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Abstract

Aquatic vegetated habitats, including wetlands and mangroves, are disappearing at
an annual rate of 1 to 7%. These ecosystems provide habitats important to fisheries,
enhance water quality by filtering nutrients from run-off, and also protect coastal re-
gions from storm surges and waves. To mitigate the loss of these habitats, restoration
projects import sediment to eroded areas. The success of the restoration depends on
its ability to retain sediment; therefore restoration design requires a good understand-
ing of sediment transport within vegetated landscapes. However, there is currently no
quantitative model for sediment transport in vegetated regions, and many restoration
projects have failed due to unanticipated erosion from the restored regions. The goal
of this thesis is to develop a predictive model for sediment transport in regions with
vegetation.

First, the affect of vegetation on the critical condition when sediment start to
move was explored. To identify the critical condition, an imaging system was de-
signed to track the trajectories of individual moving grain through running water.
The critical flow velocity (Ucrit) above which sediment starts to move was identified
from the tracked sediment trajectories for both bare (non-vegetated) and vegetated
regions. The experimental results showed that for the same type of sediment, Ucit
decreased with increasing vegetation solid volume fraction. This was attributed to the
vegetation-generated turbulence, which induced a local, vertical, adverse pressure, or
a lift force on the sediment grain, facilitating sediment transport. In contrast, the
turbulent kinetic energy (kg) was found to be roughly a constant at the critical con-
dition for different vegetation volume fractions, suggesting that kt is a more universal
metric than T for predicting the critical condition of the sediment transport. A kt-

based model was developed to predict Uit for channels with different vegetation solid

volume fractions. The turbulence-based model successfully predicted Ucrit for both

bare and vegetated channels, providing a useful tool for ecologists to predict whether

a vegetated landscape will erode or not.
Second, the impact of vegetation on the bed load transport rate was explored. A

system that allows sediment to be bypassed, a cart to distribute sediment, a method

3



that measures the dry weight of wet sand without drying the sediment, a topography
system, and an sediment trajectory imaging system were designed. The bed load
transport rate (Q,) was measured for both bare channels and channels with different
vegetation solid volume fractions (#) under different flow rates. At the same T, the
measured Q, increased with increasing q, suggesting that vegetation-generated turbu-
lence, which also increased with increasing q, was augmenting the bed load transport.
At the same near-bed turbulent kinetic energy, kt, the Q, measured in both bare and
vegetated channels agreed within uncertainty, suggesting that kt may be a more uni-
versal predictor of Q, than r. The Einstein-Brown T-based bed load transport model
was reinterpreted as a kt-based model. The new kt-based model predicted the Q,
measurements for both bare and vegetated channels. The dependence of Q, on kt
was explained by the statistics of individual grain motion, which showed that Q, was
predominantly controlled by the number of grains in motion, which correlated with kt.
The proposed kt-based sediment transport model can be used to simulate large-scale
landscape evolution and to help ecologists design better coastal restoration strategies.

Third, the impacts of vegetation on bedform characteristics and migration rate
were studied. After the measured bed load transport rate converged to an equilibrium
value, the bed topography was scanned by a laser topography system. Bedforms with
height less than 2cm were observed and characterized as ripples. For low vegetation
solid volume fraction (# < 0.012), the ripple wavelength was constrained by stem
spacing and the ripple height increased with increasing 0. However, at the highest
vegetation solid volume fraction (0 = 0.025), the ripple height was comparable to
the grain size, indicating that an plane bed had formed. The ripple migration speed
and the bed load flux associated with the migrating ripples increased with increasing
vegetation solid volume fraction for 0 K 0.012. However, the fraction of the bed
load flux carried by migrating ripples decreased with increasing #, suggesting that
vegetation facilitated the formation of sheet flow. The impacts of vegetation on bed-
forms presented here will provide a potential tool for geologists to infer the occurrence
of vegetation-related events from geomorphological records.

Thesis Supervisor: Heidi M. Nepf
Title: Donald and Martha Harleman Professor
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Chapter 1

Introduction

1.1 Fundamentals of sediment transport

Sediment transport is an important process that affects the lives of humans and other

living creatures in various ways [45]. For example, coastal erosion and migration of

rivers and streams caused by sediment transport endangers our infrastructures and

the habitats of many species [108]. Deposition of sediment in drainage ditches, canals,

and navigation channels impedes the normal operation of these systems and creates

large clean-out costs [108], and deposition in farm lands can bury crops, affecting

agriculture productivity [41]. Excess suspended sediment in water suffocates fish and

affects their feeding ability by attenuating light [5]. Impingement of abrasive sediment

on machine surfaces causes turbines and other components in hydropower plants to

wear out [23]. In addition, sediment transport exposes carbon-rich soils to microbial

processes and induces a large amount of green house gas emission, up to 10% of

fossil fuel emissions [54]. Understanding sediment transport processes is important

for addressing and mediating the above sedimentation-related problems [108], yet the

fundamental mechanisms of sediment transport is still not fully understood due to the

intrinsic complexity of turbulence and sediment-fluid-structure interactions [69, 21].

The sediment transport processes inside vegetation is particularly important to

understand, because erosion is one of the major causes of the loss of coastal vegetated

habitats in the past several decades, including half of the world's wetlands [124] and

19



thousands of acres of seagrass in the U.S. [59]. Vegetation also affects the geomorphic

evolution of rivers and floodplains [58, 77], which greatly affects the survival and

abundance of aquatic species such as salmon [36]. In order to restore these eroding

habitats and protect the species vulnerable to erosion, predictive models for sediment

transport in vegetated areas is needed.

Sediment transport is divided into bed load transport and suspended load trans-

port. Bed load refers to the sediment moving with frequent contact with the bed

in a confined bed layer region, whose thickness is usually several times the grain di-

ameter [45]. Suspended load refers to sediment moving with the flow in suspension

and without frequent contact with the bed [45]. Studies in open channel flows have

shown that bed load starts to occur when the shear stress exerted on the grains by

the flow exceeds a critical value, called the critical bed shear stress [86]. For each

sediment grain size and grain density, the critical shear stress can be inferred from

the empirically-constructed Shields diagram [86]. Sediment suspension occurs when

upward turbulent diffusion become large enough to balance the settling of the par-

ticle due to gravity [45]. Bedload transport rate and suspended load transport rate

are usually calculated separately. In particular, most bedload equations estimate the

bedload transport rate based on the mean bed shear stress, representing the horizon-

tal drag force on the grains, while the transport rates of suspended load are often

a function of the turbulent diffusivity [45]. In this study, we focus on the bedload

transport.

1.2 Classic bedload transport models

Current bedload transport models are based on time-mean bed shear stress r and are

mostly empirical or semi-empirical. Pioneering bedload transport studies trace back

to 1879, when M.P. Duboys [24] proposed the bed shear stress concept. He assumed

that grains move in layers and that the shear stress or tractive force has to overcome

the frictions between grains to move the sediment. With support from experimental
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data, the following semi-empirical Duboys bedload equation was proposed [45]:

0.173
qv- 013T(T - Tci) (1. 1)

Here qbv is the volume of sediment in motion per unit width and time in ft2 /s, T

is the bed shear stress in unit lb/f t2 , d, is the sediment size in mm, and Trhit is the

critical shear stress which Duboys approximated as = 0.0125 - 0.019d,. Note that

the constants 0.173 in the equation was empirical and has the unit [.][mm]/

The critical bed shear stress can also be estimated based on the classic Shields

diagram [86]. Specifically, the Shields curve plots Trcit/(ps - p)ds as a function of the

particle Reynolds number Re,, - it/Pd, with p, ps, g, and v represent-

ing the fluid density, sediment density, gravitational constant, and the fluid kinetic

viscosity. Iterations are required to find it.

Following Duboys, a number of empirical r-based bedload transport models were

developed based on lab and field measurements. One of the most-widely-used models

is the Meyer-Peter Muller equation [64], which estimates the dimensionless bedload

transport, Q,*, as a function of dimensionless bed shear stress (T*)

QOS = 3 = 8(-r - 0.047)3/2, (1.2)
(Ps / p - 1)gds

(r, = . (1.3)
( Ps - p)gds

The Meyer-Peter Muller equation was fitted to the data of [63] and part of the data

from [32] with 1, ranging from 0.06 to 0.18. Wiberg and Smith [114] further general-

ized the Meyer-Peter Muller's equation to T* outside the 0.06 to 0.18 range:

Qs* = 3(_r - T*crit) 3 / 2 . (1.4)

Here #3 is a fitting variable ranging from 5 to 15, depending on the range of T* - T*crit.

Based on probability concepts, Einstein [26] derived an expression for the dimen-
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sionless bedload transport rate Qs, as a function of 7.,

S* = v = f (T*), (1.5)

Einstein nondimensionalized qs by the fall velocity wo and d, based on dimensional

analysis. The particle fall velocity can be approximated by the Rubey's approximate

equation [83],

2 36v2  36v2

WO=( - + ) ( pl/p -1) gd, (1.6)
\0  3+ (ps/p - 1)gd \ (ps/p - 1)gdP

For coarse sand and gravel (e.g. d, > 1mm), wo - (ps/p - 1)gd., which leads to

the same as the nondimensionalization used in equation 1.2. In deriving equation 1.5,

Einstein assumed that particles move in steps of average length proportional to d,

and that the probability of a particle to be moved is a function of the ratio of the lift

force on the grain to its submerged weight. He further assumed that the lift force is

proportional to the bed shear stress. Brown [8] fitted different formulas of Q,. = f(T.)

to experimental data and proposed the Einstein-Brown bedload model:

QS { 2.15e -0 .3 9 1 /r*, T7 < 0.18 1.7
40-r*, 0.18 <T,, < 0.52.

At low sediment transport region (Tr < 1), the Einstein-Brown model agrees well

with the bedload measurements compiled in Figure 9.2 of [45].

1.3 Limitations of current bedload models

Despite the fact that the time-mean bed shear stress (T)-based models can predict

bedload transport in some flow conditions, the mechanisms of bedload transport are

still poorly understood due to the complex nature of turbulence and fluid-sediment

interactions. In particular, a number of studies have shown that in addition to the

mean shear stress, r, the instantaneous stress or turbulence also play an important

22



role in sediment transport [37, 95, 69, 941. For example, the instantaneous sediment

transport rate was measured in a tidal channel and observed to be intermittent,

linked to the bursting patterns of the near-bed turbulence [37]. Sumer et al. [95, 94]

conducted flume experiments with obstacles and observed a five-fold increase in Q,

with 20% increase in kt at conditions with the same r, suggesting that kt may play

a more important control on Q, than r. Nelson et al. [69] conducted experiments

in a channel with simulated bedforms and observed that sweeps and ejections, which

contribute equally to r, produce significantly different sediment transport rates. More

recent studies further showed that in addition to the stress fluctuations, the duration

of the fluctuations plays an important role the bedload transport [21]. Specifically,

Diplas et al. [21] have shown that in order for a grain to move, not only does the

magnitude of the peak force have to be above a critical value, but also the impulse,

which is product of the magnitude and duration of the instantaneous force larger

than the critical force, has to be larger than a critical value, depending on the grain

size [10, 11]. Other studies have shown that in contrast with the horizontal drag

on the sediment grain, which is proportional to the bed shear stress, the lift force

on the grains provides a dominant control in sediment transport [95, 75, 88]. For

example, flow visualization has revealed that turbulent bursts can lift up sediment

grains, initiating sediment transport [95, 75]. Smart and Habersack [88] measured the

pressure gradient above and below a gravel and showed that the uplift force on the

sediment grain due to the advecting turbulence can overcome the submerged weight

of the grain, initiating grain entrainment. The Einstein-relationship (equation 1.5)

was based on the assumption that the probability of particle in motion depends on

the ratio of the lift force to the particle submerged weight and that the lift force

is proportional to T. For conditions in which the lift force does not scale with r,

the Einstein-theory could be interpreted as the dimensionless bedload transport as

a function of dimensionless lift force instead of r. For channels with steady and

uniform flow, the turbulent kinetic energy, the lift force, and T are linearly related

[8, 69] such that the role of turbulence, lift force, and the bed shear stress are coupled

and the T-based models already incorporate information about the turbulence and
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lift force. However, in places with obstacles, such as bedforms and vegetation, the

T-based models have been found to be inaccurate [69, 94, 118]. Nelson et al. [69]

measured the sediment transport rate and bed shear stress at different locations

relative to a step and found that the correlation between sediment transport rate and

the bed stress is quite poor. Sumer et al. [94] measured bed load transport rate in

channels with and without external turbulence generators, such as horizontal pipes

and grids, and found that the bed load transport rate correlated with the fluctuations

of the bed stress instead of the mean bed shear stress T. Yager and Schmeeckle [118]

measured the bed load transport rate and bed shear stress simultaneously in channels

with emergent model vegetation and found that commonly-used T-based models can

not predict sediment transport in vegetated channels. This is likely because these

obstacles generates additional turbulence which induces additional lift force so that

the lift force and T are not linearly related and T-based models do not incorporate

information about turbulence and the lift force in channels with external turbulence

generators.

The inaccuracy of T-based bedload models in regions with vegetation is particu-

larly problematic because vegetation is prevalent in coastal areas, rivers, and streams,

and erosion inside vegetation poses a serious threat to human habitats and other liv-

ing creatures [115, 118, 55]. For example, erosion is one of the major causes of the

loss of coastal vegetated habitats in the past several decades, including half of the

world's wetlands [124] and thousands of acres of seagrass in the U.S. [59]. Vegetation

also affects the geomorphic evolution of rivers and floodplains [58, 77], which greatly

affects the survival and abundance of aquatic species such as salmon [36]. In order to

restore these eroding habitats and protect the species vulnerable to erosion, predic-

tive models for bedload transport in vegetated areas is needed. To date, a number

of laboratory sediment transport experiments have been conducted in regions with

model vegetation, providing important insights into the impact of vegetation on sed-

iment transport [44, 48, 118, 104, 55, 121, 119, 105]. Jordanova and James [44] and

Kothyari et al. [48] measured the bedload transport rate in a flume with a sloping

bed and with vegetation simulated by cylinders. They calculated the total stress from
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the slope after the flow became uniform, i.e., after the surface slope and bed slope

became the same, and found that the bed load transport rate was not a function of

the total stress because a large portion of the total stress was balanced by the vegeta-

tion drag. They suggested that the vegetative drag, which is a function of vegetation

density, vegetation drag coefficient and velocity, be subtracted from the total drag to

estimate the bedload transport rate. However, the vegetation drag coefficient varies

with the flow rate, the vegetation stem size, the vegetation solid volume fraction, and

the vegetation morphology [98, 70], making it difficult to apply the drag partition

method to estimate bed load transport. Yager and Schmeeckle [118] measured both

bedload transport rate and near-bed velocity and observed elevated bedload transport

rate in places with high turbulence intensity, yet no quantitative bedload model was

developed in their study. Tinoco et al. [104, 105] measured the suspended sediment

concentration with increasing flow velocity in vegetated channels. They inferred the

critical velocity when sediments started to suspend from the measured concentration

and found out that the critical velocity decreased with increasing vegetation solid

volume fraction, which they attributed to the vegetation-generated turbulence.

1.4 Impact of vegetation-generated turbulence on

bedload transport (thesis structure)

This thesis describes the impact of vegetation-generated turbulence on the incipient

condition of sediment transport, the bedload transport rate, and the bedform char-

acteristics. Chapter 2 describes how vegetation-generated turbulence significantly

reduces the critical bed shear stress at which sediment starts to move. A turbulence-

based model is derived and validated to predict the critical velocity for sediment

transport in regions with different vegetation volume fractions. Chapter 3 discusses

the impact of vegetation-generated turbulence on the bedload transport rate. The cur-

rent bed shear stress-based bedload models are shown to underestimate the bedload

transport rate in channels with vegetation. A re-interpretation of the bed stress-based
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models into turbulence-based models is proposed, and the re-interpreted turbulence-

based bedload model is validated by experimental data. The results show that ig-

noring vegetation-generated turbulence will lead to an underestimation of bedload

transport rate in salt marshes by several orders of magnitude. Chapter 4 further ex-

plores the impact of vegetation on bedload transport and bedform characteristics. A

model for predicting turbulent kinetic energy in vegetated channels with mobile beds

is validated, which provides a tool for applying the turbulence-based bedload trans-

port model when turbulence cannot be measured directly. Ripples were observed, and

the ripple wavelength was shown to be constrained by vegetation spacing. The ripple

height increased with increase vegetation volume fraction for channels with vegetation

volume fraction < 0.012, but was comparable to grain size at high vegetation volume

fraction (0.025), suggesting that vegetation both enhances bed-load transport and fa-

cilitates an earlier transition to sheet flow. Chapter 5 is a summary of the thesis and

future research directions that extend current research to more complicated environ-

ment. Appendix A describes the sediment-recirculation flume, tools for distribute and

catch the sand, and a method to calculate the bedload transport rate. Appendix B

presents the steps to track the trajectories of moving sediment grains. Particle track-

ing codes are included and a method to validate the trajectories in Adobe Premiere

is described in detail. Appendix C illustrates the mechanical design and the Lab-

View interface of a laser topography system and the procedure to use the system.

Appendix D documents the measured turbulent kinetic energy and Reynolds stress

profiles above mobile sand beds for the experiments described in Chapter 3 and 4.

Appendix E documents the measured bed topography profiles in both temporal and

spatial domain, which were used to identify the ripple characteristics for both bare

and vegetated channels (Chapter 4, Table 4.2).
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Chapter 2

The onset of sediment transport in

vegetated channels

This laboratory study advances our understanding of sediment transport in vegetated

regions, by describing the impact of stem density on the critical velocity, Uit, at

which sediment motion is initiated. Sparse emergent vegetation was modeled with

rigid cylinders arranged in staggered arrays of different stem densities. The sediment

transport rate, Q, was measured over a range of current speeds using digital imaging,

and the critical velocity was selected as the conditions at which the magnitude of Q,
crossed the noise threshold. For both grain sizes considered here (0.6-0.85mm and

1.7-2mm), Uit decreased with increasing stem density. This dependence can be

explained by a threshold condition based on turbulent kinetic energy, kt, suggesting

that near-bed turbulence intensity may be a more important control than bed shear

stress on the initiation of sediment motion. The turbulent kinetic energy model

unified the bare-bed and vegetated channel measurements. 1

'The results of this chapter was published in "JQ Yang, H Chung, and HM Nepf. The onset
of sediment transport in vegetated channels predicted by turbulent kinetic energy. Geophysical
Research Letters, 43(21), 2016."
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2.1 Background

Aquatic vegetation provides important ecosystem services [65, 50, 19], whose global

value has been estimated to be in the tens of trillion dollars per year [14]. However, a

large amount of aquatic vegetation has been lost in recent decades, including over half

of the wetlands and thousands of acres of seagrass in the U.S [59]. An understand-

ing of sediment transport in vegetated regions is essential for vegetation restoration

because the evolution of vegetated landscape occurs through the interplay of flow,

vegetation and sediment accretion. Yet, there are currently no predictive models

for sediment transport in vegetation. This study takes a first step toward develop-

ing a sediment transport model by quantifying the incipient conditions for sediment

transport in vegetated regions. cite In a bare channel the critical velocity defining

incipient sediment motion, Uit, has historically been related to the time-mean bed

shear stress (r) [87]. However, more recent studies support the role of turbulence in

initiating sediment motion [37, 69, 21]. In a bare channel, the role of turbulence may

be inherently represented in the Shields diagram because the turbulent kinetic energy

and T are linearly related [91]. In a vegetated channel, however, the turbulence is

predominantly generated by the vegetation [99, 93], such that T is no longer a surro-

gate for near-bed turbulence. This may explain why bed shear stress models based

on open channel studies do not work in vegetated channels [118, 39, 104].

In this paper, we assume that the near-bed turbulence plays the central role in

initiating sediment motion, as also proposed by [69] and [21]. A prediction for Uit

is devised based on the near-bed turbulence generated by both bed shear stress and

vegetation wakes. The model is shown to be consistent with measurements made in

bare and sparsely vegetated channels.

2.2 Theory: a turbulent kinetic energy based model

Previous studies have shown that the initiation of grain motion is connected to the

passage of turbulent eddies and the associated fluctuations in near-bed pressure, which
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generate sufficient instantaneous lift and drag forces to destabilize the grains [88, 123].

Because the magnitude of the fluctuating drag and lift forces are correlated with the

near-bed turbulent kinetic energy (kg), we propose using kt as a predictor of the

incipient condition of sediment transport. This proposal is supported by observations

of sediment erosion over a bare bed and a bed with Spartina anglica at different stem

densities [115]. In the Widdows study, the relation for open channel flow, T =0.19kt,

was used to estimate the mean bed stress from the measured turbulent kinetic energy

kt = (u' 2 +v' 2 +w' 2 )/2, with u', v', w' denoting the velocity fluctuation [91]. However,

as discussed in [71, 80, 121], this relation assumes turbulence production is linked to

bed stress, which is not true in vegetated systems, for which turbulence production

is primarily associated with the vegetation. Therefore, Widdows' conclusion that the

critical T was unchanged between bare and vegetated beds (Figure 6 in [115]) was

incorrect, and in fact their data actually shows that the threshold for erosion was

defined by a critical value of kt. Finally, the duration of the turbulence-driven lift

and drag is also important, and may be characterized by an impulse parameter (e.g.,

[10, 11]). The duration is connected to eddy scale, which in turn is connected to the

grain size and stem diameter, so that for a fixed grain size and stem diameter, kt

alone should set the critical threshold.

