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MODELING AND ESTIMATION OF
MULTIRESOLTUTION STOCHASTIC

PROCESSES

Michele Bassevillel, Albert Benvenistel, Kenneth C. Chou2 ,

Stuart A. Golden 2 , Ramine Nikoukhah3 and Alan S. Willsky2

Abstract

In this paper, we provide an overview of the several components of a research effort aimed at

the development of a theory of multiresolution stochastic modeling and associated techniques for

optimal multiscale statistical signal and image processing. As we describe, a natural framework for

developing such a theory is the study of stochastic processes indexed by nodes on lattices or trees

in which different depths in the tree or lattice correspond to different spatial scales in representing

a signal or image. In particular we will see how the wavelet transform directly suggests such a

modeling paradigm. This perspective then leads directly to the investigation of several classes of

dynamic models and related notions of "multiscale stationarity" in which scale plays the role of a

time-like variable. In this paper we focus primarily on the investigation of models on homogeneous

trees. In particular we describe the elements of a dynamic system theory on trees and introduce two

notions of stationarity. One of these leads naturally to the development of a theory of multiscale

autoregressive modeling including a generalization of the celebrated Schur and Levinson algorithms

for order-recursive model building. The second, weaker notion of stationarity leads directly to a

class of state space models on homogeneous trees. We describe several of the elements of the system

theory for such models and also describe the natural, extremely efficient algorithmic structures for

optimal estimation that these models suggest: one class of algorithms has a multigrid relaxation

structure; a second uses the scale-to-scale whitening property of wavelet transforms for our models;

and a third leads to a new class of Riccati equations involving the usual predict and update steps

and a new "fusion" step as information is propagated from fine to coarse scales. As we will see, this

framework allows us to consider in a very natural way the fusion of data from sensors with differing

resolutions. Also, thanks to the fact that wavelet transforms do an excellent job of "compressing"

large classes of covariance kernels, we will see that these modeling paradigms appear to have promise

in a far broader context than one might expect.
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1 Introduction

In recent years there has been considerable interest and activity in the signal and

image processing community in developing multi-resolution processing algorithms.

Among the reasons for this are the apparent or claimed computational advantages of

such methods and the fact that representing signals or images at multiple scales is

an evocative notion- it seems like a "natural" thing to do. One of the more recent

areas of investigation in multiscale analysis has been the emerging theory of multiscale

representations of signals and wavelet transforms [10, 21, 22, 23, 24, 28, 33, 34, 38, 49].

This theory has sparked an impressive flurry of activity in a wide variety of technical

areas, at least in part because it offers a common unifying language and perspective

and perhaps the promise of a framework in which a rational methodology can be

developed for multiscale signal processing, complete with a theoretical structure that

pinpoints when multiresolution methods might be useful and why.

It is important to realize, however, that the wavelet transform by itself is not the

only element needed to develop a methodology for signal analysis. To understand this

one need only look to another orthonormal transform, namely the Fourier transform

which decomposes signals into its frequency components rather than its components

at different resolutions. The reason that such a transform is useful is that its use

simplifies the description of physically meaningful classes of signals and important

classes of transformations of those signals. In particular stationary stochastic pro-

cesses are whitened by the Fourier transform so that individual frequency components

of such a process are statistically uncorrelated. Not only does this greatly simplify

their analysis, but, it also allows us to deduce that frequency-domain operations

such as Wiener or matched filtering-or their time domain realizations as linear shift-

invariant systems-aren't just convenient things to do. They are in fact the right- i.e.,

the statistically optimal- things to do. In analogy, what is needed to complement

wavelet transforms for the construction of a rational framework for multi-resolution

signal analysis is the identification of a rich class of signals and phenomena whose

description is simplified by wavelet transforms. Having this, we then have the basis

for developing a methodology for scale domain filtering and signal processing, for
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deducing that such operations are indeed the right ones to use, and for developing

a new and potentially powerful set of insights and perspectives on signal and image

analysis that are complementary to those that are the heritage of Fourier.

In this paper we describe the several components of our research into the de-

velopment of a theory for multiresolution stochastic processes and models aimed at

achieving the objectives of describing a rich class of phenomena and of providing the

foundation for a theory of optimal multiresolution statistical signal processing. In de-

veloping this theoretical framework we have tried to keep in mind the three distinct

ways in which multi-resolution features can enter into a signal or image analysis prob-

lem. First, the phenomenon under investigation may possess features and physically

significant effects at multiple scales. For example, fractal models have often been sug-

gested for the description of natural scenes, topography, ocean wave height, textures,

etc. [5, 35, 36, 41]. Also, anomalous broadband transient events or spatially-localized

features can naturally be thought of as the superposition of finer resolution features

on a more coarsely varying background. As we will see, the modeling framework we

describe is rich enough to capture such phenomena. For example, we will see that

1/f -like stochastic processes as in [50, 51] are captured in our framework as are sur-

prisingly useful models of many other processes. Secondly, whether the underlying

phenomenon has multi-resolution features or not, it may be the case that the data

that has been collected is at several different resolutions. For example. the resolu-

tions of remote sensing devices operating in different bands- such as IR, microwave,

and various band radars- may differ. Furthermore, even if only one sensor type is

involved, measurement geometry may lead to resolution differences (for example, if

zoomed and un-zoomed data are to be fused or if data is collected at different sensor-

to-scene distances). As we will see, the framework we describe provides a natural way

in which to design algorithms for such multisensor fusion problems.

Finally, whether the phenomenon or data have multi-resolution features or not,

the signal analysis algorithm may have such features motivated by the two principal

manifestations of the at least superficially daunting complexity of many image pro-

cessing problems. The first and more well-known of these is the use of multi-resolution

algorithms to combat the computational demands of such problems by solving coarse
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(and therefore computationally simpler) versions and using these to guide (and hope-

fully speed up) their higher resolution counterparts. Multigrid relaxation algorithms

for solving partial differential equations are of this type as are a variety of computer

vision algorithms. As we will see, the stochastic models we describe lead to several

extremely efficient computational structures for signal processing.

The second and equally important issue of complexity stems from the fact that

a multi-resolution formalism allows one to exercise very direct control over "greed"

in signal and image reconstruction. In particular, many imaging problems are, in

principle, ill-posed in that they require reconstructing more degrees of freedom then

one has elements of data. In such cases one must "regularize" the problem in some

manner, thereby guaranteeing accuracy of the reconstruction at the cost of some res-

olution. Since the usual intuition is precisely that one should have higher confidence

in the reconstruction of lower resolution features, we are led directly to the idea of

reconstruction at multiple scales, allowing the resolution-accuracy tradeoff to be con-

fronted directly. As we will see the algorithms arising in our framework allow such

multi-scale reconstruction and provide the analytical tools both for assessing resolu-

tion versus accuracy and for correctly accounting for fine scale fluctuations as a source

of "noise" in coarser scale reconstructions.

While there are several ways in which to introduce and motivate our modeling

framework, one that provides a fair amount of insight begins with the wavelet tran-

forms. However, the key for modeling is not to view the transform as a method

for analyzing signals but rather as a mechanism for synthesizing or generating such

signals beginning with coarse representations and adding fine detail one scale at a

time. Specifically let us briefly recall the structure of multiscale representations as-

sociated with orthonormal wavelet transforms [22, 33]. For simplicity we do this in

the context of 1- D signals (i.e. signals with one independent variable), but the

extension to multidimensional signals and images introduces only notational rather

than mathematical complexity.

The multiscale representation of a continuous signal f(x) consists of a sequence

of approximations of that signal at finer and finer scales where the approximations

of f(x) at the m.th scale consists of a weighted sum of shifted and compressed (or
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dilated) versions of a basic scaling function +(x):

+oo

fm(x) = E f(m,n)0(2mx-n) (1.1)
n=-00

In order for the (m + 1)st approximation to be a refinement of the mth, we require

+(x) to be representable at the next scale:

((x) = h(n)qS(2x - n) (1.2)
n

As shown in [22], h(n) must satisfy several conditions for (1.1) to be an orthonor-

mal series and for several other properties of the representation to hold. In particular

h(n) must be the impulse response of a quadrature mirror filter (QMF) [22, 44]. The

simplest example of such a q, h pair is the Haar approximation with

(tx) = 0 otherwise (1.3)
0 otherwise

and
1 n=0,1

(n 0 otherwise (1.4)

By considering the incremental detail added in obtaining the (m + 1)st scale ap-

proximation from the mth, we arrive at the wavelet transform. Such a transform is

based on a single function V,(x) that has the property that the full set of its scaled

translates {2'/2/,P(2mx - n)} form a complete orthonormal basis for L 2. In.[22] it is

shown that b and 0, are related via an equation of the form

+(x) = ~g(n)q0(2x - n) (1.5)

where g(n) and h(n) form a conjugate mirror filter pair [44], and that

fm+l(x) = fm(x) + E d(m, n)¢(2m x - n) (1.6)

Thus, fi,(x) is simply the partial orthonormal expansion of f(x), up to scale m, with

respect to the basis defined by hi. For example if 4 and h are as in (1.3), (1.4), then

1 o0 < x <1/2

V, (x) = -1 1/2 < x < 1 (1.7)
0 otherwise
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1 n=O

g(n) = -1 n = 1 (1.8)

0 otherwise

and {2m/2/,(2mx - n)} is the Haar basis.

