time lengths through a Radio-

Frequency Identification (RFID) system and generates proper route suggestions for visitors

considering current facility queuing situations identified by RFID system. Liu et al. (2014)

proposed a recommender system for self-drive tourists that is based on real-time traffic data.

Instead of RFID, their system used a vehicle to vehicle communication system (V2VCS) as RFID

requires huge infrastructure investments. Su et al. (2014) enhanced traditional route

recommendation with crowdsourcing knowledge from human workers and showed that crowds'

knowledge has improved the recommendation quality. Bajaj et al. (2015) presented a personalized

route recommendation to improve convenience stated by users. In the following case study in

Chapter 4, the system does not utilize data except for a user's choice history.

All the systems reviewed above do not model consumer choice behavior and are based on

classical recommendation algorithms. In the next section, we present recommender systems based

on discrete choice models.

2.2.3 Personalized menu optimization

With rich individual data becoming available in the Big Data era, discrete choice models have

received interest in recommender systems due to their ability to predict individual choices

(Chaptini, 2005; Polydoropoulou and Lambrou, 2012; Jiang et al., 2014). Jiang et al. (2014) used
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a multi-level nested multinomial logit model to measure users' preferences towards an entire

recommendation list. The recommendation problem was formulated as a nonlinear binary integer

programming problem. The authors pointed out that discrete choice models could incorporate

product diversity in the proposed recommendation, which differed from traditional recommender

systems. Choice models being able to well account for consumer heterogeneity is crucial for

recommender systems. There exist various recommendation techniques that account explicitly for

heterogeneity in user preferences (Allenby and Ginter, 1995; Rossi et al., 1996; Ansari et al.,

2000).

In this thesis, we propose personalized menu optimization, which integrates travel

behavioral modeling and optimization models. It often uses estimation results from hierarchical

Bayesian (HB) procedure for logit mixture. Logit mixture model captures the individual-level taste

heterogeneity and HB estimation provide estimates of individual-level taste parameters which can

be used for computing choice probability of alternatives or consumer-surplus presented by log-

sum (Ben-Akiva, 1973).

Personalized menu optimization is adapted from assortment optimization which is an

arising topic in operations management that is becoming popular in many practical settings such

as retailing and online advertising (Desir et al., 2015). The goal of assortment optimization is to

select a subset of items to offer from a universe of substitutable items in order to maximize the

expected revenue when consumers exhibit a random choice behavior. Different discrete choice

models are often used to model the random choice behaviors of consumers including multinomial

logit, nested logit, and logit mixture (Davis et al., 2013; Davis et al., 2014; Feldman and Topaloglu,

2015). The reader is referred to Kok et al. (2008) for more details of assortment optimization

literature and industry practice. The assortment optimization model is flexible and can be the

underlying control mechanism for different operational management systems by formulating

different optimization models. It often assumes that the system knows consumers' utilities for

product or option in the choice set from previous data collection. Then it maximizes the expected

"revenue" as a function of choice probabilities that are controlled by the decision variable whether

the option is in the assortment or not. "Revenue" can be monetary revenue or other beneficial

performance measures.
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The first application of assortment optimization methodology in the transportation field

has been seen in FMOD (Flexible Mobility on Demand), which allocates flexible levels of services

such as taxi and shared-taxi with the same type of vehicles to individual travelers (Atasoy et al.,

2015a; Atasoy et al., 2015b). In FMOD, the personalized menu optimization selects a subset of

travel options, including taxi, shared-taxi and mini-bus, to be presented on the menu in order to

maximize the expected revenue or consumer surplus or both (Atasoy et al., 2015a; Atasoy et al.,

2015b). FMOD uses multinomial logit as the underlying choice model.

In this thesis, we focus on cases where the underlying choice models are more complicated

including logit mixture with inter-consumer (and intra-consumer heterogeneity). This has been

applied in the context of Tripod. Tripod is an app-based smart mobility system that incentivizes

travelers based on energy savings in order to increase the utilization of more energy efficient

options (Azevedo et al., 2018). Travelers make trip requests at the Tripod app, and the user level

optimization (User Optimization) generates personalized menus as a list of travel options including

mode, departure time, route, energy usage and travel incentives in the form of tokens to incentivize

the user for green travel options.

The personalized menu optimization is novel as it uses a continuous logit mixture with

inter- and intra-consumer heterogeneity as the underlying choice model while in FMOD

multinomial logit is used and in Feldman and Topaloglu (2015) a discrete logit mixture was used

which assumed that individuals belong to the same segment sharing the same taste parameters.

Both choice models did not use estimates for individual-specific taste parameters. The particular

benefit of using logit mixture is its ability to capture individual-level taste preferences. Therefore,

in Chapter 4, we evaluated the personalized menu optimization using logit mixture against the

benchmark methods such as using non-personalized estimates from logit mixture and content-

based recommendation algorithms to show the benefits of personalization. We use a Boston case

study to show that the benefits hold with real data and a large sample.

2.2.4 Sequential personalized menu optimization

In previously reviewed studies, the personalized menu optimization is exogeneous with preference

updates. It uses the expected rewards as the objective function to maximize and doesn't explore

beyond the current expectation. In real life, we need to deal with sequential personalized menu
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optimization problem where we need to continuously update our belief of uncertain preferences.

For example, we might like to recommend products towards which we know little about users'

preferences in order to have better understanding of associated users' preferences. Such a problem

can be formulated as a multi-armed bandit (MAB) problem.

The multi-armed bandit approach deals with the trade-off between exploration (learning

consumer uncertain preferences of some alternatives) and exploitation (offer best alternatives

based on current belief) where a recommendation decision is endogenous with preference updates.

There are different types of multi-armed bandit problems including stochastic, adversarial, and

Markovian depending on the assumed nature of reward process (Bubeck and Cesa-Bianchi, 2012).

MAB problems usually do not have exact solutions except for some special cases (Scott, 2010)

and many researchers have proposed different solution algorithms to different types of MAB

problems including the upper confidence bound (UCB) algorithm in the stochastic case, the

exponential-weight algorithm for exploration and exploitation (Exp3) algorithm in the adversarial

case, and the so-called Gittins indices in the Markovian or Bayesian case (Bubeck and Cesa-

Bianchi, 2012). A typical MAB problem can be stated as follows (Gittins et al., 1979): there are N

arms, each having an unknown success probability of emitting a unit reward. The success

probabilities of the arms are assumed to be independent of each other. Many policies have been

proposed under independent-arm assumptions (Lai and Robbins, 1985; Auer et al., 2002). Related

with personalized menu optimization, the arm is the offered menu which is a list of alternatives

and the success means an alternative on the menu is being chosen by the user. In this thesis, we

focus on the case where the menu size is one and therefore the arms are independent. If menu size

is greater than one, the success probability of one arm/menu will depend on utility of multiple

alternatives which means its reward is dependent on some of the other arms which have the same

alternatives on the menu. It is a combinatorial bandit problem where existing techniques such as

UCB do not work directly on these functions (Chen et al., 2017). We leave this more complicated

case for future study.

There are a few heuristics for various MAB problems including:

* First explore then exploit, which has been adopted by Rusmevichientong et al. (2010) and

Saure and Zeevi (2013) to solve dynamic assortment optimization problems.
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" Epsilon-greedy: with epsilon probability, choose a random arm to explore, otherwise

exploit.

" Gittins index: compute a Gittins index for each arm and choose the arm with highest

index. More details can be found in Gittins (1979). One issue with Gittins index is that it

is only optimal with geometric discounting (Berry and Fristedt, 1985).

" Randomized probability matching (RPM): randomly choose an arm with the probability

that this arm is the best. A well-known special case of RPM is Thompson sampling (TS,

Thompson, 1933). Chapelle and Li (2011) showed by empirical experiments that

Thompson sampling performs better than UCB algorithms.

* Upper confidence bound (UCB): choose an arm with the highest upper confidence bound.

It has many variants such as Bayes-UCB due to various ways to construct upper

confidence bound and has been applied in many fields including personalized

recommendation in news articles (Li et al., 2010) and digital coupons (Song, 2016).

For stochastic and adversarial bandit, the reader is referred to Bubeck and Cesa-Bianchi

(2012). For Markovian bandit or Bayesian bandit, the book by Gittins et al. (2011) is the main

reference.

Most existing literature in the MAB field does not deal with discrete choice models but

often assumes choice behavior follows simple Beta distributions (Song, 2016). In operations

management, there exists literature proposing online policy depending on a priori knowledge of

length of horizon (Rusmevichientong et al., 2010; Saure and Zeevi, 2013) such as "explore first

and exploit later" policy. In the MAB paradigm, Agrawal et al. (2017a, b) proposed an adapted

Thompson sampling method and a UCB method which can deal with multinomial logit choice

model but relies on specific exploration phases.

These methods are not suitable for a sequential personalized menu optimization setting

where logit mixture is the underlying choice model and is much more complicated than

multinomial logit. In this thesis, we focus on proposing a method which adapts the classical UCB

algorithm by utilizing the HB estimator for logit mixture of inter- and intra- consumer

heterogeneity.
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In transportation, there are a few studies about MAB problems which focus on different

types of sequential decision-making problems. Chancelier et al. (2007) have modeled route

choice as a one-armed bandit problem (choice between a random and a safe route) under

different information regimes. They showed that risk neutral individuals tend to select a risky

route while risk-averse individuals choose safe route more frequently. Chancelier et al. (2009)

further showed that when utility function is more concave, an individual has more chances to

select a safe arm in a one-armed bandit problem. Ramosa et al. (2018) model the route choice

problem as a multiagent reinforcement learning scenario. They analyzed how travel information

provided from a mobile navigation app would impact the agent route choice decision using

epsilon-greedy strategy that minimizes difference between chosen route and best route. Estes and

Ball (2017) used the multi-armed bandit approach for a ground delay program that balances the

demand and supply in terms of airport capacity.

2.3 Summary
In summary, this thesis makes various contributions to the field of transportation and

methodologically to choice-based personalized recommendation and sequential choice-based

personalized recommendation when compared to the existing literature.

* First, we propose to use alternative prior distributions suggested by statisticians

for covariance matrix in logit mixture model instead of classical inverse Wishart

(IW) distribution used in textbooks and commercial software for discrete choice

models. Although these alternative priors exist in statistics literature, they have

not been introduced and applied with discrete choice models before. It's the first

time that the issue of using IW for logit mixture has been identified in

transportation, economics and marketing fields, and those alternative priors are

applied for logit mixture. We empirically analyze their superior estimation

accuracy against the benchmark IW prior with synthetic and real data.

In addition, we give guidance for researchers and practitioners who use logit

mixture about when and which prior to use after comparing among alternative

priors in terms of estimation accuracy and computational time.
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* Second, we propose a novel choice-based personalized recommendation model

which utilizes the logit normal mixture as the underlying choice model that

captures individual specific taste preferences. The proposed model uses logit

mixture with inter- and intra-consumer heterogeneity where previously only non-

personalized choice models such as multinomial logit have been used.

By using a Boston case study, we illustrate that the personalized menu

optimization using individual specific preference estimates performs better than

benchmark methods including non-personalized menu optimization model and

two content-based recommendation algorithms. The benefits of the proposed

model are more salient when there is more choice data and when the true choice

model is more complicated with inter- and intra-consumer heterogeneity.

* Third, we present a novel sequential personalized menu optimization algorithm

which integrates the idea of the classical UCB algorithm that deals with

exploration and exploitation into the personalized menu optimization based on

HB estimates of individual preferences. This algorithm extends the previous

literature where user choice behavior is not modeled by logit mixture and extends

the second study where we only consider exploitation. We illustrate that the

proposed algorithm performs better than classical UCB algorithm and show that

the benefits of exploration under disturbance against benchmark personalized

menu optimization when we have inter-and intra-consumer heterogeneity.
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Chapter 3

Logit Mixture and Hierarchical Bayes

Procedure

3.1 Logit mixture

With the choice data collected through stated preference surveys and revealed

preferences from smartphone apps or other resources, we can estimate a discrete choice model

that captures an individual consumer's preferences. One of the key discrete choice models we

apply in our methodology is called logit mixture model (also known as mixed logit) (Ben-Akiva

et al., 2016).

Logit mixture models have many advantages, including improved estimation

performance, which make them widely used by researchers and practitioners to represent random

taste heterogeneity across consumers (Hess and Train, 2011). As reviewed in Chapter 2, the

hierarchical Bayes (HB) procedure for estimating logit mixture has been popular and widely

used in transportation, economics and marketing for various applications. The HB procedure,

called Allenby-Train procedure (Ben-Akiva et al., 2016), has been applied in commercial

software such as Sawtooth (Orme, 2009) and described in well-known economics and marketing

books (Train, 2009; Rossi et al., 2012).

