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Abstract

Studies have shown that children's early literacy skills can impact their ability to achieve

academic success, attain higher education and secure employment later in life. However, lack

of resources and limited access to educational content causes a "knowledge gap" between

children that come from different socio-economic backgrounds. To solve this problem, there

has been a recent surge in the development of Intelligent Tutoring Systems (ITS) to provide

learning benefits to children. However, before providing new content, an ITS must assess a

child's existing knowledge.

Several studies have shown that children learn new words by forming semantic relation-

ships with words they already know. Human tutors often implicitly use semantics to assess

a tutee's word knowledge from partial and noisy data. In this thesis, I present a cognitively

inspired model that uses word semantics (semantics-based model) to make inferences about

a child's vocabulary from partial information about their existing vocabulary. Using data

from a one-to-one learning intervention between a robotic tutor and 59 children, I show

that the proposed semantics-based model outperforms (on average) models that do not use

word semantics (semantics-free models). A subject level analysis of results reveals that

different models perform well for different children, thus motivating the need to combine

predictions. To this end, I present two methods to combine predictions from semantics-

based and semantics-free models and show that these methods yield better predictions of

a child's vocabulary knowledge. Finally, I present an application of the semantics-based

model to evaluate if a learning intervention was successful in teaching children new words

while enhancing their semantic understanding. More concretely, I show that a personal-

ized word learning intervention with a robotic tutor is better suited to enhance children's

vocabulary when compared to a non-personalized intervention. These results motivate the

use of semantics-based models to assess children's knowledge and build ITS that maximize

children's semantic understanding of words.

Thesis Supervisor: Cynthia Breazeal
Title: Associate Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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Chapter 1

Introduction

"To live in the world without becoming aware of the meaning of the world is like wandering

about in a great library without touching the books." - Dan Brown, The lost symbol

Humans are the only species known to have developed the symbol system of language

[461. It gave us the ability to express the myriad conscious experiences we encounter, to

transfer information to one another and to learn from each other. In a series of experiments,

Edward Sapir [521 and Benjamin Whorf [681 showed that language can also influence the

way people think and perceive. In one experiment, Whorf showed perceptual differences

in identifying the colors "blue" and "green" between native speakers of English and the

Tarahumara language. The cause of these perceived differences was attributed to differences

in the lexicon of the two languages. Language serves both as a medium for expression as

well as perception of thoughts and the meaning of the world around us.

1.1 Importance of semantics

At the heart of language lies semantics. It explains how various entities are related (or

unrelated) to each other. People often use semantic associations to understand new concepts.

In the context of language learning, people understand new words by associating them with

words they already know. Studies have shown that children, as young as 3 years of age,

often form categories among new objects using their shared semantic properties [301. During
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language acquisition, children often develop a model of semantics to map how different

words relate to one another. This semantic categorization of words further facilitates the

learning of new words [10]. In this thesis, I propose a computational cognitive model that

takes into account semantic relationships between words to make predictions about a child's

vocabulary knowledge. In the rest of this thesis, I will refer to this model as semantics-

based model (unless otherwise specified) and models that don't take into account semantic

relations between words as semantics-free models.

1.2 Motivation

For a child to learn new words and concepts, they must be exposed to new vocabulary,

through both written and oral forms of communication. While schools in the United States

heavily focus on reading comprehension, in 2013, only 35% of 4th and 38% of 12th grade stu-

dents tested on the National Assessment of educational progress were found to be proficient

in reading 141. Several studies have shown that children's early literacy skills can impact their

ability to achieve academic success, attain higher education and secure employment later

in life [25, 40]. Yet, only 40% of eligible pre-schoolers actually attend preschool. The root

cause of the problem lies in early childhood education and learning. This can be attributed

to family income, lack of education among parents or limited access to a good schooling

system. Children that belong to lower socio-economic status (SES) have smaller vocabu-

laries when compared to children from higher SES [25]. This phenomenon has a cascading

effect on children from lower SES as they grow older; smaller vocabularies lead to decreased

understanding of written and oral communication, which in turn increases this knowledge

gap.

With the advent of technology across all socio-economic status groups (eg., smart phones,

tablets, etc), there has been a recent surge in the development of Intelligent Tutoring Systems

(ITS). These systems are created to provide educational benefits in one-to-one tutoring [66].

For instance, recently the state of Providence launched a program called "Providence Talks"

to bridge the word gap between children from low income SES and high income SES 148].
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They use a recording device to monitor a child's verbal communication with adults and

provide insights into a child's progress in language acquisition. In vocabulary learning

tasks, most ITS come with a fixed curriculum (or a set of words) that the system attempts

to teach without considering prior knowledge of the tutee. When a human tutor interacts

one-to-one with a tutee, s/he attempts to understand existing knowledge of the tutee before

teaching a new concept. However, in at-risk communities, it is nearly impossible for a

teacher to personalize the curriculum to individual learners. Given the ease-of-deployment,

the potential to scale ITS, and recent advancements in the field of Al, there is a significant

advantage to building computational cognitive models that personalize to different learners

with the goal of maximizing learning.

1.3 Towards building a cognitive model

Whether to understand human cognition or as part of an ITS, the fundamental challenge

for a cognitive model is to maintain a belief over possible human behaviors. In the context

of language learning for children, a cognitive model must maintain a belief over a child's

knowledge. Human tutors often perform this task in the face of sparse, inconsistent, incom-

plete and noisy data [23].

Consider a hypothetical case where an adult tutor tries to predict whether a child knows

the word "Jupiter". If the the tutor identifies that the child knows the word "Earth", does

the tutor's belief about the child knowing "Jupiter" become stronger? Now let's assume that

the tutor finds out that the child does not know the word "Planet." Does this belief now

become weaker? As the tutor talks to the child, the tutor figures out that the child knows

"Venus", "Mars" and Neptune"- does the tutor's belief become significantly stronger now?

Finally, the tutor identifies that the child knows the word "dog". Does this information

change the tutor's belief of whether the child knows "Jupiter"?

Let's deconstruct the thought process of the tutor in the example above:

* The tutor assumed that "Jupiter" was semantically related to "Earth", "Venus",

"Mars", "Neptune" and "Planet" but not related to "dog". This was the tutor's
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prior knowledge.

" The tutor further assumed that the child must have formed similar semantic relations

for the words the child knew.

" The tutor made observations about the child's existing knowledge.

" Finally, the tutor updated his/her belief about the child's knowledge of the word

"Jupiter" conditioned on the observed knowledge from the child.

As humans, we constantly use this theory of mind framework to infer beliefs of other

people to inform our own. We often make use of semantics in such a framework. For

instance, in conversations, we direct conversations to topics where all participants have

some background knowledge. In academic papers, we often find the background or literature

review section to supply the required semantic information to understand the paper. In fact,

this thesis itself is written keeping this fact in mind, and the above example was taken to

supply this semantic information!

However, this is not the only framework humans use to make inferences and decisions.

For example, the tutor could have assumed that "Jupiter" is not a commonly used word in

spoken language, and hence the child is not very likely to know the word. The cognitive

process involved in inference, learning and decision making is complex. In literature, several

theories for the same have been proposed and each of these theories tries to explain some part

of this complex cognitive process. This thesis, however, focuses on the theory of cognition

that takes semantics into account.

1.4 Research questions

Inspired by this idea of belief formation using semantics, this thesis aims to answer the

following research questions:

o Ri: Given a partial existing vocabulary of a child, can we predict whether s/he would

know other semantically related words using a model that uses a theory of mind

framework (semantics-based model)?
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" R2: Can we use semantics-free models in conjunction with the semantics-based model

to make better predictions about a child's existing vocabulary?

" R3: Given an intervention to increase the vocabulary of a child, can we use the

semantics-based model to determine how well a child learned new words in the context

of other semantically related words?

1.5 Thesis overview

The outline for the rest of the thesis is as follows:

" Chapter 2: I highlight key insights on word acquisition among children using semantics

from linguistics and developmental psychology.

" Chapter 3: I provide a literature review of prior research in modeling semantics and

assessing children's vocabulary knowledge.

" Chapter 4: I present the experimental design and data collection methodology used

to answer the research questions.

" Chapter 5: I present details of the computational and mathematical formulation of

the semantics-based model as well as semantics-free models. I further provide details

on how well each of the models performed on the dataset. I show how the semantics-

based and semantics-free models can be combined to make better predictions. Finally,

I provide a detailed analysis and discussion of the results presented.

" Chapter 6: I present how the semantics-based model can be used to evaluate the suc-

cess of personalized (personalized to the learning level of a child) and non-personalized

interventions in increasing children's vocabulary.

" Chapter 7: I provide a summary of the contributions of this thesis and directions for

future work.
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Chapter 2

Background

"Everyday language is a part of the human organism and is no less complicated than it" -

Ludwig Wittgenstein, Tractatus Logico-Philosophicus

Humans start showing signs of language acquisition as early as infancy [26]. Children

as young as four months of age are able to distinguish between their native language and

a foreign language based only on auditory cues [34, 38]. By the age of seven months, they

are able to identify individual words from a stream of speech [50]. Alongside taking these

primary steps to language acquisition, children perform other cognitive processes such as

(i) parsing new inputs (e.g., words, sentences) to understand underlying concepts [65], and

(ii) storing the newly acquired information into memory for retrieval and learning new con-

cepts in the future [29]. What is even more astonishing is that children perform these tasks

adeptly in unstructured environments from noisy and multimodal data. As a result, by the

age of 6 years, an average child has a vocabulary of approximately 14,000 words [6]. Several

theories have been proposed to explain language acquisition in children. Insights from these

theories help us understand the complex process of learning, and inform the development of

device technologies to help children learn more efficiently.