One of the appealing features of the wavelet transforms for the analysis of signals is

that they can be computed recursively in scale, from fine to coarse. Specifically, if we

have the coefficients {f(m + 1, .)} of the (m + 1)st-scale representation we can "peel

off" the wavelet coefficients at this scale and at the same time carry the recursion one

complete step by calculating the coefficients {f(m., .)} at the next somewhat coarser

scale:

f(m, n) = E h(2n, - k)f(m + 1,k) (1.9)
k

d(m, n) = _g 9(2n - k)f(m + 1, k) (1.10)
k

Reversing this process we obtain the synthesis form of the wavelet transform in

v hich we build up finer and finer representations via a coarse-to-fine scale recursion:

f(m + 1, n) = E h(2k - n)f(m, k) + g(2k - n)d(m, k) (1.11)
k k

Thus we see that the synthesis form of the wavelet transform defines a dynamical

relationship between the coefficients f(m, n) at one scale and those at the next. Indeed

this relationship defines a lattice on the points (mn, n), where (m + 1, k) is connected

to (m, n) if f(m, n) influences f(m + 1, k). The simplest example of such a lattice is

the dyadic tree illustrated in Figure 1, where each node t corresponds to a particular

scale/shift pair (m., n). As with all these lattices, the scale index is indeed time-like,

with each level of the tree corresponding to a representation of signals or phenomena

at a particular scale. In this paper we focus for the most part on this tree structure

and on dynamic models and stochastic processes defined on it'. Note that this setting

has a natural association with the Haar transform in which the value at a particular

'In Sections 4 and 5 we briefly describe some aspects of the more general case.
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node t = (m, n) is obtained from the average of the values at the two descendant nodes

(m + 1, 2n) and (m + 1, 2n + 1). However, while the Haar transform indeed plays an

important role in our analysis, the dyadic tree and the pyramidal structure it captures

should be viewed in a broader sense as providing a natural setting for capturing

representations of signals at multiple resolutions where the relationships between the

representations at different resolutions need not be constrained to the rigid equalities

in (1.9) - (1.11). Rather, if we view these multiscale representations more abstractly,

much as in the notion of state, as capturing the features of signals up to a particular

scale that are relevant for the "prediction" of finer-scale approximations, we can define

rich classes of stochastic processes and models that contain. the multiscale wavelet

representations of (1.9) - (1.11) as special (and in a sense degenerate) cases.

Carrying this a bit farther, let us return to the point made earlier that for wavelet

transforms to be useful it should be the case that their application simplifies the

description or properties of signals. For example, this clearly would be the case for

a stochastic process that is whitened by (1.9), (1.10), i.e. for which the wavelet

coefficients {d(m., .)} at a particular scale are white and uncorrelated with the lower

resolution version {f(m, .)} of the signal. In this case (1.11) represents a first-order

recursion in scale that is driven by white noise. However, as we know from time series

Analysis, white-noise-driven first-order systems yield a comparatively small class of

processes which can be broadened considerably if we allow higher-order dynamics.

Also, in sensor fusion problems one wishes to consider collectively an entire set of

signals or images from a suite of sensors. In this case one is immediately confronted

with the need to use higher-order models in which the actually observed signals may

represent samples from such a model at several scales, corresponding to the differing

resolutions of individual sensors.

In this paper we describe two stochastic modeling paradigms for multiresolution

processes that have as their motivation the preceding observations as well as the desire

to investigate and develop multiscale counterparts to the notions of stationarity and

rationality that have proven to be of such value in time series analysis. The first

step in doing this is the introduction of dynamics and concepts of shift-invariance on

dyadic trees, and in the next section we outline the elements of this formalism and
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in particular introduce two notions of (second-order) shift-invariance for stochastic

processes on dyadic trees. In Section 3 we then use the stronger of these two notions to

develop a theory of multiscale autoregressive modeling and in particular we describe

a generalization of the celebrated Schur and Levinson algorithms for the efficient

construction of such models. Figure 2 illustrates the output of a third-order model

of this type displaying some of the fractal-like, multi-scale characteristics that can be

captured by this class of models. An alternate modeling paradigm-coinciding with

that of Section 3 only for first-order models-is described in Section 4. This formalism,

which generalizes finite-dimensional state models to dyadic trees, also can be used

to capture fractal-like behavior and indeed includes the 1/f-like models developed

in [50, 51] as a special case. Moreover these models provide surprisingly accurate

descriptions of a broad variety of stochastic processes and also lead to extremely

efficient and highly parallelizable algorithms for optimal estimation and for the fusion

of multiresolution measurements using multiscale, scale-recursive generalizations of

Kalman filtering and smoothing. For example, Figure 3(a) illustrates the sample

path of a process with a 1/f-like spectrum and its optimal estimation based on noisy

measurements of the process collected only at the two ends of the data interval.

Figure 3(b) illustrates the use of our methodology for the estimation of the process

based on these noisy data augmented with coarser resolution measurements- i.e.

the formalism we describe allows us, with relative ease, to use coarse scale data to

optimally guide the interpolation of fine-scale but sparsely-collected data. Figures 3(c)

and 3(d) display analogous results for the case of a standard Gauss-Markov process

in which an approximate multiscale model for this process is used to design the

coarse/fine data fusion and interpolation algorithm.

Due to the limitations of space our presentation of the various topics we have

mentioned is of a summary nature. References to complete treatments are given,

and, in addition, in Section 5 we briefly discuss several important issues, current lines

of investigation, and open questions.
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2 Stochastic Processes and Dynamic Models on

Dyadic Trees

In this section we introduce the machinery needed for specifying linear models of

random processes on the dyadic tree, that is for stochastic processes yt where t is

an element of the set of nodes, T, of the tree of Figure 1. As indicated in the

introduction, we have several objectives in developing such models. Our first objective

is to introduce models that can be specified by finitely many parameters in order to

provide associated effective algorithms. That is,' we would like to develop models

analogous to those specified by finite-order difference equations or finite-dimensional

state models- i.e. those corresponding to rational system functions- which have

provided the setting for a vast array of powerful methods of signal and system analysis.

Also, recursive models of this type are naturally associated with a notion of causality.

In our context we will also seek recursive structures where the associated notion of

causality will be in scale, from coarse to fine as in the wavelet transform synthesis

equation (1.11).

Finally, another notion from time series that we will want to adapt to our context

is that of shift-invariance or stationarity. To understand what is involved in this, let

us recall the usual notion of stationarity2 for a discrete-time, zero-mean stochastic

processes yt, where in this case teZ, the integers. Such a process, with covariance

function

rt, = E[yty.] (2.1)

is stationary if rt+n,,+n = rt,, for all integers n. That is, shifting the time index of

the process by n leaves the statistics invariant. Since it is also obviously time that

r,,t = rt,,, we can immediately deduce that

r,,t = rd(,,t) (2.2)

where d(s,t) = It - sl.

21n this paper we focus completely on linear models and second-order properties, which, of course,
yield complete descriptions if the processes considered are Gaussian.
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In order to understand how we might generalize these ideas to the dyadic tree, we

need to make several observations. The first is that the integers Z and our dyadic tree

are both examples of homogeneous trees. Specifically a homogeneous tree of multi-

plicity q is an infinite acyclic graph such that each node has exactly q+1 branches to

other nodes representing its neighbors. In the case of Z, q = 1, and the neighbors of

an integer t are simply t - 1 and t + 1. For the case of T, q = 2. However, Figure 1

isn't the easiest way in which to see this or to understand notions of stationarity.

Specifically, in considering the usual notion of stationarity we are compelled to con-

sider processes defined on all of Z, and the same is true in our context. Thus, we

must be able to extend our tree in all directions capturing in particular the fact that

there is neither a finest nor a coarsest scale of description. A much more convenient

representation of T that allows such extensions is depicted in Figure 4. As we will

see, both Figures 1 and 4 will prove of use to us.

An important fact about trees is that there is a natural notion of distance d(s, t)

between two nodes, s and t, namely the number of branches on the path from s to

t, which reduces to It - sl for Z. This allows us to define the notion of an isometry,

that is a one-to-one and onto map of the tree onto itself thai preserves distances.

For Z the only isometries are shifts, t | t + n i.e. and reversals, i.e. t ~ -t

(and concatenations of these), so that a useful way (for us!) in which to define the

usual notion of stationarity is that the statistics of the process are invariant under

any isometry on the index set, i.e. rt,, = r,(t),r,() for any isometry.

It is this type of notion that we seek to generalize to the dyadic tree. However,

the tree T has many isometries. For example consider an isometry pivoting on the

node denoted "s A t" in Figure 4, where all nodes below and to the right of this point

are left unchanged but the upper left-hand portion of the tree is "flipped" in that

the two branches extending from s A t are interchanged (so that, for example, u is

mapped into s). Obviously we can do the same thing pivoting at any node. We refer

the reader to [14] for complete treatments of the nature and structure of isometries.

The preceding discussion suggests a first notion of shift-invariance for a stochastic

process yt which we refer to as isotropy. Specifically yt is an isotropic process if its

statistics remain invariant under any isometry on the index set. As shown in [3, 6, 7, 8]
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yt is isotropic if any only if its covariance rt,,, as defined in (2.1) (with t, seT), satisfies

(2.2). Thus, as with a standard temporally-stationary process, an isotropic process on

T is characterized by a covariance sequence ro, rl,r2 ,... and, as in the standard case

we have two natural questions: (1) when does such a sequence of numbers correspond

to a valid covariance sequence for a process on T; and (2) how can we construct

dynamic models for the construction of an isotropic process corresponding to such a

valid sequence. A first form of the answer to the first question can actually be stated

a bit more generally. Specifically, if S is any index set, and if {yt, teS} is a zero-mean

process defined on S then its covariance r,,t must satisfy the following : select an

arbitrary finite family {ti}j=l ..... in S; then the I x I matrix whose (i,j)-element is

rti,tj must be non-negative definite since

Yti

COV ... = [rtit,] ij=1,...,I (2.3)

Ytx J

This property of r, which is necessary and sufficient for it to be the covariance of

such a process, will be referred to as positive definiteness in the sequel. For general

index sets it is not possible to find more useful criteria or characterizations of positive

definiteness. However for stationary time series, i.e. for S = Z and rt,. satisfying

(2.2) much more can be said. In particular the celebrated Bochner spectral represen-

tation theorem states that a sequence r,,n = 0, 1,... is the covariance function of

a stationary time series if and only if there exists a nonnegative, symmetric spectral

measure S(d&) so that

rn = - I ej,,.S(d)

As shown in [2, 3] there is a corresponding generalized Bochner theorem for a

sequence r, to be the covariance of an isotropic process on T. Note that we can

obviously find a subset of T isomorphic to Z - i.e. a sequence of nodes extending

infinitely in both directions, and yt restricted to such a set is essentially a temporally-

stationary process. Thus for r, to be a valid covariance of an isotropic process on T

it must certainly be a valid covariance for a temporally-stationary process. However
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there are additional constraints for isotropic processes- for example in T we can

find three nodes which are all a distance two from one another (e.g. u,v, and s A t

in Figure 4), and this implies an additional constraint on r,. The impact of these

additional constraints can be seen in the Bochner theorem in [2, 3] and also in the

results described in the next section.