Over a bare channel, the near bed kt is proportional to T [91], and T is propor-

tional to the time-mean, depth-average velocity squared U2 [116, 45]. Specifically,

ktb = CbU 2 , with COb a coefficient dependent on the bed roughness. In a vegetated

channel, both the bed-generated turbulence and the vegetation-generated turbulence

contribute to the near bed kt. For simplicity, we assume that the total near-bed kt is

the sum of the two, neglecting any mutual influence. For a sparse emergent canopy,

specifically d/s, < 0.56 with d and sn denoting the stem diameter and the average

surface-to-surface distance between the nearest stem neighbor, respectively, which we

consider in this study, stem-scale eddies can exist throughout the canopy, so that the

vegetation-generated turbulence can be described by equation (4.1) in [99]:

ktV = 1.2[CD ] 2/ 3U 2  (2.1)
(1- 4)7/2
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Here CD is the stem drag coefficient and # is the solid volume fraction within the

canopy. In order for equation (2.1) to apply, the stem Reynolds number Red (= Ud/v)

must be larger than 120 for stem wake turbulence to be generated [56]. In this study

600 < Red < 2500 and d/s, 5 0.25 (0 5%), so that kt, ~ 1.2(7) 2 /3U2

0.9C2/342/3U2. Assuming that the total near-bed kt is the sum of ktb and kt, the

total near bed kt in a sparse emergent canopy can be estimated as:

k = CbU 2 + 0.9C2/ 302/3U2. (2.2)

If kt sets the threshold for incipient sediment motion, then equation (2.2) can be used

to predict the critical velocity. The critical kt should be a function of the sediment size

(d,). For vegetated and bare channels with the same d8, CbUit + 0.9C,/302/3U,.t

CbU2, with U denoting the critical velocity for a bare bed, i.e. Ucrit = U when

q = 0. Re-arranging,
Ucrit 1(23)
U0  1 + )2/3(

in which the coefficient C = 0.9CD/3/C. Estimations of Cb and CD can be found in

[45] and [98, 13], respectively. Hereafter equation (2.3) is referred to as the turbulence

model for sparse vegetation. For dense vegetation (d/sn > 0.56), the turbulence

generated in the stem wakes has a weaker dependence on solid volume fraction (Figure

14 and equation (4.1) in [99]), so that Ucrit is expected to have a weaker dependence

on 0 compared with the sparse vegetation (equation (2.3)).

2.3 Methods: tracking the trajectories of moving

sediments in a flume

The model emergent vegetation was created using rigid circular cylinders with diam-

eter d = 6.3mm fixed in a staggered pattern in PVC boards (Figure 2-1). The solid

volume fraction (4) ranged from 0.006 to 0.05, similar to conditions found in marshes

[70]. One layer of sieved light-brown sand was glued to the PVC boards. Two sand
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sizes (d,) were used: 0.6 to 0.85mm and 1.7 to 2mm. The boards were placed in

a horizontal recirculating flume with a 1-m wide and 10-m long test section. Flow

was generated by a centrifugal pump and measured with an in-line flow meter with

0.001m3/hr precision. The measured flow rate, Q, was used to estimate the average

channel velocity U = Q/(wh(1 - #)), with w and h denoting channel width and wa-

ter depth, respectively. A digital camera was placed approximately 1m downstream

from the leading edge of the boards to observe the sand motion (Figure 2-1b). h was

measured close to the camera and was controlled to be 20 to 22cm.

A layer of black sand with the same size distribution as the light-brown sand was

spread on top of the light-brown sand. The motion of the black sand was recorded at

60 frames per second with a 1280 x 960-pixels camera and a 35mm fixed focal length

lens (Figure 2-1b). The original imaging area was around 10cm by 7.6cm with one

grain diameter corresponding to 10 to 20 pixels. To capture the spatial heterogeneity

of sediment motion, the imaging window contained an integral number of the repeated

pattern of dowels (Figure 2-la). To eliminate distortions in the image due to water

surface movement, a small glass tank was positioned above the channel and extended

less than 1 cm below the water surface (Figure 2-1c).

The following steps were used to estimate the sand transport rate, Q,. First, in

each frame the percentage of the pixels occupied by black sand grains was defined as

the black sand occupancy, Pblk. Second, the trajectory of each black grain (Figure 2-

la) was identified using IDL particle tracking MatLab code written by Crocker and

Grier [17]. Third, the average streamwise velocity of the black sand grains ( U, )

was calculated from the identified trajectories, producing an average velocity for all

particles over 30 seconds. The volume of particles in motion per unit bed area (-y)

was estimated from the number of moving particles averaged over the 1800 frames.

The black sand transport rate was then calculated as Qblk = UpY [117, 30]. Assuming

sand motion only occured in the top layer [40] and all sand motion followed the same

probability distribution, the total sediment transport rate Q, for a full bed of loose

grains can bc estimated as Q, = Qblk/Pblk. We calculated Q, for different imaging

durations and found that Q, converged to a constant value at less than 30 seconds.
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Figure 2-1: Experimental setup for tracking sediment trajectories

(a)The gray-scale image of the sand bed with superimposed trajectories of moving black
sand (the red lines). The flow was right to left in the image. The red circles indicate the
positions of dowels. LDV measurements were taken along the y axis defined, as shown in
(a), at the mid-point of the unit cell of the repeating dowel pattern. y = 0 (the center of
the image) was in line with the upstream dowel and mid-way between the upstream and
downstream dowel rows. y = s (lower edge of the image) was in line with the downstream
dowel. (b) Side view of the test section. Vertical circular cylinders represent emergent stems
of vegetation. The digital camera, with polarizing lens, was positioned above a glass tank
with 15cm width and 30cm length in the horizontal plane. Several dowels under the tank
were cut to allow the bottom of the tank to touch the water surface. (c) Top view of the
test section shown in (b). The dowels were placed in a staggered pattern. The black box
with red circles inside the blue box (the glass tank) represents the region captured by the
camera.

For each vegetation solid volume fraction (<$) the sediment transport rate (Q)

was measured at several channel velocities (U). A reference video with no black sand

was also recorded for each flow condition and used to define the noise level. For

each sediment size, the maximum noise value was used as the threshold criterion for

sediment motion, Q,-crit. For each vegetation density, an upper and lower bound for

Ucit was chosen such that above the upper bound all the measured Q, were larger

than Q,_cit and below the lower bound all the measured Q, were smaller than Q,_crit.
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The mean between the upper and lower bound was chosen as Uit.

The instantaneous velocity (u, w) was recorded at the critical condition (U = Uit)

using backscatter Laser Doppler velocimetry (LDV) at 1mm above the bed. Here

(u, v, w) refer to the velocity along the x, y, z axes, corresponding to the steamwise,

spanwise and vertical directions, respectively. The distance to the bed (1mm) was

chosen to characterize the near bed flow condition because the fluid structures that

trigger particle motion scale with sediment size [110]. The LDV probe (Dantec Dy-

namics) was mounted on a manually-driven positioning system, and the velocity was

measured above the bed area where the sediment transport videos were recorded.

For each velocity record, 10000 samples were collected at frequencies from 5 to 100

Hz. For the majority of the measurements, the sampling frequency was greater than

twice the integral time scale from the autocorrelation function [73, 52], indicating

that the sampling frequency was sufficient to capture the characteristics of the turbu-

lence. The running average of turbulent statistics (including Reynolds stress and kt)

converged to stable values within 10000 velocity samples, consistent with a previous

study [9].

Because the 2-D LDV only measured the vertical (w) and streamwise (u) velocity

the turbulent kinetic energy was approximated as kt = (2u' 2 + W' 2 )/2. This ap-

proximation is justified because previous measurements have shown that within an

emergent array the kinetic energy contributed by span-wise velocity fluctuation (V/ 2

) is approximately equal to ( U' 2 ) [97]. For the vegetated cases, velocity was recorded

along a lateral transect midway between rows at y/s = 0, 0.25, 0.5, 0.75 and 1, where

s is the distance between dowels defined in Figure 2-la. For the bare bed, the velocity

was measured at two positions located laterally 5cm apart.

To show that the selected lateral positions captured the flow heterogeneity and

provided representative spatial averages, we also measured the velocity for 3 minutes

each at 18 vertical locations at the selected lateral positions. The average channel ve-

locity estimated from these vertical profiles agreed with the flow meter reading within

10%, indicating that our selected lateral positions were adequate to characterize the

flow heterogeneity. Furthermore, the LES results shown in figure (10) of [93] confirm
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that for sparse vegetation our lateral transect captured most of the flow heterogeneity.

2.4 Results: the turbulence-based model unified

measurements in both bare and vegetated re-

gions

Above a critical channel velocity, the sediment transport rate Q, increased steadily

with increasing U (Figure 2-2). The black dashed line denotes the noise threshold,

Qs-crit = 0.01mm 2 /s. Once sediment transport was initiated, the sediment transport

rate was consistently higher for cases with model vegetation, compared to bare-bed,

and at the same channel velocity the sediment transport rate generally increased with

increasing vegetation solid volume fraction (W).

0.05 . 5
U M/s

0.2 0.25 0.3

Figure 2-2: The transport rate of the mobile black sediment

Sediment transport rate, QS, versus channel velocity, U, for bare bed and four vegetation
solid volume fractions (<$). The sediment size d, = 0.6 to 0.85mm. The horizontal dashed
line denotes the critical sediment transport rate, Qs-crit = 0.01mm2 /s defined based on the
noise threshold.

The incipient velocity (Ucit) was identified from the Qs and U data as described
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in the Methods section and listed in Table2.1. For both grain sizes the value of Ucit

decreased with increasing vegetation solid volume fraction (q), with the greatest drop

between the bare bed and the sparsest stem density (Figure 2-3). As expected, the

values of Uit were higher for the larger grain size. Hongwu et al. [39] estimated

similar values of Uit as a function of stem density for a grain size comparable to our

smaller grain (data included in Figure 2-3).

0.4 A ds=0.60-0.85mm

0.35 0 ds=1.7-2.Omm

+ Hongwu et al.
0.3 (ds=0.54-0.80mm)-

-c 0.25

0.2

0.15 ++

0.1 .

0.05

0
0 0.02 0.04 0.06

Figure 2-3: The critical velocity when sediment starts to move

The critical velocity for sediment motion, Uc,.it, versus vegetation solid volume fraction, <.
The filled triangles and circles with error bars are from the present study. The crosses are
from [39]

The spatially-averaged near-bed turbulence, kt, was measured at the critical con-

dition (U = Uc,.it) for each stem density (red symbols in Figure 2-4). To clarify

overlapping points, the x-axis of measured kt has been shifted right by 0.001. The

lower and upper bound of measured kt correspond to the value of kt measured at

U equal to the lower and upper bound of Uit, respectively. Note that the spatial

heterogeneity of kt is much smaller than the error of kt due to the uncertainty in Uit.

Within uncertainty the critical kt was constant across all stem densities and bare bed.

To further support the turbulence model, the near-bed turbulence was also es-
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Table 2.1: The measured critical velocity

Grain size (d,(mm)) q Ucrit(m/s)
0.60-0.85 0 0.22 0.01
0.60-0.85 0.006 0.17 0.02
0.60-0.85 0.013 0.14 0.02
0.60-0.85 0.025 0.11 0.02
0.60-0.85 0.049 0.10 0.01
1.70-2.00 0 0.39 + 0.02
1.70-2.00 0.006 0.30 0.02
1.70-2.00 0.013 0.27 0.01
1.70-2.00 0.025 0.24 0.01
1.70-2.00 0.049 0.18 0.01

timated using equation (2.2). The bed turbulence coefficient, Cb, was estimated

from the measured bare-bed values of kt = 0.0012m 2/S 2 and U = 0.22m/s, specif-

ically COb = kt/U"2 = 0.025. Previous bare-bed studies have shown that the near-

bed kt ~ 5.3T/p [91] and T/p = Cf U 2 [116]. For the conditions in this study

(h ~ 0.2m, d, = 0.6 - 0.85mm) Cf ~ 0.0034 (the Darcy-Weisbach friction relation

in [45]), from which a predicted COb is 0.02, agreeing with the measure value (0.025)

within 25%. The value for CD was approximated as 1.0 0.5 for our experimental

conditions (600 < Red < 2500) based on experimental data compiled in (Figure 4 in

[13]). As # increased, the contribution from the bed-generated turbulence ktb (black

squares in Figure 2-4) decreased significantly due to the decrease of Uit. In contrast,

the estimated contribution from vegetation-generated turbulence kt, (black diamonds

in Figure 2-4) increased with increasing # because increasing the stem density pro-

vided more site for stem-wake turbulence generation (equation (2.1)). The predicted

ktb + kt, (equation (2.2), or the black circles) agreed with the measured kt (the red

symbols) within uncertainty, which both validated equation (2.2) and supported the

hypothesis that the critical velocity was set by a threshold in near-bed kt.

In Figure 2-5, the measured Uit, normalized by the critical velocity for bare

bed, U0 , is compared to the turbulence model described by equation (2.3). First,

normalizing by U collapsed the two data sets (triangle and circles in Figure 2-5)

within uncertainty, consistent with equation (2.3). Second, the model prediction
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Figure 2-4: The turbulent kinetic energy at the critical condition

The measured turbulent kinetic energy (kt, red symbols) and the predicted contribution
from bed-generated turbulence ktb and vegetation-generated turbulence kt, at the critical
condition (U = Ucit) for d, = 0.6-0.85mm. The horizontal dashed line represents the
average of measured kt weighted by 1 over the error of kt. The errors in ktb and kt, were
contributed by the uncertainty in Uit and CD through standard propagation of error (e.g.,
[100]). For kte, the uncertainty in CD contributed to the majority of its error.

with Cb = 0.025 and CD= 1 is shown with a black dashed curve. The uncertainty in

the predicted Urit/U (gray shadow in Figure 2-5)) arose mainly from the uncertainty

in CD(= 1 0.5). Both of our experimental data sets and the data from [39] (plus

signs) agree with the turbulence model within uncertainty.

The model also has good agreement with the measurements of Widdows and

Brinsley [115] which use natural vegetation (Spartina anglica) and natural mud with

median grain size around 17.4 0.2pm (diamonds in Figure 2-5). In their study, Uit

was defined as the velocity required to erode 10 grams of sediment per unit bed area,

extrapolated from the suspended mass versus velocity curve. We estimated the solid

volume fraction of Spartina (q) as 7rd2 n/4 with n denoting the number of stems per

bed area, which is reported in the paper. Spartina anglica leaves are 1.5cm wide at

the base and taper to a point, so that 0.75 cm was chosen as an estimation of d.
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The values of Uit/U versus q (diamonds in Figure 2-5) agree with the turbulence

model within uncertainty, indicating that the turbulence model can be extended to

conditions with natural vegetation and fine sediment.

A ds=0.60-0.85mm
0 ds=1.7-2.0mm
+ Hongwu et al.

0.8 % Widdows et al.

00 +

0.4 --- -- - -

0.2

0
0 0.02 0.04 0.06 0.08

Figure 2-5: The turbulence-based model for the critical velocity of sediment transport

The incipient velocity of sediment motion Uit normalized by the incipient velocity for a
bare bed with the same sediment size (U). The black dashed curve with gray shadow
represents the turbulence model (equation (2.3)) with Cb = 0.025 and CD = 1 + 0.5. The
black dashed curve corresponds to CD = 1, and the upper and lower edge of the gray region
represent CD = 0.5 and 1.5, respectively. The horizontal bar for the diamond symbol at
# = 0.025 represents the range of 0 reported for this condition [1151.

Finally, the difference between Uit values measured with different grain sizes

(Figure 2-3) is consistent with Uit set by a critical value of kt. As noted by previ-

ous researchers (e.g., [88]), let's assume that the eddy-induced pressure fluctuations

initiate sediment motion. From Bernoulli's equation, the eddy-induced pressure fluc-

tuation P should scale as pUe2, with Ue denoting the eddy velocity. Because Ue2 is

proportional to kt, P is proportional to kt. Consider a grain of size d8, at the criti-

cal condition the lift force on the grain, Peird,2 /4, approaches or exceeds the weight

of the grain, (p, - p) ird,3g, with p, denoting the sand density and g denoting the

gravitational acceleration. Therefore, the critical values of P and kt increase linearly
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with d,. Because kt is proportional to U2 for the same # (equation (2.1)), Ucit is

expected to increase linearly with vrd~. In the present study, the ratio of V/d, for the

two grain sizes was between 1.4 and 1.8, thus the ratio of Uit was expected to be

1.6 0.2. The corresponding ratio between the measured Uit values (Figure 2-3)

was 1.9 0.2(SD). The agreement within uncertainty between the measured Uit

ratio and the expected ratio further supports the turbulence model.

2.5 Conclusions

Turbulence has been recognized to play an important role in initiating sediment mo-

tion. In a vegetated channel, the generation of turbulence in the wakes of vegeta-

tion elements exceeds that associated with bed-shear, such that previous bare-bed

sediment-transport models based on bed shear stress alone do not work. This study

developed a model for the critical velocity for the onset of sediment transport (,it)

based on a threshold value of near-bed turbulent kinetic energy (kt). The model was

validated by laboratory experiments conducted in both bare channels and channels

with model vegetation of different densities. At the critical condition when sediment

starts to move, the measured kt was roughly a constant for all vegetation densities

and bare bed (Figure 2-4), indicating that kt may be a universal metric that can

be used to predict sediment motion in both bare and obstructed channels. The new

model correctly predicted Uit, unifying both the bare-bed and vegetated channel

measurements (Figure 2-5). Previous experimental data with natural vegetation and

natural mud also agreed with the new model within uncertainty, suggesting that the

model can be extended to predict Uit in natural conditions.
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Chapter 3

The bed load transport rate in

vegetated channels

Previous studies have shown that current sediment transport models, based on the

bed shear stress (r), are not accurate for regions with vegetation. The present study

demonstrated that the inaccuracy arises from the influence of vegetation-generated

turbulence. Bed load transport rate, Q, and near-bed velocity were measured in

a sediment-recirculating flume with model vegetation of different vegetation volume

fractions (#) and with bare sand-beds. At the same r, the measured Q, increased with

increasing q, suggesting that vegetation-generated turbulence, which also increased

with increasing 0, was augmenting the bed load transport. At the same near-bed

turbulent kinetic energy, kt, the Q, measured in both bare and vegetated channels

agreed within uncertainty, suggesting that kt may be a more universal predictor of Q,

than T. A r-based bed load transport model was reinterpreted as a kt-based model.

The new kt-based model predicted the Q, measurements for both bare and vegetated

channels. 1

'A version of this chapter is in revision for publication in Geophysical Research Letters, "Yang
and Nepf. A turbulence-based bed-load transport model for bare and vegetated channels."
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3.1 Background

Many coastal habitats, including around 50% of the world's wetlands, 30 to 50% of

mangroves, and 50% of the seagrasses [124, 61], have been lost in the past several

decades, and continue to be lost at rates of 1 to 7% per year [61]. Projects to restore

these vegetated habitats, such as diverting sediments into the eroded areas, rely on

the processes of sediment retention to regenerate new landscape, and simulations of

landscape evolution used to assess and guide these restoration projects require ac-

curate representations of sediment transport [27, 112, 96, 76]. Unfortunately, many

restoration projects have failed, making it crucial to understand sediment transport

in regions with vegetation [20, 102, 46]. However, existing sediment transport models,

based on the time-averaged bed-shear stress (T), were developed for regions without

vegetation and have subsequently been shown to be inaccurate for regions with veg-

etation, so that there are currently no predictive models for sediment transport in

regions with vegetation [118, 104].

We hypothesize that existing T-based models fail within regions of vegetation be-

cause they do not account for vegetation-generated turbulence. Turbulence plays an

important role in sediment transport [37, 69, 21]. A number of studies have observed

that turbulent bursts or vortices occurring over a sediment particle can lift up the

particle, initiating sediment transport [95, 75, 88]. The sediment lift-up has been

attributed to the local, vertical adverse pressure, or the lift force, induced by the tur-

bulent bursts [95, 109, 88]. Consistent with this hypothesis, Bagnold [4] observed that

many sediment grains were ejected vertically from the bed and some were even ejected

in the upstream direction, suggesting that sediment transport was initiated by a lift

force rather than the horizontal drag force. Dittrich [22] and Zanke [123] analyzed ve-

locity fluctuations and suggested that the lift force in turbulent flow is predominantly

contributed by the pressure fluctuations induced by the turbulence passing above the

grains, rather than by the force due to the curvatures of the streamlines over the

grains, which is related to r. For steady flow over a flat bed without vegetation, the

lift force, the turbulent intensity, and r are linearly related [25, 26], so that T-based
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models capture the process of sediment motion. However, in regions with vegetation,

the vegetation generates additional turbulence, so that the total turbulence inten-

sity and associated lift force no longer scale with T, which explains why the T-based

models do not work in vegetated regions.

In this paper, we propose using turbulent kinetic energy (kt) to predict the sed-

iment transport rate in vegetated regions, because the turbulence-induced lift force,

a major control of the sediment transport, has been suggested to be proportional to

the steam-wise velocity fluctuation squared [22, 123], which by definition scales with

kt. In addition, previous laboratory experiments have demonstrated that the incipi-

ent condition of sediment transport, including bed load and suspended load, in both

bare (non-vegetated) and vegetated channels are determined by a critical value of kt

instead of T [119, 105]. In this study, a T-based sediment transport model developed

for bare channels is reinterpreted as a kt-based model. The reinterpreted kt-based

model predicted measurements in both bare and vegetated channels.