A typical logit mixture model with a linear utility specification is given as follows:

Uin = Vn + Eft = X1 n(n + Ein (3.1)

where U1n denotes individual n's utility for alternative j, x1 n denotes the attributes of alternativej

available to individual n, Eja is i.i.d. Gumbel distributed. (, is the random parameter vector

representing taste of individual n, which follows a multivariate normal distribution with mean y

and covariance D represented by Equation (3.2).

(n~-JVp, D) (3.1)

27



The likelihood function for individual n given parameters y, fl is given by Equation (3.3).

- n

P(dnIIt, f) = n = ((n)djn f((nf, n)d (3.2)

where din is a binary variable such that it is 1 if individual n chooses alternative j and 0

otherwise. Jn denotes the number of alternatives in the choice set of individual n (opt-out

alternative is represented by j = 0). dn is the vector of choices over all alternatives for individual

n and f denotes the normal probability density function.

The probability of individual n choosing alternative j given individual parameter vector

(n is shown in Equation (3.4).

Pn fexp(Vn(n(.n))

TJ = exp (Vln ( n))

3.2 Hierarchical Bayes procedure

In well-known textbooks in economics and marketing (Train, 2009; Rossi et al., 2012) and

commercial software Sawtooth (Orme, 2009), a hierarchical Bayes (HB) procedure called

Allenby-Train procedure (Ben-Akiva et al., 2016) is used for estimating the logit mixture with

inter-consumer heterogeneity. The HB procedure treats the individual level coefficients as

unknown parameters in the Bayesian estimation procedure. Therefore, we have three sets of

parameters and the joint posterior distribution for all three sets of parameters is given as follows:

N an

K (y, fl, (n Vn Idn Vn) oc f 1Pn ((n)djn M(np fl) k (p) k(fl) (3.4)

1n=1 i=0

where the prior distributions are given as
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k(p)-N(po, A)

k(f)-IW(v, E) (3.6)

where yo can be any value (e.g., zeros or flat logit model estimates); A is a diagonal matrix with

large elements (e.g., 100IT) where T is the number of unknown population mean parameters; v is

the degrees of freedom parameter, Z is the scale matrix where statisticians set v to be T+1 and Z

to be IT (a T x T identity matrix) (Barnard et al., 2000; O'Malley and Zaslavsky, 2005; Alvarez

et al., 2014). Train (2009) suggested using IW(T, TIT). Rossi et al. (2012) suggested using

IW(T + 3, (T + 3 )IT) and IW(T + 4, (T + 4 )IT). The reason why IW prior is used is because

it's a conjugate prior for covariance matrix with multivariate normal likelihood, which means the

posterior is also an IW distribution. Conjugacy enables Gibbs sampling update of population-

level mean and covariance matrix in Markov Chain Monte Carlo (MCMC) which is

computationally efficient. In the remainder of this paper, we will use IW(T + 1, IT) and we will

show by simulation data analysis that all these alternative specifications have issues.

Given Equation (3.5), we can obtain estimates of these parameters through various

methods including random walk Monte Carlo (Gibbs sampling and Metropolis Hasting) which is

the most common MCMC method, Hamiltonian Monte Carlo (HMC) which is also known as

Hybrid Monte Carlo (Neal, 2011) and is also a MCMC method, and Variational Bayes (Jordan et

al., 1999; Braun and McAuliffe, 2010). In current textbooks and commercial software, the

Allenby-Train procedure for logit mixture often uses a random walk Monte Carlo method and

constructs three Gibbs sampling steps for three sets of parameters P, f2, and (, Vn.

Step 1 draw. yI fl, (a for all n;

Step 2 draw. fGl, (n for all n;

Step 3 draw. (n Ip, f2.

Steps 1 and 2 are conjugate normal updates with unknown (known) mean and known

(unknown) variance. Step 3 follows a Metropolis Hasting (MH) algorithm. More details about

this Bayesian procedure for logit mixture can be found in Ben-Akiva et al. (2016), Train (2009)

and Rossi et al. (2012). In Becker et al. (2018), the Allenby-Train procedure for logit mixture

with inter-consumer heterogeneity is extended for logit mixture with inter- and intra-consumer

29

(3.5)



heterogeneity. More details of the extended Allenby-Train procedure for logit mixture with inter-

and intra-consumer heterogeneity can also be found in Appendix A.

3.3 Enhancement to hierarchical Bayes procedure

3.3.1 Inverse Wishart distribution

The common HB procedure uses IW prior for covariance matrix estimation due to its conjugacy

to covariance matrix with multivariate normal likelihood. Conjugacy gives convenience for

estimation through Gibbs sampling and therefore we have previously described the Allenby-

Train procedure. The IW distribution with degrees of freedom V and scale matrix E is shown as

follows:

If Z2 lv+T+1 1
dQ-IW(v, E) = vT 117- 2 e- tr (3.7)

22-I' (Z)

where trO stands for trace of a matrix and FT stands for the multivariate Gamma function.

In order to understand the impact of imposing an IW prior for covariance matrix, we need

to know the properties of the IW distribution. First, the uncertainty for all variance parameters is

controlled by a single degree of freedom parameter and thus provides no flexibility to

incorporate different amounts of prior knowledge to different variance components (Gelman et

al., 2003; Alvarez et al., 2014). Second, Gelman (2006) suggests that the marginal distribution

for the variance has low density in a region near zero. Third, Tokuda et al. (2011) suggest that

there is a priori dependence between variances and correlations when using IW prior. Given such

properties of IW, Alvarez et al. (2014) identify through a simulation study that the estimates of

variances will be inflated and the estimates of correlations will be deflated when the true relevant

variance is small.

As suggested by Tokuda et al. (2011), the analytical property of IW distribution is

difficult to obtain and researchers often use simulation analysis to understand its property.

Therefore, we carry out simulation-based analysis to show the properties of an IW distribution

that may lead to biased estimates. This simulation analysis adapts the R codes provided by Matt
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Simpson (2012) on his website. Specifically, we draw 10,000 samples from IW(3, I2). Fig. 3.1

shows the histograms of standard deviations of the first and second components in covariance

matrices from IW. Fig. 3.2 shows the variance of the first component vs. the correlation in

covariance matrices from IW. The horizontal axis is shown in powers of 10 for better

visualization.
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Fig. 3.1 Standard deviations of the first vs. second component from IW
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Fig. 3.2 Variance of the first component vs. correlation from IW

Fig. 3.1 indicates that IW has a very narrow range of values for the standard deviations.

We see few draws below 0.1. This may cause inflated posterior estimates of standard deviations
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when true standard deviations are small. From Fig. 3.2, we observe strong dependence between

correlation and variance where larger variances are associated with extreme correlations and

small variances are associated with correlations near zero. Such dependence may cause the

estimates of correlations to be biased towards zero when the true standard deviations are small.

In a later section, we use similar plots to compare the alternative priors with IW. We also

illustrate the issues with using IW prior within HB procedures for logit mixture through Monte

Carlo simulation in a later section.

3.3.2 Alternative priors for covariance matrix

Ben-Akiva et al. (2016) note issues of inflated variance when applying the HB procedure.

To address this problem, they divide the data by ten so the covariance matrix is relatively large

and, therefore, issues when the true value of variance is small can be avoided. Rescaling the data

is also suggested by Alvarez et al. (2014). We review three alternative priors for covariance

matrix including a separation strategy (BMM), a scaled inverse Wishart (SIW), and a

hierarchical inverse Wishart (1-11W) in this section and show their properties through simulation.

BMM is proposed by Barnard et al. (2000) where standard deviations and correlations are

modeled independently and later combined to form a prior on the covariance matrix

l = ARA (3.8)

where A is a diagonal matrix with the il element A1

log(Xi) ~N(bi, 0?) (3.9)

and R is the correlation matrix of a covariance matrix that follows inverse Wishart distribution

R = AQA (3.10)

where A is a diagonal matrix with il element Q, and Q-IW(v,ZE). Under BMM specification,

the variance component is more flexible compared to IW and is independent from correlation by

construction. Correlations are marginally uniformly distributed when degrees of freedom are T +

1.
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SIW is proposed by based O'Malley and Zaslavsky (2005) and is similar to BMM.

fl = ARA (3.11)

where A is a diagonal matrix with the ith element Xi

log(,) -N(bi, 02) (3.12)

and R-IW(v, E). Under SIW specification, the standard deviation is the product of a log-normal

and square root of a scaled inverse chi-square which provides more flexibility compared to IW.

The correlations are also marginally uniformly distributed with degrees of freedom to be T + 1.

A recent alternative is HIW proposed by Huang and Wand (2013). The covariance matrix

fl is given by

f-IW(v + d - 1, 2vA) (13)

where A is a diagonal matrix with ih element 1/X. which follows inverse Gamma distribution

1 1
Xi~IG(-, 72) (3.14)

The corresponding density function of inverse Gamma such that x-IG (a, fl) means that

p(x) oc x "-'e x, x > 0. As can be observed from Equations (3.14) and (3.15), HIW has more

flexibility in terms of standard deviations. Setting of v = 2 ensures uniform distribution for

correlations. Similar approaches with HIW were also proposed by Daniels and Kass (1999) and

Bouriga and Feron (2013).

These alternative priors have been applied in other models such as random effects

regression models. To our knowledge, none of them--except for HIW in Becker (2016)--has been

applied in HB for logit mixture estimation. In order to illustrate the properties of these alternative

priors, we draw 10,000 samples from these alternative priors as well as IW, and plot the

histograms of standard deviations in Fig. 3.3 and scatter plots of variance of first component

versus correlation in Fig. 3.4 to illustrate their properties. Following the similar simulation study

by Alvarez et al. (2014), 0j's in HIW are set to 1.04 and 0j's in BMM and SIW are set to 1. bi's

in BMM and SIW are set to zero. Z's are set to identity matrix.
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Fig. 3.4 Variance of the first component vs. correlation from alternative priors

As we observe from Fig. 3.3, histograms for HIW, SIW and BMM are similar except that

HIW and SIW have slightly fatter tails. We can control the non-informativity of standard

deviations through Oj's. From Fig. 3.4, we observe that BMM has no dependence due to its
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construction. HIW and SIW have slight dependence among correlations and variances, but their

dependence is not as strong as IW.

One important property for HIW is that it's conditional conjugate to covariance matrix

with multivariate normal likelihood. Therefore, it's easier for us to extend the Allenby-Train

procedure to estimate logit mixture with HIW prior. For SIW and BMM which are more

complicated and require lots of coding of Metropolis Hastings, we don't use random walk Monte

Carlo for estimation. Instead, we use R interface of Stan which only requires specifying model

for estimation, where No-U-Turn-Sampler (NUTS) is the default estimation engine in Stan.

NUTS is an adapted HMC method which can reach stationary distribution with fewer number of

iterations than random walk Monte Carlo and does not require hand-tuning parameters as in

HMC. More details of NUTS and Stan software can be found in Hoffman and Gelman (2014)

and Carpenter et al. (2016) respectively. The Stan scripts can be found in Appendix B.

3.4 Case Study

3.4.1 Case study: choice of grapes

We use a Monte Carlo simulation study to illustrate issues in using IW in HB procedures for

logit mixture as well as the advantages of using alternative priors. Alternative priors are

evaluated in terms of estimation accuracy and computational time.

In this simulation study, respondents are presented with hypothetical choice situations for

a choice of grapes. Bunches of grapes have attributes of price, sweetness, and crispness.

Respondents are presented eight different choice scenarios and they may choose one out of three

bunches or choose the no purchase option in each of those scenarios. The attributes of grapes

include price, sweetness and crispness, where price is drawn uniformly from $1.00 to $4.00 and

sweetness (tartness) and crispness (softness) are drawn with probability 0.5.

Assume the true utility is in the willingness to pay form. We define the utility of

consumer n for alternative j (j=1,2,3) as follows:

U1n =In - Pn + Sinfsn + Cinf3cn + ansyn (3.15)
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where I, is the disposable income which cancels out in the utility maximization, Efj are i.i.d.

Gumbel distributed, and (, = (fls, J3 cfl log (an)) are the individual level preference parameters.

The individual level parameters follow multivariate normal distribution with population level

mean and population level covariance matrix. Two synthetic populations are generated with

sample sizes 2,000 and 16,000 respectively. Given these data, we use HB procedures with IW

and alternative priors to estimate these parameters. More details about the choice of grapes study

can be found in Ben-Akiva et al. (2016).

With the NUTS method, the Markov chains reach stationary distributions with few

iterations. We use the first 500 iterations as burn-in and the next 4,000 iterations for estimation.