AWhile the Bochner theorem is a powerful characterization result for time series
and for processes on trees, it does not provide a computational procedure for test-

ing positive definiteness or for constructing models for such processes. However for

time series we do have such a method, namely the Wold representation of station-

ary processes via causal, autoregressive (AR) models. This representation and the

well-known Levinson algorithm for its construction not only provide a procedure for

testing positive-definiteness but also for constructing rational, finite-order models for

stationary processes. The subject of Section 3 of this paper is the extension of this

methodology to isotropic processes on trees. An important point in doing this is to
realize that such a construction for time series produces a model that treats time

asymmetrically (by imposing causality) in order to represent a process whose statis-

tics do not have inherent temporal asymmetry. This is not a point that is typically

highlighted since the geometry of Z is so simple. However the situation for T is decid-

edly more complex, and to carry out our program we need the following developnment
which in essence relates the pictorial representations of Figures 1 and 4 and provides

the basis for defining causal systems in scale.

An important concept associated with any homogeneous tree is the notion of a

boundary point [2, 3, 6, 14, 15] of a tree. Consider the set of infinite sequences of nodes

on such a tree, where any such sequence consists of a set of distinct nodes tl,t 2,...

where d(ti,ti+l) = 1. A boundary point is an equivalence class of such sequences

where two sequences are equivalent if they differ by a finite number of nodes. For the

case of Z there are two boundary points corresponding to paths toward +oo. For T

there are many. Let us choose one boundary point in T which we denote by -oo.

Note that from any node t there is a unique path in the equivalence class defined by
-oo (i.e. a unique path from t "towards" -oo - see Figure 4). Then if we take any

two nodes s and t, their paths to -oo must differ only by a finite number of points
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and thus must meet at some node which we denote by s A t (see Figure 4). Thus, we

can define a notion of relative distance of two nodes to -oo:

6(s,t) = d(s,s A t) - d(t, s A t) (2.4)

so that

s < t ("s is at least as close to -oo as t") if 6(s,t) < 0 (2.5)

s -. t ("s is closer to -oo than t") if 6(s,t) < O (2.6)

This also yields an equivalence relation on nodes of T:

s t - 6(s,t) = 0 (2.7)

For example, the points s, v, and u in Figure 4 are all equivalent. The equivalence

classes of such nodes are referred to as horocycles. These equivalence classes are

best visualized as in Figure 1 by redrawing the tree, in essence by picking the tree

up at -oo and letting the tree "hang" from this boundary point. In this case the

horocycles appear as points on the same horizontal level and s - t means that s

lies on a horizontal level above or at the level of t. Note that in this way we make

explicit the dyadic structure of the tree as depicted in Figure 1 and provide the basis

for defining multiscale dynamic models.

In order to define dynamics on trees, let us again step back to take a more careful

look at the usual formalism that is used for time series. Specifically, in specifying a

temporal system in terms of a difference equation we make essential use of the notion

of shifts or moves - e.g. in an AR model we relate yt to yt-1, Yt-2, etc. where the

backward shift z - 1 : t @- t - 1 obviously plays an essential role in expressing the

"local" dynamics, i.e. the relationship of a signal at a particular point to its values

at nearby points. Moreover, thanks to the simple structure of Z, we have the luxury

of using the symbol z -1 for two additional purposes. In particular, the backward

shift z - 1 is an isometry and in fact it and its inverse, the forward shift, generate all

translations. Furthermore,we also use the symbol z - 1 and its positive and negative

powers to code signals- i.e. we represent the signal yt by its z-transform - and all

of these properties provides us with the powerful transform domain formalism for

analyzing stationary, i.e. translation-invariant systems.
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The situation is decidedly more complex on T. To see this let us begin by defining

moves on T that will be needed to provide a "calculus" for stochastic processes, i.e. for

specifying local dynamics. Such moves are illustrated in Figure 1 and are introduced

next

* 0 the identity operator (no move)

*a the backward shift (move one step toward -oo)

ca the left forward shift (move one step away from -oo toward the left)

· d the right forward shift (move one step away from -oo toward the right)

* 6 the interchange operator (move to the nearest point in the same horocycle)

Note that the richer structure of T requires a richer collection of moves. Also, unlike

its counterpart z -1, the backward shift V is not an isometry (it is onto but not one-

to-one), and it has two forward shift counterparts, a and /3, which are one-to-one

but not. onto. Also, while these shifts allow us to move up and down in scale, (i.e.

from one horocycle to the next), it is necessary to introduce another operator, 6,

in order to define purely translational shifts at a given level. Note also that 0 and

6 are isometries and that these operators satisfy the following relations (where the

convention is that the left-most operator is applied first)3 :

aT=3= = O (2.8)

6^7 = a (2.9)

62 = 0 (2.10)

p/3 = a (2.11)

Arbitrary moves on the tree can then be encoded via finite strings or words using

these symbols as the alphabet and the formulas (2.8)-(2.11). Specifically define the

language

L = (T)* U (a) )' 6{a,/3}* U {a,/3}* (2.12)
3Our convention will be to write operators on the right, e.g. ta, t6,3
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where K* denotes arbitrary sequences of symbols in K including the empty sequence

which we identify with the operator 0. Then any move on T is uniquely represented

by a word of this language. It is straightforward to define a length Iwl for each word

in L, corresponding to the number of shifts required in the move specified by w. Note

that

ITI = Ia I = l3 = 1

101l= , 161=2 (2.13)

Thus 1i'1 = n, ]wel = the number of a's and 3's in wae E {a,/3}*, and =ltrw, =

n + 2 + Iwe,[I. This notion of length will be useful in defining the order of dynamic

models on T. We will also be interested exclusively in causal models, i.e. in models in

which the output at some scale (horocycle) does not depend on finer scales. For this

reason we are most interested in moves that either involve pure ascents on the tree,

i.e. all elements of {y}*, or elements b"wop of {'}*6{ba,f}* in which the descent is

no longer than the ascent, i.e. Iw,31 < n. We use the notation w - 0 to indicate that

w is such a causal move. Note that we include moves in this causal set that are not

strictly causal in that they shift a node to another on the same horocycle. We use

the notation wv 0 for such a move. The reasons for this will become clear when we

examine autoregressive models.

'Also, on occasion we will find it useful to use a simplified notation for particular

moves. Specifically, we define 5(") recursively, starting with 6( ) = 6 and'

If t = tat, then tb(n) = t6(n-1).

If t = tf3, then t6(") = tT6(n-l') (2.14)

What 6(n) does is to map t to another point on the same horocycle in the following

manner: we move up the tree n steps and then descend n steps; the first step in the

descent is the opposite of the one taken on the ascent, while the remaining steps are

the same. That is if t = t;i'-l1w, then t("n) = tT-l6w,p. For example, referring to

Figure 1, s = u6(2 ).

The preceding development provides us with the move structure required for the

specification of local dynamics on trees. Let us turn next to the specification of "shift-

invariant" systems and processes. The most general linear input/output relationship
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for signals defined on the tree is simply

yt = E ht,,u. (Hu), (2.15)
aET

As with temporal systems, one would expect the requirements of various notions

of shift-invariance to impose constraints on the weighting coefficients ht,.. To see this

let us first adopt an abuse of notation commonly used for time series. Specifically, if

7 is an isometry of T, we use the same notation to denote an operation on signals

over T, i.e.

r(y)t = y(t) (2.16)

(analogous to z-lyt = yt-1). A first, rather strong notion of shift-invariance might

be that if r(u) is applied to the system for any isometry r, then the output is r(y),

where y is the response to u. It is not difficult to check that for this to be the case

we must have that

hta, = h(d(s, t)) (2.17)

Note, however, that this is an exceedingly strong condition and indeed generalizes

the notion of zero-phase LTI systems, i.e. systems with impulse responses such that

h(t,s) = h(It - sj). Such systems obviously are not causal, and in fact are far. too

constrained in that they require invariance to too many isometries. In particular

such an LTI system has the property that it is not only translation-invariant but also

reversal invariant (i.e. u(-t) yields y(-t)). In the case of time series we overcome this

by using the smaller group of isometries generated by the shift z - 1 . On T, however,

the shifts T, a, and /i are not isometries. For this reason it is necessary to introduce

a subgroup of isometries of T corresponding to the other role played by z - 1, that of

defining backward, causal, translations.

Specifically, let (tn)nEz denote an infinite path extending in T back toward -oo

(as n -4 -oo). A (one step) translation with skeleton (t,) is an isometry of T that

has the property that

-(t) = tn+, (2.18)

Since there are many such paths (t,) there obviously are many translations, and

indeed for any particular (t,) there are numerous translations (see Figure 5). Never-
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theless the class of translations represents a proper subset of all isometries, and does

allow us to define a very useful notion of shift invariance:

Definition 1 (stationary systems) A linear system H as in (2.15), acting on sig-

nals on T, is said to be a stationary system if 4

H o r = r o H (2.19)

for any translation r.

A fundamental result proven in [9] is that H is stationary if and only if its weighting

pattern satisfies.

ht,, = h [d(t, s A t), d(s, s A t)] (2.20)

Thus a stationary system is specified by a 2-D sequence h(n,m),n,m > 0 and,

referring to Figure 1, we see that (2.20) has an intuitively appealing interpretation.

Specifically s A t denotes the "parent" node of s and t, i.e. the finest scale node

that has both s and t as descendants, and (2.20) states that ht,. depends only on the

distances in scale from this parent node to s and to t. Roughly speaking the influence

of the input at node s on the output at node t in a stationary system depends on

the differences in scale and in temporal offset of the scale/shift pairs represented by

t and s.