3.2 Methods

3.2.1 Experimental setup

The experiments were conducted in a flume that recirculates water and sediments

separately (Figure 3-1). The flume has a 1m wide and 10m long test section. Exper-

iments were carried out in channels without vegetation and with model vegetation of

different solid volume fractions (0) and at a range of channel-average velocity (Ta-

ble 3.1). The flow rate Q was controlled by a centrifugal pump and measured with a

flow meter with 1m 3/hour accuracy. The cross-sectional averaged velocity was calcu-

lated as U = Q/(wh(1 - #)), with w = um and h representing the flume width and

water depth, respectively. To simulate emergent vegetation, aluminum dowels with

diameter d = 6.3mm were fixed in perforated PVC boards in a staggered pattern

and extended through the water column. The number of dowels per bed area varied

over the range n = 0 to 810 stems/m2 . The frontal area of the vegetation per unit
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Figure 3-1: Schematic side-view of the sediment-recirculating flume

Vegetation was modeled by aluminum cylinders. The near-bed velocity was recorded at
2 cm from the bed using a Nortek Vectrino. Inset with blue edge: the top view of the
region where the velocity measurements were made. 3-minute velocity measurements were
recorded at multiple horizontal positions, indicated by the black pluses.

volume was a =nd = 0 to 5.1m 1 and the solid volume fraction of the vegetation was

0 = (7r/4)nd2 = 0 to 0.025, similar to conditions found in marshes [70]. The dowels

covered the entire width of the flume and 3 meters in the streamwise direction for

experiments 2.1-2.4, and 3.1-3.3. For cases 4.1-4.4, a large water surface slope was

set up by the high vegetation solid volume fraction. To minimize the impact of the

surface slope and associated flow depth variation on bed load measurements for these

cases, the length of the streamwise vegetation coverage was reduced to 2 meters. The

water depth h was measured in the middle of the vegetated region.

At the beginning of each experiment, a 4 cm-thick layer of sand was placed on

top of the PVC boards and manually flattened. The sand grain density was p, =

2.65g/cm 3 and the sand diameter was in the range 0.42 to 0.60 mm, with median

grain size d. = 0.5mm. Only bed load transport was observed during the experiment.

Every few hours, the sand was bypassed from the sand-recirculating pipe through a
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three-way valve and collected in a mesh bag with 0.25mm holes. The bypass duration

ranged from 1 to 10 minutes, chosen to be long enough to ensure that the volume of

the collected sand was significantly larger than the background debris retained in the

bag, which was 0.lg/s, representing the lower-bound of measurable transport. For

extremely large transport rate (> 150g/s), the sand filled the bag within 30 seconds,

comparable to the time to switch the bypass valve on and off (around 10 seconds each

way), thus measurements in this range had large uncertainties and were not included

here. The collected sand was put into a container with water and a marked water line.

The water surface in the container was maintained at the marked water line, and the

dry mass of the sand was calculated from the mass difference of the container with

and without the sand and the density difference between the sand (ps) and the water

(p). The instantaneous bed load transport rate, defined as the mass of sand passing

through the channel cross section per time per unit width, was calculated as the mass

of the collected sand divided by the time to collect the sand and the width of the

flume. We repeated the bed load measurement at least 3 times until the cumulative

average of all the instantaneous measurements varied by less than 10%. The average

and standard error of all the measured instantaneous bed load transport rates were

used to represent the equilibrium bed load transport rate and its uncertainty, Q, S

(Table 3.1).

3.2.2 Velocity measurements

A Nortek Vectrino profiler, an acoustic sensor that measures the velocity, was mounted

on a manually driven positioning system placed in the middle of the vegetation (Fig-

ure 3-1). The positioning system allowed the profiler to move in the stream-wise (),

the lateral (y), and the vertical (z) directions. After the bed load transport rate

reached equilibrium, the Vectrino profiler was used to measure the velocity at 0 to

4cm relative to the bed with 1mm vertical resolution and 100Hz sampling rate for

3 minutes at multiple horizontal locations. A typical distribution of measurement

locations is indicated by the plus symbols in the inset of Figure 3-1, and the number

of locations is listed in the second to last column of Table 3.1. Measurements at 2cm
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Table 3.1: The measured bed load transport rate and flow characteristics.

Case a < U h Q, oQ kt k o (%, k r.s U )/p

number [m-] [m/s] [m] [g/(m - s)] [cm2/s 2 [cm2/s2]
Bare channels

1.1 0 0 0.42 0.12 0.36 0.05 28 i 1 (8) 3.9 t 0.2
1.2 0 0 0.47 0.12 1.84 0.08 46 + 1 (34) 6.0 0.2
1.3 0 0 0.65 0.12 24 1 111 11 (8) 14.7 1.3
1.4 0 0 0.88 0.12 134 8 205 + 10 (8) 12.8 1.6
1.5 0 0 0.33 0.12 0 NA NA

Channels with emergent vegetation
2.1 1.1 0.005 0.27 0.12 0.5 0.1 19 + 3 (24) 0.5 + 0.2
2.2 1.1 0.005 0.30 0.12 2.5 0.3 20 2 (24) 0.2 0.2
2.3 1.1 0.005 0.34 0.12 9 1 32 5 (24) 1.9 0.5
2.4 1.1 0.005 0.43 0.12 68 17 65 8 (24) 6.2 0.7
3.1 2.5 0.012 0.21 0.12 0.15 0.02 17 2 (27) 0.5 0.1
3.2 2.5 0.012 0.24 0.12 2.6 0.5 22 2 (27) 0.1 0.1
3.3 2.5 0.012 0.28 0.12 9.4 0.6 45 5 (27) 2.0 + 0.6
4.1 5.1 0.025 0.21 0.10 1.3 0.1 20 2 (23) 0.5 0.1
4.2 5.1 0.025 0.23 0.10 2.9 0.3 42 4 (23) 0.1 0.1
4.3 5.1 0.025 0.27 0.10 17 1 46 4 (23) 1.0 0.2
4.4 5.1 0.025 0.31 0.10 41 2 51 5 (23) 1.6 0.3
4.5 5.1 0.025 0.17 0.10 0 NA NA

Note that the number in parenthesis indicates number of spatial positions at which
velocity measurements were made.
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relative to the time-mean bed elevation was used to represent the near-bed condition,

because the velocity data at less than 2cm from the mean bed had low correlation and

low signal to noise ratio (SNR) due to the interference of the bed with the acoustic

signal of the profiler.

The local near-bed turbulent kinetic energy ((' 2 +v' 2 +' 2)/2) and the local near-

bed Reynolds stress (p(-u'w')), with u', v', w' denoting the velocity fluctuations in

the steam-wise, lateral, and vertical directions, respectively, were calculated from the

velocity measurements made with the Nortek Vectrino profiler at each location (plus

signs in the inset of Figure 3-1). For each velocity record, the time-averaged velocity,

turbulent kinetic energy, and Reynolds stress converged to a stable value within 3

minutes. The spatial average and standard error of the local turbulent kinetic energy

and local Reynolds stress measured at different horizontal locations were denoted as

kt a and TR, oS, respectively. We calculated the spatial-average from the local

turbulent kinetic energy using an increasing number of measurement positions, and

found that kt converged to a stable value at fewer than the total number used in the

present study (listed in the second to last column of Table 3.1), indicating that the

number of velocity measurements was adequate to capture the spatial variation of the

turbulent kinetic energy.

3.3 Results

The equilibrium bed load transport rate (Q,) and the channel-average velocity (U)

are listed in Table 3.1. For the same U, cases with greater vegetation solid volume

fraction (0) generally had higher Q,. Because the spatially-averaged Reynolds stress

(TRS) is commonly used as an approximation of the mean bed shear stress (T) to

estimate Q, for bare channels [74, 6], we first explored if TRs, could predict Q, in

channels with vegetation. As suggested by Einstein [26], the dimensionless bed load

transport rate, Q,,, was defined as the ratio of the bed load transport rate Q, to the
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product of ps, the fall velocity of the grains (wo), and the grain size,

-S* = _Q . (3.1)

The particle fall velocity wo can be approximated from the Rubey's equation [83],

2 36v 2  36v2

3 + (PsP -/p - 1)gdI1  
-)gd 5 . (3.2)

\ 3 ( s/ -1)gi (ps/ p - 1)gd S

For coarse sand and gravel (e.g. d, > 1mm), wo ~ (ps/p - 1)gd, such that Qs*

Q. . The dimensionless Reynolds stress TRs* represents the ratio of the
Ps /(p 8 /p-1)gd! "

horizontal force, T(7rd2/4) ~ TRs (rd 2/4), exerted on the grain to the submerged weight

of the grain, (p. - p)g(7rd,/6), namely

TRS* - T-RS (3.3)
(ps - p)gd'(

with g represents the gravitational acceleration. The measured Qs, versus the mea-

sured TRs* is plotted in Figure 3-2. Measurements from the present study are plotted

as triangles, and measurements from [118] using similar sediment and model vegeta-

tion are plotted with circles. Note that while the present study measured bed load

directly, Yager and Schmeeckle [118] inferred Qs, from the difference in the pixels of

sequenced images recorded by a camera. In addition, [118] covered a smaller range

of channel velocity U than the present study. The black curve represents the T-based

Einstein-Brown bed load transport model [26, 8]:

{ 2.15e-0 3 9 1 /*, T < 0.18
Q*= (3.4)

40r,3, 0.18 < Tr < 0.52.

For bare channels (< = 0, dark blue triangles), measured Qs, agreed with the Einstein-

Brown model within uncertainty for the majority of the cases. However, for vegetated

channels, the measurements did not agree with the T-based model and instead the

measured Qs, were consistently higher than the model prediction, suggesting that
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TRs* cannot be used to estimate Q,. for regions with vegetation.
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Figure 3-2: The measured dimensionless bed load transport rate

Plot of the dimensionless bed load transport rate Qs* versus the dimensionless Reynolds
stress TRs* measured in the present study (triangles) and in [118] (circles). The black curve
represents the Einstein-Brown model [26, 8].

The disagreement between the Q,* versus TRs, measurements in vegetated channels

and the T-based model suggested that either the T-based model does not -work for

regions with vegetation or TRS can not be used to approximate T in regions with

vegetation. To examine the later, we estimated T for vegetated channels using the

bed shear stress model developed under similar experimental conditions [121]:

4pvU =

T = d ' =i Cf (3.5)
pC f U2 , Red > 4

Here v and Cf represent the kinematic viscosity of water and the bed drag coefficient,

respectively. Red is the stem Reynolds number. Yang et al. [121] showed that when

Red< -, model vegetation suppresses the viscous sub-layer thickness to the stem

radius (d/2) such that T was set by d and v. When Red > , which represents
-Cf'

conditions in this study, the viscous sub-layer thickness is already smaller than d/2

such that the impact of vegetation on T is negligible and T = pCf U2 . Cf can be
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estimated from the sediment size d, and water depth h using the semi-empirical

equation [113, 45]:
1

Cf (3.6)
[5.75log(2h/d,)]

2

For the sediment sizes and range of water depth h used in the present study and in

[118], equation 3.6 predicts Cf = 0.004 0.001. In the bare channel (cases 1.1 to

1.4), the near-bed Reynolds stress measurements suggested Cf = T/U 2 = TRS/U 2

0.0030 0.0015, consistent with equation 3.6. Cf = 0.0030 0.0015 was used in this

study.

The measured dimensionless bed load transport rate Q,, versus the dimensionless

bed shear stress (Tr = T/((p, - p)gd,)) estimated from equation 3.5 is plotted in

Figure 3-3(a). For bare channels (dark blue triangles), Qs, versus -r agreed with

previous bare channel measurements (small black dots) and the Einstein-Brown model

(solid curve) within uncertainty, confirming the validity of our measurements and the

T estimation. However, for cases with vegetation (symbol color indicates # using

color bar), at conditions with similar T, the measured Qs, was consistently larger

than the bare channel measurements and the Einstein-Brown model. Moreover, at

conditions with the same -r, as vegetation solid volume fraction 0 increased (symbol

color shifting from dark blue to light blue to orange to red), the measured Q.,* also

increased, and the deviation from the Einstein-Brown model became larger. The

increase of Q, with increasing # supported the idea that the vegetation-generated

turbulence, which also increased with #, facilitated the bed load transport.

To test our hypothesis that kt was a more important control on Q, in vegetated

conditions, we converted the r-based Einstein-Brown model into a kt-based model.

Specifically, the Einstein-Brown model was originally developed for bare channels, for

which kt = T/(0.19p) [91, 6]. Using this conversion, the T-based Einstein-Brown model

was reinterpreted as a kt-based model by substituting -r = 0.19kt, into equation 3.4:

2.15e -20 6 /kt* kt, - k- < 0.95
.2* =. (p. p- )gd (3.7)

10.27k3* 0.95 < kt,. < 2.74.
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Figure 3-3: Comparison of T-based model and kt-based model

Comparison of (a) T-based model and (b) kt-based model. Measurements from the present

study and [118] are indicated by triangles and circles, respectively. kt, was measured at 2cm

and 5mm from the bed in the present study and [118], respectively. The black curves repre-

sent the r-based model (equation 3.4) and the reinterpreted kt-based model (equation 3.7)

in (a) and (b). The black dots are previous measurements in bare channels compiled in Fig.

9.2 of [45].

with Note that the T-based model (equation 3.4) and the kt-based model (equa-

tion 3.7) are equivalent for bare channels. However, we expect that in channels

with vegetation, only the kt-based model will work, because vegetation provides an

additional source of turbulence such that T, = 0.19kt, does not apply. The con-

verted kt-based model, together with the Q, versus kt, measurements, are plot-

ted in Figure 3-3(b). The black dots represent the same data shown as black dots

in Figure 3-3(a) with the x-axis converted to kt. = r/O.19. Under conditions

with the same k,, Q,, for both bare channel cases and cases with different vege-

tation solid volume fractions agreed within uncertainty, suggesting that kt, is a more

universal predictor of Q, than T.. Furthermore, The root-mean-square deviation

(RMSD = "'L(log(QS*) - log(Q,,))2/m, with m, QS*, and Q,* representing the

total number of measurements, the model estimation of the bed load transport rate,

and the bed load transport rate measurements, respectively) was 0.8 for the kt-based

model, much smaller than the RMSD for the T-based Einstein-Brown model (= 5.2),
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confirming that the kt-based model provided a better framework for predicting Q,.

3.4 Discussion

3.4.1 Comparing the influence of U and kt on bed load trans-

port

Previous experiments have shown that the velocity of moving sediment grains in-

creases with increasing channel velocity U [53, 82], so that we expect U to also play

a role in setting Q, which isn't clearly evident in the kt model described above. To

further explore why kt provided the dominant control on Q, we looked into previous

measurements of individual grain velocity from [119]. Yang et al. [119] recorded the

trajectories of loose black sand grains distributed over a layer of glued brown-sand.

Cases with and without the same model vegetation considered here were investigated.

The velocity of individual sand grains was measured and used to calculate the mean

streamwise velocity of all moving sand grains, Up. The volume of sediment in motion

per unit bed area, -y, was also tracked (Table 3.2 and 3.3). The bed load transport

rate is then Q, = U,-y [117, 30]. For both bare and vegetated channels, U, varied

roughly linearly with U, and both spanned a factor of 3 across range of conditions

considered here (Figure 3-4(a)). In contrast, over the same range of U, y changed

by over 2 orders of magnitude (Figure 3-4(b)). Roseberry et al. [82] also observed

that y increased more quickly with U than did Up. Both the present study and [82]

suggest that Q, (= Up-y) is predominantly controlled by -y, which increases two-fold

faster with U than does Up. Further, at conditions with the same U, -y increased

with increasing # (Figure 3-4(b)). Specifically, at U = 0.22m/s, 7 increased by over

2 orders of magnitude between # = 0 and 0.012, suggesting that the vegetation-

generated turbulence, which increased with 0, significantly enhanced the number of

particles in motion. The turbulent kinetic energy kt was calculated from U using the

near-bed turbulent kinetic energy model (equation4.4) [119]. In contrast, at the same

v/t, - for different # varied within one order of magnitude and with no dependence
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of -y on q (Figure 3-4(c)), suggesting that the number of sediment grains in motion

correlated more closely with kt than with the mean velocity U. This was consistent

with the observation that the number of particles in motion fluctuates in response

to near-bed turbulence [82] and is also supported by the idea that the transport of

sediments is triggered by turbulent bursting events [95, 75]. To summarize, [119]'s

data showed that Q, (= Up-y) is predominantly controlled by -y and that -y scales with

kt, which suggests that Q, has a stronger dependence on kt than U, consistent with

the observations presented in Figure 3-3.
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Figure 3-4: Statistics of moving sediment grains

Variation in (a) the mean stream-wise velocity of moving sediments, Up, and (b) the volume

of particles in motion per unit bed area, y, as a function of channel velocity, U, and (c) y
as a function of the square root of the turbulence kinetic energy, V/kt.

3.4.2 Implications for sediment transport modeling

Observations reported here have shown that at the same channel velocity (U) and

time-mean bed shear stress (r), vegetation-generated turbulence increased the sedi-

ment transport (Figure 3-3). However, vegetation also exerts a drag which, for the

same bed slope or surface slope, reduces U, which would tend to decrease kt and

thus Q, [72]. To take into account these two competing effects that vegetation has

on sediment transport, we predicted the bed load transport rate Q, under the same

energy slope (s), e.g., the surface slope due to tidal forcing or the same bed slope,

but increasing vegetation solid volume fraction ().
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Table 3.2: The sediment transport statistics - Part 1

q U(m/s) U,(m/s) -y x 10 6(m)
0.000 0.22 0.043 2.6
0.000 0.24 0.051 2.2
0.000 0.24 0.048 2.2
0.000 0.26 0.054 4.4
0.000 0.26 0.054 4.7
0.000 0.27 0.059 7.8
0.000 0.27 0.056 3.8
0.000 0.29 0.064 9.9
0.000 0.29 0.065 14.1
0.000 0.30 0.069 19.4
0.000 0.30 0.066 17.5
0.005 0.20 0.043 2.3
0.005 0.22 0.046 3.3
0.005 0.23 0.054 5.6
0.005 0.23 0.058 8.5
0.005 0.19 0.044 1.3
0.005 0.20 0.041 1.3
0.005 0.20 0.043 2.1
0.005 0.21 0.048 2.4
0.005 0.22 0.052 2.8
0.005 0.22 0.051 2.9
0.005 0.23 0.056 5.8
0.005 0.23 0.056 6.9
0.005 0.25 0.062 8.0
0.012 0.15 0.040 6.2
0.012 0.15 0.039 5.8
0.012 0.17 0.043 4.1
0.012 0.17 0.043 4.9
0.012 0.18 0.053 6.3
0.012 0.18 0.054 16.3
0.012 0.20 0.062 12.0
0.012 0.20 0.063 14.7
0.012 0.21 0.064 28.9
0.012 0.21 0.065 43.8
0.012 0.23 0.071 207.7
0.012 0.23 0.048 112.8

The turbulent kinetic energy kt was calculated from U using the near-bed turbulent

kinetic energy model (equation4.4). Note that two experiments were conducted under

the same condition (same 0 and same U) for most of the conditions and the results

of both of them were plotted in Figure 3-4, representing the range or the uncertainty

of our measurements.
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Table 3.3: The sediment transport statistics - Part 2

<0 U(M/s) UP(m/s) -Y x 10'(M)
0.025 0.11 0.024 10.5
0.025 0.13 0.033 5.1
0.025 0.13 0.030 9.0
0.025 0.14 0.040 11.3
0.025 0.16 0.050 19.5
0.025 0.16 0.044 24.8
0.025 0.18 0.055 25.0
0.025 0.18 0.046 16.8
0.025 0.19 0.051 42.8
0.049 0.12 0.036 2.4
0.049 0.13 0.041 4.4
0.049 0.13 0.039 5.7
0.049 0.14 0.045 8.2
0.049 0.11 0.035 3.2
0.049 0.11 0.030 2.1
0.049 0.12 0.032 3.3
0.049 0.12 0.037 3.9
0.049 0.13 0.040 7.8
0.049 0.13 0.039 6.3
0.049 0.14 0.046 12.8
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Figure 3-5: Example bedload transport in a salt marsh

(a) The channel velocity U, (b) dimensionless bed shear stress r., (c) dimensionless turbulent
kinetic energy kt., and (d) the dimensionless bed load transport rate Q5,, estimated from
both the r-based models and the kt-based models, as a function of the vegetation solid
volume fraction #, for conditions with the same energy slope (s).
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First, U was calculated from the force balance between the energy gradient, the

bed shear stress, and the vegetative drag, pghs = pCjU 2 + p CDahU2 (721, so

U = ghs (3.8)
U Cf + CDah/2

Here the vegetation drag coefficient CD was approximated as 1 [72]. For a typi-

cal marsh with vegetation diameter d = 1cm, water depth h = 0.2m, energy slope

s = 0.002, and mean sediment size ds = 0.05mm [122, 70, 107], the channel veloc-

ity U for different vegetation solid volume fractions (0 = 0.001 - 0.1) is shown in

Figure 3-5(a). Under the same energy slope, U decreased with increasing # due to

the vegetation drag. The dimensionless bed shear stress (T,) and the dimensionless

near-bed turbulent kinetic energy (kt,) were then calculated from U for each # using

equation 3.5 and the following kt equation described in [119], respectively.

kt = Cf u2 + 0.9Cj2/3 U2, (3.9)
0.19

with CD = 1 the vegetation drag coefficient. Because of the pronounced reduction

in U, T, and kt, also decreased with increasing # (Figure 3-5(b) and (c)). Q, was

calculated from r, and kt, using the T-based model (equation 3.4) and the kt-based

model (equation 3.7), respectively. As shown in Figure 3-5(d), both the T-based

model and the kt-based model predict a decrease in Q, with increasing 0, consistent

with the general observation of reduced sediment transport in vegetated regions [1,

15]. However, the Q,, predicted by the r-based model was consistently smalldr than

that predicted by the kt-based model. For example, at 0 = 0.01 (a typical marsh

condition), Qs, predicted by the kt-based model was 2 orders of magnitude larger

than that predicted by the r-based model, illustrating that the vegetation-generated

turbulence has a significant influence on Q, in marshes.
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3.5 Conclusions

Sediment transport models based on the mean bed-shear stress, r, underestimated the

sediment transport rate, Q,, measured in channels with model vegetation, and this

was attributed to the vegetation-generated turbulence. Based on this, a reinterpreta-

tion of the r-based Einstein-Brown equations as kt-based equations was proposed. Ex-

perimental measurements in a sediment-recirculating flume and measurements from

a previous study verified the kt model. Specifically, the kt-based model predicted the

measured Q, for both bare and vegetated channels. The new model will improve the

prediction of sediment transport and retention within vegetated habitats, which in

turn should improve landscape restoration planning.
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Chapter 4

Impact of vegetation on bed load

transport rate and bedform

characteristics

The impacts of aquatic vegetation on bed load transport rate and bedform character-

istics were quantified in a sediment-recirculating flume with model vegetation. Under

conditions with the same velocity, the measured bed load transport rate, Q, increased

significantly with increasing vegetation solid volume fraction, and this was attributed

to vegetation-generated turbulence. Conventional models based on mean bed shear

stress, r, could not capture these trends. However, the measured Q, in both bare

and vegetated channels collapsed when plotted against near-bed turbulent kinetic

energy, kt. A re-interpretation of the T-based Einstein-Brown model in terms of kt

was verified with measured Q, from the present study and several previous studies.