The burn-in means those iterations are discarded and not used for estimation since the Markov

chains are not stationary distributions. All the Markov chains are stationary distributions

according to the Heidelberger and Welch test (Heidelberger and Welch, 1983). The model

estimation is run on a machine with a 64-bit 3.6 GHz Intel Core i7 CPU with 8 GB of memory.

Table 3.1 provides the true values together with sample values in Monte Carlo simulation

and estimates of population mean/covariance and correlation with IW prior of 2000 individual

data. As we described in the previous section, literature has suggested different IW specifications

from IW(T + 1, IT) including IW(T, TIT), IW(T + 3, (T + 3 )IT) and IW(T + 4, (T + 4 )IT).

We denote the latter three as IW2, IW3 and IW4.

Table 3.1 Estimates of 2000 individuals with IW prior

Mean TRUE Sample IW1 IW2 IW3 IW4

log (an) -0.5 -0.4998 -0.5161 -0.5248 -0.5297 -0.5317

S 1 1.0052 1.0196 1.0119 1.0084 1.0093

Pc 0.9 0.8985 0.8603 0.8558 0.8503 0.8488

Std.Dev TRUE Sample IWI IW2 IW3 IW4

log (an) 0.3 0.3007 0.3379 0.3660 0.3892 0.3944
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Ps 0.4 0.4021 0.4222 0.4494 0.4661 0.4727

Pc 0.3 0.2989 0.3310 0.3720 0.4014 0.4109

Correlation TRUE Sample IWi IW2 IW3 IW4

log(an), Ps 0.8 0.8082 0.6605 0.5243 0.4423 0.4253

log(an), Pc 0.96 0.9608 0.5405 0.4103 0.3335 0.3223

Ps, Pc 0.6 0.6132 0.4602 0.2955 0.2115 0.1839

Covariance TRUE Sample 1W IW2 IW3 IW4

log(an), Ps 0.096 0.0977 0.0942 0.0862 0.0802 0.0793

log(an), Pc 0.0864 0.0863 0.0604 0.0559 0.0521 0.0522

Ps' Pc 0.072 0.0737 0.0636 0.0494 0.0396 0.0357

From Table 3.1, we notice that when the true values of standard deviations are small, the

relevant estimates including standard deviations, correlations, and covariance terms deviate

substantially from the true values. Specifically, the standard deviations are inflated and

correlations are deflated. Covariances are also deflated as deflation in correlations is stronger

than inflation in standard deviations. The results in Table 3.1 are consistent with findings from

our previous simulation and literature. Since the issues with IW are common across alternative

specifications, we use the first specification in the remainder of the paper.

The issues with IW may be also associated with other phenomena including amount of

data in the likelihood, true correlations, and number of parameters. Further investigation with

different simulation setups indicates that amount of data in terms of larger sample size and more

choice situations could mitigate the issue as it is shown with the 16,000 sample size in latter

section. However, the issue of IW still exists even at the 16,000 sample size with 16 choice

situations or 24,000 sample sizes with 8 choice situations. We also observed that lower

correlation could mitigate the issues of IW which is consistent with the literature highlighting the
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dependence between correlation and standard deviations for IW distribution. But the issue still

exists with low correlation at 0.2. We didn't find an obvious pattern regarding the number of

parameters.

Following the simulation study by Alvarez et al. (2014), the degrees of freedom are set to

T + 1 in IW/SIW/BMM and v is set to 2 in HIW. 6j's in HIW are set to N1000 and Oi's in

BMM and SIW are set to 100. bi's in BMM and SIW are set to zero. E's are set to identity

matrix in IW/SIW/BMM. The purpose of setting values of 8's is to make them noninformative.

Therefore, we make the standard deviations large. Alternatively, for SIW and BMM, we might

use uniform distributions to replace the lognormal distribution. We tried uniform distribution

from 0 to 100 and the estimates with the 2,000 sample size are very close to standard SIW and

BMM specifications shown in Table 3.2. The relative absolute errors of estimates of mean,

standard deviations, correlations are mostly within 5% with a maximum of 12%.

In addition to using the NUTS method for estimation, we also implemented random walk

Monte Carlo (Gibbs sampling as in Allenby-Train procedure) using IW prior and extending the

current Allenby-Train procedure with using HIW prior as well. We didn't implement SIW and

BMM with random walk Monte Carlo here because they are too complicated. With the random

walk Monte Carlo method, IW-AT reach stationary distributions fast and we use the first 1,000

iterations for burn-in and keep the last 4,000 iterations for estimation. However, HIW-AT take

many iterations to reach stationary distributions and we use 100,000 iterations and 150,000

iterations for burn-in for 2,000 and 16,000 sample sizes. Readers can refer to Hoffman and

Gelman (2014) about the superior property of NUTS against classical random walk Monte Carlo.

Table 3.2 shows additional results from the HB procedure with HIW/SIW/BMM, from

which we can compare the estimation accuracy and computational time. In the parentheses

underneath the estimates, we show the corresponding absolute percentage errors with respective

to the sample value (values are in %).

Table 3.2 Estimation results with sample size 2,000

IW-AT IW- HIW- HIW- S1W- BMM-

Mean TRUE Sample NUTS AT NUTS NUTS NUTS
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-0.5215 -0.5161 -0.5088 -0.5052 -0.5059 -0.5046
-0.5 -0.4998

log (an) [4.35] [3.27] [1.80] [1.09] [1.23] [0.95]

1.0051 1.0196 1.0236 1.0240 1.0245 1.0245
1 1.0052

Ps [0.01] [1.43] [1.83] [1.87] [1.92] [1.92]

0.8616 0.8603 0.8798 0.8698 0.8704 0.8692
0.9 0.8985

Pc [4.10] [4.25] [2.08] [3.19] [3.12] [3.26]

IW-AT IW- HffW- HiW- SIW- BMM-

Std.Dev TRUE Sample NUTS AT NUTS NUTS NUTS

0.3570 0.3379 0.3053 0.3011 0.3014 0.3020
0.3 0.3007

log (an) [18.73] [12.38] [1.54] [0.13] [0.22] [0.43]

0.4505 0.4222 0.4005 0.3940 0.3933 0.3841
0.4 0.4021

Ps [12.04] [4.99] [0.39] [2.01] [2.19] [4.48]

0.3799 0.3310 0.2502 0.2636 0.2630 0.2618
0.3 0.2989

Pc [26.42] [10.74] [16.28] [11.79] [12.03] [12.40]

1W-AT IW- HIW- HIW- SIW- BMM-

Correlation TRUE Sample NUTS AT NUTS NUTS NUTS

0.5298 0.6605 0.9002 0.8788 0.8839 0.8819
0.8 0.8082

log(an), Ps [34.44] [18.27] [11.38] [8.73] [9.37] [9.12]

0.4109 0.5405 0.8411 0.8436 0.8402 0.8563
0.96 0.9608

log(an), PC [57.23] [43.75] [12.46] [12.20] [12.55] [10.87]

0.2978 0.4602 0.8096 0.7970 0.8056 0.8693
0.6 0.6132

Ps, Pc [51.43] [24.95] [32.02] [29.98] [31.37] [41.77]
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IW-AT IW- HlW- HIW- SIW- BMM-

Covariance TRUE Sample NUTS AT NUTS NUTS NUTS

0.0852 0.0942 0.1101 0.1042 0.1046 0.1021
0.096 0.0977

log(an), Ps [12.77] [3.54] [12.68] [6.69] [7.02] [4.55]

0.0554 0.0604 0.0643 0.0668 0.0663 0.0675
0.0864 0.0863

log(a), Pc [35.76] [30.06] [25.54] [22.55] [23.14] [21.82]

0.0507 0.0636 0.0811 0.0823 0.0826 0.0868
0.072 0.0737

$s, PC [31.21] [13.66] [10.10] [11.70] [12.10] [17.72]

Time (hr) 0.02 1.9 0.3 14.9 50.2 29.6

First, we observe that the estimations of standard deviations from HIW/SIW/BMM are

better than IW in general except for sC. Second, for correlations, we observe that estimates from

HIW/SIW/BMM are better than IW except for ss, Pc. Third, for covariances, the estimates from

alternative priors are better for Ps, Pc and log(an), Pc especially Ps, C and the estimates

deviations are similar for log(an), Ps. In summary, with relatively small sample size, the

alternative priors perform better than IW. There is no clear evidence that any one among

HIW/SIW/BMM is better than others. According to literature, BMM seems to be the best

alternative. The estimation results using the random walk Monte Carlo (IW and HIW) are similar

to those using NUTS. However, the computational time is significantly shorter. Even for HIW-

AT which uses 100,000 iterations for burn-in, it takes less than half an hour to run compared to

15 hours using NUTS. The reason is that NUTS takes a sophisticated Hamiltonian Monte Carlo

for each iteration of each parameter update which is more time-consuming. However, NUTS

requires fewer iterations to reach a stationary distribution as we use 500 burn-in iterations against

HIW-AT uses more than 100,000 iterations. More details about property of NUTS versus

conventional random walk Monte Carlo can be found in Hoffman and Gelman (2014).
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In addition to estimation accuracy, we also observe that the computational times for IW,

HIW, SIW, and BMM are 1.9, 14.9, 50.2 and 29.6 hours respectively. As alternative priors have

more parameters, they are computationally more demanding than IW. Among alternative priors,

HIW is the most efficient in terms of computational time. Note that the presented computational

times are based on our current Stan codes and alternative software or optimized codes might

have different values.

To further support the comparison in terms of computational time, we check the trace

plots of the parameters to see when the Markov chains reach stationary distributions. According

to the Heidelberg Welch test and visual inspection of trace plots, those chains reach stationary

distributions quickly. Fig. 3.5 shows a trace plot of covariance of log(cin), Ps under SIW after

dropping the first 500 iterations of burn-in periods under NUTS. As we can observe from the

plot, the stationary distribution is reached. According to Raftery and Lewis (1996), close to 4,000

iterations are required to achieve reasonable accuracy concerning the 2.5th (and 97.5th)

percentiles. So we compare the computational time for 4000 iterations instead of comparing the

computational time that the Markov chain needs to reach stationary distribution.

LC)

C) - I Co

0 1000 3000

Iterations

Fig. 3.5 Trace plot of covariance of 1og(an), Ps under SIW

Table 3.3 presents the results of IW and alternative priors with a sample size of 16,000.

Larger samples would improve the estimation performance and take a longer computational

time.

Table 3.3 Estimation results with sample size 16,000
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IW-AT IW- HIW- HIW- SIW- BMM-

Mean TRUE Sample NUTS AT NUTS NUTS NUTS

-0.5114 -0.5080 -0.4989 -0.5021 -0.5016 -0.5019

log (an) -0.5 -0.5024 [1.80] [1.12] [0.69] [0.06] [0.15] [0.09]

0.9818 0.9835 0.9847 0.9852 0.9852 0.9854

Ps 1 0.9977 [1.60] [1.43] [1.30] [1.26] [1.25] [1.23]

0.9008 0.9043 0.9049 0.9087 0.9088 0.9086

Pc 0.9 0.8976 [0.36] [0.75] [0.81] [1.24] [1.25] [1.22]

IW-AT IW- HIW- HIW- SIW- BMM-

Std.Dev TRUE Sample NUTS AT NUTS NUTS NUTS

0.3287 0.3167 0.3037 0.3004 0.3017 0.3014

log (an) 0.3 0.3011 [9.18] [5.18] [0.87] [0.24] [0.20] [0.08]

0.4289 0.4204 0.4020 0.4105 0.4010 0.4050

Ps 0.4 0.4002 [7.17] [5.05] [0.46] [2.58] [0.21] [1.20]

0.3479 0.3289 0.2937 0.3042 0.2963 0.3030

Pc 0.3 0.3013 [15.47] [9.17] [2.51] [0.95] [1.66] [0.57]

IW-AT IW- HIW- HIW- SIW- BMM-

Correlation TRUE Sample NUTS AT NUTS NUTS NUTS

0.6153 0.6751 0.7275 0.7460 0.7633 0.7553

log(an), Ps 0.8 0.8007 [23.15] [15.68] [9.14] [6.83] [4.67] [5.67]

0.6768 0.7638 0.9643 0.9433 0.9409 0.9382

1og(an), Pc 0.96 0.9604 [29.53] [20.47] [0.40] [1.78] [2.03] [2.32]
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0.4103 0.4771 0.6918 0.5910 0.6723 0.6197

Ps' c 0.6 0.6022 [31.86] [20.77] [14.87] [1.87] [11.65] [2.90]

IW-AT lW- HIW- HIW- S1W- BMM-

Covariance TRUE Sample NUTS AT NUTS NUTS NUTS

0.0868 0.0899 0.0888 0.0919 0.0923 0.0921

log(an), Ps 0.096 0.0965 [10.09] [6.86] [7.95] [4.73] [4.37] [4.55]

0.0774 0.0796 0.0860 0.0861 0.0841 0.0856

log(a), $C 0.0864 0.0871 [11.13] [8.66] [1.23] [1.13] [3.49] [1.67]

0.0612 0.0659 0.0817 0.0735 0.0795 0.0759

Ps, c 0.072 0.0726 [15.66] [9.28] [12.52] [1.28] [9.46] [4.61]

Time (hr) 0.2 51.9 6.6 90.5 262.8 218.3

From Table 3.2 and Table 3.3, we observe that IW using AT or NUTS with a 16,000

sample size perform slightly better than with 2000. The inflation in standard deviations and

deflation in correlations are reduced but are still substantial. However, the estimates of

parameters including standard deviations, correlations, and covariances from alternative priors

including HIW-AT are much closer to the sample values than those from IW. Among three

alternative priors, we cannot conclude which one is better. In addition, HIW takes less than half

of the computational time by SIW and BMM.

