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Abstract

Neural networks underpin both biological intelligence and modern Al systems, yet
there is relatively little theory for how the observed behavior of these networks arises.
Even the connectivity of neurons within the brain remains largely unknown, and
popular deep learning algorithms lack theoretical justification or reliability guaran-
tees. This thesis aims towards a more rigorous understanding of neural networks.
We characterize and, where possible, prove essential properties of neural algorithms:
expressivity, learning, and robustness. We show how observed emergent behavior can
arise from network dynamics, and we develop algorithms for learning more about the
network structure of the brain.
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Chapter 1

Introduction

Neural networks are the foundation of both biological intelligence and modern Al

systems. Within the brain, nerve cells, or neurons, send and receive electrical signals.

Networks of neurons are the physical seat of sensation, memory, and thought. Arti-

ficial neural networks, based loosely on their biological analogues, are mathematical

constructions in which simple functions receive input and output from each other in

a manner similar to nerve cells, leading to complex emergent behavior. Such artifi-

cial networks are the basis of deep learning algorithms enabling computers to learn

from data, and are now used widely in applications ranging from self-driving cars to

automated medical diagnoses.

Increasingly, we are able to observe our own brains in action and to design sur-

prisingly powerful Al algorithms, but our understanding of the underlying neural

networks is shallow. When they work, we cannot adequately explain why. When

they fail, we often do not know what is going wrong or how to fix it.

Within the biological brain, new scientific tools are opening up a wealth of data

on the structure of neural circuits and their electrical firing patterns; but unifying

interpretations for this data are elusive. Even at the scale of individual neurons,

there is debate about exactly how signal integration occurs between inputs. The

behavior of neuron ensembles and the algorithms by which these ensembles learn

remain conjectural. Emergent properties of entire networks, such as rational thought,

are completely beyond our current understanding. Humanity is impatient for cures
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to Alzheimer's disease and other neurological conditions, yet explaining even normal

brain function remains beyond our grasp.

Likewise, as society becomes increasingly reliant upon Al, it is vital to understand

our own creations from a rigorous scientific and mathematical perspective. Industry

research in Al is largely focused on results, not fundamentals. This has led to incre-

mental improvements on prior work, rather than innovation built from the ground

up. Our lack of knowledge also raises the possibility of unexpected behavior or even

catastrophic failure. Al must have performance guarantees if it is to be trusted as a

major force within society.

The fields of artificial intelligence and neuroscience have much to gain from one

another via a unified perspective on neural networks. Early developments in Al, such

as convolutional neural networks, were originally motivated by the brain; but current

work in deep learning has drifted away from neuroscience. Many researchers pay

lip service to "biologically plausible" algorithms, but these generally have little to do

with actual biology. Nevertheless, some of the toughest problems in Al today, such

as how to perform credit assignment in reinforcement learning, may have already

been solved in biological neural networks. Reciprocally, artificial intelligence can help

neuroscientists understand the brain better; since it is far easier to experiment with

a computer than with a living organism.

In order to advance an integrated understanding of neural networks, I believe that

each of the following steps is essential.

1. Mathematical proofs characterizing the essential properties of neural net-

works responsible for fundamental principles of success or failure (such as the

ability to express many functions of the input, or the ability to learn an indi-

vidual function from example data). Such mathematical analysis is necessarily

dependent on the dynamics of the networks in question but is independent of

the implementation details and also is substrate-agnostic between computers

and brains.

2. Scientific experiments on artificial networks where fully theoretical analysis

12



is inapplicable or challenging. In this way, we can treat machine learning algo-

rithms similarly to unknown biological systems, rather than merely evaluating

their performance against benchmarks.

3. Data acquisition at scale on the organization of biological systems, prepara-

tory to a similar conceptual analysis of their algorithms as with artificial sys-

tems. At a minimum, it appears critical to know the network structure and the

nature of the signals transmitted between (or within) neurons.

4. Statistical analysis of the structural and functional primitives that best ex-

plain the data for biological networks. Subtleties of individual circuits, while

important biologically, may ultimately be inessential to understanding the over-

all algorithmic organization of a brain.

5. Mathematical models based on these structural and functional primitives.

Characteristics of biological networks can ideally be matched to those of arti-

ficial networks - either existing network models, wholly new models, or some

combination of the two.

These proposed research directions may be compared to traditional approaches

both in deep learning and in computational neuroscience.

On the deep learning side, a scientific and mathematical approach complements

the engineering focus found both in industry and in much academic research. Evalua-

tion of algorithms is traditionally limited to measuring their performance on a number

of well-known datasets. Evaluation on these datasets does not give us actionable in-

sights into what is causing improvement or degradation in performance. Ultimately,

however, the effectiveness of deep learning depends on general properties such as ex-

pressivity, learnability, and robustness. Some of these properties, it turns out, can

be provably tired to algorithm design, while in other cases they can be empirically

evaluated in isolated. Note that such an empirical approach to modes of algorithmic

success and failure is very different from simply calculating the performance on a

benchmark dataset.
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It may appear strange to run experiments on networks that are completely de-

fined by specified sets of equations. After all, we know exactly what the networks

will do in given circumstances, because they do exactly what we tell them to do.

The goal, however, is not to recover these equations; it is to identify principles of

emergent behavior, much as the results of statistical physics derive ultimately from

the Schr6dinger equation of quantum mechanics but are not immediately obvious

from it. Furthermore, the artificial nature of the hardware involved in deep learning

allows a far greater ability to record and modify the behavior of an artificial network

than in a biological brain, where state-of-the-art tools from fMRI to calcium imaging

to optogenetics often suffer from a range of limitations, notably (1) poor spatial or

temporal resolution and (2) difficulty in working with more than small sets of neurons

in a single experiment.

On the computational neuroscience side, many questions remain which may pos-

sibly be addressed by statistical and mathematical analysis of the large datasets that

increasingly are becoming available. For example: How does the structure of indi-

vidual neurons and of networks arise during development? What loss functions and

learning rules are used as the network learns? Do subnetworks arise that are spe-

cialized in algorithmic primitives such as memory storage, statistical inference, or

symbolic manipulation?

Research has historically often focused on the patterns associated with particular

behaviors (e.g. navigation, facial recognition, birdsong, etc.) in well-defined regions

of the brain. While such approaches have yielded important neuroscientific and med-

ical knowledge, they may not be well-suited to an understanding of neural network

algorithms. Often those tasks and brain regions best suited to study in isolation are

precisely those that are organized in idiosyncratic ways independent from the rest of

cognition. Narrow focus makes data acquisition and interpretation easier, but is not

necessarily reflective of the broad principles by which networks are organized struc-

turally or how they operate and learn. More fundamentally, a focus on correlating

neuronal activity with the task being studied neglects the cause of such dynamics,

which from an algorithmic point of view is much more important than exactly which

14



neurons are active when.

In this thesis, I will present progress towards each of the five steps in the above

outline for an integrated understanding of artificial and biological neural networks.

Not included in this thesis is various work on combinatorics [127, 101, 120], graph

theory [119, 44], and discrete algorithms [33, 141, 121, 123, 124, 31, 32], also completed

during my graduate studies.

1.1 Expressivity and Learnability

The power of artificial, as well as biological, neural networks ultimately comes from

their ability effectively to capture complicated functions to approximate patterns ob-

served in input data. This ability is actually two abilities: First, there exist neural

networks that can approximate a given function of the input data. Second, in many

case these networks can be learned from the data using methods such as backpropa-

gation. Neither property would be useful without the other - a perfect approximation

that cannot be effectively learned is little better than the input data itself, and like-

wise for a poor approximation that can be learned. While both expressibility and

learnability have been observed in deep learning systems, there is relatively little the-

oretical justification for the circumstances in which functions can be expressed and

learned by neural networks.

For the problem of expressibility (Chapter 2), we provide formal justification for

the observed advantage of deeper learning. Even neural networks with a single hidden

layer are universal approximators, but deep networks tend in practice to be more

powerful than shallow ones. Several recent breakthroughs in deep learning, such as

residual networks (ResNets) [53], are effective because they permit the training of

deeper networks than was previously feasible. Recurrent networks may be thought of

as a limiting case representing arbitrarily large depth. We prove that the total number

of neurons m required to approximate natural classes of multivariate polynomials of n

variables grows only linearly with n for deep neural networks, but grows exponentially

when merely a single hidden layer is allowed. We also provide evidence that when
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the number of hidden layers is increased from 1 to k, the neuron requirement grows

exponentially not with n but with ni/k, suggesting that the minimum number of

layers required for practical expressibility grows only logarithmically with n.

For the problem of learnability (Chapter 3), we investigate the effects of initial-

ization and architecture on the start of training in deep ReLU nets. We identify two

common failure modes for early training in which the mean and variance of activations

are poorly behaved. For each failure mode, we give a rigorous proof of when it occurs

at initialization and how to avoid it. The first failure mode, exploding/vanishing mean

activation length, can be avoided by initializing weights from a symmetric distribu-

tion with variance 2/fan-in. The second failure mode, exponentially large variance

of activation length, can be avoided by keeping constant the sum of the reciprocals

of layer widths. We demonstrate empirically the effectiveness of our theoretical re-

sults in predicting when networks are able to start training. In particular, we note

that many popular initializations fail our criteria, whereas correct initialization and

architecture allows much deeper networks to be trained.

These chapters are based on Rolnick and Tegmark [125] and Lin, Tegmark, and

Rolnick [84], in which I formulated the proofs on expressibility and ran empirical

experiments to support them, and on Hanin and Rolnick [50], in which I contributed

to proofs and ran empirical experiments. Also see work in Benjamin, Rolnick, and

Kording [13].

1.2 Robustness

Beyond expressivity and learnability, another property is vital for neural networks

to learn effectively from real-world data. In practice, training data is subject to

error both in the input examples and in the desired outputs. This is an inevitable

consequence of training on ever larger datasets; even those that are heavily curated

are not error-free. Moreover, well-annotated datasets can be time-consuming and

expensive to collect, lending increased interest to larger but noisy datasets that are

more easily obtained, such as data pulled automatically from the Internet. One
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reason that deep neural networks have been successful is that they can learn from

such imperfect training data, unlike algorithms such as the perceptron learning rule.

In Chapter 4, we investigate the behavior of deep neural networks on training

sets with massively noisy labels. We demonstrate remarkably high test performance

after training on corrupted data from MNIST, CIFAR, and ImageNet. For example,

on MNIST we obtain test accuracy above 90 percent even after each clean training

example has been diluted with 100 randomly-labeled examples. Such behavior holds

across multiple patterns of label noise, even when erroneous labels are biased towards

confusing classes. We show that training in this regime requires a significant but

manageable increase in dataset size that is related to the factor by which correct

labels have been diluted. Finally, we provide an analysis of our results that shows

how increasing noise decreases the effective batch size.

This chapter is based on Rolnick, Veit, Belongie, and Shavit {126], in which I

designed the project, ran experiments, and interpreted them.

1.3 Connectomics algorithms

The connectivity of a biological neural network may be represented as a graph, called

the connectome. In the case of a human brain, the connectome contains roughly 1011

vertices (neurons) and 1015 edges (synapses). Understanding information flow through

a brain likely requires some knowledge of the underlying connectome. Currently,

however, the connectome has not been mapped for any organism except the simple

worm C. elegans, for which there are only 300 vertices in the graph. Even describing

such a small connectome took several years of human labor. Accordingly, there is

much interest in algorithms for reconstructing the connectome automatically from

high-resolution microscope images. This data is quite challenging, and, to date, all

such connectomics algorithms have required extensive manual correction, which is

itself unscalable to networks of reasonable size.

In Chapter 6, we consider how to automate the error-correction process in con-

nectomics. Typical deep learning algorithms rely upon localized classification of in-
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dividual pixels, rather than overall morphology. This leads to a high incidence of

erroneously merged objects. Humans, by contrast, can easily detect such errors by

acquiring intuition for the correct morphology of objects. Biological neurons have

complicated and variable shapes, which are challenging to learn, and merge errors

take a multitude of different forms. We present an algorithm, MergeNet, that shows

3D ConvNets can, in fact, detect merge errors from high-level neuronal morphology.

MergeNet follows unsupervised training and operates across datasets. We demon-

strate the performance of MergeNet both on a variety of connectomics data and on a

dataset created from merged MNIST images.

This chapter is based on Rolnick et al. [122], in which I helped design the algo-

rithm, implemented it, and tested it. Also see work in Meirovitch et al. [941.

1.4 Neuronal branching

Information flow within the brain remains mysterious even at the scale of individual

neurons. There is debate, for example, about exactly how signal integration occurs be-

tween inputs to the same neuron. The functional properties of neurons are intimately

tied to their intricate branching structures, which are observed to differ between neu-

ron types. Neither the development nor the function of these morphologies has been

adequately explained, despite the increasing amounts of data available for rigorous

analysis.

In Chapter 5, we present statistical models that explain much of the variance in

branching morphologies demonstrated by neurons, incorporating distance from the

soma and asymmetric structure by using Markovian hidden states. By analyzing

the models, we observe that many databases of neuron morphologies follow a similar

pattern; symmetric branching close to the soma and asymmetric branching for distant

parts. This is witnessed by the fact that the frequency of asymmetrical motifs, as

captured by graph theoretical trees, is higher than symmetrical motifs. Statistical

models of branching in neuron morphologies promise to make their analysis more

meaningful and suggest directions for investigating underlying biological processes.
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This chapter is based on Farhoodi, Rolnick, and Kording [391 (further work in

preparation), in which I helped design and implement the statistical analyses.

1.5 Attractor networks

It is generally supposed that specific structures within the brain contribute to partic-

ular kinds of computation; however, what these structures are, and what algorithmic

primitives they correspond to, remains in doubt. Possibly, for example, the brain

includes neural subnetworks particularly well-suited to memory storage, statistical

inference, or symbolic manipulation. It has been suggested that some such sub-

networks may be hard-coded into genetic instructions for building the brain, while

others may develop through interactions with the environment [90]. How such emer-

gent properties arise from ensembles of individual neurons remains a mystery, both in

understanding computation in the brain and in building effective artificial networks

with similar behavior. In Chapter 7, we consider two models that replicate behavior

observed in the brain using attractor networks (networks in which the dynamics fall

into stable attractor states).

First, we consider the problem of stochastic computation. Stochasticity is an

essential part of explaining the world. Increasingly, neuroscientists and cognitive

scientists are identifying mechanisms whereby the brain uses probabilistic reasoning

in representational, predictive, and generative settings. But stochasticity is not al-

ways useful: robust perception and memory retrieval require representations that are

immune to corruption by stochastic noise. In an effort to combine these robust rep-

resentations with stochastic computation, we present a Hopfield-type network that

generalizes traditional recurrent attractor networks to follow probabilistic Markov

dynamics between stable and noise-resistant fixed points.

Next, we model periodic attractor states in which sequences of neurons are cycli-

cally active, as has been observed in the cortex and hippocampus of the brain. We

rigorously prove the existence of such states within simple threshold-linear networks,

providing the first justification of the complex attractors observed in these networks.
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This chapter is based on Rolnick, Bernstein, Dasgupta, and Sompolinsky (further

work in preparation), in which I helped design, implement, and test the network, and

on work in preparation with Carina Curto, in which I formulated the proofs.
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Chapter 2

The Power of Deeper Networks for

Expressing Natural Functions

2.1 Introduction

Deep learning has lately been shown to be a very powerful tool for a wide range of

problems, from image segmentation to machine translation. Despite its success, many

of the techniques developed by practitioners of artificial neural networks (ANNs)

are heuristics without theoretical guarantees. Perhaps most notably, the power of

feedforward networks with many layers (deep networks) has not been fully explained.

The goal of this chapter is to shed more light on this question and to suggest heuristics

for how deep is deep enough.

It is well-known [29, 40, 60, 7, 112] that neural networks with a single hidden layer

can approximate any function under reasonable assumptions, but it is possible that

the networks required will be extremely large. Recent authors have shown that some

functions can be approximated by deeper networks much more efficiently (i.e. with

fewer neurons) than by shallower ones. Often, these results admit one or more of

the following limitations: "existence proofs" without explicit constructions of the

functions in question; explicit constructions, but relatively complicated functions; or

applicability only to types of network rarely used in practice.

It is important and timely to extend this work to make it more concrete and
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actionable, by deriving resource requirements for approximating natural classes of

functions using today's most common neural network architectures. Lin, Tegmark,

and Rolnick 1841 recently proved that it is exponentially more efficient to use a deep

network than a shallow network when Taylor-approximating the product of input

variables. In the present work, we move far beyond this result in the following ways:

(i) we use standard uniform approximation instead of Taylor approximation, (ii) we

show that the exponential advantage of depth extends to all general sparse multi-

variate polynomials, and (iii) we address the question of how the number of neurons

scales with the number of layers. Our results apply to standard feedforward neural

networks and are borne out by empirical tests.

Our primary contributions are as follows:

* It is possible to achieve arbitrarily close approximations of simple multi-

variate and univariate polynomials with neural networks having a bounded

number of neurons (see 2.2).

* Such polynomials are exponentially easier to approximate with deep

networks than with shallow networks (see 2.3).

e The power of networks improves rapidly with depth; for natural polynomials,

the number of layers required is at most logarithmic in the number of

input variables, where the base of the logarithm depends upon the layer width

(see 2.4).

2.1.1 Related Work

Deeper networks have been shown to have greater representational power with respect

to various notions of complexity, including piecewise linear decision boundaries [98]

and topological invariants [14]. Recently, Poole et al. [1161 and Raghu et al. [117]

showed that the trajectories of input variables attain exponentially greater length

and curvature with greater network depth.

Work including [30, 37, 112, 115, 150] shows that there exist functions that re-

quire exponential width to be approximated by a shallow network. Barron [71 pro-
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vides bounds on the error in approximating general functions by shallow networks.

Mhaskar, Liao, and Poggio [95] and Poggio et al. [115] show that for compositional

functions (those that can be expressed by recursive function composition), the num-

ber of neurons required for approximation by a deep network is exponentially smaller

than the best known upper bounds for a shallow network. Mhaskar et al. [95] ask

whether functions with tight lower bounds must be pathologically complicated, a

question which we answer here in the negative.

Various authors have also considered the power of deeper networks of types other

than the standard feedforward model. The problem has also been posed for sum-

product networks [34] and restricted Boltzmann machines [91]. Cohen, Sharir, and

Shashua [24] showed, using tools from tensor decomposition, that shallow arithmetic

circuits can express only a measure-zero set of the functions expressible by deep

circuits. A weak generalization of this result to convolutional neural networks was

shown by Cohen and Shashua [25].

2.2 The power of approximation

In this chapter, we will consider the standard model of feedforward neural networks

(also called multilayer perceptrons). Formally, the network may be considered as a

multivariate function N(x) = AO(... -(Aio-(Aox)) ... ), where AO, A 1,... , A are

constant matrices and - denotes a scalar nonlinear function applied element-wise to

vectors. The constant k is referred to as the depth of the network. The neurons of the

network are the entries of the vectors -(A -... -(Ai-(Aox)) ... ), for f = 1,.. ., k - 1.

These vectors are referred to as the hidden layers of the network.

Two notions of approximation will be relevant in our results: c-approximation,

also known as uniform approximation, and Taylor approximation.

Definition 2.2.1. For constant E > 0, we say that a network N(x) c-approximates

a multivariate function f(x) (for x in a specified domain (-R, R)n) if sup, N(x) -

f (x)I < E.

Definition 2.2.2. We say that a network N(x) Taylor-approximates a multivariate
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polynomial p(x) of degree d if p(x) is the dth order Taylor polynomial (about the

origin) of N(x).