In this chapter, I give an overview of the different psycholinguistic theories of learning

in children. I then give a brief overview of different models of cognition, and the cognitive

theory in which I ground the assumptions of the proposed cognitive model.
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2.1 Psycholinguistic theories for language acquisition in chil-

dren

In the early 1950s, many believed in the behaviorist theory of language learning that

posited language was acquired through imitation and reinforcement [56]. This theory as-

sumed that humans learn language through classical conditioning where verbalization was

considered akin to behavior. It was then reinforced by observing the use of language in the

person's environment (stimulus). This theory was popularly debunked by another theory

that argued that humans did not learn language like other behaviors, instead they were

born with innate pre-existing cognitive mechanisms which allowed for the acquisition

of language [8, 44]. Another cognitive theory of learning argues that children learn words by

forming associations with objects they observe [58]. For instance, if a child saw a "house"

and heard someone refer to it as a "house", they would associate the word with the actual

concept of house. Research has shown that even if a child looks at the picture of a house

instead of looking at an actual house, they are able to associate the word with the concept

instead of the picture [45].

However, this theory doesn't explain how children form associations in the presence of

noisy stimulus. For example, how does the child know that the person was referring to the

house and not the "door" to the house. This problem of uncertainty of word to concept

mapping because of noisy stimulus is known as referential uncertainty [47]. It is argued that

in such instances, children use non-verbal behavior to identify the referent of a word [7].

The theory of cross-situational learning deals with the problem of referential uncertainty

in a different manner. It posits that even though there might be multiple word-concept map-

pings possible in a given situation (or sentence), the word-concept mapping for a given word

remains constant across different uses of the word. Thus, children are able to learn the con-

cept corresponding to a given word by keeping track of the mapping that remains constant

across different situations [57].

On the other hand, the theory for incidental learning argues that language learn-

ers often acquire vocabulary through reading, listening and conversational activities [27].
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During such activities, a learner is not actively trying to learn new words, but instead inci-

dentally "picks up" new words since the listener's attention is on the meaning rather than

the grammatical structure of language [271. In first language learners, this kind of learning

takes place for the majority of their lives as children are exposed to their native language

in homes, schools and other social contexts. Research has further shown that during in-

cidental vocabulary acquisition, a learner's vocabulary growth is more from listening than

reading [61]. Moreover, incidental vocabulary acquisition has a direct link with frequency

of exposure, i.e, the more a child is exposed to a given word, the higher are the chances of

the child committing the word to memory [63]. As a corollary, one may argue that a child

is more likely to know a word that has a high frequency of occurring in everyday use of lan-

guage. For example, it is more likely for a child to know the word "cat " rather than "feline".

Apart from frequency of word usage, phonological similarity of words also plays a

role in retention, i.e., using phonologically similar words can be used to aid retention [54].

However, a phonologic similarity effect is often observed in children which shows that re-

call of phonologically similar words is slower than that of phonologically dissimilar words

111]. Thus, children are often taught rhyming words and poems with a rhyme-scheme to

increase their phonological awareness; higher sensitivity to rhyme positively affects aware-

ness of phonemes and reading skills [1]. This strategy in turn increases exposure to such

words which might induce incidental learning among children. The phonologic similarity

effect is reversed when additional semantic information is provided [12]. This motivates the

fact that there might exist cognitive mechanisms that aid in learning, storage and retrieval

of semantic information.

Research has shown that during comprehension process, people retrieve previously learned

vocabulary words in order to make new conceptual associations [29]. Further, a study showed

that when people paid attention to sound, appearance and semantics of a word in three dif-

ferent conditions, their retrieval time for a given word was least when they paid attention

to semantics [28]. Wolf et al. used semantic representations in the Ravo-o intervention

claiming that it played a significant role in word recognition and comprehension [69]. This
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intervention showed a significant increase in vocabulary and text-understanding when com-

pared with children who were offered other forms of or no interventions. More recently,

researchers conducted a study that showed that when children learned vocabulary along

with semantics, they learned more words and their learning pace was faster [141. Another

study compared children who had language comprehension difficulties with a control group

of children. The results of the study showed that despite having similar phonological abil-

ities, children with comprehension difficulties had problems reading words that were often

read with support from semantics [371. This shows that children with typically developing

language comprehension skills have a semantic understanding of how words relate to one

another. These studies motivate the fact that (i) children learn better when taught words

that are semantically related, and (ii) children form a cognitive semantic representation for

retrieval from memory.

Thus, there are several proposed theories that try to explain how children acquire lan-

guage. No one theory is correct or wrong by itself. Each theory tries to explain some part

of this huge puzzle of cognitive mechanisms that allow acquisition, storage and retrieval of

language and concepts.

2.1.1 Representation of semantic knowledge

For three decades, cognitive science has emphasized the importance of representing knowl-

edge in the form of data structures. The schemata theory presents a knowledge represen-

tation quite similar to that of semantic networks. It claims that this representation is the

basic building block of cognition. In fact, in 1980, it was suggested that language acquisi-

tion follows a cognitive model based on schemata theory and that vocabulary development

should take place simultaneously with background knowledge 149]. Thus, it is important to

represent knowledge semantically as it helps understand how new information is processed,

added and retrieved.

A common representation of semantic knowledge is a graph structure called a semantic

network. The nodes in the graph represent concepts and the edges represent the semantic
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relationship between those concepts. In the context of language learning, nodes can be seen

as analogous to words and edges can be seen as analogous to relationships between those

words. We choose words instead of smaller units, say morphemes, because we use words in

our daily life, teach words intentionally and think about words when relating concepts. For

example, one would relate "table" and "chair" but not "un", "break" and "able".

Solar
Planet System

Universe

Life
Earth Vehus Manure

Water Soil
Land

Ocean

Figure 2-1: Example of semantic network of words

2.2 Models of cognition

A cognitive model tries to explain some part of human decision making or problem solving

to simulate or predict human behavior. These models often make some assumptions that

are grounded in theories of cognition. Since, no theory can completely describe how the hu-
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man brain works, the capabilities of these models are constrained by the set of assumptions

they make. A computational cognitive model is cast at Marr (1982) implementation level

of analysis of information processing systems 123]. Several models for cognition have been

proposed to model how humans make inferences in intelligent tasks such as decision making,

generalization and concept learning among many others [33, 62, 51].

The computational-representation understanding of mind (CRUM) hypothesizes that

there exists representations in our minds over which thinking is performed, that these repre-

sentations can be seen analogous to data structures, and thinking may be seen as analogous

to algorithms [64]. Under this taxonomy, the model proposed in this thesis is based on the

semantic theory of vocabulary acquisition among children. More specifically, the model tries

to make inferences, akin to those made by a human tutor, that assumes the semantic model

of vocabulary acquisition for its tutee. Thus, the fundamental assumption made by this

model in order to make inferences is the following:

Hi: Children learn words by forming semantic relations with existing words that they

know. Thus, if it is observed that a child knows a word, it is likely with some probability that

the child knows words that are semantically related to the given word. On the other hand, if

it is observed that the child does not know a given word, there is some probability that the

child does not know words that are semantically related to the given word.
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Chapter 3

Related work

The model proposed in this thesis takes inspiration from and builds upon three main research

areas, namely: (i) cognitive models for vocabulary acquisition, (ii) semantic categorization

and (iii) knowledge prediction. In this chapter, I provide an overview of existing work in

each of these research areas and discuss how this thesis contributes to the existing body of

work. The first research question is re-stated here to situate the proposed model within the

context of existing research.

Ri: Given partial existing vocabulary of a child, can we we predict whether a child

would know other semantically related words using a model that uses a theory of mind

framework? (semantics-based model)?

3.1 Cognitive models for vocabulary acquisition

Current computational cognitive models aim to model some aspects of vocabulary acqui-

sition based on cognitive theories of word acquisition (as discussed in Chapter 2). For in-

stance, Siskind (1996) proposed a model that used the principles of cross-situational learning

to learn word-to-concept mappings. The model made the assumption that when children

hear new utterances, they use existing knowledge to constrain the hypothesis space for each

word-to-concept mapping [551. Frank et al. [17] attempted to solve the problem of refer-

ential uncertainty by performing inference to find speaker's intentions and word-to-concept
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mappings simultaneously. Yu et al. 170] took a different approach by incorporating social

cues like joint attention into a unified statistical learning framework for cross-situational

observations. These models, however, did not take into account semantic relationships be-

tween words. More recently, a model to build and incrementally grow a semantic network

from utterance data was proposed to capture semantic relationships between words [39]. A

common feature of these models is to learn word-to-concept mappings from data just as a

child would.