Therefore, our findings from simulation study suggest that alternative priors can resolve

the issues with IW when true values of standard deviations are small and HIW is the best among

these alternative priors looking at the trade-off between estimation accuracy and computational

efficiency.
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3.4.2 Case study: Swissmetro

In the previous section, we identified the issues with the IW prior including inflated standard

deviations and deflated correlations as well as the benefits with the HIW prior using Monte Carlo

data. In order to further illustrate the issue with IW and benefits with the HIW, we compare the

estimation results with IW and HIW from real stated preferences survey data.

The survey collects respondents' stated preferences of a new intercity passenger

transportation mode called Swissmetro against the usual transport modes such as car and train.

More details of the data can be found in Bierlaire et al. (2001). There were 1,192 respondents

and each respondent made choices in nine choice situations. In each choice situation, the

respondents were presented with three mode alternatives of Swissmetro (SM), train, and car. The

utility functions for consumer n are in willingness-to-pay form and include alternative specific

constants for SM and car, travel time and travel cost shown as Equations (3.17-3.19).

CostTrain TimeTrain
VTrain,n = ( factor -exp(#Time,n) factor )/ eP(scale,n) (3.17)

factor "' factor
COStSM TimeSM

VsM,fl = (ASCsM,n faco - expPTL me~) * fatr)/exp (flscaie,n) (3.18)

V =(A~crn Costcar -*T ime Car
Vcar,n (ASCcar,n - cr eXP(flTime,n) * factor )/exp (fscale,n) (3.19)f actor factor

In order to compare the IW and HW, we scaled the data in utility function, i.e., divided travel

time and travel cost by a scaling factor. Under different scaling factors, the magnitudes of some

estimates including standard deviations might be different. We use scaling factors of 100 or

1,000 and the estimates are shown in Table 3.4. The estimation is conducted through NUTS. As

an example, IW100 denotes estimation using IW prior and scale being 100.

Table 3.4 Estimation of different scaled Swissmetro data with IW and HW

Mean IW100 HIW1W00 IW1000 HIW1000

ASCSM 0.1615 0.1307 0.0814 0.0139

ASCCar 0.4129 0.3939 0.1527 0.0407
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B_Scale -1.6490 -1.6867 -2.7707 -3.9736

BTime 0.0275 0.0196 1.0166 0.0243

StdDev W10O HIWIOO IW1000 HIWI000

ASCSM 0.6373 0.5918 0.2656 0.0591

ASCCar 1.1882 1.1418 0.3687 0.1173

B_Scale 0.8734 0.9074 0.6914 0.9033

BTime 1.1788 1.1844 1.0283 1.1984

Correlation W100 HIWIOG IWOO HIWIOOO

ASC_SM, ASCCar 0.0721 0.0365 0.0426 0.0448

ASCSM, B_Scale -0.0108 -0.0287 -0.0407 -0.0490

ASCSM, B_Time -0.1578 -0.1679 -0.1181 -0.1498

ASC_Car, B_Scale 0.2744 0.3302 -0.0674 0.3366

ASCCar, BTime 0.6963 0.7033 0.4720 0.7127

B_Scale, B_Time 0.3313 0.3747 0.0753 0.4002

As we can observe from Table 3.4, the estimates at 100 scale with IW and HIW are

similar where the standard deviations are close to 1. The estimates at 1,000 scale with IW deviate

substantially from estimates with HIW where standard deviations of ASCSM and ASCCar are

small. Specifically, estimates of standard deviations of ASCSM and ASCCar from IW are

larger than those from HIW and estimates of correlations of ASCCar and BScale, B_Scale and

B_Time from IW are smaller than those from HIW. The computational time for each run is

around 35 minutes and there is no substantial difference between IW and HIW in terms of
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computational time. The findings from Swissmetro data indicating inflated standard deviations

and deflated correlations are consistent with previous findings in simulation.

3.5 Conclusion
In this chapter, we illustrate the issues with using IW in discrete choice models (logit mixture) as

prior for the covariance matrix in the hierarchical Bayes procedure which has not been identified

before in transportation, economics, and marketing. Specifically, the estimates of standard

deviations inflate and the estimates of correlations deflate when the true values of standard

deviations are small. We review three alternative priors proposed in the literature, HIW, SIW and

BMM, to address the issues with IW and implement them in Stan (NUTS) and conventional

MCMC (Allenby-Train procedure) to enhance the HB procedure for logit mixture.

The estimation accuracy achieved by alternative priors is better than IW by Monte Carlo

simulation. However, HIW is much more efficient in terms of computational time than SIW and

BMM which makes it the best alternative to IW in HB procedure for logit mixture. Real data

case study using stated preferences data of Swissmetro further supports the issues of using IW

prior and the benefits of HIW.

Based on the findings from this chapter, we suggest that when there is doubt about the

use of IW, one should use HIW in the estimation procedure since it is a more accurate and still a

computationally efficient alternative prior. Empirically in the choice of grapes example, we

found issues of deflated correlations when all the standard deviations are set to 0.6. When precise

knowledge is needed for a covariance matrix, one could use a separation strategy such as BMM

in the estimation procedure.
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Chapter 4

Personalized Menu Optimization

This chapter first introduces the personalized menu optimization model and its alternative

formulations. Then we evaluate the personalized menu optimization using logit mixture against

benchmark methods: content-based recommendation algorithms and non-personalized menu

optimization that uses non-personalized choice model estimates. The evaluations are carried out

through a Boston case study, using real data from a revealed preferences survey of greater

Boston area travelers.

4.1 Personalized menu optimization overview

The personalized menu optimization consists of a travel behavioral model and a choice-based

optimization model. Typically, a logit mixture model is used due to its capability of capturing

individual-level taste preferences. In other words, we need differentiation of individuals in order

to provide personalized menus to them. In this section, we will introduce a standard model for

personalized menu optimization, some of its variants, and its solution methods.

First, we introduce the model with standard revenue maximization objective. Let pj be

the revenue associated with alternative j (j = 1, ... , NC. It can be monetary revenue or other

measures which are beneficial for the system operators, like energy savings in the context of

Tripod. NC denotes total number of alternatives in the full choice set. Let M be the size of menu

which is a list of travel alternatives to be presented on a smartphone app. It is common among

recommender systems for mobile apps to have a size constraint to avoid information overload

(Liu et al., 2011; Zhuang et al., 2011). According to knowledge from consumer psychology, the

consumers face a two-stage process. They will not consider all the alternatives presented to them.

They will first screen and then consider more seriously a much smaller set of alternatives

(Hauser and Wernerfelt, 1990).

Let vj 1 be the exponential utility of alternative j for consumer n. Note that if we use a

multinomial logit model which is common in existing literature as in FMOD (Atasoy et al.,

2015a; Atasoy et al., 2015b) and assortment optimization (Davis et al., 2013), the utilities are the
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same across different consumers if there are no individual-specific attributes in the utility

function, i.e., we can omit index n in such case. In preference space, v,7 can be in general

represented by vo 11 = z. In willingness-to-pay space, we scale the travel cost coefficient to be

-1. We can use lognormal distribution instead of normal distribution for coefficients that are

known to be positive or negative in order to control the sign. Example of willingness-to-pay

space with lognormal coefficients can be found in Section 4.2.

The personalized menu optimization will choose an M-size subset (menu) out of NC

available alternatives for consumer n in order to maximize the expected revenue provided by the

menu. The model is given as follows:

NC

Max p * C (4.1)
XJ=1,...,NC , xi i, + Vopt

subject to

NC

Zxj M (4.2)
j=1

xe {,1, V E {1, ... , NC} (4.3)

where the objective function is a function of the binary decision variables through the choice

probability; vopt denotes the exponential utility of opt-out alternative (not choosing anything on

the menu). The formulaNC XJfV] denotes the choice probability of alternativej for
Xji1 Vnj+Vopt

consumer n. The choice probability is a variable of the model as it includes the binary decision

variables; x = 1 if alternative j is on the menu, xj = 0 otherwise. Therefore, choice probability

for alternative j will be 0 if is not presented on the menu.

The model (4.1-4.3) is complicated as the objective function is nonlinear with binary

decision variables. When NC is small, this problem is easy to solve by enumerating and

comparing objectives of all the feasible solutions. We have 16 travel options in total in the case
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study and it could involve enumerating more than 10,000 different solutions and picking the best

among them. When NC grows large, the total number of solutions quickly becomes large due to

its combinatorial nature. The model (4.1-4.3) has been applied in transportation context such as

FMOD (Atasoy et al., 2015a; Atasoy et al., 2015b). When pj is one, the objective of this model

is to maximize the expected hit rate (probability that one of the offered alternatives is chosen) in

recommender system literature.

This model (4.1-4.3) can be reformulated by replacing decision variables with new

decision variables. We omit index n in the following equations. Particularly, we introduce wj to

be the choice probability of alternativej, i.e., NC Xivni . Let wo denote the choice
1 XjIvnj,+vopt

probability of opt-out alternative, i.e., Vopt . The reformulated model is presented in
-rjF1 X j'Vnjr +Vopt

equations (4.44.7).

NC

max p~;(4.4)
wj~J=1,...,NC C jW

j=1

subject to

NC

ZwJ +wO = 1 (4.5)
j=1

NC

I w/vJ M (4.6)
j='

0 <-- < wo, Vj E , ., NC} (4.7)
vi

where the objective is still to maximize the expected revenue, constraint (4.5) denotes that the

sum of choice probabilities equals one, and constraints (4.6) and (4.7) are based on substituting
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new decision variable and correspond to the menu size constraint. The new model is a common

linear programming problem and can be solved by any linear programming solvers.

As we discussed in Chapter 2, the HB estimator is often used for logit mixture due to its

improved estimation performance. When the HB estimator is used, instead of point estimate of

4n, we obtain a sequence of MCMC draws of <,. Let -17?" be the exponential utility of alternative

j for consumer n using ns-th draw where ns G ..., NS}. The objective of maximizing revenue

can be rewritten as equation (4.8) with the same menu size constraint.

NC NS

max Xi; - (4.8)
xjjE{1,...,NC) NS __1 j + ptj=1 ns=1 I= j p

This problem is difficult to solve with a nonlinear objective function with binary decision

variables. The previous solution methodology cannot be applied here because there is an

additional summation over number of draws. As a result, introducing new decision variables as

in previous solution method would not lead to linear objective function. An exact solution is

difficult to obtain and may not be efficient in terms of computational time.

If we assume that vopt = i/,C(1 _ xjf)vjn, i.e., the opt-out alternative represents all

other alternatives that are not on the menu, then the objective becomes linear as in equation (4.9)

which makes the problem easy to solve. This assumption is valid when the scale parameter for

alternatives on the menu is the same as the scale parameter for alternatives off the menu. In other

words, for the same alternative on or not on the menu, its choice probability remains the same. It

would be close to reality when the size of the full choice set is small and users are aware of all

the alternatives. This is a strong assumption especially when the choice set is large. It is an

approximation to the model (4.8).

NC NS P LJ

max xj 1  PV (4.9)
XjjE{1,..,NC) ' NS ENC -1 0S

j=1 ns=1 i1 -n

Particularly, we can simply sort the NC alternatives by Ens=1Z N ns and find the top M
j'=1 jn

alternatives which will be the solution to problem (4.9). In Section 4.2, we present a case study
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using this model with the same opt-out assumption as the size of full choice set is no greater than

16.

Besides revenue maximization or hit rate maximization objectives, transportation service

providers may want to maximize the consumer's satisfaction. Here we present an alternative

objective function that is to maximize the expected maximum utility of the options in the menu

which represents the consumer surplus. Specifically, we use the log-sum formula to denote this

objective function (Ben-Akiva, 1973). The marginal utility of income is omitted in equation

(4.10) since it doesn't affect the optimization result.