The following proposition shows that Taylor approximation implies E-approximation

for homogeneous polynomials. The reverse implication does not hold.

Proposition 2.2.3. Suppose that the network N(x) Taylor-approximates the homo-

geneous multivariate polynomial p(x). Then, for every c, there exists a network N, (x)

that c-approximates p(x), such that N(x) and N,(x) have the same number of neurons

in each layer. (This statement holds for x E (-R, R)n for any specified R.)

Proof. Suppose that N(x) = A (... (Alo(Aox)) ... ) and that p(x) has degree d.

Since p(x) is a Taylor approximation of N(x), we can write N(x) as p(x) + E(x),

where E(x) = 'd+ Ei(x) is a Taylor series with each Ei(x) homogeneous of degree

i. Since N(x) is the function defined by a neural network, it converges for every

x E Rn. Thus, E(x) converges, as does E(6x)/6d =_ E=d+1 6-d E(x). By picking 6

sufficiently small, we can make each term 6i-dEi(x) arbitrarily small. Let 6 be small

enough that JE(6x)/6d < E holds for all x in (-R, R)n.

Let A' = 6Ao, A' = Ak/6d, and A' = At forf = 1,2,...,k - 1. Then,

for N,(x) =A'o-(-... o(A' 1o(A'x)) ... ), we observe that NE(x) = N(6x)/6d, and

therefore:

IN6 (x) - p(x)I = IN(6x)/6d - p(x)I

= lp(6x)/6d + E(6x)/6d - p(x)I

- IE(6x)/ 6dj

< E.

We conclude that N(x) is an E-approximation of p(x), as desired. E

For a fixed nonlinear function o-, we consider the total number of neurons (exclud-

ing input and output neurons) needed for a network to approximate a given function.

Remarkably, it is possible to attain arbitrarily good approximations of a (not neces-

sarily homogeneous) multivariate polynomial by a feedforward neural network, even
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with a single hidden layer, without increasing the number of neurons past a certain

bound. (See also Corollary 1 in [115].)

Theorem 2.2.4. Suppose that p(x) is a degree-d multivariate polynomial and that

the nonlinearity o- has nonzero Taylor coefficients up to degree d. Let m'(p) be the

minimum number of neurons in a depth-k network that E-approximates p. Then,

the limit lime, 0 m'(p) exists (and is finite). (Once again, this statement holds for

x G (-R, R)n for any specified R.)

Proof. We show that lim,,o m'(p) exists; it follows immediately that lim,,o m'(p)

exists for every k, since an E-approximation to p with depth k can be constructed

from one with depth 1.

Let p1 (x),p 2(x), ... ,ps(x) be the monomials of p(x), so that p(x) = pi (x).

We claim that each pi(x) can be Taylor-approximated by a network N2 (x) with one

hidden layer. This follows, for example, from the proof in [841 that products can be

Taylor-approximated by networks with one hidden layer, since each monomial is the

product of several inputs (with multiplicity); we prove a far stronger result about

N2 (x) later in this work (see Theorem 2.3.1).

Suppose now that N'(x) has mi hidden neurons. By Proposition 2.2.3, we conclude

that since p (x) is homogeneous, it may be 6-approximated by a network N6(x) with

mi hidden neurons, where 6 = /s. By combining the networks Nj(x) for each i, we

can define a network N,(x) = ZE N6(x) with ZE mi neurons. Then, we have:

N, (x) - p(x)| < |N6(x) - pi(x)|

< Z6 = s6 = E.

Hence, N,(x) is an c-approximation of p(x), implying that m'(p) < E mi for every

c. Thus, lim,, 0 m'(p) exists, as desired. 0

This theorem is perhaps surprising, since it is common for E-approximations to

functions to require ever-greater complexity, approaching infinity as E - 0. For exam-

ple, the function exp(I - xj) may be approximated on the domain (-7r, -) by Fourier
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sums of the form ZE am cos(kx). However, in order to achieve E-approximation,

we need to take m ~ 1/fl terms. By contrast, we have shown that a finite neural

network architecture can achieve arbitrarily good approximations merely by altering

its weights.

Note also that the assumption of nonzero Taylor coefficients cannot be dropped

from Theorem 2.2.4. For example, the theorem is false for rectified linear units

(ReLUs), which are piecewise linear and do not admit a Taylor series. This is because

E-approximating a non-linear polynomial with a piecewise linear function requires an

ever-increasing number of pieces as E -+ 0.

Theorem 2.2.4 allows us to make the following definition:

Definition 2.2.5. Suppose that a nonlinear function - is given. For p a multivariate

polynomial, let mu2ir ""(p) be the minimum number of neurons in a depth-k network

that e-approximates p for all c arbitrarily small. Set munifo"(p) = mink mkuifo'(p)

Likewise, let maTYlor(p) be the minimum number of neurons in a depth-k network that

Taylor-approximates p, and set mTaYlor(p) = mink Taylor

In the next section, we will show that there is an exponential gap between m1  (p)

and mu"ifo""(p) and between mTaylor (p) and mTaylor(p) for various classes of polyno-

mials p.

2.3 The inefficiency of shallow networks

In this section, we compare the efficiency of shallow networks (those with a single

hidden layer) and deep networks at approximating multivariate polynomials. Proofs

of our main results are included in 2.6.

2.3.1 Multivariate polynomials

Our first result shows that uniform approximation of monomials requires exponen-

tially more neurons in a shallow than a deep network.
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Theorem 2.3.1. Let p(x) denote the monomial x1 x2 ... xln, with d = n ri.

Suppose that the nonlinearity o- has nonzero Taylor coefficients up to degree 2d. Then,

we have:

(i) mi"form (p) = Hl 1 (ri + 1),

(ii) muniform(p) < E 1(7[log2 (ri)] + 4),

where [x] denotes the smallest integer that is at least x.

We can prove a comparable result for mTaylor under slightly weaker assumptions

on -. Note that by setting r, = r2 = ... = rn = 1, we recover the result of [84]

that the product of n numbers requires 2"n neurons in a shallow network but can be

Taylor-approximated with linearly many neurons in a deep network.

Theorem 2.3.2. Let p(x) denote the monomial x 1 x 2 - x2 , with d = ri.

Suppose that - has nonzero Taylor coefficients up to degree d. Then, we have:

(i) maylor(p) = H=I(ri + 1),

(ii) m Tayor(p) En 1(7log 2(ri)l + 4).

It is worth noting that neither of Theorems 2.3.1 and 2.3.2 implies the other. This

is because it is possible for a polynomial to admit a compact uniform approximation

without admitting a compact Taylor approximation.

It is natural now to consider the cost of approximating general polynomials. How-

ever, without further constraint, this is relatively uninstructive because polynomials

of degree d in n variables live within a space of dimension (nd ), and therefore most

require exponentially many neurons for any depth of network. We therefore consider

polynomials of sparsity c: that is, those that can be represented as the sum of c

monomials. This includes many natural functions.

The following theorem, when combined with Theorems 2.3.1 and 2.3.2, shows

that general polynomials p with subexponential sparsity have exponentially large

m""r "(p) and m aylor(p), but subexponential muniform (p) and mTaylor (p).
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Theorem 2.3.3. Let p(x) be a multivariate polynomial of degree d and sparsity c,

having monomials q 1(x), q2 (x),... , qc(x). Suppose that the nonlinearity - has nonzero

Taylor coefficients up to degree 2d. Then, we have:

(i) m " f"( ;> 1maxj M, ""(qj).

(i) mnfo(p) < Ejmnmnifo(q).

These statements also hold if muniform is replaced with m'aylor.

As mentioned above with respect to ReLUs, some assumptions on the Taylor coef-

ficients of the activation function are necessary for the results we present. However, it

is possible to loosen the assumptions of Theorem 2.3.1 and 2.3.2 while still obtaining

exponential lower bounds on uniform (p) and mTaylor

Theorem 2.3.4. Let p(x) denote the monomial x 1 x 2 - x , with d = - ri.

Suppose that the nonlinearity c- has nonzero dth Taylor coefficient (other Taylor

coefficients are allowed to be zero). Then, mnu"fo"(p) and mjaylor(p) are at least

1 H> (ri + 1). (An even better lower bound is the maximum coefficient in the poly-

nomial ] li(1 + y + . . . + yri).)

2.3.2 Univariate polynomials

As with multivariate polynomials, depth can offer an exponential savings when ap-

proximating univariate polynomials. We show below (Proposition 2.3.5) that a shal-

low network can approximate any degree-d univariate polynomial with a number of

neurons at most linear in d. The monomial xd requires d + 1 neurons in a shallow

network (Proposition 2.3.6), but can be approximated with only logarithmically many

neurons in a deep network. Thus, depth allows us to reduce networks from linear to

logarithmic size, while for multivariate polynomials the gap was between exponential

and linear. The difference here arises because the dimensionality of the space of uni-

variate degree-d polynomials is linear in d, which the dimensionality of the space of

multivariate degree-d polynomials is exponential in d.
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Proposition 2.3.5. Suppose that the nonlinearity o- has nonzero Taylor coefficients

up to degree d. Then, m Taylor(p) < d + 1 for every univariate polynomial p of degree

d.

Proof. Pick ao, a, .... , ad to be arbitrary, distinct real numbers. Consider the Van-

dermonde matrix A with entries Aij= aj. It is well-known that det(A) = H]<i, (ai -

ai) 5 0. Hence, A is invertible, which means that multiplying its columns by nonzero

values gives another invertible matrix. Suppose that we multiply the jth column of

A by o- to get A', where o-(x) = E ujxj is the Taylor expansion of o-(x).

Now, observe that the ith row of A' is exactly the coefficients of o-(aix), up to

the degree-d term. Since A' is invertible, the rows must be linearly independent, so

the polynomials o-(aix), restricted to terms of degree at most d, must themselves be

linearly independent. Since the space of degree-d univariate polynomials is (d + 1)-

dimensional, these d+ 1 linearly independent polynomials must span the space. Hence,
Taylor\ d+1 anm (p) < d + 1 for any univariate degree-d polynomial p. In fact, we can fix the

weights from the input neuron to the hidden layer (to be ao, a,.... , ad, respectively)

and still represent any polynomial p with d + 1 hidden neurons. E

Proposition 2.3.6. Let p(x) = xd, and suppose that the nonlinearity o-(x) has

nonzero Taylor coefficients up to degree 2d. Then, we have:

(i) 1uniform (p) = d + 1.

(ii) m unifo(p) < 7[log2 (d)].

These statements also hold if munifr " is replaced with mTaylor.

Proof. Part (i) follows from part (i) of Theorems 2.3.1 and 2.3.2 by setting n =1 and

= d.

For part (ii), observe that we can Taylor-approximate the square x2 of an input x

with three neurons in a single layer:

1
1 (o-(x) + o-(-x) - 2o-(0)) = X2 + O(x4 + x5 + . .

2a-"(0)
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We refer to this construction as a square gate, and the construction of Lin et al. [84] as

a product gate. We also use identity gate to refer to a neuron that simply preserves the

input of a neuron from the preceding layer (this is equivalent to the skip connections

in residual nets [531).

Consider a network in which each layer contains a square gate (3 neurons) and

either a product gate or an identity gate (4 or 1 neurons, respectively), according

to the following construction: The square gate squares the output of the preceding

square gate, yielding inductively a result of the form x2k, where k is the depth of the

layer. Writing d in binary, we use a product gate if there is a 1 in the 2k-'-place; if so,

the product gate multiplies the output of the preceding product gate by the output

of the preceding square gate. If there is a 0 in the 2k-'-place, we use an identity gate

instead of a product gate. Thus, each layer computes x2k and multiplies x 2 k-1 to the

computation if the 2k-'-place in d is 1. The process stops when the product gate

outputs xd.

This network clearly uses at most 7'log2 (d)] neurons, with a worst case scenario

where d + 1 is a power of 2. Hence mTaylor(p) < 7log 2 (d)], with m uniform (p) <

mTaylor(p) by Proposition 2.2.3 since p is homogeneous.

2.4 How efficiency improves with depth

We now consider how mniform(p) scales with k, interpolating between exponential in

n (for k = 1) and linear in n (for k = log n). In practice, networks with modest

k > 1 are effective at representing natural functions. We explain this theoretically by

showing that the cost of approximating the product polynomial drops off rapidly as

k increases.

By repeated application of the shallow network construction in [84], we obtain

the following upper bound on mnifo"m(p), which we conjecture to be essentially tight.

Our approach leverages the compositionality of polynomials, as discussed e.g. in [95]

and [1151, using a tree-like neural network architecture.

Theorem 2.4.1. Let p(x) equal the product x 1 x2 ... xn, and suppose - has nonzero
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Taylor coefficients up to degree n. Then, we have:

m uniflorm~p n (k1l)/k .2 n'/) (2.1)

Proof. We construct a network in which groups of the n inputs are recursively mul-

tiplied up to Taylor approximation. The n inputs are first divided into groups of

size bi, and each group is multiplied in the first hidden layer using 2b 1 neurons (as

described in [84]). Thus, the first hidden layer includes a total of 2b1n/bi neurons.

This gives us n/bi values to multiply, which are in turn divided into groups of size

b 2. Each group is multiplied in the second hidden layer using 2b2 neurons. Thus, the

second hidden layer includes a total of 2b2 n/(bib2) neurons.

We continue in this fashion for bi, b2,... , bk such that b1b 2 ... bk = n, giving us

one neuron which is the product of all of our inputs. By considering the total number

of neurons used, we conclude

k k k

mT aor n b 2__-_b_2
Tak (P)<2E f. 2 i (fb) 2b (2.2)

i=1 _j i=1 j=i+

By Proposition 2.2.3, m niform(p) mTaylor(p) since p is homogeneous. Setting b=

ni/k, for each i, gives us the desired bound (2.1). E

In fact, we can solve for the choice of bi such that the upper bound in (2.2) is

minimized, under the condition b1b2 ... bk = n. Using the technique of Lagrange

multipliers, we know that the optimum occurs at a minimum of the function

k k k

L(bi, A) :=n -- r bi A + E r bj 2 *.
i=1 i=1 (j=i+1
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Figure 2-1: The optimal settings for {bi} I as n varies are shown for k = 1, 2, 3.

Observe that the bi converge to n1/k for large n, as witnessed by a linear fit in the

log-log plot. The exact values are given by equations (2.4) and (2.5).
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Figure 2-2: Performance of trained networks in approximating the product of 20 input
variables, ranging from red (high error) to blue (low error). The error shown here
is the expected absolute difference between the predicted and actual product. The
curve w = n(k-1)/k . 2 /k for n = 20 is shown in black. In the region above and to

the right of the curve, it is possible to effectively approximate the product function
(Theorem 2.4.1).
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Differentiating L with respect to bi, we obtain the conditions

i-1 Hk b3k

0 = -A J b + h+lb) 2bh + (log 2) ( b) 2 i, for 1 < i < k (2.3)
j7 i h=1 ji

k

0= n - J7bj. (2.4)
j=1

Dividing (2.3) by H[-+ 1 bj and rearranging gives us the recursion

b= 1 + log 2 (bi_ 1 - 1/ log 2). (2.5)

Thus, the optimal bi are not exactly equal but very slowly increasing with i (see

Figure 2-1).

The following conjecture states that the bound given in Theorem 2.4.1 is (approx-

imately) optimal.

Conjecture 2.4.2. Let p(x) equal to the product x1 x2 ... xn, and suppose that - has

all nonzero Taylor coefficients. Then, we have:

m niform(p) - 2 e(nl/k) (2.6)

i.e., the exponent grows as n1/k for n -+ oc.

We empirically tested Conjecture 2.4.2 by training ANNs to predict the product

of input values x 1 , .. . , xn with n = 20 (see Figure 2-2). The rapid interpolation from

exponential to linear width aligns with our predictions.

In our experiments, we used feedforward networks with dense connections between

successive layers. In the figure, we show results for -(x) = tanh(x) (note that this

behavior is even better than expected, since this function actually has numerous

zero Taylor coefficients). Similar results were also obtained for rectified linear units

(ReLUs) as the nonlinearity, despite the fact that this function does not even admit

a Taylor series. The number of layers was varied, as was the number of neurons

33



within a single layer. The networks were trained using the AdaDelta optimizer [160]

to minimize the absolute value of the difference between the predicted and actual

values. Input variables xi were drawn uniformly at random from the interval [0, 2],

so that the expected value of the output would be of manageable size.

Eq. (2.6) provides a helpful rule of thumb for how deep is deep enough. Suppose,

for instance, that we wish to keep typical layers no wider than about a thousand

(~ 2'0) neurons. Eq. (2.6) then implies n1/k ; 10, i.e., that the number of layers

should be at least

k ,> logio n.

It would be very interesting if one could show that general polynomials p in n vari-

ables require a superpolynomial number of neurons to approximate for any constant

number of hidden layers. The analogous statement for Boolean circuits - whether

the complexity classes TC0 and TC1 are equal - remains unresolved and is assumed

to be quite hard. Note that the formulations for Boolean circuits and deep neu-

ral networks are independent statements (neither would imply the other) due to the

differences between computation on binary and real values. Indeed, gaps in expres-

sivity have already been proven to exist for real-valued neural networks of different

depths, for which the analogous results remain unknown in Boolean circuits (see

e.g. [96, 23, 22, 98, 24, 150]).

2.5 Conclusion

We have shown how the power of deeper ANNs can be quantified even for simple

polynomials. We have proved that arbitrarily good approximations of polynomials

are possible even with a fixed number of neurons and that there is an exponential

gap between the width of shallow and deep networks required for approximating a

given sparse polynomial. For n variables, a shallow network requires size exponential

in n, while a deep network requires at most linearly many neurons. Networks with a

constant number k > 1 of hidden layers appear to interpolate between these extremes,

following a curve exponential in nl/k. This suggests a rough heuristic for the number of
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layers required for approximating simple functions with neural networks. For example,

if we want no layers to have more than 210 neurons, say, then the minimum number

of layers required grows only as logo n. To further improve efficiency using the 0(n)

constructions we have presented, it suffices to increase the number of layers by a

factor of log 2 10 ~ 3, to log 2 n.

The key property we use in our constructions is compositionality, as detailed in

[115]. It is worth noting that as a consequence our networks enjoy the property of

locality mentioned in [24], which is also a feature of convolutional neural nets. That

is, each neuron in a layer is assumed to be connected only to a small subset of neurons

from the previous layer, rather than the entirety (or some large fraction). In fact, we

showed (e.g. Prop. 2.3.6) that there exist natural functions computable with linearly

many neurons, with each neuron is connected to at most two neurons in the preceding

layer, which nonetheless cannot be computed with fewer than exponentially many

neurons in a single layer, no matter how may connections are used. Our construction

can also be framed with reference to the other properties mentioned in [24]: those

of sharing (in which weights are shared between neural connections) and pooling

(in which layers are gradually collapsed, as our construction essentially does with

recursive combination of inputs).

This section has focused exclusively on the resources (neurons and synapses) re-

quired to compute a given function for fixed network depth. (Note also results of

[86, 51, 48] for networks of fixed width.) An important complementary challenge is

to quantify the resources (e.g. training steps) required to learn the computation, i.e.,

to converge to appropriate weights using training data - possibly a fixed amount

thereof, as suggested in Zhang et al. [161]. There are simple functions that can be

computed with polynomial resources but require exponential resources to learn [137].
It is quite possible that architectures we have not considered increase the feasibil-

ity of learning. For example, residual networks (ResNets) [53J and unitary nets (see

e.g. [3, 66]) are no more powerful in representational ability than conventional net-

works of the same size, but by being less susceptible to the "vanishing/ exploding

gradient" problem, it is far easier to optimize them in practice. We look forward to
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future work that will help us understand the power of neural networks to learn.