Ripples were observed in channels with model vegetation. For low vegetation solid

volume fraction (0 < 0.012), the ripple wavelength was constrained by stem spacing

and the ripple height increased with increasing q. However, at the highest vegetation

solid volume fraction (0 = 0.025), the ripple height was comparable to the grain size,

indicating that a plane bed had formed. The ripple migration speed and the bed load

flux associated with the migrating ripples increased with increasing vegetation solid

volume fraction for 0 < 0.012. However, the fraction of the bed load flux carried by
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migrating ripples decreased with increasing <, suggesting that vegetation facilitated

the formation of sheet flow.

4.1 Background

Aquatic vegetation provides tens of trillion of dollars worth of ecosystem services an-

nually [14]. For example, by damping storm surge during hurricane Sandy, coastal

wetlands reduced flood damage by $625 million [68]. In the Mississippi Valley, wet-

lands provide $250 million worth of benefits annually by absorbing nitrogen [43].

Unfortunately, large areas of the aquatic vegetation, including half of the world's

wetlands [124], have been lost in the past several decades, and continue to be lost

globally at rates of 0.7 to 7% annually [61]. One reason for the loss of vegetated

landscape is erosion [7, 28]. Diverting sediments to regions of erosion is a common

strategy to restore the landscapes [66, 7, 76], yet a lot of restoration projects have

failed [20], because the process of sediment transport in regions with vegetation is

poorly understood [76, 28].

Current sediment transport models, based on the time-mean bed shear stress T,

were developed for unidirectional flow without obstacles, and have been shown to be

inaccurate for regions with obstacles, such as bedforms and vegetation [69, 118]. This

is likely because the r-based models do not take into account the turbulence generated

by the obstacles, and turbulence has been shown to play an important role in sediment

transport [95, 69, 75, 60, 21, 85, 84]. For example, the instantaneous sediment trans-

port rate in a tidal channel was observed to be intermittent, linked to the bursting

patterns of the near-bed turbulence [37]. Sumer et al. [94] conducted flume experi-

ments with obstacles and observed a five-fold increase in Q, with 20% increase in kt at

conditions with the same r, suggesting that kt may play a more important control on

Q, than -r. Flow visualization has revealed that turbulent bursts can lift up sediment

grains, initiating sediment transport [95, 75]. The sediment lift-up and subsequent

transport were attributed to local, turbulence-induced, vertical adverse pressure, or

lift force [95, 109, 123]. Supporting this, Bagnold [4] observed some sediment grains
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ejected from the bed vertically and even in the upstream direction, indicating that

the lift force played a more important role in sediment transport than the bed shear

stress, which would tend to produce trajectories in the downstream direction. Based

on turbulent flow measurements, Zanke [123] and Dittrich [22] argued that the lift

force is mainly contributed by the pressure fluctuations associated with turbulent ed-

dies passing over the sediment, which would be correlated with turbulence intensity,

rather than the lift force associated with the curvature of streamlines over individual

grains, which would be correlated with the time-mean bed shear stress.

For unidirectional flow without obstacles, which here will be called a bare channel

flow, the bed shear stress is the only external force that affects the near-bed turbu-

lence [109], and r and the turbulent kinetic energy (kg) are linearly related [91, 38],

such that the role of turbulence in sediment transport is implicitly incorporated in

the T-based sediment transport models. For channels with other external forces, such

as bed-form-induced drag or vegetative drag, the direct relationship between kt and r

breaks down, because these additional forces also contribute to turbulence generation

[99, 93], which may explain why a r-based model can not predict sediment trans-

port rate in places with obstacles. For example, Sumer et al. [94] placed pipes and

grids in the upper water column to generate additional turbulence, and they noted

that at conditions with the same T, a 20% increase in turbulence level produced a

five-fold increase in sediment transport rate. Further, Nelson et al. [69] conducted

experiments in a channel with simulated bedforms and observed that sweeps and ejec-

tions, which contribute equally to T, produce significantly different sediment transport

rates. Therefore, if the relative contributions of sweeps and ejections change, such

as in some nonuniform flow conditions, Q, could increase even though T decreases.

Based on these observations, Nelson et al. [69] argued that the -based methods are

not accurate for non-uniform flow conditions, for which the turbulent statistics do not

scale with T. Both Sumer et al. [94] and Nelson et al. [69] suggest that the reason

the T-based models are not accurate for places with obstacles is because they cannot

account for the additional sources of turbulence.

Recent studies demonstrated that in regions with vegetation sediment transport
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is more closely correlated with turbulent kinetic energy than with the time-mean bed

stress [119, 120, 103, 106]. Yang et al. [119] showed that kt is a better predictor of the

threshold of sediment motion than r, and that the critical level of near-bed turbulence

is the same in bare and vegetated channels. Similarly, Tinoco and Coco [103, 106]

showed that resuspension of sediment within an array of model vegetation is better

predicted by a metric based on the turbulence intensity than bed shear stress. Yang

and Nepf [120] proposed a re-interpretation of traditional T-based bedload transport

models into kt-based models. The kt-based models were validated with measurements

of turbulence and bed load in both bare channels and channels with model emergent

vegetation of different solid volume fractions (0). In this study, we expand our un-

derstanding of the influence of vegetation on bed-load transport. First, a prediction

for vegetated-generated turbulence was validated for channels with mobile sand beds,

which enabled the incorporation of a wider range of previous bed load transport mea-

surements into the assessment of a kt-based model for bed load transport. Second,

the impact of vegetation on ripple characteristics and the relationship between the

ripple migration rate and the bedload transport rate were explored.

4.2 Methods

4.2.1 Laboratory setup

A horizontal flume with a w = 1m wide and 10m long test section recirculated wa-

ter and sand separately (Figure A-2). The model vegetation consisted of aluminum

cylinders with diameter d = 6.3mm placed in a staggered pattern on perforated

PVC boards and extending above the water surface. This diameter, was consistent

with stem diameters found in marsh plants and young floodplain trees [70, 58]. When

present, the model vegetation covered the entire flume width. The number of cylinders

per unit bed area was in the range n = 0 to 810 stems/M 2 , producing a vegetation

frontal area per unit volume, a = nd, in the range 0 to 5.1m 1 , and a vegetation

solid volume fraction # = irnd2 /4 = 0 to 0.025, which are typical values for marshes
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[70]. Trials with different flow rates without vegetation and with vegetation of dif-

ferent 0 were carried out to test the impact of vegetation on bed load transport rate

(Table 4.1). For cases 2.1-2.4, and 3.1-3.3, the vegetation covered 3 meters in the

streamwise direction. For cases 4.1-4.4, cases with the largest 4, the vegetation cov-

ered only 2 meters in the streamwise direction to minimize the impact of the large

surface slope set up by the high vegetation drag and thus large variation in flow

depth. The average channel velocity was calculated as U = Q/(wh(l - 4)), with the

flow rate Q controlled by a centrifugal pump and measured by a flow meter with

1m3/hour accuracy, and the water depth h measured in the middle of the vegetation

patch.
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Figure 4-1: The setup of the sediment recirculating experiments

The brown color indicates the sand bed. At the beginning of each experiment, the sand

bed was flat and level. After an experiment, the sand bed was sloped (as shown here) and

ripples had formed (not shown). The blue-edged inset shows the top view of the velocity

measurement positions (the crosses) relative to dowel positions (the black circles). 3-minute

velocity measurements taken at positions indicated by the crosses were used to calculate

the spatially-averaged turbulent kinetic energy and Reynolds stress. To quantify ripple

characteristics, bed elevation as a function of time was recored by the Vectrino profiler at

the position marked with a red circle.

Sand with density p, = 2.65g/cm3 and diameter 0.42 to 0.60mm (median grain

size d, = 0.5mm) was placed on the PVC boards and flattened manually. No sand was

observed in suspension. The instantaneous bed load transport rate was defined as the
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dry mass of the sediment passing an unit cross-sectional width per time. The sediment

recirculation pipe included a three-way valve that allowed sediment to be diverted to

a mesh collection bag with 0.25mm holes. The valve was engaged for periods of 1

to 10 minutes, depending on the sediment transport rate, and chosen to ensure that

the volume of the collected sand was smaller than the capacity of the mesh bag. The

collected sand was placed into a container filled with water, and the water surface was

maintained at a marked line. The dry mass of the collected sand was calculated as the

increase in the total mass of the container divided by the density difference between

sand and water and multiplied by the sand density. The bed load transport rate was

measured for a minimum of 3 times until the cumulative average of all measurements

changed by less than 10% with increasing number of measurements. The equilibrium

bed load transport rate and its uncertainty, Q, t a QS, were estimated as the average

and the standard error of all the measured instantaneous bed load transport rates.

4.2.2 The velocity and topography measurements

The instantaneous velocity in the streamwise, spanwise, and vertical direction (u, v,

and w, respectively), was measured by a Nortek Vectrino profiler at 100Hz sampling

rate for 3 minutes at multiple locations in the middle of the vegetation patch (shown

with crosses in the inset of Figure A-2). Measurements at 2cm from the mean bed

were used to represent the near-bed condition, because measurements at less than

2cm from the bed had low correlations and signal to noise ratios (SNR) due to inter-

ference of the bed with the sensor acoustic signal. The velocity measurements was

filtered using the methods proposed in [34, 111, 421, and at the measurement position

(2cm from the bed) the correlation was larger than 80% and SNR > 30dB. The

local turbulent kinetic energy was defined as (u'2 + V' 2 + W' 2 )/2, with u', v', and w'

denoting the instantaneous deviation from the time-mean velocity and (-) denoting

the time-average. The local Reynolds stress was defined as p(-u'w') with p the water

density. The time-averaged velocity, turbulent kinetic energy, and Reynolds stress

converged to a stable value within 3 minutes, indicating that a 3-minute record was

sufficient to capture the desired velocity statistics. The spatially-averaged turbulent
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Table 4.1: The measured bed load transport rate and flow characteristics.

Case a 0 U h Q, k aQ kt k o (T s, k as )/p

number [m-1 [m/s] [m] [g/(m - s)] [cm2/2] [cm2/S21
Bare channels

1.1 0 0 0.42 0.12 0.36 0.05 28 1 (8) 3.9 0.2
1.2 0 0 0.47 0.12 1.84 0.08 46 1 (34) 6.0 0.2
1.3 0 0 0.65 0.12 24 1 111 11 (8) 14.7 1.3
1.4 0 0 0.88 0.12 134 + 8 205 10 (8) 12.8 1.6
1.5 0 0 0.33 0.12 0 NA NA

Channels with model emergent vegetation
2.1 1.1 0.005 0.27 0.12 0.5 0.1 19 3 (24) 0.5 0.2
2.2 1.1 0.005 0.30 0.12 2.5 0.3 20 2 (24) 0.2 0.2
2.3 1.1 0.005 0.34 0.12 9 1 32 5 (24) 1.9 0.5
2.4 1.1 0.005 0.43 0.12 68 17 65 8 (24) 6.2 0.7
3.1 2.5 0.012 0.21 0.12 0.15 0.02 17 2 (27) 0.5 0.1
3.2 2.5 0.012 0.24 0.12 2.6 0.5 22 2 (27) 0.1 0.1
3.3 2.5 0.012 0.28 0.12 9.4 0.6 45 5 (27) 2.0 0.6
4.1 5.1 0.025 0.21 0.10 1.3 0.1 20 2 (23) 0.5 0.1
4.2 5.1 0.025 0.23 0.10 2.9 0.3 42 4 (23) 0.1 0.1
4.3 5.1 0.025 0.27 0.10 17 1 46 4 (23) 1.0 0.2
4.4 5.1 0.025 0.31 0.10 41 2 51 5 (23) 1.6 0.3
4.5 5.1 0.025 0.17 0.10 0 NA NA

Numbers in parentheses indicate the number of spatial positions at which velocity measurements

were made.
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kinetic energy and its uncertainty, kt a-k,,)were estimated from the average and the

standard error of the local turbulent kinetic energy measured at multiple locations

(pluses in the inset of Figure A-2). The number of measurement locations is listed in

the parentheses in Table 4.1. We verified that the number of spatial locations was suf-

ficient to capture the spatial average of kt, by increasing the number of measurements

until kt converged to a stable value. Similarly, the spatially-averaged Reynolds stress

and its uncertainty, TRs aS, were estimated from the average and the standard

error of the local Reynolds stress.

(a) Case 1.1, i 1+SD(q 1 ) =5 3 mm (b) T oT=880t1 60s
6
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Figure 4-2: Bed elevation in the time domain

(a) The instantaneous bed elevation relative to the mean, Zed, for case 1.1 measured using
the Vectrino for 80 minutes. The average and the standard deviation of the ripple height,
91 SD(rj1), are indicated in the title, and the number of identified ripples is listed in
Table 4.2. (b) The ripple migration period and its uncertainty, T t crT, were identified
from the time lag corresponding to the first positive peak at lag greater than zero in the
autocorrelation of zbed (highlighted by a black curve above).

Bedforms with wave heights less than 2cm were observed, and we classified them

as ripples because the water surface was not affected by the bedforms. To quantify the

ripple height and migration period, the instantaneous bed elevation was recorded at

1Hz sampling rate by the Vectrino profiler in the middle of the diagonal between two

dowels (the red circle in the inset of Figure A-2). The duration of the measurements,

ranging from 30 minutes to 2 hours, was chosen to be much longer than the ripple
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migration period (Table 4.2). The ripple crest to trough distance was identified using

MATLAB findpeaks function (Figure 4-2(a)). The average and the standard deviation

of all the identified crest-trough heights, ql SD(gi), were listed in Table 4.2. The

uncertainty in ql was estimated as the standard error of the crest-trough heights,

i.e., a,, = SD(j1)//mi7, with m, denoting the number of the identified crest-trough

heights (Table 4.2). The ripple migration period (T) was determined from time lag

corresponding to the first positive peak at lag greater than zero in the autocorrelation

of the bed elevation (Figure 4-2(b)). The uncertainty in T, denoted as o-,, was

estimated as half the range of the first positive lobe (the black color part of the

curves in Figure 4-2(b).
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Figure 4-3: Bed elevation in the spatial domain

(a) Two bed topography profiles, indicated with different colors, measured 5cm apart for
case 3.1. Note that the x and y-axes are plotted in different scales. (b)The ripple only
profiles obtained by subtracting the fitted mean bed slope (the black line in Figure(a))
from the bed topography profiles. (c) The spatial autocorrelation of the ripple profiles with
x-axis representing the lag in distance. The first autocorrelation peak at lag greater than
zero, indicated by black overlay curve, was used to estimate the ripple wavelength A. The
uncertainty aA was half the range of the positive lobe.
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At the end of each experiment, the flow was stopped to scan the bed topography

using a Keyence laser sensor mounted on a 2D moving system (Figure A-2). Two

bed elevation profiles are shown in Figure 4-3(a). The two profiles were measured

5cm apart laterally and covered 50cm in the streamwise direction. The ripple profiles

(Figure 4-3(b)) were obtained by subtracting the bed slope (the fitted black line in

Figure 4-3(a)) from the bed elevation profiles. The ripple crest to trough distance was

identified using MATLAB findpeaks function and the number of identified ripples is

listed in (Table 4.2). The ripple height and its spatial variation, 77 2  SD(Y2), were

estimated as the average and the standard deviation of the identified crest-trough

distances (Table 4.2). The uncertainty in q2 was estimated as the standard error of

the identified crest-trough distances, namely o,2 = SD(q 2 )/V/2, with m2 denoting

the number of identified ripples from the laser topography profiles (Figure 4-3(b)).

The ripple wavelength A, was determined from the distance lag corresponding to the

first positive peak with greater than zero lag in the spatial autocorrelation of the bed

elevation (Figure 4-3(c)). The uncertainty of the ripple wavelength, Ua, was half the

range associated with the chosen peak, shown with black curve. For cases 4.1-4.4

with the densest vegetation, the laser signal experienced too much interference from

the closely-spaced dowels, so '2 and A could not be determined.

4.2.3 Estimation of bed shear stress

For bare channels, the time-averaged bed shear stress, r, was estimated from the

quadratic stress law [113, 79, 45]:

T = PCf U2 , (4.1)

Cf was estimated from the sediment size d, and water depth h using the semi-

empirical equation [113, 45):

1
Cf = (4.2)

[5.75log(2h/d,)]
2
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For vegetated channels, T was estimated using the model proposed by Yang et al.

[121] that incorporates the impact of the vegetation on bed shear stress:

-4p- Red = Ud <

T d' V Cf (4.3)
pC1 U2, Red > .

Here v is the kinematic viscosity of water, and Red = Ud/v is the stem Reynolds

number. As described in [121], at Red < 4 the stem-generated turbulence depressesCf ingnrtdtruecderse
the viscous sub-layer thickness to stem radius (d/2). For Red > 4 the sub-layer

thickness is already smaller than d/2 such that stem-generated turbulence has a neg-

ligible impact on the bed shear stress. In this study, Red 4 such that the impact

of vegetation on r is negligible and equation 4.1 applies to all cases.

4.3 Results

4.3.1 The turbulent kinetic energy in vegetated channels

For vegetated channels, Yang et al. [119] proposed the following model based on

[99] for near-bed turbulent kinetic energy, kt, capturing the sum of the bed-generated

turbulence and vegetation-generated turbulence,

k C U2 + 0.9C_ 3 U+2/3U2, (4.4)
0.19

with CD the vegetation drag coefficient. However, Yang et al. [119] only validated

the model for a stationary (glued) sand bed. Measurements in the present study

were used to test whether equation 4.4 can provide good estimates of near-bed kt

over a mobile bed of sand. The measured kt is plotted against the kt estimated from

equation 4.4 in Figure 4-4. The triangles, circles, and squares are measurements from

the present study, [118], and [119], respectively. The vegetation drag coefficient CD

used in equation 4.4 was estimated from the following empirical equation validated

by direct force measurements in a similar laboratory setup with an array of emergent,
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steel cylinders [49],

CD = 1.8(Re 3/ 5 0 [1 + 0.451n(1 + 100#)] x (0.8 + 0.2F - 0.15F2 ). (4.5)

The coefficient ( depends on the spatial configuration of the cylinders, and ( = 0.8

for a staggered array. The Froude number F = U/v/iI with g the gravitational

acceleration. Note that no calibration was done to improve the fit of the measured kt

to equation 4.4. The good agreement between the measured kt and the estimated kt

confirmed the validity of equation 4.4 in conditions with a mobile bed of sand.

A The present study A

0 Yager and Schmeeckle, 2013
M Yang et al., 2016

-2

E

10

10-3 10 -2

kt (theory) [m 2/s 2]

Figure 4-4: The measured near-bed turbulent kinetic energy

The measured turbulent kinetic energy, kt, versus kt(theory) estimated from equation 4.4.

The present study (blue triangles) and Yang et al. [118] (red circles) have a mobile sand

bed. Yang et al. [119] (black squares) had a glued sand bed. The horizontal error bars

represent the uncertainty in the predicted kt due to the uncertainties in CJ and CD, which

were estimated based on the range of flow conditions used in each data set. The vertical

error bars represent the spatial variation in the measured kt (Table 4.1).
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4.3.2 Models for bed load transport rate in vegetated chan-

nels

As suggested by Einstein [26], the dimensionless bed load transport rate, Qs, was

defined as the ratio of the bed load transport rate Q, to the product of ps, the fall

velocity of the grains (wo), and the grain size,

Qs = .(4.6)
pswods

The particle fall velocity wo can be approximated from the Rubey's equation [83],

2 36v2 36v2

S3 +(ps/ p - 1)gdI (ps/p - 1)gd 1 ](ps/p - 1)gd8 . (4.7)

For coarse sand and gravel (e.g. ds > 1mm), wo V (ps/p - 1)gd, such that QS,
pg . The dimensionless bed shear stress, r, represents the ratio of the

Ps (ps/p-1)gd!

horizontal force r(7rd2/4) exerted on the grain to the submerged weight of the grain,

(ps - p)g(ird'/6),

T* = .' (4.8 )
(Ps - p)gd(.

Similarly, the dimensionless near-bed turbulent kinetic energy, kt*, represents the ratio

of the turbulence induced lift force, which is proportional to pkt(7rd 2/4) [22, 123], to

the submerged weight of the grain.

/ 
=)gd. (4.9)

Bed load transport measured in five different data studies are included in Figure 4-5.

The triangles are measurements from the present study, for which Qs, was measured

as the mass of the recirculating sediment, Tr was estimated from equation 4.3, and kt,

was measured. The small black dots are previous measurements, Q., and -r, in bare

channels reported in [45], and for which kt* was estimated based on the empirical

relation for bare channels, kt* =T /0.19 [91, 38]. The circles represent measurements
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by Yager and Schmeeckle [118] in which Q, was inferred from digital image analysis

of the bed, r, was estimated from equation 4.3, and kt, was measured. The present

study covered a wider range of velocity than considered in [118]. The squares and the

diamonds represent bed load transport rate estimated from the mass of the sediment

leaving a flume [48] and the mass of sediment fed into a sediment-feed flume [44],

respectively. Note that no near-bed velocity measurements were given in [48] and

[44], so that both r, and kt, were estimated from reported channel velocity and

vegetation characteristics using equation 4.3 and equation 4.4, respectively.