NS NC

max logI xjvj (4.10)
xj~JE{1,...,NC) NS I n

ns=1 i=1

As this nonlinear objective function cannot be transformed into linear form and its

decision variables are binary, it's difficult to solve problem (4.10) exactly. However, if the

variations across different draws are not large, the exact solution may be the same or very similar

to the solution to a simpler problem that moves average across draws inside the log-sum formula,

i.e., log 4 ,N NS n(J= 1 v). The simpler problem is again easy to solve by finding the top M

alternatives in terms of average utility 1Z v7. We focus on hit rate maximization in this

thesis and do not use this model for the case study in Section 4.2.

Recommender systems require updating individual preferences continuously and in real-

time. However, for logit mixture with individual and population level coefficients, re-estimating

all the coefficients frequently using the Allenby-Train HB procedure might not be feasible due to

computational limitations. In order to update individual preferences in real time, two interacting

and repeated steps are applied: the offline and the online procedures.

The offline estimation procedure updates individual as well as population level

parameters for all individuals. Periodically (e.g., every week), data are pooled and all coefficients

(pt, fl, and ) are updated to reflect the effects of all choices made by all individuals since the last

update. This is done by applying the full HB procedure and obtaining draws from all posterior

distributions.
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The online estimation procedure updates individuals' preferences in real time as they

make repeated choices. The individual specific parameters (G) are updated after every choice

using the same MIH procedure (i.e., step 3 of the Allenby-Train procedure), assuming that the

population parameters p and fl are fixed. This update is computationally efficient, and it is done

for the specific individual who has made a new choice. Danaf et al. (2018) showed that this method

yields results that are close to those obtained from the full HB procedure. Therefore, the online

update is important and efficient for improving the individual level parameters that will be used

for the next choice of the user.

We evaluate the proposed personalized menu optimization against benchmark methods

using non-personalized choice model estimates and content-based recommendation algorithms in

the context of a trip planner in the following section.

4.2 Evaluation of personalized menu optimization

In this section, we will use data from the Massachusetts Travel Survey to evaluate the performance

of personalized menu optimization against benchmark methods. First, we will describe those

benchmark methods. Then we will introduce the setup of the case study and finally conduct

evaluation experiments.

4.2.1 Benchmark methods

In this section, we describe the benchmark methods that we will use to evaluate against PMO that

was introduced in previous section. Those methods include a non-personalized menu optimization

(NP) and two content-based recommendation algorithms (CB] and CB2). When the system

generates menus for trip choice X+1, we've conducted hierarchical Bayes estimation using

historical data for the first X trip choices. The estimation results will be used by both PMO and

NP.

* PMO: For personalized menu optimization, it uses conditional posterior draws of

individual (or menu-specific) coefficients to compute the utility of each alternative

as in model (4.8). The solution to the model is the offered menu for that individual.
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* NP: For the non-personalized menu optimization, it uses unconditional posterior of

individual level parameter which doesn't capture the individual-level taste

preferences to plug into the model (4.8). The solution to the model is the offered

menu for that individual.

* CB1: For the content-based recommendation algorithms, we treat mode as the only

description feature of the travel option. The standard content-based

recommendation algorithm would recommend travel options based on the

empirical probability of each mode being chosen based on individual-specific

history (Pazzani and Billsus 2007). For example, for a given individual, if bike

mode is chosen in 2 out of 4 previous scenarios, the empirical probability of bike

for fifth choice scenario is 0.5. We break ties of the same empirical probability by

shorter travel time (as we have the same travel cost among the same mode). We

call this CB1 index or CBl method. The solution is to select Mtravel options with

highest CB1 index.

* CB2: Since we know individuals prefer shorter travel time, we enhance the CBI

index by multiplying it with an exponential term with negative travel time in order

to adjust CB1 with their attractiveness with respect to travel time, which we call

CB2 index. The CB2 index for alternativej of user n at choice scenario t would be

as follows.

CB2j1 t = CBljnt * exp (-0 T Tnt) (4.13)

where CB11 ,t denotes the corresponding CB I index; 0 is a positive coefficient that

controls the impact of travel time of the alternative. In the case study, we vary 0

among different values (between 0.1 and 1) and find 0 = 1 performs the best. So

we use 0 = 1 in the later study. For CB2 method, we choose M alternatives with

the highest CB2 index.

For trip choice X+I1, we apply different recommendation methods based on choice history

data from trip 1 to trip X and attributes of available alternatives for choice X+1. Each method

provides its own menu for each user. In the experiments, we vary the menu size constraints from

2 to 10.
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4.2.2 Boston case study overview

In this and the following section, the added value of using the proposed methodology is illustrated

against its counterparts in a Boston case study using real data. The case study is built upon real

travelers and their travel history provided by MTS (Massachusetts Travel Survey). MTS includes

travel diaries for 33,000 individuals belonging to 15,000 households. The data was collected

between June 2010 and November 2011. Individuals were asked to fill out all the activities they

performed in a designated weekday (24 hours, Monday to Friday), and to provide the activity

location, the transport mode used to arrive at this location, the arrival and departure times, and

accompanying household or non-household members.

In Song et al. (2018a), the user population in the case study is constructed from MTS data

with individuals who have made at least five tours in the specified time period, which is of sample

size 246. In this thesis, we extend the user population by randomly drawing a 5,154-size sample

made up of people who have made one or more trips during the time period. Table 4.1 shows the

number of trips made by individuals in the sample. The first column denotes which trip it is for

each individual. The second column tells us how many individuals have made this number of trips.

For example, 4408 individuals have made at least two trips; 5,154 individuals made at least one

trip.

Table 4.1 Number of trips in the sample
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Trip index Remaining individuals

1 5,154

2 4,408

3 4,074

4 3,401

5 3,047



6 2,613

7 2,347

8 1,952

9 1,733

10 1,414

Their travel choice sets for various choice scenarios are also constructed by using Google

Map API with origin, destination, and departure time from MTS data. There are five travel modes

considered in each individual's choice set including walk, bike, car, car-pool, and transit. The sizes

of choice set vary from 4 to 16 representing different routes and modes (some modes are not always

available). With this data generation procedure, we can construct a group of users whose travel

history, full choice sets, and selected alternatives are known. Assume that they were users of an

app-based trip planner like Tripod and all their trips were made through Tripod. Then we have a

group of Tripod users whose travel history is known. They are 1,414 individuals having made at

least 10 trips. In this dataset, most users prefer to travel by car (more than 80% of total trips). Few

trips are made in non-driving modes including 6% in walk, 1% in bike and 12% in transit. In terms

of the whole MTS population, most trips (around 72%) are by car or car-pool. Few trips are made

in non-driving including 10% in walk. In general, the modal share between selected sample and

population are similar.

Table 4.2 Proportion of travel modes
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Modes Count Proportion

Walk 2,416 0.06

Bike 376 0.01

Car 25,980 0.60



With the choice sets and revealed choices from MTS data, one can estimate a logit mixture

model capturing individuals' preferences of travel choices. The utility function is in willingness-

to-pay specification with preference parameters including alternative specific constants (ASC) for

bike, car, car-pooling, and transit, coefficient for travel time and travel cost (See equation 4.11).

All ASCs are normally distributed while travel time/cost coefficient is transformed to be log-

normally distributed to ensure that travel time enters the utility with a negative sign as expected.

Utility function individual n choosing option j of mode m:

Unj = (ASCm - exp(Sn,Travetime)TravelTime - TravelCost)/exp( n,rraveicost) (4.11)

where ASCm denotes the alternative specific constant for alternative j's mode m except for mode

walk.

It is assumed that user travel choice behavior follows a logit mixture model and it is also

assumed that the offline update of logit mixture estimates based on all the choice situations of all

individuals in the sample are the "true" preference parameter estimates, which are used to calculate

hit rate. The individual may choose one option on the menu or opt-out, i.e., reject the all the options

on the menu. The hit rate is defined as the probability that the user will choose one option on the

menu, which is also equal to 1 minus the opt-out probability.

In this case study, the opt-out utility is defined as the expected maximum utility of all the

options that are not on the menu, which is given by the log-sum as equation (4.12).

ENC(1 - xj)Vnj
Popt = C (4.12)

The objective is to maximize the expected hit rate. Following such opt-out assumption, the

problem reduces to problem (4.9) which is easy to solve by a sorting algorithm. The performance

evaluation focuses on hit probability.

56

Carpool 9,757 0.22

Transit 5,097 0.12



In this case study, we first use logit mixture with inter-consumer heterogeneity as the

underlying choice model, then show the results under inter-and intra-consumer heterogeneity. The

estimation of both models is through MCMC. Particularly, the HB procedure for logit mixture

with inter- and intra-consumer heterogeneity can be found in Appendix A.

4.2.3 Evaluation under inter-consumer heterogeneity

First, we show the comparison among four methods under logit mixture with inter-consumer

heterogeneity in Fig. 4.1 and Fig. 4.2. Fig. 4.1 shows the comparison among personalized (PMO),

non-personalized (NP), and content-based methods (CB1 and CB2) on fifth trip choice. The

horizontal axis denotes different menu sizes. The primary vertical axis shows the hit rate. The blue,

orange, gray, and yellow bars denote CB 1, CB2, NP, and PMO hit rate respectively. It is observed

from Fig. 4.1 that personalized menu optimization outperforms non-personalized and content-

based methods in terms of hit rate under various menu sizes. For non-personalized versus

personalized, the gaps are large when menu sizes are medium and decrease with increasing menu

size. In addition, we can notice that both CB methods perform very similarly to each other so we

just use CB to denote both methods in later discussion. We can also observe that CB in general

performs better than NP.

For some individuals, their trip menu generation results are the same for personalized and

benchmark method. Therefore, we plot three additional lines which focus on average difference in

hits for those trips with different menu generations for PMO versus NP, PMO versus CB1, and

PMO versus CB2. For PMO versus NP, we observed that the average difference tops at medium

menu size and then decreases. When menu size is small, the top alternatives identified by PMO

and NP are similar therefore the average difference in hit rate is small. When menu size is large,

i.e., many alternatives are already included on the menu, it is likely that the majority of critical

alternative are chosen by PMO and NP, and therefore the average difference in hit rate is small

across difference comparisons we make. For PMO versus CB, we observed that the average

differences in hit rate across different menus sizes are often small and decrease with increasing

menu size. However, the average number of menus across different menu sizes that PMO is

different from NP is 925 but this number for PMO versus CB is 1,942. In other words, CB is

generating more distinct menus than NP but its differences with PMO are usually smaller.

57



History 1-4 on Trip 5 (Inter)

1 -0.2

0.18

0.95 7 0.16

0.14

0.9 0.12 L

0.1 S

0.85 0.08

0.06 b

0.8 0.04

0.02

0.750

2 3 4 5 6 7 8 9 10

Menu Size

=Content-basedi =Content-based2 =Non-personalized Personalized

-Avg Diff (PMO-CB1)--Avg Diff (PMO-CB2)-Avg Diff (PMO-NP)

Fig. 4.1 Personalized versus non-personalized and content-based (test on trip 5) under

inter-consumer heterogeneity

More trip data (Fig. 4.2) shows a similar pattern but the average difference (gap) is even

larger for all benchmarks. This implies that the benefits of personalization are higher when there

is more precise knowledge about choice probabilities as expected. It also implies that with less

data, there might be "shrinkage effect" for hierarchical Bayesian estimation where individual level

estimates are shrinking towards population-level parameters. For NP versus CB, CB still performs

in general better than NP while the gap becomes smaller when menu size increases. The NP

captures more critical options than CB when menu size is large.
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Fig 4.2 Personalized versus non-personalized and content-based (test on trip 9) under

inter-consumer heterogeneity

4.2.4 Evaluation under inter- and intra-consumer heterogeneity

In addition to comparison under inter-consumer heterogeneity, we conduct comparison under

inter- and intra-consumer heterogeneity and illustrate them in Fig. 4.3 and Fig. 4.4. Similarly, we

can observe that PMO performs better than all the benchmark methods. In addition, by comparing

corresponding results with inter-consumer heterogeneity, we can observe that the performance of

both PMO and NP becomes better, which indicate the more sophisticated choice model is better at

capturing user choice behavior. The gaps between PMO and NP, and PMO and CB methods

quickly become smaller when menu size increases, which differs from the bell-shape pattern under

inter-consumer heterogeneity, and means that the hit rates for top options are not as high as those

under inter-only. Furthermore, NP performs better than CB methods with much smaller average

difference in hit rate. Under more complicated choice behavior, CB methods performs worse than

under inter-consumer heterogeneity. For CB methods, their performance is often very close, while

CB2 performs better than CB 1 when the menu size is small, which means weighting with respect

to attractiveness of travel time helps improve the performance.
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Fig. 4.3 Personalized versus non-personalized and content-based (test on trip 5) under inter- and

intra-consumer heterogeneity

Fig. 4.4 shows the results tested on trip 9 under logit mixture with inter- and intra-

consumer heterogeneity. Fig. 4.4 shows a similar pattern as Fig. 4.3 where both PMO and NP

perform better than CB methods. The gap between PMO and NP is small and decreases as menu

size increases. Note the line plots for PMO versus both CB methods are too close to distinguish

in Fig. 4.4. In addition, Fig. 4.4 shows that with more choice data, the performance of PMO

becomes better, which is consistent with the findings under inter-consumer heterogeneity.