Obviously, a system satisfying (2.17) (and thus corresponding to a system that

commutes with all isometries) also satisfies (2.20) (this is easily seen since d(s,t) =

d(s, s A t) + d(t, s A t)). The reverse is certainly not true indicating that we have a far

larger class of stationary systems as defined in Definition I. Similarly, we can define

a larger class of shift-invariant processes:

Definition 2 (stationary stochastic processes) A zero mean (scalar) stochastic

process y is said to be stationary if its covariance function is translation-invariant,

i.e.

r,,t = rr.(,),r(t) (2.21)

for any translation r.

40 denotes the composition of maps.
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As shown in [9] a process is stationary if and only if

ro,t = r[d(s, s A t), d(t, s A t)] (2.22)

Thus a stationary process is specifies by a 2-D sequence r(n,m),n,m > 0. Also

isotropic processes- i.e. processes for which (2.21) is satisfied for all isometries and

for which (2.2) holds- are obviously stationary, but the reverse implication is not

true, so that stationary processes represent a richer class of processes. Furthermore

the covariance structure (2.22) in essence says that the statistical relationship between

the values of a stationary process at two nodes depends on the differences in scale

and in temporal offset of the two nodes. In particular from (2.22) it follows that

the statistical behavior of the restriction of a stationary process to any scale (i.e.

horocycle) does not depend on the scale, indicating that the concept of stationarity

on the tree appears to be a natural and convenient one for capturing a notion of

statistical self-similarity. Moreover, as we will see, the Haar transform yields the

eigenstructure of the process at any scale, providing another tie back to wavelet

transforms. In Section 4, we expand on these and related points in the context of

the investigation of a class of fini'e-dimensional state models on dyadic trees that,

in the constant-coefficient case, provides us with the class of rational linear systems

satisfying the notion of stationarity we have introduced.

Let us close this discussion with a few comments. First, as shown in [9], the notions

of systems and stochastic stationarity introduced in Definitions 1 and 2 are compatible

in the sense that the output of a stationary system driven by a stationary input is itself

stationary. In general, however, an isotropic process driving an arbitrary stationary

system does not yield an isotropic output, and thus we might expect that we will have

to work harder to pinpoint the class of systems that does generate isotropic processes.

Furthermore, as we have indicated we are interested in constructing causal models,

i.e. systems as in (2.15) with

ht,, = 0 for t -< s (2.23)

For stationary systems this corresponds to requiring

h(d(t, s A t), d(s, s A t)) = O for d(t,s A t) < d(s,s A t) (2.24)
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Finally, let us make a brief comment about the generalization of the third use

of z -', namely to define transforms. Specifically, as discussed in [6, 7, 8, 9], natural

objects to consider in this context are noncommutative formal power series of the

form:

S = Es, , w (2.25)
wE/;

We will use such tranforms in the next section in order to encode correlation

functions in our generalization of the Schur recursions. In addition transforms of this

type can be used to encode convolutional systems. Specifically, we can think of (2.25)

as defining the system function of a system in the following manner: if the input to

this system is ut, t E T, then the output is given by the generalized convolution:

(Su)t = E sWutW (2.26)
wEL

Note that in this context causality corresponds to s, = 0 for all 0 -< w. Also it is

important to realize that while (2.25), (2.26) would seem to correspond to a general

class of shift-invariant systems, both classes of systems we have described- stationary

and isotropic- require further restrictions. In particular for S in (2.25), (2.26) to be

stationary we must have that if w = 6ow0a, then s~, depends only on n and Iw,1l.

Similarly, S is isotropic if s,, depends only on IwJ. Finally, for future reference we use

the notation S(O) to denote the coefficient of the empty word in S. Also it will be

necessary for us to consider particular shifted versions of S:

v[S] = E sW,' w (2.27)
wEL

6(k)[S] = E w sa6() ·w (2.28)
wE£

where we use (2.8)-(2.11) and (2.14) to write wT and u6(k) as elements of C. Notice

that, because of the relations (2.8)-(2.11), the operators S -- ) [S] and S -- 6[S]

can not be thought of as multiplication operators on formal power series.
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respectively. The formulae

ek,n+1 = Xk -E{XkXkl,n}

= xk - E{fkXkl,-1,n-l}

+E{xklXknln-l} - E{xklXk.1,n}

= ekn - E{kJXk.kl,n e Xkl,n- l}}

= ek,n - Eek,nlfk-l,nl}]

= ek,n - kfkl,n (3.5)

where U OE V denotes the orthogonal complement of V in U, show that the key to

the calculation of the (n + 1)st-order prediction error ek,,+l is the computation of the

prediction of the forward residual ek,n given the backward one fk-l,n. Similarly, the

prediction of the backward residual given the forward one is needed for the calculation

of backward residuals of increasing order. It is a remarkable property of stationary

time series that both prediction operators are identical, i.e. that the same coefficient

kn in (3.5) also appears in the corresponding equation for the backward residual.

This fact, which then leads to the celebrated Levinson recursions, stems from the

fact that the statistics of a stationary time series are invariant under the isometry

k ' ,-k. The correlation coefficient kn of the two involved residuals is also known

as the PARCOR coefficient of xk and k_,n given Xk-l,,n-. This is illustrated in the

following diagram:
ram Xk-ln-1 Wkn

* 00000 0

Since ek,o = fk,O = zk, we find that (3.5) and the associated Levinson recursion

provide us with a method for constructing models for Xz of increasing order. In

particular,if ek,, and fk,n are white, (so that all higher-order PARCOR coefficients

are 0), we obtain an nth order AR model for Xn constructed in lattice form, i.e. one

first-order section (specified by one PARCOR coefficient) at a time.

Let us now consider the extension of these ideas to the dyadic tree. As one might

expect from the preceding discussion of AR(2) and as developed in detail in [6, 7, 8],

construction of models of increasing order requires the consideration of vectors of

forward and backward residuals of dimension that increases with model order. To
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begin, let yt be an isotropic process on a tree, and define the (nth-order) past of the

node t on T:

Yt,n & {=yt,: w 0, < n} (3.6)

In analogy with the time series case, the backward innovations or prediction error

space, which we denote by Xt,n, are defined as the variables spanning the new infor-

mation in Yt,n which are orthogonal to Yt,n-l:

Yt,, = Yt,,nE 1 , t (3.7)

so that YFt,n is the orthogonal complement of Yt,nl- in Y,,, (i.e. -t,n = Yt,n e Yt,n-l for

n > 0, while Ft,o = Yt,o). A basis for F't,n can be obtained by defining the backward
prediction errors for the "new" elements of the "past" introduced at the nth step, i.e.
for w O0 and Iwt = n, define

Ft,n(w) - yt, - E(ytwIYtn-) (3.8)

Then

-t,n = H {Ft,,(w) : Iwl = n,w - 0} (3.9)

Similarly we introduce the forward innovations or prediction error space, which
we denote by £t,n. For n = 0, £t,o = ' {yt}, while for n > 0

Et,n = (Yt,n,_ + Yt7,nl) e Ytn-_l (3.10)

Note that Yt,l-1 + YtT,n-l is used here instead of Yt,n ; while both spaces are equal
in the case of ordinary time series (in which a is replaced by z -'), they differ here s .
To obtain a basis for £t,n, we define the forward innovations

E,,,(w) ytw- E (ytwlYt, ,n- 1) (3.11)

where w ranges over a set of words such that tw is on the same horocycle as t and at
a distance at most n - 1 from t (so that Yt,,-_l is the past of that point as well), i.e.

Iwl < n and w 0O. Then

£t,n = t {Et,n(w) : Iwl < n and w - 0} (3.12)
5For example Yt,2 consists of Yt, Yt, Ytr, and Yt.. However, Yt,l consists of yt and ytV, while

Yt,1 consists of ytV and yt2.
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Let Et,. and Ft,, denote column vectors of the elements Et,n(w) and Ft,.(w), re-

spectively. As n increases the dimensions of these residual vectors grow geometrically.

Levinson recursions for isotropic processes involve the recursive computation of Ft,n

and Et,n as n increases. Since Ft,o and Et,o both equal yt, these recursions yield lat-

tice structures for AR models of increasing order. As developed in [6] and as the

reader may guess from the results for time series, the key to these recursions are all

PARCOR coefficients involving an arbitrary pair { 0, <O} given the space spanned by

the 0 in Figure 6. Furthermore, it can be verified that suitable combinations of the

elementary isometries shown in this figure provide isometries

* leaving the space Yt, , 3 (circles) globally invariant

* exchanging two arbitrary O 's or the two O.

From this it follows that all pairs { OC, O) possess the same PARCOR coefficients

given the space spanned by the circles. Hence, as for time series, we can show in

general that a single PARCOR or reflection coefficient is involved in each stage of the

Levinson recursions. Similar uses of the symmetries of the tree and the correlation

structure of isotropic processes allows us to show that only the barycenters of the

forward and backward prediction error vectors are needed to compute these reflection

coefficients. These barycenters are defined as follows:

etn 1 2-[] E Et,n(w)
wut<n,wtXO

ft,n = 2-1 Ft,n(w)
Iwi=n,,w<O

In particular in [6] the following results are proven providing a generalization of

the Levinson recursions to the barycentric prediction errors for isotropic processes on

T:

Theorem 1 (barycentric Levinson recursions) For n even:

et,n = et,n_ - knftn-1 (3.13)

ft,n = (ftn- + e=t(t,n)l - knen-l (3.14)
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where

k, = cor(et,,_l, ft¶,.l_)

= cor (et(f) 1, et,n-l)

= cor (et(, 1,_,, sftn-1) (3.15)

and cor (, y) = E(xy)/ [E(x2)E(y2)]'/ 2

For n odd:

etn = (etn 1-l+ e -knftn (3.16)

2 ',n-=t,n = Jttn-1--k.n (et,n-i + et(..1),,) (3.17)

where

kn = cor( 2 (-etn- + et()fl) ftn1 (3.18)

Corollary: The variances of the barycenters satisfy the following recursions.