However, in our case, we are trying to predict words that a child might know based on

knowledge of a given set of words. The learning of words has already happened and we do

not have access to the data stream that the child was exposed to when they learned the

words that exist in their current vocabulary. Thus, our goal is to build a cognitive model

for a person trying to predict whether the child knows some given target word, based on the

cognitive theory that children learn words by forming relations with semantically related

words that they already know.

3.2 Semantic categorization

For over two decades, building computational models for the semantic categorization of

words and objects has been an active area of research. Early work in building a computa-

tional cognitive model involved a bayesian learning framework to incrementally update the

posterior probability of an object belonging to a category given some partition of the feature

set [2]. In the context of semantic categorization of words, perhaps the most popular model

is Latent Semantic Analysis (LSA) 1321. It performs dimensionality reduction on a word

frequency-document matrix (using SVD) to find a point for each word in an n-dimensional

space. The distance between two points gives a measure of semantic similarity of the words.

Subsequent research in topic models suggested using generative models to first sample a

topic and then sample a word from the topic [22]. Solving the inference problem would then

give a vector representation for each word. With recent technological advancements that

provide high computational power, unsupervised deep learning methods to learn semantic

vector spaces have gained popularity [43, 35]. Similar to LSA, these models output a vector
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representation for each word, and the distance between two vectors encodes the semantic

similarity between two words. The model proposed in this thesis requires building of a se-

mantic network and it relies on GloVe embeddings to find semantically similar neighbors.

A detailed description of the model is provided in Chapter 5.

3.3 Knowledge prediction

Within the ITS literature, researchers have proposed models for assessing children's read-

ing skills and pronunciation. For instance, Gordon et al. [19] presented a bayesian active

learning-based model to predict the probability of a child's ability to read a word. They

used bayes's rule to compute the probability of being able to read a word and a phonetic

distance based heuristic to estimate the conditional probability of a child knowing how read

a word wi given that they know how to read some word W2. Spaulding et al. 160] showed

that incorporating affect information (smile and engagement) into the BKT model outper-

forms traditional models for predicting a child's reading skill level. Researchers have also

used gaussian process regression to model children's pronunciation skills using a covariance

function that is a weighted sum of semantic and phonemic similarity 159].

However, there has been little work in predicting word understanding through seman-

tics. Recently, researchers tried to model word learning using the Osgood semantic scale and

word2vec embeddings [36]. The Osgood scale maps every word to the same low dimensional

feature space (10 features). For instance, some of the features are, "on a scale of 1-10, how

good/bad is the given word?", or "on a scale of 1-10, how active/passive is a given word?".

They then use mixed effect logistic regression to predict short and long term word acquisition

in children. However, using the Osgood scale requires taking a survey to get a Likert rating

on each dimension for every word for which we wish to make a prediction. This method

becomes infeasible when there are a large number of words in the corpus. For the word2vec

embeddings, the features used in the model are dependent on the design of the study. This

requires for each target word, testing the participant's knowledge about semantically related

words when used in the same sentence as the target word. This motivates the development

of a model that is based on semantic word similarities and independent of the experimental
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protocol.

In chapter 5, I detail a model of cognition for an observer making predictions about a

child's vocabulary knowledge using their own beliefs about the child's learning of vocabulary

using semantic word similarities.
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Chapter 4

Experimental design

In this chapter, I give details of the experiment and the data collected. Finally, I re-state

the research questions more specifically in terms of the data collected.

4.1 Overview

The experiment consisted of three parts, namely:

* Part 1: Pre-test

" Part 2: Intervention

" Part 3: Post-test

At the beginning of the experiment, subjects were asked to take a small test as a means to

measure their current vocabulary level and to sample words from their existing vocabulary.

After the pre-test, subjects were divided into three conditions: (i)Baseline, (ii) Personalized,

(iii)Non-Personalized such that the vocabulary level of subjects was counterbalanced to be

approximately the same across conditions. Each condition specified the kind of teaching

intervention subjects would go through. At the end of the intervention, subjects from all

conditions were asked to take a post-test to again measure their vocabulary level and sample

new words from their existing vocabulary. A flow chart of the experiment is provided in

Figure 4-1. Details about each part of the experiment are provided in the subsequent sections

of this chapter.
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Pre-test * Personalized - - -

,Non-
Personalizedj

Figure 4-1: Flow chart of experiment design

4.2 Participants

We first recruited 73 English language learners (ELL) and bilinguals from local public schools

in the Greater Boston area for a three-month long experiment. Afterwards, six children who

earned significantly higher vocabulary scores in the pre-test compared to other children

(p = 0.013) were excluded from the study. Given the longitudinal nature of the deployment,

another 8 children were unable to complete the experiment to take the final post-test. These

participants were also excluded from the study. In total, 59 children between the ages of

4-6 (female 54.2%, age p = 5.33, o- = 0.63) from 12 classrooms participated in the study.

The number of children in each condition is given in table 4.1.

Table 4.1: Number of subjects per condition

Condition Number of subjects

Baseline 17
Personalized 22
Non-personalized 20
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4.3 Pre-Test and Post-Test

It is hard to measure a child's current vocabulary level since the set of words a child could

know is very large, and asking a child the meaning of a large set of words is infeasible.

The goal of the pre-test was twofold: (i) measure the vocabulary level of the child (to divide

children into different conditions) and (ii) sample words from a child's vocabulary. Each

child's linguistic level was assessed using a clinically evaluated vocabulary test and a personal

narratives collection protocol. We used the Peabody Picture Vocabulary Test (PPVT) [15]

which is one of the most widely used tests to measure a child's vocabulary level. The format

of the test involves asking a child to select (or point to) one of four possible pictures that

are related to the target word being assessed. The words presented in the test are such that

they align with the vocabulary level of the child. The test ends when the words presented

are above the vocabulary level of the child, and the child is constantly unable to answer

the questions. Here, vocabulary level was determined by conducting large surveys (> 2000

people) and assessing how different populations across different geographic location, age

groups, etc. performed on the answering questions about different words in the test.

After repeating this process for multiple words in the test, we are able to obtain a dataset

containing a sample of words that a child knows and doesn't know as well as a measure of

the child's vocabulary. Index of Productive Syntax (IPSyn) [53] evaluates the grammatical

complexity of spontaneous language samples. Additionally, we evaluated children's syn-

tax complexity from collected personal narrative samples using IPSyn's noun phrase, verb

phrase, and sentence structure scales. The personal narratives collection followed Wester-

veld and Gillon's language sampling protocol [67]. Together, using the IPSyn scores and

PPVT scores, children were divided into three groups such that no group was skewed in

terms of the vocabulary level of children to start.

The goal of the post-test was to re-sample words from a child's vocabulary after the in-

tervention. Thus, a similar procedure of using PPVT after the intervention was performed.

The set of target words assessed during the post-test were completely different from those

used in the pre-test. One word was common between the two tests, and a design choice of

including it only in the pre-test was made.

37



In addition to words assessed in PPVT, we also hand-picked a set of 25 target words and

tested children's knowledge of these words in the pre-test. These target words were then

also carefully embedded in the stories told to the child. Finally, during post-test, we again

assessed children's knowledge of these words to check if they learned these words as a result

of the intervention. Assessment of these words was done using the same format as PPVT.

4.4 Intervention

4.4.1 Robot Platform

Tega is an appealing, expressive, child friendly robot, designed for long-term deployment in

various educational settings such as children's homes, schools, and therapeutic centers [42,

201. It is 11 inches tall with a cylindrical body and is brightly colored with a plush exterior.

It has five degrees of freedom to perform a wide range of expressive movements: head tilt

up/down, waist tilt left/right, waist lean forward/back, body extension up/down, and body

twist left/right. An Android smartphone mounted in the head is used to graphically display

the robot's animated face as well as perform computational tasks such as sensor processing,

data collection, WiFi communications, decision making, and motor control. The robot's

electronic design extends the smartphone's ability with an additional high-definition camera

with a wide field of view.

Tega is designed to act as a peer-like social robot. A peer is member of a group of people

comprised of similar ages and that can influence each other's language, behavior, and beliefs

through interaction. Tega's peer attributes include child-like high pitched voice, exaggerated

body and facial expressions, and backchanneling response generation to signal engagement

while attending to the user [411. With its peer attributes, Tega is able to engage in taking

turns telling stories with a child while encouraging each other.

4.4.2 Interaction with robot

Depending on each school's curriculum, children participated in 6-8 sessions of storytelling

with the Tega robot. Each session with Tega started with a short greeting that consisted of

relational dialogues including personal, social, and emotional experiences. The session then
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progressed into Tega and the child taking turns telling stories to each other. Tega always

took the first turn picking and telling a story to the child, followed by the child retelling

the story back to Tega using the same storybook (only containing graphics). Children in

the baseline condition did not have any interaction with Tega and hence did not partake

in any story-telling sessions. In the personalized condition, Tega narrated stories such that

the stories were only slightly above the child's linguistic abilities and maximized engagement

with the robot using a personalized reinforcement learning algorithm (building a personalized

policy for each child) to enhance learning outcomes. In the non-personalized condition, Tega

narrated stories that were not personalized to each child and did not rely on any learning

algorithm to maximize learning. In both, the personalized and non-personalized interaction,

the robot made use of a tablet to display pictures to enhance the storytelling experience of

the child.