2.6 Proofs of Theorems

Proof of Theorem 2.3.1.

Without loss of generality, suppose that ri > 0 for i = 1,.. , n. Let X be the multiset

in which xi occurs with multiplicity ri.

We first show that Ili=, (ri + 1) neurons are sufficient to approximate p(x). Ap-

pendix A in [84] demonstrates that for variables y1, . . . , YN, the product y.- -- --YN can

be Taylor-approximated as a linear combination of the 2 N functions o( yi + -- - yd)-

Consider setting yi, . . . , Yd equal to the elements of multiset X. Then, we conclude

that we can approximate p(x) as a linear combination of the functions a-( yi .- -tyd).

However, these functions are not all distinct: there are ri + 1 distinct ways to assign

i signs to ri copies of xi (ignoring permutations of the signs). Therefore, there are

H , (ri+1) distinct functions -(iy ... tyN), proving that mTaorp -H=(ri+1).

Proposition 2.2.3 implies that for homogeneous polynomials p, we have m""ni""(p) <

mTaylor (

We now show that this number of neurons is also necessary for approximating

p(x). Suppose that N,(x) is an E-approximation to p(x) with depth 1, and let the

Taylor series of N,(x) be p(x) + E(x). Let Ek(x) be the degree-k homogeneous

component of E(x), for 0 < k < 2d. By the definition of E-approximation, sup, E(x)

goes to 0 as E does, so by picking E small enough, we can ensure that the coefficients

of each Ek(x) go to 0.

Let m =mniform(p) and suppose that -(x) has the Taylor expansion E o-Xk.

Then, by grouping terms of each order, we conclude that there exist constants aij and
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w2 such that

m

Ud EW
j=1

Uk EWj
j=1

n d

aijxi = p(x) + Ed(x)

n k

( i =) Ek(x) fork # d.

For each S

occurs in S,

This gives

C X, let us take the derivative of this equation by every variable that

where we take multiple derivatives of variables that occur multiple times.

5wfh n_ 2 d-ISI
E wjrl hj E ijxi

=1 hES (i=1

wfa n k-|SI

j hj ijxi
j=1 hES (i=1

a a
= p(x) + -Ed(x),

S E(x) as

a
- as Ek (X)

Observe that there are r = R 1 (ri + 1) choices for S, since each variable xi can

be included anywhere from 0 to ri times. Define A to be the r x m matrix with

entries Asj = lhs ahj. We claim that A has full row rank. This would show that

the number of columns m is at least the number of rows r = " 1(ri + 1), proving

the desired lower bound on m.

Suppose towards contradiction that the rows As,,. admit a linear dependence:

r

E ceAse,. = 0,

where the coefficients ce are all nonzero and the Se denote distinct subsets of X. Let

S* be such that Ic, is maximized. Then, take the dot product of each side of the above
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equation by the vector with entries (indexed by j) equal to wj (E',, aijxi)-IS*:

r m n d-IS*I

0 = E c 7 w 1 ah ( ai x
e=1 j=1 hESSe i=1

?n n d-|Se|

= Ce w3  a ( aixi

f(|IS I) 1| j=1 hCSe i=1

n (d+|SeI-|Sw|)-\S, |

+ 5 j cE~ fj ahi E aijx2

ei(lSlei|S-i) j=1 hESe i=1

We can use (2.7) to simplify the first term and (2.8) (with k = d + Sel -- S|) to

simplify the second term, giving us:

0Ce pax) + Ed(x) (2.9)
ei(se 2 IS. ) Ud -O!belas

+ C~ Sel! - 8)+ E c, - It !aEd+jSej-jS I X)
e|(\Se|IS.|) d+|Se-|S.| - (d+ |S| - |S*|! Ost

Consider the coefficient of the monomial a*p(x), which appears in the first summand

with coefficient c, . Since the Se are distinct, this monomial does not appear in

any other term (-p(x), but it could appear in some of the terms -- Ek(x).

By definition, Ic* is the largest of the values Ice1, and by setting c small enough,

all coefficients of -- Ek(x) can be made negligibly small for every k. This implies

that the coefficient of the monomial -2-p(x) can be made arbitrarily close to c* - Is,!as* -dd!'

which is nonzero since c* is nonzero.

However, the left-hand side of equation (2.9) tells us that this coefficient should

be zero - a contradiction. We conclude that A has full row rank, and therefore that

muniform(p) =m ;> ] (ri + 1). This completes the proof of part (i).

We now consider part (ii) of the theorem. It follows from Proposition 2.3.6, part

(ii) that, for each i, we can Taylor-approximate x" using 7 [log 2 (ri) 1 neurons arranged

in a deep network. Therefore, we can Taylor-approximate all of the x using a total

of E 7[log2 (ri)] neurons. From [841, we know that these n terms can be multiplied

using 4n additional neurons, giving us a total of Ej(7[log 2 (r)1 + 4). Proposition
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2.2.3 implies again that m"nif "(p) < mfaylo(p). This completes the proof.

Proof of Theorem 2.3.2.

As above, suppose that ri > 0 for i = 1,. . . , n, and let X be the multiset in which xi

occurs with multiplicity ri.

It is shown in the proof of Theorem 2.3.1 that R= 1 (ri +1) neurons are sufficient to

Taylor-approximate p(x). We now show that this number of neurons is also necessary

for approximating p(x). Let m = mTaylor (p) and suppose that a(x) has the Taylor

expansion Et OkX . Then, by grouping terms of each order, we conclude that there

exist constants aij and wj such that

M n d

d w i aijxi d X) (2.10)
j=1 i=1
m n k

Uk Wj ( aijxi =)0 for0<k<N-1. (2.11)
j=1 (i=1

For each S C X, let us take the derivative of equations (2.10) and (2.11) by every

variable that occurs in S, where we take multiple derivatives of variables that occur

multiple times. This gives

0 7 " d l E 3 r a i n d -| S | X

dd E ah aijxi )s-IIx) (2.12)
=1 hES i=1

Uk -k1 Mn k-|S|

W. H ah E aijxi = 0 (2.13)
5! 1j=1 hES i=1

for IS| I k < d - 1. Observe that there are r =1 (ri + 1) choices for S, since each

variable xi can be included anywhere from 0 to ri times. Define A to be the r x m

matrix with entries Asj = Hhs aj. We claim that A has full row rank. This would

show that the number of columns m is at least the number of rows r = R" (ri + 1),

proving the desired lower bound on m.
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Suppose towards contradiction that the rows As,,. admit a linear dependence:

r

Z ceAs,. 0,
f=1

where the coefficients cj are nonzero and the Se denote distinct subsets of X. Set

s = maxt S4j. Then, take the dot product of each side of the above equation by the

vector with entries (indexed by j) equal to wj (1:_, aijxi)d~:

r m n d-s

0 E= c E wj ][I ah (Z aij xi
f=1 j=1 hESe i=1

m n d-\Se|

= S ce wj H ahj E aijxi
Cl(ISeI=s) j=1 hESe i=1

+ r Jn (d+ISeI-s)-Se|

+ c1 cr wj 11ahi (aijxi.

el(ISeI<s) j=1 hESe i=1

We can use (2.12) to simplify the first term and (2.13) (with k d +|Se| - s) to

simplify the second term, giving us:

0 = ce S! 0 p(x) + c* S- -0
9(Se|=s) Ud d! OSt II) + Od+ISeI-s . (d + ISI - s

= I(ISeI=s) ce O -S ! 09 xS Ud S

Since the distinct monomials g-p(x) are linearly independent, this contradicts our

assumption that the ce are nonzero. We conclude that A has full row rank, and

therefore that m Taylor(p) = m > H I (ri + 1). This completes the proof of part (i).

Part (ii) of the theorem was demonstrated in the proof of Theorem 2.3.1. This

completes the proof.
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Proof of Theorem 2.3.3.

Our proof in Theorem 2.3.1 relied upon the fact that all nonzero partial derivatives

of a monomial are linearly independent. This fact is not true for general polynomials

p; however, an exactly similar argument shows that m"1if""(p) is at least the number

of linearly independent partial derivatives of p, taken with respect to multisets of the

input variables.

Consider the monomial q of p such that m" "niform(q) is maximized, and suppose

that q(x) = xII 2 ... x-;. By Theorem 2.3.1, m niform(q) is equal to the number

1=1 (ri + 1) of distinct monomials that can be obtained by taking partial derivatives

of q. Let Q be the set of such monomials, and let D be the set of (iterated) partial

derivatives corresponding to them, so that for d E D, we have d(q) E Q.

Consider the set of polynomials P ={d(p) I d E D}. We claim that there exists

a linearly independent subset of P with size at least ID1/c. Suppose to the contrary

that P' is a maximal linearly independent subset of P with P'l < ID1/c.

Since p has c monomials, every element of P has at most c monomials. Therefore,

the total number of distinct monomials in elements of P' is less than IDI. However,

there are at least IDI distinct monomials contained in elements of P, since for d E

D, the polynomial d(p) contains the monomial d(q), and by definition all d(q) are

distinct as d varies. We conclude that there is some polynomial p' E P\P' containing

a monomial that does not appear in any element of P'. But then p' is linearly

independent of P', a contradiction since we assumed that P' was maximal.

We conclude that some linearly independent subset of P has size at least ID1/c,

and therefore that the space of partial derivatives of p has rank at least ID1/c =

m"n or(q)/c. This proves part (i) of the theorem. Part (ii) follows immediately from

the definition of muniform (p).

Similar logic holds for mTaylor.
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Proof of Theorem 2.3.4.

We will prove the desired lower bounds for mniform (p); a very similar argument holds

for m Taylor(p). As above, suppose that ri > 0 for i = 1, ... , n. Let X be the multiset

in which xi occurs with multiplicity ri.

Suppose that NE(x) is an c-approximation to p(x) with depth 1, and let the degree-

d Taylor polynomial of N,(x) be p(x) +E(x). Let Ed(x) be the degree-d homogeneous

component of E(x). Observe that the coefficients of the error polynomial Ed(x) can

be made arbitrarily small by setting E sufficiently small.

Let m m""i ""(p) and suppose that -(x) has the Taylor expansion _ cTX.

Then, by grouping terms of each order, we conclude that there exist constants aij and

wj such that
M n d

djw wj ( aijxi =p(x) + Ed(x)
j=1 (i=1

For each S C X, let us take the derivative of this equation by every variable that

occurs in S, where we take multiple derivatives of variables that occur multiple times.

This gives

E a I: aii - p(x) + E(x).

Consider this equation as S C X varies over all C, multisets of fixed size s. The

left-hand side represents a linear combination of the m terms ( ,1 aijxi)d5. The

polynomials -p(x) + a E(x) on the right-hand side must be linearly independent

as S varies, since the distinct monomials ap(x) are linearly independent and the

coefficients of -2-Ed(x) can be made arbitrarily small.

This means that the number m of linearly combined terms on the left-hand side

must be at least the number C, of choices for S. Observe that C, is the coefficient

of the term yS in the polynomial g(y) = Hi(1 + y + ... + yri). A simple (and not

very good) lower bound for Cs is - Il= (r +1), since there are U 1(ri + 1) distinct

sub-multisets of X, and their cardinalities range from 0 to d.
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Chapter 3

How to Start Training: The Effect of

Initialization and Architecture

3.1 Introduction

Despite the growing number of practical uses for deep learning, training deep neural

networks remains a challenge. Among the many possible obstacles to training, it

is natural to distinguish two kinds: problems that prevent a given neural network

from ever achieving better-than-chance performance and problems that have to do

with later stages of training, such as escaping flat regions and saddle points [64, 137],

reaching spurious local minima [41, 71], and overfitting [4, 161]. This paper focuses

specifically on two failure modes related to the first kind of difficulty:

(FM1): The mean length scale in the final layer increases/ decreases exponentially with

the depth.

(FM2): The empirical variance of length scales across layers grows exponentially with

the depth.

Our main contributions and conclusions are:

* The mean and variance of activations in a neural network are both

important in determining whether training begins. If both failure modes
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FMI and FM2 are avoided, then a deeper network need not take longer to start

training than a shallower network.

" FM1 is dependent on weight initialization. Initializing weights with the

correct variance (in fully connected and convolutional networks) and correctly

weighting residual modules (in residual networks) prevents the mean size of

activations from becoming exponentially large or small as a function of the

depth, allowing training to start for deeper architectures.

" For fully connected and convolutional networks, FM2 is dependent on

architecture. Wider layers prevent FM2, again allowing training to start for

deeper architectures. In the case of constant-width networks, the width should

grow approximately linearly with the depth to avoid FM2.

" For residual networks, FM2 is largely independent of the architec-

ture. Provided that residual modules are weighted to avoid FM1, FM2 can

never occur. This qualitative difference between fully connected and residual

networks can help to explain the empirical success of the latter, allowing deep

and relatively narrow networks to be trained more readily.

FM1 for fully connected networks has been previously studied [52, 111, 134].

Training may fail to start, in this failure mode, since the difference between network

outputs may exceed machine precision even for moderate d. For ReLU activations,

FMi has been observed to be overcome by initializations of He et al. 1521. We prove

this fact rigorously (see Theorems 3.5.1 and 3.5.4). We find empirically that for poor

initializations, training fails more frequently as networks become deeper (see Figures

3-1 and 3-4).

Aside from [1491, there appears to be less literature studying FM1 for residual

networks (ResNets) [53j. We prove that the key to avoiding FM1 in ResNets is to

correctly rescale the contributions of individual residual modules (see Theorems 3.5.1

and 3.5.4). Without this, we find empirically that training fails for deeper ResNets

(see Figure 3-2).
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FM2 is more subtle and does not seem to have been widely studied (see [74] for a

notable exception). We find that FM2 indeed impedes early training (see Figure 3-3).

This may happen since the backpropagated SGD updates for trainable parameters

at a given layer include a factor that corresponds to the activations at that layer.

Thus, if lengths of activations at different layers are highly variable, then so are the

SGD updates, making it difficult to choose a good learning rate for the network as a

whole. Our analysis of FM2 reveals an interesting difference between fully connected

and residual networks. Namely, for fully connected and convolutional networks, FM2

is a function of architecture, rather than just of initialization, and can occur even if

FM1 does not. For residual networks, we prove by contrast that FM2 never occurs

once FM1 is avoided (see Corollary 3.5.3 and Theorem 3.5.4).

3.2 Related Work

Closely related to this article is the work of Taki [149] on initializing ResNets. It gives

heuristic computations related to the mean squared activation in a depth-L ResNet

and suggests taking the scales ry of the residual modules to all be equal to 1/L (see

3.3.2). Also related to this work is that of He et al. [521 already mentioned above,

as well as [69, 116, 118, 134]. The authors in the latter group show that information

can be propagated in infinitely wide ReLU nets so long as weights are initialized

independently according to an appropriately normalized distribution (see condition

(ii) in Definition 3.4.1). One notable difference between this collection of papers and

the present work is that we are concerned with a rigorous computation of finite width

effects.

These finite size corrections were also studied by Schoenholz et al. [135], which

gives exact formulas for the distribution of pre-activations in the case when the weights

and biases are Gaussian. For more on the Gaussian case, we also point the reader

to Giryes et al. [43]. The idea that controlling means and variances of activations

at various hidden layers in a deep network can help with the start of training was

previously considered in Klaumbauer et al. [74]. This work introduced the scaled
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exponential linear unit (SELU) activation, which is shown to cause the mean values

of neuron activations to converge to 0 and the average squared length to converge

to 1. A different approach to this kind of self-normalizing behavior was suggested

in Wu et al. [1561. There, the authors suggest to add a linear hidden layer (that

has no learnable parameters) but directly normalizes activations to have mean 0 and

variance 1. Activation lengths can also be controlled by constraining weight matrices

to be orthogonal or unitary (see e.g. [3, 56, 66, 80, 133]).

Finally, we mention the previous appearance in Hanin [49] of the sum of recip-

rocals of layer widths, which we here show determines the variance of the sizes of

the activations (see Theorem 3.5.1) in randomly initialized fully connected ReLU

nets. The article [49] studied the more delicate question of the variance for gradients

computed by random ReLU nets.

3.3 Results

In this section, we will (1) provide an intuitive motivation and explanation of our

mathematical results, (2) verify empirically that our predictions hold, and (3) show

by experiment the implications for training neural networks.

3.3.1 Avoiding FM1 for Fully Connected Networks: Variance

of Weights

Consider a depth-d, fully connected ReLU net K with hidden layer widths nr, j =

0,... , d, and random weights and biases (see Definition 3.4.1 for the details of the

initialization). As A propagates an input vector act(0 ) E Rno from one layer to

the next, the lengths of the resulting vectors of activations act(j) E Rc change in

some manner, eventually producing an output vector whose length is potentially very

different from that of the input. These changes in length are summarized by

12
Mi := A act(j)

ni
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Figure 3-1: Comparison of the behavior of differently initialized fully connected
networks as depth increases. Width is equal to depth throughout. Note that in
He normal (truncated), the normal distribution is truncated at two standard devi-
ations from the mean, as implemented e.g. in Keras and PyTorch. For 2x He normal,
weights are drawn from a normal distribution with twice the variance of He normal.
(a) Mean square length Md (log scale), demonstrating exponential decay or explosion
unless variance is set at 2/fan-in, as in He normal and He unif orm initializations; (b)
average number of epochs required to obtain 20% test accuracy when training on
vectorized MNIST, showing that exponential decay or explosion of Md is associated
with reduced ability to begin training.
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where here and throughout the squared norm of a vector is the sum of the squares of

its entries. We prove in Theorem 3.5.1 that the mean of the normalized output length

Md, which controls whether failure mode FM1 occurs, is determined by the variance

of the distribution used to initialize weights. We emphasize that all our results hold

for any fixed input, which need not be random; we average only over the weights and

the biases. Thus, FM1 cannot be directly solved by batch normalization [611, which

renormalizes by averaging over inputs to K, rather than averaging over initializations

for M.

Theorem 3.3.1 (FM1 for fully connected networks (informal)). The mean E [Md]

of the normalized output length is equal to the input length if network weights are

drawn independently from a symmetric distribution with variance 2/fan-in. For higher

variance, the mean E [Md] grows exponentially in the depth d, while for lower variance,

it decays exponentially.

In Figure 3-1, we compare the effects of different initializations in networks with

varying depth, where the width is equal to the depth (this is done to prevent FM2, see

3.3.3). Figure 3-1(a) shows that, as predicted, initializations for which the variance

of weights is smaller than the critical value of 2/fan-in lead to a dramatic decrease

in output length, while variance larger than this value causes the output length to

explode. Figure 3-1(b) compares the ability of differently initialized networks to

start training; it shows the average number of epochs required to achieve 20% test

accuracy on MNIST [81]. It is clear that those initializations which preserve output

length are also those which allow for fast initial training - in fact, we see that it is

faster to train a suitably initialized depth-100 network than it is to train a depth-10

network. Datapoints in (a) represent the statistics over random unit inputs for 1,000

independently initialized networks, while (b) shows the number of epochs required

to achieve 20% accuracy on vectorized MNIST, averaged over 5 training runs with

independent initializations, where networks were trained using stochastic gradient

descent with a fixed learning rate of 0.01 and batch size of 1024, for up to 100 epochs.

Note that changing the learning rate depending on depth could be used to compensate
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for FM1; choosing the right initialization is equivalent and much simpler.