. . . .. . .... P= 0 .063
(a) (b)

100

s*... ...=4.r.s.=0.27k

2 =. 0.025
10-

0=.1e *.=2 065e.t1 k. 0.012

= 0.005

10-2 1 0 2 1 0 1 

T* t*

Figure 4-5: The sediment transport rate measurements and models

Comparison of a r-based sediment transport model and the kt-based sediment transport

model. (a) The measured dimensionless bed load transport rate (Q) versus the dimension-

less bed shear stress (-,) for different vegetation solid volume fractions (#). Measurements

from the present study, [118], [44], and [48] are indicated by triangles, circles, diamonds, and

squares, respectively. The small black dots are bare channel measurements compiled in [45]

and the black curves represent the r-based Einstein-Brown model given in equation 4.10

[26, 8]. (b) The measured Qs, versus the dimensionless turbulent kinetic energy, kt,. The

black curves represent the kt-based model given in equation 4.11.

For the same T-, the measured Q, increased for higher vegetation solid volume

fraction # (Figure 4-5(a)), suggesting that the vegetation-generated turbulence en-
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hanced bed load transport. The measurements in bare channels (dark blue triangles in

Figure 4-5) agreed with the Einstein-Brown semi-empirical r-based bedload transport

model [26, 8]:

,= 2.15,-0.391/r, < 0.18 (4.10)
140T3, 0.18 < r, < 0.52.

However, measurements in vegetated channels were consistently higher than this

model. In contrast, the measured bed-load transport collapsed more closely together

when plotted versus near-bed turbulent kinetic energy (Figure 4-5(b)). In light of

this, Yang and Nepf [120] suggested a re-interpretation of the Einstein-Brown equa-

tion in terms of near-bed kt. The Einstein-Brown equation is based on measurements

in a bare channel, for which kt = r/0.19p [91, 38]. Using this conversion, the Einstein-

Brown equation can be re-written as

QS, 2.15e-2.
0 6 /k, 7kt < 0.95

0.27kb,3 0.95 < kt, < 2.74.

The kt version of the Einstein-Brown relation is shown by a solid line in Figure 4-5(b).

There was good agreement between this relation and all the measurements, suggesting

that kt is a better predictor of bed-load transport because it works in both bare and

vegetated channels and across a wide range of vegetation solid volume fractions.

Note that for the cases shown in Figure 4-5, the median grain size (d, = 0.5 to

5.9mm) was smaller than or comparable to stem diameter (d = 2 to 13mm). We

caution that the kt-based model (equation 4.11) may not work for channels with d,

several times larger than d. For a sparse array (d smaller than the average surface-to-

surface distance between stems), which is the case for the present study and most salt

marshes, the characteristic size of the eddies is approximately equal to d [99]. As the

spatial extent of the turbulence-induced pressure is of the same order of magnitude

as the eddy size [88], if d, is several times larger than the eddy size or d, then only a

small portion of the grain will be exposed to the lifting pressure, which means that the

total lift force on the grain will not be proportional to the horizontal projected area of
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Table 4.2: The measured ripple characteristics.

Case A or, 771 SD()i) 72 SD(712 ) T UT Uriype QSripple

(# of ripples) (# of ripples) OUritple U

number [im] [mm] [mm] [s] [m/s] [g/(m - s)]
Bare channels

1.1 0.25 t 0.03 5 3 (5) 2 1 (4) 880 t 160 0.28 0.06 1.0 0.3
1.2 0.28 + 0.05 11 2 (9) 4 + 3 (6) 660 + 200 0.42 0.15 3.2 1.1
1.3 NA 11 4 (16) NA 38 4 NA NA
1.4 0.29 + 0.09 13 2 (7) 6 + 5 (6) 40 20 7 + 4 60 40

Channels with model emergent vegetation
2.1 0.21 0.06 3 1 (3) 3 1 (6) 2400 300 0.09 0.03 0.18 0.07
2.2 0.16 0.04 3 1 (8) 3 1 (7) 630 + 160 0.25 0.09 0.5 0.2
2.3 0.17 + 0.04 7 3 (17) 7 + 3 (4) 110 50 1.6 0.8 7 4
2.4 0.17 + 0.03 12 5 (52) 10 3 (6) 42 11 4 1 33 11
3.1 0.10 0.02 2 + 1 (4) 3 + 1 (8) 4600 800 0.02 + 0.01 0.03 + 0.01
3.2 0.10 0.02 4 + 1 (2) 6 t 2 (8) 2300 + 500 0.04 0.01 0.12 + 0.04
3.3 0.16 + 0.06 6 2 (52) 6 3 (5) 200 110 0.8 0.5 3 2
4.1 NA 2 1 (12) NA 1800 300 NA NA
4.2 NA 2 1 (7) NA 1500 500 NA NA
4.3 NA 3 1 (47) NA 29 12 NA NA
4.4 NA 2 1 (55) NA 30 20 NA NA

Because cases 1.5 and 4.5 have zero sediment transport rate, bed topography was not measured for

these two cases. A and 72, measured by the laser sensor, were not reported for case 1.3, because for

this case 772 was comparable to water depth, indicating that this laser measurement was contaminated

by the reflection of the laser signal from the water surface. For cases 4.1-4.4 with the densest

vegetation, the laser signal experienced too much interference from the closely-spaced dowels, so 72

and A could not be determined.

the grain ((7r/4)d,) and the nondimensionalization (equation 4.9) can not represent

the ratio of the lift force to the submerged weight of the grain.

4.3.3 The ripple characteristics and migration rate

The ripple height sampled at one point over time, ql + SD(77 1 ), agreed with the

ripple height identified from the scanned topography, q2 + SD(772 ), within uncertainty

(Table 4.2). Because the number of ripples sampled by the Vectrino was larger than

the number of ripples scanned by the laser sensor (Table 4.2), the analyses will focus

on 71. For bare channels (0 = 0), the ripple height (rq1) increased between the channel

velocity 0.42 and 0.47m/s, but was constant within measurement uncertainty for
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a channel velocity of 0.47m/s and above (Figure 4-6(a)). This is consistent with

a previous experimental study over a bare bed that showed that ripple height first

increased with increasing U, but at higher velocity, as the ripples started to be washed

out, ripple height decreased with increasing U [18]. For our bare channel cases (# 0),

ripples were observed for all cases and decrease in the ripple height did not occur at

velocity up to 0.88m/s, indicating that the critical velocity for bed forms to be washed

out into upper-regime plane beds [90] was larger than U = 0.88m/s. Previous studies

[90, 78] suggested that the transition to upper-regime plane bed occurred when Froude

number (F = U/v /h ) reached 1 so that the transition velocity in this study should be

around 1.2m/s, consistent with our estimate that the transition for bare bed channels

occurred at a channel velocity above 0.88m/s. The model vegetation impacted ripple

height. First, at U ~ 0.4m/s, the case with vegetation (0 = 0.005) had larger 971

than the bare channel case, and at U ~ 0.3m/s, the case with q = 0.012 had larger

,q1 than the two cases with # = 0.005, indicating that at the same channel velocity

the low density model vegetation increased ripple height. However, the ripple height

was decreased for cases with the densest vegetation (0 = 0.025), for which the ripple

height was on average 2 mm, barely four times the grain size, indicating that for the

highest stem density the ripples were washed out at U < 0.2m/s, suggesting that

dense vegetation reduced the critical velocity at which upper-regime plane bed was

formed.

For bare channel cases with different U, the ripple wavelength agreed within un-

certainty, A ~ 0.3m (Figure 4-6(b)), consistent with previous studies which indicated

that the equilibrium ripple wavelength is only a function of grain size [3]. Soulsby et al.

[89] compiled measurements from three laboratory studies and proposed the following

empirical relationship: A = d,(500+1881D*j 5 ) for 1.2 < D. = [g(p./p - 1)/IA] 1 / 3d, < 16.

In this study, D* = 12.6, and the predicted ripple wavelength was A = 0.27m, which

was consistent with our bare channel measurements (A ~~ 0.3m, Table 4.2). For cases

with vegetation, A decreased with increasing vegetation solid volume fraction. The

data suggested that the ripple wavelength scaled with the mean distance between two

neighboring dowels aligned in the streamwise direction. Specifically, for 0 = 0.005
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Figure 4-6: The ripple characteristics

(a) The ripple height (iql) measured by the Vectrino and (b) the ripple wavelength (A)
measured by the laser sensor. For the cases with the densest vegetation (0 = 0.025), the
laser scanner wasn't reliable due to the interference from the closely-spaced dowels such
that A was not estimated. The dashed horizontal lines indicate the mean spacing between
two neighboring dowels aligned in the streamwise direction. (c) The ripple migration speed
Uriyle = A/T with the ripple migration period T measured by Vectrino profiler. The red
and black dashed lines represent the empirical relationship proposed by Chang [12] for
d, = 0.40mm: UripIe/U 5 = (4.5 0.6) x 102 (m/s)-4. Note that the x-axis was plotted in
logarithmic scale to facilitate comparison of the present measurements with the [12] model.
(d) The ripple migration rate estimated from equation 4.12 was normalized by the same
quantity (p,s (ps/p - 1)gd5 ) used to normalize Q, (equation 4.6). The legend in Figure (d)
applies to all figures.

and 0.012, the streamwise dowel spacing was 0.15m and 0.10m, shown with blue and

cyan dashed lines in Figure 4-6(b)). Except for two cases with large uncertainty (o),

the ripple wave-length was equal to the streamwise stem spacing. Recall that the

wavelength was not measurable for the highest volume fraction, for which the ripples

were barely measurable.
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The ripple migration speed, calculated as Uriie = A/T, varied by almost 3 orders

of magnitude (Figure 4-6(c)). Urippie increased with increasing U, similar to previous

observations [12, 921. For bare channel cases, the variation in Urippie versus U agreed

within uncertainty with the empirical relationship suggested by [12] for d, = 0.40mm,

Urippe/U5 = (4.5 0.6) x 10 2 (m/s)- 4 (the dashed red lines and black lines in Figure 4-

6(c)). Compared with bare channel cases, Uripie increased with increasing vegetation

solid volume fraction (Table 4.2). Specifically, at U - 0.3m/s, Urippie increased when

the solid volume fraction increased from 0 = 0.005 to 0.012, and at U ~ 0.4m/s,

Uri,pe increased from # = 0 to 0.005 (Figure 4-6(c)). The increase in ripple migration

speed with increasing q was consistent with the idea that the vegetation-generated

turbulence increased bed load transport rate (Figure 4-5), causing the ripples to

migrate faster.

In bare channels with ripples, before ripples started to be washed out and sheet

flow started to form, the sediment transport associated with migrating ripples has

been shown to approximate the total bed load transport [16, 18], i.e.,

Qs = Qs-rpp = 3 (Uripie) COPs. (4.12)

Here Co = 0.6 is a porosity factor, and the coefficient 3 is the product of the ripple

shape factor and the flow separation factor. The ripple shape factor is the fraction

of a rectangular with width and height equal to the ripple wavelength and height,

respectively, occupied by the ripple [51], and the flow separation factor accounts for

the fact that many grains on the lee side of a ripple travel in the upstream direction

due to flow separation and recirculation [18]. # = 0.2 to 0.8 was suggested in previous

studies [51, 18]. For the bare channel measurements in this study, 0 = 0.43 provided

the best agreement between measured bed load transport and equation 4.12. The

dimensionless ripple migration rate, Q ,ripp,*, was plotted in Figure 4-6(d). Qsre
varied by almost 3 orders of magnitude, predominantly due to changes in the magni-

tude of Uripe (Table 4.2). Specifically, Uii, increased with increasing 0, and this

explains the increase in Q,,, with increasing vegetation solid volume fraction. For
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example, at U ~ 0.3m/s and 0.4m/s, Qs increased as vegetation volume fraction

(#) increased from 0.005 to 0.012 and from 0 (bare channel condition) to 0.005.

10

1010*

10-

02

0 5 10 15

x10-3

Figure 4-7: The ripple migration rate over bed load transport rate

The ripple migration rate Qr, divided by the measured bed load transport rate Q, as a
function of vegetation solid volume fraction #. The vertical error bars were contributed by
the uncertainties in r71, A, and T (Table 4.2).

To test whether ripple migration represents the bulk of the bed load transport

rate in vegetated channels, as it does in bare channels, the ripple migration rate

(Qrippe) divided by the measured bed load transport rate Qs was plotted for both

bare and vegetated channels in Figure 4-7. As expected for the fitted value of 3,

the average of Q,, l/QS for bare channels was one. However, as the vegetation

solid volume fraction # increased, Q,ippie/Q, decreased, indicating that as vegetation

volume fraction increased, a increasing fraction of the bed load transport was not

associated with ripple migration, which suggested a transition to sheet flow. This

is supported by the fact that for cases with the densest vegetation (0 = 0.025),

the measured ripple height was significantly smaller than the other vegetated cases,

and nearly comparable to the grain size, indicating that sheet flow occurred in the

78



densest vegetated channel at a velocity much smaller than the critical velocity for

transition to plane bed in bare channels (Utransit > 0.88m/s as shown in Figure 4-

6(a)). Furthermore, Nepf [71] and Rominger et al. [81] also report the elimination

of migrating bedforms after vegetation was planted on a sand point bar, confirming

that vegetation reduced the role of migrating bedforms in sediment transport, and

facilitated the formation of sheet flow.

4.4 Discussion: the velocity and the number of

moving grains

The measurements indicated a strong correlation between the bed load transport

rate (Q,) and the near-bed turbulent kinetic energy (kt). However, intuitively, one

expects that the channel velocity U should also affect Q, because the velocity of the

individual grains in motion has been shown to increase with the channel velocity U

[53, 82]. To understand the relative contributions of U and kt to Q,, the statistics of

individual grains in motion provided in previous experiments using the same model

vegetation were explored. In [119], mobile black sand grains were placed on top of

a glued bed of brown sand grains, and the trajectories of the moving black grains

were tracked using a digital camera. The streamwise velocity of individual grains

was calculated from their trajectories with the average streamwise velocity of all the

moving grains denoted as U,. The volume of moving sediment per unit bed area,

7, was also calculated from the images. The bed load transport rate can then be

estimated as Q, = U,-y [117, 30].

For each #, the average and the standard deviation of Up/U at different channel

velocity U are represented by black circles with vertical bars (Figure 4-8(a)). The

mean U,/U increased with increasing #, and specifically the mean Up/U increased

by almost 50% as q increased from 0 to 0.063, indicating that at the same U, the

vegetation-generated turbulence increased Up. The greater turbulence levels likely

lifted individual particles farther from the bed, and, as noted in [75] particles lifted
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Figure 4-8: Statistics of moving sediment

The colored crosses indicate individual measurements of (a) the mean particle velocity

normalized by channel velocity, U,/U, and (b) U, normalized by the linear combination of

U and l measured at different channel velocities (U) for each vegetation solid volume

fraction 0. The black circles with error bars in (a) and (b) represent the average and the

standard deviation over all the cases with different U for each q. (c)(d) The volume of

particles in motion per bed area, y, versus U and ,I/kt. The legend in Figure (d) applies to

all figures.
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higher above the bed achieve higher streamwise velocity. To take into account the

impact of both U and kt on Up, we considered a linear combination, U + a/kg, to

predict Up. The value a = 3 resulted in the smallest variation in Up/(U+aV/k-t) across

all 0, with the corresponding average and standard deviation of U,/(U + 3/ 7 t) =

0.15+0.01, with no dependence of Up/(U+3kt) on # (Figure 4-8(b)), which suggested

that the impact of volume fraction was captured by the magnitude of kt.

While bedload transport (QS = U,-y) increases with increasing particle velocity

(UP), which was increased by vegetation-generated turbulence (Figure 4-8(a)), Qs is

predominantly controlled by the number of particles put in motion, Y, which is also

affected by the vegetation-generated turbulence. Specifically, Roseberry et al. [82]

observed an over 2 orders of magnitude increase in -y with 40% increase in the near-

bed velocity, in contrast to just a 60% increase in Up, suggesting that the variation

in Q, is dominated by the variation in -y rather than U,. Similarly, considering all

the variations in U and 0 across Yang et al. [119]'s data, the measured U, varied

by less than a factor of 3 (from 2.4 to 7.1cm/s), but y varied by two orders of

magnitude, from 3.0 x 10- 8m to 4.3 x 10-m (Figure 4-8(c)), showing why that y

has stronger influence on Q, than U,. Further, at the same channel velocity U, -Y

increased significantly with increasing # (Figure 4-8(c)), reflecting the influence of

stem-generated turbulence. In particular, at U = 0.22m/s, y increased by over 2

orders of magnitude as 0 increased from 0 to 0.012, suggesting that the turbulence

generated by the model vegetation significantly increased the number of sediment

grains in motion. To further illustrate the impact of turbulence on y, -y was plotted

against k;/ 2 [m/s] in Figure 4-8(d). At the same k /2 , -y for different q collapsed to

within less than one order of magnitude, and no dependence of y on 0 was observed,

suggesting that -y or the number of particles in motion was mainly set by kt rather

than U. Finally, Roseberry et al. [82] also noted that 7 fluctuates in space and time

in response to the near-bed turbulent structures, supporting the hypothesis that the

number of grains in motion is mainly set by kt.

Because -y is mainly set by kt, it is clear now why Q, (= Up-y) is also more closely

correlated to kt than U, as shown by the experimental results from the current study
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(Figure 4-5). Although U could also influence Q, because U, scales with both U and

kt (Figure 4-8(b)), in our experiments, U varied by less than a factor of 3 (U = 0.11

to 0.30m/s), which was not enough range to reveal any dependence of Q, on U. For

the range of conditions considered, the kt-based model provided a good prediction for

Q, and significantly improved prediction in regions with vegetation compared to the

existing T-based models.

4.5 Conclusions

Bed load transport rate, near-bed velocity, and ripple characteristics were measured

in a sediment-recirculating flume with model vegetation. Velocity measurements from

the present study validated a model for predicting turbulent kinetic energy (kt) in

vegetated channels with mobile beds. For the same time-mean bed shear stress (r),

both the measured near-bed turbulent kinetic energy (kt) and the measured bed load

transport rate (Q,) increased with increasing vegetation solid volume fraction (#),

suggesting that the vegetation-generated turbulence enhanced bed load transport.

Based on this, the turbulent kinetic energy (kt) was hypothesized to be a better metric

for predicting Q, because it takes into account the vegetation-generated turbulence.

Indeed, the measured bed-load transport was shown to be more closely correlated with

kt than with r, and further, a re-interpretation of the T-based Einstein-Brown bed

load transport model into a kt-based model provided a significantly better prediction

of measured bed-load transport in both bare channels and vegetated channels. The

dependence of Q, on kt was explained using statistics of individual grain motion, which

showed that Q, is predominantly controlled by the number of grains in motion, which

correlates with kt. For the lower vegetation solid volume fractions (0 = 0.005,0.012),

the ripple wavelength was constrained by stem spacing and the ripple height increased

with increasing q. However, at the highest vegetation solid volume fraction (0 =

0.025), the ripple height was comparable to the grain size, indicating a transition to

sheet flow at U < 0.2m/s. Both the measured ripple migration speed and the bed load

transport associated with ripple migration increased with increasing 0, suggesting
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that vegetation-generated turbulence accelerated bedform migration. However, the

fraction of the total bed load transport carried by the migrating ripples decreased

with increasing q and in channels with the largest vegetation volume fraction (0 =

0.025), the ripples were essentially eliminated, suggesting that vegetation facilitated

the transition from bedforms to plane beds with sheet flow.
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Chapter 5

Summary and future directions

5.1 Summary of my PhD work

Predicting bed load transport is important for anticipating detrimental erosion and

restoring eroding habitats, yet the mechanisms of bed load transport are not fully

understood. In addition to the conventionally-used bed shear stress (T), turbulence

has also been shown to affect bed load transport. For bare channels, i.e., channels

without obstacles, the turbulent kinetic energy (kt) and T are linearly related, such

that the role of turbulence is implicitly incorporated in these T-based models and

the r-based models can be applied. However, in regions with vegetation, the T-based

bedload models have been shown to be inaccurate. My thesis research has shown that

this is because vegetation generates turbulence that enhances bedload transport, and

T-based models do not account for this contribution.

In this thesis, the impact of the vegetation-generated turbulence on bed load trans-

port was explored and quantitative models for predicting bedload transport in regions

with vegetation were developed. Chapter 2 focused on the impact of vegetation-

generated turbulence on the incipient condition of bedload transport. The trajecto-

ries of mobile black grains moving over a glued sand bed were tracked using a digital

camera in a bare channel and in channels with emergent model vegetation of differ-

ent volume fractions, 05. The critical velocity at which bed load transport started

to occur, Uit, was identified from these trajectories. Ucit decreased with increasing
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q, indicating that the vegetation-generated turbulence, which increased with increas-

ing 0, facilitated the initiation of bedload transport. The critical near-bed turbulent

kinetic energy (kg) was shown to be a constant, suggesting that the kt is a better

predictor than -r of the incipient condition of bed load transport. A model based

on a threshold value of kt to predict Ucrit in channels with vegetation was developed

and validated by experimental data from the present experiments and previous flume

experiments with both sand and mud.