4.4.3 Story Corpus

In total, 81 storybooks with an illustration on every page were collected. Together, they

spanned the spectrum of lexical and syntactic complexity. Most of these storybooks were

selected from Tufts University's Reading and Language Research Center, but all are com-

mercially available. Every book in the corpus was evaluated in terms of lexical and syntactic

complexity using the automatic assessment tools. Only the graphics from the storybooks

were presented on a tablet screen during the robot's and child's storytelling.

Four books were referenced from Collins' article on preschool English Language Learner

(ELL)'s vocabulary acquisition from reading storybooks [9]. Researchers at Tuft's Reading

and Language Research Center authored four varying levels of these four storybooks. The

personalization policy guided the selection of the story level for children in the personalized

condition. Children in the non-personalized condition heard stories of alternating levels in

alternating weeks. That is, they heard level 1 of the storybook on week 2, level 2 on week 4,

level 3 on week 6, and level 4 on week 8, level 4 being the most difficult in terms of lexical

and syntactic complexity. In weeks 1, 3, 5 and 7, they heard stories that were not evaluated

for level but roughly corresponded to very easy "Level 1" stories.
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Figure 4-2: Child-robot storytelling interaction

4.5 Restating research questions

Given the experimental design, I now restate the research questions (posed in Chapter 1)

more specifically in terms of the data collected from the experiment:

* Ri: Given a child's knowledge about words assessed in the pre-test, can we we predict

whether a child would know other semantically related words as assessed in the post-

test using a model that uses a theory of mind framework (semantics-based model)?

" R2: Can we use semantics-free models in conjunction with the semantics-based model

to make better predictions about words assessed in the post-test?

* R3: Given data about stories that the robot narrated and data from a child's story

retell, can we use the sematics-based model to determine how well a child learned new

words in the context of other semantically related words?

I define how words were determined to be semantically related in the next chapter.
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Chapter 5

Semantics-based and Semantics-free

models

In this chapter, I address the first two research questions: (i) Ri: Given a child's knowledge

about words assessed in the pre-test, can we we predict whether a child would know other se-

mantically related words as assessed in the post-test using a model that uses a theory of mind

framework? and (ii) R2: Can we use semantics-free models in conjunction with semantics-

based models to make better predictions about words assessed in the post-test?. I first provide

an overview of the dataset used to evaluate the model. I then introduce background informa-

tion about undirected graphical models and cast the first research question as an equivalent

computational inference problem on undirected graphical models (semantics-based model).

I further explain the assumptions made by the model to make computations tractable. Then

I describe other semantics-free models that may be used to answer the research questions.

I then provide details on how predictions from semantics-free and semantics-based models

may be combined to evaluate if better predictions can be made about a child's vocabulary.

Finally, I describe the evaluation methodology, present the results and provide an analysis

of the results in the context of the posed research questions.
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5.1 Dataset and terminology

The data collected from the experiment is summarized as follows:

" Pre-test: Set of target words Wp,,e (within the expected vocabulary level of a child)

and information about whether or not they know those words before a teaching inter-

vention.

" Intervention: Set of words Wrobot,story that the robot used in telling stories to a child

and set of words Wchild,,toy that the child used to narrate the story back to the robot.

* Post-test: Set of target words Wp,,t (within the expected vocabulary level of a child)

and information about whether or not they know those words after a teaching inter-

vention. Moreover, Wpost n Wpre = 0.

" Common words: Set of words Wcommon that refers to words that were assessed during

pre-test, used in the intervention, and again assessed in the post-test.

5.1.1 Measuring semantic similarity between words

In order to answer R1, the term semantically similar must be properly defined and quanti-

fied. Intuitively, we know that the words "dog" and "cat" are semantically similar and the

terms "shoe" and "computer" are not semantically similar. Thus, in order to formalize this

notion, we need a function s(wi, w2 ) which quantifies how semantically similar two words

are. Firth famously stated that "a word is characterized by the company it keeps" [16]. The

distributional hypothesis in linguistics is based on this concept and states that words used in

similar contexts tend to be semantically similar [24]. Most word embeddings trained using

GloVe, word2vec or skip-gram try to capture this notion using co-occurrence between words

to find word vectors in an n-dimensional space. A common measure of semantic distance

between words is to take the cosine distance between the word embeddings of two words

[59]. Here, I define semantic distance between two words as the cosine distance between

their pre-trained common crawl GloVe word vectors (300 dimensional) [43]. Two words

with vector representations vi and v2 are said to be semantically similar if cos (v, v2) > E
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(through empirical investigation of semantic distances between various words, e was found

to be 0.6).

5.1.2 Building semantic network

A human tutor often has some prior knowledge about how words are semantically related

to each other and a rough estimate of the kinds of words a child might know. For example,

even though a human tutor might know the semantically related terms "air", "pressure"

and "Gay-Lussac's law", the tutor doesn't assume that the child would know the pressure

law when making inferences about other words that a child might know. Thus, the tutor

implicitly tries to make an educated guess to reduce the kinds of words they would consider

when making a prediction. The tutor however does not know for sure which of the words

the child actually knows. The closer this educated guess is to a child's actual knowledge,

the better inferences the tutor is able to make.

As noted in Chapter 2, a common representation of semantic knowledge is semantic

networks. Hence, to represent this belief about a child's knowledge computationally, we

build a semantic network using the first thousand words wlist that are often used in children's

textbooks [181 along with words in Wpre and Wp,,t. This may be seen as a way to add domain

knowledge to the system. Let this graph be called Gsemantics= (V, E) such that V = Wpre U

Wpost U wlist. Set of edges E of the graph are computed using pairwise comparisons between

nodes to check for semantic similarity of words, i.e., nodes vi and v 2 (v 1 E V and V2 E V)

are connected by edge e12 if and only if vi and v2 are semantically similar. Building this

graph runs in O(JV12 ) which was computationally acceptable in our case (IVI ~ 1400) . It

is important to note that Gsemantics is only a partial representation of knowledge and does

not represent any child's "actual" semantic network but instead only aids in reducing the

hypothesis space of the kinds of words a child has some non-zero probability of knowing.

5.1.3 Selection of post-test words

The semantic representation of words using Gsemantics allows us to select words, Wpost,selected

C W7post that are semantically related to words in Wpre. One strategy is to only select words

from Wpo8 that have a direct edge to a word in Wpre. However, this selection of words
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only allows us to make predictions about words that are strongly related to Wpre. Another

strategy is to perform breadth first search (BFS) to find the shortest path between a node

in Wp,0 t and nodes in Wpre and only consider nodes in Wp,0 t that have a path length < k

(k E N) where k is some constant. This selection of words allows us to make predictions

about words that are somewhat related to words in Wpre through k + 1 nodes. However, we

make a design choice to make a predictions about all words in Wpo, that have some path

to a node in Wpre regardless of path length. This strategy only eliminates words from Wp,0 t

that are in no way associated with any node in Wpre through any number of connections.

Thus, we make inferences about nodes even if they are weakly connected to nodes for which

true knowledge of a child is known.

It is important to keep the difference between semantically similar and semantically

related in mind. We define two words wi and w2 to be semantically related if there exists

a path between them in Gsemantics. They are said to be semantically similar if the cosine

distance between their word vector representation > e. Thus, a node is semantically related

to another node through a path of semantically similar nodes.

To summarize the terminology used, we defined the following terms in this section:

" Wpre: set of words in evaluated in pre-test for each child.

" Wrobot,story and Wchild,story: set of words the robot and the child used in their respective

stories.

* Wpost,selected: set of words that are semantically related to words in Wpe for each child

* Gsemantics: semantic network representing words and their relations

5.2 Computational formalism

In this section, I show how research problem RI can be answered by formulating it as

an inference problem on undirected graphical models (UGMs). I then explicitly state the

assumptions made by the model in making such inferences.
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5.2.1 Preliminaries - Markov Random Field

A graphical model is a graphical representation of random variables that encodes assump-

tions of conditional independence between nodes. This family of models is often used to find

marginal distributions and conditional marginal distributions when the joint distribution

has special properties of conditional independence [31]. A Markov Random Field (MRF)

is an undirected graphical model defined by graph Gmrf = (Vmrf, Emrf) and a set of ran-

dom variables X where vertices Vmrf = {vl, V2, V3... vn} correspond to random variables

X = {X1, X2 , X 3 ... Xn}. The edges Emrf are used to define the markov blanket of a node.

The markov blanket of a node v is defined as the immediate neighbors of v in Gsemantics.

Let N(v) give the neighbors of node v. Then, for a Markov Random Field, we have the

following properties:

(i):Two non-adjacent variables are independent given all other nodes:

XU IL XV | Xv\{U,'V (5.1)

(ii):A variable is conditionally independent of all variables given its neighbors.

Xi LL XV\N(i) I XN(v) (5.2)

An edge eij (i, j E 1,1X], i E N and j E N) between nodes Xi and Xj captures the

notion of conditional dependence between nodes. This dependence is numerically represented

by a potential function O(x) which may be defined for a pair of nodes or a clique (c) in the

graph. When it is defined for pairs of nodes, the MRF is called a pairwise MRF. Given the

above properties for an MRF, we have the joint distribution:

P(X1, X2...Xn) = rl #c(xc) (5.3)
C

where,

* C is the set of all maximal cliques in the graph
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* Oc(xc) is the potential function associated with clique c

* qc(xc) > 0

* Z is the normalizing constant or the partition function

Z = Y Z c(xc) (5.4)
x C

5.2.2 Model formalism - semantic network to MRF

The graph structure of a semantic network is similar to that of a Markov Random Field.