While E [Md] and its connection to the variance of weights at initialization have

been previously noted (we refer the reader especially to [52] and to 3.2 for other

references), the implications for choosing a good initialization appear not to have been

fully recognized. Many established initializations for ReLU networks draw weights

i.i.d. from a distribution for which the variance is not normalized to preserve output

lengths. As we shall see, such initializations hamper training of very deep networks.

For instance, as implemented in the Keras deep learning Python library [211, the

only default initialization to have the critical variance 2/fan-in is He uniform. By

contrast, LeCun uniform and LeCun normal have variance 1/fan-in, Glorot uniform

(also known as Xavier uniform) and Glorot normal (Xavier normal) have variance

2/(fan-in + fan-out). Finally, the initialization He normal comes close to having the

correct variance, but, at the time of writing, the Keras implementation truncates the

normal distribution at two standard deviations from the mean (the implementation in

PyTorch [108] does likewise). This leads to a decrease in the variance of the resulting

weight distribution, causing a catastrophic decay in the lengths of output activations

(see Figure 3-1). We note this to emphasize both the sensitivity of initialization and

the popularity of initializers that can lead to FM1.

It is worth noting that the 2 in our optimal variance 2/fan-in arises from the

ReLU, which zeros out symmetrically distributed input with probability 1/2, thereby

effectively halving the variance at each layer. (For linear activations, the 2 would

disappear.) The initializations described above may preserve output lengths for acti-

vation functions other than ReL U. However, ReLU is one of the most common acti-

vation functions for feed-forward networks and various initializations are commonly

used blindly with ReLUs without recognizing the effect upon ease of training. An

interesting systematic approach to predicting the correct multiplicative constant in

the variance of weights as a function of the non-linearity is proposed in [116, 134]

(e.g., the definition of X, around (7) in Poole et al. [1161). For non-linearities other

than ReLU, however, this constant seems difficult to compute directly.
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number of epochs to 20% test accuracy when training on MNIST, showing that ML s
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3.3.2 Avoiding FM1 for Residual Networks: Weights of Resid-

ual Modules

To state our results about FM1 for ResNets, we must set some notation (based on

the framework presented e.g. in Veit et al. [153]). For a sequence qe, f = 1, 2... of

positive real numbers and a sequence of fully connected ReLU nets .A 1,N2,..., we

define a residual network gres with residual modules .Af1,... , KL and scales ,--- , L

by the recursion

groes (x) = A, re..(x) = A"'(x) + fMf (Ni .(x)), I

Explicitly,

AIes(x) = X + i1N1(x) + 12 Af2 (x + 71M(x)) (3.1)

+ i3 V3 (X+ q X- ~N(X) r12 AX2 (X + rh X1 (X))) +..

Intuitively, the scale ij controls the size of the correction to .Af computed by the

residual module N. Since we implicitly assume that the depths and widths of the

residual modules NX are uniformly bounded (e.g., the modules may have a common

architecture), failure mode FM1 comes down to determining for which sequences { e}

of scales there exist c, C > 0 so that

c supE [MLeCS C, (3.2)
L>1

where we write M7rs - LAeS(x)2 and x is a unit norm input to ArL . The expec-

tation in (3.2) is over the weights and biases in the fully connected residual modules

fe, which we initialize as in Definition 3.4.1, except that we set biases to zero for

simplicity (this does not affect the results below). A part of our main theoretical

result, Theorem 3.5.4, on residual networks can be summarized as follows.

Theorem 3.3.2 (FM1 for ResNets (informal)). Consider a randomly initialized ResNet

with L residual modules, scales 7, .1 , TL, and weights drawn independently from a
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symmetric distribution with variance 2/fan-in. The mean E [MLes] of the normalized

output length grows exponentially with the sum of the scales EL ge.

We empirically verify the predictive power of the quantity 77e in the performance

of ResNets. In Figure 3-2(a), we initialize ResNets with constant 7f = 1 as well as

geometrically decaying qt = bf for b = 0.9,0.75,0.5. All modules are single hidden

layers with width 5. We observe that, as predicted by Theorem 3.3.1, 7r = 1 leads

to exponentially growing length scale MIes, while T, be leads the mean of M}r 8 to

grow until it reaches a plateau (the value of which depends on b), since E qf is finite.

In Figure 3-2(b), we show that the mean of MLes well predicts the ease with which

ResNets of different depths are trained. Note the large gap between b = 0.9 and 0.75,

which is explained by noting that the approximation of i7 2 < which we use in the

proof holds for q < 1, leading to a larger constant multiple of E 'e in the exponent

for b closer to 1. Each datapoint is averaged over 100 training runs with independent

initializations, with training parameters as in Figure 3-1.

3.3.3 FM2 for Fully Connected Networks: The Effect of Ar-

chitecture

In the notation of 3.3.1, failure mode FM2 is characterized by a large expected value

for
1 m2

Var[M] := ( d M
j=1 ( =1

the empirical variance of the normalized squared lengths of activations among all

the hidden layers in AF. Our main theoretical result about FM2 for fully connected

networks is the following.

Theorem 3.3.3 (FM2 for fully connected networks (informal)). The mean E[Var[M]]

of the empirical variance for the lengths of activations in a fully connected ReLU net

is exponential in I 1/nj, the sum of the reciprocals of the widths of the hidden

layers.
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For a formal statement see Theorem 3.5.1. It is well known that deep but narrow

networks are hard to train, and this result provides theoretical justification; since for

such nets E 1/nj is large. More than that, this sum of reciprocals gives a definite

way to quantify the effect of "deep but narrow" architectures on the volatility of the

scale of activations at various layers within the network. We note that this result also

implies that for a given depth and fixed budget of neurons or parameters, constant

width is optimal, since by the Power Mean Inequality, Ej i/nj is minimized for all

nj equal if E n1 (number of neurons) or E n' (approximate number of parameters)

is held fixed.

We experimentally verify the link between Var[M] and speed of early training:

Figure 3-3(a) compares training performance on MNIST for fully connected networks

of various depths (i) with fixed width 20 (our reference network), (ii) with alternating

layers of widths 30 and 10 (same number of neurons as reference net), (iii) with

alternating layers of widths 40 and 10 (same number of parameters as reference net),

and (iv) with fixed width 10 and half the depth (same Z 1/nj). We observe that

(i) and (iv) train rapidly at the same rate, as predicted by Theorem 3.3.4, while (ii)

and (iii) (which have larger E 1/nj) train much more slowly. In all cases, training

becomes harder with greater depth, since E 1/nj increases with depth for constant-

width networks. In Figure 3-3(b), we plot the same data with E 1/nj on the x-

axis, showing this quantity's power in predicting the effectiveness of early training,

irrespective of the particular details of the network architecture in question. Each

datapoint is averaged over 100 independently initialized training runs, with training

parameters as in Figure 3-1. All networks are initialized with He normal weights to

prevent FM1.

53



100
Layer widths

- Constant width 20
- Alternating 30, 10
- Alternating 40, 10
- Width 10, half depth

20

1 0  20 30 40 50 60 70 80 90 100
(a) Network depth

100
Layer widths

S-.Constant width 20*

80 - .*.Alternating 30, 10*
... Alternating 40, 10
S-.Width 10, half depth

60

c40

20

0

10 20 30 40 50 60 70 879 0

(b) Sum of reciprocals

Figure 3-3: Comparison of ease with which different fully connected architectures
may be trained. (a) Mean epochs required to obtain 20% test accuracy when training
on MNIST, as a function of network depth; (b) same y-axis, with x-axis showing the
sum of reciprocals of layer widths. raining efficiency is shown to be predicted closely

by this sum of reciprocals, independent of other details of network architecture. Note
that all networks are initialized with He normal weights to avoid FM
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3.3.4 FM2 for Residual Networks

In the notation of 3.3.2, failure mode FM2 is equivalent to a large expected value

for the empirical variance

Var[Mres] : Z (Mes)2 - M es

E=1 f=1

of the normalized squared lengths of activations among the residual modules in K.

Our main theoretical result about FM2 for ResNets is the following (see Theorem

3.5.1 for the precise statement).

Theorem 3.3.4 (FM2 for ResNets (informal)). The mean E[Var[Mes]] of the em-

pirical variance for the lengths of activations in a residual ReLU net with L residual

modules and scales rjy is exponential in L_1 ri. By Theorem 3.3.2, this means that

in ResNets, if failure mode FM1 does not occur, then neither does FM2 (assuming

FM2 does not occur in individual residual modules).

3.3.5 Convolutional Architectures

Our above results were stated for fully connected networks, but the logic of our

proofs carries over to other architectures. In particular, similar statements hold for

convolutional neural networks (ConvNets). Note that the fan-in for a convolutional

layer is not given by the width of the preceding layer, but instead is equal to the

number of features multiplied by the kernel size.

In Figure 3-4, we show that the output length behavior we observed in fully

connected networks also holds in ConvNets. Namely, mean output length equals input

length for weights drawn i.i.d. from a symmetric distribution of variance 2/fan-in,

while other variances lead to exploding or vanishing output lengths as the depth

increases. In our experiments, networks were purely convolutional, with no pooling or

fully connected layers. By analogy to Figure 3-1, the fan-in was set to approximately

the depth of the network by fixing kernel size 3 x 3 and setting the number of features

at each layer to one tenth of the network's total depth. For each datapoint, the
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Figure 3-4: Comparison of the behavior of differently initialized ConvNets as depth
increases, with the number of features at each layer proportional to the overall network
depth. The mean output length over different random initializations is observed
to follow the same patterns as in Figure 3-1 for fully connected networks. Weight
distributions with variance 2/fan-in preserve output length, while other distributions
lead to exponential growth or decay. The input image from CIFAR-10 is shown.

network was allowed to vary over 1,000 independent initializations, with input a fixed

image from the dataset CIFAR-10 [78].

3.4 Notation

To state our results formally, we first give the precise definition of the networks we

study; and we introduce some notation. For every d > 1 and n = (ni)d_ 0 E Zd+ 1, we

define

M d) __ ffully connected feed-forward nets with ReLU activations
and depth d, whose jth hidden layer has width nj f

Note that no is the dimension of the input. Given A E 91(n, d), the function fg it

computes is determined by its weights and biases

{w , ), 1 < a < nj, 1 < 0 < nj+, 0 < j 5 d - 1}.
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For every input act(0 )= (act ) ~E Rno to K, we write for all j= 1,..., d

nj-1

preact? = b~j + act( 1 ) wd, act) = ReLU(preact, ), 1 < < ny.

(3.3)

The vectors preact(0 ), act(j) are thus the inputs and outputs of nonlinearities in the

Jth layer of K.

Definition 3.4.1 (Random Nets). Fix d > 1, positive integers n = (no,... ,n) E

Z++1 , and two collections of probability measures P = (p(i),..., pid)) and v - (v(I), ... ,

on R such that (i), vi) are symmetric around 0 for every 1 < j < d, and such that

the variance of p(O) is 2/(n_ 1 ).

A random network K e M,, (n, d) is obtained by requiring that the weights and

biases for neurons at layer j are drawn independently from p1(i), Vi ), respectively.

3.5 Formal statements

We begin by stating our results about fully connected networks. Given a random

network K E 9'1,, (d, n) and an input act(0 ) to K, we write as in 3.3.1, Mj for the

normalized square length of activations - act(s) 2 at layer j. Our first theoretical

result, Theorem 3.5.1, concerns both the mean and variance of Md. To state it, we

denote for any probability measure A on R its moments by

Ak J=R

Theorem 3.5.1. For each j > 0, fix nj E Z+. For each d > 1, let K C 9,, (d, n) be

a fully connected ReLU net with depth d, hidden layer widths n = (nj) _o as well as

random weights and biases as in Definition 3.4.1. Fix also an input act(0 ) E Rno to
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JV with act( )= 1. We have almost surely

lim sup Md < 00 ()) 2 < 0 0 . (3.4)
d-+oo j>1

Moreover, if (3.4) holds, then exists a random variable M,, (that is almost surely

finite) such that Md -+ M,, as d -+ oo pointwise almost surely. Further, suppose

1 < 00 for all j > 1 and that >jI1(4 < oc. Then there exist C, N > 0 so

that if nj > N for all j, then

-I d 1~ d

exp 2< E [Md] Cexp C E 1. (3.5)
-j=1 j=1

In particular, Var[Md] is exponential in j _ 1/nj and if E 1/nj < o, then the

convergence of Md to Mo is in L 2 and Var[Moo] < o.

The proof of Theorem 3.5.1 is given in 3.6. Although we state our results only for

fully connected feed-forward ReLU nets, the proof techniques carry over essentially

verbatim to any feed-forward network in which only weights in the same hidden layer

are tied. In particular, our results apply to convolutional networks in which the kernel

sizes are uniformly bounded. In this case, the constants in Theorem 3.5.1 depend on

the bound for the kernel dimensions, and nj denotes the fan-in for neurons in the

(j + 1)" hidden layer (i.e. the number of channels in layer j multiplied by the size

of the appropriate kernel). We also point out the following corollary, which follows

immediately from the proof of Theorem 3.5.1.

Corollary 3.5.2 (FMI for Fully Connected Networks). With notation as in Theorem

3.5.1, suppose that for all j = 1,... , d, the weights in layer j of Kd have variance

, - 2/nj for some K > 0. Then the average squared size Md of activations at layer d

will grow or decay exponentially unless K = 1:

(d) 12 K d c 112 d-g ()
_ Id - act+0 K
__ ac no >3Kdj/d
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Our final result about fully connected networks is a corollary of Theorem 3.5.1,

which explains precisely when failure mode FM2 occurs (see 3.3.3). It is proved in

3.7.

Corollary 3.5.3 (FM2 for Fully Connected Networks). Take the same notation as

in Theorem 3.5.1. There exist c,C > 0 so that

d .d-1
c Yd exp (cE

j=1 k=,

< E [Var[M]
d .d-1

< C E exp CrE )
j=1 6k=j

(3.6)

In particular, suppose the hidden layer widths are all equal, nj = n.

is exponential in 3 = l 1/nj = (d - 1)/n in the sense that there

that

c exp (c#) < E [V[M] < C exp (CO).

Then, E[Var[M]]

exist c, C > 0 so

(3.7)

Finally, our main result about residual networks is the following (proven in 3.8):

Theorem 3.5.4. Take the notation from

activations in /! eS are uniformly bounded

the scales Ty form a convergent series:

0 < sup M 'S < 0,0
L>1, lIxl=1

Moreover, for any

we have

3.3.2 and 3.3.4. The mean of squared

in the number of modules L if and only if

(3.8)<00.
< OC

sequence of scales TE for which supf re < 1 and for every K, L > 1,

L

E [ (Mires)K] = exp 0 o

where the implied constant depends on K but not on L. Hence, once the condition

in part (3.8) holds, both the moments E [(MLes)K] and the mean of the empirical

variance of { Mrvs, f = 1,..., L } are uniformly bounded in L.
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3.6 Proof of Theorem 3.5.1

Let us first verify that Md is a submartingale for the filtration {.Fd}d>1 with Ed being

the sigma algebra generated by all weights and biases up to and including layer d (for

background on sigma algebras and martingales we refer the reader to Chapters 2 and

37 in [15]). Since act(0 ) is a fixed non-random vector, it is clear that Md is measurable

with respect to Ed. We have

E [Md E d-1] = IE [1act(d)1 2 1 act(d-1)
nd

- E preactd))2 1 {preactf>O} act(d , (3.9)
I =: - pec3> 1Ia 39

where we can replace the sigma algebra Ed-i by the sigma algebra generated by

act(d-) since the computation done by a feed-forward neural net is a Markov chain

with respect to activations at consecutive layers (for background see Chapter 8 in

[15]). Next, recall that by assumption the weights and biases are symmetric in law

around 0. Note that for each /, changing the signs of all the weights wd and biases

b(d) causes preact(d) to change sign. Hence, we find

E [(preactd) 1 react)>O} act(d-1) E (preact (d) {preact?<O} act(d-1)

Note that

nreact (d) (1 (d) + 1 () rat(d)
p t 1{preact, >O} {preactdO = preact.

Symmetrizing the expression in (3.9), we obtain

E[Md Ed1] 1  E [(preactd))2 act(d-1)

n1 n 1 (1 W(d) 2 -1)
IE b + act - k,/3 act(d

#n =1 13 a=1 a a

1 ( + 1 Ijact(d-) 2 > Mdi, (3.10)
2 ndl
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where in the second equality we used that the weights w(d) and biases b(d) are inde-a43

pendent of Fd_1 with mean 0 and in the last equality that Var[w3] = 2/nj-1 . The

above computation also yields that for each d > 1,

E [Md] = E [1 -act(d) 21

.nd .I

- I act(0 ) 2

0

1 d
I: ( ( ))

j=1

It also shows that Md Md - Zj= 1 2vd is a martingale. Taking the limit d -+ oc

in (3.11) proves (3.4). Next, assuming condition (3.4), we find that

sup E
d>1

[max{Md, 0}] < 1 ||act()|| 2
no j=1

which is finite. Hence, we may apply Doob's pointwise martingale convergence theo-

rem (see Chapter 35 in [15]) to conclude that the limit

Moo = lim Md
d- oo

is exists and is finite almost surely. To show (3.5) we will need the following result.

Lemma 3.6.1. There exists C > 0 so that for every d > 1

d_ I Var[M I Fd] < C(1 + M2_1 + Md_1)

Proof. Note that

Md = 1 (act(d) 2
nfd 13 0

and, conditioned on act(d- 1), the random variables {act(d)}, are i.i.d. Hence,

Var[Md I d-1] = 1 Var act(d) 2 I Fd 1 (3.12)

Since E [Md-1] is bounded above by a uniform constant, we will be done once we show
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for some C > 0

M2j < Var act(d 2 .Fd1 C(1 + Md_ 1 + Md-1). (3.13)

We apply the same symmetrization trick as in the derivation of (3.10) to obtain

acti ) I Td_1I preact (d) act (d-1)I

act( 1 ) Wd + b (d) act(d-1)

which after using that the odd moments of w (d) and b (d) vanish becomesa, 1 1

4

act d-1) W(d)act j act(d-1)1

To evaluate the first term, note that

act --1)

a=1 
a

nd-1 4 4

= act -1) E f
i1 i=1 i=1

1<i<4L

[1 a3= + 1{a2=a + 1a=a +(p - 3)1{1a23=a ,

we conclude that

4

act d-1) act(d- 1) - 4 -
n2~d-i

(3 act(d-) 4 + (p(d) -

Putting together the preceding computations and using that

act(d-1) act(d- 1 2
nd_1
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2 aCt(d- 1 ) 2 +
nd-1

1 (d)
2lI

E

Since

-4

E ]d
4

n2_1 d I

E [

1 (d)

22

3)1 act (d-1)14)

nd-_1

a=1

E act (d

= E E

-(a=1

4

aj actd-)



we find that is

Var (act d))2 .Fdi 5 (d-)
= 2 1act(-

d-1

2(pd) -3)
+ 2 act(d-

1 )

d-1

+ 51/2 act(d-) 2 +
nd- 1

1 (d)
2)

- 4

Recall that the excess kurtosis yjd) - 3 of pd) is bounded below by -2 for any prob-

ability measure (see Chapter 4 in [138]) and observe that IIact(d- 1 ) 1 1 act(d- 1) 14.

Therefore, using that 1Vd) - 1(1v2d)) 2 > 0, we obtain

Mj1 < Var act Fd_ C(1 + Md_ 1 + Md_1)

for some C > 0. This is precisely (3.13) and completes the proof of the Lemma.