For n even

2,n = E (et,n) = (- 2k) 1 (3.19)

=fn E (ft2,) = (n kn) _I (3.20)

where k, must satisfy

- < kn < 1 (3.21)

For n odd
2,n = l2 -1 2) ,- (3.22)

where

-1 < kn < 1 (3.23)

As we had indicated previously, the constraint of isotropy represents a significantly

more severe constraint on the covariance sequence r(n) of an isotropic process than

on that for a stationary time series. It is interesting to note that these additional
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constraints appear in the preceding development only in the form of the simple mod-

ification (3.21) of the constraint on kn for n even over the form (3.23) that one also

finds in the corresponding theory for time series. Also, as with the usual Levinson

recursions for time series we can use the formulae in Theorem 1 and its corollary

to obtain explicit recursions for the computation of the kn sequence directly from

the given covariance data, r(n). These recursions also contain some differences from

the usual results reflecting the constraints of isotropy on the tree. Rather than dis-

playing these we describe here an alternative computational procedure generalizing

the so-called Schur recursions [30, 43] for the cross-spectral densities between a given

time series and its forward and backward prediction errors. In considering the gen-

eralization of these recursions to isotropic processes on trees, we must replace the

z-transform power series for cross-spectral densities by corresponding formal power

series of the type introduced in Section 2. Specifically for n > 0 define P, and Q, as:

cov (yt, et,n) E (ytetw,n) )w (3.24)
w-O

Qn cOV (yt, ftn) E(Ytftn) (3.25)

where we begin with Po and Qo specified in terms of the correlation function rn of yt:

Po = Qo= E r(Ilw) w (3.26)
w-o

Recalling the definitions (2.27), (2.28) of ¶[S] and 6(k)[S] for S a formal power series

and letting S(O) denote the coefficient of w = 0, we have the following generalization

of the Schur recursions, proven in [6]:

Theorem 2 (Schur recursions) The following Schur recursions on formal power

series yield the sequence of reflection coefficients.

For n even

P, = P,_, - kn[Qn-1_ (3.27)

Qn -= 2 (T[Qn-1 + 6(2)[Pn-1])- -knP_ (3.28)2n
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where
k =[Qn-i](0) + (t)[P 1-](0) (3.29)

2P._ 1(0)

For n odd

P.= ('2 (Pn_1 + 6(')[Pn_]) - kn;[Qnl] (3.30)

n-1)
Qn = ;7[Qn-l]-k2 (P + 6(-)[P._ 1]) (3.31)

where
2'[Q._1](0)

Pk _1(0) + 6--)[P._1](0) (3.32)

Theorems 1 and 2 provide us with the right way in which to parametrize isotropic

processes. Furthermore, as developed in [6, 7, 8], we can build on these results to

provide a complete generalization of the Wold decomposition of an isotropic process.

In particular, lattice structures can be constructed for whitening filters, i.e. for the

computation of the prediction error vectors Et,, and Ft,n as outputs when yt is taken

as input. Similarly lattice forms are derived in [7] for modeling filters, i.e. systems

whose output is the isotropic process when the input is the corresponding-order pre-

diction error. Figure 2 illustrates the output, along one horocycle of a third-order

modeling filter (i.e. an AR(3)-model) driven by a white Et,3 process. We note that a

major difference between these lattice structures and the usual ones for time series is

that they involve lattice blocks of growing dimension, capturing the coupling along a

horocycle for AR processes of higher order. Also, as with time series, statistical prop-

erties of isotropic processes may be checked using the parametrization via reflection

coefficients. The main results are now listed and we again refer the reader to [7, 8]

for more precise formulations of these results and their proofs.

Theorem 3 (checking properties via reflection coefficients)

1. Characterization of AR processes: an isotropic process is AR(n) if and

only if its reflection coefficients of order > n are all zero.
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2. Schur criterion: if the sequence (rn) is the covariance function of an isotropic

process, then the Schur recursions must yield reflection coefficients satisfying the

inequalities

-1 < k2n+1 < +1 , - < k2n, < +1 (3.33)

3. Parametrizing AR processes : conversely, a finite family of coefficients

satisfying the above strict inequalities (3.33) defines a unique isotropic AR

process.

4. Regular and singular processes : If the sequence (rn) satisfies the strict

inequalities (3.33) and furthermore the condition

E k2n+l + k2nl < °°
n=1

holds true, then it is the reflection coefficient sequence of a regular (i.e. purely

nondeterministic) isotropic process.

The first three of these results represent easily understood generalizations of results

for time series. For example they imply that the nth and higher-order prediction error

vectors of an AR(n) process are white noise processes. The fourth statement concerns

itself with the issue of whether or not the value of yt can be perfectly prediction based

on data in its (infinite) past. Specifically, an isotropic process yt is regular or purely

nondeterministic if

2 > 0 (3.34)

holds, where

0a =n (if jytw - E ((a FtYtt (3.35)

and the infimum ranges over all collections of scalars (pw)wo where only finitely many

of the tw are nonzero and the condition it2 = 1 is satisfied. In other words, no

nonzero linear combination of the values of yt on any given horocycle can be predicted

exactly with the aid of knowledge of Y' in the strict past, Yt7-',, and the associated
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prediction error is uniformly bounded from below. It is interesting to note that the

condition for regularity for isotropic processes involves the absolute sum rather than

sum of squares of the even reflection coefficients and thus is a stronger condition. This

implies that there is apparently a far richer class of singular processes on 7 than on

Z. This appears to be related to the complications arising in the Bochner theorem for

isotropic processes on T and to the large size of its boundary. We refer the reader to

[6, 7. 8] for further discussions of these and other points related to isotropic processes

and their AR representations.
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4 System Theory and Estimation for Stationary

Processes and State Models

In this section we describe some of the basic concepts associated with the analysis of

stationary systems and processes on the dyadic tree. To begin, let us introduce the

following basic systems on T:

(-Y.U)t = (uta + ut) (4.1)

(T.U)t = utz (4.2)

It is not difficult to check that each of these systems is stationary. The system T

can be naturally thought of as a "backward" shift towards -oo, corresponding to the

coarse-to-fine interpolation operation in the fine-to-coarse Haar transform, whereas 3y

is a "forward-and-average" shift corresponding to the "Haar smoother". Using these

operators, it is not difficult to show that a stationary system can be represented as

H = E ,j s iTj (4.3)
i,j>o

Such a system is causal if and only if si,j is nonzero only over the set {(i,j) : i > j},

i.e. only past inputs can influence the considered output.

The representation in (4.3) is one of two extremely useful transform-like repre-

sentations of stationary systems. This one is, in particular, of use in providing a

generalization of time series results on the effect of linear systems on power spectra

and cross-spectra. Specifically, consider two jointly stationary processes x and y, with

covariance function

E(xJyt) = r'T[d(s, s A t), d(t, s A t)] (4.4)

Let us define the cross-spectrum of x and y as the following power series:

R'v E 7 r"[i,j] ~7tj
i,j>o

Also, given a stationary transfer function as in (4.3), we introduce the following notion

of an "adjoint":

H/= E sj,if'y (4.5)
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Then as shown in [9], if H and K are stationary transfer functions, the processes Hx

and Ky are also jointly stationary 6, and we have the following generalization of a

well-known result:

R(H.)(Ky) = H*R=YK (4.6)

Let us now turn to the question of internal, "state" realizations of stationary

systems. In this case an alternate representation to (4.3) is also of value. To define

this we introduce the following family of operators which perform a smoothing of data

on the same horocycle:

a[i] = ir' (4.7)

This operator provides an average of the values of a signal at the 2' nearest points

on the same horocycle. For example, (oa.u)t = 1/0(ut + Ut6) where a = or[] and

([2].u.)t = 1(ut + Ute + utb(2) + utb(2)6 ). Note also that each a[i] is an idempotent

operator. As shown in [9] operators may be used to encode any stationary causal

system via a representation of the form:

H = E hi,,j a[] (4.8)
i,j>o

In order to develop a realization theory for stationary systems, let us note that

ioth formulae (4.3) and (4.8) are strikingly similar to the forms of system functions

studied in standard 2-D system theory. While there are obvious differences - e.g.

we have the relation -yT = 1 between the two variables in (4.3) and the symbol

u [2] is not simply interpretable as the square of a- it is indeed possible to build on

standard 2-D realization theories. Note in particular that even though (4.3) includes

noncausal multiscale systems, it has the appearance of a 2-D quadrant-causal system,

as does (4.8) since the summations are restricted to i,j > 0. Let us begin with, (4.3).

Building on the 2-D analogy, if we interpret 7 as the row operator and y as the

column generator, then it is natural to consider row-by-row scanning to define a

total ordering on the 2D index space. This corresponds to decomposing the transfer

function H according to' the following two steps:

eThis of course, is true only if Hz and Ky are well-defined, i.e. if they are finite-variance
processes. As one might expect, this requires some notion of stability for the systems. We return to
this point later in this section in the context of state models.
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1. a bottom-up (i.e. fine-to-coarse) smoothing, followed by

2. a top-down (i.e. coarse-to-fine) propagation.

2D-system theory for systems having separable denominator [4, 32] may be applied

here. Rational transfer functions in this latter case are of the following form:

H = C (I - aAt)- ' P (I - yA) - ' B (4.9)

which yields the following state space form

Vt = At (V, +vt) + But

Zt = P2 Vt

Xta = AvTt + Plzt. (4.10)

x t = Azxt + Plztp

Yt = Cxt

where P = P1P2 . The first two equations define a purely "anticausal" process,

whereas the last three equations define a causal zero depth process. Later in this

section we describe an optimal multiscale estimation algorithm that has precisely

this structure.

Now let us turn to the representation of multiscale causal systems in (4.8). Here

we interpret the sequence a[i] as the powers of the row operator and I as the column

operator. Then again we consider row-by-row scanning to define a total ordering

of the 2D index space. This corresponds to decomposing the transfer function H

according to the following two steps:

1. a smoothing along the considered horocycle (i.e. constant scale smoothing),

followed by

2. a top-down (i.e. coarse-to-fine) propagation.