Here, I show how a semantic network can be cast as probabilistic graphical model by

adding the constraints of an MRF. We create a graph Gmrf = (Vmrf, Emrf) from se-

mantic network Gsemanics = (Vsemantics, Esemantics) such that IVmrfI = Isemantics and

IEmrfI = IEsemantics . Every node Visemantcs in Gsemantics is mapped to a random vari-

able Xi,mrf in Gmrf with support {0, 1} (0: does not know the word, 1: knows the word)

which represents the distribution of whether or not a child knows the corresponding word

in Gsemantics. Two nodes V,mrf and V,mrf are connected in Gmrf if and only if their cor-

responding nodes are connected in Gsenantics.

Potential function: Hammersely-Clifford theorem states that if a joint probability

distribution that can be represented by a Markov Random Field as a product of clique

potentials, then it can also be represented by a corresponding Gibbs Random Field. In

other words, the product of potential functions can be written as a product of exponentials.

Given this theorem, we have:

oc(xc) - e--E(xc) (5.5)

Where Oc(xc) > 0 and E(xc) is the energy function associated with the clique x. This

finally gives us:
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P(X1, X2 ... X.) = 1 e-E(xc,) (5.6)
C

and

Z = 7 e-E(x) (5.7)
x C

Thus, the lower the energy of a clique, the higher will be its potential and thus higher

will be the probability.

Since we only have a measure of semantic similarity between two words, we use pair-

wise potential functions to capture the notion of how to words are semantically similar to

each other. More specifically, we try to capture the following assumption stated in Chapter 2:

Hi: Children learn words by forming semantic relations with existing words that they

know. Thus, if it is observed that a child knows a word, it is likely with some probability that

the child knows words that are semantically related to the given word. On the other hand, if

it is observed that the child does not know a given word, there is some probability that the

child does not know words that are semantically related to the given word.

In order to represent this assumption in the model, potential functions must further be

associative in nature. That is, they should favor neighboring nodes to have the same label

(knowing the word or not knowing the word) giving rise to a model that is both, pairwise

and associative in nature.

Given the form of the potential function, we define the energy function as follows: if Xi

corresponds to the word wi and Xj corresponds to the word wj in graph Gsemantics, and

s(wj, wj) gives the semantic similarity' between words wi and wj. We define the energy of

'When computing semantic similarity, we use the lemmatized form of words. This is done so that different

forms of words don't affect their semantic similarity. For example, semantic distance between "cats" and

"dogs" should be the same as that between "cat" and "dog".
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neighboring nodes having the same label as:

E(Xi, Xj) =1 - s(wj, wj) (5.8)

and energy of neighboring nodes having a different label as:

E(Xi, Xj) = s(wj, wj) (5.9)

Thus, the higher the semantic similarity between two nodes, the lower will be the energy

associated with the pair of words. Alternatively, the lower the semantic similarity between

words, the higher will be the associated energy. This results in the final pairwise potential

function:

0M, Xj) e-(1-S(wi'Wj)) e-S(Wi,Wj) (-0
#(XiXy)= e-S(Wi,Wj) e-(1-8(wi,wM) 5.0

This form of the potential function ensures that in the absence of any observations,

marginals for all nodes is uniform after LBP is performed. Thus, the model starts with an

initial prior of assuming an equal probability of knowing or not knowing any word (0.50).

5.2.3 Inference - MRF to factor graph

Given a probabilistic graphical model (representing the joint distribution in the form of

conditional independence relations) and observations of some nodes, we find conditional

marginals of any of the remaining nodes using the process of inference. The graph structure

of an MRF may or may not contain cycles. Depending on the structure, an appropriate

algorithm is used for inference. Given the nature of the problem, it is likely that Gmrf

would contain cycles. For instance, three words could all be semantically similar to one

another forming a cycle. For a graph containing cycles, exact inference is computationally

intractable. In such cases, marginal distributions of nodes can only be approximated. A

common algorithm to perform approximate inference on graphs containing cycles is called

Loopy Belief Propagation (LBP). In this thesis, I use the sum-product variant of LBP. Since
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X, X2 X3

X4 X5 X6

Figure 5-1: Example of a markov random field

Loopy Belief Propagation is computationally expensive, I reduce the size of the seman-

tic network by only considering nodes that lie along the shortest path from each word in

Wpost,selected to Wpre.

An MRF is often represented as a factor graph to perform LBP to compute conditional

marginals of nodes. Thus, from graph Gmrf, we construct factor graph GfI,= (Vfg, F, Ejg)

in the following way: Vfg = Vmrf. Set of factor nodes F represent the pairwise potentials

between connected nodes. That is Fi3 represents the pairwise potential <ij in Gmrf between

nodes Vi,mrf and V,mrf. Ejg is a set of edges such that if an edge exists between any

pair of nodes Vi,mrf and Vj,mrf, there exists an edge between Vi,fg - Fij and V,fg - Fi3 in

Gfg. Thus, IFI = IEmrrf and IEgI = 2 1Emrf 1. An example of a markov random random

field is given in figure 5-1 and its equivalent factor graph representation is given in figure 5-2.

RI as an inference problem: Each child's pre-test provides observations of the nodes

that a child knows and doesn't know. The goal of the model is then to use pre-test words

as observations to find the conditional marginal probabilities of words in the post-test
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Wpost,selected using LBP on Gfg. Since each child has a different set of observations, the

model finds the marginal probability of knowing words in Wpost,selecied for each child using

these different sets of observations.

X1 fuX2 f 23 X3

f 1 f 15 f25 f56

X4 f45 X5 s X6

Figure 5-2: Example of factor graph representation

5.2.4 Intuitive explanation of model and assumptions

The associative nature of potential functions probabilistically encodes the intuition that if a

child knows a given word, there is some probability that they would know the neighboring

nodes (and vice-versa). The model makes a strong assumption that a word is condition-

ally independent of all other words given its neighbors. However, since every node makes

the same assumption, this assumption allows the model to propagate belief throughout the

network. Intuitively, when we observe that a child knows a given word, the model prop-

agates this positive belief throughout the graph because of associative pairwise potentials.

Similarly, when we observe that a child doesn't know a word, a negative belief is propa-

gated through the network. Moreover, the higher the semantic similarity of a node with its

neighboring node, the higher will be the effect on it. This effect becomes less pronounced

as the path length increases. Hence, the model is able to compute marginals for any ar-

bitrary configuration of observed nodes. It is important to note that the model only uses
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the words in wlit as nodes that would exist in a child's knowledge base. While this is a

reasonable assumption, it is only a weak approximation of the child's true knowledge and

more information about the child's vocabulary knowledge would yield better representations,

thereby improving prediction performance. In this way, using a theory of mind framework,

the model forms a prior about a child's existing semantic network and is able to perform

inference based on semantic relations between words and observations from a child much

like the human tutor discussed in Chapter 1.

5.3 Semantics-based baseline models

The proposed graphical model (MRF) has two key components: (i) A graph representing

semantic relationships which encodes priors and (ii) the ability to perform inference. In

this section I discuss models that use semantics but lack some of the features of the model

proposed in the previous section. I use these models or algorithms as baselines to later

compare the performance of the graphical model.

5.3.1 GloVe nearest neighbor

In this section, I discuss a model that uses word semantics but does not use the semantic

network Gsemantics or inference algorithms to make predictions. Thus, to predict whether a

child knows a given word or not, we find the word in W,,e that has the highest measure of

semantic similarity (word with the highest cosine distance between GloVe vector represen-

tations) with the given word and assign the label corresponding to the word. Hence, this

model neither has the representation of MRF nor does it have the ability to perform any

kind of inference.

5.3.2 Semantic network nearest neighbor

Another strategy to make predictions is to use the graph structure of the semantic network,

but not cast it as a markov random field or perform inference. Instead, for a given target

word for which a prediction is to be made, we perform breadth first search using the word
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as the source, and find the word in Wp,, that has the shortest path distance from the target

word. Hence, this model has a good representation but lacks the ability to reason using

inference.

5.4 Semantics-free models

In this section, I describe models that do not consider word semantics but can be used to

make predictions about a child's vocabulary knowledge using some prior ground truth about

what the child knows and doesn't know. Namely, I discuss frequency based and phoneme

based models.

5.4.1 Frequency based model

As discussed in chapter 2, the theory of incidental learning posits that children often learn

new words when they are exposed to them. Further, it suggests that the higher the frequency

of exposure to a word, the higher will be the probability of a child committing it to memory

[63]. Thus, frequency of word usage in everyday language may be a good indicator of

vocabulary knowledge. We use the SUBTLEXus database (74,286 word forms) as a source

of word frequency counts of different words used in spoken English language [5]. A common

problem with using raw word frequencies to build a model is that frequencies heavily depend

on the size of the corpus used. To prevent this problem, we use the zipf scale measure of word

frequency counts instead of raw frequency counts. The zipf scale converts word frequencies

(per billion words) into a log based scale with values between 1-7 (the higher the frequency,

the higher the zipf score) and is independent of the size of the corpus used. Then for each

child, we train a personalized logistic regression model using words in Wp,, as training data.