Chapter 3 investigated the role of vegetation-generated turbulence on the bedload

transport rate. Bedload transport rate Q, and near-bed velocity were measured in

a sediment-recirculate flume with both bare channels and channels with model vege-

tation simulated by aluminun cylinders. At the same T, the measured Q, increased

with increasing vegetation solid volume fraction, 0, and this was attributed to the

vegetation-generated turbulence, which also increased with increasing 0. In contrast,

Q, in both bare and vegetated channels collapsed when plotted against near-bed tur-

bulent kinetic energy, kt, suggesting that kt plays a more important role in setting Q"

than r. The dependence of Qs on kt was explained using statistics of individual grain

motion (data from Chapter 2 experiments), which showed that Q, was predominantly

controlled by the number of grains in motion, which correlated with kt. A reinterpre-

tation of the T-based Einstein-Brown equations as kt-based equations was proposed,

and the new kt-based model predicted the Q, measurements for both bare and vege-

tated channels. For an example salt marsh with a typical energy slope, e.g., surface

slope due to tide, Q, was estimated using both the T-based Einstein-Brown model

and the new kt-based model. The r-based model was shown to consistently underes-

timate Qs by several orders of magnitude, illustrating that the vegetation-generated

turbulence has a significant influence on Q, in marshes.

Chapter 4 explored the impact of the vegetation-generated turbulence on bedform

characteristics and the contribution of bedform migration to bedlaod transport. The

variations of bed elevation in space and time were recorded by a laser topography

scanner and an acoustic sensor, respectively, in both bare and vegetated channels

with different vegetation volume fractions (#). Ripples were observed, and the ripple
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height, wavelength, and period were identified from the laser sensor and acoustic sen-

sor measurements. For the lower vegetation solid volume fractions (0 = 0.005, 0.012),

the ripple wavelength was constrained by stem spacing and the ripple height in-

creased with increasing q. However, at the highest vegetation solid volume fraction

(0 = 0.025), the ripple height was comparable to the grain size, indicating that dense

vegetation facilitated a transition to sheet flow. Ripple migration speed and the bed

load flux carried by migrating ripples were estimated from the measured ripple height,

wavelength, and period. Both the measured ripple migration speed and the bed load

transport associated with ripple migration increased with increasing q, suggesting

that vegetation-generated turbulence accelerated bedform migration. However, the

fraction of the total bed load transport carried by the migrating ripples decreased

with increasing q, and the ripples were essentially eliminated in channels with the

largest vegetation volume fraction (0 = 0.025), suggesting that the model vegetation

facilitated the transition from bedforms to plane beds with sheet flow.

5.2 Future research questions

5.2.1 Impact of vegetation spatial distribution on bed load

transport

My bedload experiments used model vegetation uniformly distributed in a staggered

pattern. The experiments showed that under the same time-mean bed shear stress,

the turbulence, which represents the fluctuations around the time-mean value in the

temporal domain, plays an important role in bed load transport. A natural extension

would be to study how the spatial heterogeneity of vegetation, which affects the

fluctuations of the turbulent kinetic energy around the spatial average, impact the

total spatially-averaged bed load transport. For example, while keeping the mean

vegetation volume fraction the same, if some parts of the vegetation get denser and

other parts become sparser, the turbulent kinetic energy may be enhanced in regions

with higher vegetation volume fraction if we the water surface slope and bed slope is
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the same (section 3.4.2 and Figure 3-5), where significant erosion might occur [67, 47].

This local enhanced erosion due to the spatial heterogeneity of the vegetation density

may affect the total bed load transport rate, because the sediment transport rate

varies with vegetation volume fraction q logarithmically instead of linearly (Figure 3-

5). For example, if the volume fraction of half of the patch becomes 1.50 and the other

half becomes 0.50, the total patch-averaged volume fraction is still phi. However, since

Q. is not a linear function of 0, it is likely that the total transport rate !(Qs(1.5#) +

Qs(0.5#)) f Qs(O). The impact of the spatial distribution of vegetation on bed load

transport is an important question to study, because natural vegetation tends to

colonize into patches instead of being uniformly-distributed [67, 101, 62].

5.2.2 Impact of eddy duration on bed load transport

Recent studies have suggested that in addition to the magnitude of the instantaneous

hydrodynamic forces, the duration of the forces also plays a role in bed load transport

[21, 11]. Specifically, Diplas et al. [21] have shown that in order for a grain to

move, not only does the magnitude of the peak force have to be above a critical

value, but also the impulse, which is product of the magnitude and duration of the

instantaneous force, has to be larger than a critical value, depending on the grain size

[10, 11]. Because for the same peak force or turbulent kinetic energy, a larger impulse

is more likely to initiate bed load transport [21, 10, 11], we hypothesize that for the

same turbulent kinetic energy, increasing the duration of the lift force will lead to a

decrease in the critical velocity to initiate sediment transport and an increase in the

bed load transport rate.

In vegetated channels, the characteristic time scale of one eddy rotation is: T

Le/U [72], with the eddy characteristic length scale Le equal to stem diameter d

for sparse arrays [99] and U the channel velocity. As the characteristic duration of

the pressure fluctuations above the sediment scales with the eddy duration [88], if Te

increases, the impulse will also increase, which we hypothesize will lead to an increase

in the bed load transport rate.

For the bedload experiments considered here (Figure 4-5 in Chapter 4), the stem
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diameter ranged from 2mm to 13 mm. Figure 5-1 shows the ratio of the measured Q,
to the Q,(theory) predicted by by the kt-based model (equation 4.11), plotted against

the characteristic eddy duration T, = d/U [72, 99]. As T increased, Q,/Q,(theory)

also increased, suggesting that increasing the eddy duration may lead to an increase

in Q,, consistent with out hypothesis. However, because the uncertainty in the mea-

sured Q, due to variations in experimental set up, is around one order of magnitude

(Figure 4-5 in Chapter 4), our experiments are not able to resolve and quantify the

impact of eddy duration on bed load transport rate. Specifically, all the measured

dimensionless bed load transport rate Q,, agreed with the kt-based model (equa-

tion 4.11) within uncertainty, and no clear dependence of Q, on stem diameter d

was observed (Figure 5-2), indicating that the range of d used here was not able to

resolve the dependence of Q, on d and thus T,. More experiments with a larger range

of vegetation stem diameter and velocity are needed to quantify the impact of eddy

duration on Q,.
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Figure 5-1: Impact of eddy duration of bed load transport rate

The ratio of measured Q, to the bed load transport rate predicted by the kt-based model

(equation 4.11), Q,(theory), versus the eddy time-scale T [72, 99]. The dashed horizontal

lines represent the experimental uncertainty of Qs, which is one order of magnitude.
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Figure 5-2: Impact of vegetation diameter on bed load transport rate

The measured Q,, versus the dimensionless turbulent kinetic energy, kt., for different veg-

etation solid volume fractions (q5). The black curves represent the kt-based model given in

equation 4.11. The data sets used here are the same as in Figure 4-5 in Chapter 4, but

labelled differently.

In addition, in Section 4.3.2, we argued that the kt-based model (equation 4.11)

may not apply for channels with sediment diameter d8 several times larger than

vegetation diameter d, because for large d8, only a small portion of the grain will

be exposed to the lifting pressure, the spatial extent of which is the same order of

magnitude as d. Therefore as d,/d increases to much larger than 1, the kg model

may over-predict Q,. For the cases presented in this thesis, d8/d was always smaller

or comparable to 1 so that the impact of d, on Qcan not be resolved. Further

experiments with larger d8/d is needed to test this hypothesis.

91



5.2.3 Impact of vegetation submergence, flexibility, and mor-

phology on bed load transport

In addition to the factors mentioned above, it will be interesting to study how the

submergence, flexibility, and morphology of vegetation affect bed load transport rate.

For submerged rigid vegetation, the velocity inside the vegetation is reduced due to

the vegetation drag, compared to the velocity above the vegetation. If the vegetation

density is large (ab > 0.1 with a the vegetation frontal area per unit volume and

b the vegetation height), the velocity profile at the top of the canopy will contain

an inflection point, which will trigger the formation of a canopy-scale vortices [70].

The canopy-scale vortices may penetrate to the bed, for example at ab = 0.1 [57],

affecting the total turbulent kinetic energy at the bed and the characteristic time

scale of the eddies at the bed, affecting the sediment transport. Considering that

submerged vegetation, such as seagrass, is ubiquitous in nature, it is important to

study how vegetation submergence affects sediment transport. For submerged and

flexible vegetation, such as seagrass, the drag induced by the canopy-scale vortices

may cause the vegetation to deform or bend, and as a result the vegetation may wave

periodically following the passage of the vortices, which is called monami [2, 35, 70].

The monami motion of vegetation can cause the canopy-scale turbulence to penetrate

closer to the bed [31, 70], which may affect the near-bed turbulent kinetic energy and

thus bed load transport. Moreover, the morphology of the vegetation may also affect

bed load transport. For example, for non-cylindrical vegetation, the frontal area of

the vegetation per unit volume (a) varies vertically [70]. A larger a means more

energy get extracted by the vegetation, thus the velocity U decreases with increasing

a [99, 70]. As the turbulent kinetic energy (kt) is both a function of U and a, kt may

or may not varies vertically with a varing vertically[99], and as the bed load transport

rate (Q,) if a function of kt, Q, also may or may not change with vertical variation

of a. The relevant questions are whether the kt-based model (equation 4.11) apply

to cases with non-cylindrical vegetation and how to define the near-bed turbulent

kinetic energy.
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Appendix A

The sediment-recirculating flume

Figure A-i shows a flume that recirculates water and sediments separately. The

pipeline and structures that returns, distributes, and bypasses sediment as well as

related measuring instruments and techniques, such as a sediment imaging system

and a laser bed topography system, were designed as part of the work of this thesis.

Figure A-1: Image of the sediment-recirculating flume.
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A.1 The Flume

Figure A-2 shows the flume that recirculates water and sand separately. The flume

has a im wide and 10m long test section. The bed of the flume is horizontal. The

water depth can go up to around 0.7m. There are two pumps in the flume system,

one to recirculate water, and another one to recirculate sand. The pipe line used to

recirculate sand is shown in Figure A-2.

The pump used to recirculate water is controlled by an electrical controller, and the

flow rate can be set at the white control panel shown in the left bottom of Figure A-3.

A flow meter was installed on the pipe line that recirculates the water to measure

flow rate. The maximum flow velocity used in this study was around lm/s and the

maximum flow rate used was 380m3 /hour, while the pump has the power to reach

much higher flow rate (up to 1000m3 /hour). The instruction for how to operate the

flume is shown in Figure A-3.

Bypass Valve

Flow

Figure A-2: A schemetic view of the flume..
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Figure A-3: Instruction for the operation of the flume.

Sediment Flume

Tank

5

I
Displa,
Mode

Mod
butti

Stopq
pump pump

Tank

Low-speed
w rmeter Flume
ached to a pillar 1

Control of sediment recirculation
- To start: Press the handleof 3 to on en

press "on" but ton on B31.
To stop : Press the "off' buaton on 81, then
press the handle of B3 to off.

84 controls the
electricity for all

81 m83 pumps. It's better
to keep it "on"
unless the flume
will not be run for a
long time (e.g. a
month or more).

Controlof water recirculation
-To start
- Press the handle of B2 to "on"
- Press the mode button on the monitor till theword "Loc"displays

in the screen
- Press thestart button on the monitor
" Use the up and down speed button to control theflow rate

-To Stop
- Press stop button in the monitor (better to slow the speed first)
- Press the handle of B2 to "off"

n

Open valves 1 and 2 to
fill flume
Usually takes 20 minutes. Valve
2 is located above the tank, and
1 is located below another
valve that connects to the
teaching flume.

o Open valves 3 and 5 to
A drain flume

Valves are below the flume. If
you want to open both valve 3

and 5 at the same time, keep
them half open, i.e. handleat
45 degree from the pipe
centerline, so that waterwill
not come out ofthe drain.

Open valve to drain
remaining water out of
the flume valve 4 is below
the flume. After draining the
flume using valve 3 and 5, open
valve 4 to drain the remaining
water.

Valve isfully open when
handle is parallel to pipe.
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Figure A-4: The sediment cart that distributes sand uniformly across the flume width.

Turn the handle to open
the bottom slot and let
sand out

Slot that releases sand
uniformly

Hang the wheels on the
top rails of the flume

A cart that distributes sand uniformly across the width of the flume can be placed

on top the flume rails to distribute sand. The operation of the cart is shown in

Figure A-4. After the experiments, the sand needs to be cleaned out the flume

manually using buckets or other tools.

During the experiments, a three-way butterfly value installed in the sediment

recirculating pipeline can be used to bypass and collect sediments (Figure A-5). The

mesh bag was sewn from 60 mesh silk screen fabric with hole size 250pm to catch the

sediments.
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Figure A-5: The design of the sediment bypassing and collecting system.

CAUTION: Please make sure at least one of the two valves shown in the

figure is open. Otherwise high pressure will build up in the pipe, causing dangerous

damage. Both valves can be open at the same time.

A.2 Methods to estimate the dry weight of sedi-

ments

The bed load transport rate is usually based on the dry weight of sediments passing

a cross-section per unit channel width per time (e.g., [33]). In previous studies, the

collected wet sediments were dried to measure their dry weight. In this study, a

method to estimate the dry weight of the collected wet sand without drying the sand

was developed. Specifically, the density difference between sand and water (ps - p) was
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used to calculate the dry weight of the collected wet sediments. Consider a container

with a certain volume of water (Figure A-6), if we put sediments into the container

and pour water in until the water level reached a marked line so that the total volume

is the same as the previous volume of water without sand, then the change in the

mass of the container from initial mass without sand M, to the final mass with sand

Mf is due to the density difference between water and sand (p and ps). The volume

of the added sand is therefore Vand (-f- - Mo)/(ps - p). The dry mass of sand

is therefore M, = (Mf - MO)ps/(ps - p). As p, = 2.65g/cm 3 and p = 1.00g/cm 3,

the dry mass of the wet sediments is M5 = 1.65(Mf - Mo). To test this method, dry

sediments were wetted and their dry mass was estimated using the above method.

The measured mass of the dry sediments (All) was plotted against (Mf - M0 ) in

Figure A-7. The measurements collapsed with the prediction (y 1.65x).

Figure A-6: Method for estimating sediment dry weight

Estimating the dry weight of the wet sand based on the density difference between sand

and water. A level indicator was used to align the water surface to the marked water line

to keep the total volume of sand and water the same as without sand.
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Appendix B

Instructions for particle-tracking

To track the trajectories of moving sediment grains, we designed the imaging system

that records the sediment positions at up to 60 frames per second (Figure B-1).

From the images recorded by the system, the sediment statistics can be calculated

following the steps described below. The code to process the images are documented

in section B.4.

Figure B-1: Imaging system to track sediment trajectories

The imaging system designed to track the trajectories of moving sediment grains. The
aquarium was used to reduce the distortion of the image due to surface waves.
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B.1 Steps for running particle-tracking codes

STEP 1: read the .avi file and convert it to pictures. (This code converts the

videos into pictures and create a folder for each video).

1. Open the MAINREAD.m file in the subfolder, change Line 5 (the path of

the folder to the path where you put all the videos). For example: pathtot =

'D:\Experiments\12_18_density2\';

2. If you want to crop images, you have to go to the Matlab file called: READAVI.m

Here you have to uncomment line16, and change the crop size.

videoFrame = imcrop(videoFrame, [350, 220, 650, 650]); % [ xstart, ystart, xjength,

ylength]

Here the ,[350, 220, 650, 650]); % [ xstart, y_start, x_length, ylength]is the pixel

number.

Always check line 16 in READ _ AVI.m to make sure you get the right images in

the folder.

3. Wait, this reading process might take a while, if you want to check the result,

you can go to the folders and see how many pictures the code is creating.

STEP 2: Determine the critical intensity for the black sand

1. Open the matlab file called BlkRATIO.m

2. Choose one pictures from Stepi, and change the path Line4 of the BlkRATIO.m

file to the path of the picture you choose.

3. Tune the critical intensity value: the level = in Line 35 of BlkRATIO.m

till the optimal percent of black sand are picked up by the code.

4. Write down the critical intensity value (level) you choose. This value will be

used later.

5. Zoom in one of the figures (figure 3, for example), and find out the diameter

(in pixels) of the black sand using the "Data Cursor" from the "Tools" in the menu

bar. Also write down this value about the diameter.
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STEP 3: Set parameters:

1. Open the file called SETPARAMETERS.m

a. Change Linell (diameter) to the value you found from the diameter (5 from

STEP2). (you can tune this value a little bit to get good results).

b. Change Line 24 (the critical intensity) to the value of level you found from the

value of level ( 4 from STEP2).

c. Change Line 6 to the Frame rate you use.

d. Change Line 13-15 based on the pixel size of images and the actual size you

measured using a ruler.

e. Change Line 19 to the mean value of grain size (the upper and lower limit of

the sieve size), the unit is mm.

STEP 4: Tune parameters:

1. Play around with the parameter in SETPARAMETERS.m

a. Chose a value for Line 44 (cntrd_1), this value should be larger than diameter,

you can choose it to be diameter+2 or a little bit larger.

b. Tune Line 30 (pkfnd_1), and then open the file SANDTRACk, -+ uncomment

Line 49-63 (Press Control + T), and then Pause the file at Line 66 (press the line

on the left of line 66) -÷ Run the file called MAINRUN.m (need to change the

pathtot and videonames of MAINRUM before run). -+ check the image from

running MAINRUN and check how well the red cross symbols matches the white

patches.

i. Tune pkfnd till the image you got from step b has the best match.

ii. Remember to uncomment Line 49-63 (Press Control+R) after you tuned

pkfnd_1.

c. Tune Line 61 (maxdisp), Line66-69 - - maxdisp and Track-para.mem are the

most important parameters for tuning. Maxdisp is the max distance the sand moves

during one step. Track-para.mem is the steps particles can be missing. Tune this

and then run the file MAINRUN -+ Then go to the folder of the images, and find
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another folder, and find the image called "traj.jpeg". i. Eyebow the "traj.jpeg". and

guess a good value range. ii. Put the "traj.jpeg" and the avi file together in Premier

and find the parameters (maxdisp and Trackpara.mem) that work best. (will show

you how to use premier soon).

B.2 Overlay trajectories on top of videos in Adobe

Premiere to test the parameters

This section describes the steps to overlay the tracked particle trajectories on top of

the recorded videos in Adobe Premiere to visually confirm the validity of the tracked

trajectories.

Figure B-2: Adobe Premiere Step 1

Open Adobe Premiere; Drag video and the trajectory image to the left
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Figure B-3: Adobe Premiere Step 2

Drag the video and image from the left panel to the right panel

Figure B-4: Adobe Premiere Step 3

Make the two channels the same length
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Figure B-5: Adobe Premiere Step 4

Chose the image(click on the image in the right panel) and then chose Video Effects

in the left panel

Figure B-6: Adobe Premiere Step 5

Choose video effects -> Keying - color key; click on the pen symbol in the "effects

control", and then click on the white space of the image, then change the color

tolerance to value like 60 (tune it)
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Figure B-7: Adobe Premiere Step 6

Adjust the position of the image (Effects control -+ motion -+ position)

Figure B-8: Adobe Premiere Step 7

Export the video from the File in the menu bar
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Figure B-9: Adobe Premiere Step 8

Save to the hard disk in the computer
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B.3 Estimate the sediment transport rate

STEP 1: Find Q, for each video and put them in a excel file

1. Open the Matlab file called FINALQSSN.m

2. Change the excelfilename (Line 3) to the name of the excel file you are going

to save. For the same vegetation density, this name should be the same, because all

the data are going to be saved to the same excel file.

Change row number (line 18) incrementally, starting from 2 . This is the row

number in excel that you are going to put the data. Remember to increase the

number each time you run a new video.

It's good to start with lower velocity case (put them in beginning rows), and

incrementally going to larger rows).

3. Change the path name (line 3, where you put the videos), and the video name

(line 4), and the picture name (line 5). Note that the picture name is the name of

the picture you took before you shoot each video to correct for the black sand that

locked in the sand pockets.

If the picture is not 'jpg' format, change the format in Line 25.

velocity cases gradually.

4. SETPARAMETERS.m should be set to the same value when you run the

MAIN_RUN.m code to the trace the sand trajectory.

5. Change the image size (line 28), if you cropped the image then you have to set

the crop size of the image, line 28. Remember to keep the size the same as you set in

the file SETPARAMETERS.

Congrats, you get all the Q, for each flow velocity. You can use the some rows for

the videos without sand, and choose the largest value of Q, from the non-sand video

as the error

STEP 2: Plot Q, versus U relationship and find Uci

1. Open the file "FINALUCRIT2.m".
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2. Change the water depth (line 5) for each flow rate Q (line 14), better to let Q
incrementally increasing. Change the depth of the aquarium (the distance from the

bottom of the aquarium to the bed) in line 8. The width of the aquarium is in line 7.

3. Put the Q, value for each Q in line 15.

4. Put the value of Q, error in line 16 for each Q.
5. Change the vegetation density a (line 21). You can find this value from the

sheet you use to configure vegetation. For bare bed a=O, then a=1.1, 2.5, 5.4, 9.8.

a=9.8 is the densest vegetation.

6. Then Run the code.
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B.4 Particle-tracking codes

1. MAIN_READ.m

close all; clear; cdc;

%% This file automatically do everything

%% all video name

path-tot = 'D:\Density 1 experiments\';

videonames = '235.5a','235.5b','242.5a','242.5b','248a';

%% creat folder for each video and process each videos

for ii = 1:numel(video names)

clocki = clock pathtot = 'D:\Density 1 experiments\';

videonames = '235.5a','235.5b','242.5a','242.5b','248a';

vname = videonamesii;

%% Configure parameters for tracking sand;

READAVI; % Option 1: if the avi hasn't been converted to images yet.