To conclude the proof of Theorem 3.5.1, we write

E [MJ Fd-d] = Var[Md I Fd-1] + (Md_1 + v(d) 2

2

and combine Lemma 3.6.1 with the expression (3.11) to obtain

E 1] < (1+ Mj1 + Md) + M_1 + Mv +

and

1 4(d)

4

Taking expectations of both sides in the inequalities above yields that for some C > 0

+ - ) E [Md] < (Cad + E [Mja]) (1
nd

where ad - + (d. Iterating the lower bound in this inequality yields the lower

bound in (3.5). Similarly, using that 1 + C/nd > 1, we iterate the upper bound to
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obtain

E[Md] < (Cad + E [Md'i]) I + C)

(C(ad +ad1) + E M 2 )(1+C) (I+ cl)dd

<Cd 
d

(E aj+ Mo exp C E).
j=1 )= n

Using that EZ a3 < oc, this gives the

of Theorem 3.5.1.

upper bound in (3.5) and completes the proof

3.7 Proof of Corollary 3.5.3

Fix a fully connected ReLU net K with depth d and hidden layer widths no,..., nd.

We fix an input act(0 ) to K and study the empirical variance Var[M] of the squared

sizes of activations Mj, j = 1, . . . , d. Since the biases in K are 0, the squared activa-

tions Mi are a martingale (see (3.10)) and we find

E [MjMji] = E [M2

Thus, using that by (3.5) for some c > 0

d[M

E [Mj2] > c exp CEn
(kj

we find

E [Vard] 2 ] d2 E[j y

j=1 j~j'=1
d d

E E[M3] - E(d - j+1)j=1 2j=1

> d dcexp cE .

- = (EIkM-]

[M2]
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To see that this sum is exponential in E 1/nj as in (3.7), let us consider the special

case of equal widths nj = n. Then, writing

d-1I

j=1

d . 1
E - xp

j_1 1k ) K1xe~xdx;> 1 ep/2
4

This proves the lower bounds in (3.6) and (3.7). The upper bounds are similar.

3.8 Proof of Theorem 3.5.4

To understand the sizes of activations produced by Nie, we need the following

Lemma.

Lemma 3.8.1. Let K be a feed-forward, fully connected ReLU net with depth d and

hidden layer widths no,... , nd having random weights as in Definition 3.4. 1 and biases

set to 0. Then for each E c (0,1), we have

|Ix + rA((x) I2 X1 2 (1 + O(r1))

Proof of Lemma. We have:

(3.14)FE [IX +r T (x)11]2= E [|X| 12 + 2rq (x,.A(x)) + r/2 | (x)l1 2]

= IX1 2 (1 + r12 + 2rIE [(, N(X))]),

where x = g, and we have used the fact that IlA(x)12 =X1 2 (see (3.10))

as the positive homogeneity of ReLU nets with zero biases:

K(Ax) = AV(x),

as well

A > 0.
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Write

n

E [(x,K(x))] =E xE [AO(x)].
p=1

Let us also write x = x(O) for the input to M, similarly set x(j) for the activations at

layer j. We denote by W ) the /Ih row of the weights WU) at layer j in K. We have:

E [V,3(x) x(d-1) ] =E [X(d)]

- E W (d) (d-1) {w (d) 1>>

= E [W d)d-j x a- x(d-1

x(d-1)1

2 - 1/2
x (-1I)

< 1 x(d-1)2 0

Therefore, using that x(i) is a supermartingale (since its square is a martingale by

(3.10)):

E [(x) < 1E x(d-1)]
LSV/3kX)J2 nr

1 (0) 1
'-- flXH.

Hence, we obtain:

= 0(1)
( V n1)

since by Jensen's inequality,

j=1

n

l v/Zx ,=
j=1

Combining this with (3.14) completes the proof.
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The Lemma implies part (i) of the Theorem as follows:

IE [ sM e8  E [||Nie(x) + T LAL (K i _ (x)) |2

E [E ||Nif_ 1 (x) + ?JLJVL ( e1(x))|2 i 1(x)]

= (1 + O (L)) E [Mi*_l] ,

where we used the fact that T, = O(qe) since Tpf E (0, 1). Iterating this inequality

yields

L L L

E Mie 11= (1 + 0 (,qf)) = exp log (I + 0 (Tjf)) =exp 0 T if
f=1 f=1 =

Derivation of the estimates (ii) follows exactly the same procedure and hence is omit-

ted. Finally, using these estimates, we find that the mean empirical variance of {Mres}

is exponential in E, 71 :

[ (Mjes)2 - ( M es)E = -= rM
E(M es)2]

f=1
L

= L exp 0 Tij
=1 ( (=1

L

= exp 0 Eqj
( j=1))

3.9 Conclusion

In this article, we give a rigorous analysis of the layerwise length scales in fully

connected, convolutional, and residual ReLU networks at initialization. We find that a

careful choice of initial weights is needed for well-behaved mean length scales. For fully

connected and convolutional networks, this entails a critical variance for i.i.d. weights,

while for residual nets this entails appropriately rescaling the residual modules. For

fully connected nets, we prove that to control not merely the mean but also the
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variance of layerwise length scales requires choosing a sufficiently wide architecture,

while for residual nets nothing further is required. We also demonstrate empirically

that both the mean and variance of length scales are strong predictors of early training

dynamics. In the future, we plan to extend our analysis to other (e.g. sigmoidal)

activations, recurrent networks, weight initializations beyond i.i.d. (e.g. orthogonal

weights), and the joint distributions of activations over several inputs.
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Chapter 4

Deep Learning is Robust to Massive

Label Noise

4.1 Introduction

Deep neural networks are typically trained using supervised learning on large, care-

fully annotated datasets. However, the need for such datasets restricts the space

of problems that can be addressed. This has led to a proliferation of deep learn-

ing results on the same tasks using the same well-known datasets. However, carefully

annotated data is difficult to obtain, especially for classification tasks with large num-

bers of classes (requiring extensive annotation) or with fine-grained classes (requiring

skilled annotation). Thus, annotation can be expensive and, for tasks requiring expert

knowledge, may simply be unattainable at scale.

To address this limitation, other training paradigms have been investigated to

alleviate the need for expensive annotations, such as unsupervised learning [801, self-

supervised learning [114, 157] and learning from noisy annotations 168, 103, 1541. Very

large datasets (e.g., [76, 1521) can often be obtained, for example from web sources,

with partial or unreliable annotation. This can allow neural networks to be trained

on a much wider variety of tasks or classes and with less manual effort. The good

performance obtained from these large, noisy datasets indicates that deep learning

approaches can tolerate modest amounts of noise in the training set.
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In this work, we study the behavior of deep neural networks under extremely low

label reliability, only slightly above chance. The insights from our study can help

guide future settings in which arbitrarily large amounts of data are easily obtainable,

but in which labels come without any guarantee of validity and may merely be biased

towards the correct distribution.

The key takeaways from this chapter may be summarized as follows:

" Deep neural networks are able to generalize after training on mas-

sively noisy data, instead of merely memorizing noise. We demonstrate

that standard deep neural networks still perform well even on training sets in

which label accuracy is as low as 1 percent above chance. On MNIST, for ex-

ample, performance still exceeds 90 percent even with this level of label noise

(see Figure 4-1). This behavior holds, to varying extents, across datasets as

well as patterns of label noise, including when noisy labels are biased towards

confused classes.

" A sufficiently large training set can accommodate a wide range of

noise levels. We find that the minimum dataset size required for effective

training increases with the noise level (see Figure 4-9). A large enough training

set can accommodate a wide range of noise levels. Increasing the dataset size

further, however, does not appreciably increase accuracy (see Figure 4-8).

" High levels of label noise decrease the effective batch size, as noisy

labels roughly cancel out and only a small learning signal remains. As such,

dataset noise can be partly compensated for by larger batch sizes and by scaling

the learning rate with the effective batch size.

4.2 Related Work

Learning from noisy data. Several studies have investigated the impact of noisy

datasets on machine classifiers. Approaches to learn from noisy data can generally

be categorized into two groups: In the first group, approaches aim to learn directly
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from noisy labels and focus on noise-robust algorithms, e.g., [10, 46, 68, 76, 89, 97,

151]. The second group comprises mostly label-cleansing methods that aim to remove

or correct mislabeled data, e.g., Brodley and Friedl [17]. Methods in this group

frequently face the challenge of disambiguating between mislabeled and hard training

examples. To address this challenge, they often use semi-supervised approaches by

combining noisy data with a small set of clean labels [163]. Some approaches model

the label noise as conditionally independent from the input image [102, 144] and

some propose image-conditional noise models [152, 158]. Our work differs from these

approaches in that we do not aim to clean the training dataset or propose new noise-

robust training algorithms. Instead, we study the behavior of standard neural network

training procedures in settings with massive label noise. We show that even without

explicit cleaning or noise-robust algorithms, neural networks can learn from data that

has been diluted by an arbitrary amount of label noise.

Analyzing the robustness of neural networks. Several investigative studies

aim to improve our understanding of convolutional neural networks. One particular

stream of research in this space seeks to investigate neural networks by analyzing their

robustness. For example, Veit, Wilber, and Belongie [153] show that network archi-

tectures with residual connections have a high redundancy in terms of parameters

and are robust to the deletion of multiple complete layers during test time. Further,

Szegedy et al. [147] investigate the robustness of neural networks to adversarial exam-

ples. They show that even for fully trained networks, small changes in the input can

lead to large changes in the output and thus misclassification. In contrast, we are fo-

cusing on non-adversarial noise during training time. Within this stream of research,

closest to our work are studies that focus on the impact of noisy training datasets on

classification performance (e.g., [144, 151, 161J). In these studies an increase in noise

is assumed to decrease not only the proportion of correct examples, but also their

absolute number. In contrast to these studies, we separate the effects and show in

4.4 that a decrease in the number of correct examples is more destructive to learning

than an increase in the number of noisy labels.
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Figure 4-1: Performance on MNIST as different amounts of noisy labels are added to

a fixed training set of clean labels. We compare a perceptron, MLPs with 1, 2, and
4 hidden layers, and a 4-layer ConvNet. Even with 100 noisy labels for every clean

label the ConvNet still attains a performance of 91%.

4.3 Learning with massive label noise

In this work, we are concerned with scenarios of abundant data of very poor label

quality, i.e., the regime in which falsely labeled training examples vastly outnumber

correctly labeled examples. In particular, our experiments involve observing the per-

formance of deep neural networks on multi-class classification tasks as label noise is

increased.

To formalize the problem, we denote the number of original training examples by

n. To model the amount of noise, we dilute the dataset by adding a noisy examples

to the training set for each original training example. Thus, the total number of

noisy labels in the training set is an. Note that by varying the noise level a, we do

not change the available number of original examples. Thus, even in the presence

of high noise, there is still appreciable data to learn from, if we are able to pick it

out. This is in contrast to previous work (e.g., [144, 151, 161]), in which an increase

in noise also implies a decrease in the absolute number of correct examples. In the

following experiments we investigate three different types of label noise: uniform

label-swapping, structured label-swapping, and out-of-vocabulary examples. Thus,
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Figure 4-2: Performance on CIFAR-10 as different amounts of noisy labels are added

to a fixed training set of clean labels. We tested ConvNets with 4 and 6 layers, and
a ResNet with 101 layers. Even with 10 noisy labels for every clean label the ResNet
still attains a performance of 85%.

the noisy label is allowed to be dependent on the correct class but not on the image

itself.

A key assumption in this chapter is that unreliable labels are better modeled by

an unknown stochastic process rather than by the output of an adversary. This is a

natural assumption for data that is pulled from the environment, in which antagonism

is not to be expected in the noisy annotation process. Deep neural networks have

been shown to be exceedingly brittle to adversarial noise patterns [147]. In this work,

we demonstrate that even massive amounts of non-adversarial noise present far less

of an impediment to learning.

4.3.1 Experiment 1: Training with uniform label noise

As a first experiment, we will show that common training procedures for neural

networks are resilient even to settings where correct labels are outnumbered by labels

sampled uniformly at random at a ratio of 100 to 1. For this experiment we focus

on the task of image classification and work with three commonly used datasets,

MNIST 181], CIFAR-10 [78] and ImageNet [35].
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Figure 4-3: Performance on ImageNet as different amounts of noisy labels are added

to a fixed training set of clean labels. Even with 5 noisy labels for every clean label,
the 18-layer ResNet still attains a performance of 70%.

In Figures 4-1 and 4-2 we show the classification performance with varying levels of

label noise. For MNIST, we vary the ratio a of randomly labeled examples to cleanly

labeled examples from 0 (no noise) to 100 (only 11 out of 101 labels are correct, as

compared with 10.1 for pure chance). For the more challenging dataset CIFAR-10, we

vary a from 0 to 10. For the most challenging dataset ImageNet, we let a range from

0 to 5. We compare various architectures of neural networks: multilayer perceptrons

with different numbers of hidden layers, convolutional networks (ConvNets) with dif-

ferent numbers of convolutional layers, and residual networks (ResNets) with different

numbers of layers [53]. We evaluate performance after training on a test dataset that

is free from noisy labels. Full details of our experimental setup are provided in 4.3.4.

Our results show that, remarkably, it is possible to attain over 90 percent accuracy

on MNIST, even when there are 100 randomly labeled images for every cleanly labeled

example, to attain over 85 percent accuracy on CIFAR-10 with 10 random labels for

every clean label, and to attain over 70 percent top-5 accuracy on ImageNet with 5

random labels for every clean label. Thus, in this high-noise regime, deep networks

are able not merely to perform above chance, but to attain accuracies that would be

respectable even without noise.
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Figure 4-4: Illustration of uniform and structured noise models. In the case of struc-
tured noise, the order of false labels is important; we tested decreasing order of
confusion, increasing order of confusion, and random order. The parameter J param-
eterizes the degree of structure in the noise. It defines how much more likely the
second most likely class is over chance.

Further, we observe from Figures 4-1 and 4-2 that larger neural network archi-

tectures tend also to be more robust to label noise. On MNIST, the performance of

a perceptron decays rapidly with increasing noise (though it still attains 40 percent

accuracy, well above chance, at a = 100). The performance of a multilayer perceptron

drops off more slowly, and the ConvNet is even more robust. Likewise, for CIFAR-10,

the accuracy of the residual network drops more slowly than that of the smaller Con-

vNets. This observation provides further support for the effectiveness of ConvNets

and ResNets in particular for applications where noise tolerance may be important.

4.3.2 Experiment 2: Training with structured label noise

We have seen that neural networks are extremely robust to uniform label noise. How-

ever, label noise in datasets gathered from a natural environment is unlikely to follow

a perfectly uniform distribution. In this experiment, we investigate the effects of

various forms of structured noise on the performance of neural networks. Figure 4-4

illustrates the procedure used to model noise structure.

In the uniform noise setting, as illustrated on the left side of Figure 4-4, correct

labels are more likely than any individual false label. However, overall false labels

vastly outnumber correct labels. We denote the likelihood over chance for a label

to be correct as E. Note that c = 1/(1 + a), where a is the ratio of noisy labels

to certainly correct labels. To induce structure in the noise, we bias noisy labels to
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certain classes. We introduce the parameter 6 to parameterize the degree of structure

in the noise. It defines how much more likely the second most likely class is over

chance. With 6 = 0 the noise is uniform, whereas for 6 = 1 the second most likely

class is equally likely as the correct class. The likelihood for the remaining classes is

scaled linearly, as illustrated in Figure 4-4 on the right. We investigate three different

setups for structured noise: labels biased towards easily confused classes, towards

hardly confused classes and towards random classes.

Figure 4-5 shows the results on MNIST for the three different types of structured

noise, as 6 varies from 0 to 1. In this experiment, we train 4-layer ConvNets on a

dataset that is diluted with 20 noisy labels for each clean label. We vary the order of

false labels so that, besides the correct class, labels are assigned most frequently to (1)

those most often confused with the correct class, (2) those least often confused with

it, and (3) in a random order. We determine commonly confused labels by training

the network repeatedly on a small subset of MNIST and observing the errors it makes

on a test set.

The results show that deep neural nets are robust even to structured noise, as long

as the correct label remains the most likely by at least a small margin. Generally, we

do not observe large differences between the different models of noise structure, only

that bias towards random classes seems to hurt the performance a little more than

bias towards confused classes. This result might help explain why we often observe

quite good results from real world noisy datasets, where label noise is more likely to

be biased towards related and confusing classes.

4.3.3 Experiment 3: Source of noisy labels

In the preceding experiments, we diluted the training sets with noisy examples drawn

from the same dataset; i.e., falsely labeled examples were images from within other

categories of the dataset. In natural scenarios, however, noisy examples likely also

include categories not included in the dataset that have erroneously been assigned

labels within the dataset.

Thus, we now consider two alternative sources for noisy training examples. First,

76



MNIST - Structured noise

90 - -

0

6. Bias in label structure
- Confusing order

50 - Reverse confusing order
-- Random order

40'
0.0 0.2 0.4 0.6 0.8 1.0

6 - Degree of structuredness

Figure 4-5: Performance on MNIST with fixed a = 20 noisy labels per clean label.
Noise is drawn from three types of structured distribution: (1) "confusing order"

(highest probability for the most confusing label), (2) "reverse confusing order", and

(3) random order. We interpolate between uniform noise, 6 = 0, and noise so highly
skewed that the most common false label is as likely as the correct label, 6 = 1.
Except for 6 ~ 1, performance is similar to uniform noise.

we dilute the training set with examples that are drawn from a similar but different

dataset. In particular, we use CIFAR-10 as our training dataset and dilute it with

examples from CIFAR-100, assigning each image a category from CIFAR-10 at ran-

dom. Second, we also consider a dilution of the training set with "examples" that are

simply white noise; in this case, we match the mean and variance of pixels within

CIFAR-10 and again assign labels uniformly at random.

Figure 4-6 shows the results obtained by a six-layer ConvNet on the different noise

sources for varying levels of noise. We observe that both alternative sources of noise

lead to better performance than the noise originating from the same dataset. For

noisy examples drawn from CIFAR-100, performance drops only about half as much

as when noise originates from CIFAR-10 itself. This trend is consistent across noise

levels. For white noise, performance does not drop regardless of noise level; this is

in line with prior work that has shown that neural networks are able to fit random

input [161]. This indicates the scenarios considered in Experiments 1 and 2 represent

in some sense a worst case.
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Figure 4-6: Performance on CIFAR-10 for varying amounts of noisy labels from dif-
ferent sources. Noisy training examples are drawn from (1) CIFAR-10 itself, but
mislabeled uniformly at random, (2) CIFAR-100, with uniformly random labels, and
(3) white noise with mean and variance chosen to match those of CIFAR-10. Noise
drawn from CIFAR-100 resulted in only half the drop in performance observed with
noise from CIFAR-10 itself, while white noise examples did not appreciable affect
performance.

In natural scenarios, we may expect massively noisy datasets to fall somewhere in

between the cases exemplified by CIFAR-10 and CIFAR-100. That is, some examples

will be relevant but mislabeled. However, it is likely that many examples will not

be from any classes under consideration and therefore will influence training less

negatively. In fact, it is possible that such examples might increase accuracy, if the

erroneous labels reflect underlying similarity between the examples in question.

4.3.4 Experimental setup

All models are trained with AdaDelta [160] as optimizer and a batch size of 128.

For each level of label noise we train separate models with different learning rates in

{0.01, 0.05, 0.1, 0.5} and pick the learning rate that results in the best performance.

Generally, we observe that the higher the label noise, the lower the optimal learning

rate. We investigate this trend in detail in 4.5.