That is, we use the zipf score of each word as a 1-dimensional feature vector and whether or

not the child got the word correct as the label (binary classification). Since the dataset used

to train the model had a class imbalance (i.e, there were more instances of words known

than words unknown), we weighted the classes inversely proportional to their frequency in

the training set. The weight wi for class i is given by:
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wi - - (5.11)
kni

where n is the total number of data points, k is the number of classes (here, k = 2) and

ni is the number of instances that have label i. In this way, the model is able to learn the

kinds of words that a child knows based on frequency of word occurrence in every language

use. While testing, we again find the zipf score of a word and use it as a feature to make

predictions about whether or not the child would know a given word.

5.4.2 Phonetics based model

It is known that children retain words when the words are phonetically similar to words

they already know. Intuitively, if a child knows the word "cat", it is likely that exposure to

words "rat" and "bat" would have aided retention of those words since they are phonetically

similar to "cat". A common measure of distance between strings of words is Levenshtein

distance which measures the edit-distance of insertion, deletion and replacement of charac-

ters between two strings. Here, we use a fixed cost of 1 for each operation. Then, to make

a prediction about a given word, we find the nearest word in Wpre (using the Levenshtein

distance metric) and assign the label of the nearest word. This strategy allows the algo-

rithm to capture the notion of retention of words based on their phonetic similarity using

the Levenshtein distance as a proxy measure of phonetic distance.

5.5 Combining semantics-free and semantics-based models

Different cognitive theories posit different ways of how children acquire new words and no

one theory alone explains how children learn words. Each model discussed in this chapter is

based on a different cognitive theory of learning. In this section, I propose two strategies of

combining predictions from different models to evaluate if we can make better predictions

by combining the predictive capabilities of each model (R2).
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5.5.1 Conditional independence

Let us assume we wish to estimate the probability of a child knowing a given word w, and

have two separate models m, and m2 that estimate the probability of the child knowing

the word. Thus, we are given p(wlmi) and p(wIm2). We then wish to find, p(wjml,m2).

If we assume the two models to be conditionally independent sources, then the probability

p(wImi, m2) using the bayes optimal method to combine distributions is given by [3]:

p(wmi, m 2 ) OC p(wml)p(wjm2) (5.12)

This method has been used to solve other problems in machine learning as well [21].

In this way, two models that make assumptions using different psycholinguistic theories of

learning can be combined to give the final posterior probability of the child knowing a given

word.

5.5.2 Mixture of distributions

Another common method of combining probabilities is to create a new distribution that is

a mixture of two distributions (weighted sum). Since there is no prior informing which of

the two distributions should be given a higher weight, we assume an equal weight (0.5) for

each of the distributions. Thus, for each word, the final posterior is given by the weighted

sum of distributions from the two models.

5.6 Evaluation, Results and Analysis

In the previous sections, I discussed the mathematical and computational formalism of dif-

ferent models as well as the theories of learning they base their assumptions on. In this

section, I first discuss the evaluation methodology used to compare each of the models per-

formance to answer RI and R2. I then present results and provide an analysis of the results

presented. I finally discuss the advantages and limitations of using the models presented in

the previous sections.
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5.6.1 Evaluation

The research questions R1 and R2 can be seen as binary classification problems. That is,

we want to predict the posterior probability of a child knowing some target word given

knowledge about the words they already know. To this end, I use each of the models to

make predictions about words in (i)Wpost,selected for children in the (ii) baseline condition.

These two choices are justified as follows:

Selection of Wpost,selected: For any given child, not all words in Wp,0 t are semanti-

cally related to words in Wp,,e. By definition, a model that tries to make predictions about

semantically related words cannot make predictions about words that are not semantically

related. This occurs in the case where Gsemantics is a disjoint graph and there exists a word

wi,pt in an independent subgraph in which there exist no words from Wp,,e.

For example, consider the hypothetical case where a human tutor only knows about a

child's knowledge of words related to the solar system (earth, mars, moon, etc). Given this

knowledge, they cannot make predictions about words that are related to computers (laptop,

keyboard, screen, etc) using only word semantics. Semantics-free models however have the

ability to make predictions about any given word irrespective of their semantic relations.

These limitations are discussed in detail in subsection 5.6.3.

Thus, in order to compare the models, we must use the set of words for which both kinds

of models can make predictions. Moreover, since R1 only asks questions about words in Wp,0 t

that are semantically related to words in Wp,,e, words in Wpost,selected are used as the test set.

Selection of baseline condition: The baseline condition is the only condition where

children did not interact with a robot or go through a learning intervention. In the ab-

sence of an intervention, knowledge about Wp,, can still give information about words in

Wpost,seieted. Since, the model is only using words from the pre-test to make predictions, it

is unaware of additional knowledge that a child might have gained during the intervention.

Thus, if a learning intervention is successful, a child will commit new words to memory and

might learn words that they did not know prior to the intervention. In such a case, words
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in the pre-test would no longer predictive of words in the post-test.

To further elucidate this reasoning, let us again consider the hypothetical case where a

tutor is trying to make predictions about a child's knowledge of the target word "Jupiter".

If they observe that the child does not know "Venus", "Saturn" or any of the planets of

the solar system, they would probably guess that the child does not know the target word.

This set of observations can be seen as analogous to the pre-test. However, after the obser-

vations are made, the child now partakes in a learning intervention and learns about most

of the planets in the solar system. At this point, the tutor's observations about the child's

knowledge prior to the intervention are no longer predictive of the child's knowledge after

the intervention. Now, during the post-test, the child might get the word "Jupiter" correct,

but the tutor's (or model's) prediction would only be based on knowledge assessed in the

pre-test. Thus, we only use the baseline condition to evaluate RI and R2. In the next

chapter, I show how words used in an intervention along with words from the pre-test may

be used in making predictions about words in Wpost,selected for children in the personalized

and non-personalized conditions.

A common method of evaluating probabilistic binary classifiers is area under the curve

(AUC) of the receiver operating curve (ROC) as it tries to balance true positive and false

positive rates by considering a number of different thresholds. However, table 5.1 shows

that the dataset in all three conditions is imbalanced. In such cases, area under receiver

operating curve can provide a skewed picture of the model's performance. Hence, we com-

pute area under the precision-recall curve which is a more balanced metric for datasets with

significant class imbalances 159, 13].

To summarize, we evaluate each model on words from Wpost,selected for children in the

baseline condition by computing AUC for the precision-recall curve per child.

56



Table 5.1: Number of positive and negative samples per condition

Condition Number of positive samples Number of negative samples Total samples

Personalized 652 277 929
Non-Personalized 536 243 779
Baseline 506 197 703

5.6.2 Results and analysis

Figure 5-3 and table 5.2 show the mean area under the precision-recall curve for each of

the models for children in the baseline condition. We find that that among semantics-based

models, MRF (AUC 0.80) outperforms baseline models. Further, we find that the se-

mantic network representation (AUC 0.73) has a higher predictive power when compared

to a model that finds the nearest semantically similar neighbor (AUC 0.71). More inter-

estingly, the results show that the real power of an MRF comes from its ability to observe

nodes and perform inference. The two observations: (i) significant increase in AUC from

~ 0.73 (nearest neighbor in semantic network) to ~ 0.80 (MRF) and the fact that (ii) MRF

puts no constraints on path distance between an observed node and a target node, show

that the posterior probability of knowing a word is determined by observations of all nodes

in Wpre in the graph and not just the nearest neighbor. Between the semantics-free models,

the frequency based model performed significantly better (AUC ~~ .78) than the phonetics

based model (AUC ~~ 0.73). It is however surprising that the phonetics based model per-

formed almost as well as the semantics network nearest neighbor model. When comparing

the frequency based model with MRF, we find that MRF has a better performance in pre-

dicting words in W'Vpost,selected. It is interesting to note that MRF is able to perform well

using inferences based on word similarities alone without any information about how often

a child might have been exposed to a given target word.