Please note that the evaluation or calculation of hit rate for the previous two sections is

based on assuming the "true" user behavior following logit mixture with inter-consumer

heterogeneity and logit mixture with inter- and intra-consumer heterogeneity. In order to have a

more meaningful comparison, we should use a consistent evaluation measure across inter-

consumer heterogeneity and inter- and intra-consumer heterogeneity, such as whether the "true"

choices of users for trip 5 or trip 9 have been chosen on the recommended menus or not.
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Fig. 4.4 Personalized versus non-personalized and content-based (test on trip 9) under inter- and

intra-consumer heterogeneity

4.3 Conclusion
In this chapter, we proposed a novel personalized menu optimization using personalized

estimates from logit mixture with inter- and intra-consumer heterogeneity and evaluated the

proposed method against benchmark methods including non-personalized menu optimization

that uses non-personalized estimates from choice model and content-based recommendation

algorithms. Through a real-data case study, we illustrate that the personalized performs better

than benchmark methods under inter- (and intra-) consumer heterogeneity.

Under inter-consumer heterogeneity, the gap between personalized and non-personalized

is small when the menu size is small where few top alternatives are identified and when the

menu size is close to size of full choice set where most critical alternatives are chosen on the

menu. The content-based recommendation algorithms provide slightly better hit results than non-

personalized, while it generates much more distinct menus than personalized. The benefits of

personalization are more salient when more choice data are available, which is expected as more

accurate estimates are obtained.
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Under inter-and intra-consumer heterogeneity, both personalized and non-personalized

methods have better performance, and the gap between them becomes smaller as menu size

increases. However, content-based recommendation algorithms perform worse than under inter-

consumer heterogeneity.
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Chapter 5

Sequential Personalized Menu Optimization

through Bandit Learning

5.1 Background

In previous studies, we illustrated the personalized menu optimization (PMO) model where a

customer's choice behavior is captured by a known discrete choice model. However, in practice,

the parameter value of the choice model is often not known and has to be learned. Previously, we

applied a preference updater that is based on the HB estimator of logit mixture to provide PMO

up-to-date estimates of the parameters of choice model. We didn't take into account learning the

uncertain parameter values when making the recommendation decision. There might be cases

where current estimates from the HB procedure indicate a car is the optimal alternative and PMO

always offer a car alternative but actually a bus is the favorite alternative of the user. In such

case, we need to go beyond exploit-only strategy which is to offer an "optimal" menu based on

current estimates of the parameters but to explore other menus which may turn out to be optimal.

Such problems that involve the trade-off between exploration and exploitation are often

formulated as multi-armed bandit (MAB) problems. Most MAB problems do not have exact

solutions except for some special cases such as classical application of the Gittins index (Scott,

2010). Many heuristics have been proposed to solve the problem as we have reviewed in Chapter

2.

In this chapter, we propose a novel method called PMO-UCB which is built upon the

classical upper confidence bound (UCB) algorithm (Auer et al., 2002) and the previous PMO

model. Particularly, we focus on a problem with menu size 1 in order to provide a proof-of-

concept. The case with larger menu size would lead to a combinatorial bandit problem where the

rewards of each arm are dependent on each other, where existing techniques such as UCB do not

work (Chen et al., 2017) and which requires a more complicated solution method; therefore, it is

not addressed in this thesis. In addition, we assume each alternative is a different mode in this

63



thesis. Therefore, choosing alternative/mode X does not give preference information about

alternative/mode Y.

The method is novel with respect to existing multi-armed bandit algorithms as its

exploitation or expected reward is estimated by an HB estimator of logit mixture which differs

from the simple empirical mean in classical UCB algorithm (Auer et al., 2002). Since we use

CB1 to denote empirical mean of historical mode choice, we use CB1- UCB to denote classical

UCB algorithm in this chapter for consistency. We compared PMO against CBI in Chapter 4. In

this chapter, we will compare the proposed PMO-UCB against all the alternative methods

including empirical mean (CB 1), classical UCB algorithm (CB 1-UCB) and exploit-only

algorithm based on logit mixture estimates (PMO) under different conditions.

5.2 Problem and solutions

In this section, we present the problem formulation and solutions for the problem. Fig. 5.1

illustrates the decision process of the operator in a Tripod context. Assume T is the operational

horizon length. At each time period, there are N consumers coming (in Fig. 5.1 we simplified

N=l). The operator needs to decide which menu to offer (or in our case which alternative to

offer) based on choice/menu history. After the operator offers the menu, the consumers need to

decide whether to choose the alternative or opt out (choose nothing on the menu). After

consumers made their choices, the operator needs to update the history, particularly the estimates

of parameters of the choice model.

2.MtaTe1. Offer a menu
2. Make
choiceConsumer t 82oice

3. Observe
choice; update
parameters

T, T-1, .. t ... ,3, 2, 1
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Fig. 5.1 Decision process

To further illustrate the problem, the objective of a single period is to maximize the hit

probability by deciding which alternative to offer. Let Pint denote the choice probability of

alternativej for consumer n at time t. Let I(j, n, -r) denote whether alternativej is offered to user

n at time period r. Since time period t, the operator needs to decide which alternative to be

offered will maximize the total expected hit.

T N

maxPj I(j, n, r) (5.1)
I (j,n,-r),Vj,T Pn

T=t n=1

Subject to

NC

I(j, n, -) = 1, Vn, Vr (5.2)
j=1

At time period t, actually operator just needs to decide on I(j, n, t) based on all the choice

history until time period t-1. Additionally, the choice probabilities in the future are estimated

based on history including time period t. This problem does not have an exact solution.

In this study, we assume that the choice behavior follows logit mixture. Assume there is a

clairvoyant who knows all the true parameter values. For logit mixture with inter- and intra-

consumer heterogeneity, the choice probability of alternative j for user n at time period t is as

follows.

exp(unt(qnt))
1jtCrn + (5.3)

where ujnt(Ilnt) denotes the utility based on individual- and choice-situation -specific parameter

flnt-

Tlnt~JV( n, d.w) (5.4)
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(5.5)

where (n denotes parameter mean vector for user n, n, denotes covariance matrix of intra-

consumer heterogeneity, p denotes parameter mean vector of the sample, and 1b denotes

covariance matrix of inter-consumer heterogeneity.

The estimation of rqnt can be done based on previous t-1 time periods of choice historical

data through the five-step HB procedure presented in Becker et al. (2018) and Appendix A.

Since each time period has its own posterior estimates, we use rt-1,ns denoting ns-th draw oft-

lth estimation, which will be used for personalized menu optimization at time period t.

Let rjnt = Pj (rflt) denote the expected reward or "revenue" for the operator.

For the clairvoyant who knows all the true parameter values a*t, the optimal menu for

user n at time period t will be:

int = argmxP1Pnt(r7n) (5.6)

For the operator who has posterior estimates based on t-1 choice history, the expected

reward for menuj at time period t for user n would be:

NS t-1ns
nt 1 exp(Uj t (rint (5.7)Tint(77ntt1 + =x(jt. t-i ns(.7 NS ns= 1 + exp(ujnt(rintflS)

If we only consider exploitation, which is to obtain the maximum immediate revenue

based on current knowledge, we choose to offer the menu as follows for user n at time period t,

which is the personalized menu optimization (PMO) presented in Chapter 4.

nt = arg max ?nt(77t') (5.8)

However, since we use estimates of parameters that are uncertain, the offered menu may

not be optimal. In addition, offering menuj will not give us information of alternative specific

constants other than alternativej. We need to balance exploitation (offer the best menu based on

current knowledge) and exploration (try other menus that may be optimal). Exploration will help
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us learn uncertain parameter values and will be beneficial for the objective of maximizing total

number of hits across the whole operational horizon as in equation (5.1).

In order to balance the exploration and exploitation, we borrow the idea from one of the

most widely used MAB heuristics, which is UCB. It uses the sum of empirical mean and

confidence bonus to balance the exploration and exploitation.

The empirical mean based on choice history is as follows.

t-1

rint = 1r (5.9)
IT1 n T= 1

where we abuse the notation of r to also denote the realization of reward. If we choose

alternatives just based on empirical mean, then it's consistent with the previous CB 1 method as

follows.

jCB1j = arg maxrn} (5.10)
J

By adding a confidence bonus term, which presents uncertainty about this alternative, we

offer a menu as follows for user n at time t.

jCB1-UCB = arg maXfTjnt + 1 clog (t)
t - 1 Et- I (j, n, T)

where the second term presents the "power" of exploration and constant c is a tuning parameter

which controls the magnitude of exploration.

Given the hierarchical Bayes estimator for logit mixture, we can replace r- with the

estimated expected reward r(r7t-1) and call the heuristic PMO-UCB, which chooses the menu

as follows.

PMO-UCB = arg X( )}clog(t) (5.12)
int ~ ~ ~ --g 1a~n (77 Itj, 1, + )

67



We can also think of the objective function as to get as close as possible to the optimal

alternatives for each individual (closer to the clairvoyant). Particularly, we want to choose a

solution method that minimizes the discrepancy between the optimal menus (by the clairvoyant)

and offered menu by the solution or maximize the matching rate as in equation (5.13)

N lj~t ~ gsolution)
max Y n It (5.13)

solution N
n=1

5.3 Numerical experiments

In this section, we present numerical experiments under different conditions to evaluate

performance among the solution methods including CB 1, CB 1 -UCB, PMO, and PMO-UCB. We

use 5 alternatives, and the utility of alternative j of user n at time period t is as follows.

ujnt(ilnt) = (ajnt - exp(tt,nt) TTjnt - TCj,n,t)/ exp(%t,,t) (5.14)

where 'rnt = (aint, ., anl, t tt,n,tfltc,n,t) denotes the menu-specific parameter vector of for

user n; atnt denotes the alternative-specific constant (alternative J is normalized to zero); Ptt,n,t

and Ptcnt denote the individual and menu-specific coefficients for travel time and travel cost.

Index t denotes menu as each time period offers one menu.

In the first five periods, we play alternative t for all the individuals to warm up the system

and obtain basic knowledge about alternatives. We construct a synthetic user sample by drawing

N times from the multivariate normal distribution as the individual-level parameters. For the

logit mixture with inter- and intra-consumer heterogeneity, we further draw the menu-specific

parameters with individual-specific mean and covariance matrix for intra-consumer

heterogeneity. At each time period, we offer one alternative for each user for different solution

methods and compare whether the offered menu is the same as the optimal menu. Travel time

and cost are drawn from Uniform [0,1] for every alternative j, user n, and time t.

68



5.3.1 Experiment under regular condition

In this section, we first compare among all the four methods. Two different sample mean vectors

including (1, 3, 5, 7, 1, -1) and (0, 1, 2, 3, 1, -1) are used where the first four coefficients denote

alternative-specific constants for alternatives one to four (alternative-specific constant for

alternative five is normalized to zero), the last two coefficients are for travel time and travel cost

as in equation (5.14). The covariances for inter- and intra- consumer heterogeneity are both

diagonal matrix unless otherwise noted. The tuning parameter is set to be 2 unless otherwise

noted.

We present plots where the y-axis denotes the matching rate (proportion of offered menus

are optimal menus) and the x-axis denotes the time periods. Fig. 5.2 denotes the comparison

under logit mixture with inter-only consumer heterogeneity. The left column denotes using

pl=(l, 3, 5, 7, 1, -1) and right denotes p2=(O, 1, 2, 3, 1, -1). The top row denotes that variance

equals diagonal matrix (I); the bottom row denotes that variance equals 100 times diagonal

matrix (1001). In Fig. 5.2, we observe that performance of the proposed methods based on logit

mixture estimates (PMO and PMO-UCB) is better than performance of classical methods. In

addition, we can observe that exploration term does not help as PMO is slightly better than

PMO-UCB and CB1 is slightly better than CBI-UCB. When variance becomes large, all four

methods perform worse and are close to each other.
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Fig. 5.2 Methods comparison under logit mixture with inter-consumer heterogeneity
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Furthermore, we analyze the case where the true choice behavior follows logit mixture

with inter- and intra-consumer heterogeneity. This means, for a given individual, his or her taste

preferences are varying across time periods. It makes the preferences more difficult to learn. In

Fig. 5.3, we observe consistent results that proposed methods based on logit mixture estimates

are better in general under different true sample mean vectors. However, the gaps among all the

methods are smaller than those under logit mixture with only inter-consumer heterogeneity.