2D-system theory for systems having separable denominator [4, 32) may again be

applied here. Rational transfer functions in this latter case are of the following form:

H = C(I - AT)-' P (I - A,)-' B (4.11)
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where it is understood that, in expanding such a formula into a power series, ai

should be replaced by c[i]. This latter unusual feature has as a consequence the fact

that no simple "time domain" translation of the "frequency domain" formula (4.11)

is available. However, if As is nilpotent so that (I - rA,) - 1 is a finite series, we do

obtain the following explicit representation for what we refer to as the finite depth

case:

xt8 = ATct + D (1, , ... [qi]) ut, (4.12)

Yt = Czt .

where D (1,a,..., a[ i] ) is a linear combination of the listed operators.

The dynamics (4.12) represent a finite-extent smoothing along each horocycle and

a generalized coarse-to-fine interpolation. For example, as discussed in Section 1, the

synthesis form of the Haar transform can be placed exactly in this form. It can also

be shown that stationary finite depth scalar transfer functions may be equivalently

expressed in the following ARMA form

H = A-'D (4.13)

where A is a causal function of finite support and D = D (1, a, ... , a[ k]) is as in (4.12).

This ARMA form includes as a special case the AR modeling filters for "isotropic"

processes introduced in Section 3.

The preceding development, as well as the interpretation of the synthesis form of

the wavelet transform provides ample motivation for the studies in [16, 17, 18, 19,

20, 48, 52] of properties and estimation algorithms for fiultiscale state models of the

form:

x(t) = A(t)x(tT) + B(t)w(t) (4.14)

y(t) = C(t)x(t) + v(t) (4.15)

where w(t) and v(t) are independent vector white noise processes with covariances

I and R(t), respectively. .The model class described in (4.14),(4.15) represents a

noise-driven generalization of the zero-depth, causal, stationary model (4.12). Specif-

ically we obtain such a stationary model if all of the parameters, A, B, C, and R are
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constant. There are, however, important reasons to consider the more general case

(and, in addition, its consideration does not complicate our analysis). First of all,

one important intermediate case is that in which the system parameters are constant

at each scale but may vary from scale to scale. If we let m(t) denote the scale, i.e.

the horocycle, on which the node t lies, we abuse notation in this case by writing

A(t) = A(m(t)), etc. Such a model is useful for capturing the fact that data may be

available at only particular scales (i.e. C(m) # 0 only for particular values of m);

for example in the original context of wavelet analysis, we actually have only one

measurement set, corresponding to C(m) being nonzero only at the finest scale in our

representation. ' Also, by varying A(m), B(m), and R(m) with m we can capture

a variety of scale-dependent effects. For example, dominant scales might correspond

to scales with larger values of B(m). Also, by building a geometric decay in scale

into B(m) it is possible to capture 1/f-like, fractal behavior as shown and studied

in [16, 47, 50]. Finally, the general case of t-varying parameters has a number of

potential uses. For example such form for C(t) is clearly required to capture the

situation depicted in Figure 3 in which fine scale measurements are not available at

all locations. Also, it is our belief that such models will prove useful in modeling

transient events localized in scale and time or space and to capture changing signal

or image characteristics.

As with standard temporal state models, the second-order statistics of x(t) are

easily computed. In particular the covariance P.(t) = E[x(t)xT (t)] evolves according

to a Lyapunov equation on the tree:

P.(t) = A(t)P,(t7)AT (t) + B(t)BT(t) (4.16)

Specializing to the case in which A(t) = A(m(t)) and B(t) = B(m(t)), we can obtain

a covariance that allows dependence only on scale, i.e. P.(t) = P=(m(t)), and indeed

in this case we have a standard Lyapunov equation in scale:

P,(m + 1) = A(m)P=(m)AT (m) + B(m)BT(m) (4.17)

7It is important to emphasize here that the wavelet transform of this fine scale measurement-
which we use as well as in the sequel- does not correspond to measurements as in (4.15) at several
scales. Rather (4.15) corresponds to independent measurements at various nodes.
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Also, as shown in [16, 19] the full covariance function in this case is given by

K~(t, s) = 4(m(t),m(s A t))P,(m(s A t))iT(m(s),m(s A t)) (4.18)

where 4(m,n) is the state transition matrix associated with A(m). Specializing

further to the constant coefficient case we have the following [16, 19]: if A is stable

and if P, is the unique solution to the algebraic Lyapunov equation

P. = APAT + BBT (4.19)

then our state model generates the stationary covariance

K,,(t, s) = Ad(tsA^t)P, (AT)d('°^At) (4.20)

Note that in the scalar case our constant coefficient model is exactly the AR(1) model

introduced in the preceding section and indeed (4.19)-(4.20) reduce to

K (t,s ) ={ 2 Ad(st) (4.21)

In the vector case (4.20) is stationary but not, in general, isotropic. However, it is

interesting to note that we do obtain an isotropic model if AP, = P,AT, precisely

the condition arising in the study of temporally-reversible vector stochastic models

[1]. Let us turn now to the problems of estimating the state of (4.14) based on the

measurements (4.15). Note that this framework allows us to consider not only the

fusion of measurements at multiple resolutions but also the reconstruction of processes

at multiple scales. Indeed in this way we can consider the resolution-accuracy tradeoff

directly and can also assess the impact of fine-scale fluctuations on the accuracy of

coarser scale reconstructions, a problem of some importance in applications such as

the fusion of satellite IR measurement of ocean temperature variations with point

measurements from ships in order to produce temperature maps at an intermediate

scale. To be specific in the following development we consider the problem of optimal

estimation on a finite portion of T. This corresponds to estimation of a temporal

process on a compact interval so that there is a coarsest scale (and hence a top to

our subtree) denoted by m = 0, and a finest scale, denoted by m = M, at which
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measurements may be available and/or reconstructions desired. As developed in

[16, 17, 18, 52], the model structure (4.14), (4.15) leads to three efficient, highly

parallelizable algorithmic structures for optimal multiscale estimation. A first of these

is an iterative algorithm taking advantage of the fact that (4.14) defines a Markov

random field structure on T. Specifically, let Y denote the full set of measurements

at all scales. Then, thanks to Markovianity we have that

E[z(t)IY] = E E[z(t)lx(tT, (ta),x(t13),Y]IIY

= E {E[x(t)lz(t'7), x(ta), x(t3), y(t)] jY) (4.22)

where the second equality in (4.22) states that given ar(ty), x(tca), x(t/3), only the

measurement at node t provides additional useful information about x(t). From

(4.22) we can then obtain an explicit representation for the optimal estimate of x(t)

in terms of the optimal estimates at its parent node, tT, at its immediate descendant

nodes, ta and t/3, and the single measurement at node t. This implicit specification

is then perfectly set up for solution via Gauss-Seidel or Jacobi iteration which can

be organized to have exactly the same structure as multigrid relaxation algorithms,

with coarse-to-fine and fine-to-coarse sweeps that in multigrid terminology [11, 12,

26, 29, 37, 39] lead to so-called V- and W-cycle iterations. Furthermore, in such

iterations all of the calculations at any particular scale can be carried out in parallel.

In addition this methodology carries over completely not only to the case of nonzero

depth models as in (4.12), with the additional inter-node connectivity implied by the

coupling introduced by the horocycle-smoothing operator D, but also to state models

on more general lattices corresponding to the interpretation of (1.11) as defining a

scale-to-scale dynamic relationship for any finitely-supported QMF pair h(n), g(n)

and thus for any compactly-supported wavelet transform. We refer the reader to

[16, 19] for details and further development of this multigrid estimation methodology.

A second estimation structure applies to the case in which all system parameters

depend only on scale (i.e. A(t) = A(m(t)), etc.). In this case, as shown in [16,

17, 19J, the Haar transform, applied to each scale of the state process :(t) and the

,measurement data y(t) yields a decoupled set of estimation problems for each of the

scale components. Specifically, let x(m) denote the vector of all 2m values of x(t)
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at the rmth scale, and let y(m), w(m), and v(m) similarly. Then in this case (4.14),

(4.15) can be rewritten in scale-to-scale form:

x(m + 1) = Am+,z(m) + B,+lw(m + 1) (4.23)

y(m) = Cmz(m) + v(m) (4.24)

where

A(m + 1) 0 o ... o

A(m+l1) 0 0 ... 0
0 A(m+1) 0 ... 0
o A(m+1) 0 0-- O

A+1 = 0 A(m+ 1) 0 ... 0 (4.25)

o 0 o ... A(m + 1)

o o 0 .. A(m + 1)

Bm+l = diag(Bm+1,...,Bm+1) (4.26)

Cm, = diag(C(m), ... , ,'(m)) (4.27)

Note that z(m) has half as many elements as z(m + 1), reflecting the fine-to-coarse

decimation that occurs in multiscale representations. As shown in [16, 19], the covari-

ances of z(m) and y(m.) as well as the cross-covariance between z at different scales

have (block-) eigenstructures specified by the Haar transform. For example if x(t) is

a scalar process and we look at x(3), which is 8-dimensional, we find that the covari-

ance of this vector has as its eigenvectors the columns of the following orthonormal

matrix, corresponding to the (8-dimensional) discrete Haar basis consisting of vectors
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representing "dilated, translated, and scaled" versions of the vector [1, -1]T y :

0 0 0 1

20 2°°2-22 0 2

0 0 0 - 0 1 1O 0 O 1 ' O -

-2' 2 _2V 72 (4228)
0 0 1 0 0 1 1 1
0 0 1 0 0 1 1 1

-2- 2 -2V 2v'

-0' 2 -~2 2 272
0 0 0- 0 2 21 1

V3= -2 -i 72 2--

Analogous bases can be defined for any dimension that is a power of two, and

correspondingly-scaled version of the identity matrix of dimension equal to that of

x(t) (e.g. the (1,1) block of such a matrix would be (1/Jv)I).

As a consequence of these observations, one would expect considerable simplifica-

tion if we consider the Haar-transformnied version of our estimation problem. Specifi-

cally. define the transformed variables

s(m) = VzT(m.)z(m), z(m) = V T(m)y(m) (4.29)

where V,(m) (V,(m)) is the block-Haar transform matrix of block-size equal to the

dimension of x(t) (y(t)). In this transformed representation the system and mea-

surement equations block-decouple completely. Specifically, the vector s(m) can be

decomposed into 2m subvectors each of the same dimension as x(t), and we index

these as soo(m), soi(m), and sij(m) for 1 i < m - 1, I < j 2i. Here soo(m)

is the component corresponding to the right-most (block) basis component in V (m.)