Subject level analysis: Since MRF is slightly better than the frequency based model

as evaluated using mean areas under the precision-recall curve, a subject level analysis al-

lows us to find subjects for which either of the models is better in predicting knowledge

of words in Wpost,selected. Table 5.3 shows that out of seventeen subjects, MRF performed
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Table 5.2: Mean area under the precision-recall curve and standard deviation (baseline
condition) for different models

Model Mean AUC Std

MRF 0.799 0.089
Semantic network NN 0.734 0.071
GloVe nearest neighbor 0.714 0.065
Frequency based 0.782 0.096
Phonetics based 0.730 0.077

MRF Frequency based
Semantic network NN Phonetics based
GloVe nearest neighbor

0.9

0.8 -

0.7 -

T 0.6

: 0.5

0.4

m 0.3

m 0.2

0.1 $ $p $

0.01
Semantics-based Semantics-free

Figure 5-3: Mean area under the precision-recall curve (baseline condition)
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Table 5.3: Subject-level analysis of mean area under the PR curve and standard deviation

Condition Number of subjects AUCmrf AUCreq

AUCmrf > AUCfreq 11 0.819 0.093 0.767 0.11
AUCmrf < AUCfreq 6 0.762 0.064 0.81 0.055

2 4 6 8 10
Subject number

12 14 16 18

Figure 5-4: Subject level differences between AUCmrf and AUCreq
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better than the frequency based model on eleven subjects. Moreover, we observe that

the mean AUC scores on the respective set of subjects are similar for each of the condi-

tions given in table 5.3. More concretely, on the set of subjects where MRF dominates,

AUCmrf - 0.82 and AUCfreq - 0.76, while on the set of subjects where the frequency

based model performs better, AUCfreq 0.81 and AUCmrf a 0.76. Figure 5.3 shows the

difference AUCmrf - AUCfreq per subject. Here, we further see that there is a distinct set of

subjects where each of the models performs significantly better than the other. This finding

suggests that while MRF performs better on majority of the subjects, further investigation

is required to identify the exact conditions under which the frequency based models should

be used instead of MRF. One hypothesis is that, for the set of subjects where the frequency

based model performed better, the subjects might have been exposed to new words before

taking the post-ppvt. In such a case, words in Wpre would no longer be predictive of words

in Wpost,selected.

Thus, in reference to the first research question "Ri: Given a child's knowledge about

words assessed in the pre-test, can we we predict whether a child would know other seman-

tically related words as assessed in the post-test using a model that uses a theory of mind

framework?", the aforementioned results show that MRF makes predictions about semanti-

cally related words in post-test using words in the pre-test as observations with a reasonable

performance. Further, the assumptions made by the model mimic the theory of mind frame-

work.

Combining predictions: Given that both MRF and the frequency based model per-

form well of different sets of subjects, I evaluate if combining predictions enables increases

the performance of either of the models. Table 5.4 shows that there is a slight improvement

in prediction performance for MRF (~ 0.3%) and a greater improvement in performance for

the frequency based model (- 2%). Both strategies of combining predictions give similar

gains in improvement. This improvement is seen even though the set of children where the

two models perform well are mutually exclusive and the difference in performance is signifi-

cant as seen in figure 5-4. These results show that combining two models that are based on

different theories of learning can help improve prediction performance. It is important to
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Table 5.4: AUC after combining predictions

Model Mean AUC Std

MRF 0.799 0.089
Frequency based 0.782 0.096
Combined (conditional independence) 0.802 0.09
Combined (mixture of distributions) 0.803 0.09

note that the predictions were combined using uniform priors for both methods. While the

strategies to combine predictions work, the improvement in not significant (in the case of

mrf) because of the absence of informative priors. Therefore, given that each model performs

well on a different set of subjects and the fact that predictions can be combined using the

aforementioned strategies, pre-determining the weights (priors) for each model per subject

would further help make better predictions about a child's knowledge.

Thus, in reference to the second research question "R2: Can we use semantics-free

models in conjunction with the semantics-based model to make better predictions about words

assessed in the post-test?", results show that it is possible to make better predictions by

combining the predictions of individual models (MRF and frequency based) with a caveat

that more informative priors would significantly help in combining predictions to achieve

better performance.

5.6.3 Advantages and limitations of semantics-based models

Since the prediction performance of MRF was the highest among semantics-based models

and the performance of the frequency-based model was highest among semantics-free mod-

els, in this section, I compare the advantages and limitations of those two models. One of

the main limitations of a semantics-based model (MRF) is that it can only make predictions

about words that are semantically related (as defined in 5.1.3) to words for which it has

some information. On the other hand, since the frequency based model only takes frequency

of word exposure into account, it can make predictions about any word (since every word

has some frequency of occurring in everyday language). Despite these limitations, we have

seen that on words that are semantically related to known words, MRF performs better than
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the frequency based model. However, the main advantage of using a semantics-based model

over a frequency-based model can be seen by analyzing the assumptions and workings of the

models individually.

Each of these models tries to predict the probability of a child knowing a word. In other

words, they try to predict the probability that a child might have learned a given word in

the past. MRF tries to identify how a target word fits with respect to other words that a

child already knows in the implicit semantic network representation of a child's knowledge.

Thus, it makes predictions about how a child might have learned a new word in the context

of other words. A frequency-based model fundamentally makes an assumption that the child

has been exposed to a given word and uses the frequency of the word's usage in everyday

language as a proxy for how often the child might have been exposed to the given word.

However, when teaching a child a new target word (a word that a child has not been exposed

to before) a frequency based model cannot make any predictions about how well the child

is prepared to learn that word. A semantics-based model can however be used to probe

the child about semantically related nodes and make predictions about how well the word

fits in the child's semantic network, thus predicting the probability of how well the child

might learn the word. Moreover, as a bi-product of performing LBP on the graph, MRF

also computes the probability of knowing other semantically related words in the graph that

the child was not assessed for. As discussed in chapter 2, teaching a child words that are

semantically similar to words they already know improves retention and recall of new words

[69, 141. These advantages make a semantics-based model suitable not only for predicting

existing knowledge but also for developing novel intervention strategies.
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Chapter 6

Applications of semantics-based

model

In the previous chapter, we showed how MRF can be used to make predictions about a child's

existing existing vocabulary using words in Wp,, for children in the baseline(B) condition. As

discussed in chapter 4, in the Personalized (P) and the non-personalized (NP) conditions,

the robot narrated a story to children with the purpose of teaching new words to them.

After listening to each story, children were asked to retell the story back to the robot. In

the personalized condition, the robot told stories that maximized learning outcomes while

keeping children engaged in the story. In the non-personalized condition, the robot did not

personalize content to increase children's learning outcomes.

In this chapter, I show how we can make predictions about a child's vocabulary by using

words that the robot used in the stories it narrated (Wrobot,story). These words give a direct

observation of words that each child heard during the intervention. Additionally, I show

how we can use words from a child's retell of the story (Wehil,story) to make predictions

about their vocabulary knowledge. These words provide a direct observation of the words

that a child might have learned as a result of listening to new words used in a story. Fi-

nally, I show how these results can be used to determine how successful an intervention

was and answer the third research question "R3: Given data about stories that the robot

narrated and data from a child's story retell, can we use the sematics-based model to deter-
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mine how well a child learned new words in the context of other semantically related words?".

I first describe the method used to add new words to the semantic network Gsemantics

for each child and provide details about the experiment used to answer R3. I then describe

the evaluation methodology, present the results and provide an analysis of the results in the

context of R3.

6.1 Method and evaluation

In order to add new words from the storytelling intervention, we augment graph Gsemantics

with words used in the intervention. When we add words to the network from the robots

narration of stories, we use words from Wrob,sty and when we add words from a child's

story retell, we use words from Wchild,story. For the purpose of generalization, let the set

of words Wintervention represent either of the sets of words depending on which words we

would like to augment the graph with. For a given word w in Wintervention, we find all the

words in Gsemantics that are semantically similar to w. Let us call this set of words Waimilar.

We then add an edge between w and all the words in Wsimilar C Vsemantics. In this way,

we augment the graph Gsemantics with new words used in the intervention. Since, MRF

is constructed from Gsemantics, new nodes are similarly added to Gmrf. We then perform

inference on Gnrf in the same way as described in chapter 5.

In the previous chapter, we defined potentials for a pair of words as an exponential

function of energy. The potential function was associative in its form and the energy of

a pair of words was further parameterized by the semantic similarity between words. The

equation for the potential function captured the assumption that if a child knows a word,

then they would know other nodes that are semantically similar to the given word. However,

for the new words added from Wintervention, we wish to evaluate if the assumption is true

or not. That is, we wish to identify if a child indeed added the new nodes to their semantic

network. Hence, for words in Wintervention, the pairwise potentials represent how well a child

associated a new word with existing words in Gsenantics. Thus, for words in Wintervention,
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X1 X2 X3

X4 X5 X6

Figure 6-1: Augmenting graph from words used in intervention

energy of a pair of words is parameterized by a function that represents how well the child

learned a given word. Let us call this function l(wi, W2). We keep the same associative and

exponential form of the potential function and define it as follows:

e-(1-1(wi,w,)) e-1(wi,wj)
#(/Xi, X3 ) = (6.1)

0M, Xj e -1(Wj,Wj) e-(1-1(wi,wj))(61

Further, we restrict the value of l(w1 , w2) > 0.5. For values < 0.5, the potential function

no longer enables the MRF to remain associative. Intuitively, a value < 0.5 would mean that

if a child learned a given word, then they would not know the words connected to it by an

edge. A value of 0.5 means that observing the node would have no effect on the conditional

marginals of other nodes, indicating that the word was not learned.

If a child successfully learned words in Wintervention while associating them with other

semantically similar words, then making positive observation on these nodes should result

in a better prediction performance on words in Wpost,selected, since the model makes correct

observations about the child's true knowledge. However, if we assume that a child learned

new words by using the words in Wintervention as positive observations, but the child did not
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actually commit the words to their memory, then we would see a decrease in the model's

performance on words in Wpost,selected, since the model makes incorrect observations about

the child's true knowledge.