In Experiments 1 and 2, noisy labels are drawn from the same dataset as the
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Figure 4-7: Comparison of the effect of reusing images vs. using novel images as
noisy examples. Essentially no difference is observed between the two types of noisy
examples, supporting the use of repeated examples in our experiments.

labels guaranteed to be correct. This involves drawing the same example many times

from the dataset, giving it the correct label once, and in every other instance picking

a random label according to the noise distribution in question. We show in Figure

4-7 that performance would have been comparable had we been able to draw noisy

labels from an extended dataset, instead of repeating images. Specifically, we train

a convolutional network on a subset of MNIST, with 2,500 certainly correct labels

and with noisy labels drawn either with repetition from this set of 2,500 or without

repetition from the remaining examples in the MNIST dataset. The results are essen-

tially identical between repeated and unique examples, supporting our setup in the

preceding experiments.

4.4 The importance of larger datasets

Underlying the ability of deep networks to learn from noisy data is the size of the data

in question. It is well-established, see e.g., [35, 146], that traditional deep learning

relies upon large datasets. We will now see how this is particularly true of noisy

datasets.
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Figure 4-8: Performance on MNIST at various noise levels, as a function of the number
of clean labels. There seems to be a critical amount of clean training data required to
successfully train the networks. This threshold increases as the noise level rises. For
example, at a = 10, 2,000 clean labels are needed to attain 90% performance, while
at a = 50, 10,000 clean labels are needed.

In Figure 4-8, we compare the performance of a ConvNet on MNIST as the size of

the training set varies. In particular, we show how the performance of the ConvNet

varies with the number of cleanly labeled training examples. We compare the per-

formance of the same ConvNet trained on MNIST diluted with different amounts of

noisy labels sampled uniformly. For example, for the blue curve of a = 10 and 1,000

clean labels, the network is trained on 11,000 examples: 1,000 cleanly labeled exam-

ples and 10,000 with random labels. In Figure 4-10, we show that a similar pattern

occurs when a ResNet with 18 layers is trained on ImageNet with noisy labels.

Generally, we observe that independent of the noise level the networks benefit

from more data and that, given sufficient data, the networks reach similar results.

Further, the results indicate that there seems to be a critical amount of clean training

data that is required to successfully train the networks. This critical amount of clean

data depends on the noise level; in particular, it increases as the noise level rises. Note

that as the amount of clean data increases, the size of the overall noisy training set

increases still faster. In Figure 4-9, we re-plot the data from Figure 4-8 to show how
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Figure 4-9: Relationship between the amount of noise in the dataset arid the critical

number of clean training examples needed to achieve high test accuracy. Different

curves reflect different target accuracies. We observe that the required amount of

clean data increases slightly more than linearly in the ratio of noisy to clean data.

the amount of clean data required to attain a threshold accuracy varies as a function

of noise. It appears that the requisite amount of clean data rises slightly faster than

linear in the ratio of noisy to clean examples. Since performance rapidly levels off

past the critical threshold, the main requirement for the clean training set is to be of

sufficient size.

4.5 Analysis

The success of training with substantial label noise comes as a surprise. Stochastic

gradient descent and its variations consist of walks through the space of networks in

locally optimal directions. Adding noise to this process means that in many cases the

step taken is in an erroneous direction. It is well known (see e.g. [137, 64, 71, 41]) that

the space of networks has abundant hard-to-escape saddle points, flat regions, and

local optima; therefore, it might be supposed that too many erroneous steps could

lead to a part of the space from which further optimization becomes impossible. Our

result that networks generalize even when trained with almost entirely incorrect labels
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Figure 4-10: Performance on ImageNet at various noise levels, as a function of the
number of clean labels, when training a ResNet with 18 layers. As in Figure 4-8, we
observe that noise increases the critical number of clean training examples needed
to achieve high accuracy. Once past the critical threshold for dataset size, accuracy
plateaus and additional training examples are not of significant marginal utility.

suggests that trajectories in network space are more flexible than might be expected.

In this section, we analyze one aspect of the standard learning procedure which

reduces the stochasticity of the gradient updates: averaging gradients over a batch.

In the preceding sections, our results were obtained by training neural networks with

fixed batch size and running a parameter search to pick the optimal learning rate

from five possible values. We now look in more detail into how different batch sizes

and learning rates affect learning on noisy datasets.

In Figure 4-11, we compare the performance of a simple 2-layer ConvNet on

MNIST with increasing noise, as batch size varies from 32 to 256. (Note that all

other experiments in this chapter are performed with a fixed batch size of 128.) We

observe that increasing the batch size provides greater robustness to noisy labels.

One possible explanation for this behavior is that within a batch, gradient updates

from randomly sampled noisy labels roughly cancel out, while gradients from correct

examples that are marginally more frequent sum together and contribute to learning.

By this logic, large batch sizes are more robust to noise since the mean gradient over

a larger batch is closer to the gradient for correct labels.
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Figure 4-11: Performance on MNIST using a 2-layer ConvNet for varying batch size
as a function of noise level. Higher batch size gives better performance, reflecting
our analysis that increasing amounts of noise reduce the effective batch size. We
approximate the limit of infinite batch size by training without noisy labels, using
instead the noisy loss function H, (see (4.3)).

To investigate this explanation further, we also consider the theoretical case of

infinite batch size, in which gradients are averaged over the entire space of possible

inputs at each training step. While this is often impossible to perform in practice, we

can simulate such behavior by an auxiliary loss function.

In classification tasks, we are given an input x and aim to predict the class f(x) E

{1, 2, ... , m}. The value f(x) is encoded within a neural network by the 1-hot vector

y(x) such that

Yk(x) = 1 if k = f(x) (4.1)
0 otherwise

for 1 < k < m. Then, the standard cross-entropy loss over a batch X is given by:

H (X) = (log ys ())X, (4.2)

where y is the predicted vector and (.)x denotes the expected value over the batch

X. We assume S is normalized (e.g. by the softmax function) so that the entries sum
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Figure 4-12: Performance on CIFAR-10 using a 4-layer ConvNet for varying learning
rate as a function of noise level. Lower learning rates are generally optimal as the
noise level increases.

to 1.

For a training set with noisy labels, we may consider the label f(x) given in the

training set to be merely an approximation to the true label fo(x). Consider the case

of n training examples, and an noisy labels that are sampled uniformly at random

from the set {1, 2, ... , m}. Then, f(x) = fo(x) with probability 1-., and otherwise

it is 1, 2,... , m, each with probability ( . As batch size increases, the expectedM1 a)

value over the batch X is approximated more closely by these probabilities. In the

limit of infinite batch size, equation (4.2) takes the form of a noisy loss function Ha:

1 a M
H1+ (X) (log Qfo(x))X - ( a (logQx1 + a mn(1 + a) E(o

k1

Oc -(log Qfo(x))X - a log i (4.3)
k=1 )X

We can therefore compare training using the cross-entropy loss with an noisy

labels to training using the noisy loss function H, without noisy labels. The term on

the right-hand side of (4.3) represents the noise contribution, and is clearly minimized

where A are all equal. As a increases, this contribution is weighted more heavily
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against - (log Qfo (x) ) x, which is minimized at y, (x) = y (x).

We show in Figure 4-11 the results of training our 2-layer ConvNet on MNIST

with the noisy loss function Ha, simulating an noisy labels with infinite batch size.

We can observe that the network's accuracy does not decrease as a increases. This

can be explained by the observation that for large batch-sizes increasing a is merely

decreasing the magnitude of the true gradient, rather than altering its direction.

Our observations indicate that increasing noise in the training set reduces the

effective batch size, as noisy signals roughly cancel out and only small learning signal

remains. Thus, increasing the batch size is a simple practical means to mitigate the

effect of noisy training labels.

It has become common practice in training deep neural networks to scale the

learning rate with the batch size. In particular, it has been shown that the smaller

the batch size, the lower the optimal learning rate 1771. As noisy labels reduce the

effective batch size, we would expect that lower learning rates perform better than

large learning rates as noise increases. Figure 4-12 shows the performance of a 4-layer

ConvNet trained with different learning rates on CIFAR-10 for varying label noise.

As expected, we observe that the optimal learning rate decreases as noise increases.

For example, the optimal learning rate for the clean dataset is 1, while, with the

introduction of noise, this learning rate becomes unstable.

4.6 Conclusion

In this chapter, we studied the behavior of deep neural networks on training sets with

very noisy labels. In a series of experiments, we have demonstrated that learning is

robust to an essentially arbitrary amount of label noise, provided that the number

of clean labels is sufficiently large. We have further shown that the required number

of clean labels increases slightly above linear with the ratio of noisy to clean labels.

Finally, we have observed that noisy labels reduce the effective batch size, an effect

that can be mitigated by larger batch sizes and downscaling the learning rate.

It is worthy of note that although deep networks appear robust to even high
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degrees of label noise, clean labels still always perform better than noisy labels, given

the same quantity of training data. Further, one still requires expert-vetted test sets

for evaluation. Lastly, it is important to reiterate that our studies focus on non-

adversarial noise.

Our work suggests numerous directions for future investigation. For example, we

are interested in how label-cleaning and semi-supervised methods affect the perfor-

mance of networks in a high-noise regime. Are such approaches able to lower the

threshold for training set size? Finally, it remains to translate the results we present

into an actionable trade-off between data annotation and acquisition costs, which can

be utilized in real world training pipelines for deep networks on massive noisy data.
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Chapter 5

Neuron Dendrograms Uncover

Asymmetrical Motifs

5.1 Motivation

The branching morphologies of neurons have fascinated neuroscientists since the im-

agery of Ram6n y Cajal. Nevertheless, we know little about their statistical structure.

The branching structure of a neuron morphology can be captured in the dendrogram

(see Figure 5-1), which represents the neuron as a graph theoretical tree. While cer-

tain factors surrounding branching are environmental or arise from interactions with

other neurons, it is believed that intrinsic biological factors, which may differ across

neuron types, affect the branching of neurons during development. By statistically

analyzing the branching structures of different types of neurons, we hope to shed light

on the biological hidden variables that may affect branching processes.

5.2 Definitions

We define four variations on the basic Galton-Watson branching processes to model

neuron dendrograms: symmetric, asymmetric, depth-dependent symmetric, and depth-

dependent asymmetric. The symmetric model is the basic Galton-Watson process, in

which a dendrogram grows by each node branching with probability p, and otherwise
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terminating. In the asymmetric models, each node has a hidden type (A or B), and

the probability of its branching depends on its type: either PA or PB. When a node

branches, one child is given the type A and the other has type B. If PA is high and

PB is low, then nodes with label A correspond to "main branches" that persist as

the tree grows, while those with label B correspond to "side branches" that are less

likely to persist. In the depth-dependent models, the probability of branching is also

dependent on the distance from the root node, representing the soma of the neuron.

5.3 Comparing motifs

To further motivate our more careful statistical analysis below, we calculated the

frequency of certain simple motifs as subgraphs within the dendograms of five types of

neurons (or parts thereof). Figure 5-2 shows that asymmetric motifs are overall more

frequent, while different types of neurons have markedly different frequency patterns.

For example, granular cells exhibit more symmetrical motifs than the average over

all types of neurons. All data used was obtained from neuromorpho .org.

5.4 Comparing statistical models

To compare our four models, we used tenfold cross-validation on datasets representing

several classes of neurons (see Figure -5-3). For a given neuron class and branching

model, we calculated the difference between the log likelihood of obtaining dendro-

grams from that neuron class using the given model and the log likelihood using the

depth-dependent asymmetric model. The mean and variance were calculated by di-

viding the data into training and testing in ten different ways. The cross-validation

procedure, in which models are evaluated only on data which they are not trained

on, allows us to conclude that the depth-dependent asymmetric model gives the best

fit for every neuron class considered. However, it is worth noting that axons (not

shown), which typically branch relatively little, are better represented by more sym-

metric models.
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Figure 5-1: Neuron morphologies, shown geometrically (left) and through dendro-
grams (right). Above, a neuron with fitted asymmetric parameters PA and PB shown

(note that the two probabilities are very different, indicating asymmetry). Below, a
more symmetric neuron, with parameter p shown.
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Figure 5-2: Frequency of graphical motifs within dendrograms of various classes of

neurons (or parts thereof). Apical and basal dendrites are drawn from pyramidal

neurons. The motifs are sorted such that their probabilities under more symmetric

models grow from left to right. The size of each database is given under the neuron

type.
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Figure 5-3: The depth-dependent asymmetric model captures real neuron dendro-
grams most effectively, by comparing other models to it using cross-validation.

5.5 Fitting statistical models

To fit each model, we calculate the likelihood of obtaining the observed dendrograms

using that model, and fit branching probabilities so as to maximize the likelihood.

For the symmetric model, the likelihood for a single dendrogram can be expressed by

multiplying p for each branching and 1 - p for each termination, giving the formula

pfl+ (1 - p)" , where n+ is the number of branching nodes (those with 2 children) and

n is the number of terminating nodes. In the asymmetric model, the likelihood is

given by:

[PAPB] n (PAl - PB) + PB(1 - PA) [(1 - PA)(I - PB )]nd

where nb, ne, d are, respectively, the numbers of branching nodes for which both

children, one child, and neither child is branching. Similar computations are possible

for depth-dependent models, though they are slightly more complicated. The fitted

parameters for depth-dependent models over the entire databases of various neuron

types are shown in Figure 5-4.

5.6 Conclusions

1. Branching motifs within neuron morphologies differ markedly across neuron

types. Such motifs could be helpful in distinguishing neuron types automati-

cally, as well as in suggesting biological differences between such types.

90



All neurons

0 depth 50

Apical dendrites Basal dendrites

0 depth 100 0 depth 30

Ganglion cells Granular cells
1 1

0 0
0 depth 30 0 depth 20

Figure 5-4: Fitted parameters for the depth-dependent symmetric and asymmetric
models to dendrograms of different types of neurons. The x-axis measures distance
from the soma.

2. Depth-dependent asymmetric models describe dendrograms very well, compared

to models without asymmetry or depth-dependence. This suggests that branch-

ing does admit asymmetrical hidden variables and that distance from the soma

plays a role in branching.

3. In fitting depth-dependent probabilities, we observe that models tend to be

symmetric for low depth, with PA - PB, but then that these probabilities diverge

strongly for greater depth. This cutoff is noteworthy, since it suggests that close

to the soma, there is less differentiation of "main branches" and "side branches."
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Chapter 6

Morphological Error Detection in 3D

Segmentations

6.1 Introduction

The neural network of the brain remains a mystery, even as engineers have succeeded

in building artificial neural networks that can solve a wide variety of problems. Un-

derstanding the brain at a deeper level could significantly impact both biology and

artificial intelligence f12, 55, 90, 99, 1481. Perhaps appropriately, artificial neural net-

works are now being used to map biological neural networks. However, humans still

outperform computer vision algorithms in segmenting brain tissue. Deep learning

has not yet attained the intuition that allows humans to recognize and trace the fine,

intermingled branches of neurons.

The field of connectomics aims to reconstruct three-dimensional networks of bio-

logical neurons from high-resolution microscope images. Automated segmentation is

a necessity due to the quantities of data involved. In one recent study [57], the brain of

a larval zebrafish was annotated by hand, requiring more than a year of human labor.

It is estimated that mapping a single human brain would require a zettabyte (one

billion terabytes) of image data [83], clearly more than can be manually segmented.

State-of-the-art algorithms apply a convolutional neural network (ConvNet) to

predict, for each voxel of an image, whether it is on the boundary (cell membrane)
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of a neuron. The predicted membranes are then filled in by subsequent algorithms

162]. Such methods are prone both to split errors, in which true objects are subdi-

vided, and to merge errors, in which objects are fused together. The latter pose a

particular challenge. Neurons are highly variable, unpredictably sprouting thousands

of branches, so their correct shapes cannot be catalogued. Erroneously merged neu-

rons are obvious to trained humans because they simply don't look right, but it has

hitherto been impossible to make such determinations automatically.

We introduce a deep learning approach for detecting merge errors that leverages

the morphological intuition of human annotators. Instead of relying upon voxelwise

membrane predictions or microscope images, we zoom out and capture as much con-

text as possible. Using only three-dimensional binary masks, our algorithm is able

to learn to distinguish the shapes of plausible neurons from those that have been

erroneously fused together.

We test our network, MergeNet, both on connectomics datasets and on an illus-

trative dataset derived from MNIST 181]. The key contributions of this approach

include:

" Localization of merge errors. MergeNet is able to detect merge errors with

high accuracy within a three-dimensional segmentation and to pinpoint their

locations for correction (see Figures 6-1 and 6-2).

" Unsupervised training. The algorithm can be trained using any reasonably

accurate segmentation, without the need for any additional annotation. It is

even able to correct errors within its own training data.

" Generalizability and scalability across datasets. MergeNet can be applied

irrespective of the segmentation algorithm or imaging method. It can be trained

on one dataset and run on another with high performance. By downsampling

volumetric data, our ConvNet is able to process three million voxels a second,

faster than most membrane prediction systems.
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Figure 6-1: A probability map localizing merge errors, as predicted by MergeNet, for
an object within the ECS dataset. Orange indicates a high probability of merge error,
blue the absence of error. Location (A) illustrates a merge between two neurons run-
ning in parallel, (B) a merge between three neurons simultaneously (the two parallel
neurons, plus a third perpendicular to them), and (C) a merge between a large neuron
segment and a small branch from another neuron. MergeNet is able to learn that all
of these diverse morphologies (and others not illustrated in this example) represent
merge errors, but that locations such as (D) and (E) are normally occurring branch
points within a single neuron.

Figure 6-2: A single, relatively simple merge error detected and localized by Mer-
geNet. This object, within the Kasthuri dataset [70], occurred within the training
data of the algorithm, but was not labeled as a merge error. MergeNet was nonethe-
less able to correct the label. This capability allows MergeNet to be trained on an
uncertain segmentation, then used to correct errors within the same segmentation,
without requiring any manual annotation.
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6.2 Related work

There have been numerous recent advances in using neural networks to recognize

general three-dimensional objects. Methods include taking 2D projections of the

input [143], combined 2D-3D approaches [20, 821, and purely 3D networks [92, 1571.

Accelerated implementation techniques for 3D networks have been introduced by

Budden et al. [18] and Zlateski, Lee and Seung [164].

Within the field of connectomics, Maitin-Shepard et al. [88] describe CELIS, a neu-

ral network approach for optimizing local features of a segmented image. Januszewski

et al. [631 and Meirovitch et al. [94] present approaches for directly segmenting in-

dividual neurons from microscope images, without recourse to membrane prediction

and agglomeration algorithms. Deep learning techniques have likewise been used to

detect synapses between neurons [128, 132] and to localize voltage measurements in

neural circuits [2] (progress towards a functional connectome). New forms of data are

also being leveraged for connectomics [110, 145], thanks to advances in biochemical

engineering.

Many authors cite the frequent problems posed by merge errors (see e.g. [1071);

however, almost no approaches have been proposed for detecting them automatically.

Meirovitch et al. [941 suggest a hard-coded heuristic to find "X-junctions", one variety

of merge error, by analyzing graph theoretical representations of neurons as skeletons

(see also [162]). Recent work including [73, 104] has considered the problem of deep

learning on graphs, and Farhood, Ramkumar, and Kording [381 use Generative Adver-

sarial Networks (GANs) to generate neuron skeletons. However, such methods have

not to date been brought to bear on connectomic reconstruction of neural circuits.

6.3 Methods

Our algorithm, MergeNet, operates on an image segmentation to correct errors within

it. Given an object within the proposed segmentation, MergeNet determines whether

points chosen within the object are the location of erroneous merges. If no such points
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exist, then the object is determined to be free from merge errors.

Input and architecture.