(refer to (4.28))- i.e. it is the average of the x(t) at the mth horocycle (scaled by

2-m/2); so1(m) is then the coarsest resolution first difference coefficient (see the next-

to-last column in (4.28)), while for i > 1, the sij correspond to the ith resolution

first difference coefficients (note in (4.28) that there are four such coefficients at the

finest resolution and two at the next, coarser scale). In a similar fashion we define the

components of z(mn). With these definitions we find that we have a set of completely~"~"""""~~~~'~I-~~0 0
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decoupled standard dynamic systems in the time-like variable m:

sij(m + 1) = A(m + 1)sij(m) + B(m + 1)wij(m + 1), 0 < i < m - 1 (4.30)

smj(m + 1) = B(mn + 1)w,,j(m + 1) (4.31)

zij(m) = C(m)sjj(m) + vij(m) (4.32)

Here wij(m) and vij(m) are white in all three indices, with covariances I and R(m),

respectively.

Recall that the dimension of z(m) increases with m, indicative of the increasing

detail available at finer scales. In the transformed basis this is made absolutely

explicit in that we see that the dynamics (4.30), (4.31) consists of two parts: the

interpolation of coarse features to finer scales (4.30) and the initiation, at each scale,

of new components (4.31) representing levels of detail that can be captured at this (but

not at any coarser) scale. Thus for any pair of indices i,j we have a dynamic system

in m, initiated at scale m = i, and thus we can use standard state space smoothing

techniques independently for each such system, leading to a highly parallel algorithm

in which (a) we transform the available measurement data y(m) to obtain z(m) as in

(4.29); (b) we then use standard smoothing techniques on the individual components;

and (c) we inverse transform the resulting estimates of s(m) to obtain the optimal

estimates of s(t) at all nodes. Note that the fact that each sij is initiated only at

the ith scale implies that the corresponding smoother works on data only from this

and finer scales, leading to a set of smoothing algorithms of different (scale) length.

This is consistent with the intuition that data at any particular scale provides useful

information at that scale and at coarser scales (by averaging) but not at finer scales.

We refer the reader to [16, 17] for details of this procedure and for its generalization

to the case of nonzero-depth models and to arbitrary lattices associated with other

wavelet transforms-i.e. to dynamic system as in (1.11) (and a significant extension of

these) with other choices for the QMF's h(n) and g(n) than the Haar pair. Again one

finds that the wavelet transformed - modified appropriately to deal with the window-

ing effect of smoothing multiscale measurements over a compact interval - yields a set

of decoupled smoothing problems in scale. Since the wavelet transform can be com-

puted quite quickly, this leads to an extremely efficient overall procedure. We note
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also that by specializing our model to the case in which process noise variances de-

crease exponentially in scale we obtain a generalization of the procedure developed in

[51] for the estimation of 1/f-like processes. In particular, what we have just described

provides a procedure for fusing multiresolution measurements of such processes. Fi-

nally, we note that the interpretation of our models as scale-to-scale Markov processes

and the dual viewpoint that the wavelet transform for such a model whitens the data

in scale suggest the problems of (a) optimizing wavelet transforms in order to achieve

maximal scale-to-scale decorrelation; and (b) approximating stochastic processes by

such scale-to-scale Markov models. The former of these problems is discussed in [27]

and the latter is touched upon in [16, 17, 27]. In particular in [17, 27] we construct

approximate models of this type for a standard first-order Gauss-Markov process (i.e.

with temporal correlation function of the form a2e- lt l) and demonstrate their fi-

delity in several ways including their use as the basis for the fusion and smoothing

of multiresolution measurements of Gauss-Markov processes. In Figure 7 we depict

the correlation function of such a unit-variance first-order Gauss-Markov process - i.e.

viewing a set of 2" samples of this process as the values of z(m), Figure 7 displays the

matrix of correlation coefficients of the elements of this vector. In cont rast in Figure 8

we display the correlation coefficients of the elements of s(m) obtained as in (4.29),

but using an 8-tap QMF h(n) rather than the 2-tap h(n) - i.e. first the corresponding

orthogonal matrix for this h(n) is applied to z(m), and then the resulting covariance

of s(m) is modified by dividing its (i,j) element by the square-root of the product

of the (i, i) and (j, j) elements, yielding the matrix of correlation coefficients. As one

would expect from the work on transforming kernels of integral operators in [10], the

result is an almost-diagonal matrix, implying nearly perfect scale-to-scale whitening.

This is further substantiated in [16, 17] (see also Figure 3) by demonstration of the

high quality estimates produced if such remaining inter-scale correlation is neglected.

While the preceding algorithm provides a very efficient procedure for multiscale

fusion, its use does require that all model parameters vary only with scale and thus are

constant on each horocycle. For example this implies that if any measurement is avail-

able at any particular scale, than a full set of measurements is available at that scale.

In contrast, the result shown in Figure 3 (a),(b) corresponds to a situation in which we
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have only sparse, fine scale measurements from a 1/f-like model of the type described

in [50, 51], together with full-coverage, but coarser-resolution measurements, while

Figure 3 (c) and (d) correspond to the analogous situation for a first-order Gauss-

Markov process. In particular in each case 16 fine scale measurements are taken at

each end of the 64-point signal, together with coarse measurements of 4-point averages

of this signal. While the wavelet-transform-based smoothing algorithm does not apply

to this case, the multigrid method described previously does (using in the case of (c)

and (d) an approximate model of the form of (4.14), (4.15) for the Gauss-Markov pro-

cess), as does the following approach which not only provides an extremely efficient

algorithm for multiscale fusion but also illuminates several system-theoretic issues on

dyadic trees. Specifically, as developed in detail in [16, 18, 19], there is a nontrivial

generalization of the so-called Rauch-Tung-Striebel (RTS) smoothing algorithm for

causal state models [42]. Recall that the standard RTS algorithm involves a forward

Kalman filtering sweep followed by a backward sweep to compute the smoothed esti-

mates. The generalization to our models on trees has the same structure, with several

important differences. First for the standard RTS algorithm the procedure is com-

pletely symmetric with respect to time - i.e. we can start with a reverse-time Kalman

filtering sweep followed by a forward smoothing sweep. For processes on trees,, the

Kalman filtering sweep must proceed from fine-to-coarse followed by a coarse-to-fine

smoothing sweep8.

Furthermore the Kalman filtering sweep, is somewhat more complex for processes

on trees. In particular one full step of the Kalman filter recursion involves a mea-

surement update, two parallel backward predictions (corresponding to backward pre-

diction along both of the paths descending from a node), and the fusion of these

predicted estimates. Specifically, as depicted in Figure 9, the fine-to-coarse Kalman

filter step has as its goal the recursive computation of i(tlt), the best estimate of

x(t) based on data in the descendant subtree with root node t. As in usual Kalman

filtering if i(tlt+) denotes the best estimate based on all of the same data ezcept the

sThe reason for this is not very complex. To allow the measurement on the tree at one point to
contribute to the estimate at another point on the same level of the tree, one must use a recursion
that first moves up and then down the tree.
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measurement at node t, we obtain a straightforward update step to produce i·(tlt):

:(tjt) -= (tJt+) + K(t)[y(t)- C(t)E(tlt+)] (4.33)

K(t) = P(tlt+)CT(t)V-i(t) (4.34)

V(t) = C(t)P(tlt+)CT (t) + R(t) (4.35)

and

P(tlt) = [I - K(t)C(t)]P(tIt+) (4.36)

Here P(tlt) and P(tlt+) are the error covariances associated with i(tlt) and i(tlt+),

respectively. Working back one-step, we see that +(tlt+) represents the fusion of infor-

mation in the subtree under to and under tfl. Thus we might expect that i(tlt+) could

be computed from the one-step-backward-predicted estimates i(tita) and r(tlt/3) of

x(t) based separately on the information in the subtrees with root ta and root t/3,

respectively. Indeed as shown in [16, 19]

i.(tlt) = P(tlt+)[P-l(tlta)i(tltXa) + P-l(tltf3)i(tlt/3)] (4.37)

P(tlt+) = [P-'(tlta) + p-'(tlt3) - P'(t)]- ' (4.38)

Finally to complete the recursion, i(tjlto) and i(tftP) are computed from i(talta)

and .(t,3 t/3), respectively, in identical fashions. Specifically, each of these calculations

represents a one-step-backward prediction. It is not surprising, then that a backward

version of the model (4.14) plays a role here. Indeed, as shown in [16]

&(tlta) = F(ta):i(talta) (4.39)

P(tlta) = F(tac)P(tcalta)FT (ta) + Q(ta) (4.40)

where

F(t) = A-l(t)[I - B(t)BT (t)P -1 (t)] (4.41)

Q(t) = A-(t)B(t)Q(t)B(t)Q(t)B T (A- T (t) (4.42)

Q(t) = I- B T (t)P-' (t)B(t) (4.43)

The prediction (4.39-4.43) and update (4.33-4.36) steps correspond to the analogous

steps in the usual Kalman filter (although here we must use the backward model in
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the prediction step), while the fusion step (4.37)-(4.38) has no counterpart in usual

Kalman filtering. The interpretation of (4.37)-(4.38) is that we are fusing together

two estimates each of which incorporates one set of information that is independent

of that used in the other-i.e. the measurements in the ta and tf subtrees- and one

common information source, namely the prior statistics of x(t). Eq. (4.38) ensures

that this common information is accounted for only once in the fused estimate. Once

the top of the overall tree is reached we, of course, have the optimal smoothed estimate

at that node. As shown in [16, 18, 19], it is then possible to compute the optimal

smoothed estimated in a recursive fashion moving down the tree, from coarse to fine.

This recursion combines the smoothed estimate i,(tTy) with the filtered estimates

from the upward sweep to produce i,(t):

i0(t) = i(tlt) + P(tlt)FT(t)p-l(t[lt)[~o(t'y) - i(tylt)] (4.44)

Note that this algorithm also has a highly parallel, and in this case pyramidal, struc-

ture, since all calculations, on either the fine-to-coarse or coarse-to-fine sweep can be

computed in parallel.