Thus, in order to evaluate if a child learned new words from the intervention, we first

perform inference using words only in Wpe. We then augment the graph Gsemantics with

words in Wintervention and make an assumption that children learned these words as a re-

sult of the intervention. We then perform a parameter search by assuming different values

of l(wi, w2 ) and perform inference. If we see an increase in performance of the model for

any l(wi, W2) > 0.5, we say that our assumption is correct and that the child successfully

associated the given words with the words in Gsemantics. However, if we observe a de-

crease in performance, or find that l(wi, w2) = 0.5 gives the best performance, then our

assumption is incorrect and we say that the child did not successfully commit most of the

words to memory. We again use mean AUC as a measure of the models performance. Since,

l(wi, W2) is a parameter of the energy function, I refer to this parameter as k in the next sec-

tion for ease of terminology. We performed this experiment for children in personalized and

non-personalized conditions using words from Wobot,story and Wchild,story for each condition.

Another strategy to check if children learned words from the intervention is to check

children's performance on Wcomimon (explained in Chapter 4), since this set of words was

used during the intervention for both personalized and non-personalized conditions and was

assessed both prior to and after the intervention for each child. In this way, Wcommon may

be seen as a proxy for all the words used in the intervention. The assumption we make here

is that, if children were able to learn this set of words as a result of the intervention, then

they must have learned other words also used in the intervention.

6.2 Results and analysis

In this section I present and discuss the results of experiments described in the previous sec-

tion. I first provide an analysis of experiments run on data from children in the personalized
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Table 6.1: Mean area under the precision-recall curve and standard deviation for observa-
tions of different sets of words for children in the personalized condition (optimal k = 0.65)

Condition Mean AUC Std

Pre-test 0.75 0.129
Child' story retell 0.753 0.119
Child's story retell + Pre-test 0.768 0.129
Robot's story 0.767 0.122
Robot's story + Pre-test 0.776 0.120

condition. I then follow it up with a similar analysis on data collected from children in the

non-personalized condition. Finally, I corroborate the conclusions drawn from the preceding

experiments with a separate analysis of words in Wcommon.

6.2.1 Personalized condition

Table 6.1 shows that when only words from the pre-test (Wpre) were used to make predictions

of words in Wpost,selected, the model's mean AUC ~ 0.75. Augmenting graph Gsemantics with

words used in the robot's story Wrobot,story and making observations for words used in Wpre

in addition to making positive observations for words in Wrobot,story yields an increase in the

model's performance (AUC ~ 0.78). The optimal value of the parameter was computed to

be k = 0.65 for all conditions reported in 6.1. This result indicates that our assumption that

children learned majority of the words used in the robot's stories is correct. We then followed

the same process, but used words from children's story retell (Wchild,story) instead of words in

Wrobot,story. In this case, the model still performed better (AUC ~ 0.77) than the condition

where only words from Wpre were used, indicating that children indeed understood the

words they used to retell the robot's stories. However, the model's performance was slightly

lower in this condition when compared to the condition where words from Wrobot,story were

used. This result is evidence of the fact that a children might have learned words from

the robot's stories that they did not explicitly use while retelling the stories. Finally, we

compare each of the two conditions using only words in Wrobot,story and Wchaid,story without

making observations for words in Wpre and find a decrease in the model's performance. This

decrease in performance shows that words in Wpre provide useful ground truth information
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about a child's vocabulary before the intervention and hence benefit the model in making

better predictions about a child's vocabulary.

6.2.2 Non-personalized condition

Table 6.2: Mean area under the precision-recall curve and standard deviation for observation
of different sets of words for children in the non-personalized condition (optimal k = 0.5).
k = 0.65 is used to report results for all sets of words except pre-test.

Condition Mean AUC Std

Pre-test 0.772 0.127
Child' story retell 0.738 0.130
Child's story retell + Pre-test 0.761 0.130
Robot's story 0.728 0.120
Robot's story + Pre-test 0.742 0.119

For the analysis of non-personalized condition, I used the same evaluation methodology

as the personalized condition. Table 6.2 shows that when only words from the pre-test (Wpr)

were used to make predictions about words in Wpost,selected, the model's mean AUC ~ 0.77.

Further, the optimal value of k was found to be 0.5 for all sets of words indicating that for

any k > 0.5, the model's performance decreased. This result indicates that the assumption

that children learned majority of the words used in the robot's story or in their retelling

of the story, is incorrect. Thus, even though children used words from the robot's stories,

they did not associate the words with other semantically similar words. Upon empirical

investigation of the stories, we further found that children in the non-personalized condition

told shorter and less coherent stories as compared to children in the personalized condition.

Even though the optimal parameter was found to be k = 0.5, I report values for k = 0.65

for all other sets of words to show other trends that exist in the data. These trends were

consistent across different values of k > 0.5. Contrary to the trend in the personalized

condition, using child's story retell + pre-test yielded higher mean AUC when compared to

robot's story + pre-test. One hypothesis to explain this result is that while retelling stories,

children used words that were indicative of their own vocabulary knowledge rather than

using words that they heard in the robot's story. Further, we find that making observations

for words in Wintervention along with words in Wpe gives better performance when compared

68



to only using words in Wintervention. This observation is consistent across both personalized

and non-personalized conditions indicating that ground truth knowledge of words in Wpre

aids the model in making better predictions about a child's vocabulary.

The above results show that the personalized condition was better suited for children

to learn new words (in the context of other semantically related words) than the non-

personalized condition.

6.2.3 Analysis using common words

Since the set of words Wcommon is assessed in all conditions before and after the intervention,

we may use children's assessment on these words as a proxy to measure the increase in chil-

dren's vocabulary in each condition. Figure 6-2 shows children's performance on Wcommon

before and after the intervention in each condition. Children in all three conditions had

similar performance on the pre-test and show some increase in vocabulary in the post-test.

Children in the personalized condition showed maximum increase in vocabulary followed by

children in the non-personalized condition. Moreover, the difference between the median

vocabulary levels of the two conditions was found to be statistically significant (p < 0.05).

These results further corroborate the results presented in the previous sections showing that

the personalized condition was better suited to enhance children's learning outcomes.

Thus, in reference to the third research question "R3: Given data about stories that the

robot narrated and data from a child's story retell, can we use the sematics-based model to

determine how well a child learned new words in the context of other semantically related

words?", the aforementioned results show that words from both sources of information,

ground truth from pre-test and words in Wintervention together can be used by an MRF to

(i) make predictions about children's vocabulary and (ii) evaluate whether children learned

new words (through a storytelliing intervention) in the context of other semantically similar

words.
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Chapter 7

Conclusion

7.1 Contributions

As humans, we make inferences about other people's knowledge from partial information

with ease. We especially perform this kind of inference when we assume the role of tutors.

Several studies in psycholinguistics have shown that children learn new words by forming

semantic relationships with words they already know. In fact, learning the meaning of a

new word entails learning how it is semantically related with other words and how it may

be used in everyday language. Before providing new information to a tutee, human tutors

often implicitly use semantics to draw inferences about the tutee's knowledge.

In this thesis, I use the domain of word learning and present a cognitively inspired

semantics-based model to make inferences about a child's vocabulary from partial informa-

tion about their existing vocabularies, akin to how a human tutor would. I presented results

using semantics-free models to make predictions and show that while the semantics-based

model performs best on the whole, different models perform well for different children. I

further discussed the advantages and disadvantages of using each of the presented mod-

els for making predictions. Second, I presented two methods to combine predictions from

semantics-based and semantics-free models and show that combining predictions can im-

prove predictions about a child's vocabulary knowledge. Finally, I presented an application

of the semantics-based model to evaluate if an intervention was successful in teaching chil-

dren new words. More concretely, I showed that a personalized word learning intervention
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with a robotic tutor (that tries to maximize engagement and learning) is better suited for

enhancing children's vocabulary when compared to a non-personalized intervention. These

results motivate the use of semantics-based models not only in predicting a child's vocabu-

lary knowledge but also in building interventions for teaching children new words such that

they are able to understand the semantic meaning behind words.

7.2 Future work

A tutor performs two explicit tasks when providing information: (i) make predictions about

the tutee's existing knowledge and (ii) provide new knowledge in the best possible manner

for the tutee to learn. The proposed model performs the first task by analyzing how a given

word is situated in a child's semantic knowledge representation (semantic network). It then

makes predictions about whether or not a child would know a given word based on this

information. To perform the second task, the same model can be extended to identify the

words that would be easiest for a tutee to learn based on partial knowledge of what they

already know. Thus, the semantics-based model may be extended to find trajectories or

sequence of words that should be taught in order to teach a given corpus of words.

Future work will investigate how the model can be used by a robotic tutor to incorporate

an active-learning feedback loop where a tutor teaches new words based on inferences and

gets feedback on whether the child learned those words. The tutor would then update its

parameters from the new "ground truth" data to improve its estimate and again teach new

words based on the updated parameters. Further research in encoding better priors about

a child's existing semantic network would also enhance the models performance. The model

presented in this thesis also has the potential to find applications in domains that extend

beyond predicting a child's vocabulary knowledge. For example, conversational agents could

use the model to find other semantically related concepts that a human might know or find

interesting by forming a similar semantic network of concepts and performing inference using

past conversations as observations.
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