% SETPARAMETERS %% Need to change parameters here % % clock2 = clock

% PROCESS; % % save([analysispath,'nbdelete_',num2str(nb-delete, 1),'.mat']);

% close all, clear; cle; end

2. READAVI.m

mkdir([pathtot, vname]) %% creat folders

path-folder = [pathtot, vname,' \ '];

mov=VideoReader([path tot,vname,'.avi']);

nFrames=mov.NumberOfFrames-1;

% clocki = clock;

% for i= 1: nFrames

fname = [num2str(i,'%04d')];

videoFrame=read(mov,i);

% h = imshow(videoFrame);

videoFrame = imcrop(videoFrame, [150, 60, 1050, 680]); % [xstart, ystart, x_length,
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ylength]

imwrite(videoFrame,[pathfolder, fname,'.png'])

end

% clock2 = clock

% read.time = clock2-clockl

3. BlkRATIO.m

close all; clear;clc;

%% Read image

sandjimg = imread('D:\Small-grains\d90_.65_density_9.8\Run 1\94.5b\0001.png');

figure

imshow(sandjimg);

dx = 101.6/1280; % the pixel length in mm;

% Crop image

figure;

S_view = sandjimg;

% Sview = imcrop(sandjimg, [290, 1, 990, 960]); % Crop the image ?

imshow(S view);

% Convert to gray-scale

NewSview = rgb2gray(S-view);

figure

set(gca,'fontsize' ,20);

imshow(NewSview);

title('Intensity');

%% Plot the histogram of the intensity

grayjmg = double(NewSview);

b = reshape(gray-img,1,[]);

figure

set(gca,'fontsize' ,20);
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h = hist(b,30);

h = h/sum(h);

bar(h, 'DisplayName', 'Intensity');

legend('show');

%% Set a threshold value

level 0.25; % Level is the threshold intensity to identify the black sand ?

BW im2bw(NewSview, level);

imshow(BW)

Blk-p = length(find(BW==0))/numel(BW);

figure

subplot(1,2,1)

set(gca,'fontsize',20);

imshow(S view);

subplot(1,2,2)

set(gca,'fontsize',20);

imshow(BW);

title(['Ratio of black sand = ',num2str(Blkp,2)]);

4. SETPARAMETERS.m

% % configure parameter

mov=VideoReader([path tot,vname,'.avi']);

nFrames=mov.NumberOfFrames-1;

Framerate = 60;

n = nFrames;

fnamelist = [1:n];

t_list = 1/Framerate*[1:n];

diameter = 15; % The size of the sand in pixels ?

pixelmm = 1280/101.6; % The number of pixels per mm, for different experiment

set this is different?

height = 960;
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length = 1280;

heightmm = (height)/pixel-mm ; % the length of of camera view, better keep

consistent. % !! need to calibrate for each location !!!!!!

lengthmm = (length) /pixelmm ; % the unit is mm, the lateral direction.

dsand = (0.6+0.85)/2; % the unit is mm

Volsand = 4/3*pi*(dsand/2)^3; % the unit is mm3;

nbblksand = 0; % the number of sand pass through a line;

blklevel = 0.25; % The intensity of grayscale to distinguish black sand, depends

on the lightening ; ?

method = 'sub';% ?

bpass-para = diameter;

% The number should be something like the diameter of the 'blob's you want to

find in pixels. % %

pkfnd_1 = 0.2; % ?

pkfnd_2 diameter;

% pk = pkfnd(b,pkfnd_1,11);

% pkfnd_1: default is 60; This should give you the location of all of the peaks

that are above the given threshold value here given by 60.

% (NOTE: Make it big and the code runs faster

% but you might miss some particles. Make it small and you'll get

% everything and it'll be slow.)

% The brightest feature is max(max(b));

% pkfnd_2: The second parameter (set to 11) is roughly the diameter of the

average feature to look for in pixels. This parameter is helpful for noisy data.

% if your data's noisy, (e.g. a single particle has multiple local

% maxima), then set this optional keyword to a value slightly larger than the

diameter of your blob. if

% multiple peaks are found withing a radius of sz/2 then the code will keep

% only the brightest. Also gets rid of all peaks within sz of boundary

cntrd_1 = 17;
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% diamter of the window over which to average to calculate the centroid.

% should be big enough

% to capture the whole particle but not so big that it captures others.

% if initial guess of center (from pkfnd) is far from the centroid, the

% window will need to be larger than the particle size. RECCOMMENDED

% size is the long lengthscale used in bpass plus 2.

% % Find the trajectories with average brightness bigger than critical value

b_crit = 0.03;

nbdelete = 0; % delete the trajctories with maximum distance travelled less than

nbdelete*diameter.

U_delete = 1; % delete the sand trajectories with mean velocity > mean(U-traj)

+ Udelete*std(U-traj);

% % ? % % % % maxdisp = 40;

% an estimate of the maximum distance that a particle

% would move in a single time interval.(see Restrictions)

% If you could not find any trajectories, decrease maxdisp,

% if you find too many trajectories, increase maxdisp.

Trackpara.mem = 10;

Track-para.good = 0;

Track-para.dim = 2;

Track-para.quiet = 0;

% OPTIONAL INPUT:

% param: a structure containing a few tracking parameters that are

% needed for many applications. If param is not included in the

% function call, then default values are used. If you set one value

% make sure you set them all:

% ; param.mem: this is the number of time steps that a particle can be

% ; 'lost' and then recovered again. If the particle reappears

% ; after this number of frames has elapsed, it will be

% ; tracked as a new particle. The default setting is zero.
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%; this is useful if particles occasionally 'drop out' of

% the data.

% param.dim: if the user would like to unscramble non-coordinate data

% for the particles (e.g. apparent radius of gyration for

% the particle images), then positionlist should

% contain the position data in positionlist(O param.dim-1,*)

% ; and the extra data in positionlist(param.dim d-1,*). It is then

% ; necessary to set dim equal to the dimensionality of the

% ; coordinate data to so that the track knows to ignore the

% non-coordinate data in the construction of the

% trajectories. The default value is two.

% param.good: set this keyword to eliminate all trajectories with

% fewer than param.good valid positions. This is useful

% for eliminating very short, mostly 'lost' trajectories

% ; due to blinking 'noise' particles in the data stream.

% ; param.quiet: set this keyword to 1 if you don't want any text

% % Folder names

mkdir([path-tot, vname]) % % creat folders

pathfolder = [path-tot, vname,'\'];

% creat folders

mkdir([pathtot, vname,'\','pk',num2str(pkfnd_1,2)]) % % creat folders

path-sub = [pathtot, vname,'\ 'pk',num2str(pkfnd_1,2),'\'];

% select trajectories with average brightness larger than bcrit

folder-analysis = ['Analysisjdmax_',num2str(maxdisp,2),'pk',num2str(pkfnd_1,2),method;

mkdir([path-sub, folder-analysis]) % % creat folders

analysis-path = [path-sub, folder-analysis,'\'];

% mkdir([ analysispath,'\','trajectories']) % % creat folders

% trajpath = [ analysis-path,'\','trajectories','\'];

5. SANDTRACK.m
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% % This file use the subtract images to find sand motion.

% blk_sand: returnes the percentage of sand pixel in each image

% nbblksand: returns the number of moving black sand in the view

% sandrate: returns the number of moving sand per second per mm

i = 1; fname = [num2str(fnamelist(i),' %04d')];

pico = imread([pathfolderfname,'.png']);

posjst = H;

bsize_1st = [3;

blksand zeros(n,1);

for i = 2:n

% AAread original images in the folder one by oneAAAAAAAAAAAAA %

fname = [num2str(fname Alist (i),' %04d')];

pic = imread([pathAfolder,fname,'.png']);

OAAAAAAAAAAAAAAAAAAAASubtract consequent images AAAAAAAAAAAAAAAAAAA

picAdiff = pico - pic;

% figure

% imshow(picAdiff);

aa = double(rgb2gray(picAdiff)) /255;

% % figure

% mesh(aa)

% view(O,-90)

bb = bpass(aa,1,bpassApara); %

% figure

% mesh(bb)

% view(O,-90);

pico = pic;

%AAAAAAAAAAAAAAfind the center of the moving sandAAAAAAAAAAAAAAAAAAA %

pk = pkfnd(bb,pkfndAl,pkfndA2);
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%This should give you the location of all of the peaks that are above the given

threshold value here given by 60.

%The brightest feature is max(max(b)); The second parameter (set to 11) is

roughly the diameter of the average feature to look for in pixels. This parameter is

helpful for noisy data.

% % Plot the sand from find sand

% if numel(pk) =0

% fig = figure;

% imshow(aa)

% hold on;

% plot(pk(:,1),pk(:,2),'r+','MarkerSize',3); % %

% set(gca,'position',[0 0 1 1]) % set the drawable position of the image to the hole

domain %

% set(gca,'XTick',[]) % Remove the ticks in the x axis!

% set(gca,'YTick',[]) % Remove the ticks in the y axis

% truesize

% % end

% the centroid of the peak

cnt = cntrd(bb,pk,cntrdA1); %out=cntrd(im,rmx,szinteractive); sz: diamter of the

window over which to average to calculate the centroid.

% should be big enough

% to capture the whole particle but not so big that it captures others.

% out(:,1) is the x-coordinates

% out(:,2) is the y-coordinates

% out(:,3) is the brightnesses

% out(:,4) is the sqare of the radius of gyration

sand size = size(cnt);

sandAnb = sandAsize(1);

%AAAAAAAAAAAPut the sand center and time information and the size and the

brightness infomation togetherAAAAAAA %
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Pos = [];

bsize = [];

if isnan(cnt)==0

Pos = [ cnt(:,1), cnt(:,2), tAlist(i)*ones(sandAnb,1) 1;

bsize = [ cnt(:,3), cnt(:,4) ];

posAIst = cat(1, posAst,Pos);

bsizeAlst = cat(1, bsizeAlst,bsize);

end

pic^double = double(rgb2gray(pic))/255;

blkAsand(i) numel(find(picAdouble i blkAlevel)) /numel(picAdouble);

% % Plot the sand from find sand

% if numel(cnt) =0

% fig = figure;

% imshow(aa)

% hold on;

% plot(pk(:,1),pk(:,2),'r+','MarkerSize',3); % %

% set(gca,'position',[0 0 1 1]) % set the drawable position of the image to the hole

domain %

% set(gca,'XTick',]) % Remove the ticks in the x axis!

% set(gca,'YTick',[]) % Remove the ticks in the y axis

% truesize

% % % % Plot the sand from find sand

% fig = figure;

% imagesc(pic)

% hold on;

% plot(ent(:,1),cnt(:,2),'r+','MarkerSize',3);

% % % set(gca,'position',[0 0 1 1]) % set the drawable position of the image to

the hole domain

% % set(gca,'XTick',[]) % Remove the ticks in the x axis!

% set(gca,'YTick',[]) % Remove the ticks in the y axis
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% truesize

% % screen2jpeg([pathAfolder,'trajectoryfname,'.png'])

% end %

% %AAAAAAAAAAAAAAcalculate the ratio of black sand^AAAAAAAAAAAAAAAAAAA % %

% % % figure

% imshow(picA double);

% title(['Black sand ratio = ',num2str(blkAsand(i),2)]);

% % BW = im2bw(picAdouble, blkAlevel);

% % figure; hold on;

% imshow(BW)

% title(['Black sand ratio = ',num2str(blkAsand(i),2)]);

% close all

end

6. MAINRUN.m

close all; clear; clc;

% % This file automatically do everything

% % all video name

pathtot = 'D:\Small-grains\d90_.65_density_9.8\Run 1\';

videonames = '12.5','36','59a','59b','66a','66b','71',

'77.5a','77.5b','83.5','89.5','94.5a','94.5b','1O1','112.5a','112.5b','124a','124b';

% % creat folder for each video and process each videos

for ii = 1:numel(video names)

clockI = clock

pathtot = 'D:\Smallgrains\d90_.65_density_9.8\Run 1\';

videonames = '36','59a','59b','66a','66b','71','77.5a','77.5b',

'83.5','89.5','94.5a','94.5b','101','112.5a','112.5b','124a','124b'-

% '12.5','36','59a','59b','66a','66b','71','77.5a','77.5b','83.5','89.5''94.5a','94.5b','1O1',

% '112.5a','112.5b',
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vname = videonamesii;

% vname = '235.5a';

SETPARAMETERS % % Need to change parameters here

PROCESS;

save([analysis-path,'ALL.mat']);

close all, clear; cle; end

7. trvel.m

function [Utot,pmov-nb,pmov dt] tr-vel-pvel-number(tr, pixel mm,Framerate)

x = tr(:,1)/pixelmm;

y = tr(:,2)/pixel mm;

t = tr(:,3);

id = tr(:,4);

pmov-nb = numel(unique(id));

% figure; hold on;

% set(gca,'FontSize',20);

% color-jet = jet(10);

tn =l; % Find the position where U is negantive

Un=[;

indexnegative = [;

nbsum 0;

Utot = [];
% % % delete the trajectories with motion less than nbdelte*diameter

% index obv = 0;

% % for j = 1: max(id)

% index = find(id == j);

% % if max(y(index)) - min(y(index)) z nb-delete*diamctcr/pixcl-mm %

% indexobv = cat(1, indexobv, index);
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% end

% % end

% % tr = tr(index-obv,:);

% bsize_1st = bsize-lst(index-obv,:);

trajjindex2 0;

IDtraj = [];

T_tot = [];

Utot = [];

U_traj =[;

for j = 1: max(id)

index = find(id == j);

pmov-dt(j) =0;

if numel(index)Z1

x-p = x(index);

y_p = y(index);

t_p = t(index);

trajjindex2 = trajjindex2 + 1;

Utot( nb-sum+1 : nbsum +numel(index)-1) = (yp(2: numel(index)) - y-p(l:

numel(index)-1 ))./(t-p(2: numel(index)) - t-p(1: numel(index)-1 ));

T_tot( nb-sum+1: nbsum +numel(index)-1 ) = t-p(1:numel(index)-1);

ID_tot( nb sum+l nbsum +numel(index)-1 )j;

ID_traj(traj-index2) = j;

U_traj(trajjindex2) = mean(Utot( nb-sum+1 nbsum +numel(index)-1 ));

% % % % Record the index and value of the negative % % % % velocities.

% % Find the index of negative U

% indexidn = find(UtrajiO)

% if numel(indexidnZ0)

% Un = cat(2, Un, Utraj(indexid-n));

% tn = cat(1, tn, tLp(indexjidn));
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% index-negative = cat(1, index-negative , index(indexid-n));

% end

% plot(t p(1:numel(index)-1 ) , Utot( nb-sum +1 nb-sum + numel(index)-1

),'o', 'color', color-jet(rem(j,10)+1,:));

% plot the all the velocities at different times,

% different colors indicate different particles.

nbsum = nbsum + numel(index) - 1;

pmov-dt(j)=max(t-p)-min(t-p);

clear xp;

clear yp;

clear t-p;

clear index;

end

index_U-pixel = find(UtotZ 1/pixel-mm*Framerate);

Utot = Utot(indexU pixel);

T_tot = T-tot(indexU-pixel);

end

8. track.m

The original code was written by Crocker and Grier [1996],

can be found in the following link:

http:\\www.physics.emory.edu\faculty\weeks\\idl\

%; Judy added some code to track the intensity and size of particles at

% around line 1077

% see http:\\glinda.lrsm.upenn.edu\ weeks\idl

% for more information

olist = olist(2:end,:);

%bigresx = 0;
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%resx = 0;

nolist = length(olist(:,1));

res = zeros(nolist,dd+1);

for j=1:dd

res(:,j) = xyzs(olist(:,1),j);

end

res(:,dd+1) = olist(:,2);

for j = 1:2

brightUsize(:, j) = bsizeUlst(olist(:,1),j); %%

end
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Appendix C

Guideline for measuring bed

topography and surface slope

C.1 Design of the topography and water-surface

system

This section describes the topography system that maps the 3D bed topography

(Figure C-1). A Keyence laser sensor to measure bed elevation and an Omega acoustic

sensor that measures the distance from the sensor to the water surface, are mounted on

a 2-D moving system. Previous studies such as [29] require the flume to be drained

to measure the bed topography. In this study, I developed a method to directly

measure bed topography without draining the flume by correcting for the difference

in the speed of light in air and in water. In the situation with no water layer, if the

bed elevation changes by Ah, the sensor would record a change in the travel time of

the light dt, and calculate the distance change as Ahsensor = Cangle x dt x cair. The

coefficient Cangle ~ 2 varies with the distance from the sensor head to the bed. With

a water layer present (Figure C-3), the change in the time due to bed elevation change

is dt = Ah/Cange/Cwater, therefore the relationship between the change in the sensor

reading and the bed elevation change is Ahsensor = Ah x cair/cwater = 1.33Ah. To

test if this hypothesis is true, sand layers with different Ah were put in the flume, and

125



were measured using a ruler. The laser sensor reading Ahsenso. was also recorded for

different measured Ah. The experimental results show that Ahsensor = (1.4 0.1)Ah,

in good agreement with the prediction. Because the bed elevation before and after

bed form migration were measured and subtracted, the absolute value of the water

depth does not come into the equation in measuring bed elevation change.

Acoustic sensor to measure
water surface elevation

2-D moving platform

Laser sensor for bed elevation

Figure C-1: Bed topography system
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(b)(a)

Figure C-2: Laser sensor and acoustic sensor images

(a) The Keyence laser sensor. (b) The Omega acoustic sensor.
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Figure C-3: Laser topography sensor with water

To measure the topography without draining water, the difference in the speed of

light in air and in water was corrected. The blue box indicate the laser topography

sensor. The solid red lines indicate the light emitted from the sensor and the dashed

red lines indicate the light signal scattered from the bottom and received by the sensor

receptor. Note that the temperature effects on the light speed is negligible.
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The Omega acoustic sensor measures the distance from the sensor head to the

water surface, the output is a voltage signal. To calibrate the sensor, the distance

from the sensor head to the water surface was varied and measured using a ruler,

while the sensor voltage was recorded. The measured distance versus the acoustic

sensor output in voltage was plotted in Figure C-4.
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Figure C-4: Calibration of the water surface sensor

This figure is from the research report of an undergraduate research assistant Milani

Chatterji-Len. Since the original data is not available, no error bars and errors of the

fitting parameters are reported here.
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C.2 The automatic control platform in LabVIEW

In order to make the system automatic, the two sensors and the moving system

were integrated into the LabVIEW platform. The LabVIEW interface is shown in

Figure C-5. The block diagram of the designed LabVIEW control system is shown in

Figure C-6 and C-7.

C.3 Procedure for measuring bed topography

Step 1: Connect the sensors wires to power and the Dell computer with the

installed labview software, open the labview '.vi' file in LabVIEW, as shown in Fig-

ure C-8.

Step 2: Type the names of the files you want to save in LabVIEW in box 1

(Figure C-9).

Step 3: Decide how many steps or positions you want to measure and type in

box 2. In box 3, type how long is each step. For example, if you want the topography

sensor to move 10mm in x direction per step, then change line 2 of the code in "Sensors

go forward" to "PRX=7817" , because 781.7 for the step motor of the system is 1mm.

Similarly, change line 2 of the code in "Sensors go backward" to "PRX=-7817". If

you want to move 50mm in y direction per step for 6 steps, change line 2 of the code

in "Y-direction-code" to "PRY=39085", as 781.7 x 50 ~ 39805. Then change line 2

of the code in "Y-direction-code" to "PRY=-234510", which is 781.7 x 50 x 6.

C.4 Troubleshooting

Symptom 1: the topography sensor stops without finishing the scanning.

Possible reason: the connection of the cable to the laser sensor controller is loose

(the red box in Figure C-10).

Remedy: please gently fix the connection using tapes or other tools.
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Figure C-10: Topography system troubleshooting

The controller of the Keyence Laser sensor. The red box shows the connect to the computer.

Symptom 2: the recorded topography data has a large amount of infinite values.

Possible reason 1: the water in the flume is too dirty. Remedy: replace the water,

clean the flume regularly.

Possible reason 2: if the topography changed too much, it is possible that the

distance is outside the range of the laser sensor.