When variance is large, all the methods perform similarly worse.

pl,Omega=11 p2,Omega=11

..E..........]

0 5 10 15 20 25 30 0 5 10 15 20 25 30

pl.OmegaleoI p2.OmgalOiW

0 5 10 15 20 25 30 0 5 10 15 20 25 3

Fig. 5.3 Methods comparison under logit mixture with inter- and intra-consumer heterogeneity

We conclude that in general the proposed methods using logit mixture estimates (PMO

and PMO-UCB) perform better than conventional benchmarks (CB I and CB I-UCB). The gap

between those methods becomes smaller under inter- and intra-consumer heterogeneity. When

variance is large, all the methods perform worse. In addition, under regular conditions, the

exploration does not help, which we will study further in the next section.

5.3.2 Benefits of exploration

As we have learned that PMO-UCB and PMO are the top two methods, we focus on analyzing

those two in this section. Particularly, we compare PMO-UCB and PMO in order to evaluate the
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benefit of adding a confidence bonus term to explore beyond the expected value predicted by the

HB estimator.

Fig. 5.4 illustrates the comparison between PMO-UCB and PMO under logit mixture.

Here tuning parameter c equals 2. The sample mean vector used is (1, 3, 5, 7, 1, -1). The top two

showcase where variance is identity matrix (I). The bottom two showcase where variance is large

(1001). The left two show that the true choice model is logit mixture with inter-consumer

heterogeneity. The right two show that the true choice model is logit mixture with inter-and

intra-consumer heterogeneity.
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Fig. 5.4 Comparison between PMO-UCB and PMO

From Fig 5.4, we observe that under low variance, PMO is slightly better than PMO-

UCB when true choice behavior follows a logit mixture with inter-consumer heterogeneity,

which means without confidence bonus (c=0) would be the best case. One reason may be that the

PMO has collected enough information about each alternative therefore there is no need to

explore beyond estimated best alternatives. PMO-UCB's exploration makes it deviate more from

clairvoyant (i.e., true values). When variance becomes large, the performance of both methods

gets worse. With inter- and intra-consumer heterogeneity, the performance gap between PMO

and PMO-UCB becomes smaller.
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However, sometimes the best travel alternative may be under disturbance where for a

certain period of time its attributes, e.g., travel time and travel cost, may be much worse than

other alternatives. An exploit-only strategy, like PMO, might get trapped within suboptimal

alternatives. In order to evaluate the benefits of exploration, we propose an alternative setting

where the optimal alternative is under disturbance which prohibits offering it in an exploit-only

strategy. Particularly, in the first BT time periods, we draw the travel time and travel cost of

alternative 4 (which is the best alternative on average according to sample-level alternative

specific constants) to be from Uniform [5,10]. Then as of time period BT+1, we start to draw

time/cost from Uniform [0,1] as other alternatives. Fig. 5.5 illustrates the comparison under

disturbance with logit mixture with only inter-consumer heterogeneity. The left shows where

true variance matrix is 0.11. The right shows where true variance is I.

Omega=0.1I Omega=11

~~jj

V is

0 20 40 60 0 20 40 60

Fig. 5.5 Comparison between PMO-UCB and PMO under disturbance with logit mixture

with inter-consumer heterogeneity, BT=30

During a disturbance, both methods rarely choose alternative 4 as it has significantly

lower utility. When the disturbance is over, both methods have big drops in their matching rates

as expected. For PMO-UCB, the drop is quickly recovered and it performs better than PMO for

several periods. It takes more time periods for PMO to recover and eventually both methods

reach similar matching rates though PMO performs slightly better. The recovery is easier for

PMO when variance is a bit larger.
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Furthermore, we consider cases where the true underlying choice model is logit mixture

with inter- and intra-consumer heterogeneity. Fig. 5.6 illustrates the comparison under

disturbance with logit mixture with inter- and intra-consumer heterogeneity. The left four

showcase where true variance is 0.11. The right four showcase where true variance is I. The four

rows use different values of c as 0.5, 2, 5, and 10 respectively. The red plot denotes PMO-UCB

and the blue plot denotes PMO.
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Fig. 5.6 Comparison between PMO-UCB and PMO under disturbance with logit mixture with

inter-and intra-consumer heterogeneity, BT=30

Different from cases with logit mixture with only inter-consumer heterogeneity, PMO

may get trapped with suboptimal alternatives when there is also intra-consumer heterogeneity

and therefore PMO-UCB performs better. The reason behind this finding could be that under

inter- and intra-consumer heterogeneity, it makes PMO more difficult to learn or get out of the

suboptimum while PMO-UCB can still get out by exploration. The performance gap between
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PMO and PMO-UCB also depends on the level of variance, i.e., lower variance has negative

impact on performance of PMO.

When c=0, PMO-UCB reduces to PMO. The magnitude of c controls how much we want

to explore beyond PMO results. A large value of c may explore too much and result in bad

menus. Therefore, under disturbance with intra-consumer heterogeneity, there would be an

optimal value of c. From Fig. 5.6, we can observe that under different variances, different values

of c perform the best. Under variance of 0.11, both c=2 and c=5 perform better than larger or

smaller values of c. Under variance of I, c=2 performs the best. In real life, the optimal tuning

parameter can be found through splitting user traffic and experimenting with different values of c

to determine how large c is needed for the exploration.

5.4 Conclusion
In this chapter, we propose a novel method that adapts the classical UCB algorithm by using the

HB estimates for logit mixture. The proposed algorithms (PMO-UCB and PMO) based on logit

mixture estimates outperform the classical algorithms (CB 1 -UCB and CB 1) under different

parameter settings. The performance gap becomes smaller when the true choice model is logit

mixture with inter- and intra-consumer heterogeneity. Under regular settings, both PMO and

CB 1 obtain good estimates, and adding exploration term explores beyond current good estimates,

which makes algorithms with UCB perform worse than its counterparts. When intra-consumer

heterogeneity is taken into account, the performance gap among all the methods becomes smaller

as it becomes more difficult to capture user choice behavior.

Under an alternative setting where there is disturbance which prohibits system operators

from offering optimal alternatives, the performance of PMO gets negatively impacted and when

the true underlying model is logit mixture with inter- and intra-consumer heterogeneity, PMO

performs worse than PMO-UCB, which indicates that more exploration is needed under

disturbance. The magnitude of heterogeneity also has an impact on the relative performance;

PMO performs worse when heterogeneity is low under disturbance.

In summary, when we believe the consumer heterogeneity among users is not high and

intra-consumer heterogeneity exists, we propose to use PMO-UCB especially when there exists

some disturbance for some alternatives. In other cases, PMO might perform better. In the future,
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we need to investigate cases where menu size is greater than one and therefore the rewards of

different menus are correlated. It requires a different algorithm to deal with it and its

combinatorial nature would make it computationally difficult to choose among many possible

menus.
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Chapter 6

Summary and Discussion

This thesis focuses on personalized menu optimization, which integrates travel behavior models

and optimization. It can be used in many applications particularly app-based Smart Mobility

systems (Atasoy et al., 2017a; Atasoy et al., 2017b; Song et al., 2017; Song et al., 2018a). The

personalized menu optimization is often built upon hierarchical Bayes estimates of logit mixture

and its performance is highly related to whether the choice model captures an individual's taste

preferences or not.

This thesis presents three inter-related studies based on some published and working

papers (Song et al., 2017; Becker et al., 2018; Danaf et al., 2018; Song et al., 2018a; Song et al.,

2018b; Song et al., 2018c).

The first study focuses on improving the estimation performance of logit mixture by

using alternative priors suggested in statistics literature instead of IW used by well-known books

and commercial software in economics and marketing for covariance matrix in HB estimation

procedure. The issue of IW is not known in transportation, economics and marketing field and

those alternative priors have not been applied in discrete choice models (logit mixture) before.

Both numerical and a real-data case study show that the enhancement by using alternative priors

such as hierarchical inverse Wishart would improve the estimation performance.

The second study proposes a novel personalized menu optimization that uses

personalized choice estimates from logit mixture. Particularly the PMO uses sophisticated choice

model including logit mixture with inter- and intra-consumer heterogeneity while previous

studies use non-personalized choice models such as multinomial logit. In a Boston case study,

we show that the proposed model outperforms benchmark methods including non-personalized

menu optimization and content-based recommendation algorithms.

The third study presents a novel multi-armed bandit algorithm for a sequential

personalized menu optimization problem which integrates the classical bandit algorithm and

personalized menu optimization using the hierarchical Bayes estimator for logit mixture. We
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extend the exploit-only solution from the previous study by incorporating exploration using this

novel algorithm, which unified learning and optimization. Numerical experiments show that the

proposed algorithm outperforms the classical benchmark and show the benefits of exploration

under disturbance with intra-consumer heterogeneity.

There are several potential research directions that can be explored in the future. First, we

would like to implement a logit mixture with alternative priors using different estimation

methods such as variational Bayes to see if the computational time can be greatly reduced while

maintaining the accuracy for these alternative priors. This is critical due to the real-time needs of

personalized recommendation in the context of transportation and other fields. Second, we would

like to evaluate the personalized menu optimization with stated preferences data as in Boston

case study we construct the full choice set based on Google Map API which could be different

from what the user was considering before making the trip. Third, we would like to explore exact

solution algorithms for personalized menu optimization instead of using approximation as in this

case study. Fourth, a resource-constrained problem can be formulated for sequential personalized

menu optimization where each offered menu is associated with some resource that is globally

constrained within operational horizon. For example, in a smart mobility system such as Tripod,

we have a global token incentive constraint, which we didn't consider in this thesis. Basically,

the system allocates tokens to different types of trips throughout the day. Due to global token

budget constraint, the token allocation would be different under different remaining token

budgets. Fifth, we can explore alternative solution methods for the third study including

randomized probability matching. Sixth, we can extend the problem in the third study to be with

larger menu size where we need to solve a problem with correlated outcomes.

As mentioned previously, the methodologies in this thesis are mostly motivated in a

transportation context. However, the methodologies and findings can be used in various other

fields where individuals are presented with alternatives. In order to achieve good personalization

performance, we need to have data and appropriate model to identify the heterogeneous taste

preferences among individuals. With learning of preferences and personalized menu

optimization, we can improve the decision-making process when applied appropriately.
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Appendix A. Hierarchical Bayes Procedure for Logit Mixture with
Inter- and Intra-consumer Heterogeneity
Before turning to the specifics of the estimation procedure, it should be noted that the

Hierarchical Inverse Wishart prior, introduced to Hierarchical Bayes for Logit Mixtures by Song

et al. (2018), is omitted in the general description for the purpose of clarity. In addition, we

present HB procedure for logit mixture with inter- and intra-consumer heterogeneity here. The

HB procedure for inter-only consumer heterogeneity, Allenby-Train procedure, is a simplified

version of this procedure without menu-specific coefficient and covariance that represents intra-

consumer heterogeneity and can be found in Ben-Akiva et al. (2016). Here menu means choice

scenario.

The joint posterior distribution that is the basis for the Gibbs Sampler is denoted in Eq. (1):

K(p, (n Vn, 7?mn Vmn, w, f2b l dnVn)

N ~ Mn Jmn 
d m

oc fj f1 [7[P(]lmn) h(7mn I(n) w) f(n I , Qb) k(f2w)k(pi)k(f2b),
n=1 _m=1 _j=1

where:

k(p) ~ N(po, A) (2)

k(fQb) - IW(T, IT) (3)

k(f.) ~ IW(T, IT) (4)

io represents the vector of means for the sample-level parameter's prior distribution and can be

assigned arbitrary values, as A is a diagonal covariance matrix with diagonal values aii -+ oo,

causing the prior to be diffuse. T depicts the number of unknown parameters, and IT is the T-

dimensional identity matrix.

Draws from the joint posterior are obtained by a five-layered Gibbs Sampler. In

accordance with the concept of a Hierarchical Bayes estimator, the prior of the sample-level

parameters is to be determined ex-ante and is updated with individual-level parameters. The

density of each individual parameter in the sample-distribution serves again as the prior for each
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individual parameter. The data used to update the individual parameters consist of the menu

parameters. Consistently, the density of the menu parameters in the distribution of the individual

parameters is the prior for the menu-level parameters. Only the lowest level, the menu

parameters, are updated using the likelihood of the collected data given the parameters.