The input to our network is a three-dimensional window of the object in question,

representing a 51 x 51 x 51 section of the object, centered at the chosen point. (These

dimensions are chosen as a tradeoff between enhancing speed and capturing more

information, as we discuss further in sections @6.3.1 and 6.4.) Crucially, the window

is given as a binary mask: that is, each voxel is 0 or 1 depending on whether it is

assigned to the object. MergeNet is not given data from the original image, induc-

ing the network to learn general morphological features present in the binary mask.

The network follows a simple convolutional architecture, containing six convolutional

layers with rectified linear unit (ReLU) activation, and three max-pooling layers, fol-

lowed by a densely connected layer and softmax output. The desired output is a 1-hot

vector for the two classes "merge" and "no merge", and is trained with cross-entropy

loss.

2D MergeNet.

We also constructed a simpler 2D version of MergeNet to illustrate the identification

of merge errors within two-dimensional images. In this case, the input to the network

is a square binary mask, which passes through four convolutional layers and two

max-pooling layers. This network was trained to recognize merges between binarized

digits from the MNIST dataset [81]. Random digits were drawn from the training

dataset and chained together, with merge errors given by pixels at the points of

contact between neighboring digits. Testing was performed on similar merges created

from the testing dataset. The size of the input window to the network was varied to

compare accuracy across a variety of contextual scales.

Downsampling.

To apply MergeNet to connectomics data, we begin by downsampling all objects.

Segmentations of neural data are typically performed at very high resolution, approx-

imately 5 nm. The finest morphological details of neurons, however, are on the order

of 100 nm. Commonly, data is anisotropic, with resolution in the z direction being

significantly lower than that in x and y. We tested MergeNet with downsampling
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ratios of 10 x 10 x 2 and 25 x 25 x 5 to compensate for anisotropy. Downsampling

an object is performed by a max-pooling procedure. That is, every voxel within the

downsampled image represents the intersection of the object with a corresponding

subvolume of the original image with dimensions e.g. 25 x 25 x 5.

Training.

The network was trained on artificially induced merge errors between objects within

segmentations of neural tissue. Merges consisted of identifying immediately adjacent

objects and designating points of overlap as the locations of merge errors. Negative

examples consisted of windows centered at random points of objects within the seg-

mentation. Artificial merge errors are used owing to the impracticality of manually

annotating data over large enough volumes to determine sufficient merge errors for

training. As we demonstrate, such training suffices for effective detection of real merge

errors and has numerous other advantages (detailed in section 6.4). Training was

performed on various segmentations of the Kasthuri dataset [70j, and the algorithm

was evaluated both on this dataset and on segmented objects of the ECS dataset, a

20 x 20 x 20 micron cube of rat cortex data to which we were given access.

Output.

To run a trained instance of MergeNet on objects within a segmentation, it is not

necessary to apply the network to every voxel since the predictions at nearby points

may be interpolated. Sample points are therefore taken within each downsampled

object, and MergeNet is run on windows centered at these points. The real-valued

predictions at sample points are then interpolated over the entire object to give a

heatmap of probabilities for merge errors. As the distribution of training examples is

balanced between positive and negative examples, which is not true when the network

is applied in practice, the output must be normalized or thresholded after the softmax

layer. We find it effective to classify as a merge error any voxel at which the prediction

exceeds 0.9.

98



6.3.1 Results

We first consider the illustrative example of the merged MNIST dataset. After train-

ing on five million examples within this dataset, we obtained a maximum pixelwise

accuracy of 96.8 percent on a test set constructed from held out digits and equally

distributed between positive and negative examples. This corresponds to almost

perfect identification of individual merge error regions, as shown in Figure 6-3. (Am-

biguous pixels on the edges of merge error regions were the most likely pixels to be

misclassified.)

Width 12 V $ Ik3 S fZO4
prediction

Width 24 D ~ 2 f? I ~ ~ i~ w
prediction

correct
labels rU3~D 0 o

Figure 6-3: Predictions of MergeNet on merged MNIST digits, shown on a sample
of the test set. The top image shows predictions of the network with 12 x 12 input
windows, with predicted merges shown in yellow. The middle image shows predictions
with 24 x 24 input windows. The final image shows the actual merges, in red. Note
that both networks are quite accurate, but that for 12 x 12 input, the algorithm makes
several erroneous predictions of merge errors (shown with blue arrows), which are not
made for 24 x 24 input. This illustrates how greater morphological context leads to
qualitatively better predictions. A quantitative assessment is shown in Figure 6-4.

Accuracy increases with morphological information.

In Figure 6-4, we show the dependence of accuracy on the window size used. Intu-

itively, a larger window gives the network more morphological context to work from,

and plateaus in this case at approximately the dimensions of a pair of fused MNIST

digits (40-50 pixels across), which represents the maximum scale at which morphology

is useful to the network. Figure 6-3 provides a qualitative comparison of performance

between a smaller and a larger window size. The smaller window size erroneously pre-

dicts merges within digits, while the large window size allows the network to recognize

the shapes of these digits and identify only merge errors between digits.
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Figure 6-4: Performance of MergeNet on merged MNIST digits, shown as a function
of input window width (with example windows shown). Note that increasing win-
dow size increases performance, but only up to a size of 40-50 pixels. We see that
performance plateaus at the point at which morphological context captures all of the
information about the neighboring digits. For the case of neurons, which are larger
and more complicated, morphological context does not plateau; however, there is a
tradeoff between more context and greater speed, since the time required to run the
3D ConvNet depends strongly upon input size.

There is, of course, a tradeoff between accuracy and the time required to train

and run the network. Slowdown resulting from larger window size is considerable

for three-dimensional ConvNets. We have attempted to choose the parameters of

MergeNet with this tradeoff in mind.

MergeNet detects merge errors across datasets.

We trained MergeNet on two segmentations of the Kasthuri dataset [93] and tested

performance on artificially merged objects omitted from the training set. Segmen-

tation A was relatively poor, and training on it yielded performance of only 77.3

percent. Segmentation B was more accurate, yielding performance of 90.0 per-

cent. Training on both segmentations together yielded the best performance on both

test sets, showing that MergeNet is able to leverage contextual information from one

segmentation to improve performance on another. We also note that after training on

the low-quality Segmentation A, MergeNet was able to detect errors within its own

training set, as shown in Figure 6-2.

MergeNet generalizes broadly across datasets as well as segmentations of the same

dataset, and applies to both artificial and natural merge errors, though the latter are
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Training on Seg. A Training on Seg. B Training on both
Testing on Seg. A 77.3% 82.6% 84.5%
Testing on Seg. B 70.7% 90.0% 91.9%

harder to quantify owing to the paucity of large-scale annotation. After training on

the Kasthuri dataset, MergeNet was able to detect naturally occurring merge errors

within segmentations of the ECS dataset, obtained from a state-of-the-art U-Net

segmentation algorithm [129]. Example output is shown in Figures 6-1 and 6-5.

6.4 Discussion

We will now consider the capabilities of the MergeNet algorithm and discuss oppor-

tunities that it offers within the field of connectomics.

Detection and localization of merge errors.

MergeNet is a powerful tool for detecting and pinpointing merge errors. Once a merge

location has been flagged with high spatial precision, other algorithms can be used to

create a more accurate local segmentation, thereby correcting any errors that occured.

Flood-filling networks [63] and MaskExtend [94] are two examples of algorithms that

have high accuracy, but are extremely time-consuming to run over large volumes,

making them ideally suited to segment at the merge locations flagged by MergeNet.

Alternatively, the agglomeration algorithm NeuroProof [106], used in transforming

membrane probabilities to segmentations, can be tuned to be more or less sensitive

to merge errors. A more merge-sensitive setting could be applied at those locations

flagged by our algorithm.

If the thresholding step is omitted, then the output of MergeNet may be thought

of as a probability distribution of merge errors over objects within a segmentation.

This distribution may be treated as a Bayesian prior and updated if other information

is available; multiple proofreading algorithms can work together. Thus, for example,

synapse detection algorithms [128, 132] may provide additional evidence for a merge

error if synapses of two kinds are found on the same segmented object, but are
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normally found on different types of neurons. In such a scenario, the probability

at the relevant location would be increased from its value computed by MergeNet,

according to the confidence of the synapse detection algorithm. We envision MergeNet

being the first step towards fully automated proofreading of connectomics data, which

will become increasingly necessary as such data is processed at ever greater scale.

Unsupervised training.

MergeNet is trained on merge errors created by fusing adjacent objects within a seg-

mentation. This allows training to proceed without any direct human annotation.

In testing MergeNet, we performed training on several automatically generated seg-

mentations of EM data and obtained good results, even though the training data

was not free of merge errors and other mistakes. It is highly advantageous to elim-

inate the need for further data annotation, since this is the step in connectomics

that has traditionally consumed by far the most human effort. The ability to run on

any (reasonably accurate) segmentation also means that MergeNet can be trained on

far larger datasets than those for which manual annotation could reasonably be ob-

tained. Automated segmentations already exist for volumes of neural tissue as large

as 232,000 cubic microns [114].

Comparison of segmentations.

Automatic detection of merge errors allows us to compare the performance of alter-

native segmentation algorithms in the absence of ground truth annotation. We ran

MergeNet with the same parameter settings on two segmentations within the ECS

dataset, after training on other data. These alternative segmentations were produced

by two different versions of a state-of-the-art U-Net segmentation algorithm [129I.

For the simpler algorithm, 33 of the 300 largest objects within the segmentation

(those most likely to have merge errors) were flagged as unlikely, while, for the more

advanced algorithm, only 15 of the largest 300 objects were flagged. This indicates

that the latter pipeline produces more plausible objects, making fewer merge errors.

The size of the objects was comparable in each case, so there is no indication that

this improvement came with a greater propensity for erroneous splits within single

objects. Thus, MergeNet was able to perform a fully automatic comparison of two
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segmentation algorithms and confirm that one outperforms the other.

Correction of the training set.

We have already observed that MergeNet can be trained on any reasonably correct

segmentation. In fact, it is possible to leverage artificial merge errors within the

training set to detect real merge errors that may occur there (as shown in Figure

6-2). This is remarkable, since the predictions MergeNet makes in this case should

conflict with the labels it was itself trained on - namely, when objects from the

training set that have not been artificially merged are nonetheless the result of real

merge errors. Our observations align with results showing that neural networks are

capable of learning from data even when the labels given are unreliable [144].

Independence from lower-order errors.

Since MergeNet makes use of the global morphology of neurons, it is not reliant on

earlier stages of the connectomics pipeline, such as microscope images or membrane

predictions. Thus, it is able to correct errors that arise at early stages of the pipeline,

including those at the experimental stage. EM images are prone to various catas-

trophic errors; most notably, individual tissue slices can tear before imaging, leading

to distortion or gaps in the predicted membranes. Algorithms that stitch together

adjacent microscope images also sometimes fail, leading to pieces of neurons in one

image being erroneously aligned with pieces from the neighboring image. Typically,

such errors are propagated or magnified by later stages of the connectomics pipeline,

since algorithms such as watershed and NeuroProof [106] assume that their input is

mostly true. By contrast, MergeNet can look at the broader picture and use "common

sense' as would a human proofreader.

The output of a membrane-detection algorithm also can induce errors in object

morphology. Common sources of error at this stage are ambiguously stained tissue

slices and intracellular membranes, such as those from mitochondria, which can be

confused with the external cell membrane. Figure 6-5 shows an error in predictions

from the U-Net algorithm, where a large gap in the predicted membrane has allowed

two objects to be fused together into one (shown in blue). By utilizing the overall 3D

context, MergeNet is able to detect and localize the error (shown in red).
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Generalizability to different datasets.

One of the challenges of traditional connectomics algorithms is that there are numer-

ous different imaging techniques, which can each be applied to the nervous systems of

various organisms, and in some cases also to structurally distinct regions of the ner-

vous system within a single organism. For networks used in connectomics for image

segmentation, it is often necessary to obtain ground truth annotations on each new

dataset, which consumes considerable time and effort.

Figure 6-5: The output of MergeNet at a merge error, superimposed over the er-
roneously predicted membranes that led to the merge error. MergeNet output at
individual pixels has been thresholded above 0.9, with red denoting predicted merge
error and blue the absence of error. Observe that the predicted membranes have a
wide gap at the region MergeNet has flagged; this gap is incorrect and the membrane
should extend between the two objects, separating them. Note that MergeNet used
only three-dimensional morphological information to detect this error, and did not
make use of the (erroneous) membrane predictions that are shown, or the underlying
microscope images.

MergeNet, by contrast, is highly transferrable between datasets. Not only can

the algorithm be trained on an unverified segmentation and can correct it, but it can

also be trained on one dataset and then run on a segmentation of a different dataset,

without any retraining. Figures 6-1 and 6-5 show images obtained by training on a

segmentation of the Kasthuri dataset [70] and then running on the ECS dataset.

Applicability to anisotropic data.

The microscope data underlying connectomics segmentation is often anisotropic,

where the particular dimensions in the x, y, z directions depend upon the particu-
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Figure 6-6: Glial cell, flagged as a merge error by MergeNet. While glia are not
merge errors, they are also not neurons and did not occur in the training set for
MergeNet. As the algorithm recognizes, the morphology of glia is markedly different
from that of neurons. Specifically training MergeNet to recognize glia could be useful
in segmenting these cells, which occur along with neurons in brain tissue.

lar imaging procedure used. For example, the Kasthuri dataset has resolution of

6 x 6 x 30 nanometers, while our ECS dataset is even more anisotropic, with reso-

lution of 4 x 4 x 30 nanometers. Some imaging technologies do yield isotropic data,

such as expansion microscopy (ExM) [19] and focused ion beam scanning electron

microscopy (FIB-SEM) [75]. Various techniques have been proposed to work with

anisotropic data, including 2D ConvNets feeding into 3D ConvNets 1821 and a com-

bination of convolutional and recurrent networks [201.

MergeNet cancels the effect of anisotropy, as necessary, by downsampling dif-

ferentially along the x, y, z directions. Thus, the network is able to transform any

segmentation into one in which morphology is approximately isotropic, making learn-

ing much easier. We also anticipate that it may be possible to train on data from one

imaging modality, then to apply a different downsampling ratio to run on data with

different anisotropy. For example, MergeNet could be trained on an EM segmenta-

tion, then run on an ExM segmentation.

Scalability.

The MergeNet algorithm is designed to be scalable, so that it can be used to proofread

segmentations of extremely large datasets. The network is applied only once objects

have been downsampled by a large factor in each dimension, and is applied then only
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to sampled points within the downsampled object. These two reductions in cost allow

the 3D ConvNet to be run at scale, even though 3D kernels are slower to implement

than 2D kernels.

We tested the speed of MergeNet on an object with 36,874,153 original voxels,

downsampled to 18,777 voxels, from which we sampled 1,024, allowing us to generate

a dense probability map across the entire object. The ConvNet ran in 11.3 seconds

on an Nvidia Tesla K20m GPU. This corresponds to a speed of over three million

voxels per second within the original image. Thus, the network could be applied

to a volume of 1 billion voxels in a minute using five GPUs. By comparison, the

fastest membrane-prediction algorithm can process 1 billion voxels within 2 minutes

on a 72-core machine [931, demonstrating that our algorithm can be integrated into

a scalable connectomics pipeline. Note that our experiments were performed using

TensorFlow [1]; we have not attempted to optimize time for training or running

the network, though recent work indicates that significant further speedup may be

possible [18, 164].

Detection of non-neuronal objects.

While MergeNet is trained only on merge errors, it also seems to be able to detect

non-neuronal objects, as a byproduct of learning plausible shapes for neurons. In

particular, we observe that MergeNet often detects glia (nonneuronal cells that occur

in neural tissue), the morphologies of which are distinctively different from those of

neurons. Figure 6-6 shows an example of a glial object from the ECS dataset; notice

that MergeNet finds the morphology implausible, even though it has been trained

on neither positive nor negative examples of glia. Quantifying the accuracy of glia

detection is challenging, however, since little ground truth has been annotated for

this task, and most connectomics algorithms are unable to distinguish glia.

Finally, let us consider when (and why) MergeNet succeeds and fails on different

inputs. The algorithm does not simply label all branch points within a neuron as

merge errors, or else it would be effectively useless. However, the network can be

confused by examples such as two branches that diverge from a main segment at

approximately the same point, resembling the cross of two distinct objects. MergeNet
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also misses some merge errors. For example, when two neuronal segments run closely

in parallel, there may at some points along the boundary be no morphological clues

that two objects are present. It is worth noting, however, that parallel neuronal

segments can in fact be detected by MergeNet, as shown at point (A) of Figure 6-1.

6.5 Conclusion

Though merge errors occur universally in automated segmentations of neural tissue,

they have never been addressed in generality, as they are difficult to detect using

existing connectomics methods. We have shown that a 3D ConvNet can proofread

a segmented image for merge errors by "zooming out", ignoring the image itself, and

instead leveraging the general morphological characteristics of neurons. We have

demonstrated that our algorithm, MergeNet, is able to generalize without retraining

to detect errors within a range of segmentations and across a range of datasets. Rely-

ing solely upon unsupervised training, it can nonetheless detect errors within its own

training set. Our algorithm enables automatic comparison of segmentation methods,

and can be integrated at scale into existing pipelines without the requirement of ad-

ditional annotation, opening up the possibility of fully automated error detection and

correction within neural circuits.

While MergeNet can detect and localize merge errors, it cannot, by itself, correct

them. One could conceive a variation on the MergeNet algorithm that is used to

mark the exact boundary of a merge error, allowing a cut to be made automatically

along the boundary so as to correct the merge without additional effort. However, in

practice this is a much more challenging task. Often it is impossible to determine the

exact division of objects at a merge error purely from morphology. For instance, when

two largely parallel objects touch, it may not be evident which is the continuation of

which past the point of contact, even if the erroneous merge itself is obvious. Likewise,

some merge errors consist of three or more objects that have been confused in some

complex way, e.g. by virtue of poor image quality at that location. In such cases, any

merge-correction algorithm must have recourse to the underlying microscope images
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or membrane probabilities, rather than relying purely upon morphological cues.

Deep learning approaches leveraging morphology have the potential to transform

biological image analysis. It may, for instance, become possible to classify types of

neurons automatically, or to identify anomalies such as cancer cells. We anticipate

a growth in such algorithms as the scale of biological data grows and as progress in

connectomics leads to a deeper understanding of the brain.
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Chapter 7

Modeling Characteristics of

Biological Attractor Networks

7.1 Markov Transitions between Attractor States in

a Recurrent Neural Network

7.1.1 Motivation

With the advancement of probabilistic theories of human cognition [45], there has

been increasing interest in neural mechanisms that can represent and compute these

probabilities. Several new models of neural computation carry out Bayesian proba-

bilistic inference taking into account both data and prior knowledge, and can represent

uncertainty about the conclusions they draw [87, 109, 139]. In many tasks, neural

mechanisms are required that can transition stochastically to a new state depending

on the current state: for example, to predict the path of a moving object [154], gauge

the effect of a collision [131], or estimate the dynamic motion of fluids [8], as well as in

the general context of carrying out correlated sampling over a posterior distribution

[42, 16, 361. The Markov transition probabilities in these cases are dictated by knowl-

edge of the world. The stochasticity of transitions allows decisions that are tempered

by uncertainty, rather than making a "best guess" or point estimate that is agnostic
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to uncertainty and is chosen deterministically based on some measure of optimality.

Further, Markov chain Monte Carlo methods [103] allow us to engineer a Markov

chain with stationary distribution equal to any distribution of interest. Therefore a

simple Markov chain with the right transition probabilities can also form the basis

for neurally plausible probabilistic inference on a discrete state space.