The Keyence laser sensor measures light scattered at surfaces located 30-50cm

from the laser head (more specifics about the sensor can be found in:

https://www.keyence.com/products/measure/laser-ld/lk-g3000/models/lk-g402/index.jsp

Therefore, in order for the laser sensor to work properly, the water surface should

be less than 30cm from the laser head and the distance of the channel bottom to the

sensor head, with the travel distance in the water corrected by the water reflection

index, should be within 30-50cm.
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C.5 Codes for bed topography

1. Bothsensor_2Dwet.m

%Processing laser height sensor calculations

clear,clc;

close all;

dxstep = 7817*1/781.7; %mm

dy-step = 7817*5/781.7; %mm

I = 25.5; % approximate in cm, distance for sensor to water surface

h_water = 35+125; %35+125; %mm, need to change to your measured water

depth

%Read depth data and find coefficients and remove noisy data

data = xlsread('Top_2D-aO_4Ucritslope_3hours-p4.xls');

noninfrate = xlsread('Lasernoninf_aO_4Ucrit-slope_3hours p4.xls');

infindex = find(non-infrate/OOiO.4);

% data(inf index) = NaN;

nodatarate = numel(find(isnan(data)))./numel(data);

data = fillmissing(data,'linear');

% linearly interpolate this missing data for each no-data point

for i = 1:numel(data(1,:))

data(:,i) = medfilt1(data(:,i))

end

for i = 1:numel(data(:,1))

data(i,:) = medfiltl(data(i,:))

end

%%%% correct for data edge

Top read = zeros(numel(data(:, 1))-1,numel(data(1,:)));

Top read(:, 1:2:numel(data(1,:))) = data(1:numel(data(:,1))-1, 1:2:numel(data(1,:)));

Top-read(:, 2:2:numel(data(1,:))) = data(2:numel(data(:,1)), 2:2:numel(data(1,:)));

%%%% correct for data edge
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h_top = (Top_read - 9.739*1-4.510)/7.418*10; %in mm

% generate grid point

[Xpt,Ypt] = meshgrid(dx-step*[1:numel(data(:,1))-1],80+dy-step*[0:numel(data(1,:))-

1]);

Xpt = Xpt';

Ypt = Ypt';

%Read surfaceh data and find coefficients

data2 = xlsread('Surface_2Da0_4Ucritslope_3hours-p4.xls');

%%%% correct for data edge

Surfacev = zeros(numel(data2(:,1))-1,numel(data2(1,:)));

Surface v(:, 1:2:numel(data2(1,:))) = data2(1:numel(data2(:,1))-1, 1:2:numel(data2(1,:)));

Surface v(:, 2:2:numel(data2(1,:))) = data2(2:numel(data2(:,1)), 2:2:numel(data2(1,:)));

%%%% correct for data edge

diswatersensor = 10*(23.0733*Surface v+10.03); % in mm, the coefficients

23.0733 and 10.03 were obtained by milani chatterji-len and theoritically should not

change with the configuration

for i = 1:numel(data2(1,:))

data2(:,i) = medfiltl(data2(:,i))

end

for i = 1:numel(data2(:,1))

data2(i,:) = medfiltl(data2(i,:))

end

Colorset = 'b','r','b','r','b','r','b','r','b','r','b','r','b','r','b','r'; % Cell array of colros.

colorgradient = jet(numel(data(1,:)));

%% Plot the topograph

figure; hold on

set(gca, 'FontSize',20);

colormap(jet)

surf(Xpt, Ypt, hwater-hjtop)

% surf(Xpt, Ypt,405-Topjead)
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view(45,30)

set (gca,'PlotBoxAspectRatio',[1 1 1]);

xlabel('x/mm')

ylabel('y/mm')

zlabel('depth/mm')

% axis([0 inf 0 inf])

xlim([0 inf])

colorbar

title('Topo 2D')

%% Plot topography in x-direction for each y position (1D)

figure;

subplot(2,1,1)

hold on

set(gca,'FontSize',20);

for i = 1 :numel(hjtop(1,:))

plot(Xpt(:,i), h-water-htop(:,i),'+-','color',color-gradient(i,:))

leg-xi = ['y=',num2str(i*dx step/10) ,'cm'];

p = polyfit(Xpt(:,i), hwater-h-top(:,i),1);

slope x(i) = p(1);

leg-xi = ['y=',num2str(i*dy-step/10) ,'cm, s=',num2str(slope-x(i),2)];

y_fit = polyval(p, Xpt(:,i));

plot (Xpt (:,i) yjft,-- 'color' ,color-gradient (i,:))

end

% legend(leg-x);

xlabel('x/mm')

ylabel('depth/mm')

% axis([0 inf 0 inf])

xlim([0 inf])

colorbar

title('Topo along x')
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subplot(2,1,2)

hold on

set(gca,'FontSize',20);

for i = 1 :numel(h-top(1,:))

Bedform(:,i) = hwater-h-top(:,i)-yfit;

plot(Xpt(:,i), hwater-htop(:,i)-yfit,'s','color',color-gradient(i,:))

[xData, yData] = prepareCurveData( Xpt(:,i), Bedform(:,i));

% Set up fittype and options.

ft = fittype( 'sini' );

opts = fitoptions( 'Method', 'NonlinearLeastSquares' );

opts.Display = 'Off';

opts.Lower = [-Inf 0 -Inf];

opts.StartPoint = [3.78865588272251 0.0392699081698724 -1.03402580803018];

% Fit model to data.

[fitresult, gof] = fit( xData, yData, ft, opts);

fitresult

rippleA(i) = fitresult.al;

ripplejlambda(i) = 2*pi/fitresult.bl;

% Plot fit with data.

% hh = plot( fitresult, xData, yData);

% set(hh, 'color' ,color-gradient(i,:),'MarkerSize',9)

end

legend(leg-x);

xlabel('x/mm')

ylabel('depth/mm')

% axis([0 inf 0 inf])

xlim([0 inf])

colorbar

title('Bed forms')

%% Find the period of the ripples
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figure; hold on

set(gca,'Fontsize',20)

for i = 1 :numel(h-top(1,:))

f bed-x(i) = 1/mean(diff(Xpt(:,i)));

amplitude(i) = std(Bedform(:,i));

[autocori,lagsi] = xcorr(Bedform(:,i),'coeff')

lags-autoi = lagsi/fLbed-x(i);

plot (lags_autoi autocori,'color',color-gradient(i,:),'Linewidth',2')

[pksi,locsi] = findpeaks(autocori)

bedlegi = ['SD=',num2str(amplitude(i),2),'mm']

end

legend(bed leg)

L = get(gca,'xlim')

set (gca,'Xtick',[-500:100:500])

xlabel('Lag (mm)')

ylabel('Autocorrelation');

title('a=2.5m^-^1, 3Ucrit')

colorgradient2 = jet(numel(data(:,1)));

%% Plot topography in x-direction for each y position (1D)

figure; hold on

set (gca,'FontSize',20);

for i = 1:numel(hjtop(:,1))

plot(Ypt(i,:), h water-h top(i,:),'+-','color',color-gradient2(i,:))

legyi = ['x=',num2str(i*dystep/10) ,'cm'];

end

legend(leg-y)

xlabel('y/mm')

ylabel('depth/mm')

% axis([0 inf 0 inf])

xlim([O inf])
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colorbar

title('Topo along Y')

%% Plot the water surface (2D)

figure; hold on

set (gca,'FontSize',20);

colormap(jet)

surf(Xpt, Ypt,dis water-sensor)

view(45,30)

set(gca,'PlotBoxAspectRatio',[1 1 1]);

xlabel('x/mm')

ylabel('y/mm')

zlabel('Distance /mm')

% axis([O inf 0 inf])

xlim([0 inf])

colorbar

title('From acoustic sensor to water surface 2D')

%% Plot waterelevation in x-direction for each y position (ID)

figure; hold on

set(gca,'FontSize',20,'Linewidth',2);

for i = 1:numel(h-top(1,:))

plot(Xpt(:,i), diswatersensor(:,i),'o:','color',color-gradient(i,:),'MarkerSize',9,'Linewidth',2)

end

legend(leg-x);

xlabel('x/mm')

ylabel('Distance/mm')

% axis([0 inf 0 inf])

xlim([0 inf])

title('From acoustic sensor to water surface along x')

%% Plot waterelevation in y-direction for each x position (1D)

figure; hold on
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set(gca,'FontSize' ,20,'Linewidth',2);

color_2 = jet(numel(data(:,1)));

for i = 1:numel(h_top(:,1))

plot(Ypt(i,:), dis water_sensor(i,:),'o:','color',color_2(i,:),'MarkerSize',9,'Linewidth',2)

end

legend(legy)

xlabel('y/mm')

ylabel('Distance/mm')

% axis([0 inf 0 inf])

xlim([O inf])

title('From acoustic sensor to water surface along y')

2. Bothsensor_2Dsurface.m

% Processing laser height sensor calculations

clear,clc;

close all;

dx-step = 7817*1/781.7; % mm

dystep = 7817*50/781.7; % mm

I = 28.7; % approximate in cm, distance for sensor to glass

h_surfacesensor = 481.7; % mm

% Read surfaceh data and find coefficients

data2 = xlsread('Surface_2D-only-aO_4_Ucrit_2_5hrs-p2.xls');

% linearly interpolate this missing data for each no-data point

for i = 1:numel(data2(1,:))

data2(:,i) = medfiltl(data2(:,i))

end

for i = 1:numel(data2(:,1))

data2(i,:) = medfiltl(data2(i,:))

end

% % % % correct for data edge

Surfacev = zeros(numel(data2(:,1))-1 ,numel(data2(1,:)));
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Surface-v(:, 1:2:numel(data2(1,:))) = data2(1:numel(data2(:,1))-1, 1:2:numel(data2(1,:)));

Surface-v(:, 2:2:numel(data2(1,:))) = data2(2:numel(data2(:,1)), 2:2:numel(data2(1,:)));

% % % % correct for data edge

diswatersensor = 10*(23.0733*Surface v+10.03);

% in mm, the coefficients 23.0733 and 10.03 were obtained by

% milani chatterji-len and theoritically should not change with the configuration

h_water_2D = h_surfacesensor - diswatersensor;

% generate grid point

[Xpt,Ypt] = meshgrid(dxstep*[1:numel(data2(:,1))-1],80+dy-step*[0:numel(data2(1,:))-

1]);

Xpt = Xpt';

Ypt =Ypt';

Colorset = ,' ,'b','r' 'b','r','br'b','r' 'b',r, 'b','r ,'b','r'; % Cell array of colros.

color-gradient = jet (numel(data2(1,:)));

% % Plot the water surface (2D)

figure; hold on

set(gca,'FontSize',20);

colormap(jet)

surf(Xpt, Ypt,h-water_2D)

view(45,30)

set(gca,'PlotBoxAspectRatio', [1 1 1]);

xlabel('x/mm')

ylabel('y/mm')

zlabel('Distance /mm')

% axis([0 inf 0 inf])

xlim([0 inf])

colorbar

title('From acoustic sensor to water surface 2D')

% % Plot waterelevation in x-direction for each y position (ID)

figure; hold on
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set(gca,'FontSize',20,'Linewidth',2);

lineset = 'bo','rx' ,'cs','mp'

for i = 1:numel(h water_2D(1,:))

h(i) plot(Xpt(:,i), hwater_2D(:,i),lineseti,'MarkerSize',9,'Linewidth',2)

leg-xi = ['y=',num2str(i*dx step/10) ,'cm'];

p = polyfit(Xpt(:,i), h_water_2D(:,i),1);

slopex(i) = p(;

leg-xi = ['y=',num2str(i*dx step/10) ,'cm, s=',num2str(slope-x(i),2)];

yfit = polyval(p,Xpt(:,i));

plot (Xpt (:,i),yfit,'g-')

end

legend(h,leg-x);

xlabel('x/mm')

ylabel('Distance/mm')

% axis([0 inf 0 inf])

xlim([0 inf])

title('From acoustic sensor to water surface along x')

% % Plot waterelevation in y-direction for each x position (1D)

figure; hold on

set(gca,'FontSize',20,'Linewidth',2);

color_2 = jet (numel(data2(:,1)));

for i = 1:numel(h-water_2D(:,1))

plot(Ypt(i,:), h-water_2D(i,:),'o:','color',color_2(i,:),'MarkerSize',9,'Linewidth',2)

end

% legend(legy)

xlabel('y/mm')

ylabel('Distance/mm')

% axis([0 inf 0 inf])

xlim([0 inf])

title('From acoustic sensor to water surface along y')
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Figure C-5: The designed LabVIEW interface.
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Figure C-6: The left part of the designed LabVIEW block diagram.
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Figure C-7: The right part of the designed Labview block diagram.
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Figure C-8: The vi file.
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Appendix D

The turbulent kinetic energy and

Reynolds stress profiles

This section shows the turbulent kinetic energy and Reynolds stress profiles measured

over the mobile bed which are discussed in Chapters 3 and 4. The experimental

conditions for each case are listed in Table 4.1 and copied below. The circles in

the following figures indicate individual measurement at one position and the black

circles connected by dashed lines represent the spatial average (the mean and the

standard deviation) of the measurements for different distances from the bed. z = 0

represents the mean bed, and only measurements with 20 to 30mm from the mean

bed were plotted. The titles in the figures show the average and standard error of

kt/U 2 between z = 20 to 30mm. Because the standard errors of kt/U 2 were small

and almost zero for some cases, 2 significant digits were given to the standard errors

for future reference.
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Table D.1: Copy of Table 4.1

Case a 0 U h Q, k o- kt i o+ (TRS k RS)/p

number [m-1] [m/s] [M] [g/(m - s)] [cm2,2] [cm2/s2]
Bare channels

1.1 0 0 0.42 0.12 0.36 0.05 28 + 1 (8) 3.9 0.2
1.2 0 0 0.47 0.12 1.84 0.08 46 + 1 (34) 6.0 0.2
1.3 0 0 0.65 0.12 24 1 111 11 (8) 14.7 + 1.3
1.4 0 0 0.88 0.12 134 + 8 205 + 10 (8) 12.8 1.6

Channels with model emergent vegetation
2.1 1.1 0.005 0.27 0.12 0.5 + 0.1 19 + 3 (24) 0.5 + 0.2
2.2 1.1 0.005 0.30 0.12 2.5 0.3 20 2 (24) 0.2 + 0.2
2.3 1.1 0.005 0.34 0.12 9 + 1 32 5 (24) 1.9 0.5
2.4 1.1 0.005 0.43 0.12 68 + 17 65 + 8 (24) 6.2 + 0.7
3.1 2.5 0.012 0.21 0.12 0.15 0.02 17 + 2 (27) 0.5 + 0.1
3.2 2.5 0.012 0.24 0.12 2.6 + 0.5 22 + 2 (27) 0.1 0.1
3.3 2.5 0.012 0.28 0.12 9.4 + 0.6 45 5 (27) 2.0 + 0.6
4.1 5.1 0.025 0.21 0.10 1.3 0.1 20 + 2 (23) 0.5 + 0.1
4.2 5.1 0.025 0.23 0.10 2.9 + 0.3 42 + 4 (23) 0.1 + 0.1
4.3 5.1 0.025 0.27 0.10 17 1 46 + 4 (23) 1.0 + 0.2
4.4 5.1 0.025 0.31 0.10 41 + 2 51 + 5 (23) 1.6 + 0.3

Figure D-1: Case 1.1, the turbulent kinetic energy profile
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Figure D-2: Case 1.1, the Reynolds stress profile

casel1, rRSIPU2 SD=0.0025+0.0003
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Figure D-3: Case 1.2, the turbulent kinetic energy profile

casel2, kt/U 2 SD=0.02+0.005
A

b 0

00

0 000 0 0

0 0

0 -

OD0

S0 -
'10 'AD '0 'o '

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Kt2

147

30

29

28

27

26

E25

24

23

22

21

2n

0 MKI

-
0

- 0

0
0 0 -

-- -

0 -
0

' 0

0 0

0 x

0~ -V
0 % O

30 -

29 -

28 -

27 -

26 -

E 25 -

24

23 -

22

21 -

20 -
0



Figure D-4: Case 1.2, the Reynolds stress profile
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Figure D-5: Case 1.3, the turbulent kinetic energy profile
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Figure D-6: Case 1.3, the Reynolds stress profile

casel 3, rRSPU2 i SD=0.0038+0.0005
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Figure D-7: Case 1.4, the turbulent kinetic energy profile
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Figure D-8: Case 1.4, the Reynolds stress profile

case14, rRs/U 2 + SD=0.00096i0.0005
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Figure D-9: Case 2:1, the turbulent kinetic energy profile
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Figure D-10: Case 2.1, the Reynolds stress profile
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Figure D-11: Case 2.2, the turbulent kinetic energy profile

case12, k/U 2 SD=0.025+0.02
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Figure D-12: Case 2.2, the Reynolds stress profile
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Figure D-13: Case 2.3, the turbulent kinetic energy profile

case13, ktIU 2 SD=0.042i0.02
30

Eb O0 Q 0 0

29 - -

20 0 17 -0

274- 0 u 0 A'-O

000

23- 0 0 0 0

0, 0
00 t 0 1 0

0 (P

E25- A A 0

o

0- 0 00

S 0 o 00 0

20 1 A 1 1 '

0 0.02 0.04 0.06 0.08 0.1 0.12
Kr/U2

152



Figure D-14: Case 2.3, the Reynolds stress profile

case23, 2Rs/pU + SD=0.002+0.001
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Figure D-15: Case 2.4, the turbulent kinetic energy profile

casel 4, k /U 2 + SD=0.051 +0.03
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Figure D-16: Case 2.4, the Reynolds stress profile
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Figure D-17: Case 3.1, the turbulent kinetic energy profil
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Figure D-18: Case 3.1, the Reynolds stress profile
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Figure D-19: Case 3.2, the turbulent kinetic energy profile
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Figure D-20: Case 3.2, the Reynolds stress profile
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Figure D-21: Case 3.3, the turbulent kinetic energy profile
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Figure D-22: Case 3.3, the Reynolds stress profile
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Figure D-23: Case 4.1, the turbulent kinetic energy profile

case4l, k /U 2 SD=0.05+0.03
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Figure D-24: Case 4.1, the Reynolds stress profile
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Figure D-25: Case 4.2, the turbulent kinetic energy profile
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Figure D-26: Case 4.2, the Reynolds stress profile
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Figure D-27: Case 4.3, the turbulent kinetic energy profile
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Figure D-28: Case 4.3, the Reynolds stress profile
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Figure D-29: Case 4.4, the turbulent kinetic energy profile

case44, k t /2 SD=0.07 0.02
30 A 0

7~8 0,00 CP <'0

29 o 0 0
o~oO0P 00

28 0o- - ---
O0 1i 0 b 0 0 0 0

27- 0

26- -0 C
,' o*o o*

25- 0 0 0 0 0
0 MO ( 00024- 00 -
CP 0 0  0 0o0 o 0

23- odm - -

22 A 0 0 0 0

0- . 00 0 0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

K t/U 2

160

0

0

E
E

I

0-



Figure D-30: Case 4.4, the Reynolds stress profile

case44, rRS PU2 + SD=-0.0008+0.002

-8 -6 -4 -2 0
rRS U2

2 4 6

161

29-

28

27

26F
E
E 25 -
N

23F
2-

21-

-10

00

0

0 ~00 0

00

0 Odd0

00

0

8
-3



162



Appendix E

The bedform profiles

This section shows the measured ripple profiles in both temporal and spatial domain.

The ripple wavelength, height, and period are tabulated in Chapter 4, Table 4.2,

which is also copied below. For the plots of ripple profiles in temporal domain, the

blue curves in figures (a) indicate the original measured bed topography profiles and

the red curves are the same bed topography profiles filtered by 100-point movmean

filter in MATLAB. The uncertainty in T, denoted as oT, was estimated as half the

range of the first positive lobe (the black color part of the curves in Figures (b)).

The std(Zcd) in the title of the right figures represents the standard deviation of the

bed elevation around the mean. For the plots of ripple profiles in spatial domain, in

figures (b) the black lines show the identified ripple height and only ripple heights

larger than 1mm (two times median grain size d, = 0.5mm) were identified. The

legends in figures (b) are T2 SD(1 2), the means and the standard deviations of the

identified ripple heights (the vertical black lines).
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Table E.1: Copy of Table 4.2

Case A a q SD(ij1) (# of ripples) q2 SD(,q 2) (# of ripples) T t a-

number [im] [mm] [mm [s]
Bare channels

1.1 0.25 + 0.03 5 3 (5) 2 1 (4) 880 + 160

1.2 0.28 0.05 11 2 (9) 4 + 3 (6) 660 200

1.3 NA 11 4 (16) NA 38 4

1.4 0.29 + 0.09 13 2 (7) 6 + 5 (6) 40 20

Channels with model emergent vegetation

2.1 0.21 + 0.06 3 + 1 (3) 3 + 1 (6) 2400 300

2.2 0.16 + 0.04 3 1 (8) 3 + 1 (7) 630 160

2.3 0.17 + 0.04 7 3 (17) 7 t 3 (4) 110 50

2.4 0.17 + 0.03 12 5 (52) 10 3 (6) 42+ 11

3.1 0.10 + 0.02 2 1 (4) 3 1 (8) 4600 800

3.2 0.10 + 0.02 4 1 (2) 6 2 (8) 2300 500

3.3 0.16 + 0.06 6 + 2 (52) 6 3 (5) 200+ 110

4.1 NA 2 1 (12) NA 1800 300

4.2 NA 2 1 (7) NA 1500 500

4.3 NA 3 1 (47) NA 29 12

4.4 NA 2 1 (55) NA 30 20
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Figure E-1: Case 1.1, the ripple profile in temporal domain
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Figure E-3: Case 1.2, the ripple profile in temporal domain
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Figure E-4: Case 1.2, the ripple profile in spatial domain
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Figure E-5: Case 1.3, the ripple profile in temporal domain
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Figure E-7: Case 1.4, the ripple profile in spatial domain
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Figure E-8: Case 1.4, the ripple profile in spatial domain (repeat)

(a)

Flo

--3-0.021 t0.0005

(b)

-1~2=3.51:1.3mmK

E

2

0

-2

-4
0 100 200

x (mm)

I I I -A=285:56mm -
Y~0.000-0.335

-300 -200 -100 0
Lag (mm)

100 200

Case 1.4, the topography were measured twice at different
Here shows the two profiles measured at the second time.

times during the experiment.

168

-85

-90

E -95

-100

-105
0

(C)

C
0

76

0

0.5

0

-0.5
-40

-105

_-110
E

N -115

-120

-
o0.5

00 0

-0.5

0

(C)

100 200
x (mm)

300 300

-4
-400 300 400

1

A=3121:31 mm

7t!XWO
X Z70 :0.0518
Y: -0.0235!

00,

-y-

'



Figure E-9: Case 2.1, the ripple profile in temporal domain
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Figure E-10: Case 2.1, the ripple profile in spatial domain
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Figure E-11: Case 2.2, the ripple profile in temporal domain
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Figure E-12: Case 2.2, the ripple profile in spatial domain
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Figure E-13: Case 2.3, the ripple profile in temporal domain
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Figure E-15: Case 2.4, the ripple profile in temporal domain
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Figure E-16: Case 2.4, the ripple profile in spatial domain
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Figure E-17: Case 3.1, the ripple profile in temporal domain
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Figure E-18: Case 3.1, the ripple profile in spatial domain
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Figure E-19: Case 3.2, the ripple profile in temporal domain
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Figure E-21: Case 3.3, the ripple profile in temporal domain
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Figure E-22: Case 3.3, the ripple profile in spatial domain
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Figure E-25: Case 4.3, the ripple profile in temporal domain
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Figure E-26: Case 4.4, the ripple profile in temporal domain
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