Note that in the case of the Allenby-Train procedure the individual parameters are updated

using the likelihood. Furthermore, a new layer for fl, , the covariance matrix accounting for

intra-personal heterogeneity, is introduced. Subsequently, the current Gibbs Sampler iteration is

denoted by superscript i. The assignment of starting values is discussed after the depiction of the

procedure.

Step I - :

The conditional posterior of the sample-level parameter is proportional to right hand side of the

term

K(pi~n Vn, flmn Vmn, nw, flb) 0C f((nVn Ip , fOb)k(pt), (5)

which refers to a Bayesian update of a multivariate normal distribution. Using the fact that k(pt)

is diffuse, the conditional posterior can be simplified to N (i-1, , with N'' = k'n _'. A

draw from this multivariate normal distribution is obtained by

= (-1 + yi-1l, (6)

where WI 1 is the Cholesky factor of and o is a draw from the T-dimensional multivariateN

standard normal.

Step II- b:

The conditional posterior of f2b is shown on the right hand side of Eq. (7).

K(f2b /I, (n Vn, 77mn Vmn, Dw) oc f((n VnIt, Qb)k( f2b) (7)
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With the Inverse Wishart distribution being conjugate to the multivariate normal distribution, the

closed form posterior is distributed Inverse Wishart with T+N degrees of freedom and scale

matrix TI+NVb , where:

N

V= 1Z(<i1 - i- (8)

A draw of fb is obtained as:

T+N -

-r=1

where ur is a draw from the T-dimensional standard normal distribution for r = 1, ... ,T + N, and

F is the Cholesky factor of [TI + NVb'-1.

Step III -f4:

Drawing from the conditional posterior of the intra-personal covariance matrix fly, see Eq.

(10), is similar to the previous step, as it is also considered to be distributed Inverse-Wishart. For

the sake of completeness, the step is again mathematically presented in detail. It should be

pointed out that it was decided to weight each menu equivalently for the computation of f1w, as

presented in Eq. (11). It is not regarded as appropriate to assign lower weights to menus of

individuals of whom a lot of data are available.

K (nw IP, (a Vn, rlmn Vmn, nb) oc h(7m Vmn I(n Vn, d2,) k( d2,) (10)

The posterior's parameters are T + M for the degrees of freedom and TIT + MVw for the

scale matrix. M is the total number of menus in the data for all individuals, and:

N Mn

1 _ -1) 1_ 1 '( 1

n=1 m=1

After obtaining T + M draws of a T-dimensional standard normal distribution, labeled u1,

s = 1, ... , T + M, the new draw of i1 is calculated as:
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T+M -

ni = (12)

S=1

where F is the Cholesky factor of [TIT + MVW]1 .

Step IV -(:

The succeeding operations are repeated for each individual n = 1, ... , N. Despite the

numerous repetitions, the computational complexity is manageable, as the terms that require

matrix inversion are identical among all individuals with the same number of menus. The

individual specific conditional posterior is proportional to Eq. (13). The product of menu- and the

individual-level parameter's distribution is multiplied over all menus of individual n

Mn

K((n 1I 7lmn Vmn,fb,2w) C J71 h(1Jmn In V, nw)f ((n, f 2 b) n (13)

The conditional posterior distribution of (n, is N(C, 2:) where

Mn

O l= ([n-+ M1 [ -1] [nbF]-'I + Mn[NJ' - (14)
M=1

and

Zn= b['+ 1  + Mn [f+1]) (15)

A draw form N( 4,n) is obtained by calculating i = C +'P-~ where 'T4. is the

Cholesky factor of Zga and w is a draw from a T-dimensional standard normal.

Step V - rlmn:

The last step of the Gibbs Sampler is used to update the menu-level coefficients. The

particular operation is executed for every menu m = 1, ... , Mn for every individual n =
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1.N. The numerator of the conditional posterior of a menu-level coefficient is given in Eq.

(17).

Jmn

K(rimnI/4P,O b, lw) . lp(qmn) dimn ] h(rlmn Vmn I(,, fDw), (17)
j=0

n = 1, 2, ... , N, m = 1, 2, ... M

As the posterior does not possess a closed form, a draw of -imn is obtained by the following

Metropolis-Hastings step:

The trial draw qijn is obtained as depicted in Eq. (18):

min = 7i 7" +VJAwv, (18)

where AW is the Cholesky factor of fl, v are T independent variables from N(0,1), and p is a

parameter of the jumping distribution, adjusted continuously in every iteration. (Train, 2006)

chooses to decrease (increase) p by 10% in case less (more) than 30% of the trial menu-level

coefficients have been accepted. The trial draw 4 , is accepted if:

J=O 2j(mn ]m h~ink(n, nw) (19)

w i r m t uniform d h(t r in n, fl

where u is a draw from the standard uniform distribution.

82



Appendix B. Stan Scripts for Alternative Priors
Here we include the Stan scripts that we use for estimating logit mixture with different priors

including IW, HIW, SIW and BMM for the choice of grapes study in Chapter 3. Note that we

need to write R scripts to read data and put them into the consistent format as Stan reads it.

1. Stan code for 1W

data {

int<lower-O> N; // Observations

int<lower=O> K; // Alternatives

int<lower=O> D; // Variables

int<lower=O> H; // Households

int<lower=O> id[N]; / ID variable

int z[N]; // Choice Indicator

vector[K] sweet[N]; // Sweet

vector[K] crisp[N]; // Crisp

vector[K] price[N]; /cost

covmatrix[D] invR;

cov-matrix[D] mu-var prior;

vector[D] mu-m_prior;

}

parameters {

vector[D] eta[H];

vector[D] etamu;

covmatrix[D] etavar;

}
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model {

real u[K];

etamu ~ multinormal(mu m_prior, mu-var_prior);

etavar ~ inv-wishart((D+1), invR);

for (h in 1:H)

eta[h] - multi normal(etamu,etavar);

for(n in 1:N) {

// Utilities

u[1] <- (-price[n, l]+ eta[id[n],2] .* sweet[n,1] + eta[id[n],3] .* crisp[n,1])/exp(eta[id[n],1]);

u[2] <- (-price[n,2]+ eta[id[n],2] .* sweet[n,2] + eta[id[n],3] .* crisp[n,2])/exp(eta[id[n],1]);

u[3] <- (-price[n,3]+ eta[id[n],2] .* sweet[n,3] + eta[id[n],3] .* crisp[n,3])/exp(eta[id[n],1]);

u[4] <- (-price[n,4]+ eta[id[n],2] .* sweet[n,4] + eta[id[n],3] .* crisp[n,4])/exp(eta[id[n],1]);

// Logit Log Likelihood

target+= u[z[n]] - logsumexp(u);

}

}

2. Stan code for HIW

data {

int<lower=O> N; // Observations

int<lower=O> K; // Alternatives

int<lower=O> D; // Variables

int<lower=O> H; // Households
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int<lower=O> id[N]; / ID variable

int z[N]; // Choice Indicator

vector[K] sweet[N]; // Sweet

vector[K] crisp[N]; // Crisp

vector[K] price[N]; /cost

covmatrix[D] invR;

cov-matrix[D] mu var_prior;

vector[D] mu m_prior;

//real<lower=O> A;

vector[D] A;

}

parameters {

vector[D] eta[H];

vector[D] etamu;

covmatrix[D] etavar;

vector[D] a;

}

model {

real u[K];

etamu - multinormal(mu_m_prior, mu var prior);

for (d in 1:D)

a[d] -gamma(0.5,l/A[d]^2);

etavar - invwishart((D+1), 2*2*diag-matrix(a));

for (h in 1:H)
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eta[h] ~ multinormal(etamu,etavar);

for(n in 1:N) {

// Utilities

u[1] <- (-price[n,1]+ eta[id[n],2] .* sweet[n,1] + eta[id[n],3] * crisp[n, 1])/exp(eta[id[n], 1]);

u[2] <- (-price[n,2]+ eta[id[n],2] .* sweet[n,2] + eta[id[n],3] .* crisp[n,2])/exp(eta[id[n],1]);

u[3] <- (-price[n,3]+ eta[id[n],2] .* sweet[n,3] + eta[id[n],3] * crisp[n,3])/exp(eta[id[n],1]);

u[4] <- (-price[n,4]+ eta[id[n],2] .* sweet[n,4] + eta[id[n],3] .* crisp[n,4])/exp(eta[id[n], 1]);

// Logit Log Likelihood

target+= u[z[n]] - logsumexp(u);

}

}

3. Stan code for S1W

data {

int<lower-O> N; // Observations

int<lower--O> K; // Alternatives

int<lower=O> D; // Variables

int<lower=O> H; // Households

int<lower=O> id[N]; / ID variable

int z[N]; // Choice Indicator

vector[K] sweet[N]; // Sweet

vector[K] crisp[N]; // Crisp

vector[K] price[N]; //cost

covmatrix[D] invR;
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cov_matrix[D] muvarprior;

vector[D] mu-mprior;

vector[D] b;

vector[D] zeta;

covmatrix[D] Lambda;

}

parameters {

vector[D] eta[H];

vector[D] etamu;

cov_matrix[D] Q;

vector[D] delta;

}

transformed parameters{

covmatrix[D] etavar;

etavar-quad form_diag(Q,delta);

}

model {

real u[K];

etamu - multinormal(mu-m_prior, muvarprior);

Q - inv-wishart((D+1),Lambda);

for (i in 1:D)

delta[i]-lognormal(b[i],zeta[i]);

for (h in 1:H)

eta[h] ~ multi norm al(etamu,etavar);

87



for(n in 1:N) {

// Utilities

u[1] <- (-price[n,1]+ eta[id[n],2] .* sweet[n,1] + eta[id[n],3] .* crisp[n,1])/exp(eta[id[n],1]);

u[2] <- (-price[n,2]+ eta[id[n],2] .* sweet[n,2] + eta[id[n],3] .* crisp[n,2])/exp(eta[id[n],1]);

u[3] <- (-price[n,3]+ eta[id[n],2] .* sweet[n,3] + eta[id[n],3] .* crisp[n,3])/exp(eta[id[n],1]);

u[4] <- (-price[n,4]+ eta[id[n],2] .* sweet[n,4] + eta[id[n],3] .* crisp[n,4])/exp(eta[id[n],1]);

// Logit Log Likelihood

target+= u[z[n]] - logsum exp(u);

}

}

4. Stan code for BMM

data {

int<lower=O> N; // Observations

int<lower=O> K; // Alternatives

int<lower=O> D; // Variables

int<lower=O> H; // Households

int<lower=O> id[N]; // ID variable

int z[N]; // Choice Indicator

vector[K] sweet[N]; // Sweet

vector[K] crisp[N]; // Crisp

vector[K] price[N]; /cost

cov-matrix[D] invR;

cov-matrix[D] mu-varprior;
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vector[D] mu-mprior;

vector[D] b;

vector[D] zeta;

cov-matrix[D] Lambda;

}

parameters {

vector[D] eta[H];

vector[D] etamu;

vector[D] delta;

coV_matrix[D] Q;

}

transformed parameters {

corrmatrix[D] R;

covymatrix[D] QI;

covmatrix[D] etavar;

for (i in 1:D){

for (j in 1:D){

if (ij) {

QI[i,j]=sqrt(1/Q[i,i]);

} else{

QI[i,j]=O;

}

}

}
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R=QI*Q*QI;

etavar-quad form diag(R,delta);

}

model {

real u[K];

etamu - multi normal(mu-m_prior, mu-varprior);

for (i in 1:D)

delta [i]~lognormal (b [i],zetafi]);

Q-inv_wishart((D+1),Lambda);

for (h in l:H)

eta[h] ~ multinormal(etamu,etavar);

for(n in 1:N) {

// Utilities

u[1] <- (-price[n,1]+ eta[id[n],2] .* sweet[n,1] + eta[id[n],3] .* crisp[n,1])/exp(eta[id[n],1]);

u[2] <- (-price[n,2]+ eta[id[n],2] .* sweet[n,2] + eta[id[n],3] .* crisp[n,2])/exp(eta[id[n],I]);

u[3] <- (-price[n,3]+ eta[id[n],2] .* sweet[n,3] + eta[id[n],3] .* crisp[n,3])/exp(eta[id[n],1]);

u[4] <- (-price[n,4]+ eta[id[n],2] .*sweet[n,4] + eta[id[n],3] .*crisp [n,4])/exp(eta[ id [n], I]);

// Logit Log Likelihood

target+= u[z[n]] - logsumexp(u);

}

}
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