It is important here to distinguish between stochasticity in our perception or neural

representation of states, and stochasticity incorporated into a computational step.

The first is unavoidable and due to noise in our sensory modalities and communication

channels. The second is inherent to a process the brain is carrying out in order to

make probabilistic judgments, and represents useful information about the structure

of the environment. While it is difficult to tease apart these sources of noise and

variability, Beck et al. 191 suggest that sensory or representational noise is not the

primary reason for trial-to-trial variability seen in human responses and that there

are other sources of stochasticity arising from the process of inference that might be

more important and influential in explaining observed behavioral variability. Humans

are in fact remarkably immune to noise in percepts - for example when identifying

occluded objects and filtering out one source of sound amid ambient noise [47, 671.

Hopfield networks represent an effective model for storage and representation that

is largely immune to noise; different noisy or partial sensory percepts all converge to

the same memory as long as they fall within that memory's basin of attraction. These

"memory" states are represented in a distributed system and are robust to the death

of individual neurons. Stochastic transitions in Hopfield networks therefore are a

step towards stochastic computation that still ensures a noise-robust representation

of states.

The Markov chain dynamics we model also have applications in systems where

experimental verification is more lucid. For example, the Bengalese finch's song has

been effectively modeled as a hidden Markov model [65]. While deterministic birdsong

in the zebra finch has previously been modeled by feedforward chains of neurons in

HVC [851, our network provides a potential neural model for stochastic birdsong.

Further, its specific structure has possible parallels in songbird neural architecture,
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as we later detail.

7.1.2 Background

A Hopfield network [59] is a network of binary neurons with recurrent connections

given by a symmetric synaptic weight matrix, Jij. The state xi of the ith neuron is

updated according to the following rule:

xi <- sign ( Jijx) (7.1)
(j=1

With this update rule, every initial state of the network deterministically falls into

one of a number of stable fixed points which are preserved under updates. The identity

of these fixed points (attractors or memories) can be controlled by appropriate choice

of Jij, according to any of various learning rules [54, 130, 142, 581. If the network

is initialized at a corrupted version of a memory, it is then able to converge to the

true memory, provided that the corrupted/noisy initialization falls within the true

memory's basin of attraction. This allows Hopfield networks to be a model for content-

addressable, associative memory.

Due to symmetry of weights, a traditional Hopfield network always converges to

a stable attractor state. By adding asymmetric connections, it is possible to induce

transitions between the attractor states. Sompolinsky and Kanter {1401 show that a

set of deterministic transitions between attractor states can be learned with a Heb-

bian learning rule, by means of time-delayed slow connections. Here, the transition

structure is built into the synapses of the network and is not stochastic. The chal-

lenge we address in this paper is to leverage what we know from past work about

deterministic transitions in attractor networks and combine it with a source of noise

to make these transitions stochastic, with controllable Markov probabilities for each

transition.
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7.1.3 Network architecture

We propose a network consisting of three parts: A memory network, a noise network,

and a mixed network (see Fig. 7-1). The memory network taken by itself is an attrac-

tor network with stabilizing recurrent connections; it stores states of the Markov chain

as attractors. The noise network also stores a number of attractor states (the noise

states); in its case, the transitions between attractors occur uniformly at random.

The mixed network is another attractor network, which receives input from both

the memory and noise networks, according to fixed random weights. The attractors

(mixed states) of the mixed network are chosen according to the memory and noise

states; thus, a different pair of memory state and noise state will induce the mixed

network to fall into a different attractor. The memory network receives input from the

mixed network, which induces it to transition between the memory attractor states.

The key insight in our design is that given the combined state of the noise and

memory networks (as captured in the mixed network), the next memory state is fully

determined. Stochasticity arises from resampling the noise network and allowing it

to fall uniformly at random into a new attractor. This is in fact the sole source of

stochasticity in the model, and it is in a sense analogous to the reparameterization

trick used in Kingma and Welling [72].

In order for transitions between memory states to be determined by the state of

mixed network, the attractors for the mixed network should be linearly separable.

A simple concatenation of memory and noise states would result in a strong linear

dependence between mixed states, making them difficult to linearly separate [261. We

recover linear separability in our model by instead constructing the mixed network as

a random projection of memory and noise states into a higher dimensional space [6].

The connections from the mixed network back to the memory network that induce

the transition are slow connections (see [140]); they are time-delayed by a constant

T and are active at intervals of r. This allows the memory network to stabilize its

previous state before a transition occurs. Thus, at every time step, each memory

neuron takes a time-delayed linear readout from the mixed representation, adds it to
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the Hopfield contribution from the memory network and passes the sum through a

threshold non-linearity.

Formally, the dynamics are given by the following equations, where xy' (0 < i <

nM), xjY (0 < j < nN), and xQ (0 < k < nQ) denote states of neurons in the memory

network, noise network, and mixed network, respectively. The function 65mod (t) is 1

when t = 0 (mod T), otherwise 0; and the notation x(t - T) denotes the state x at

time t - r (otherwise assumed to be time t). The function v(t, r) represents a noise

function that is resampled uniformly at random at intervals of T.

x , - sign JM x t + mod MQQ(-
x=1Tk=1

N TN Nx< sign x+
f=1
nQ nm nN

Q~ >Q Q1 \QM M VJxN~ ZdkXi + kjjJxk< sign kfJxf + I: Jki QN"kjX
(=1 i=1 j=1

The weight matrices jM, jN jQ, and JMQ are learned (see below), while JQM and

JQN are random, with nQ >> nM, nN-

We implement the noise network as a ring attractor - a ring of neurons where

activating any contiguous half-ring yields an attractor state. Here we have adapted

the model described in Ben-Yishai et al. [11] to the discrete setting according to the

following dynamics:

N -1 for nN/4 i-I< 3nN/4,

+1 otherwise,

for 1 < i, j < nN, where we require that nN be even. There are, then, aN ~ nN

'This "clocked" activity, while not biologically implausible, might be unnecessary; future work
might aim to replace it, perhaps by combining time-delayed neurons with a sparse, high-dimensional
projection to the mixed representation.

113



attractor states Ai, which take the form:

A= = -1 for 0 < k < nN/2,

x+k for nN/2 < k < N,

where indices are taken modulo nN-

Another possible construction for the noise network is simply to have a small

set of randomly activated neurons with no recurrent stabilizing connections. In this

construction, the number of noise attractor states is exponential in the number of

noise neurons, allowing higher precision in probabilities for the same number of noise

neurons. However, this construction has the disadvantage that it is highly sensitive to

the perturbation of single neurons, and so it may be difficult to distinguish between

incidental noise and a resampling of the noise network.

The components in our network all have biological analogues. We use slow neurons

to prompt transitions between memories only after the memories have been allowed

to stabilize. These could be implemented via the autapses in [136]. We use large

random expansions to increase linear separability of states, as suggested in f5j. Also,

the noise network in our architecture has a promising parallel in the LMAN region

of the songbird brain, which has been linked to generating variability in songs dur-

ing learning [105]. Alternatively, the noise network in our model could just be any

uncorrelated brain region.

7.1.4 Learning

There are several sets of weights that must be determined within our model. Those

denoted JM, JN jQ, and JMQ above are learned, while JQM and JQN are random.

The recurrent connections within the memory network (JM) and noise network

(jN) are learned using Hebb's rule, ensuring that each of the three subnetworks has

the desired attractor states. The weights for slow synapses from the mixed network

to the memory network (JMQ) are chosen according to methods described in [140] for

inducing deterministic sequences of attractors. The weights within the mixed network
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(JQ) are learned using the perceptron learning rule, yielding a larger capacity than

the Hebbian approach used in [140].

Finally, it is necessary that we determine which (memory, noise) state pairs should

transition to which new memories. For a desired transition Si - S2 between memory

states, having probability p in the Markov chain, we assign (approximately) a p-

fraction of noise states, so that (Si, N) induces a transition to S2 for all N in the p-

fraction. Thus, several noise states, in the presence of a particular memory state, could

result in the same transition; the number of noise states assigned to a transition is

proportional to the probability of that transition. Probabilities may be approximated

to within an accuracy of c O(1/aN), where aN is the number of attractor states in

the noise network.

Let us consider the biological feasibility of our learning approach. We use a Heb-

bian rule for stabilizing the patterns, in keeping with the established hypothesis of

Hebbian learning within the brain. For learning state transitions, we have so far

opted to use the perceptron rule in the interest of increasing capacity. This, however,

requires storing and iterating over a list of pairs of the form (memory, noise). It is

perhaps more biologically feasible to use an online algorithm for which such a list need

not be learned and stored, where learning proceeds by sampling trajectories from the

desired Markov chain.

Such an online learning rule indeed seems possible if we use Hebbian learning for

the state transitions. Specifically, every time a transition occurs in the real world, we

strengthen the corresponding connections in our network. Since our transitions take

the form of (memory + noise) -4 new memory, the noise state used in the transition

is simply whatever (arbitrary) state the noise network is in at that moment. A slight

weakness to this approach is the network must recognize when a particular transition

had already been learned, to prevent overwriting; however, this seems by no means

biologically insurmountable.
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Mixed
representation

Memory Noise
state state

Noise
injection

Figure 7-1: A schematic of our recurrent network. The current memory state is paired
with a randomized noise state, and that pairing determines the next memory state.
Since the noise state is sampled uniformly at random, it follows that the probability
of a particular transition from memory state Si to S2 is given by the fraction of
noise states that pair with Si to produce S2. To implement these transitions, we
consider each memory neuron at time t + 1 to be a perceptron readout of the mixed
representation. To increase the separability ability of these perceptrons, the mixed
representation is a large, random expansion of the (memory, noise) pairings. The state
transitions operate on a slow timescale due to the slow neurons. Not pictured are the
self-connections within the memory network, noise network, and mixed network that
serve to stabilize the corresponding states on a fast timescale.

7.1.5 Future directions

The connection weights from the mixed network to the memory network must dis-

criminate between the various mixed states in order to elicit the right transition.

We use a perceptron learning rule to learn these weights and use a high-dimensional

random projection to form our mixed state, to increase the number of mixed states

that are linearly separable [6, 26], thereby allowing us to encode a larger number of

transitions into our network. In effect, points that were close together in the original

space are far apart in the higher dimensional space, and thus easy to separate. This

comes with a downside, however, since small, accidental perturbations in the original

state will likewise be blown up by the random expansion. In Barak et al. [6J, this

problem is referred to as a generalization-discrimination trade off.

We did not encounter this problem in our preliminary simulations, since we did

not consider noise in our neural update rule, Equation 7.1. This ensured that our
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Figure 7-2: Top: a simple Markov chain, where the dynamics ensure the central state

(green) is visited on alternate time steps with probability 1. The number of times
state S1 is visited is therefore a binomial random variable ~ B(n,p = 0.5). Bottom:
results of our network simulating the dynamics of this Markov chain. We associate a

distinct 'memory vector' with each Markov state Si, and the plot shows the overlap of
each such memory vector with the system state at every time step of the simulation.

Averaging over 4000 state transitions, our simulation yielded empirical transition
probabilities of P(S|S2) = 0.512 ~ P(S3 |S2) = 0.488. These values are within one
standard deviation of the mean of the binomial distribution - B(n = 2000, p = 0.5),
indicating that our recurrent neural network is operating correctly. Note that we use
n = 2000 instead of 4000 because half of the transitions go deterministically to state

S2 .

system always fell to the very bottom of its attractor states, and in the statistical

mechanics analogy corresponds to operating the system at zero temperature.

We plan to test empirically the limits of our system's performance with respect

to the level of noise in our update rule (the temperature of our system), the expan-

sion ratio of our random projection, and the number of mixed states that need to

be correctly classified. Checking the agreement of our simulations with theoretical

predictions will reveal more about the capabilities of a system of neural computations

based on stochastic transitions between attractor states.

Our architecture can also implement Markov chain Monte Carlo, specifically some

version of Gibbs sampling. Each new state is sampled from a distribution conditioned

on the current state - this is analogous to sampling from a conditional distribution

as in Gibbs sampling. Future work could involve learning and representing these

conditionals within our network and implementing a noise-robust stochastic sampler
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over discrete state spaces.

7.2 Periodic Trajectories in Threshold-Linear Net-

works

Attractor states in networks need not be fixed points of the network dynamics, as

in Hopfield-type models. Central pattern generators in the brain are believed to

demonstrate attractor states that follow periodic behavior [159]; that is, a certain

pattern of neurons fires sequentially, and then the sequence repeats. Such repetitive

sequences underlie many behaviors such as locomotion. In this section, we model

such behavior using threshold-linear networks.

A threshold-linear network is a dynamical system of the form:

dx -X + [Wx + b]+, (7.2)
dt

for x c R', where W E R"' is a constant matrix, b E R' is a constant vector, and

[e]+ denotes max(*, 0). Such a system may be conceived as a continuous analogue of

the Hopfield model, where the coordinates of the vector x represent the activities of

neurons in the system. Neuron activities experience natural decay under this model

(the -x term above), but are subject to a constant stimulation b and are also affected

by the activities of other neurons according to the connectivity matrix W.

The combinatorial threshold-linear network (CTLN) framework allows us to isolate

the connectivity component of these dynamics by setting the parameters of the system

purely according to a graph representing connectivity between the neurons. Suppose

that constants e, 6, 0 satisfy 6, 6 > 0, and let G be a directed graph on vertices

vI, v2 , ... , vn. Then, the CTLN defined by c, 6,0, G is the threshold-linear network x
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for which the dynamics (7.2) above satisfy bi = 0 for all i, and

0 ifi=j

Wi -1+ c if i j and vi - vj

-1 - 6 if i $ j and vi 4- vj

for all i, j. From a neuroscientific standpoint, this model captures a scenario in

which neuron activities are subject to a constant excitation 0, weak inhibition from

neighboring neurons, and strong inhibition from non-neighboring neurons.

Thus, for example, in the case of G a directed 3-cycle, the dynamics x are given

by:

dx
dt

b= (0,0,)

0 -1 - 1+E

W= -+ 0 -1- .
-1 -6 -1 + 0

Morrison et al. [100] and Curto, Geneson, and Morrison [27] have considered the

emergent behavior of such networks (see also [28]), observing that even the CTLN

simplification captures complex behavior observed within the general threshold-linear

model. Morrison et al. [100] observed that stable periodic trajectories seem to arise

in CTLNs on many graphs, notably including directed cycles, in the regime 0 <

E < 61(6 + 1). (Various graphs also have been observed to give rise to other notable

behavior, such as quasiperiodic orbits that trace out surfaces of positive codimension.)

However, proving the existence of periodic trajectories has proved challenging even

for simple graphs. We here provide the first and only such result, for the directed

3-cycle.

Theorem 7.2.1. The dynamics x(t) above for G a directed 3-cycle possess a periodic

trajectory, for 0 < e < 6/(6 + 1).
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In order to prove the theorem, we will restrict ourselves to considering the cube

R defined by 0 - x 1 ,x 2 ,x 3 < 0.

Lemma 7.2.2. If x(0) E R, then x(t) remains within R for all t.

Proof of Lemma. Suppose first that xi(t) = 0 (for some time t and some i E {1, 2, 3}).

Then, (dx/dt)i = [W.x + 0]+ > 0. Likewise, if xi(t) 0, then (dx/dt) = -0- +

[WI.x + 0]+ < -0 + 0 = 0.

Hence, x(t) never leaves R for all t. E

Let Hi, for i = 1, 2, 3, denote the plane (Wx + 0)= 0. Let H- and H- denote

respectively the regions (Wx + 0), > 0 and (Wx + 6) < 0. Define the following

regions:

Ro = R n H n H2nH1

R1 = RnH- nH2 nH

R12= RnH- nHi nH

R 1 2 3 = R n Hi- n Hg n H3 ,

and define R2 , R3, R23 , R31 similarly. These regions partition R.

Let r(t) denote the distance between x(t) and the line c - (1, 1, 1), and let z(t)

denote the length of the projection of x(t) onto (1, 1, 1).

Lemma 7.2.3. Within the region R0 , we have dr/dt = (6 - e)r(t)/2 and dz/dt =

(-3 - 5 + E)z(t) + vF5.

Proof of Lemma. Within R0 , the behavior of x is governed by dx/dt = (W - I)x+0.

Note that 23 (1, 1, 1) is the only real eigenvector of W - I, corresponding to the

eigenvalue -3 - 6 + e. This shows that dz/dt = (-3 - -+ E)z(t) + v35.

Let v(t), w(t) respectively denote the components of x(t) in the directions of the

orthonormal vectors 1 (1, -1, 0) and 6 (1, 1, -2). Observe that W - I acts on these
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vectors according to the matrix

W ( ( - e)/2 V3-(6 + e)/2

-V (6 + E)/2 (6 - E)/2

Therefore, we have:

dr d
dt - dt v 2 (t) + w 2 (t)

dv dw
= (t) + W(O V t)-W t

(v(t),w(t))T W'(v(t),w(t)))
(( v 2 (t) +w2(t)

= (V(t)2+ W(t)2)2f Qv(t) +W2 (t)

From Lemma 7.2.3, we see that x(t) = (1, 1, 1) is a fixed point, which we

denote y. Let S. be the open ball of radius p about y, with p small enough that Sp is

contained wholly in Rf. Let Qp be the set of x(O) C R such that x(t) c Sp for some

t. From Lemma 7.2.3 it follows that all points in Q, n R0 are at less than distance p

from the line x1 = X2 = 3 .

Note that we have dx/dt = -x for all points in R 123 such that x, = x 2 = X 3.

Since dx/dt is continuous in R, we may conclude that for each p', there exists p such

that all points in Pp are at less than distance p' from the line x 1 = X2 = X 3. We

are thus able to pick p small enough that (i) S, is contained in R0 , and (ii) R\Q, is

homeomorphic to a torus.

Let R' = R\Q,, let R' R0 \Q,, and define R'I R'2, RI ' R ' simi-

larly. It is simple to verify that regions R0 , R2 , R3, R23 intersect in the points

K6 , , and _ 1, 1). The plane passing through these points and the

origin intersects R' in two disconnected surfaces. Let A 1 be the surface which is on
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the same side of the line (t, t, t) as the point K , 0, (1+6 )2 ) (in general, it will in-

tersect R23, but we do not need to prove this). Let vi := (c + 6, 1 - c, -(1 + 6)), a

(non-unit) vector that defines the plane of A 1 . We may define A 2 , A3 , v 2 , V 3 similarly.

Lemma 7.2.4. For every x E A 1, we have (dx/dt) -v1 > 0.

Proof of Lemma. The surface A1 has possibly nonempty intersection with R', R' 3, R'23

We consider these cases separately. For x C R', the result follows from Lemma 7.2.3.

For x E R' 3, we have:

dx
dt -v 1  -x -v 1 + (e + 6)(W 1*x + 0)

=0 + ( +6)(W 1 .x +0)

> 0.

Finally, for x E R'2 3, we have (dx/dt) - = -x -vi = 0. Thus, the Lemma holds

in all cases. D

Proof of Theorem 7.2.1. Define A as the identification of A1 , A 2, A 3 under the natural

quotient map 7r. We define the function f : A -+ A such that if x(0) E Ai, then

f(7r(x(0))) = wr(x(t)), where t is the minimal value such that x(t) C Ai+ 1 (where

subscripts are taken modulo 3). It follows from Lemma 7.2.4 that the function f is

well-defined and continuous, where we also use the fact that there is no fixed point

for x(t) apart from y. Therefore, by the Brouwer fixed point theorem, there exists a

fixed point of the function f, which corresponds to a periodic trajectory for x(t). El
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