Equations (4.34-4.36), (4.38), and (4.40-4.43) define, in essence a Riccati equation

on the dyadic tree. As for standard Riccati equations, it is possible to relate properties

of the solution of this equation to system-theoretic properties. For example, one can

show that suitably defined notions of uniform complete reachability and uniform

complete observability imply upper and lower positive-definite bounds on the error

covariance. Here since the Riccati equation propagates up the tree, the analysis

of reachability and observability relate to systems defined recursively from fine-to-

coarse scale-i.e. noncausal systems as in the first two equations of (4.10). One

might also expect that one could obtain results on the stability of the error dynamics

and asymptotic behavior in the constant parameter case. This is indeed the case, but

there are several issues that complicate the analysis. Specifically, in standard Kalman

filtering analysis the Riccati equation for the error covariance can be viewed simply as

the covariance of the error equation, which can be analyzed directly without explicitly

examining the state dynamics, since the error evolves as a state process itself. This is

not the case here in general. First, while the process x(t) is defined recursively moving
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down the tree, the filtered estimate i(tlt) is defined by a recursion in the opposite

direction. This difficulty cannot be overcome in general simply by reversing one of

these processes, as the reversal process does not, in general, produce a system driven

by white noise." Also, unlike the standard situation, our Riccati equation explicitly

involves the prior state covariance P,(t), arising as we've seen to prevent the double

counting of prior information.

There is, however, a way in which these difficulties can be avoided, essentially by

setting P-1' to zero. In particular, as discussed in [16, 18] if we do this in (4.33)-

(4.43), the estimates produced have the interpretation as maximum likelihood (ML)

estimates. A variation of the RTS algorithm we have described here uses this ML

procedure to propagate to the top of the tree, at which point prior information is then

incorporated, followed by the coarse-to-fine sweep (4.44). To see what happens to the

Riccati equation and error dynamics in this case, let us focus on the scale-varying

case, i.e. the case in which all parameters depend only on m(t). In this case the same

is true of the error covariances, yielding the following Riccati equation in scale:

PML(mlm + 1) = A-'(m + 1)PML(m + lim + 1)A-T(m + 1)

+ G(m + 1)Q(m + 1)GT(m + 1) (4.45)

PjM(mIm) = 2PM~l(mim + 1) + C T (m)R-'(m)C(m) (4.46)

where

G(m) = -A-(m)B(m) (4.47)

This Riccati equation differs from the usual equation only in the presence of the factor

of 2 in (4.46), representing the doubling of information arising in the fusion step. In

this case we can also write a direct fine-to-coarse state form for the ML estimation

error XML(tjt) = x(t)- XML(tlt):

xML(tjt) = -(I - KML(m.(t))C(m.(t)))A-(m(t) + 1)(iML(atlat) + iML(/3tl3t))

9In particular the backward models used in [16, 18, 19] to write z(t) in terms of z(ta) and in
terms of r(t,3) yield driving noises which are martingale differences with respect to the partial order
defined on the tree.
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- 2(I - KML(m(t))C(m(t)))G(m(t) + 1)(w(at) + w(ft))- KML(m(t))v(t)

(4.48)

KML(m) = P(mlm)CT(m)R-l(m) (4.49)

In [16, 18] we provide a detailed analysis of (4.45)-(4.49). In particular the sta-

bility of the error dynamics (4.48) under reachability and observability conditions is

established. The notion of stability, however, deserves further comment. Intuitively

what we would like stability to mean is that the state of the recursion up the tree

decays to 0 as we propagate farther and farther away from the initial level of the

tree. Note, however, that as we move up the tree the state at any node is influenced

by a geometrically increasing number of nodes at the initial level. Thus in order to

study asymptotic stability it is necessary to consider an infinite dyadic tree, with an

infinite set of initial conditions corresponding to all nodes at the initial level. The

implications of this are most easily seen in the constant parameter case. In this case

we have that if (A, B) is a reachable pair and (C, A) observable, then

= A-pA-T + GQGT2 2

-K CA-OOA-TCT A+ ACGQGTCT + R)KT (4.50)
2 2

where

K.o = PooCTR- l (4.51)

Moreover, the autonomous dynamics of the steady-state ML filter, i.e.

e(t) = 2(I - KoC)A-'(e(at) + e(13t)) (4.52)2

is exponentially 12 stable, i.e. the 12 norm of all values of e(t) along an entire horocycle

converges exponentially to zero as m(t) --+ 0. As shown in [16, 18] this is equivalent

to all eigenvalues of the Kalman filter error dynamics matrix

(4.53)

having magnitude less than 22'
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5 Conclusions

In this paper we have outlined a mathematical framework for the multiresolution

modeling and analysis of stochastic processes. As we have discussed, the theory of

multiscale signal analysis and wavelet transforms leads naturally to the investigation

of multiscale statistical representations and dynamic models on dyadic trees and

lattices. The rich structure of the dyadic tree requires that we take some care in the

specification of such models and in the generalization of standard time series notions.

In particular, we have seen that in this context there are two natural concepts of shift

invariance which provide new ways in which to capture notions of scale-invariant

statistical descriptions. In addition, the observation that the scale variable is time-

like in nature leads to a natural notion of "causal" dynamics in scale: from fine to

coarse; however the tree provides only a partial ordering of points, requiring that we

take some care in defining the "past".

In part of our work we have described the multiscale autoregressive modeling of

isotropic processes, i.e. processes satisfying our stronger notion of statistical shift-

invariance. As we have sec n, the usual AR representation of time series is not a

particularly convenient one thanks both to the geometric explosion of points in the

"past" as we increase system order and to the nonlinear constraints isotropy imposes

on the AR coefficients. In contrast, we have seen that it is possible to construct a

generalization of the reflection-coefficient-based lattice representation for such models,

including generalized Levinson and Schur recursions. As we have illustrated such

models can be used to generate fractal-like signals.

The other part of our work was motivated by our weaker notion of stationarity

which in essence says that the correlation between two values in our multiscale rep-

resentation depends on the difference in scale and location of the two points. As we

have seen, this framework leads to state models evolving from coarse-to-fine scales on

dyadic trees. We have described some of our work on a basic system theory for such

models and have also discussed an estimation framework that allows us to capture

the fusion of measurements at differing resolutions. In addition the structure of these

models leads to several extremely efficient and highly parallel estimation structures:
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a multiscale iterative algorithm that can be arranged so as to have the same form

as well-known multigrid algorithms for solving partial differential equations; an al-

gorithm using wavelet transforms to decouple the estimation procedure into a large

set of far simpler parallel estimation algorithms; and a pyramidal algorithm that

introduces a generalization of the Kalman filter and the associated Riccati equation.

As we have discussed and illustrated, these models appear to be useful for a rich

variety of processes including the 1/f-like models as introduced in f50, 51] and stan-

dard first-order Gauss-Markov processes. Much, of course, remains to be done in

developing this theory, in investigating the processes that can be conveniently and

accurately represented within this framework, and in applying these results to prob-

lems of practical importance such as sensor fusion, noise rejection, multisensor or

multiframe data registration and mapping, and segmentation. Among the theoret-

ical topics under investigation are the development of model fitting and likelihood

function-based methods for parameter estimation and segmentation and the develop-

ment of a detailed theory of approximation of stochastic processes including a spec-

ification of those processes that can be "well"-approximated by models of the type

we have introduced. Of particular interest is the dynamic interpretation of so-called

wave packet transforms [21] in which the wavelet coefficients are subjected to further

decomposition through the same filter pair used in the wavelet transform. Viewing

this from our dynamic synthesis perspective, this would appear to correspond to a

class of higher-order models. Identifying and analyzing this model class, however,

remains for the future.
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Figure 1: The dyadic tree, in which each level of the tree corresponds to
a single scale in a multiscale representation. The nodes here correspond to
scale/shift pairs (m,n).
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Figure 2: A signal generated by a third-order multiscale autoregressive
model, as described in Section 3.
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Figure 3: Illustrating multiscale data fusion using the techniques described
in Section 4. In (a) and (b) a signal with a 1/f-like spectrum (as described
in [50]), shown as a solid line in both plots, is reconstructed based on mea-
surements. In (a) data is available only at the two ends of the interval,
while in (b) coarse scale (i.e. locally averaged) measurements are fused to
improve signal interpolation. In (c) and (d) analogous results are shown for
the mniultiscale data fusion and interpolation of a Gauss-Markov process.
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Figure 3: (continued)
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Figure 4: A more symmetric depiction of the dyadic tree, illustrating the
notion of a boundary point -oo, horocycles, and the "parent" s A t of nodes
s and t (see the text. for explanations).
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Figure 5: Illustrating (in bold) the skeleton of a translation. As indicated in
the figure, any translation with this skeleton must map the subtree extending
away from any node on the skeleton onto the corresponding subtree of the
next node. There are, however, many ways in which this can be done (e.g.
by "pivoting" isometries within any of these subtrees).



F igure 6: Illustrating the nature of the construction required in developing
recursions for Et,, and Ft,,. Here if t is the node in the lower left-hand corner,
then the elements of Et,4 are the prediction errors at the two points indicated
by diamonds given the data Yt-,3 spanned by the circles. The elements of
Ftr,4 are the prediction errors at the four points indicated by squares given
again the data in Yt7,3 . The elementary "pivoting" isometries indicated in
the figure allow us to obtain the result on PARCOR coefficients described in
the text.
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Figure 7: Illustrating the covariance matrix of a set of samples of a first-order
Gauss-Markov process with covariance of the form exp - 0'lq. Black corre-
sponds to a value of 1 with lighter shades representing smaller values. The
covariance of this process decays exponentially as we move away from the
main diagonal.
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Figure 8: The matrix of correlation coefficients (i.e. covariance divided by
the square root of the product of variances) for the wavelet-transform of the
Gauss-Markov process of Figure 7 using an 8-tap QMF.
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Figure 9: Illustrating the measurement sets used for the esimates &(tl t) and
i (t It+).


